blob: 96883a8090f4d8c187d5e3fdcd38211932916bc7 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Richard Smith32dbdf62014-07-31 04:25:36 +000078 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000165 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000173 !0 = metadata !{i32 42, null, metadata !"string"}
174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
351 arguments into registers but allows them to be dynamcially
352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
356 This calling convention attempts to make the code in the caller as little
357 intrusive as possible. This calling convention behaves identical to the `C`
358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
371 of code that doesn't many registers. The cold path might need to call out to
372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000497.. _namedtypes:
498
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000499Structure Types
500---------------
Sean Silvab084af42012-12-07 10:36:55 +0000501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
503types <t_struct>`. Literal types are uniqued structurally, but identified types
504are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000505to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000506
507An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000508
509.. code-block:: llvm
510
511 %mytype = type { %mytype*, i32 }
512
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000513Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
514literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000515
516.. _globalvars:
517
518Global Variables
519----------------
520
521Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000522instead of run-time.
523
Bob Wilson85b24f22014-06-12 20:40:33 +0000524Global variables definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525
526Global variables in other translation units can also be declared, in which
527case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000528
Bob Wilson85b24f22014-06-12 20:40:33 +0000529Either global variable definitions or declarations may have an explicit section
530to be placed in and may have an optional explicit alignment specified.
531
Michael Gottesman006039c2013-01-31 05:48:48 +0000532A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000536initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000567Additionally, the global can placed in a comdat if the target has the necessary
568support.
Sean Silvab084af42012-12-07 10:36:55 +0000569
Michael Gottesmane743a302013-02-04 03:22:00 +0000570By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000571variables defined within the module are not modified from their
572initial values before the start of the global initializer. This is
573true even for variables potentially accessible from outside the
574module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000575``@llvm.used`` or dllexported variables. This assumption may be suppressed
576by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000577
Sean Silvab084af42012-12-07 10:36:55 +0000578An explicit alignment may be specified for a global, which must be a
579power of 2. If not present, or if the alignment is set to zero, the
580alignment of the global is set by the target to whatever it feels
581convenient. If an explicit alignment is specified, the global is forced
582to have exactly that alignment. Targets and optimizers are not allowed
583to over-align the global if the global has an assigned section. In this
584case, the extra alignment could be observable: for example, code could
585assume that the globals are densely packed in their section and try to
586iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000587iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000588
Nico Rieck7157bb72014-01-14 15:22:47 +0000589Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
590
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000591Variables and aliasaes can have a
592:ref:`Thread Local Storage Model <tls_model>`.
593
Nico Rieck7157bb72014-01-14 15:22:47 +0000594Syntax::
595
596 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000597 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000598 <global | constant> <Type> [<InitializerConstant>]
599 [, section "name"] [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000600
Sean Silvab084af42012-12-07 10:36:55 +0000601For example, the following defines a global in a numbered address space
602with an initializer, section, and alignment:
603
604.. code-block:: llvm
605
606 @G = addrspace(5) constant float 1.0, section "foo", align 4
607
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000608The following example just declares a global variable
609
610.. code-block:: llvm
611
612 @G = external global i32
613
Sean Silvab084af42012-12-07 10:36:55 +0000614The following example defines a thread-local global with the
615``initialexec`` TLS model:
616
617.. code-block:: llvm
618
619 @G = thread_local(initialexec) global i32 0, align 4
620
621.. _functionstructure:
622
623Functions
624---------
625
626LLVM function definitions consist of the "``define``" keyword, an
627optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000628style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
629an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000630an optional ``unnamed_addr`` attribute, a return type, an optional
631:ref:`parameter attribute <paramattrs>` for the return type, a function
632name, a (possibly empty) argument list (each with optional :ref:`parameter
633attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000634an optional section, an optional alignment,
635an optional :ref:`comdat <langref_comdats>`,
636an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000637curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000638
639LLVM function declarations consist of the "``declare``" keyword, an
640optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000641style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
642an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000643an optional ``unnamed_addr`` attribute, a return type, an optional
644:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000645name, a possibly empty list of arguments, an optional alignment, an optional
646:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000647
Bill Wendling6822ecb2013-10-27 05:09:12 +0000648A function definition contains a list of basic blocks, forming the CFG (Control
649Flow Graph) for the function. Each basic block may optionally start with a label
650(giving the basic block a symbol table entry), contains a list of instructions,
651and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
652function return). If an explicit label is not provided, a block is assigned an
653implicit numbered label, using the next value from the same counter as used for
654unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
655entry block does not have an explicit label, it will be assigned label "%0",
656then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000657
658The first basic block in a function is special in two ways: it is
659immediately executed on entrance to the function, and it is not allowed
660to have predecessor basic blocks (i.e. there can not be any branches to
661the entry block of a function). Because the block can have no
662predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
663
664LLVM allows an explicit section to be specified for functions. If the
665target supports it, it will emit functions to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000666Additionally, the function can placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000667
668An explicit alignment may be specified for a function. If not present,
669or if the alignment is set to zero, the alignment of the function is set
670by the target to whatever it feels convenient. If an explicit alignment
671is specified, the function is forced to have at least that much
672alignment. All alignments must be a power of 2.
673
674If the ``unnamed_addr`` attribute is given, the address is know to not
675be significant and two identical functions can be merged.
676
677Syntax::
678
Nico Rieck7157bb72014-01-14 15:22:47 +0000679 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000680 [cconv] [ret attrs]
681 <ResultType> @<FunctionName> ([argument list])
David Majnemerdad0a642014-06-27 18:19:56 +0000682 [unnamed_addr] [fn Attrs] [section "name"] [comdat $<ComdatName>]
683 [align N] [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000684
Dan Liew2661dfc2014-08-20 15:06:30 +0000685The argument list is a comma seperated sequence of arguments where each
686argument is of the following form
687
688Syntax::
689
690 <type> [parameter Attrs] [name]
691
692
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000693.. _langref_aliases:
694
Sean Silvab084af42012-12-07 10:36:55 +0000695Aliases
696-------
697
Rafael Espindola64c1e182014-06-03 02:41:57 +0000698Aliases, unlike function or variables, don't create any new data. They
699are just a new symbol and metadata for an existing position.
700
701Aliases have a name and an aliasee that is either a global value or a
702constant expression.
703
Nico Rieck7157bb72014-01-14 15:22:47 +0000704Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000705:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
706<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000707
708Syntax::
709
Rafael Espindola464fe022014-07-30 22:51:54 +0000710 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000711
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000712The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000713``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000714might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000715
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000716Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000717the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
718to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000719
Rafael Espindola64c1e182014-06-03 02:41:57 +0000720Since aliases are only a second name, some restrictions apply, of which
721some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000722
Rafael Espindola64c1e182014-06-03 02:41:57 +0000723* The expression defining the aliasee must be computable at assembly
724 time. Since it is just a name, no relocations can be used.
725
726* No alias in the expression can be weak as the possibility of the
727 intermediate alias being overridden cannot be represented in an
728 object file.
729
730* No global value in the expression can be a declaration, since that
731 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000732
David Majnemerdad0a642014-06-27 18:19:56 +0000733.. _langref_comdats:
734
735Comdats
736-------
737
738Comdat IR provides access to COFF and ELF object file COMDAT functionality.
739
Richard Smith32dbdf62014-07-31 04:25:36 +0000740Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000741specify this key will only end up in the final object file if the linker chooses
742that key over some other key. Aliases are placed in the same COMDAT that their
743aliasee computes to, if any.
744
745Comdats have a selection kind to provide input on how the linker should
746choose between keys in two different object files.
747
748Syntax::
749
750 $<Name> = comdat SelectionKind
751
752The selection kind must be one of the following:
753
754``any``
755 The linker may choose any COMDAT key, the choice is arbitrary.
756``exactmatch``
757 The linker may choose any COMDAT key but the sections must contain the
758 same data.
759``largest``
760 The linker will choose the section containing the largest COMDAT key.
761``noduplicates``
762 The linker requires that only section with this COMDAT key exist.
763``samesize``
764 The linker may choose any COMDAT key but the sections must contain the
765 same amount of data.
766
767Note that the Mach-O platform doesn't support COMDATs and ELF only supports
768``any`` as a selection kind.
769
770Here is an example of a COMDAT group where a function will only be selected if
771the COMDAT key's section is the largest:
772
773.. code-block:: llvm
774
775 $foo = comdat largest
776 @foo = global i32 2, comdat $foo
777
778 define void @bar() comdat $foo {
779 ret void
780 }
781
782In a COFF object file, this will create a COMDAT section with selection kind
783``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
784and another COMDAT section with selection kind
785``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000786section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000787
788There are some restrictions on the properties of the global object.
789It, or an alias to it, must have the same name as the COMDAT group when
790targeting COFF.
791The contents and size of this object may be used during link-time to determine
792which COMDAT groups get selected depending on the selection kind.
793Because the name of the object must match the name of the COMDAT group, the
794linkage of the global object must not be local; local symbols can get renamed
795if a collision occurs in the symbol table.
796
797The combined use of COMDATS and section attributes may yield surprising results.
798For example:
799
800.. code-block:: llvm
801
802 $foo = comdat any
803 $bar = comdat any
804 @g1 = global i32 42, section "sec", comdat $foo
805 @g2 = global i32 42, section "sec", comdat $bar
806
807From the object file perspective, this requires the creation of two sections
808with the same name. This is necessary because both globals belong to different
809COMDAT groups and COMDATs, at the object file level, are represented by
810sections.
811
812Note that certain IR constructs like global variables and functions may create
813COMDATs in the object file in addition to any which are specified using COMDAT
814IR. This arises, for example, when a global variable has linkonce_odr linkage.
815
Sean Silvab084af42012-12-07 10:36:55 +0000816.. _namedmetadatastructure:
817
818Named Metadata
819--------------
820
821Named metadata is a collection of metadata. :ref:`Metadata
822nodes <metadata>` (but not metadata strings) are the only valid
823operands for a named metadata.
824
825Syntax::
826
827 ; Some unnamed metadata nodes, which are referenced by the named metadata.
828 !0 = metadata !{metadata !"zero"}
829 !1 = metadata !{metadata !"one"}
830 !2 = metadata !{metadata !"two"}
831 ; A named metadata.
832 !name = !{!0, !1, !2}
833
834.. _paramattrs:
835
836Parameter Attributes
837--------------------
838
839The return type and each parameter of a function type may have a set of
840*parameter attributes* associated with them. Parameter attributes are
841used to communicate additional information about the result or
842parameters of a function. Parameter attributes are considered to be part
843of the function, not of the function type, so functions with different
844parameter attributes can have the same function type.
845
846Parameter attributes are simple keywords that follow the type specified.
847If multiple parameter attributes are needed, they are space separated.
848For example:
849
850.. code-block:: llvm
851
852 declare i32 @printf(i8* noalias nocapture, ...)
853 declare i32 @atoi(i8 zeroext)
854 declare signext i8 @returns_signed_char()
855
856Note that any attributes for the function result (``nounwind``,
857``readonly``) come immediately after the argument list.
858
859Currently, only the following parameter attributes are defined:
860
861``zeroext``
862 This indicates to the code generator that the parameter or return
863 value should be zero-extended to the extent required by the target's
864 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
865 the caller (for a parameter) or the callee (for a return value).
866``signext``
867 This indicates to the code generator that the parameter or return
868 value should be sign-extended to the extent required by the target's
869 ABI (which is usually 32-bits) by the caller (for a parameter) or
870 the callee (for a return value).
871``inreg``
872 This indicates that this parameter or return value should be treated
873 in a special target-dependent fashion during while emitting code for
874 a function call or return (usually, by putting it in a register as
875 opposed to memory, though some targets use it to distinguish between
876 two different kinds of registers). Use of this attribute is
877 target-specific.
878``byval``
879 This indicates that the pointer parameter should really be passed by
880 value to the function. The attribute implies that a hidden copy of
881 the pointee is made between the caller and the callee, so the callee
882 is unable to modify the value in the caller. This attribute is only
883 valid on LLVM pointer arguments. It is generally used to pass
884 structs and arrays by value, but is also valid on pointers to
885 scalars. The copy is considered to belong to the caller not the
886 callee (for example, ``readonly`` functions should not write to
887 ``byval`` parameters). This is not a valid attribute for return
888 values.
889
890 The byval attribute also supports specifying an alignment with the
891 align attribute. It indicates the alignment of the stack slot to
892 form and the known alignment of the pointer specified to the call
893 site. If the alignment is not specified, then the code generator
894 makes a target-specific assumption.
895
Reid Klecknera534a382013-12-19 02:14:12 +0000896.. _attr_inalloca:
897
898``inalloca``
899
Reid Kleckner60d3a832014-01-16 22:59:24 +0000900 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000901 address of outgoing stack arguments. An ``inalloca`` argument must
902 be a pointer to stack memory produced by an ``alloca`` instruction.
903 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000904 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000905 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000906
Reid Kleckner436c42e2014-01-17 23:58:17 +0000907 An argument allocation may be used by a call at most once because
908 the call may deallocate it. The ``inalloca`` attribute cannot be
909 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000910 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
911 ``inalloca`` attribute also disables LLVM's implicit lowering of
912 large aggregate return values, which means that frontend authors
913 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000914
Reid Kleckner60d3a832014-01-16 22:59:24 +0000915 When the call site is reached, the argument allocation must have
916 been the most recent stack allocation that is still live, or the
917 results are undefined. It is possible to allocate additional stack
918 space after an argument allocation and before its call site, but it
919 must be cleared off with :ref:`llvm.stackrestore
920 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000921
922 See :doc:`InAlloca` for more information on how to use this
923 attribute.
924
Sean Silvab084af42012-12-07 10:36:55 +0000925``sret``
926 This indicates that the pointer parameter specifies the address of a
927 structure that is the return value of the function in the source
928 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000929 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000930 not to trap and to be properly aligned. This may only be applied to
931 the first parameter. This is not a valid attribute for return
932 values.
Sean Silva1703e702014-04-08 21:06:22 +0000933
Hal Finkelccc70902014-07-22 16:58:55 +0000934``align <n>``
935 This indicates that the pointer value may be assumed by the optimizer to
936 have the specified alignment.
937
938 Note that this attribute has additional semantics when combined with the
939 ``byval`` attribute.
940
Sean Silva1703e702014-04-08 21:06:22 +0000941.. _noalias:
942
Sean Silvab084af42012-12-07 10:36:55 +0000943``noalias``
Richard Smith939889f2013-06-04 20:42:42 +0000944 This indicates that pointer values :ref:`based <pointeraliasing>` on
Richard Smith32dbdf62014-07-31 04:25:36 +0000945 the argument or return value do not alias pointer values that are
Sean Silvab084af42012-12-07 10:36:55 +0000946 not *based* on it, ignoring certain "irrelevant" dependencies. For a
947 call to the parent function, dependencies between memory references
948 from before or after the call and from those during the call are
949 "irrelevant" to the ``noalias`` keyword for the arguments and return
950 value used in that call. The caller shares the responsibility with
951 the callee for ensuring that these requirements are met. For further
Sean Silva1703e702014-04-08 21:06:22 +0000952 details, please see the discussion of the NoAlias response in :ref:`alias
953 analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000954
955 Note that this definition of ``noalias`` is intentionally similar
956 to the definition of ``restrict`` in C99 for function arguments,
957 though it is slightly weaker.
958
959 For function return values, C99's ``restrict`` is not meaningful,
960 while LLVM's ``noalias`` is.
961``nocapture``
962 This indicates that the callee does not make any copies of the
963 pointer that outlive the callee itself. This is not a valid
964 attribute for return values.
965
966.. _nest:
967
968``nest``
969 This indicates that the pointer parameter can be excised using the
970 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000971 attribute for return values and can only be applied to one parameter.
972
973``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000974 This indicates that the function always returns the argument as its return
975 value. This is an optimization hint to the code generator when generating
976 the caller, allowing tail call optimization and omission of register saves
977 and restores in some cases; it is not checked or enforced when generating
978 the callee. The parameter and the function return type must be valid
979 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
980 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000981
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000982``nonnull``
983 This indicates that the parameter or return pointer is not null. This
984 attribute may only be applied to pointer typed parameters. This is not
985 checked or enforced by LLVM, the caller must ensure that the pointer
986 passed in is non-null, or the callee must ensure that the returned pointer
987 is non-null.
988
Hal Finkelb0407ba2014-07-18 15:51:28 +0000989``dereferenceable(<n>)``
990 This indicates that the parameter or return pointer is dereferenceable. This
991 attribute may only be applied to pointer typed parameters. A pointer that
992 is dereferenceable can be loaded from speculatively without a risk of
993 trapping. The number of bytes known to be dereferenceable must be provided
994 in parentheses. It is legal for the number of bytes to be less than the
995 size of the pointee type. The ``nonnull`` attribute does not imply
996 dereferenceability (consider a pointer to one element past the end of an
997 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
998 ``addrspace(0)`` (which is the default address space).
999
Sean Silvab084af42012-12-07 10:36:55 +00001000.. _gc:
1001
1002Garbage Collector Names
1003-----------------------
1004
1005Each function may specify a garbage collector name, which is simply a
1006string:
1007
1008.. code-block:: llvm
1009
1010 define void @f() gc "name" { ... }
1011
1012The compiler declares the supported values of *name*. Specifying a
Richard Smith32dbdf62014-07-31 04:25:36 +00001013collector will cause the compiler to alter its output in order to
Sean Silvab084af42012-12-07 10:36:55 +00001014support the named garbage collection algorithm.
1015
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001016.. _prefixdata:
1017
1018Prefix Data
1019-----------
1020
1021Prefix data is data associated with a function which the code generator
1022will emit immediately before the function body. The purpose of this feature
1023is to allow frontends to associate language-specific runtime metadata with
1024specific functions and make it available through the function pointer while
1025still allowing the function pointer to be called. To access the data for a
1026given function, a program may bitcast the function pointer to a pointer to
1027the constant's type. This implies that the IR symbol points to the start
1028of the prefix data.
1029
1030To maintain the semantics of ordinary function calls, the prefix data must
1031have a particular format. Specifically, it must begin with a sequence of
1032bytes which decode to a sequence of machine instructions, valid for the
1033module's target, which transfer control to the point immediately succeeding
1034the prefix data, without performing any other visible action. This allows
1035the inliner and other passes to reason about the semantics of the function
1036definition without needing to reason about the prefix data. Obviously this
1037makes the format of the prefix data highly target dependent.
1038
Peter Collingbourne213358a2013-09-23 20:14:21 +00001039Prefix data is laid out as if it were an initializer for a global variable
1040of the prefix data's type. No padding is automatically placed between the
1041prefix data and the function body. If padding is required, it must be part
1042of the prefix data.
1043
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001044A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
1045which encodes the ``nop`` instruction:
1046
1047.. code-block:: llvm
1048
1049 define void @f() prefix i8 144 { ... }
1050
1051Generally prefix data can be formed by encoding a relative branch instruction
1052which skips the metadata, as in this example of valid prefix data for the
1053x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1054
1055.. code-block:: llvm
1056
1057 %0 = type <{ i8, i8, i8* }>
1058
1059 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
1060
1061A function may have prefix data but no body. This has similar semantics
1062to the ``available_externally`` linkage in that the data may be used by the
1063optimizers but will not be emitted in the object file.
1064
Bill Wendling63b88192013-02-06 06:52:58 +00001065.. _attrgrp:
1066
1067Attribute Groups
1068----------------
1069
1070Attribute groups are groups of attributes that are referenced by objects within
1071the IR. They are important for keeping ``.ll`` files readable, because a lot of
1072functions will use the same set of attributes. In the degenerative case of a
1073``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1074group will capture the important command line flags used to build that file.
1075
1076An attribute group is a module-level object. To use an attribute group, an
1077object references the attribute group's ID (e.g. ``#37``). An object may refer
1078to more than one attribute group. In that situation, the attributes from the
1079different groups are merged.
1080
1081Here is an example of attribute groups for a function that should always be
1082inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1083
1084.. code-block:: llvm
1085
1086 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001087 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001088
1089 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001090 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001091
1092 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1093 define void @f() #0 #1 { ... }
1094
Sean Silvab084af42012-12-07 10:36:55 +00001095.. _fnattrs:
1096
1097Function Attributes
1098-------------------
1099
1100Function attributes are set to communicate additional information about
1101a function. Function attributes are considered to be part of the
1102function, not of the function type, so functions with different function
1103attributes can have the same function type.
1104
1105Function attributes are simple keywords that follow the type specified.
1106If multiple attributes are needed, they are space separated. For
1107example:
1108
1109.. code-block:: llvm
1110
1111 define void @f() noinline { ... }
1112 define void @f() alwaysinline { ... }
1113 define void @f() alwaysinline optsize { ... }
1114 define void @f() optsize { ... }
1115
Sean Silvab084af42012-12-07 10:36:55 +00001116``alignstack(<n>)``
1117 This attribute indicates that, when emitting the prologue and
1118 epilogue, the backend should forcibly align the stack pointer.
1119 Specify the desired alignment, which must be a power of two, in
1120 parentheses.
1121``alwaysinline``
1122 This attribute indicates that the inliner should attempt to inline
1123 this function into callers whenever possible, ignoring any active
1124 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001125``builtin``
1126 This indicates that the callee function at a call site should be
1127 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001128 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001129 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001130 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001131``cold``
1132 This attribute indicates that this function is rarely called. When
1133 computing edge weights, basic blocks post-dominated by a cold
1134 function call are also considered to be cold; and, thus, given low
1135 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001136``inlinehint``
1137 This attribute indicates that the source code contained a hint that
1138 inlining this function is desirable (such as the "inline" keyword in
1139 C/C++). It is just a hint; it imposes no requirements on the
1140 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001141``jumptable``
1142 This attribute indicates that the function should be added to a
1143 jump-instruction table at code-generation time, and that all address-taken
1144 references to this function should be replaced with a reference to the
1145 appropriate jump-instruction-table function pointer. Note that this creates
1146 a new pointer for the original function, which means that code that depends
1147 on function-pointer identity can break. So, any function annotated with
1148 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001149``minsize``
1150 This attribute suggests that optimization passes and code generator
1151 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001152 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001153 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001154``naked``
1155 This attribute disables prologue / epilogue emission for the
1156 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001157``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001158 This indicates that the callee function at a call site is not recognized as
1159 a built-in function. LLVM will retain the original call and not replace it
1160 with equivalent code based on the semantics of the built-in function, unless
1161 the call site uses the ``builtin`` attribute. This is valid at call sites
1162 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001163``noduplicate``
1164 This attribute indicates that calls to the function cannot be
1165 duplicated. A call to a ``noduplicate`` function may be moved
1166 within its parent function, but may not be duplicated within
1167 its parent function.
1168
1169 A function containing a ``noduplicate`` call may still
1170 be an inlining candidate, provided that the call is not
1171 duplicated by inlining. That implies that the function has
1172 internal linkage and only has one call site, so the original
1173 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001174``noimplicitfloat``
1175 This attributes disables implicit floating point instructions.
1176``noinline``
1177 This attribute indicates that the inliner should never inline this
1178 function in any situation. This attribute may not be used together
1179 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001180``nonlazybind``
1181 This attribute suppresses lazy symbol binding for the function. This
1182 may make calls to the function faster, at the cost of extra program
1183 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001184``noredzone``
1185 This attribute indicates that the code generator should not use a
1186 red zone, even if the target-specific ABI normally permits it.
1187``noreturn``
1188 This function attribute indicates that the function never returns
1189 normally. This produces undefined behavior at runtime if the
1190 function ever does dynamically return.
1191``nounwind``
1192 This function attribute indicates that the function never returns
1193 with an unwind or exceptional control flow. If the function does
1194 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001195``optnone``
1196 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001197 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001198 exception of interprocedural optimization passes.
1199 This attribute cannot be used together with the ``alwaysinline``
1200 attribute; this attribute is also incompatible
1201 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001202
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001203 This attribute requires the ``noinline`` attribute to be specified on
1204 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001205 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001206 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001207``optsize``
1208 This attribute suggests that optimization passes and code generator
1209 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001210 and otherwise do optimizations specifically to reduce code size as
1211 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001212``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001213 On a function, this attribute indicates that the function computes its
1214 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001215 without dereferencing any pointer arguments or otherwise accessing
1216 any mutable state (e.g. memory, control registers, etc) visible to
1217 caller functions. It does not write through any pointer arguments
1218 (including ``byval`` arguments) and never changes any state visible
1219 to callers. This means that it cannot unwind exceptions by calling
1220 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001221
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001222 On an argument, this attribute indicates that the function does not
1223 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001224 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001225``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001226 On a function, this attribute indicates that the function does not write
1227 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001228 modify any state (e.g. memory, control registers, etc) visible to
1229 caller functions. It may dereference pointer arguments and read
1230 state that may be set in the caller. A readonly function always
1231 returns the same value (or unwinds an exception identically) when
1232 called with the same set of arguments and global state. It cannot
1233 unwind an exception by calling the ``C++`` exception throwing
1234 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001235
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001236 On an argument, this attribute indicates that the function does not write
1237 through this pointer argument, even though it may write to the memory that
1238 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001239``returns_twice``
1240 This attribute indicates that this function can return twice. The C
1241 ``setjmp`` is an example of such a function. The compiler disables
1242 some optimizations (like tail calls) in the caller of these
1243 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001244``sanitize_address``
1245 This attribute indicates that AddressSanitizer checks
1246 (dynamic address safety analysis) are enabled for this function.
1247``sanitize_memory``
1248 This attribute indicates that MemorySanitizer checks (dynamic detection
1249 of accesses to uninitialized memory) are enabled for this function.
1250``sanitize_thread``
1251 This attribute indicates that ThreadSanitizer checks
1252 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001253``ssp``
1254 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001255 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001256 placed on the stack before the local variables that's checked upon
1257 return from the function to see if it has been overwritten. A
1258 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001259 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001260
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001261 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1262 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1263 - Calls to alloca() with variable sizes or constant sizes greater than
1264 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001265
Josh Magee24c7f062014-02-01 01:36:16 +00001266 Variables that are identified as requiring a protector will be arranged
1267 on the stack such that they are adjacent to the stack protector guard.
1268
Sean Silvab084af42012-12-07 10:36:55 +00001269 If a function that has an ``ssp`` attribute is inlined into a
1270 function that doesn't have an ``ssp`` attribute, then the resulting
1271 function will have an ``ssp`` attribute.
1272``sspreq``
1273 This attribute indicates that the function should *always* emit a
1274 stack smashing protector. This overrides the ``ssp`` function
1275 attribute.
1276
Josh Magee24c7f062014-02-01 01:36:16 +00001277 Variables that are identified as requiring a protector will be arranged
1278 on the stack such that they are adjacent to the stack protector guard.
1279 The specific layout rules are:
1280
1281 #. Large arrays and structures containing large arrays
1282 (``>= ssp-buffer-size``) are closest to the stack protector.
1283 #. Small arrays and structures containing small arrays
1284 (``< ssp-buffer-size``) are 2nd closest to the protector.
1285 #. Variables that have had their address taken are 3rd closest to the
1286 protector.
1287
Sean Silvab084af42012-12-07 10:36:55 +00001288 If a function that has an ``sspreq`` attribute is inlined into a
1289 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001290 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1291 an ``sspreq`` attribute.
1292``sspstrong``
1293 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001294 protector. This attribute causes a strong heuristic to be used when
1295 determining if a function needs stack protectors. The strong heuristic
1296 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001297
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001298 - Arrays of any size and type
1299 - Aggregates containing an array of any size and type.
1300 - Calls to alloca().
1301 - Local variables that have had their address taken.
1302
Josh Magee24c7f062014-02-01 01:36:16 +00001303 Variables that are identified as requiring a protector will be arranged
1304 on the stack such that they are adjacent to the stack protector guard.
1305 The specific layout rules are:
1306
1307 #. Large arrays and structures containing large arrays
1308 (``>= ssp-buffer-size``) are closest to the stack protector.
1309 #. Small arrays and structures containing small arrays
1310 (``< ssp-buffer-size``) are 2nd closest to the protector.
1311 #. Variables that have had their address taken are 3rd closest to the
1312 protector.
1313
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001314 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001315
1316 If a function that has an ``sspstrong`` attribute is inlined into a
1317 function that doesn't have an ``sspstrong`` attribute, then the
1318 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001319``uwtable``
1320 This attribute indicates that the ABI being targeted requires that
1321 an unwind table entry be produce for this function even if we can
1322 show that no exceptions passes by it. This is normally the case for
1323 the ELF x86-64 abi, but it can be disabled for some compilation
1324 units.
Sean Silvab084af42012-12-07 10:36:55 +00001325
1326.. _moduleasm:
1327
1328Module-Level Inline Assembly
1329----------------------------
1330
1331Modules may contain "module-level inline asm" blocks, which corresponds
1332to the GCC "file scope inline asm" blocks. These blocks are internally
1333concatenated by LLVM and treated as a single unit, but may be separated
1334in the ``.ll`` file if desired. The syntax is very simple:
1335
1336.. code-block:: llvm
1337
1338 module asm "inline asm code goes here"
1339 module asm "more can go here"
1340
1341The strings can contain any character by escaping non-printable
1342characters. The escape sequence used is simply "\\xx" where "xx" is the
1343two digit hex code for the number.
1344
1345The inline asm code is simply printed to the machine code .s file when
1346assembly code is generated.
1347
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001348.. _langref_datalayout:
1349
Sean Silvab084af42012-12-07 10:36:55 +00001350Data Layout
1351-----------
1352
1353A module may specify a target specific data layout string that specifies
1354how data is to be laid out in memory. The syntax for the data layout is
1355simply:
1356
1357.. code-block:: llvm
1358
1359 target datalayout = "layout specification"
1360
1361The *layout specification* consists of a list of specifications
1362separated by the minus sign character ('-'). Each specification starts
1363with a letter and may include other information after the letter to
1364define some aspect of the data layout. The specifications accepted are
1365as follows:
1366
1367``E``
1368 Specifies that the target lays out data in big-endian form. That is,
1369 the bits with the most significance have the lowest address
1370 location.
1371``e``
1372 Specifies that the target lays out data in little-endian form. That
1373 is, the bits with the least significance have the lowest address
1374 location.
1375``S<size>``
1376 Specifies the natural alignment of the stack in bits. Alignment
1377 promotion of stack variables is limited to the natural stack
1378 alignment to avoid dynamic stack realignment. The stack alignment
1379 must be a multiple of 8-bits. If omitted, the natural stack
1380 alignment defaults to "unspecified", which does not prevent any
1381 alignment promotions.
1382``p[n]:<size>:<abi>:<pref>``
1383 This specifies the *size* of a pointer and its ``<abi>`` and
1384 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001385 bits. The address space, ``n`` is optional, and if not specified,
1386 denotes the default address space 0. The value of ``n`` must be
1387 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001388``i<size>:<abi>:<pref>``
1389 This specifies the alignment for an integer type of a given bit
1390 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1391``v<size>:<abi>:<pref>``
1392 This specifies the alignment for a vector type of a given bit
1393 ``<size>``.
1394``f<size>:<abi>:<pref>``
1395 This specifies the alignment for a floating point type of a given bit
1396 ``<size>``. Only values of ``<size>`` that are supported by the target
1397 will work. 32 (float) and 64 (double) are supported on all targets; 80
1398 or 128 (different flavors of long double) are also supported on some
1399 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001400``a:<abi>:<pref>``
1401 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001402``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001403 If present, specifies that llvm names are mangled in the output. The
1404 options are
1405
1406 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1407 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1408 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1409 symbols get a ``_`` prefix.
1410 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1411 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001412``n<size1>:<size2>:<size3>...``
1413 This specifies a set of native integer widths for the target CPU in
1414 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1415 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1416 this set are considered to support most general arithmetic operations
1417 efficiently.
1418
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001419On every specification that takes a ``<abi>:<pref>``, specifying the
1420``<pref>`` alignment is optional. If omitted, the preceding ``:``
1421should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1422
Sean Silvab084af42012-12-07 10:36:55 +00001423When constructing the data layout for a given target, LLVM starts with a
1424default set of specifications which are then (possibly) overridden by
1425the specifications in the ``datalayout`` keyword. The default
1426specifications are given in this list:
1427
1428- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001429- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1430- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1431 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001432- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001433- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1434- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1435- ``i16:16:16`` - i16 is 16-bit aligned
1436- ``i32:32:32`` - i32 is 32-bit aligned
1437- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1438 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001439- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001440- ``f32:32:32`` - float is 32-bit aligned
1441- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001442- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001443- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1444- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001445- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001446
1447When LLVM is determining the alignment for a given type, it uses the
1448following rules:
1449
1450#. If the type sought is an exact match for one of the specifications,
1451 that specification is used.
1452#. If no match is found, and the type sought is an integer type, then
1453 the smallest integer type that is larger than the bitwidth of the
1454 sought type is used. If none of the specifications are larger than
1455 the bitwidth then the largest integer type is used. For example,
1456 given the default specifications above, the i7 type will use the
1457 alignment of i8 (next largest) while both i65 and i256 will use the
1458 alignment of i64 (largest specified).
1459#. If no match is found, and the type sought is a vector type, then the
1460 largest vector type that is smaller than the sought vector type will
1461 be used as a fall back. This happens because <128 x double> can be
1462 implemented in terms of 64 <2 x double>, for example.
1463
1464The function of the data layout string may not be what you expect.
1465Notably, this is not a specification from the frontend of what alignment
1466the code generator should use.
1467
1468Instead, if specified, the target data layout is required to match what
1469the ultimate *code generator* expects. This string is used by the
1470mid-level optimizers to improve code, and this only works if it matches
1471what the ultimate code generator uses. If you would like to generate IR
1472that does not embed this target-specific detail into the IR, then you
1473don't have to specify the string. This will disable some optimizations
1474that require precise layout information, but this also prevents those
1475optimizations from introducing target specificity into the IR.
1476
Bill Wendling5cc90842013-10-18 23:41:25 +00001477.. _langref_triple:
1478
1479Target Triple
1480-------------
1481
1482A module may specify a target triple string that describes the target
1483host. The syntax for the target triple is simply:
1484
1485.. code-block:: llvm
1486
1487 target triple = "x86_64-apple-macosx10.7.0"
1488
1489The *target triple* string consists of a series of identifiers delimited
1490by the minus sign character ('-'). The canonical forms are:
1491
1492::
1493
1494 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1495 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1496
1497This information is passed along to the backend so that it generates
1498code for the proper architecture. It's possible to override this on the
1499command line with the ``-mtriple`` command line option.
1500
Sean Silvab084af42012-12-07 10:36:55 +00001501.. _pointeraliasing:
1502
1503Pointer Aliasing Rules
1504----------------------
1505
1506Any memory access must be done through a pointer value associated with
1507an address range of the memory access, otherwise the behavior is
1508undefined. Pointer values are associated with address ranges according
1509to the following rules:
1510
1511- A pointer value is associated with the addresses associated with any
1512 value it is *based* on.
1513- An address of a global variable is associated with the address range
1514 of the variable's storage.
1515- The result value of an allocation instruction is associated with the
1516 address range of the allocated storage.
1517- A null pointer in the default address-space is associated with no
1518 address.
1519- An integer constant other than zero or a pointer value returned from
1520 a function not defined within LLVM may be associated with address
1521 ranges allocated through mechanisms other than those provided by
1522 LLVM. Such ranges shall not overlap with any ranges of addresses
1523 allocated by mechanisms provided by LLVM.
1524
1525A pointer value is *based* on another pointer value according to the
1526following rules:
1527
1528- A pointer value formed from a ``getelementptr`` operation is *based*
1529 on the first operand of the ``getelementptr``.
1530- The result value of a ``bitcast`` is *based* on the operand of the
1531 ``bitcast``.
1532- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1533 values that contribute (directly or indirectly) to the computation of
1534 the pointer's value.
1535- The "*based* on" relationship is transitive.
1536
1537Note that this definition of *"based"* is intentionally similar to the
1538definition of *"based"* in C99, though it is slightly weaker.
1539
1540LLVM IR does not associate types with memory. The result type of a
1541``load`` merely indicates the size and alignment of the memory from
1542which to load, as well as the interpretation of the value. The first
1543operand type of a ``store`` similarly only indicates the size and
1544alignment of the store.
1545
1546Consequently, type-based alias analysis, aka TBAA, aka
1547``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1548:ref:`Metadata <metadata>` may be used to encode additional information
1549which specialized optimization passes may use to implement type-based
1550alias analysis.
1551
1552.. _volatile:
1553
1554Volatile Memory Accesses
1555------------------------
1556
1557Certain memory accesses, such as :ref:`load <i_load>`'s,
1558:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1559marked ``volatile``. The optimizers must not change the number of
1560volatile operations or change their order of execution relative to other
1561volatile operations. The optimizers *may* change the order of volatile
1562operations relative to non-volatile operations. This is not Java's
1563"volatile" and has no cross-thread synchronization behavior.
1564
Andrew Trick89fc5a62013-01-30 21:19:35 +00001565IR-level volatile loads and stores cannot safely be optimized into
1566llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1567flagged volatile. Likewise, the backend should never split or merge
1568target-legal volatile load/store instructions.
1569
Andrew Trick7e6f9282013-01-31 00:49:39 +00001570.. admonition:: Rationale
1571
1572 Platforms may rely on volatile loads and stores of natively supported
1573 data width to be executed as single instruction. For example, in C
1574 this holds for an l-value of volatile primitive type with native
1575 hardware support, but not necessarily for aggregate types. The
1576 frontend upholds these expectations, which are intentionally
1577 unspecified in the IR. The rules above ensure that IR transformation
1578 do not violate the frontend's contract with the language.
1579
Sean Silvab084af42012-12-07 10:36:55 +00001580.. _memmodel:
1581
1582Memory Model for Concurrent Operations
1583--------------------------------------
1584
1585The LLVM IR does not define any way to start parallel threads of
1586execution or to register signal handlers. Nonetheless, there are
1587platform-specific ways to create them, and we define LLVM IR's behavior
1588in their presence. This model is inspired by the C++0x memory model.
1589
1590For a more informal introduction to this model, see the :doc:`Atomics`.
1591
1592We define a *happens-before* partial order as the least partial order
1593that
1594
1595- Is a superset of single-thread program order, and
1596- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1597 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1598 techniques, like pthread locks, thread creation, thread joining,
1599 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1600 Constraints <ordering>`).
1601
1602Note that program order does not introduce *happens-before* edges
1603between a thread and signals executing inside that thread.
1604
1605Every (defined) read operation (load instructions, memcpy, atomic
1606loads/read-modify-writes, etc.) R reads a series of bytes written by
1607(defined) write operations (store instructions, atomic
1608stores/read-modify-writes, memcpy, etc.). For the purposes of this
1609section, initialized globals are considered to have a write of the
1610initializer which is atomic and happens before any other read or write
1611of the memory in question. For each byte of a read R, R\ :sub:`byte`
1612may see any write to the same byte, except:
1613
1614- If write\ :sub:`1` happens before write\ :sub:`2`, and
1615 write\ :sub:`2` happens before R\ :sub:`byte`, then
1616 R\ :sub:`byte` does not see write\ :sub:`1`.
1617- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1618 R\ :sub:`byte` does not see write\ :sub:`3`.
1619
1620Given that definition, R\ :sub:`byte` is defined as follows:
1621
1622- If R is volatile, the result is target-dependent. (Volatile is
1623 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001624 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001625 like normal memory. It does not generally provide cross-thread
1626 synchronization.)
1627- Otherwise, if there is no write to the same byte that happens before
1628 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1629- Otherwise, if R\ :sub:`byte` may see exactly one write,
1630 R\ :sub:`byte` returns the value written by that write.
1631- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1632 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1633 Memory Ordering Constraints <ordering>` section for additional
1634 constraints on how the choice is made.
1635- Otherwise R\ :sub:`byte` returns ``undef``.
1636
1637R returns the value composed of the series of bytes it read. This
1638implies that some bytes within the value may be ``undef`` **without**
1639the entire value being ``undef``. Note that this only defines the
1640semantics of the operation; it doesn't mean that targets will emit more
1641than one instruction to read the series of bytes.
1642
1643Note that in cases where none of the atomic intrinsics are used, this
1644model places only one restriction on IR transformations on top of what
1645is required for single-threaded execution: introducing a store to a byte
1646which might not otherwise be stored is not allowed in general.
1647(Specifically, in the case where another thread might write to and read
1648from an address, introducing a store can change a load that may see
1649exactly one write into a load that may see multiple writes.)
1650
1651.. _ordering:
1652
1653Atomic Memory Ordering Constraints
1654----------------------------------
1655
1656Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1657:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1658:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001659ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001660the same address they *synchronize with*. These semantics are borrowed
1661from Java and C++0x, but are somewhat more colloquial. If these
1662descriptions aren't precise enough, check those specs (see spec
1663references in the :doc:`atomics guide <Atomics>`).
1664:ref:`fence <i_fence>` instructions treat these orderings somewhat
1665differently since they don't take an address. See that instruction's
1666documentation for details.
1667
1668For a simpler introduction to the ordering constraints, see the
1669:doc:`Atomics`.
1670
1671``unordered``
1672 The set of values that can be read is governed by the happens-before
1673 partial order. A value cannot be read unless some operation wrote
1674 it. This is intended to provide a guarantee strong enough to model
1675 Java's non-volatile shared variables. This ordering cannot be
1676 specified for read-modify-write operations; it is not strong enough
1677 to make them atomic in any interesting way.
1678``monotonic``
1679 In addition to the guarantees of ``unordered``, there is a single
1680 total order for modifications by ``monotonic`` operations on each
1681 address. All modification orders must be compatible with the
1682 happens-before order. There is no guarantee that the modification
1683 orders can be combined to a global total order for the whole program
1684 (and this often will not be possible). The read in an atomic
1685 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1686 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1687 order immediately before the value it writes. If one atomic read
1688 happens before another atomic read of the same address, the later
1689 read must see the same value or a later value in the address's
1690 modification order. This disallows reordering of ``monotonic`` (or
1691 stronger) operations on the same address. If an address is written
1692 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1693 read that address repeatedly, the other threads must eventually see
1694 the write. This corresponds to the C++0x/C1x
1695 ``memory_order_relaxed``.
1696``acquire``
1697 In addition to the guarantees of ``monotonic``, a
1698 *synchronizes-with* edge may be formed with a ``release`` operation.
1699 This is intended to model C++'s ``memory_order_acquire``.
1700``release``
1701 In addition to the guarantees of ``monotonic``, if this operation
1702 writes a value which is subsequently read by an ``acquire``
1703 operation, it *synchronizes-with* that operation. (This isn't a
1704 complete description; see the C++0x definition of a release
1705 sequence.) This corresponds to the C++0x/C1x
1706 ``memory_order_release``.
1707``acq_rel`` (acquire+release)
1708 Acts as both an ``acquire`` and ``release`` operation on its
1709 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1710``seq_cst`` (sequentially consistent)
1711 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001712 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001713 writes), there is a global total order on all
1714 sequentially-consistent operations on all addresses, which is
1715 consistent with the *happens-before* partial order and with the
1716 modification orders of all the affected addresses. Each
1717 sequentially-consistent read sees the last preceding write to the
1718 same address in this global order. This corresponds to the C++0x/C1x
1719 ``memory_order_seq_cst`` and Java volatile.
1720
1721.. _singlethread:
1722
1723If an atomic operation is marked ``singlethread``, it only *synchronizes
1724with* or participates in modification and seq\_cst total orderings with
1725other operations running in the same thread (for example, in signal
1726handlers).
1727
1728.. _fastmath:
1729
1730Fast-Math Flags
1731---------------
1732
1733LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1734:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1735:ref:`frem <i_frem>`) have the following flags that can set to enable
1736otherwise unsafe floating point operations
1737
1738``nnan``
1739 No NaNs - Allow optimizations to assume the arguments and result are not
1740 NaN. Such optimizations are required to retain defined behavior over
1741 NaNs, but the value of the result is undefined.
1742
1743``ninf``
1744 No Infs - Allow optimizations to assume the arguments and result are not
1745 +/-Inf. Such optimizations are required to retain defined behavior over
1746 +/-Inf, but the value of the result is undefined.
1747
1748``nsz``
1749 No Signed Zeros - Allow optimizations to treat the sign of a zero
1750 argument or result as insignificant.
1751
1752``arcp``
1753 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1754 argument rather than perform division.
1755
1756``fast``
1757 Fast - Allow algebraically equivalent transformations that may
1758 dramatically change results in floating point (e.g. reassociate). This
1759 flag implies all the others.
1760
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001761.. _uselistorder:
1762
1763Use-list Order Directives
1764-------------------------
1765
1766Use-list directives encode the in-memory order of each use-list, allowing the
1767order to be recreated. ``<order-indexes>`` is a comma-separated list of
1768indexes that are assigned to the referenced value's uses. The referenced
1769value's use-list is immediately sorted by these indexes.
1770
1771Use-list directives may appear at function scope or global scope. They are not
1772instructions, and have no effect on the semantics of the IR. When they're at
1773function scope, they must appear after the terminator of the final basic block.
1774
1775If basic blocks have their address taken via ``blockaddress()`` expressions,
1776``uselistorder_bb`` can be used to reorder their use-lists from outside their
1777function's scope.
1778
1779:Syntax:
1780
1781::
1782
1783 uselistorder <ty> <value>, { <order-indexes> }
1784 uselistorder_bb @function, %block { <order-indexes> }
1785
1786:Examples:
1787
1788::
1789
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001790 define void @foo(i32 %arg1, i32 %arg2) {
1791 entry:
1792 ; ... instructions ...
1793 bb:
1794 ; ... instructions ...
1795
1796 ; At function scope.
1797 uselistorder i32 %arg1, { 1, 0, 2 }
1798 uselistorder label %bb, { 1, 0 }
1799 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001800
1801 ; At global scope.
1802 uselistorder i32* @global, { 1, 2, 0 }
1803 uselistorder i32 7, { 1, 0 }
1804 uselistorder i32 (i32) @bar, { 1, 0 }
1805 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1806
Sean Silvab084af42012-12-07 10:36:55 +00001807.. _typesystem:
1808
1809Type System
1810===========
1811
1812The LLVM type system is one of the most important features of the
1813intermediate representation. Being typed enables a number of
1814optimizations to be performed on the intermediate representation
1815directly, without having to do extra analyses on the side before the
1816transformation. A strong type system makes it easier to read the
1817generated code and enables novel analyses and transformations that are
1818not feasible to perform on normal three address code representations.
1819
Rafael Espindola08013342013-12-07 19:34:20 +00001820.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001821
Rafael Espindola08013342013-12-07 19:34:20 +00001822Void Type
1823---------
Sean Silvab084af42012-12-07 10:36:55 +00001824
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001825:Overview:
1826
Rafael Espindola08013342013-12-07 19:34:20 +00001827
1828The void type does not represent any value and has no size.
1829
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001830:Syntax:
1831
Rafael Espindola08013342013-12-07 19:34:20 +00001832
1833::
1834
1835 void
Sean Silvab084af42012-12-07 10:36:55 +00001836
1837
Rafael Espindola08013342013-12-07 19:34:20 +00001838.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001839
Rafael Espindola08013342013-12-07 19:34:20 +00001840Function Type
1841-------------
Sean Silvab084af42012-12-07 10:36:55 +00001842
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001843:Overview:
1844
Sean Silvab084af42012-12-07 10:36:55 +00001845
Rafael Espindola08013342013-12-07 19:34:20 +00001846The function type can be thought of as a function signature. It consists of a
1847return type and a list of formal parameter types. The return type of a function
1848type is a void type or first class type --- except for :ref:`label <t_label>`
1849and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001850
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001851:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001852
Rafael Espindola08013342013-12-07 19:34:20 +00001853::
Sean Silvab084af42012-12-07 10:36:55 +00001854
Rafael Espindola08013342013-12-07 19:34:20 +00001855 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001856
Rafael Espindola08013342013-12-07 19:34:20 +00001857...where '``<parameter list>``' is a comma-separated list of type
1858specifiers. Optionally, the parameter list may include a type ``...``, which
1859indicates that the function takes a variable number of arguments. Variable
1860argument functions can access their arguments with the :ref:`variable argument
1861handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1862except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001863
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001864:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001865
Rafael Espindola08013342013-12-07 19:34:20 +00001866+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1867| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1868+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1869| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1870+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1871| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1872+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1873| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1874+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1875
1876.. _t_firstclass:
1877
1878First Class Types
1879-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001880
1881The :ref:`first class <t_firstclass>` types are perhaps the most important.
1882Values of these types are the only ones which can be produced by
1883instructions.
1884
Rafael Espindola08013342013-12-07 19:34:20 +00001885.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001886
Rafael Espindola08013342013-12-07 19:34:20 +00001887Single Value Types
1888^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001889
Rafael Espindola08013342013-12-07 19:34:20 +00001890These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001891
1892.. _t_integer:
1893
1894Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001895""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001896
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001897:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001898
1899The integer type is a very simple type that simply specifies an
1900arbitrary bit width for the integer type desired. Any bit width from 1
1901bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1902
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001903:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001904
1905::
1906
1907 iN
1908
1909The number of bits the integer will occupy is specified by the ``N``
1910value.
1911
1912Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001913*********
Sean Silvab084af42012-12-07 10:36:55 +00001914
1915+----------------+------------------------------------------------+
1916| ``i1`` | a single-bit integer. |
1917+----------------+------------------------------------------------+
1918| ``i32`` | a 32-bit integer. |
1919+----------------+------------------------------------------------+
1920| ``i1942652`` | a really big integer of over 1 million bits. |
1921+----------------+------------------------------------------------+
1922
1923.. _t_floating:
1924
1925Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001926""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001927
1928.. list-table::
1929 :header-rows: 1
1930
1931 * - Type
1932 - Description
1933
1934 * - ``half``
1935 - 16-bit floating point value
1936
1937 * - ``float``
1938 - 32-bit floating point value
1939
1940 * - ``double``
1941 - 64-bit floating point value
1942
1943 * - ``fp128``
1944 - 128-bit floating point value (112-bit mantissa)
1945
1946 * - ``x86_fp80``
1947 - 80-bit floating point value (X87)
1948
1949 * - ``ppc_fp128``
1950 - 128-bit floating point value (two 64-bits)
1951
Reid Kleckner9a16d082014-03-05 02:41:37 +00001952X86_mmx Type
1953""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001954
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001955:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001956
Reid Kleckner9a16d082014-03-05 02:41:37 +00001957The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001958machine. The operations allowed on it are quite limited: parameters and
1959return values, load and store, and bitcast. User-specified MMX
1960instructions are represented as intrinsic or asm calls with arguments
1961and/or results of this type. There are no arrays, vectors or constants
1962of this type.
1963
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001964:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001965
1966::
1967
Reid Kleckner9a16d082014-03-05 02:41:37 +00001968 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001969
Sean Silvab084af42012-12-07 10:36:55 +00001970
Rafael Espindola08013342013-12-07 19:34:20 +00001971.. _t_pointer:
1972
1973Pointer Type
1974""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001975
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001976:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001977
Rafael Espindola08013342013-12-07 19:34:20 +00001978The pointer type is used to specify memory locations. Pointers are
1979commonly used to reference objects in memory.
1980
1981Pointer types may have an optional address space attribute defining the
1982numbered address space where the pointed-to object resides. The default
1983address space is number zero. The semantics of non-zero address spaces
1984are target-specific.
1985
1986Note that LLVM does not permit pointers to void (``void*``) nor does it
1987permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001988
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001989:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001990
1991::
1992
Rafael Espindola08013342013-12-07 19:34:20 +00001993 <type> *
1994
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001995:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001996
1997+-------------------------+--------------------------------------------------------------------------------------------------------------+
1998| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1999+-------------------------+--------------------------------------------------------------------------------------------------------------+
2000| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2001+-------------------------+--------------------------------------------------------------------------------------------------------------+
2002| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2003+-------------------------+--------------------------------------------------------------------------------------------------------------+
2004
2005.. _t_vector:
2006
2007Vector Type
2008"""""""""""
2009
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002010:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002011
2012A vector type is a simple derived type that represents a vector of
2013elements. Vector types are used when multiple primitive data are
2014operated in parallel using a single instruction (SIMD). A vector type
2015requires a size (number of elements) and an underlying primitive data
2016type. Vector types are considered :ref:`first class <t_firstclass>`.
2017
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002018:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002019
2020::
2021
2022 < <# elements> x <elementtype> >
2023
2024The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002025elementtype may be any integer, floating point or pointer type. Vectors
2026of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002027
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002028:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002029
2030+-------------------+--------------------------------------------------+
2031| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2032+-------------------+--------------------------------------------------+
2033| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2034+-------------------+--------------------------------------------------+
2035| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2036+-------------------+--------------------------------------------------+
2037| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2038+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002039
2040.. _t_label:
2041
2042Label Type
2043^^^^^^^^^^
2044
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002045:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002046
2047The label type represents code labels.
2048
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002049:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002050
2051::
2052
2053 label
2054
2055.. _t_metadata:
2056
2057Metadata Type
2058^^^^^^^^^^^^^
2059
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002060:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002061
2062The metadata type represents embedded metadata. No derived types may be
2063created from metadata except for :ref:`function <t_function>` arguments.
2064
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002065:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002066
2067::
2068
2069 metadata
2070
Sean Silvab084af42012-12-07 10:36:55 +00002071.. _t_aggregate:
2072
2073Aggregate Types
2074^^^^^^^^^^^^^^^
2075
2076Aggregate Types are a subset of derived types that can contain multiple
2077member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2078aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2079aggregate types.
2080
2081.. _t_array:
2082
2083Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002084""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002085
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002086:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002087
2088The array type is a very simple derived type that arranges elements
2089sequentially in memory. The array type requires a size (number of
2090elements) and an underlying data type.
2091
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002092:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002093
2094::
2095
2096 [<# elements> x <elementtype>]
2097
2098The number of elements is a constant integer value; ``elementtype`` may
2099be any type with a size.
2100
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002101:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002102
2103+------------------+--------------------------------------+
2104| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2105+------------------+--------------------------------------+
2106| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2107+------------------+--------------------------------------+
2108| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2109+------------------+--------------------------------------+
2110
2111Here are some examples of multidimensional arrays:
2112
2113+-----------------------------+----------------------------------------------------------+
2114| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2115+-----------------------------+----------------------------------------------------------+
2116| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2117+-----------------------------+----------------------------------------------------------+
2118| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2119+-----------------------------+----------------------------------------------------------+
2120
2121There is no restriction on indexing beyond the end of the array implied
2122by a static type (though there are restrictions on indexing beyond the
2123bounds of an allocated object in some cases). This means that
2124single-dimension 'variable sized array' addressing can be implemented in
2125LLVM with a zero length array type. An implementation of 'pascal style
2126arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2127example.
2128
Sean Silvab084af42012-12-07 10:36:55 +00002129.. _t_struct:
2130
2131Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002132""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002133
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002134:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002135
2136The structure type is used to represent a collection of data members
2137together in memory. The elements of a structure may be any type that has
2138a size.
2139
2140Structures in memory are accessed using '``load``' and '``store``' by
2141getting a pointer to a field with the '``getelementptr``' instruction.
2142Structures in registers are accessed using the '``extractvalue``' and
2143'``insertvalue``' instructions.
2144
2145Structures may optionally be "packed" structures, which indicate that
2146the alignment of the struct is one byte, and that there is no padding
2147between the elements. In non-packed structs, padding between field types
2148is inserted as defined by the DataLayout string in the module, which is
2149required to match what the underlying code generator expects.
2150
2151Structures can either be "literal" or "identified". A literal structure
2152is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2153identified types are always defined at the top level with a name.
2154Literal types are uniqued by their contents and can never be recursive
2155or opaque since there is no way to write one. Identified types can be
2156recursive, can be opaqued, and are never uniqued.
2157
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002158:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002159
2160::
2161
2162 %T1 = type { <type list> } ; Identified normal struct type
2163 %T2 = type <{ <type list> }> ; Identified packed struct type
2164
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002165:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002166
2167+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2168| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2169+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002170| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002171+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2172| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2173+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2174
2175.. _t_opaque:
2176
2177Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002178""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002179
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002180:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002181
2182Opaque structure types are used to represent named structure types that
2183do not have a body specified. This corresponds (for example) to the C
2184notion of a forward declared structure.
2185
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002186:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002187
2188::
2189
2190 %X = type opaque
2191 %52 = type opaque
2192
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002193:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002194
2195+--------------+-------------------+
2196| ``opaque`` | An opaque type. |
2197+--------------+-------------------+
2198
Sean Silva1703e702014-04-08 21:06:22 +00002199.. _constants:
2200
Sean Silvab084af42012-12-07 10:36:55 +00002201Constants
2202=========
2203
2204LLVM has several different basic types of constants. This section
2205describes them all and their syntax.
2206
2207Simple Constants
2208----------------
2209
2210**Boolean constants**
2211 The two strings '``true``' and '``false``' are both valid constants
2212 of the ``i1`` type.
2213**Integer constants**
2214 Standard integers (such as '4') are constants of the
2215 :ref:`integer <t_integer>` type. Negative numbers may be used with
2216 integer types.
2217**Floating point constants**
2218 Floating point constants use standard decimal notation (e.g.
2219 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2220 hexadecimal notation (see below). The assembler requires the exact
2221 decimal value of a floating-point constant. For example, the
2222 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2223 decimal in binary. Floating point constants must have a :ref:`floating
2224 point <t_floating>` type.
2225**Null pointer constants**
2226 The identifier '``null``' is recognized as a null pointer constant
2227 and must be of :ref:`pointer type <t_pointer>`.
2228
2229The one non-intuitive notation for constants is the hexadecimal form of
2230floating point constants. For example, the form
2231'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2232than) '``double 4.5e+15``'. The only time hexadecimal floating point
2233constants are required (and the only time that they are generated by the
2234disassembler) is when a floating point constant must be emitted but it
2235cannot be represented as a decimal floating point number in a reasonable
2236number of digits. For example, NaN's, infinities, and other special
2237values are represented in their IEEE hexadecimal format so that assembly
2238and disassembly do not cause any bits to change in the constants.
2239
2240When using the hexadecimal form, constants of types half, float, and
2241double are represented using the 16-digit form shown above (which
2242matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002243must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002244precision, respectively. Hexadecimal format is always used for long
2245double, and there are three forms of long double. The 80-bit format used
2246by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2247128-bit format used by PowerPC (two adjacent doubles) is represented by
2248``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002249represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2250will only work if they match the long double format on your target.
2251The IEEE 16-bit format (half precision) is represented by ``0xH``
2252followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2253(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002254
Reid Kleckner9a16d082014-03-05 02:41:37 +00002255There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002256
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002257.. _complexconstants:
2258
Sean Silvab084af42012-12-07 10:36:55 +00002259Complex Constants
2260-----------------
2261
2262Complex constants are a (potentially recursive) combination of simple
2263constants and smaller complex constants.
2264
2265**Structure constants**
2266 Structure constants are represented with notation similar to
2267 structure type definitions (a comma separated list of elements,
2268 surrounded by braces (``{}``)). For example:
2269 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2270 "``@G = external global i32``". Structure constants must have
2271 :ref:`structure type <t_struct>`, and the number and types of elements
2272 must match those specified by the type.
2273**Array constants**
2274 Array constants are represented with notation similar to array type
2275 definitions (a comma separated list of elements, surrounded by
2276 square brackets (``[]``)). For example:
2277 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2278 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002279 match those specified by the type. As a special case, character array
2280 constants may also be represented as a double-quoted string using the ``c``
2281 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002282**Vector constants**
2283 Vector constants are represented with notation similar to vector
2284 type definitions (a comma separated list of elements, surrounded by
2285 less-than/greater-than's (``<>``)). For example:
2286 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2287 must have :ref:`vector type <t_vector>`, and the number and types of
2288 elements must match those specified by the type.
2289**Zero initialization**
2290 The string '``zeroinitializer``' can be used to zero initialize a
2291 value to zero of *any* type, including scalar and
2292 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2293 having to print large zero initializers (e.g. for large arrays) and
2294 is always exactly equivalent to using explicit zero initializers.
2295**Metadata node**
2296 A metadata node is a structure-like constant with :ref:`metadata
2297 type <t_metadata>`. For example:
2298 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2299 constants that are meant to be interpreted as part of the
2300 instruction stream, metadata is a place to attach additional
2301 information such as debug info.
2302
2303Global Variable and Function Addresses
2304--------------------------------------
2305
2306The addresses of :ref:`global variables <globalvars>` and
2307:ref:`functions <functionstructure>` are always implicitly valid
2308(link-time) constants. These constants are explicitly referenced when
2309the :ref:`identifier for the global <identifiers>` is used and always have
2310:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2311file:
2312
2313.. code-block:: llvm
2314
2315 @X = global i32 17
2316 @Y = global i32 42
2317 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2318
2319.. _undefvalues:
2320
2321Undefined Values
2322----------------
2323
2324The string '``undef``' can be used anywhere a constant is expected, and
2325indicates that the user of the value may receive an unspecified
2326bit-pattern. Undefined values may be of any type (other than '``label``'
2327or '``void``') and be used anywhere a constant is permitted.
2328
2329Undefined values are useful because they indicate to the compiler that
2330the program is well defined no matter what value is used. This gives the
2331compiler more freedom to optimize. Here are some examples of
2332(potentially surprising) transformations that are valid (in pseudo IR):
2333
2334.. code-block:: llvm
2335
2336 %A = add %X, undef
2337 %B = sub %X, undef
2338 %C = xor %X, undef
2339 Safe:
2340 %A = undef
2341 %B = undef
2342 %C = undef
2343
2344This is safe because all of the output bits are affected by the undef
2345bits. Any output bit can have a zero or one depending on the input bits.
2346
2347.. code-block:: llvm
2348
2349 %A = or %X, undef
2350 %B = and %X, undef
2351 Safe:
2352 %A = -1
2353 %B = 0
2354 Unsafe:
2355 %A = undef
2356 %B = undef
2357
2358These logical operations have bits that are not always affected by the
2359input. For example, if ``%X`` has a zero bit, then the output of the
2360'``and``' operation will always be a zero for that bit, no matter what
2361the corresponding bit from the '``undef``' is. As such, it is unsafe to
2362optimize or assume that the result of the '``and``' is '``undef``'.
2363However, it is safe to assume that all bits of the '``undef``' could be
23640, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2365all the bits of the '``undef``' operand to the '``or``' could be set,
2366allowing the '``or``' to be folded to -1.
2367
2368.. code-block:: llvm
2369
2370 %A = select undef, %X, %Y
2371 %B = select undef, 42, %Y
2372 %C = select %X, %Y, undef
2373 Safe:
2374 %A = %X (or %Y)
2375 %B = 42 (or %Y)
2376 %C = %Y
2377 Unsafe:
2378 %A = undef
2379 %B = undef
2380 %C = undef
2381
2382This set of examples shows that undefined '``select``' (and conditional
2383branch) conditions can go *either way*, but they have to come from one
2384of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2385both known to have a clear low bit, then ``%A`` would have to have a
2386cleared low bit. However, in the ``%C`` example, the optimizer is
2387allowed to assume that the '``undef``' operand could be the same as
2388``%Y``, allowing the whole '``select``' to be eliminated.
2389
2390.. code-block:: llvm
2391
2392 %A = xor undef, undef
2393
2394 %B = undef
2395 %C = xor %B, %B
2396
2397 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002398 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002399 %F = icmp gte %D, 4
2400
2401 Safe:
2402 %A = undef
2403 %B = undef
2404 %C = undef
2405 %D = undef
2406 %E = undef
2407 %F = undef
2408
2409This example points out that two '``undef``' operands are not
2410necessarily the same. This can be surprising to people (and also matches
2411C semantics) where they assume that "``X^X``" is always zero, even if
2412``X`` is undefined. This isn't true for a number of reasons, but the
2413short answer is that an '``undef``' "variable" can arbitrarily change
2414its value over its "live range". This is true because the variable
2415doesn't actually *have a live range*. Instead, the value is logically
2416read from arbitrary registers that happen to be around when needed, so
2417the value is not necessarily consistent over time. In fact, ``%A`` and
2418``%C`` need to have the same semantics or the core LLVM "replace all
2419uses with" concept would not hold.
2420
2421.. code-block:: llvm
2422
2423 %A = fdiv undef, %X
2424 %B = fdiv %X, undef
2425 Safe:
2426 %A = undef
2427 b: unreachable
2428
2429These examples show the crucial difference between an *undefined value*
2430and *undefined behavior*. An undefined value (like '``undef``') is
2431allowed to have an arbitrary bit-pattern. This means that the ``%A``
2432operation can be constant folded to '``undef``', because the '``undef``'
2433could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2434However, in the second example, we can make a more aggressive
2435assumption: because the ``undef`` is allowed to be an arbitrary value,
2436we are allowed to assume that it could be zero. Since a divide by zero
2437has *undefined behavior*, we are allowed to assume that the operation
2438does not execute at all. This allows us to delete the divide and all
2439code after it. Because the undefined operation "can't happen", the
2440optimizer can assume that it occurs in dead code.
2441
2442.. code-block:: llvm
2443
2444 a: store undef -> %X
2445 b: store %X -> undef
2446 Safe:
2447 a: <deleted>
2448 b: unreachable
2449
2450These examples reiterate the ``fdiv`` example: a store *of* an undefined
2451value can be assumed to not have any effect; we can assume that the
2452value is overwritten with bits that happen to match what was already
2453there. However, a store *to* an undefined location could clobber
2454arbitrary memory, therefore, it has undefined behavior.
2455
2456.. _poisonvalues:
2457
2458Poison Values
2459-------------
2460
2461Poison values are similar to :ref:`undef values <undefvalues>`, however
2462they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002463that cannot evoke side effects has nevertheless detected a condition
2464that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002465
2466There is currently no way of representing a poison value in the IR; they
2467only exist when produced by operations such as :ref:`add <i_add>` with
2468the ``nsw`` flag.
2469
2470Poison value behavior is defined in terms of value *dependence*:
2471
2472- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2473- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2474 their dynamic predecessor basic block.
2475- Function arguments depend on the corresponding actual argument values
2476 in the dynamic callers of their functions.
2477- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2478 instructions that dynamically transfer control back to them.
2479- :ref:`Invoke <i_invoke>` instructions depend on the
2480 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2481 call instructions that dynamically transfer control back to them.
2482- Non-volatile loads and stores depend on the most recent stores to all
2483 of the referenced memory addresses, following the order in the IR
2484 (including loads and stores implied by intrinsics such as
2485 :ref:`@llvm.memcpy <int_memcpy>`.)
2486- An instruction with externally visible side effects depends on the
2487 most recent preceding instruction with externally visible side
2488 effects, following the order in the IR. (This includes :ref:`volatile
2489 operations <volatile>`.)
2490- An instruction *control-depends* on a :ref:`terminator
2491 instruction <terminators>` if the terminator instruction has
2492 multiple successors and the instruction is always executed when
2493 control transfers to one of the successors, and may not be executed
2494 when control is transferred to another.
2495- Additionally, an instruction also *control-depends* on a terminator
2496 instruction if the set of instructions it otherwise depends on would
2497 be different if the terminator had transferred control to a different
2498 successor.
2499- Dependence is transitive.
2500
Richard Smith32dbdf62014-07-31 04:25:36 +00002501Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2502with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002503on a poison value has undefined behavior.
2504
2505Here are some examples:
2506
2507.. code-block:: llvm
2508
2509 entry:
2510 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2511 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2512 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2513 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2514
2515 store i32 %poison, i32* @g ; Poison value stored to memory.
2516 %poison2 = load i32* @g ; Poison value loaded back from memory.
2517
2518 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2519
2520 %narrowaddr = bitcast i32* @g to i16*
2521 %wideaddr = bitcast i32* @g to i64*
2522 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2523 %poison4 = load i64* %wideaddr ; Returns a poison value.
2524
2525 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2526 br i1 %cmp, label %true, label %end ; Branch to either destination.
2527
2528 true:
2529 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2530 ; it has undefined behavior.
2531 br label %end
2532
2533 end:
2534 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2535 ; Both edges into this PHI are
2536 ; control-dependent on %cmp, so this
2537 ; always results in a poison value.
2538
2539 store volatile i32 0, i32* @g ; This would depend on the store in %true
2540 ; if %cmp is true, or the store in %entry
2541 ; otherwise, so this is undefined behavior.
2542
2543 br i1 %cmp, label %second_true, label %second_end
2544 ; The same branch again, but this time the
2545 ; true block doesn't have side effects.
2546
2547 second_true:
2548 ; No side effects!
2549 ret void
2550
2551 second_end:
2552 store volatile i32 0, i32* @g ; This time, the instruction always depends
2553 ; on the store in %end. Also, it is
2554 ; control-equivalent to %end, so this is
2555 ; well-defined (ignoring earlier undefined
2556 ; behavior in this example).
2557
2558.. _blockaddress:
2559
2560Addresses of Basic Blocks
2561-------------------------
2562
2563``blockaddress(@function, %block)``
2564
2565The '``blockaddress``' constant computes the address of the specified
2566basic block in the specified function, and always has an ``i8*`` type.
2567Taking the address of the entry block is illegal.
2568
2569This value only has defined behavior when used as an operand to the
2570':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2571against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002572undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002573no label is equal to the null pointer. This may be passed around as an
2574opaque pointer sized value as long as the bits are not inspected. This
2575allows ``ptrtoint`` and arithmetic to be performed on these values so
2576long as the original value is reconstituted before the ``indirectbr``
2577instruction.
2578
2579Finally, some targets may provide defined semantics when using the value
2580as the operand to an inline assembly, but that is target specific.
2581
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002582.. _constantexprs:
2583
Sean Silvab084af42012-12-07 10:36:55 +00002584Constant Expressions
2585--------------------
2586
2587Constant expressions are used to allow expressions involving other
2588constants to be used as constants. Constant expressions may be of any
2589:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2590that does not have side effects (e.g. load and call are not supported).
2591The following is the syntax for constant expressions:
2592
2593``trunc (CST to TYPE)``
2594 Truncate a constant to another type. The bit size of CST must be
2595 larger than the bit size of TYPE. Both types must be integers.
2596``zext (CST to TYPE)``
2597 Zero extend a constant to another type. The bit size of CST must be
2598 smaller than the bit size of TYPE. Both types must be integers.
2599``sext (CST to TYPE)``
2600 Sign extend a constant to another type. The bit size of CST must be
2601 smaller than the bit size of TYPE. Both types must be integers.
2602``fptrunc (CST to TYPE)``
2603 Truncate a floating point constant to another floating point type.
2604 The size of CST must be larger than the size of TYPE. Both types
2605 must be floating point.
2606``fpext (CST to TYPE)``
2607 Floating point extend a constant to another type. The size of CST
2608 must be smaller or equal to the size of TYPE. Both types must be
2609 floating point.
2610``fptoui (CST to TYPE)``
2611 Convert a floating point constant to the corresponding unsigned
2612 integer constant. TYPE must be a scalar or vector integer type. CST
2613 must be of scalar or vector floating point type. Both CST and TYPE
2614 must be scalars, or vectors of the same number of elements. If the
2615 value won't fit in the integer type, the results are undefined.
2616``fptosi (CST to TYPE)``
2617 Convert a floating point constant to the corresponding signed
2618 integer constant. TYPE must be a scalar or vector integer type. CST
2619 must be of scalar or vector floating point type. Both CST and TYPE
2620 must be scalars, or vectors of the same number of elements. If the
2621 value won't fit in the integer type, the results are undefined.
2622``uitofp (CST to TYPE)``
2623 Convert an unsigned integer constant to the corresponding floating
2624 point constant. TYPE must be a scalar or vector floating point type.
2625 CST must be of scalar or vector integer type. Both CST and TYPE must
2626 be scalars, or vectors of the same number of elements. If the value
2627 won't fit in the floating point type, the results are undefined.
2628``sitofp (CST to TYPE)``
2629 Convert a signed integer constant to the corresponding floating
2630 point constant. TYPE must be a scalar or vector floating point type.
2631 CST must be of scalar or vector integer type. Both CST and TYPE must
2632 be scalars, or vectors of the same number of elements. If the value
2633 won't fit in the floating point type, the results are undefined.
2634``ptrtoint (CST to TYPE)``
2635 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002636 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002637 pointer type. The ``CST`` value is zero extended, truncated, or
2638 unchanged to make it fit in ``TYPE``.
2639``inttoptr (CST to TYPE)``
2640 Convert an integer constant to a pointer constant. TYPE must be a
2641 pointer type. CST must be of integer type. The CST value is zero
2642 extended, truncated, or unchanged to make it fit in a pointer size.
2643 This one is *really* dangerous!
2644``bitcast (CST to TYPE)``
2645 Convert a constant, CST, to another TYPE. The constraints of the
2646 operands are the same as those for the :ref:`bitcast
2647 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002648``addrspacecast (CST to TYPE)``
2649 Convert a constant pointer or constant vector of pointer, CST, to another
2650 TYPE in a different address space. The constraints of the operands are the
2651 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002652``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2653 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2654 constants. As with the :ref:`getelementptr <i_getelementptr>`
2655 instruction, the index list may have zero or more indexes, which are
2656 required to make sense for the type of "CSTPTR".
2657``select (COND, VAL1, VAL2)``
2658 Perform the :ref:`select operation <i_select>` on constants.
2659``icmp COND (VAL1, VAL2)``
2660 Performs the :ref:`icmp operation <i_icmp>` on constants.
2661``fcmp COND (VAL1, VAL2)``
2662 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2663``extractelement (VAL, IDX)``
2664 Perform the :ref:`extractelement operation <i_extractelement>` on
2665 constants.
2666``insertelement (VAL, ELT, IDX)``
2667 Perform the :ref:`insertelement operation <i_insertelement>` on
2668 constants.
2669``shufflevector (VEC1, VEC2, IDXMASK)``
2670 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2671 constants.
2672``extractvalue (VAL, IDX0, IDX1, ...)``
2673 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2674 constants. The index list is interpreted in a similar manner as
2675 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2676 least one index value must be specified.
2677``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2678 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2679 The index list is interpreted in a similar manner as indices in a
2680 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2681 value must be specified.
2682``OPCODE (LHS, RHS)``
2683 Perform the specified operation of the LHS and RHS constants. OPCODE
2684 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2685 binary <bitwiseops>` operations. The constraints on operands are
2686 the same as those for the corresponding instruction (e.g. no bitwise
2687 operations on floating point values are allowed).
2688
2689Other Values
2690============
2691
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002692.. _inlineasmexprs:
2693
Sean Silvab084af42012-12-07 10:36:55 +00002694Inline Assembler Expressions
2695----------------------------
2696
2697LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2698Inline Assembly <moduleasm>`) through the use of a special value. This
2699value represents the inline assembler as a string (containing the
2700instructions to emit), a list of operand constraints (stored as a
2701string), a flag that indicates whether or not the inline asm expression
2702has side effects, and a flag indicating whether the function containing
2703the asm needs to align its stack conservatively. An example inline
2704assembler expression is:
2705
2706.. code-block:: llvm
2707
2708 i32 (i32) asm "bswap $0", "=r,r"
2709
2710Inline assembler expressions may **only** be used as the callee operand
2711of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2712Thus, typically we have:
2713
2714.. code-block:: llvm
2715
2716 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2717
2718Inline asms with side effects not visible in the constraint list must be
2719marked as having side effects. This is done through the use of the
2720'``sideeffect``' keyword, like so:
2721
2722.. code-block:: llvm
2723
2724 call void asm sideeffect "eieio", ""()
2725
2726In some cases inline asms will contain code that will not work unless
2727the stack is aligned in some way, such as calls or SSE instructions on
2728x86, yet will not contain code that does that alignment within the asm.
2729The compiler should make conservative assumptions about what the asm
2730might contain and should generate its usual stack alignment code in the
2731prologue if the '``alignstack``' keyword is present:
2732
2733.. code-block:: llvm
2734
2735 call void asm alignstack "eieio", ""()
2736
2737Inline asms also support using non-standard assembly dialects. The
2738assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2739the inline asm is using the Intel dialect. Currently, ATT and Intel are
2740the only supported dialects. An example is:
2741
2742.. code-block:: llvm
2743
2744 call void asm inteldialect "eieio", ""()
2745
2746If multiple keywords appear the '``sideeffect``' keyword must come
2747first, the '``alignstack``' keyword second and the '``inteldialect``'
2748keyword last.
2749
2750Inline Asm Metadata
2751^^^^^^^^^^^^^^^^^^^
2752
2753The call instructions that wrap inline asm nodes may have a
2754"``!srcloc``" MDNode attached to it that contains a list of constant
2755integers. If present, the code generator will use the integer as the
2756location cookie value when report errors through the ``LLVMContext``
2757error reporting mechanisms. This allows a front-end to correlate backend
2758errors that occur with inline asm back to the source code that produced
2759it. For example:
2760
2761.. code-block:: llvm
2762
2763 call void asm sideeffect "something bad", ""(), !srcloc !42
2764 ...
2765 !42 = !{ i32 1234567 }
2766
2767It is up to the front-end to make sense of the magic numbers it places
2768in the IR. If the MDNode contains multiple constants, the code generator
2769will use the one that corresponds to the line of the asm that the error
2770occurs on.
2771
2772.. _metadata:
2773
2774Metadata Nodes and Metadata Strings
2775-----------------------------------
2776
2777LLVM IR allows metadata to be attached to instructions in the program
2778that can convey extra information about the code to the optimizers and
2779code generator. One example application of metadata is source-level
2780debug information. There are two metadata primitives: strings and nodes.
2781All metadata has the ``metadata`` type and is identified in syntax by a
2782preceding exclamation point ('``!``').
2783
2784A metadata string is a string surrounded by double quotes. It can
2785contain any character by escaping non-printable characters with
2786"``\xx``" where "``xx``" is the two digit hex code. For example:
2787"``!"test\00"``".
2788
2789Metadata nodes are represented with notation similar to structure
2790constants (a comma separated list of elements, surrounded by braces and
2791preceded by an exclamation point). Metadata nodes can have any values as
2792their operand. For example:
2793
2794.. code-block:: llvm
2795
2796 !{ metadata !"test\00", i32 10}
2797
2798A :ref:`named metadata <namedmetadatastructure>` is a collection of
2799metadata nodes, which can be looked up in the module symbol table. For
2800example:
2801
2802.. code-block:: llvm
2803
2804 !foo = metadata !{!4, !3}
2805
2806Metadata can be used as function arguments. Here ``llvm.dbg.value``
2807function is using two metadata arguments:
2808
2809.. code-block:: llvm
2810
2811 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2812
2813Metadata can be attached with an instruction. Here metadata ``!21`` is
2814attached to the ``add`` instruction using the ``!dbg`` identifier:
2815
2816.. code-block:: llvm
2817
2818 %indvar.next = add i64 %indvar, 1, !dbg !21
2819
2820More information about specific metadata nodes recognized by the
2821optimizers and code generator is found below.
2822
2823'``tbaa``' Metadata
2824^^^^^^^^^^^^^^^^^^^
2825
2826In LLVM IR, memory does not have types, so LLVM's own type system is not
2827suitable for doing TBAA. Instead, metadata is added to the IR to
2828describe a type system of a higher level language. This can be used to
2829implement typical C/C++ TBAA, but it can also be used to implement
2830custom alias analysis behavior for other languages.
2831
2832The current metadata format is very simple. TBAA metadata nodes have up
2833to three fields, e.g.:
2834
2835.. code-block:: llvm
2836
2837 !0 = metadata !{ metadata !"an example type tree" }
2838 !1 = metadata !{ metadata !"int", metadata !0 }
2839 !2 = metadata !{ metadata !"float", metadata !0 }
2840 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2841
2842The first field is an identity field. It can be any value, usually a
2843metadata string, which uniquely identifies the type. The most important
2844name in the tree is the name of the root node. Two trees with different
2845root node names are entirely disjoint, even if they have leaves with
2846common names.
2847
2848The second field identifies the type's parent node in the tree, or is
2849null or omitted for a root node. A type is considered to alias all of
2850its descendants and all of its ancestors in the tree. Also, a type is
2851considered to alias all types in other trees, so that bitcode produced
2852from multiple front-ends is handled conservatively.
2853
2854If the third field is present, it's an integer which if equal to 1
2855indicates that the type is "constant" (meaning
2856``pointsToConstantMemory`` should return true; see `other useful
2857AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2858
2859'``tbaa.struct``' Metadata
2860^^^^^^^^^^^^^^^^^^^^^^^^^^
2861
2862The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2863aggregate assignment operations in C and similar languages, however it
2864is defined to copy a contiguous region of memory, which is more than
2865strictly necessary for aggregate types which contain holes due to
2866padding. Also, it doesn't contain any TBAA information about the fields
2867of the aggregate.
2868
2869``!tbaa.struct`` metadata can describe which memory subregions in a
2870memcpy are padding and what the TBAA tags of the struct are.
2871
2872The current metadata format is very simple. ``!tbaa.struct`` metadata
2873nodes are a list of operands which are in conceptual groups of three.
2874For each group of three, the first operand gives the byte offset of a
2875field in bytes, the second gives its size in bytes, and the third gives
2876its tbaa tag. e.g.:
2877
2878.. code-block:: llvm
2879
2880 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2881
2882This describes a struct with two fields. The first is at offset 0 bytes
2883with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2884and has size 4 bytes and has tbaa tag !2.
2885
2886Note that the fields need not be contiguous. In this example, there is a
28874 byte gap between the two fields. This gap represents padding which
2888does not carry useful data and need not be preserved.
2889
Hal Finkel94146652014-07-24 14:25:39 +00002890'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00002891^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00002892
2893``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
2894noalias memory-access sets. This means that some collection of memory access
2895instructions (loads, stores, memory-accessing calls, etc.) that carry
2896``noalias`` metadata can specifically be specified not to alias with some other
2897collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00002898Each type of metadata specifies a list of scopes where each scope has an id and
2899a domain. When evaluating an aliasing query, if for some some domain, the set
2900of scopes with that domain in one instruction's ``alias.scope`` list is a
2901subset of (or qual to) the set of scopes for that domain in another
2902instruction's ``noalias`` list, then the two memory accesses are assumed not to
2903alias.
Hal Finkel94146652014-07-24 14:25:39 +00002904
Hal Finkel029cde62014-07-25 15:50:02 +00002905The metadata identifying each domain is itself a list containing one or two
2906entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00002907string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00002908self-reference can be used to create globally unique domain names. A
2909descriptive string may optionally be provided as a second list entry.
2910
2911The metadata identifying each scope is also itself a list containing two or
2912three entries. The first entry is the name of the scope. Note that if the name
2913is a string then it can be combined accross functions and translation units. A
2914self-reference can be used to create globally unique scope names. A metadata
2915reference to the scope's domain is the second entry. A descriptive string may
2916optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00002917
2918For example,
2919
2920.. code-block:: llvm
2921
Hal Finkel029cde62014-07-25 15:50:02 +00002922 ; Two scope domains:
Hal Finkel94146652014-07-24 14:25:39 +00002923 !0 = metadata !{metadata !0}
Hal Finkel029cde62014-07-25 15:50:02 +00002924 !1 = metadata !{metadata !1}
Hal Finkel94146652014-07-24 14:25:39 +00002925
Hal Finkel029cde62014-07-25 15:50:02 +00002926 ; Some scopes in these domains:
2927 !2 = metadata !{metadata !2, metadata !0}
2928 !3 = metadata !{metadata !3, metadata !0}
2929 !4 = metadata !{metadata !4, metadata !1}
Hal Finkel94146652014-07-24 14:25:39 +00002930
Hal Finkel029cde62014-07-25 15:50:02 +00002931 ; Some scope lists:
2932 !5 = metadata !{metadata !4} ; A list containing only scope !4
2933 !6 = metadata !{metadata !4, metadata !3, metadata !2}
2934 !7 = metadata !{metadata !3}
Hal Finkel94146652014-07-24 14:25:39 +00002935
2936 ; These two instructions don't alias:
Hal Finkel029cde62014-07-25 15:50:02 +00002937 %0 = load float* %c, align 4, !alias.scope !5
2938 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00002939
Hal Finkel029cde62014-07-25 15:50:02 +00002940 ; These two instructions also don't alias (for domain !1, the set of scopes
2941 ; in the !alias.scope equals that in the !noalias list):
2942 %2 = load float* %c, align 4, !alias.scope !5
2943 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00002944
Hal Finkel029cde62014-07-25 15:50:02 +00002945 ; These two instructions don't alias (for domain !0, the set of scopes in
2946 ; the !noalias list is not a superset of, or equal to, the scopes in the
2947 ; !alias.scope list):
2948 %2 = load float* %c, align 4, !alias.scope !6
2949 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00002950
Sean Silvab084af42012-12-07 10:36:55 +00002951'``fpmath``' Metadata
2952^^^^^^^^^^^^^^^^^^^^^
2953
2954``fpmath`` metadata may be attached to any instruction of floating point
2955type. It can be used to express the maximum acceptable error in the
2956result of that instruction, in ULPs, thus potentially allowing the
2957compiler to use a more efficient but less accurate method of computing
2958it. ULP is defined as follows:
2959
2960 If ``x`` is a real number that lies between two finite consecutive
2961 floating-point numbers ``a`` and ``b``, without being equal to one
2962 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2963 distance between the two non-equal finite floating-point numbers
2964 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2965
2966The metadata node shall consist of a single positive floating point
2967number representing the maximum relative error, for example:
2968
2969.. code-block:: llvm
2970
2971 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2972
2973'``range``' Metadata
2974^^^^^^^^^^^^^^^^^^^^
2975
Jingyue Wu37fcb592014-06-19 16:50:16 +00002976``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
2977integer types. It expresses the possible ranges the loaded value or the value
2978returned by the called function at this call site is in. The ranges are
2979represented with a flattened list of integers. The loaded value or the value
2980returned is known to be in the union of the ranges defined by each consecutive
2981pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00002982
2983- The type must match the type loaded by the instruction.
2984- The pair ``a,b`` represents the range ``[a,b)``.
2985- Both ``a`` and ``b`` are constants.
2986- The range is allowed to wrap.
2987- The range should not represent the full or empty set. That is,
2988 ``a!=b``.
2989
2990In addition, the pairs must be in signed order of the lower bound and
2991they must be non-contiguous.
2992
2993Examples:
2994
2995.. code-block:: llvm
2996
2997 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2998 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00002999 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
3000 %d = invoke i8 @bar() to label %cont
3001 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00003002 ...
3003 !0 = metadata !{ i8 0, i8 2 }
3004 !1 = metadata !{ i8 255, i8 2 }
3005 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
3006 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
3007
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003008'``llvm.loop``'
3009^^^^^^^^^^^^^^^
3010
3011It is sometimes useful to attach information to loop constructs. Currently,
3012loop metadata is implemented as metadata attached to the branch instruction
3013in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00003014guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00003015specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003016
3017The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00003018itself to avoid merging it with any other identifier metadata, e.g.,
3019during module linkage or function inlining. That is, each loop should refer
3020to their own identification metadata even if they reside in separate functions.
3021The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003022constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003023
3024.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00003025
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003026 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003027 !1 = metadata !{ metadata !1 }
3028
Mark Heffernan893752a2014-07-18 19:24:51 +00003029The loop identifier metadata can be used to specify additional
3030per-loop metadata. Any operands after the first operand can be treated
3031as user-defined metadata. For example the ``llvm.loop.unroll.count``
3032suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003033
Paul Redmond5fdf8362013-05-28 20:00:34 +00003034.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003035
Paul Redmond5fdf8362013-05-28 20:00:34 +00003036 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
3037 ...
3038 !0 = metadata !{ metadata !0, metadata !1 }
Mark Heffernan9d20e422014-07-21 23:11:03 +00003039 !1 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003040
Mark Heffernan9d20e422014-07-21 23:11:03 +00003041'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
3042^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00003043
Mark Heffernan9d20e422014-07-21 23:11:03 +00003044Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
3045used to control per-loop vectorization and interleaving parameters such as
3046vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00003047conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00003048``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
3049optimization hints and the optimizer will only interleave and vectorize loops if
3050it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
3051which contains information about loop-carried memory dependencies can be helpful
3052in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00003053
Mark Heffernan9d20e422014-07-21 23:11:03 +00003054'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00003055^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3056
Mark Heffernan9d20e422014-07-21 23:11:03 +00003057This metadata suggests an interleave count to the loop interleaver.
3058The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00003059second operand is an integer specifying the interleave count. For
3060example:
3061
3062.. code-block:: llvm
3063
Mark Heffernan9d20e422014-07-21 23:11:03 +00003064 !0 = metadata !{ metadata !"llvm.loop.interleave.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003065
Mark Heffernan9d20e422014-07-21 23:11:03 +00003066Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3067multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
3068then the interleave count will be determined automatically.
3069
3070'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00003071^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00003072
3073This metadata selectively enables or disables vectorization for the loop. The
3074first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3075is a bit. If the bit operand value is 1 vectorization is enabled. A value of
30760 disables vectorization:
3077
3078.. code-block:: llvm
3079
3080 !0 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 0 }
3081 !1 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 1 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003082
3083'``llvm.loop.vectorize.width``' Metadata
3084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3085
3086This metadata sets the target width of the vectorizer. The first
3087operand is the string ``llvm.loop.vectorize.width`` and the second
3088operand is an integer specifying the width. For example:
3089
3090.. code-block:: llvm
3091
3092 !0 = metadata !{ metadata !"llvm.loop.vectorize.width", i32 4 }
3093
3094Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3095vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
30960 or if the loop does not have this metadata the width will be
3097determined automatically.
3098
3099'``llvm.loop.unroll``'
3100^^^^^^^^^^^^^^^^^^^^^^
3101
3102Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3103optimization hints such as the unroll factor. ``llvm.loop.unroll``
3104metadata should be used in conjunction with ``llvm.loop`` loop
3105identification metadata. The ``llvm.loop.unroll`` metadata are only
3106optimization hints and the unrolling will only be performed if the
3107optimizer believes it is safe to do so.
3108
Mark Heffernan893752a2014-07-18 19:24:51 +00003109'``llvm.loop.unroll.count``' Metadata
3110^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3111
3112This metadata suggests an unroll factor to the loop unroller. The
3113first operand is the string ``llvm.loop.unroll.count`` and the second
3114operand is a positive integer specifying the unroll factor. For
3115example:
3116
3117.. code-block:: llvm
3118
3119 !0 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
3120
3121If the trip count of the loop is less than the unroll count the loop
3122will be partially unrolled.
3123
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003124'``llvm.loop.unroll.disable``' Metadata
3125^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3126
3127This metadata either disables loop unrolling. The metadata has a single operand
3128which is the string ``llvm.loop.unroll.disable``. For example:
3129
3130.. code-block:: llvm
3131
3132 !0 = metadata !{ metadata !"llvm.loop.unroll.disable" }
3133
3134'``llvm.loop.unroll.full``' Metadata
3135^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3136
3137This metadata either suggests that the loop should be unrolled fully. The
3138metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3139For example:
3140
3141.. code-block:: llvm
3142
3143 !0 = metadata !{ metadata !"llvm.loop.unroll.full" }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003144
3145'``llvm.mem``'
3146^^^^^^^^^^^^^^^
3147
3148Metadata types used to annotate memory accesses with information helpful
3149for optimizations are prefixed with ``llvm.mem``.
3150
3151'``llvm.mem.parallel_loop_access``' Metadata
3152^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3153
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003154The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3155or metadata containing a list of loop identifiers for nested loops.
3156The metadata is attached to memory accessing instructions and denotes that
3157no loop carried memory dependence exist between it and other instructions denoted
3158with the same loop identifier.
3159
3160Precisely, given two instructions ``m1`` and ``m2`` that both have the
3161``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3162set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00003163carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003164``L2``.
3165
3166As a special case, if all memory accessing instructions in a loop have
3167``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3168loop has no loop carried memory dependences and is considered to be a parallel
3169loop.
3170
3171Note that if not all memory access instructions have such metadata referring to
3172the loop, then the loop is considered not being trivially parallel. Additional
3173memory dependence analysis is required to make that determination. As a fail
3174safe mechanism, this causes loops that were originally parallel to be considered
3175sequential (if optimization passes that are unaware of the parallel semantics
3176insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003177
3178Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003179both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003180metadata types that refer to the same loop identifier metadata.
3181
3182.. code-block:: llvm
3183
3184 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003185 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003186 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003187 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003188 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003189 ...
3190 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003191
3192 for.end:
3193 ...
3194 !0 = metadata !{ metadata !0 }
3195
3196It is also possible to have nested parallel loops. In that case the
3197memory accesses refer to a list of loop identifier metadata nodes instead of
3198the loop identifier metadata node directly:
3199
3200.. code-block:: llvm
3201
3202 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003203 ...
3204 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
3205 ...
3206 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003207
3208 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003209 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003210 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003211 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003212 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003213 ...
3214 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003215
3216 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003217 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003218 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003219 ...
3220 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003221
3222 outer.for.end: ; preds = %for.body
3223 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00003224 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
3225 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
3226 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003227
Sean Silvab084af42012-12-07 10:36:55 +00003228Module Flags Metadata
3229=====================
3230
3231Information about the module as a whole is difficult to convey to LLVM's
3232subsystems. The LLVM IR isn't sufficient to transmit this information.
3233The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003234this. These flags are in the form of key / value pairs --- much like a
3235dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003236look it up.
3237
3238The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3239Each triplet has the following form:
3240
3241- The first element is a *behavior* flag, which specifies the behavior
3242 when two (or more) modules are merged together, and it encounters two
3243 (or more) metadata with the same ID. The supported behaviors are
3244 described below.
3245- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003246 metadata. Each module may only have one flag entry for each unique ID (not
3247 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003248- The third element is the value of the flag.
3249
3250When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003251``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3252each unique metadata ID string, there will be exactly one entry in the merged
3253modules ``llvm.module.flags`` metadata table, and the value for that entry will
3254be determined by the merge behavior flag, as described below. The only exception
3255is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003256
3257The following behaviors are supported:
3258
3259.. list-table::
3260 :header-rows: 1
3261 :widths: 10 90
3262
3263 * - Value
3264 - Behavior
3265
3266 * - 1
3267 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003268 Emits an error if two values disagree, otherwise the resulting value
3269 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003270
3271 * - 2
3272 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003273 Emits a warning if two values disagree. The result value will be the
3274 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003275
3276 * - 3
3277 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003278 Adds a requirement that another module flag be present and have a
3279 specified value after linking is performed. The value must be a
3280 metadata pair, where the first element of the pair is the ID of the
3281 module flag to be restricted, and the second element of the pair is
3282 the value the module flag should be restricted to. This behavior can
3283 be used to restrict the allowable results (via triggering of an
3284 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003285
3286 * - 4
3287 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003288 Uses the specified value, regardless of the behavior or value of the
3289 other module. If both modules specify **Override**, but the values
3290 differ, an error will be emitted.
3291
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003292 * - 5
3293 - **Append**
3294 Appends the two values, which are required to be metadata nodes.
3295
3296 * - 6
3297 - **AppendUnique**
3298 Appends the two values, which are required to be metadata
3299 nodes. However, duplicate entries in the second list are dropped
3300 during the append operation.
3301
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003302It is an error for a particular unique flag ID to have multiple behaviors,
3303except in the case of **Require** (which adds restrictions on another metadata
3304value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003305
3306An example of module flags:
3307
3308.. code-block:: llvm
3309
3310 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3311 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3312 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3313 !3 = metadata !{ i32 3, metadata !"qux",
3314 metadata !{
3315 metadata !"foo", i32 1
3316 }
3317 }
3318 !llvm.module.flags = !{ !0, !1, !2, !3 }
3319
3320- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3321 if two or more ``!"foo"`` flags are seen is to emit an error if their
3322 values are not equal.
3323
3324- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3325 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003326 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003327
3328- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3329 behavior if two or more ``!"qux"`` flags are seen is to emit a
3330 warning if their values are not equal.
3331
3332- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3333
3334 ::
3335
3336 metadata !{ metadata !"foo", i32 1 }
3337
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003338 The behavior is to emit an error if the ``llvm.module.flags`` does not
3339 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3340 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003341
3342Objective-C Garbage Collection Module Flags Metadata
3343----------------------------------------------------
3344
3345On the Mach-O platform, Objective-C stores metadata about garbage
3346collection in a special section called "image info". The metadata
3347consists of a version number and a bitmask specifying what types of
3348garbage collection are supported (if any) by the file. If two or more
3349modules are linked together their garbage collection metadata needs to
3350be merged rather than appended together.
3351
3352The Objective-C garbage collection module flags metadata consists of the
3353following key-value pairs:
3354
3355.. list-table::
3356 :header-rows: 1
3357 :widths: 30 70
3358
3359 * - Key
3360 - Value
3361
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003362 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003363 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003364
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003365 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003366 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003367 always 0.
3368
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003369 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003370 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003371 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3372 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3373 Objective-C ABI version 2.
3374
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003375 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003376 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003377 not. Valid values are 0, for no garbage collection, and 2, for garbage
3378 collection supported.
3379
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003380 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003381 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003382 If present, its value must be 6. This flag requires that the
3383 ``Objective-C Garbage Collection`` flag have the value 2.
3384
3385Some important flag interactions:
3386
3387- If a module with ``Objective-C Garbage Collection`` set to 0 is
3388 merged with a module with ``Objective-C Garbage Collection`` set to
3389 2, then the resulting module has the
3390 ``Objective-C Garbage Collection`` flag set to 0.
3391- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3392 merged with a module with ``Objective-C GC Only`` set to 6.
3393
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003394Automatic Linker Flags Module Flags Metadata
3395--------------------------------------------
3396
3397Some targets support embedding flags to the linker inside individual object
3398files. Typically this is used in conjunction with language extensions which
3399allow source files to explicitly declare the libraries they depend on, and have
3400these automatically be transmitted to the linker via object files.
3401
3402These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003403using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003404to be ``AppendUnique``, and the value for the key is expected to be a metadata
3405node which should be a list of other metadata nodes, each of which should be a
3406list of metadata strings defining linker options.
3407
3408For example, the following metadata section specifies two separate sets of
3409linker options, presumably to link against ``libz`` and the ``Cocoa``
3410framework::
3411
Michael Liaoa7699082013-03-06 18:24:34 +00003412 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003413 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003414 metadata !{ metadata !"-lz" },
3415 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003416 !llvm.module.flags = !{ !0 }
3417
3418The metadata encoding as lists of lists of options, as opposed to a collapsed
3419list of options, is chosen so that the IR encoding can use multiple option
3420strings to specify e.g., a single library, while still having that specifier be
3421preserved as an atomic element that can be recognized by a target specific
3422assembly writer or object file emitter.
3423
3424Each individual option is required to be either a valid option for the target's
3425linker, or an option that is reserved by the target specific assembly writer or
3426object file emitter. No other aspect of these options is defined by the IR.
3427
Oliver Stannard5dc29342014-06-20 10:08:11 +00003428C type width Module Flags Metadata
3429----------------------------------
3430
3431The ARM backend emits a section into each generated object file describing the
3432options that it was compiled with (in a compiler-independent way) to prevent
3433linking incompatible objects, and to allow automatic library selection. Some
3434of these options are not visible at the IR level, namely wchar_t width and enum
3435width.
3436
3437To pass this information to the backend, these options are encoded in module
3438flags metadata, using the following key-value pairs:
3439
3440.. list-table::
3441 :header-rows: 1
3442 :widths: 30 70
3443
3444 * - Key
3445 - Value
3446
3447 * - short_wchar
3448 - * 0 --- sizeof(wchar_t) == 4
3449 * 1 --- sizeof(wchar_t) == 2
3450
3451 * - short_enum
3452 - * 0 --- Enums are at least as large as an ``int``.
3453 * 1 --- Enums are stored in the smallest integer type which can
3454 represent all of its values.
3455
3456For example, the following metadata section specifies that the module was
3457compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3458enum is the smallest type which can represent all of its values::
3459
3460 !llvm.module.flags = !{!0, !1}
3461 !0 = metadata !{i32 1, metadata !"short_wchar", i32 1}
3462 !1 = metadata !{i32 1, metadata !"short_enum", i32 0}
3463
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003464.. _intrinsicglobalvariables:
3465
Sean Silvab084af42012-12-07 10:36:55 +00003466Intrinsic Global Variables
3467==========================
3468
3469LLVM has a number of "magic" global variables that contain data that
3470affect code generation or other IR semantics. These are documented here.
3471All globals of this sort should have a section specified as
3472"``llvm.metadata``". This section and all globals that start with
3473"``llvm.``" are reserved for use by LLVM.
3474
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003475.. _gv_llvmused:
3476
Sean Silvab084af42012-12-07 10:36:55 +00003477The '``llvm.used``' Global Variable
3478-----------------------------------
3479
Rafael Espindola74f2e462013-04-22 14:58:02 +00003480The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003481:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003482pointers to named global variables, functions and aliases which may optionally
3483have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003484use of it is:
3485
3486.. code-block:: llvm
3487
3488 @X = global i8 4
3489 @Y = global i32 123
3490
3491 @llvm.used = appending global [2 x i8*] [
3492 i8* @X,
3493 i8* bitcast (i32* @Y to i8*)
3494 ], section "llvm.metadata"
3495
Rafael Espindola74f2e462013-04-22 14:58:02 +00003496If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3497and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003498symbol that it cannot see (which is why they have to be named). For example, if
3499a variable has internal linkage and no references other than that from the
3500``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3501references from inline asms and other things the compiler cannot "see", and
3502corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003503
3504On some targets, the code generator must emit a directive to the
3505assembler or object file to prevent the assembler and linker from
3506molesting the symbol.
3507
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003508.. _gv_llvmcompilerused:
3509
Sean Silvab084af42012-12-07 10:36:55 +00003510The '``llvm.compiler.used``' Global Variable
3511--------------------------------------------
3512
3513The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3514directive, except that it only prevents the compiler from touching the
3515symbol. On targets that support it, this allows an intelligent linker to
3516optimize references to the symbol without being impeded as it would be
3517by ``@llvm.used``.
3518
3519This is a rare construct that should only be used in rare circumstances,
3520and should not be exposed to source languages.
3521
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003522.. _gv_llvmglobalctors:
3523
Sean Silvab084af42012-12-07 10:36:55 +00003524The '``llvm.global_ctors``' Global Variable
3525-------------------------------------------
3526
3527.. code-block:: llvm
3528
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003529 %0 = type { i32, void ()*, i8* }
3530 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003531
3532The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003533functions, priorities, and an optional associated global or function.
3534The functions referenced by this array will be called in ascending order
3535of priority (i.e. lowest first) when the module is loaded. The order of
3536functions with the same priority is not defined.
3537
3538If the third field is present, non-null, and points to a global variable
3539or function, the initializer function will only run if the associated
3540data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003541
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003542.. _llvmglobaldtors:
3543
Sean Silvab084af42012-12-07 10:36:55 +00003544The '``llvm.global_dtors``' Global Variable
3545-------------------------------------------
3546
3547.. code-block:: llvm
3548
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003549 %0 = type { i32, void ()*, i8* }
3550 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003551
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003552The ``@llvm.global_dtors`` array contains a list of destructor
3553functions, priorities, and an optional associated global or function.
3554The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003555order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003556order of functions with the same priority is not defined.
3557
3558If the third field is present, non-null, and points to a global variable
3559or function, the destructor function will only run if the associated
3560data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003561
3562Instruction Reference
3563=====================
3564
3565The LLVM instruction set consists of several different classifications
3566of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3567instructions <binaryops>`, :ref:`bitwise binary
3568instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3569:ref:`other instructions <otherops>`.
3570
3571.. _terminators:
3572
3573Terminator Instructions
3574-----------------------
3575
3576As mentioned :ref:`previously <functionstructure>`, every basic block in a
3577program ends with a "Terminator" instruction, which indicates which
3578block should be executed after the current block is finished. These
3579terminator instructions typically yield a '``void``' value: they produce
3580control flow, not values (the one exception being the
3581':ref:`invoke <i_invoke>`' instruction).
3582
3583The terminator instructions are: ':ref:`ret <i_ret>`',
3584':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3585':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3586':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3587
3588.. _i_ret:
3589
3590'``ret``' Instruction
3591^^^^^^^^^^^^^^^^^^^^^
3592
3593Syntax:
3594"""""""
3595
3596::
3597
3598 ret <type> <value> ; Return a value from a non-void function
3599 ret void ; Return from void function
3600
3601Overview:
3602"""""""""
3603
3604The '``ret``' instruction is used to return control flow (and optionally
3605a value) from a function back to the caller.
3606
3607There are two forms of the '``ret``' instruction: one that returns a
3608value and then causes control flow, and one that just causes control
3609flow to occur.
3610
3611Arguments:
3612""""""""""
3613
3614The '``ret``' instruction optionally accepts a single argument, the
3615return value. The type of the return value must be a ':ref:`first
3616class <t_firstclass>`' type.
3617
3618A function is not :ref:`well formed <wellformed>` if it it has a non-void
3619return type and contains a '``ret``' instruction with no return value or
3620a return value with a type that does not match its type, or if it has a
3621void return type and contains a '``ret``' instruction with a return
3622value.
3623
3624Semantics:
3625""""""""""
3626
3627When the '``ret``' instruction is executed, control flow returns back to
3628the calling function's context. If the caller is a
3629":ref:`call <i_call>`" instruction, execution continues at the
3630instruction after the call. If the caller was an
3631":ref:`invoke <i_invoke>`" instruction, execution continues at the
3632beginning of the "normal" destination block. If the instruction returns
3633a value, that value shall set the call or invoke instruction's return
3634value.
3635
3636Example:
3637""""""""
3638
3639.. code-block:: llvm
3640
3641 ret i32 5 ; Return an integer value of 5
3642 ret void ; Return from a void function
3643 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3644
3645.. _i_br:
3646
3647'``br``' Instruction
3648^^^^^^^^^^^^^^^^^^^^
3649
3650Syntax:
3651"""""""
3652
3653::
3654
3655 br i1 <cond>, label <iftrue>, label <iffalse>
3656 br label <dest> ; Unconditional branch
3657
3658Overview:
3659"""""""""
3660
3661The '``br``' instruction is used to cause control flow to transfer to a
3662different basic block in the current function. There are two forms of
3663this instruction, corresponding to a conditional branch and an
3664unconditional branch.
3665
3666Arguments:
3667""""""""""
3668
3669The conditional branch form of the '``br``' instruction takes a single
3670'``i1``' value and two '``label``' values. The unconditional form of the
3671'``br``' instruction takes a single '``label``' value as a target.
3672
3673Semantics:
3674""""""""""
3675
3676Upon execution of a conditional '``br``' instruction, the '``i1``'
3677argument is evaluated. If the value is ``true``, control flows to the
3678'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3679to the '``iffalse``' ``label`` argument.
3680
3681Example:
3682""""""""
3683
3684.. code-block:: llvm
3685
3686 Test:
3687 %cond = icmp eq i32 %a, %b
3688 br i1 %cond, label %IfEqual, label %IfUnequal
3689 IfEqual:
3690 ret i32 1
3691 IfUnequal:
3692 ret i32 0
3693
3694.. _i_switch:
3695
3696'``switch``' Instruction
3697^^^^^^^^^^^^^^^^^^^^^^^^
3698
3699Syntax:
3700"""""""
3701
3702::
3703
3704 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3705
3706Overview:
3707"""""""""
3708
3709The '``switch``' instruction is used to transfer control flow to one of
3710several different places. It is a generalization of the '``br``'
3711instruction, allowing a branch to occur to one of many possible
3712destinations.
3713
3714Arguments:
3715""""""""""
3716
3717The '``switch``' instruction uses three parameters: an integer
3718comparison value '``value``', a default '``label``' destination, and an
3719array of pairs of comparison value constants and '``label``'s. The table
3720is not allowed to contain duplicate constant entries.
3721
3722Semantics:
3723""""""""""
3724
3725The ``switch`` instruction specifies a table of values and destinations.
3726When the '``switch``' instruction is executed, this table is searched
3727for the given value. If the value is found, control flow is transferred
3728to the corresponding destination; otherwise, control flow is transferred
3729to the default destination.
3730
3731Implementation:
3732"""""""""""""""
3733
3734Depending on properties of the target machine and the particular
3735``switch`` instruction, this instruction may be code generated in
3736different ways. For example, it could be generated as a series of
3737chained conditional branches or with a lookup table.
3738
3739Example:
3740""""""""
3741
3742.. code-block:: llvm
3743
3744 ; Emulate a conditional br instruction
3745 %Val = zext i1 %value to i32
3746 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3747
3748 ; Emulate an unconditional br instruction
3749 switch i32 0, label %dest [ ]
3750
3751 ; Implement a jump table:
3752 switch i32 %val, label %otherwise [ i32 0, label %onzero
3753 i32 1, label %onone
3754 i32 2, label %ontwo ]
3755
3756.. _i_indirectbr:
3757
3758'``indirectbr``' Instruction
3759^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3760
3761Syntax:
3762"""""""
3763
3764::
3765
3766 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3767
3768Overview:
3769"""""""""
3770
3771The '``indirectbr``' instruction implements an indirect branch to a
3772label within the current function, whose address is specified by
3773"``address``". Address must be derived from a
3774:ref:`blockaddress <blockaddress>` constant.
3775
3776Arguments:
3777""""""""""
3778
3779The '``address``' argument is the address of the label to jump to. The
3780rest of the arguments indicate the full set of possible destinations
3781that the address may point to. Blocks are allowed to occur multiple
3782times in the destination list, though this isn't particularly useful.
3783
3784This destination list is required so that dataflow analysis has an
3785accurate understanding of the CFG.
3786
3787Semantics:
3788""""""""""
3789
3790Control transfers to the block specified in the address argument. All
3791possible destination blocks must be listed in the label list, otherwise
3792this instruction has undefined behavior. This implies that jumps to
3793labels defined in other functions have undefined behavior as well.
3794
3795Implementation:
3796"""""""""""""""
3797
3798This is typically implemented with a jump through a register.
3799
3800Example:
3801""""""""
3802
3803.. code-block:: llvm
3804
3805 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3806
3807.. _i_invoke:
3808
3809'``invoke``' Instruction
3810^^^^^^^^^^^^^^^^^^^^^^^^
3811
3812Syntax:
3813"""""""
3814
3815::
3816
3817 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3818 to label <normal label> unwind label <exception label>
3819
3820Overview:
3821"""""""""
3822
3823The '``invoke``' instruction causes control to transfer to a specified
3824function, with the possibility of control flow transfer to either the
3825'``normal``' label or the '``exception``' label. If the callee function
3826returns with the "``ret``" instruction, control flow will return to the
3827"normal" label. If the callee (or any indirect callees) returns via the
3828":ref:`resume <i_resume>`" instruction or other exception handling
3829mechanism, control is interrupted and continued at the dynamically
3830nearest "exception" label.
3831
3832The '``exception``' label is a `landing
3833pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3834'``exception``' label is required to have the
3835":ref:`landingpad <i_landingpad>`" instruction, which contains the
3836information about the behavior of the program after unwinding happens,
3837as its first non-PHI instruction. The restrictions on the
3838"``landingpad``" instruction's tightly couples it to the "``invoke``"
3839instruction, so that the important information contained within the
3840"``landingpad``" instruction can't be lost through normal code motion.
3841
3842Arguments:
3843""""""""""
3844
3845This instruction requires several arguments:
3846
3847#. The optional "cconv" marker indicates which :ref:`calling
3848 convention <callingconv>` the call should use. If none is
3849 specified, the call defaults to using C calling conventions.
3850#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3851 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3852 are valid here.
3853#. '``ptr to function ty``': shall be the signature of the pointer to
3854 function value being invoked. In most cases, this is a direct
3855 function invocation, but indirect ``invoke``'s are just as possible,
3856 branching off an arbitrary pointer to function value.
3857#. '``function ptr val``': An LLVM value containing a pointer to a
3858 function to be invoked.
3859#. '``function args``': argument list whose types match the function
3860 signature argument types and parameter attributes. All arguments must
3861 be of :ref:`first class <t_firstclass>` type. If the function signature
3862 indicates the function accepts a variable number of arguments, the
3863 extra arguments can be specified.
3864#. '``normal label``': the label reached when the called function
3865 executes a '``ret``' instruction.
3866#. '``exception label``': the label reached when a callee returns via
3867 the :ref:`resume <i_resume>` instruction or other exception handling
3868 mechanism.
3869#. The optional :ref:`function attributes <fnattrs>` list. Only
3870 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3871 attributes are valid here.
3872
3873Semantics:
3874""""""""""
3875
3876This instruction is designed to operate as a standard '``call``'
3877instruction in most regards. The primary difference is that it
3878establishes an association with a label, which is used by the runtime
3879library to unwind the stack.
3880
3881This instruction is used in languages with destructors to ensure that
3882proper cleanup is performed in the case of either a ``longjmp`` or a
3883thrown exception. Additionally, this is important for implementation of
3884'``catch``' clauses in high-level languages that support them.
3885
3886For the purposes of the SSA form, the definition of the value returned
3887by the '``invoke``' instruction is deemed to occur on the edge from the
3888current block to the "normal" label. If the callee unwinds then no
3889return value is available.
3890
3891Example:
3892""""""""
3893
3894.. code-block:: llvm
3895
3896 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003897 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003898 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003899 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003900
3901.. _i_resume:
3902
3903'``resume``' Instruction
3904^^^^^^^^^^^^^^^^^^^^^^^^
3905
3906Syntax:
3907"""""""
3908
3909::
3910
3911 resume <type> <value>
3912
3913Overview:
3914"""""""""
3915
3916The '``resume``' instruction is a terminator instruction that has no
3917successors.
3918
3919Arguments:
3920""""""""""
3921
3922The '``resume``' instruction requires one argument, which must have the
3923same type as the result of any '``landingpad``' instruction in the same
3924function.
3925
3926Semantics:
3927""""""""""
3928
3929The '``resume``' instruction resumes propagation of an existing
3930(in-flight) exception whose unwinding was interrupted with a
3931:ref:`landingpad <i_landingpad>` instruction.
3932
3933Example:
3934""""""""
3935
3936.. code-block:: llvm
3937
3938 resume { i8*, i32 } %exn
3939
3940.. _i_unreachable:
3941
3942'``unreachable``' Instruction
3943^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3944
3945Syntax:
3946"""""""
3947
3948::
3949
3950 unreachable
3951
3952Overview:
3953"""""""""
3954
3955The '``unreachable``' instruction has no defined semantics. This
3956instruction is used to inform the optimizer that a particular portion of
3957the code is not reachable. This can be used to indicate that the code
3958after a no-return function cannot be reached, and other facts.
3959
3960Semantics:
3961""""""""""
3962
3963The '``unreachable``' instruction has no defined semantics.
3964
3965.. _binaryops:
3966
3967Binary Operations
3968-----------------
3969
3970Binary operators are used to do most of the computation in a program.
3971They require two operands of the same type, execute an operation on
3972them, and produce a single value. The operands might represent multiple
3973data, as is the case with the :ref:`vector <t_vector>` data type. The
3974result value has the same type as its operands.
3975
3976There are several different binary operators:
3977
3978.. _i_add:
3979
3980'``add``' Instruction
3981^^^^^^^^^^^^^^^^^^^^^
3982
3983Syntax:
3984"""""""
3985
3986::
3987
Tim Northover675a0962014-06-13 14:24:23 +00003988 <result> = add <ty> <op1>, <op2> ; yields ty:result
3989 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
3990 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
3991 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003992
3993Overview:
3994"""""""""
3995
3996The '``add``' instruction returns the sum of its two operands.
3997
3998Arguments:
3999""""""""""
4000
4001The two arguments to the '``add``' instruction must be
4002:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4003arguments must have identical types.
4004
4005Semantics:
4006""""""""""
4007
4008The value produced is the integer sum of the two operands.
4009
4010If the sum has unsigned overflow, the result returned is the
4011mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4012the result.
4013
4014Because LLVM integers use a two's complement representation, this
4015instruction is appropriate for both signed and unsigned integers.
4016
4017``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4018respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4019result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
4020unsigned and/or signed overflow, respectively, occurs.
4021
4022Example:
4023""""""""
4024
4025.. code-block:: llvm
4026
Tim Northover675a0962014-06-13 14:24:23 +00004027 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004028
4029.. _i_fadd:
4030
4031'``fadd``' Instruction
4032^^^^^^^^^^^^^^^^^^^^^^
4033
4034Syntax:
4035"""""""
4036
4037::
4038
Tim Northover675a0962014-06-13 14:24:23 +00004039 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004040
4041Overview:
4042"""""""""
4043
4044The '``fadd``' instruction returns the sum of its two operands.
4045
4046Arguments:
4047""""""""""
4048
4049The two arguments to the '``fadd``' instruction must be :ref:`floating
4050point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4051Both arguments must have identical types.
4052
4053Semantics:
4054""""""""""
4055
4056The value produced is the floating point sum of the two operands. This
4057instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4058which are optimization hints to enable otherwise unsafe floating point
4059optimizations:
4060
4061Example:
4062""""""""
4063
4064.. code-block:: llvm
4065
Tim Northover675a0962014-06-13 14:24:23 +00004066 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004067
4068'``sub``' Instruction
4069^^^^^^^^^^^^^^^^^^^^^
4070
4071Syntax:
4072"""""""
4073
4074::
4075
Tim Northover675a0962014-06-13 14:24:23 +00004076 <result> = sub <ty> <op1>, <op2> ; yields ty:result
4077 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
4078 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
4079 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004080
4081Overview:
4082"""""""""
4083
4084The '``sub``' instruction returns the difference of its two operands.
4085
4086Note that the '``sub``' instruction is used to represent the '``neg``'
4087instruction present in most other intermediate representations.
4088
4089Arguments:
4090""""""""""
4091
4092The two arguments to the '``sub``' instruction must be
4093:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4094arguments must have identical types.
4095
4096Semantics:
4097""""""""""
4098
4099The value produced is the integer difference of the two operands.
4100
4101If the difference has unsigned overflow, the result returned is the
4102mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4103the result.
4104
4105Because LLVM integers use a two's complement representation, this
4106instruction is appropriate for both signed and unsigned integers.
4107
4108``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4109respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4110result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4111unsigned and/or signed overflow, respectively, occurs.
4112
4113Example:
4114""""""""
4115
4116.. code-block:: llvm
4117
Tim Northover675a0962014-06-13 14:24:23 +00004118 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
4119 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004120
4121.. _i_fsub:
4122
4123'``fsub``' Instruction
4124^^^^^^^^^^^^^^^^^^^^^^
4125
4126Syntax:
4127"""""""
4128
4129::
4130
Tim Northover675a0962014-06-13 14:24:23 +00004131 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004132
4133Overview:
4134"""""""""
4135
4136The '``fsub``' instruction returns the difference of its two operands.
4137
4138Note that the '``fsub``' instruction is used to represent the '``fneg``'
4139instruction present in most other intermediate representations.
4140
4141Arguments:
4142""""""""""
4143
4144The two arguments to the '``fsub``' instruction must be :ref:`floating
4145point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4146Both arguments must have identical types.
4147
4148Semantics:
4149""""""""""
4150
4151The value produced is the floating point difference of the two operands.
4152This instruction can also take any number of :ref:`fast-math
4153flags <fastmath>`, which are optimization hints to enable otherwise
4154unsafe floating point optimizations:
4155
4156Example:
4157""""""""
4158
4159.. code-block:: llvm
4160
Tim Northover675a0962014-06-13 14:24:23 +00004161 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4162 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004163
4164'``mul``' Instruction
4165^^^^^^^^^^^^^^^^^^^^^
4166
4167Syntax:
4168"""""""
4169
4170::
4171
Tim Northover675a0962014-06-13 14:24:23 +00004172 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4173 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4174 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4175 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004176
4177Overview:
4178"""""""""
4179
4180The '``mul``' instruction returns the product of its two operands.
4181
4182Arguments:
4183""""""""""
4184
4185The two arguments to the '``mul``' instruction must be
4186:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4187arguments must have identical types.
4188
4189Semantics:
4190""""""""""
4191
4192The value produced is the integer product of the two operands.
4193
4194If the result of the multiplication has unsigned overflow, the result
4195returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4196bit width of the result.
4197
4198Because LLVM integers use a two's complement representation, and the
4199result is the same width as the operands, this instruction returns the
4200correct result for both signed and unsigned integers. If a full product
4201(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4202sign-extended or zero-extended as appropriate to the width of the full
4203product.
4204
4205``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4206respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4207result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4208unsigned and/or signed overflow, respectively, occurs.
4209
4210Example:
4211""""""""
4212
4213.. code-block:: llvm
4214
Tim Northover675a0962014-06-13 14:24:23 +00004215 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004216
4217.. _i_fmul:
4218
4219'``fmul``' Instruction
4220^^^^^^^^^^^^^^^^^^^^^^
4221
4222Syntax:
4223"""""""
4224
4225::
4226
Tim Northover675a0962014-06-13 14:24:23 +00004227 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004228
4229Overview:
4230"""""""""
4231
4232The '``fmul``' instruction returns the product of its two operands.
4233
4234Arguments:
4235""""""""""
4236
4237The two arguments to the '``fmul``' instruction must be :ref:`floating
4238point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4239Both arguments must have identical types.
4240
4241Semantics:
4242""""""""""
4243
4244The value produced is the floating point product of the two operands.
4245This instruction can also take any number of :ref:`fast-math
4246flags <fastmath>`, which are optimization hints to enable otherwise
4247unsafe floating point optimizations:
4248
4249Example:
4250""""""""
4251
4252.. code-block:: llvm
4253
Tim Northover675a0962014-06-13 14:24:23 +00004254 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004255
4256'``udiv``' Instruction
4257^^^^^^^^^^^^^^^^^^^^^^
4258
4259Syntax:
4260"""""""
4261
4262::
4263
Tim Northover675a0962014-06-13 14:24:23 +00004264 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4265 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004266
4267Overview:
4268"""""""""
4269
4270The '``udiv``' instruction returns the quotient of its two operands.
4271
4272Arguments:
4273""""""""""
4274
4275The two arguments to the '``udiv``' instruction must be
4276:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4277arguments must have identical types.
4278
4279Semantics:
4280""""""""""
4281
4282The value produced is the unsigned integer quotient of the two operands.
4283
4284Note that unsigned integer division and signed integer division are
4285distinct operations; for signed integer division, use '``sdiv``'.
4286
4287Division by zero leads to undefined behavior.
4288
4289If the ``exact`` keyword is present, the result value of the ``udiv`` is
4290a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4291such, "((a udiv exact b) mul b) == a").
4292
4293Example:
4294""""""""
4295
4296.. code-block:: llvm
4297
Tim Northover675a0962014-06-13 14:24:23 +00004298 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004299
4300'``sdiv``' Instruction
4301^^^^^^^^^^^^^^^^^^^^^^
4302
4303Syntax:
4304"""""""
4305
4306::
4307
Tim Northover675a0962014-06-13 14:24:23 +00004308 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4309 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004310
4311Overview:
4312"""""""""
4313
4314The '``sdiv``' instruction returns the quotient of its two operands.
4315
4316Arguments:
4317""""""""""
4318
4319The two arguments to the '``sdiv``' instruction must be
4320:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4321arguments must have identical types.
4322
4323Semantics:
4324""""""""""
4325
4326The value produced is the signed integer quotient of the two operands
4327rounded towards zero.
4328
4329Note that signed integer division and unsigned integer division are
4330distinct operations; for unsigned integer division, use '``udiv``'.
4331
4332Division by zero leads to undefined behavior. Overflow also leads to
4333undefined behavior; this is a rare case, but can occur, for example, by
4334doing a 32-bit division of -2147483648 by -1.
4335
4336If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4337a :ref:`poison value <poisonvalues>` if the result would be rounded.
4338
4339Example:
4340""""""""
4341
4342.. code-block:: llvm
4343
Tim Northover675a0962014-06-13 14:24:23 +00004344 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004345
4346.. _i_fdiv:
4347
4348'``fdiv``' Instruction
4349^^^^^^^^^^^^^^^^^^^^^^
4350
4351Syntax:
4352"""""""
4353
4354::
4355
Tim Northover675a0962014-06-13 14:24:23 +00004356 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004357
4358Overview:
4359"""""""""
4360
4361The '``fdiv``' instruction returns the quotient of its two operands.
4362
4363Arguments:
4364""""""""""
4365
4366The two arguments to the '``fdiv``' instruction must be :ref:`floating
4367point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4368Both arguments must have identical types.
4369
4370Semantics:
4371""""""""""
4372
4373The value produced is the floating point quotient of the two operands.
4374This instruction can also take any number of :ref:`fast-math
4375flags <fastmath>`, which are optimization hints to enable otherwise
4376unsafe floating point optimizations:
4377
4378Example:
4379""""""""
4380
4381.. code-block:: llvm
4382
Tim Northover675a0962014-06-13 14:24:23 +00004383 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004384
4385'``urem``' Instruction
4386^^^^^^^^^^^^^^^^^^^^^^
4387
4388Syntax:
4389"""""""
4390
4391::
4392
Tim Northover675a0962014-06-13 14:24:23 +00004393 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004394
4395Overview:
4396"""""""""
4397
4398The '``urem``' instruction returns the remainder from the unsigned
4399division of its two arguments.
4400
4401Arguments:
4402""""""""""
4403
4404The two arguments to the '``urem``' instruction must be
4405:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4406arguments must have identical types.
4407
4408Semantics:
4409""""""""""
4410
4411This instruction returns the unsigned integer *remainder* of a division.
4412This instruction always performs an unsigned division to get the
4413remainder.
4414
4415Note that unsigned integer remainder and signed integer remainder are
4416distinct operations; for signed integer remainder, use '``srem``'.
4417
4418Taking the remainder of a division by zero leads to undefined behavior.
4419
4420Example:
4421""""""""
4422
4423.. code-block:: llvm
4424
Tim Northover675a0962014-06-13 14:24:23 +00004425 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004426
4427'``srem``' Instruction
4428^^^^^^^^^^^^^^^^^^^^^^
4429
4430Syntax:
4431"""""""
4432
4433::
4434
Tim Northover675a0962014-06-13 14:24:23 +00004435 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004436
4437Overview:
4438"""""""""
4439
4440The '``srem``' instruction returns the remainder from the signed
4441division of its two operands. This instruction can also take
4442:ref:`vector <t_vector>` versions of the values in which case the elements
4443must be integers.
4444
4445Arguments:
4446""""""""""
4447
4448The two arguments to the '``srem``' instruction must be
4449:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4450arguments must have identical types.
4451
4452Semantics:
4453""""""""""
4454
4455This instruction returns the *remainder* of a division (where the result
4456is either zero or has the same sign as the dividend, ``op1``), not the
4457*modulo* operator (where the result is either zero or has the same sign
4458as the divisor, ``op2``) of a value. For more information about the
4459difference, see `The Math
4460Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4461table of how this is implemented in various languages, please see
4462`Wikipedia: modulo
4463operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4464
4465Note that signed integer remainder and unsigned integer remainder are
4466distinct operations; for unsigned integer remainder, use '``urem``'.
4467
4468Taking the remainder of a division by zero leads to undefined behavior.
4469Overflow also leads to undefined behavior; this is a rare case, but can
4470occur, for example, by taking the remainder of a 32-bit division of
4471-2147483648 by -1. (The remainder doesn't actually overflow, but this
4472rule lets srem be implemented using instructions that return both the
4473result of the division and the remainder.)
4474
4475Example:
4476""""""""
4477
4478.. code-block:: llvm
4479
Tim Northover675a0962014-06-13 14:24:23 +00004480 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004481
4482.. _i_frem:
4483
4484'``frem``' Instruction
4485^^^^^^^^^^^^^^^^^^^^^^
4486
4487Syntax:
4488"""""""
4489
4490::
4491
Tim Northover675a0962014-06-13 14:24:23 +00004492 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004493
4494Overview:
4495"""""""""
4496
4497The '``frem``' instruction returns the remainder from the division of
4498its two operands.
4499
4500Arguments:
4501""""""""""
4502
4503The two arguments to the '``frem``' instruction must be :ref:`floating
4504point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4505Both arguments must have identical types.
4506
4507Semantics:
4508""""""""""
4509
4510This instruction returns the *remainder* of a division. The remainder
4511has the same sign as the dividend. This instruction can also take any
4512number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4513to enable otherwise unsafe floating point optimizations:
4514
4515Example:
4516""""""""
4517
4518.. code-block:: llvm
4519
Tim Northover675a0962014-06-13 14:24:23 +00004520 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004521
4522.. _bitwiseops:
4523
4524Bitwise Binary Operations
4525-------------------------
4526
4527Bitwise binary operators are used to do various forms of bit-twiddling
4528in a program. They are generally very efficient instructions and can
4529commonly be strength reduced from other instructions. They require two
4530operands of the same type, execute an operation on them, and produce a
4531single value. The resulting value is the same type as its operands.
4532
4533'``shl``' Instruction
4534^^^^^^^^^^^^^^^^^^^^^
4535
4536Syntax:
4537"""""""
4538
4539::
4540
Tim Northover675a0962014-06-13 14:24:23 +00004541 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4542 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4543 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4544 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004545
4546Overview:
4547"""""""""
4548
4549The '``shl``' instruction returns the first operand shifted to the left
4550a specified number of bits.
4551
4552Arguments:
4553""""""""""
4554
4555Both arguments to the '``shl``' instruction must be the same
4556:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4557'``op2``' is treated as an unsigned value.
4558
4559Semantics:
4560""""""""""
4561
4562The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4563where ``n`` is the width of the result. If ``op2`` is (statically or
4564dynamically) negative or equal to or larger than the number of bits in
4565``op1``, the result is undefined. If the arguments are vectors, each
4566vector element of ``op1`` is shifted by the corresponding shift amount
4567in ``op2``.
4568
4569If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4570value <poisonvalues>` if it shifts out any non-zero bits. If the
4571``nsw`` keyword is present, then the shift produces a :ref:`poison
4572value <poisonvalues>` if it shifts out any bits that disagree with the
4573resultant sign bit. As such, NUW/NSW have the same semantics as they
4574would if the shift were expressed as a mul instruction with the same
4575nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4576
4577Example:
4578""""""""
4579
4580.. code-block:: llvm
4581
Tim Northover675a0962014-06-13 14:24:23 +00004582 <result> = shl i32 4, %var ; yields i32: 4 << %var
4583 <result> = shl i32 4, 2 ; yields i32: 16
4584 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004585 <result> = shl i32 1, 32 ; undefined
4586 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4587
4588'``lshr``' Instruction
4589^^^^^^^^^^^^^^^^^^^^^^
4590
4591Syntax:
4592"""""""
4593
4594::
4595
Tim Northover675a0962014-06-13 14:24:23 +00004596 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4597 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004598
4599Overview:
4600"""""""""
4601
4602The '``lshr``' instruction (logical shift right) returns the first
4603operand shifted to the right a specified number of bits with zero fill.
4604
4605Arguments:
4606""""""""""
4607
4608Both arguments to the '``lshr``' instruction must be the same
4609:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4610'``op2``' is treated as an unsigned value.
4611
4612Semantics:
4613""""""""""
4614
4615This instruction always performs a logical shift right operation. The
4616most significant bits of the result will be filled with zero bits after
4617the shift. If ``op2`` is (statically or dynamically) equal to or larger
4618than the number of bits in ``op1``, the result is undefined. If the
4619arguments are vectors, each vector element of ``op1`` is shifted by the
4620corresponding shift amount in ``op2``.
4621
4622If the ``exact`` keyword is present, the result value of the ``lshr`` is
4623a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4624non-zero.
4625
4626Example:
4627""""""""
4628
4629.. code-block:: llvm
4630
Tim Northover675a0962014-06-13 14:24:23 +00004631 <result> = lshr i32 4, 1 ; yields i32:result = 2
4632 <result> = lshr i32 4, 2 ; yields i32:result = 1
4633 <result> = lshr i8 4, 3 ; yields i8:result = 0
4634 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004635 <result> = lshr i32 1, 32 ; undefined
4636 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4637
4638'``ashr``' Instruction
4639^^^^^^^^^^^^^^^^^^^^^^
4640
4641Syntax:
4642"""""""
4643
4644::
4645
Tim Northover675a0962014-06-13 14:24:23 +00004646 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
4647 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004648
4649Overview:
4650"""""""""
4651
4652The '``ashr``' instruction (arithmetic shift right) returns the first
4653operand shifted to the right a specified number of bits with sign
4654extension.
4655
4656Arguments:
4657""""""""""
4658
4659Both arguments to the '``ashr``' instruction must be the same
4660:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4661'``op2``' is treated as an unsigned value.
4662
4663Semantics:
4664""""""""""
4665
4666This instruction always performs an arithmetic shift right operation,
4667The most significant bits of the result will be filled with the sign bit
4668of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4669than the number of bits in ``op1``, the result is undefined. If the
4670arguments are vectors, each vector element of ``op1`` is shifted by the
4671corresponding shift amount in ``op2``.
4672
4673If the ``exact`` keyword is present, the result value of the ``ashr`` is
4674a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4675non-zero.
4676
4677Example:
4678""""""""
4679
4680.. code-block:: llvm
4681
Tim Northover675a0962014-06-13 14:24:23 +00004682 <result> = ashr i32 4, 1 ; yields i32:result = 2
4683 <result> = ashr i32 4, 2 ; yields i32:result = 1
4684 <result> = ashr i8 4, 3 ; yields i8:result = 0
4685 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00004686 <result> = ashr i32 1, 32 ; undefined
4687 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4688
4689'``and``' Instruction
4690^^^^^^^^^^^^^^^^^^^^^
4691
4692Syntax:
4693"""""""
4694
4695::
4696
Tim Northover675a0962014-06-13 14:24:23 +00004697 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004698
4699Overview:
4700"""""""""
4701
4702The '``and``' instruction returns the bitwise logical and of its two
4703operands.
4704
4705Arguments:
4706""""""""""
4707
4708The two arguments to the '``and``' instruction must be
4709:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4710arguments must have identical types.
4711
4712Semantics:
4713""""""""""
4714
4715The truth table used for the '``and``' instruction is:
4716
4717+-----+-----+-----+
4718| In0 | In1 | Out |
4719+-----+-----+-----+
4720| 0 | 0 | 0 |
4721+-----+-----+-----+
4722| 0 | 1 | 0 |
4723+-----+-----+-----+
4724| 1 | 0 | 0 |
4725+-----+-----+-----+
4726| 1 | 1 | 1 |
4727+-----+-----+-----+
4728
4729Example:
4730""""""""
4731
4732.. code-block:: llvm
4733
Tim Northover675a0962014-06-13 14:24:23 +00004734 <result> = and i32 4, %var ; yields i32:result = 4 & %var
4735 <result> = and i32 15, 40 ; yields i32:result = 8
4736 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00004737
4738'``or``' Instruction
4739^^^^^^^^^^^^^^^^^^^^
4740
4741Syntax:
4742"""""""
4743
4744::
4745
Tim Northover675a0962014-06-13 14:24:23 +00004746 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004747
4748Overview:
4749"""""""""
4750
4751The '``or``' instruction returns the bitwise logical inclusive or of its
4752two operands.
4753
4754Arguments:
4755""""""""""
4756
4757The two arguments to the '``or``' instruction must be
4758:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4759arguments must have identical types.
4760
4761Semantics:
4762""""""""""
4763
4764The truth table used for the '``or``' instruction is:
4765
4766+-----+-----+-----+
4767| In0 | In1 | Out |
4768+-----+-----+-----+
4769| 0 | 0 | 0 |
4770+-----+-----+-----+
4771| 0 | 1 | 1 |
4772+-----+-----+-----+
4773| 1 | 0 | 1 |
4774+-----+-----+-----+
4775| 1 | 1 | 1 |
4776+-----+-----+-----+
4777
4778Example:
4779""""""""
4780
4781::
4782
Tim Northover675a0962014-06-13 14:24:23 +00004783 <result> = or i32 4, %var ; yields i32:result = 4 | %var
4784 <result> = or i32 15, 40 ; yields i32:result = 47
4785 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00004786
4787'``xor``' Instruction
4788^^^^^^^^^^^^^^^^^^^^^
4789
4790Syntax:
4791"""""""
4792
4793::
4794
Tim Northover675a0962014-06-13 14:24:23 +00004795 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004796
4797Overview:
4798"""""""""
4799
4800The '``xor``' instruction returns the bitwise logical exclusive or of
4801its two operands. The ``xor`` is used to implement the "one's
4802complement" operation, which is the "~" operator in C.
4803
4804Arguments:
4805""""""""""
4806
4807The two arguments to the '``xor``' instruction must be
4808:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4809arguments must have identical types.
4810
4811Semantics:
4812""""""""""
4813
4814The truth table used for the '``xor``' instruction is:
4815
4816+-----+-----+-----+
4817| In0 | In1 | Out |
4818+-----+-----+-----+
4819| 0 | 0 | 0 |
4820+-----+-----+-----+
4821| 0 | 1 | 1 |
4822+-----+-----+-----+
4823| 1 | 0 | 1 |
4824+-----+-----+-----+
4825| 1 | 1 | 0 |
4826+-----+-----+-----+
4827
4828Example:
4829""""""""
4830
4831.. code-block:: llvm
4832
Tim Northover675a0962014-06-13 14:24:23 +00004833 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
4834 <result> = xor i32 15, 40 ; yields i32:result = 39
4835 <result> = xor i32 4, 8 ; yields i32:result = 12
4836 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00004837
4838Vector Operations
4839-----------------
4840
4841LLVM supports several instructions to represent vector operations in a
4842target-independent manner. These instructions cover the element-access
4843and vector-specific operations needed to process vectors effectively.
4844While LLVM does directly support these vector operations, many
4845sophisticated algorithms will want to use target-specific intrinsics to
4846take full advantage of a specific target.
4847
4848.. _i_extractelement:
4849
4850'``extractelement``' Instruction
4851^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4852
4853Syntax:
4854"""""""
4855
4856::
4857
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004858 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004859
4860Overview:
4861"""""""""
4862
4863The '``extractelement``' instruction extracts a single scalar element
4864from a vector at a specified index.
4865
4866Arguments:
4867""""""""""
4868
4869The first operand of an '``extractelement``' instruction is a value of
4870:ref:`vector <t_vector>` type. The second operand is an index indicating
4871the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004872variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004873
4874Semantics:
4875""""""""""
4876
4877The result is a scalar of the same type as the element type of ``val``.
4878Its value is the value at position ``idx`` of ``val``. If ``idx``
4879exceeds the length of ``val``, the results are undefined.
4880
4881Example:
4882""""""""
4883
4884.. code-block:: llvm
4885
4886 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4887
4888.. _i_insertelement:
4889
4890'``insertelement``' Instruction
4891^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4892
4893Syntax:
4894"""""""
4895
4896::
4897
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004898 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004899
4900Overview:
4901"""""""""
4902
4903The '``insertelement``' instruction inserts a scalar element into a
4904vector at a specified index.
4905
4906Arguments:
4907""""""""""
4908
4909The first operand of an '``insertelement``' instruction is a value of
4910:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4911type must equal the element type of the first operand. The third operand
4912is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004913index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004914
4915Semantics:
4916""""""""""
4917
4918The result is a vector of the same type as ``val``. Its element values
4919are those of ``val`` except at position ``idx``, where it gets the value
4920``elt``. If ``idx`` exceeds the length of ``val``, the results are
4921undefined.
4922
4923Example:
4924""""""""
4925
4926.. code-block:: llvm
4927
4928 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4929
4930.. _i_shufflevector:
4931
4932'``shufflevector``' Instruction
4933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4934
4935Syntax:
4936"""""""
4937
4938::
4939
4940 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4941
4942Overview:
4943"""""""""
4944
4945The '``shufflevector``' instruction constructs a permutation of elements
4946from two input vectors, returning a vector with the same element type as
4947the input and length that is the same as the shuffle mask.
4948
4949Arguments:
4950""""""""""
4951
4952The first two operands of a '``shufflevector``' instruction are vectors
4953with the same type. The third argument is a shuffle mask whose element
4954type is always 'i32'. The result of the instruction is a vector whose
4955length is the same as the shuffle mask and whose element type is the
4956same as the element type of the first two operands.
4957
4958The shuffle mask operand is required to be a constant vector with either
4959constant integer or undef values.
4960
4961Semantics:
4962""""""""""
4963
4964The elements of the two input vectors are numbered from left to right
4965across both of the vectors. The shuffle mask operand specifies, for each
4966element of the result vector, which element of the two input vectors the
4967result element gets. The element selector may be undef (meaning "don't
4968care") and the second operand may be undef if performing a shuffle from
4969only one vector.
4970
4971Example:
4972""""""""
4973
4974.. code-block:: llvm
4975
4976 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4977 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4978 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4979 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4980 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4981 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4982 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4983 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4984
4985Aggregate Operations
4986--------------------
4987
4988LLVM supports several instructions for working with
4989:ref:`aggregate <t_aggregate>` values.
4990
4991.. _i_extractvalue:
4992
4993'``extractvalue``' Instruction
4994^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4995
4996Syntax:
4997"""""""
4998
4999::
5000
5001 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
5002
5003Overview:
5004"""""""""
5005
5006The '``extractvalue``' instruction extracts the value of a member field
5007from an :ref:`aggregate <t_aggregate>` value.
5008
5009Arguments:
5010""""""""""
5011
5012The first operand of an '``extractvalue``' instruction is a value of
5013:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
5014constant indices to specify which value to extract in a similar manner
5015as indices in a '``getelementptr``' instruction.
5016
5017The major differences to ``getelementptr`` indexing are:
5018
5019- Since the value being indexed is not a pointer, the first index is
5020 omitted and assumed to be zero.
5021- At least one index must be specified.
5022- Not only struct indices but also array indices must be in bounds.
5023
5024Semantics:
5025""""""""""
5026
5027The result is the value at the position in the aggregate specified by
5028the index operands.
5029
5030Example:
5031""""""""
5032
5033.. code-block:: llvm
5034
5035 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
5036
5037.. _i_insertvalue:
5038
5039'``insertvalue``' Instruction
5040^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5041
5042Syntax:
5043"""""""
5044
5045::
5046
5047 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
5048
5049Overview:
5050"""""""""
5051
5052The '``insertvalue``' instruction inserts a value into a member field in
5053an :ref:`aggregate <t_aggregate>` value.
5054
5055Arguments:
5056""""""""""
5057
5058The first operand of an '``insertvalue``' instruction is a value of
5059:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5060a first-class value to insert. The following operands are constant
5061indices indicating the position at which to insert the value in a
5062similar manner as indices in a '``extractvalue``' instruction. The value
5063to insert must have the same type as the value identified by the
5064indices.
5065
5066Semantics:
5067""""""""""
5068
5069The result is an aggregate of the same type as ``val``. Its value is
5070that of ``val`` except that the value at the position specified by the
5071indices is that of ``elt``.
5072
5073Example:
5074""""""""
5075
5076.. code-block:: llvm
5077
5078 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
5079 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00005080 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00005081
5082.. _memoryops:
5083
5084Memory Access and Addressing Operations
5085---------------------------------------
5086
5087A key design point of an SSA-based representation is how it represents
5088memory. In LLVM, no memory locations are in SSA form, which makes things
5089very simple. This section describes how to read, write, and allocate
5090memory in LLVM.
5091
5092.. _i_alloca:
5093
5094'``alloca``' Instruction
5095^^^^^^^^^^^^^^^^^^^^^^^^
5096
5097Syntax:
5098"""""""
5099
5100::
5101
Tim Northover675a0962014-06-13 14:24:23 +00005102 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00005103
5104Overview:
5105"""""""""
5106
5107The '``alloca``' instruction allocates memory on the stack frame of the
5108currently executing function, to be automatically released when this
5109function returns to its caller. The object is always allocated in the
5110generic address space (address space zero).
5111
5112Arguments:
5113""""""""""
5114
5115The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5116bytes of memory on the runtime stack, returning a pointer of the
5117appropriate type to the program. If "NumElements" is specified, it is
5118the number of elements allocated, otherwise "NumElements" is defaulted
5119to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005120allocation is guaranteed to be aligned to at least that boundary. The
5121alignment may not be greater than ``1 << 29``. If not specified, or if
5122zero, the target can choose to align the allocation on any convenient
5123boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00005124
5125'``type``' may be any sized type.
5126
5127Semantics:
5128""""""""""
5129
5130Memory is allocated; a pointer is returned. The operation is undefined
5131if there is insufficient stack space for the allocation. '``alloca``'d
5132memory is automatically released when the function returns. The
5133'``alloca``' instruction is commonly used to represent automatic
5134variables that must have an address available. When the function returns
5135(either with the ``ret`` or ``resume`` instructions), the memory is
5136reclaimed. Allocating zero bytes is legal, but the result is undefined.
5137The order in which memory is allocated (ie., which way the stack grows)
5138is not specified.
5139
5140Example:
5141""""""""
5142
5143.. code-block:: llvm
5144
Tim Northover675a0962014-06-13 14:24:23 +00005145 %ptr = alloca i32 ; yields i32*:ptr
5146 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5147 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5148 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005149
5150.. _i_load:
5151
5152'``load``' Instruction
5153^^^^^^^^^^^^^^^^^^^^^^
5154
5155Syntax:
5156"""""""
5157
5158::
5159
5160 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
5161 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5162 !<index> = !{ i32 1 }
5163
5164Overview:
5165"""""""""
5166
5167The '``load``' instruction is used to read from memory.
5168
5169Arguments:
5170""""""""""
5171
Eli Bendersky239a78b2013-04-17 20:17:08 +00005172The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00005173from which to load. The pointer must point to a :ref:`first
5174class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5175then the optimizer is not allowed to modify the number or order of
5176execution of this ``load`` with other :ref:`volatile
5177operations <volatile>`.
5178
5179If the ``load`` is marked as ``atomic``, it takes an extra
5180:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5181``release`` and ``acq_rel`` orderings are not valid on ``load``
5182instructions. Atomic loads produce :ref:`defined <memmodel>` results
5183when they may see multiple atomic stores. The type of the pointee must
5184be an integer type whose bit width is a power of two greater than or
5185equal to eight and less than or equal to a target-specific size limit.
5186``align`` must be explicitly specified on atomic loads, and the load has
5187undefined behavior if the alignment is not set to a value which is at
5188least the size in bytes of the pointee. ``!nontemporal`` does not have
5189any defined semantics for atomic loads.
5190
5191The optional constant ``align`` argument specifies the alignment of the
5192operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005193or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005194alignment for the target. It is the responsibility of the code emitter
5195to ensure that the alignment information is correct. Overestimating the
5196alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005197may produce less efficient code. An alignment of 1 is always safe. The
5198maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005199
5200The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005201metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005202``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005203metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005204that this load is not expected to be reused in the cache. The code
5205generator may select special instructions to save cache bandwidth, such
5206as the ``MOVNT`` instruction on x86.
5207
5208The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005209metadata name ``<index>`` corresponding to a metadata node with no
5210entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00005211instruction tells the optimizer and code generator that this load
5212address points to memory which does not change value during program
5213execution. The optimizer may then move this load around, for example, by
5214hoisting it out of loops using loop invariant code motion.
5215
5216Semantics:
5217""""""""""
5218
5219The location of memory pointed to is loaded. If the value being loaded
5220is of scalar type then the number of bytes read does not exceed the
5221minimum number of bytes needed to hold all bits of the type. For
5222example, loading an ``i24`` reads at most three bytes. When loading a
5223value of a type like ``i20`` with a size that is not an integral number
5224of bytes, the result is undefined if the value was not originally
5225written using a store of the same type.
5226
5227Examples:
5228"""""""""
5229
5230.. code-block:: llvm
5231
Tim Northover675a0962014-06-13 14:24:23 +00005232 %ptr = alloca i32 ; yields i32*:ptr
5233 store i32 3, i32* %ptr ; yields void
5234 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005235
5236.. _i_store:
5237
5238'``store``' Instruction
5239^^^^^^^^^^^^^^^^^^^^^^^
5240
5241Syntax:
5242"""""""
5243
5244::
5245
Tim Northover675a0962014-06-13 14:24:23 +00005246 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5247 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005248
5249Overview:
5250"""""""""
5251
5252The '``store``' instruction is used to write to memory.
5253
5254Arguments:
5255""""""""""
5256
Eli Benderskyca380842013-04-17 17:17:20 +00005257There are two arguments to the ``store`` instruction: a value to store
5258and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005259operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005260the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005261then the optimizer is not allowed to modify the number or order of
5262execution of this ``store`` with other :ref:`volatile
5263operations <volatile>`.
5264
5265If the ``store`` is marked as ``atomic``, it takes an extra
5266:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5267``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5268instructions. Atomic loads produce :ref:`defined <memmodel>` results
5269when they may see multiple atomic stores. The type of the pointee must
5270be an integer type whose bit width is a power of two greater than or
5271equal to eight and less than or equal to a target-specific size limit.
5272``align`` must be explicitly specified on atomic stores, and the store
5273has undefined behavior if the alignment is not set to a value which is
5274at least the size in bytes of the pointee. ``!nontemporal`` does not
5275have any defined semantics for atomic stores.
5276
Eli Benderskyca380842013-04-17 17:17:20 +00005277The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005278operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005279or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005280alignment for the target. It is the responsibility of the code emitter
5281to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005282alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005283alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005284safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005285
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005286The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005287name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005288value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005289tells the optimizer and code generator that this load is not expected to
5290be reused in the cache. The code generator may select special
5291instructions to save cache bandwidth, such as the MOVNT instruction on
5292x86.
5293
5294Semantics:
5295""""""""""
5296
Eli Benderskyca380842013-04-17 17:17:20 +00005297The contents of memory are updated to contain ``<value>`` at the
5298location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005299of scalar type then the number of bytes written does not exceed the
5300minimum number of bytes needed to hold all bits of the type. For
5301example, storing an ``i24`` writes at most three bytes. When writing a
5302value of a type like ``i20`` with a size that is not an integral number
5303of bytes, it is unspecified what happens to the extra bits that do not
5304belong to the type, but they will typically be overwritten.
5305
5306Example:
5307""""""""
5308
5309.. code-block:: llvm
5310
Tim Northover675a0962014-06-13 14:24:23 +00005311 %ptr = alloca i32 ; yields i32*:ptr
5312 store i32 3, i32* %ptr ; yields void
5313 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005314
5315.. _i_fence:
5316
5317'``fence``' Instruction
5318^^^^^^^^^^^^^^^^^^^^^^^
5319
5320Syntax:
5321"""""""
5322
5323::
5324
Tim Northover675a0962014-06-13 14:24:23 +00005325 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005326
5327Overview:
5328"""""""""
5329
5330The '``fence``' instruction is used to introduce happens-before edges
5331between operations.
5332
5333Arguments:
5334""""""""""
5335
5336'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5337defines what *synchronizes-with* edges they add. They can only be given
5338``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5339
5340Semantics:
5341""""""""""
5342
5343A fence A which has (at least) ``release`` ordering semantics
5344*synchronizes with* a fence B with (at least) ``acquire`` ordering
5345semantics if and only if there exist atomic operations X and Y, both
5346operating on some atomic object M, such that A is sequenced before X, X
5347modifies M (either directly or through some side effect of a sequence
5348headed by X), Y is sequenced before B, and Y observes M. This provides a
5349*happens-before* dependency between A and B. Rather than an explicit
5350``fence``, one (but not both) of the atomic operations X or Y might
5351provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5352still *synchronize-with* the explicit ``fence`` and establish the
5353*happens-before* edge.
5354
5355A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5356``acquire`` and ``release`` semantics specified above, participates in
5357the global program order of other ``seq_cst`` operations and/or fences.
5358
5359The optional ":ref:`singlethread <singlethread>`" argument specifies
5360that the fence only synchronizes with other fences in the same thread.
5361(This is useful for interacting with signal handlers.)
5362
5363Example:
5364""""""""
5365
5366.. code-block:: llvm
5367
Tim Northover675a0962014-06-13 14:24:23 +00005368 fence acquire ; yields void
5369 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005370
5371.. _i_cmpxchg:
5372
5373'``cmpxchg``' Instruction
5374^^^^^^^^^^^^^^^^^^^^^^^^^
5375
5376Syntax:
5377"""""""
5378
5379::
5380
Tim Northover675a0962014-06-13 14:24:23 +00005381 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005382
5383Overview:
5384"""""""""
5385
5386The '``cmpxchg``' instruction is used to atomically modify memory. It
5387loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005388equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005389
5390Arguments:
5391""""""""""
5392
5393There are three arguments to the '``cmpxchg``' instruction: an address
5394to operate on, a value to compare to the value currently be at that
5395address, and a new value to place at that address if the compared values
5396are equal. The type of '<cmp>' must be an integer type whose bit width
5397is a power of two greater than or equal to eight and less than or equal
5398to a target-specific size limit. '<cmp>' and '<new>' must have the same
5399type, and the type of '<pointer>' must be a pointer to that type. If the
5400``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5401to modify the number or order of execution of this ``cmpxchg`` with
5402other :ref:`volatile operations <volatile>`.
5403
Tim Northovere94a5182014-03-11 10:48:52 +00005404The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005405``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5406must be at least ``monotonic``, the ordering constraint on failure must be no
5407stronger than that on success, and the failure ordering cannot be either
5408``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005409
5410The optional "``singlethread``" argument declares that the ``cmpxchg``
5411is only atomic with respect to code (usually signal handlers) running in
5412the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5413respect to all other code in the system.
5414
5415The pointer passed into cmpxchg must have alignment greater than or
5416equal to the size in memory of the operand.
5417
5418Semantics:
5419""""""""""
5420
Tim Northover420a2162014-06-13 14:24:07 +00005421The contents of memory at the location specified by the '``<pointer>``' operand
5422is read and compared to '``<cmp>``'; if the read value is the equal, the
5423'``<new>``' is written. The original value at the location is returned, together
5424with a flag indicating success (true) or failure (false).
5425
5426If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5427permitted: the operation may not write ``<new>`` even if the comparison
5428matched.
5429
5430If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5431if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005432
Tim Northovere94a5182014-03-11 10:48:52 +00005433A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5434identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5435load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005436
5437Example:
5438""""""""
5439
5440.. code-block:: llvm
5441
5442 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005443 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005444 br label %loop
5445
5446 loop:
5447 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5448 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005449 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005450 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5451 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005452 br i1 %success, label %done, label %loop
5453
5454 done:
5455 ...
5456
5457.. _i_atomicrmw:
5458
5459'``atomicrmw``' Instruction
5460^^^^^^^^^^^^^^^^^^^^^^^^^^^
5461
5462Syntax:
5463"""""""
5464
5465::
5466
Tim Northover675a0962014-06-13 14:24:23 +00005467 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005468
5469Overview:
5470"""""""""
5471
5472The '``atomicrmw``' instruction is used to atomically modify memory.
5473
5474Arguments:
5475""""""""""
5476
5477There are three arguments to the '``atomicrmw``' instruction: an
5478operation to apply, an address whose value to modify, an argument to the
5479operation. The operation must be one of the following keywords:
5480
5481- xchg
5482- add
5483- sub
5484- and
5485- nand
5486- or
5487- xor
5488- max
5489- min
5490- umax
5491- umin
5492
5493The type of '<value>' must be an integer type whose bit width is a power
5494of two greater than or equal to eight and less than or equal to a
5495target-specific size limit. The type of the '``<pointer>``' operand must
5496be a pointer to that type. If the ``atomicrmw`` is marked as
5497``volatile``, then the optimizer is not allowed to modify the number or
5498order of execution of this ``atomicrmw`` with other :ref:`volatile
5499operations <volatile>`.
5500
5501Semantics:
5502""""""""""
5503
5504The contents of memory at the location specified by the '``<pointer>``'
5505operand are atomically read, modified, and written back. The original
5506value at the location is returned. The modification is specified by the
5507operation argument:
5508
5509- xchg: ``*ptr = val``
5510- add: ``*ptr = *ptr + val``
5511- sub: ``*ptr = *ptr - val``
5512- and: ``*ptr = *ptr & val``
5513- nand: ``*ptr = ~(*ptr & val)``
5514- or: ``*ptr = *ptr | val``
5515- xor: ``*ptr = *ptr ^ val``
5516- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5517- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5518- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5519 comparison)
5520- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5521 comparison)
5522
5523Example:
5524""""""""
5525
5526.. code-block:: llvm
5527
Tim Northover675a0962014-06-13 14:24:23 +00005528 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005529
5530.. _i_getelementptr:
5531
5532'``getelementptr``' Instruction
5533^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5534
5535Syntax:
5536"""""""
5537
5538::
5539
5540 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5541 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5542 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5543
5544Overview:
5545"""""""""
5546
5547The '``getelementptr``' instruction is used to get the address of a
5548subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5549address calculation only and does not access memory.
5550
5551Arguments:
5552""""""""""
5553
5554The first argument is always a pointer or a vector of pointers, and
5555forms the basis of the calculation. The remaining arguments are indices
5556that indicate which of the elements of the aggregate object are indexed.
5557The interpretation of each index is dependent on the type being indexed
5558into. The first index always indexes the pointer value given as the
5559first argument, the second index indexes a value of the type pointed to
5560(not necessarily the value directly pointed to, since the first index
5561can be non-zero), etc. The first type indexed into must be a pointer
5562value, subsequent types can be arrays, vectors, and structs. Note that
5563subsequent types being indexed into can never be pointers, since that
5564would require loading the pointer before continuing calculation.
5565
5566The type of each index argument depends on the type it is indexing into.
5567When indexing into a (optionally packed) structure, only ``i32`` integer
5568**constants** are allowed (when using a vector of indices they must all
5569be the **same** ``i32`` integer constant). When indexing into an array,
5570pointer or vector, integers of any width are allowed, and they are not
5571required to be constant. These integers are treated as signed values
5572where relevant.
5573
5574For example, let's consider a C code fragment and how it gets compiled
5575to LLVM:
5576
5577.. code-block:: c
5578
5579 struct RT {
5580 char A;
5581 int B[10][20];
5582 char C;
5583 };
5584 struct ST {
5585 int X;
5586 double Y;
5587 struct RT Z;
5588 };
5589
5590 int *foo(struct ST *s) {
5591 return &s[1].Z.B[5][13];
5592 }
5593
5594The LLVM code generated by Clang is:
5595
5596.. code-block:: llvm
5597
5598 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5599 %struct.ST = type { i32, double, %struct.RT }
5600
5601 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5602 entry:
5603 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5604 ret i32* %arrayidx
5605 }
5606
5607Semantics:
5608""""""""""
5609
5610In the example above, the first index is indexing into the
5611'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5612= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5613indexes into the third element of the structure, yielding a
5614'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5615structure. The third index indexes into the second element of the
5616structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5617dimensions of the array are subscripted into, yielding an '``i32``'
5618type. The '``getelementptr``' instruction returns a pointer to this
5619element, thus computing a value of '``i32*``' type.
5620
5621Note that it is perfectly legal to index partially through a structure,
5622returning a pointer to an inner element. Because of this, the LLVM code
5623for the given testcase is equivalent to:
5624
5625.. code-block:: llvm
5626
5627 define i32* @foo(%struct.ST* %s) {
5628 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5629 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5630 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5631 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5632 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5633 ret i32* %t5
5634 }
5635
5636If the ``inbounds`` keyword is present, the result value of the
5637``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5638pointer is not an *in bounds* address of an allocated object, or if any
5639of the addresses that would be formed by successive addition of the
5640offsets implied by the indices to the base address with infinitely
5641precise signed arithmetic are not an *in bounds* address of that
5642allocated object. The *in bounds* addresses for an allocated object are
5643all the addresses that point into the object, plus the address one byte
5644past the end. In cases where the base is a vector of pointers the
5645``inbounds`` keyword applies to each of the computations element-wise.
5646
5647If the ``inbounds`` keyword is not present, the offsets are added to the
5648base address with silently-wrapping two's complement arithmetic. If the
5649offsets have a different width from the pointer, they are sign-extended
5650or truncated to the width of the pointer. The result value of the
5651``getelementptr`` may be outside the object pointed to by the base
5652pointer. The result value may not necessarily be used to access memory
5653though, even if it happens to point into allocated storage. See the
5654:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5655information.
5656
5657The getelementptr instruction is often confusing. For some more insight
5658into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5659
5660Example:
5661""""""""
5662
5663.. code-block:: llvm
5664
5665 ; yields [12 x i8]*:aptr
5666 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5667 ; yields i8*:vptr
5668 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5669 ; yields i8*:eptr
5670 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5671 ; yields i32*:iptr
5672 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5673
5674In cases where the pointer argument is a vector of pointers, each index
5675must be a vector with the same number of elements. For example:
5676
5677.. code-block:: llvm
5678
5679 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5680
5681Conversion Operations
5682---------------------
5683
5684The instructions in this category are the conversion instructions
5685(casting) which all take a single operand and a type. They perform
5686various bit conversions on the operand.
5687
5688'``trunc .. to``' Instruction
5689^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5690
5691Syntax:
5692"""""""
5693
5694::
5695
5696 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5697
5698Overview:
5699"""""""""
5700
5701The '``trunc``' instruction truncates its operand to the type ``ty2``.
5702
5703Arguments:
5704""""""""""
5705
5706The '``trunc``' instruction takes a value to trunc, and a type to trunc
5707it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5708of the same number of integers. The bit size of the ``value`` must be
5709larger than the bit size of the destination type, ``ty2``. Equal sized
5710types are not allowed.
5711
5712Semantics:
5713""""""""""
5714
5715The '``trunc``' instruction truncates the high order bits in ``value``
5716and converts the remaining bits to ``ty2``. Since the source size must
5717be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5718It will always truncate bits.
5719
5720Example:
5721""""""""
5722
5723.. code-block:: llvm
5724
5725 %X = trunc i32 257 to i8 ; yields i8:1
5726 %Y = trunc i32 123 to i1 ; yields i1:true
5727 %Z = trunc i32 122 to i1 ; yields i1:false
5728 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5729
5730'``zext .. to``' Instruction
5731^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5732
5733Syntax:
5734"""""""
5735
5736::
5737
5738 <result> = zext <ty> <value> to <ty2> ; yields ty2
5739
5740Overview:
5741"""""""""
5742
5743The '``zext``' instruction zero extends its operand to type ``ty2``.
5744
5745Arguments:
5746""""""""""
5747
5748The '``zext``' instruction takes a value to cast, and a type to cast it
5749to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5750the same number of integers. The bit size of the ``value`` must be
5751smaller than the bit size of the destination type, ``ty2``.
5752
5753Semantics:
5754""""""""""
5755
5756The ``zext`` fills the high order bits of the ``value`` with zero bits
5757until it reaches the size of the destination type, ``ty2``.
5758
5759When zero extending from i1, the result will always be either 0 or 1.
5760
5761Example:
5762""""""""
5763
5764.. code-block:: llvm
5765
5766 %X = zext i32 257 to i64 ; yields i64:257
5767 %Y = zext i1 true to i32 ; yields i32:1
5768 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5769
5770'``sext .. to``' Instruction
5771^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5772
5773Syntax:
5774"""""""
5775
5776::
5777
5778 <result> = sext <ty> <value> to <ty2> ; yields ty2
5779
5780Overview:
5781"""""""""
5782
5783The '``sext``' sign extends ``value`` to the type ``ty2``.
5784
5785Arguments:
5786""""""""""
5787
5788The '``sext``' instruction takes a value to cast, and a type to cast it
5789to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5790the same number of integers. The bit size of the ``value`` must be
5791smaller than the bit size of the destination type, ``ty2``.
5792
5793Semantics:
5794""""""""""
5795
5796The '``sext``' instruction performs a sign extension by copying the sign
5797bit (highest order bit) of the ``value`` until it reaches the bit size
5798of the type ``ty2``.
5799
5800When sign extending from i1, the extension always results in -1 or 0.
5801
5802Example:
5803""""""""
5804
5805.. code-block:: llvm
5806
5807 %X = sext i8 -1 to i16 ; yields i16 :65535
5808 %Y = sext i1 true to i32 ; yields i32:-1
5809 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5810
5811'``fptrunc .. to``' Instruction
5812^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5813
5814Syntax:
5815"""""""
5816
5817::
5818
5819 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5820
5821Overview:
5822"""""""""
5823
5824The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5825
5826Arguments:
5827""""""""""
5828
5829The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5830value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5831The size of ``value`` must be larger than the size of ``ty2``. This
5832implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5833
5834Semantics:
5835""""""""""
5836
5837The '``fptrunc``' instruction truncates a ``value`` from a larger
5838:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5839point <t_floating>` type. If the value cannot fit within the
5840destination type, ``ty2``, then the results are undefined.
5841
5842Example:
5843""""""""
5844
5845.. code-block:: llvm
5846
5847 %X = fptrunc double 123.0 to float ; yields float:123.0
5848 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5849
5850'``fpext .. to``' Instruction
5851^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5852
5853Syntax:
5854"""""""
5855
5856::
5857
5858 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5859
5860Overview:
5861"""""""""
5862
5863The '``fpext``' extends a floating point ``value`` to a larger floating
5864point value.
5865
5866Arguments:
5867""""""""""
5868
5869The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5870``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5871to. The source type must be smaller than the destination type.
5872
5873Semantics:
5874""""""""""
5875
5876The '``fpext``' instruction extends the ``value`` from a smaller
5877:ref:`floating point <t_floating>` type to a larger :ref:`floating
5878point <t_floating>` type. The ``fpext`` cannot be used to make a
5879*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5880*no-op cast* for a floating point cast.
5881
5882Example:
5883""""""""
5884
5885.. code-block:: llvm
5886
5887 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5888 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5889
5890'``fptoui .. to``' Instruction
5891^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5892
5893Syntax:
5894"""""""
5895
5896::
5897
5898 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5899
5900Overview:
5901"""""""""
5902
5903The '``fptoui``' converts a floating point ``value`` to its unsigned
5904integer equivalent of type ``ty2``.
5905
5906Arguments:
5907""""""""""
5908
5909The '``fptoui``' instruction takes a value to cast, which must be a
5910scalar or vector :ref:`floating point <t_floating>` value, and a type to
5911cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5912``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5913type with the same number of elements as ``ty``
5914
5915Semantics:
5916""""""""""
5917
5918The '``fptoui``' instruction converts its :ref:`floating
5919point <t_floating>` operand into the nearest (rounding towards zero)
5920unsigned integer value. If the value cannot fit in ``ty2``, the results
5921are undefined.
5922
5923Example:
5924""""""""
5925
5926.. code-block:: llvm
5927
5928 %X = fptoui double 123.0 to i32 ; yields i32:123
5929 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5930 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5931
5932'``fptosi .. to``' Instruction
5933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5934
5935Syntax:
5936"""""""
5937
5938::
5939
5940 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5941
5942Overview:
5943"""""""""
5944
5945The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5946``value`` to type ``ty2``.
5947
5948Arguments:
5949""""""""""
5950
5951The '``fptosi``' instruction takes a value to cast, which must be a
5952scalar or vector :ref:`floating point <t_floating>` value, and a type to
5953cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5954``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5955type with the same number of elements as ``ty``
5956
5957Semantics:
5958""""""""""
5959
5960The '``fptosi``' instruction converts its :ref:`floating
5961point <t_floating>` operand into the nearest (rounding towards zero)
5962signed integer value. If the value cannot fit in ``ty2``, the results
5963are undefined.
5964
5965Example:
5966""""""""
5967
5968.. code-block:: llvm
5969
5970 %X = fptosi double -123.0 to i32 ; yields i32:-123
5971 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5972 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5973
5974'``uitofp .. to``' Instruction
5975^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5976
5977Syntax:
5978"""""""
5979
5980::
5981
5982 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5983
5984Overview:
5985"""""""""
5986
5987The '``uitofp``' instruction regards ``value`` as an unsigned integer
5988and converts that value to the ``ty2`` type.
5989
5990Arguments:
5991""""""""""
5992
5993The '``uitofp``' instruction takes a value to cast, which must be a
5994scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5995``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5996``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5997type with the same number of elements as ``ty``
5998
5999Semantics:
6000""""""""""
6001
6002The '``uitofp``' instruction interprets its operand as an unsigned
6003integer quantity and converts it to the corresponding floating point
6004value. If the value cannot fit in the floating point value, the results
6005are undefined.
6006
6007Example:
6008""""""""
6009
6010.. code-block:: llvm
6011
6012 %X = uitofp i32 257 to float ; yields float:257.0
6013 %Y = uitofp i8 -1 to double ; yields double:255.0
6014
6015'``sitofp .. to``' Instruction
6016^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6017
6018Syntax:
6019"""""""
6020
6021::
6022
6023 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
6024
6025Overview:
6026"""""""""
6027
6028The '``sitofp``' instruction regards ``value`` as a signed integer and
6029converts that value to the ``ty2`` type.
6030
6031Arguments:
6032""""""""""
6033
6034The '``sitofp``' instruction takes a value to cast, which must be a
6035scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6036``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6037``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6038type with the same number of elements as ``ty``
6039
6040Semantics:
6041""""""""""
6042
6043The '``sitofp``' instruction interprets its operand as a signed integer
6044quantity and converts it to the corresponding floating point value. If
6045the value cannot fit in the floating point value, the results are
6046undefined.
6047
6048Example:
6049""""""""
6050
6051.. code-block:: llvm
6052
6053 %X = sitofp i32 257 to float ; yields float:257.0
6054 %Y = sitofp i8 -1 to double ; yields double:-1.0
6055
6056.. _i_ptrtoint:
6057
6058'``ptrtoint .. to``' Instruction
6059^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6060
6061Syntax:
6062"""""""
6063
6064::
6065
6066 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
6067
6068Overview:
6069"""""""""
6070
6071The '``ptrtoint``' instruction converts the pointer or a vector of
6072pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6073
6074Arguments:
6075""""""""""
6076
6077The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
6078a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
6079type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6080a vector of integers type.
6081
6082Semantics:
6083""""""""""
6084
6085The '``ptrtoint``' instruction converts ``value`` to integer type
6086``ty2`` by interpreting the pointer value as an integer and either
6087truncating or zero extending that value to the size of the integer type.
6088If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6089``value`` is larger than ``ty2`` then a truncation is done. If they are
6090the same size, then nothing is done (*no-op cast*) other than a type
6091change.
6092
6093Example:
6094""""""""
6095
6096.. code-block:: llvm
6097
6098 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
6099 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
6100 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6101
6102.. _i_inttoptr:
6103
6104'``inttoptr .. to``' Instruction
6105^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6106
6107Syntax:
6108"""""""
6109
6110::
6111
6112 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
6113
6114Overview:
6115"""""""""
6116
6117The '``inttoptr``' instruction converts an integer ``value`` to a
6118pointer type, ``ty2``.
6119
6120Arguments:
6121""""""""""
6122
6123The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6124cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6125type.
6126
6127Semantics:
6128""""""""""
6129
6130The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6131applying either a zero extension or a truncation depending on the size
6132of the integer ``value``. If ``value`` is larger than the size of a
6133pointer then a truncation is done. If ``value`` is smaller than the size
6134of a pointer then a zero extension is done. If they are the same size,
6135nothing is done (*no-op cast*).
6136
6137Example:
6138""""""""
6139
6140.. code-block:: llvm
6141
6142 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6143 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6144 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6145 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6146
6147.. _i_bitcast:
6148
6149'``bitcast .. to``' Instruction
6150^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6151
6152Syntax:
6153"""""""
6154
6155::
6156
6157 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6158
6159Overview:
6160"""""""""
6161
6162The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6163changing any bits.
6164
6165Arguments:
6166""""""""""
6167
6168The '``bitcast``' instruction takes a value to cast, which must be a
6169non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006170also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6171bit sizes of ``value`` and the destination type, ``ty2``, must be
6172identical. If the source type is a pointer, the destination type must
6173also be a pointer of the same size. This instruction supports bitwise
6174conversion of vectors to integers and to vectors of other types (as
6175long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006176
6177Semantics:
6178""""""""""
6179
Matt Arsenault24b49c42013-07-31 17:49:08 +00006180The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6181is always a *no-op cast* because no bits change with this
6182conversion. The conversion is done as if the ``value`` had been stored
6183to memory and read back as type ``ty2``. Pointer (or vector of
6184pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006185pointers) types with the same address space through this instruction.
6186To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6187or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006188
6189Example:
6190""""""""
6191
6192.. code-block:: llvm
6193
6194 %X = bitcast i8 255 to i8 ; yields i8 :-1
6195 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6196 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6197 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6198
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006199.. _i_addrspacecast:
6200
6201'``addrspacecast .. to``' Instruction
6202^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6203
6204Syntax:
6205"""""""
6206
6207::
6208
6209 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6210
6211Overview:
6212"""""""""
6213
6214The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6215address space ``n`` to type ``pty2`` in address space ``m``.
6216
6217Arguments:
6218""""""""""
6219
6220The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6221to cast and a pointer type to cast it to, which must have a different
6222address space.
6223
6224Semantics:
6225""""""""""
6226
6227The '``addrspacecast``' instruction converts the pointer value
6228``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006229value modification, depending on the target and the address space
6230pair. Pointer conversions within the same address space must be
6231performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006232conversion is legal then both result and operand refer to the same memory
6233location.
6234
6235Example:
6236""""""""
6237
6238.. code-block:: llvm
6239
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006240 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6241 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6242 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006243
Sean Silvab084af42012-12-07 10:36:55 +00006244.. _otherops:
6245
6246Other Operations
6247----------------
6248
6249The instructions in this category are the "miscellaneous" instructions,
6250which defy better classification.
6251
6252.. _i_icmp:
6253
6254'``icmp``' Instruction
6255^^^^^^^^^^^^^^^^^^^^^^
6256
6257Syntax:
6258"""""""
6259
6260::
6261
Tim Northover675a0962014-06-13 14:24:23 +00006262 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006263
6264Overview:
6265"""""""""
6266
6267The '``icmp``' instruction returns a boolean value or a vector of
6268boolean values based on comparison of its two integer, integer vector,
6269pointer, or pointer vector operands.
6270
6271Arguments:
6272""""""""""
6273
6274The '``icmp``' instruction takes three operands. The first operand is
6275the condition code indicating the kind of comparison to perform. It is
6276not a value, just a keyword. The possible condition code are:
6277
6278#. ``eq``: equal
6279#. ``ne``: not equal
6280#. ``ugt``: unsigned greater than
6281#. ``uge``: unsigned greater or equal
6282#. ``ult``: unsigned less than
6283#. ``ule``: unsigned less or equal
6284#. ``sgt``: signed greater than
6285#. ``sge``: signed greater or equal
6286#. ``slt``: signed less than
6287#. ``sle``: signed less or equal
6288
6289The remaining two arguments must be :ref:`integer <t_integer>` or
6290:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6291must also be identical types.
6292
6293Semantics:
6294""""""""""
6295
6296The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6297code given as ``cond``. The comparison performed always yields either an
6298:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6299
6300#. ``eq``: yields ``true`` if the operands are equal, ``false``
6301 otherwise. No sign interpretation is necessary or performed.
6302#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6303 otherwise. No sign interpretation is necessary or performed.
6304#. ``ugt``: interprets the operands as unsigned values and yields
6305 ``true`` if ``op1`` is greater than ``op2``.
6306#. ``uge``: interprets the operands as unsigned values and yields
6307 ``true`` if ``op1`` is greater than or equal to ``op2``.
6308#. ``ult``: interprets the operands as unsigned values and yields
6309 ``true`` if ``op1`` is less than ``op2``.
6310#. ``ule``: interprets the operands as unsigned values and yields
6311 ``true`` if ``op1`` is less than or equal to ``op2``.
6312#. ``sgt``: interprets the operands as signed values and yields ``true``
6313 if ``op1`` is greater than ``op2``.
6314#. ``sge``: interprets the operands as signed values and yields ``true``
6315 if ``op1`` is greater than or equal to ``op2``.
6316#. ``slt``: interprets the operands as signed values and yields ``true``
6317 if ``op1`` is less than ``op2``.
6318#. ``sle``: interprets the operands as signed values and yields ``true``
6319 if ``op1`` is less than or equal to ``op2``.
6320
6321If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6322are compared as if they were integers.
6323
6324If the operands are integer vectors, then they are compared element by
6325element. The result is an ``i1`` vector with the same number of elements
6326as the values being compared. Otherwise, the result is an ``i1``.
6327
6328Example:
6329""""""""
6330
6331.. code-block:: llvm
6332
6333 <result> = icmp eq i32 4, 5 ; yields: result=false
6334 <result> = icmp ne float* %X, %X ; yields: result=false
6335 <result> = icmp ult i16 4, 5 ; yields: result=true
6336 <result> = icmp sgt i16 4, 5 ; yields: result=false
6337 <result> = icmp ule i16 -4, 5 ; yields: result=false
6338 <result> = icmp sge i16 4, 5 ; yields: result=false
6339
6340Note that the code generator does not yet support vector types with the
6341``icmp`` instruction.
6342
6343.. _i_fcmp:
6344
6345'``fcmp``' Instruction
6346^^^^^^^^^^^^^^^^^^^^^^
6347
6348Syntax:
6349"""""""
6350
6351::
6352
Tim Northover675a0962014-06-13 14:24:23 +00006353 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006354
6355Overview:
6356"""""""""
6357
6358The '``fcmp``' instruction returns a boolean value or vector of boolean
6359values based on comparison of its operands.
6360
6361If the operands are floating point scalars, then the result type is a
6362boolean (:ref:`i1 <t_integer>`).
6363
6364If the operands are floating point vectors, then the result type is a
6365vector of boolean with the same number of elements as the operands being
6366compared.
6367
6368Arguments:
6369""""""""""
6370
6371The '``fcmp``' instruction takes three operands. The first operand is
6372the condition code indicating the kind of comparison to perform. It is
6373not a value, just a keyword. The possible condition code are:
6374
6375#. ``false``: no comparison, always returns false
6376#. ``oeq``: ordered and equal
6377#. ``ogt``: ordered and greater than
6378#. ``oge``: ordered and greater than or equal
6379#. ``olt``: ordered and less than
6380#. ``ole``: ordered and less than or equal
6381#. ``one``: ordered and not equal
6382#. ``ord``: ordered (no nans)
6383#. ``ueq``: unordered or equal
6384#. ``ugt``: unordered or greater than
6385#. ``uge``: unordered or greater than or equal
6386#. ``ult``: unordered or less than
6387#. ``ule``: unordered or less than or equal
6388#. ``une``: unordered or not equal
6389#. ``uno``: unordered (either nans)
6390#. ``true``: no comparison, always returns true
6391
6392*Ordered* means that neither operand is a QNAN while *unordered* means
6393that either operand may be a QNAN.
6394
6395Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6396point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6397type. They must have identical types.
6398
6399Semantics:
6400""""""""""
6401
6402The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6403condition code given as ``cond``. If the operands are vectors, then the
6404vectors are compared element by element. Each comparison performed
6405always yields an :ref:`i1 <t_integer>` result, as follows:
6406
6407#. ``false``: always yields ``false``, regardless of operands.
6408#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6409 is equal to ``op2``.
6410#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6411 is greater than ``op2``.
6412#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6413 is greater than or equal to ``op2``.
6414#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6415 is less than ``op2``.
6416#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6417 is less than or equal to ``op2``.
6418#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6419 is not equal to ``op2``.
6420#. ``ord``: yields ``true`` if both operands are not a QNAN.
6421#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6422 equal to ``op2``.
6423#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6424 greater than ``op2``.
6425#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6426 greater than or equal to ``op2``.
6427#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6428 less than ``op2``.
6429#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6430 less than or equal to ``op2``.
6431#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6432 not equal to ``op2``.
6433#. ``uno``: yields ``true`` if either operand is a QNAN.
6434#. ``true``: always yields ``true``, regardless of operands.
6435
6436Example:
6437""""""""
6438
6439.. code-block:: llvm
6440
6441 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6442 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6443 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6444 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6445
6446Note that the code generator does not yet support vector types with the
6447``fcmp`` instruction.
6448
6449.. _i_phi:
6450
6451'``phi``' Instruction
6452^^^^^^^^^^^^^^^^^^^^^
6453
6454Syntax:
6455"""""""
6456
6457::
6458
6459 <result> = phi <ty> [ <val0>, <label0>], ...
6460
6461Overview:
6462"""""""""
6463
6464The '``phi``' instruction is used to implement the φ node in the SSA
6465graph representing the function.
6466
6467Arguments:
6468""""""""""
6469
6470The type of the incoming values is specified with the first type field.
6471After this, the '``phi``' instruction takes a list of pairs as
6472arguments, with one pair for each predecessor basic block of the current
6473block. Only values of :ref:`first class <t_firstclass>` type may be used as
6474the value arguments to the PHI node. Only labels may be used as the
6475label arguments.
6476
6477There must be no non-phi instructions between the start of a basic block
6478and the PHI instructions: i.e. PHI instructions must be first in a basic
6479block.
6480
6481For the purposes of the SSA form, the use of each incoming value is
6482deemed to occur on the edge from the corresponding predecessor block to
6483the current block (but after any definition of an '``invoke``'
6484instruction's return value on the same edge).
6485
6486Semantics:
6487""""""""""
6488
6489At runtime, the '``phi``' instruction logically takes on the value
6490specified by the pair corresponding to the predecessor basic block that
6491executed just prior to the current block.
6492
6493Example:
6494""""""""
6495
6496.. code-block:: llvm
6497
6498 Loop: ; Infinite loop that counts from 0 on up...
6499 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6500 %nextindvar = add i32 %indvar, 1
6501 br label %Loop
6502
6503.. _i_select:
6504
6505'``select``' Instruction
6506^^^^^^^^^^^^^^^^^^^^^^^^
6507
6508Syntax:
6509"""""""
6510
6511::
6512
6513 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6514
6515 selty is either i1 or {<N x i1>}
6516
6517Overview:
6518"""""""""
6519
6520The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006521condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006522
6523Arguments:
6524""""""""""
6525
6526The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6527values indicating the condition, and two values of the same :ref:`first
6528class <t_firstclass>` type. If the val1/val2 are vectors and the
6529condition is a scalar, then entire vectors are selected, not individual
6530elements.
6531
6532Semantics:
6533""""""""""
6534
6535If the condition is an i1 and it evaluates to 1, the instruction returns
6536the first value argument; otherwise, it returns the second value
6537argument.
6538
6539If the condition is a vector of i1, then the value arguments must be
6540vectors of the same size, and the selection is done element by element.
6541
6542Example:
6543""""""""
6544
6545.. code-block:: llvm
6546
6547 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6548
6549.. _i_call:
6550
6551'``call``' Instruction
6552^^^^^^^^^^^^^^^^^^^^^^
6553
6554Syntax:
6555"""""""
6556
6557::
6558
Reid Kleckner5772b772014-04-24 20:14:34 +00006559 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006560
6561Overview:
6562"""""""""
6563
6564The '``call``' instruction represents a simple function call.
6565
6566Arguments:
6567""""""""""
6568
6569This instruction requires several arguments:
6570
Reid Kleckner5772b772014-04-24 20:14:34 +00006571#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6572 should perform tail call optimization. The ``tail`` marker is a hint that
6573 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6574 means that the call must be tail call optimized in order for the program to
6575 be correct. The ``musttail`` marker provides these guarantees:
6576
6577 #. The call will not cause unbounded stack growth if it is part of a
6578 recursive cycle in the call graph.
6579 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6580 forwarded in place.
6581
6582 Both markers imply that the callee does not access allocas or varargs from
6583 the caller. Calls marked ``musttail`` must obey the following additional
6584 rules:
6585
6586 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6587 or a pointer bitcast followed by a ret instruction.
6588 - The ret instruction must return the (possibly bitcasted) value
6589 produced by the call or void.
6590 - The caller and callee prototypes must match. Pointer types of
6591 parameters or return types may differ in pointee type, but not
6592 in address space.
6593 - The calling conventions of the caller and callee must match.
6594 - All ABI-impacting function attributes, such as sret, byval, inreg,
6595 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00006596 - The callee must be varargs iff the caller is varargs. Bitcasting a
6597 non-varargs function to the appropriate varargs type is legal so
6598 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00006599
6600 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6601 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006602
6603 - Caller and callee both have the calling convention ``fastcc``.
6604 - The call is in tail position (ret immediately follows call and ret
6605 uses value of call or is void).
6606 - Option ``-tailcallopt`` is enabled, or
6607 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00006608 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00006609 met. <CodeGenerator.html#tailcallopt>`_
6610
6611#. The optional "cconv" marker indicates which :ref:`calling
6612 convention <callingconv>` the call should use. If none is
6613 specified, the call defaults to using C calling conventions. The
6614 calling convention of the call must match the calling convention of
6615 the target function, or else the behavior is undefined.
6616#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6617 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6618 are valid here.
6619#. '``ty``': the type of the call instruction itself which is also the
6620 type of the return value. Functions that return no value are marked
6621 ``void``.
6622#. '``fnty``': shall be the signature of the pointer to function value
6623 being invoked. The argument types must match the types implied by
6624 this signature. This type can be omitted if the function is not
6625 varargs and if the function type does not return a pointer to a
6626 function.
6627#. '``fnptrval``': An LLVM value containing a pointer to a function to
6628 be invoked. In most cases, this is a direct function invocation, but
6629 indirect ``call``'s are just as possible, calling an arbitrary pointer
6630 to function value.
6631#. '``function args``': argument list whose types match the function
6632 signature argument types and parameter attributes. All arguments must
6633 be of :ref:`first class <t_firstclass>` type. If the function signature
6634 indicates the function accepts a variable number of arguments, the
6635 extra arguments can be specified.
6636#. The optional :ref:`function attributes <fnattrs>` list. Only
6637 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6638 attributes are valid here.
6639
6640Semantics:
6641""""""""""
6642
6643The '``call``' instruction is used to cause control flow to transfer to
6644a specified function, with its incoming arguments bound to the specified
6645values. Upon a '``ret``' instruction in the called function, control
6646flow continues with the instruction after the function call, and the
6647return value of the function is bound to the result argument.
6648
6649Example:
6650""""""""
6651
6652.. code-block:: llvm
6653
6654 %retval = call i32 @test(i32 %argc)
6655 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6656 %X = tail call i32 @foo() ; yields i32
6657 %Y = tail call fastcc i32 @foo() ; yields i32
6658 call void %foo(i8 97 signext)
6659
6660 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00006661 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00006662 %gr = extractvalue %struct.A %r, 0 ; yields i32
6663 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6664 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6665 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6666
6667llvm treats calls to some functions with names and arguments that match
6668the standard C99 library as being the C99 library functions, and may
6669perform optimizations or generate code for them under that assumption.
6670This is something we'd like to change in the future to provide better
6671support for freestanding environments and non-C-based languages.
6672
6673.. _i_va_arg:
6674
6675'``va_arg``' Instruction
6676^^^^^^^^^^^^^^^^^^^^^^^^
6677
6678Syntax:
6679"""""""
6680
6681::
6682
6683 <resultval> = va_arg <va_list*> <arglist>, <argty>
6684
6685Overview:
6686"""""""""
6687
6688The '``va_arg``' instruction is used to access arguments passed through
6689the "variable argument" area of a function call. It is used to implement
6690the ``va_arg`` macro in C.
6691
6692Arguments:
6693""""""""""
6694
6695This instruction takes a ``va_list*`` value and the type of the
6696argument. It returns a value of the specified argument type and
6697increments the ``va_list`` to point to the next argument. The actual
6698type of ``va_list`` is target specific.
6699
6700Semantics:
6701""""""""""
6702
6703The '``va_arg``' instruction loads an argument of the specified type
6704from the specified ``va_list`` and causes the ``va_list`` to point to
6705the next argument. For more information, see the variable argument
6706handling :ref:`Intrinsic Functions <int_varargs>`.
6707
6708It is legal for this instruction to be called in a function which does
6709not take a variable number of arguments, for example, the ``vfprintf``
6710function.
6711
6712``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6713function <intrinsics>` because it takes a type as an argument.
6714
6715Example:
6716""""""""
6717
6718See the :ref:`variable argument processing <int_varargs>` section.
6719
6720Note that the code generator does not yet fully support va\_arg on many
6721targets. Also, it does not currently support va\_arg with aggregate
6722types on any target.
6723
6724.. _i_landingpad:
6725
6726'``landingpad``' Instruction
6727^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6728
6729Syntax:
6730"""""""
6731
6732::
6733
6734 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6735 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6736
6737 <clause> := catch <type> <value>
6738 <clause> := filter <array constant type> <array constant>
6739
6740Overview:
6741"""""""""
6742
6743The '``landingpad``' instruction is used by `LLVM's exception handling
6744system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006745is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006746code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6747defines values supplied by the personality function (``pers_fn``) upon
6748re-entry to the function. The ``resultval`` has the type ``resultty``.
6749
6750Arguments:
6751""""""""""
6752
6753This instruction takes a ``pers_fn`` value. This is the personality
6754function associated with the unwinding mechanism. The optional
6755``cleanup`` flag indicates that the landing pad block is a cleanup.
6756
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006757A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006758contains the global variable representing the "type" that may be caught
6759or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6760clause takes an array constant as its argument. Use
6761"``[0 x i8**] undef``" for a filter which cannot throw. The
6762'``landingpad``' instruction must contain *at least* one ``clause`` or
6763the ``cleanup`` flag.
6764
6765Semantics:
6766""""""""""
6767
6768The '``landingpad``' instruction defines the values which are set by the
6769personality function (``pers_fn``) upon re-entry to the function, and
6770therefore the "result type" of the ``landingpad`` instruction. As with
6771calling conventions, how the personality function results are
6772represented in LLVM IR is target specific.
6773
6774The clauses are applied in order from top to bottom. If two
6775``landingpad`` instructions are merged together through inlining, the
6776clauses from the calling function are appended to the list of clauses.
6777When the call stack is being unwound due to an exception being thrown,
6778the exception is compared against each ``clause`` in turn. If it doesn't
6779match any of the clauses, and the ``cleanup`` flag is not set, then
6780unwinding continues further up the call stack.
6781
6782The ``landingpad`` instruction has several restrictions:
6783
6784- A landing pad block is a basic block which is the unwind destination
6785 of an '``invoke``' instruction.
6786- A landing pad block must have a '``landingpad``' instruction as its
6787 first non-PHI instruction.
6788- There can be only one '``landingpad``' instruction within the landing
6789 pad block.
6790- A basic block that is not a landing pad block may not include a
6791 '``landingpad``' instruction.
6792- All '``landingpad``' instructions in a function must have the same
6793 personality function.
6794
6795Example:
6796""""""""
6797
6798.. code-block:: llvm
6799
6800 ;; A landing pad which can catch an integer.
6801 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6802 catch i8** @_ZTIi
6803 ;; A landing pad that is a cleanup.
6804 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6805 cleanup
6806 ;; A landing pad which can catch an integer and can only throw a double.
6807 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6808 catch i8** @_ZTIi
6809 filter [1 x i8**] [@_ZTId]
6810
6811.. _intrinsics:
6812
6813Intrinsic Functions
6814===================
6815
6816LLVM supports the notion of an "intrinsic function". These functions
6817have well known names and semantics and are required to follow certain
6818restrictions. Overall, these intrinsics represent an extension mechanism
6819for the LLVM language that does not require changing all of the
6820transformations in LLVM when adding to the language (or the bitcode
6821reader/writer, the parser, etc...).
6822
6823Intrinsic function names must all start with an "``llvm.``" prefix. This
6824prefix is reserved in LLVM for intrinsic names; thus, function names may
6825not begin with this prefix. Intrinsic functions must always be external
6826functions: you cannot define the body of intrinsic functions. Intrinsic
6827functions may only be used in call or invoke instructions: it is illegal
6828to take the address of an intrinsic function. Additionally, because
6829intrinsic functions are part of the LLVM language, it is required if any
6830are added that they be documented here.
6831
6832Some intrinsic functions can be overloaded, i.e., the intrinsic
6833represents a family of functions that perform the same operation but on
6834different data types. Because LLVM can represent over 8 million
6835different integer types, overloading is used commonly to allow an
6836intrinsic function to operate on any integer type. One or more of the
6837argument types or the result type can be overloaded to accept any
6838integer type. Argument types may also be defined as exactly matching a
6839previous argument's type or the result type. This allows an intrinsic
6840function which accepts multiple arguments, but needs all of them to be
6841of the same type, to only be overloaded with respect to a single
6842argument or the result.
6843
6844Overloaded intrinsics will have the names of its overloaded argument
6845types encoded into its function name, each preceded by a period. Only
6846those types which are overloaded result in a name suffix. Arguments
6847whose type is matched against another type do not. For example, the
6848``llvm.ctpop`` function can take an integer of any width and returns an
6849integer of exactly the same integer width. This leads to a family of
6850functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6851``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6852overloaded, and only one type suffix is required. Because the argument's
6853type is matched against the return type, it does not require its own
6854name suffix.
6855
6856To learn how to add an intrinsic function, please see the `Extending
6857LLVM Guide <ExtendingLLVM.html>`_.
6858
6859.. _int_varargs:
6860
6861Variable Argument Handling Intrinsics
6862-------------------------------------
6863
6864Variable argument support is defined in LLVM with the
6865:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6866functions. These functions are related to the similarly named macros
6867defined in the ``<stdarg.h>`` header file.
6868
6869All of these functions operate on arguments that use a target-specific
6870value type "``va_list``". The LLVM assembly language reference manual
6871does not define what this type is, so all transformations should be
6872prepared to handle these functions regardless of the type used.
6873
6874This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6875variable argument handling intrinsic functions are used.
6876
6877.. code-block:: llvm
6878
6879 define i32 @test(i32 %X, ...) {
6880 ; Initialize variable argument processing
6881 %ap = alloca i8*
6882 %ap2 = bitcast i8** %ap to i8*
6883 call void @llvm.va_start(i8* %ap2)
6884
6885 ; Read a single integer argument
6886 %tmp = va_arg i8** %ap, i32
6887
6888 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6889 %aq = alloca i8*
6890 %aq2 = bitcast i8** %aq to i8*
6891 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6892 call void @llvm.va_end(i8* %aq2)
6893
6894 ; Stop processing of arguments.
6895 call void @llvm.va_end(i8* %ap2)
6896 ret i32 %tmp
6897 }
6898
6899 declare void @llvm.va_start(i8*)
6900 declare void @llvm.va_copy(i8*, i8*)
6901 declare void @llvm.va_end(i8*)
6902
6903.. _int_va_start:
6904
6905'``llvm.va_start``' Intrinsic
6906^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6907
6908Syntax:
6909"""""""
6910
6911::
6912
Nick Lewycky04f6de02013-09-11 22:04:52 +00006913 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006914
6915Overview:
6916"""""""""
6917
6918The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6919subsequent use by ``va_arg``.
6920
6921Arguments:
6922""""""""""
6923
6924The argument is a pointer to a ``va_list`` element to initialize.
6925
6926Semantics:
6927""""""""""
6928
6929The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6930available in C. In a target-dependent way, it initializes the
6931``va_list`` element to which the argument points, so that the next call
6932to ``va_arg`` will produce the first variable argument passed to the
6933function. Unlike the C ``va_start`` macro, this intrinsic does not need
6934to know the last argument of the function as the compiler can figure
6935that out.
6936
6937'``llvm.va_end``' Intrinsic
6938^^^^^^^^^^^^^^^^^^^^^^^^^^^
6939
6940Syntax:
6941"""""""
6942
6943::
6944
6945 declare void @llvm.va_end(i8* <arglist>)
6946
6947Overview:
6948"""""""""
6949
6950The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6951initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6952
6953Arguments:
6954""""""""""
6955
6956The argument is a pointer to a ``va_list`` to destroy.
6957
6958Semantics:
6959""""""""""
6960
6961The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6962available in C. In a target-dependent way, it destroys the ``va_list``
6963element to which the argument points. Calls to
6964:ref:`llvm.va_start <int_va_start>` and
6965:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6966``llvm.va_end``.
6967
6968.. _int_va_copy:
6969
6970'``llvm.va_copy``' Intrinsic
6971^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6972
6973Syntax:
6974"""""""
6975
6976::
6977
6978 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6979
6980Overview:
6981"""""""""
6982
6983The '``llvm.va_copy``' intrinsic copies the current argument position
6984from the source argument list to the destination argument list.
6985
6986Arguments:
6987""""""""""
6988
6989The first argument is a pointer to a ``va_list`` element to initialize.
6990The second argument is a pointer to a ``va_list`` element to copy from.
6991
6992Semantics:
6993""""""""""
6994
6995The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6996available in C. In a target-dependent way, it copies the source
6997``va_list`` element into the destination ``va_list`` element. This
6998intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6999arbitrarily complex and require, for example, memory allocation.
7000
7001Accurate Garbage Collection Intrinsics
7002--------------------------------------
7003
7004LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
7005(GC) requires the implementation and generation of these intrinsics.
7006These intrinsics allow identification of :ref:`GC roots on the
7007stack <int_gcroot>`, as well as garbage collector implementations that
7008require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
7009Front-ends for type-safe garbage collected languages should generate
7010these intrinsics to make use of the LLVM garbage collectors. For more
7011details, see `Accurate Garbage Collection with
7012LLVM <GarbageCollection.html>`_.
7013
7014The garbage collection intrinsics only operate on objects in the generic
7015address space (address space zero).
7016
7017.. _int_gcroot:
7018
7019'``llvm.gcroot``' Intrinsic
7020^^^^^^^^^^^^^^^^^^^^^^^^^^^
7021
7022Syntax:
7023"""""""
7024
7025::
7026
7027 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
7028
7029Overview:
7030"""""""""
7031
7032The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
7033the code generator, and allows some metadata to be associated with it.
7034
7035Arguments:
7036""""""""""
7037
7038The first argument specifies the address of a stack object that contains
7039the root pointer. The second pointer (which must be either a constant or
7040a global value address) contains the meta-data to be associated with the
7041root.
7042
7043Semantics:
7044""""""""""
7045
7046At runtime, a call to this intrinsic stores a null pointer into the
7047"ptrloc" location. At compile-time, the code generator generates
7048information to allow the runtime to find the pointer at GC safe points.
7049The '``llvm.gcroot``' intrinsic may only be used in a function which
7050:ref:`specifies a GC algorithm <gc>`.
7051
7052.. _int_gcread:
7053
7054'``llvm.gcread``' Intrinsic
7055^^^^^^^^^^^^^^^^^^^^^^^^^^^
7056
7057Syntax:
7058"""""""
7059
7060::
7061
7062 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7063
7064Overview:
7065"""""""""
7066
7067The '``llvm.gcread``' intrinsic identifies reads of references from heap
7068locations, allowing garbage collector implementations that require read
7069barriers.
7070
7071Arguments:
7072""""""""""
7073
7074The second argument is the address to read from, which should be an
7075address allocated from the garbage collector. The first object is a
7076pointer to the start of the referenced object, if needed by the language
7077runtime (otherwise null).
7078
7079Semantics:
7080""""""""""
7081
7082The '``llvm.gcread``' intrinsic has the same semantics as a load
7083instruction, but may be replaced with substantially more complex code by
7084the garbage collector runtime, as needed. The '``llvm.gcread``'
7085intrinsic may only be used in a function which :ref:`specifies a GC
7086algorithm <gc>`.
7087
7088.. _int_gcwrite:
7089
7090'``llvm.gcwrite``' Intrinsic
7091^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7092
7093Syntax:
7094"""""""
7095
7096::
7097
7098 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7099
7100Overview:
7101"""""""""
7102
7103The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7104locations, allowing garbage collector implementations that require write
7105barriers (such as generational or reference counting collectors).
7106
7107Arguments:
7108""""""""""
7109
7110The first argument is the reference to store, the second is the start of
7111the object to store it to, and the third is the address of the field of
7112Obj to store to. If the runtime does not require a pointer to the
7113object, Obj may be null.
7114
7115Semantics:
7116""""""""""
7117
7118The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7119instruction, but may be replaced with substantially more complex code by
7120the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7121intrinsic may only be used in a function which :ref:`specifies a GC
7122algorithm <gc>`.
7123
7124Code Generator Intrinsics
7125-------------------------
7126
7127These intrinsics are provided by LLVM to expose special features that
7128may only be implemented with code generator support.
7129
7130'``llvm.returnaddress``' Intrinsic
7131^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7132
7133Syntax:
7134"""""""
7135
7136::
7137
7138 declare i8 *@llvm.returnaddress(i32 <level>)
7139
7140Overview:
7141"""""""""
7142
7143The '``llvm.returnaddress``' intrinsic attempts to compute a
7144target-specific value indicating the return address of the current
7145function or one of its callers.
7146
7147Arguments:
7148""""""""""
7149
7150The argument to this intrinsic indicates which function to return the
7151address for. Zero indicates the calling function, one indicates its
7152caller, etc. The argument is **required** to be a constant integer
7153value.
7154
7155Semantics:
7156""""""""""
7157
7158The '``llvm.returnaddress``' intrinsic either returns a pointer
7159indicating the return address of the specified call frame, or zero if it
7160cannot be identified. The value returned by this intrinsic is likely to
7161be incorrect or 0 for arguments other than zero, so it should only be
7162used for debugging purposes.
7163
7164Note that calling this intrinsic does not prevent function inlining or
7165other aggressive transformations, so the value returned may not be that
7166of the obvious source-language caller.
7167
7168'``llvm.frameaddress``' Intrinsic
7169^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7170
7171Syntax:
7172"""""""
7173
7174::
7175
7176 declare i8* @llvm.frameaddress(i32 <level>)
7177
7178Overview:
7179"""""""""
7180
7181The '``llvm.frameaddress``' intrinsic attempts to return the
7182target-specific frame pointer value for the specified stack frame.
7183
7184Arguments:
7185""""""""""
7186
7187The argument to this intrinsic indicates which function to return the
7188frame pointer for. Zero indicates the calling function, one indicates
7189its caller, etc. The argument is **required** to be a constant integer
7190value.
7191
7192Semantics:
7193""""""""""
7194
7195The '``llvm.frameaddress``' intrinsic either returns a pointer
7196indicating the frame address of the specified call frame, or zero if it
7197cannot be identified. The value returned by this intrinsic is likely to
7198be incorrect or 0 for arguments other than zero, so it should only be
7199used for debugging purposes.
7200
7201Note that calling this intrinsic does not prevent function inlining or
7202other aggressive transformations, so the value returned may not be that
7203of the obvious source-language caller.
7204
Renato Golinc7aea402014-05-06 16:51:25 +00007205.. _int_read_register:
7206.. _int_write_register:
7207
7208'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7209^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7210
7211Syntax:
7212"""""""
7213
7214::
7215
7216 declare i32 @llvm.read_register.i32(metadata)
7217 declare i64 @llvm.read_register.i64(metadata)
7218 declare void @llvm.write_register.i32(metadata, i32 @value)
7219 declare void @llvm.write_register.i64(metadata, i64 @value)
7220 !0 = metadata !{metadata !"sp\00"}
7221
7222Overview:
7223"""""""""
7224
7225The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7226provides access to the named register. The register must be valid on
7227the architecture being compiled to. The type needs to be compatible
7228with the register being read.
7229
7230Semantics:
7231""""""""""
7232
7233The '``llvm.read_register``' intrinsic returns the current value of the
7234register, where possible. The '``llvm.write_register``' intrinsic sets
7235the current value of the register, where possible.
7236
7237This is useful to implement named register global variables that need
7238to always be mapped to a specific register, as is common practice on
7239bare-metal programs including OS kernels.
7240
7241The compiler doesn't check for register availability or use of the used
7242register in surrounding code, including inline assembly. Because of that,
7243allocatable registers are not supported.
7244
7245Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007246architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007247work is needed to support other registers and even more so, allocatable
7248registers.
7249
Sean Silvab084af42012-12-07 10:36:55 +00007250.. _int_stacksave:
7251
7252'``llvm.stacksave``' Intrinsic
7253^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7254
7255Syntax:
7256"""""""
7257
7258::
7259
7260 declare i8* @llvm.stacksave()
7261
7262Overview:
7263"""""""""
7264
7265The '``llvm.stacksave``' intrinsic is used to remember the current state
7266of the function stack, for use with
7267:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7268implementing language features like scoped automatic variable sized
7269arrays in C99.
7270
7271Semantics:
7272""""""""""
7273
7274This intrinsic returns a opaque pointer value that can be passed to
7275:ref:`llvm.stackrestore <int_stackrestore>`. When an
7276``llvm.stackrestore`` intrinsic is executed with a value saved from
7277``llvm.stacksave``, it effectively restores the state of the stack to
7278the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7279practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7280were allocated after the ``llvm.stacksave`` was executed.
7281
7282.. _int_stackrestore:
7283
7284'``llvm.stackrestore``' Intrinsic
7285^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7286
7287Syntax:
7288"""""""
7289
7290::
7291
7292 declare void @llvm.stackrestore(i8* %ptr)
7293
7294Overview:
7295"""""""""
7296
7297The '``llvm.stackrestore``' intrinsic is used to restore the state of
7298the function stack to the state it was in when the corresponding
7299:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7300useful for implementing language features like scoped automatic variable
7301sized arrays in C99.
7302
7303Semantics:
7304""""""""""
7305
7306See the description for :ref:`llvm.stacksave <int_stacksave>`.
7307
7308'``llvm.prefetch``' Intrinsic
7309^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7310
7311Syntax:
7312"""""""
7313
7314::
7315
7316 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7317
7318Overview:
7319"""""""""
7320
7321The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7322insert a prefetch instruction if supported; otherwise, it is a noop.
7323Prefetches have no effect on the behavior of the program but can change
7324its performance characteristics.
7325
7326Arguments:
7327""""""""""
7328
7329``address`` is the address to be prefetched, ``rw`` is the specifier
7330determining if the fetch should be for a read (0) or write (1), and
7331``locality`` is a temporal locality specifier ranging from (0) - no
7332locality, to (3) - extremely local keep in cache. The ``cache type``
7333specifies whether the prefetch is performed on the data (1) or
7334instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7335arguments must be constant integers.
7336
7337Semantics:
7338""""""""""
7339
7340This intrinsic does not modify the behavior of the program. In
7341particular, prefetches cannot trap and do not produce a value. On
7342targets that support this intrinsic, the prefetch can provide hints to
7343the processor cache for better performance.
7344
7345'``llvm.pcmarker``' Intrinsic
7346^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7347
7348Syntax:
7349"""""""
7350
7351::
7352
7353 declare void @llvm.pcmarker(i32 <id>)
7354
7355Overview:
7356"""""""""
7357
7358The '``llvm.pcmarker``' intrinsic is a method to export a Program
7359Counter (PC) in a region of code to simulators and other tools. The
7360method is target specific, but it is expected that the marker will use
7361exported symbols to transmit the PC of the marker. The marker makes no
7362guarantees that it will remain with any specific instruction after
7363optimizations. It is possible that the presence of a marker will inhibit
7364optimizations. The intended use is to be inserted after optimizations to
7365allow correlations of simulation runs.
7366
7367Arguments:
7368""""""""""
7369
7370``id`` is a numerical id identifying the marker.
7371
7372Semantics:
7373""""""""""
7374
7375This intrinsic does not modify the behavior of the program. Backends
7376that do not support this intrinsic may ignore it.
7377
7378'``llvm.readcyclecounter``' Intrinsic
7379^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7380
7381Syntax:
7382"""""""
7383
7384::
7385
7386 declare i64 @llvm.readcyclecounter()
7387
7388Overview:
7389"""""""""
7390
7391The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7392counter register (or similar low latency, high accuracy clocks) on those
7393targets that support it. On X86, it should map to RDTSC. On Alpha, it
7394should map to RPCC. As the backing counters overflow quickly (on the
7395order of 9 seconds on alpha), this should only be used for small
7396timings.
7397
7398Semantics:
7399""""""""""
7400
7401When directly supported, reading the cycle counter should not modify any
7402memory. Implementations are allowed to either return a application
7403specific value or a system wide value. On backends without support, this
7404is lowered to a constant 0.
7405
Tim Northoverbc933082013-05-23 19:11:20 +00007406Note that runtime support may be conditional on the privilege-level code is
7407running at and the host platform.
7408
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007409'``llvm.clear_cache``' Intrinsic
7410^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7411
7412Syntax:
7413"""""""
7414
7415::
7416
7417 declare void @llvm.clear_cache(i8*, i8*)
7418
7419Overview:
7420"""""""""
7421
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007422The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7423in the specified range to the execution unit of the processor. On
7424targets with non-unified instruction and data cache, the implementation
7425flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007426
7427Semantics:
7428""""""""""
7429
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007430On platforms with coherent instruction and data caches (e.g. x86), this
7431intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007432cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007433instructions or a system call, if cache flushing requires special
7434privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007435
Sean Silvad02bf3e2014-04-07 22:29:53 +00007436The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007437time library.
Renato Golin93010e62014-03-26 14:01:32 +00007438
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007439This instrinsic does *not* empty the instruction pipeline. Modifications
7440of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007441
Sean Silvab084af42012-12-07 10:36:55 +00007442Standard C Library Intrinsics
7443-----------------------------
7444
7445LLVM provides intrinsics for a few important standard C library
7446functions. These intrinsics allow source-language front-ends to pass
7447information about the alignment of the pointer arguments to the code
7448generator, providing opportunity for more efficient code generation.
7449
7450.. _int_memcpy:
7451
7452'``llvm.memcpy``' Intrinsic
7453^^^^^^^^^^^^^^^^^^^^^^^^^^^
7454
7455Syntax:
7456"""""""
7457
7458This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7459integer bit width and for different address spaces. Not all targets
7460support all bit widths however.
7461
7462::
7463
7464 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7465 i32 <len>, i32 <align>, i1 <isvolatile>)
7466 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7467 i64 <len>, i32 <align>, i1 <isvolatile>)
7468
7469Overview:
7470"""""""""
7471
7472The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7473source location to the destination location.
7474
7475Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7476intrinsics do not return a value, takes extra alignment/isvolatile
7477arguments and the pointers can be in specified address spaces.
7478
7479Arguments:
7480""""""""""
7481
7482The first argument is a pointer to the destination, the second is a
7483pointer to the source. The third argument is an integer argument
7484specifying the number of bytes to copy, the fourth argument is the
7485alignment of the source and destination locations, and the fifth is a
7486boolean indicating a volatile access.
7487
7488If the call to this intrinsic has an alignment value that is not 0 or 1,
7489then the caller guarantees that both the source and destination pointers
7490are aligned to that boundary.
7491
7492If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7493a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7494very cleanly specified and it is unwise to depend on it.
7495
7496Semantics:
7497""""""""""
7498
7499The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7500source location to the destination location, which are not allowed to
7501overlap. It copies "len" bytes of memory over. If the argument is known
7502to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007503argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007504
7505'``llvm.memmove``' Intrinsic
7506^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7507
7508Syntax:
7509"""""""
7510
7511This is an overloaded intrinsic. You can use llvm.memmove on any integer
7512bit width and for different address space. Not all targets support all
7513bit widths however.
7514
7515::
7516
7517 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7518 i32 <len>, i32 <align>, i1 <isvolatile>)
7519 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7520 i64 <len>, i32 <align>, i1 <isvolatile>)
7521
7522Overview:
7523"""""""""
7524
7525The '``llvm.memmove.*``' intrinsics move a block of memory from the
7526source location to the destination location. It is similar to the
7527'``llvm.memcpy``' intrinsic but allows the two memory locations to
7528overlap.
7529
7530Note that, unlike the standard libc function, the ``llvm.memmove.*``
7531intrinsics do not return a value, takes extra alignment/isvolatile
7532arguments and the pointers can be in specified address spaces.
7533
7534Arguments:
7535""""""""""
7536
7537The first argument is a pointer to the destination, the second is a
7538pointer to the source. The third argument is an integer argument
7539specifying the number of bytes to copy, the fourth argument is the
7540alignment of the source and destination locations, and the fifth is a
7541boolean indicating a volatile access.
7542
7543If the call to this intrinsic has an alignment value that is not 0 or 1,
7544then the caller guarantees that the source and destination pointers are
7545aligned to that boundary.
7546
7547If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7548is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7549not very cleanly specified and it is unwise to depend on it.
7550
7551Semantics:
7552""""""""""
7553
7554The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7555source location to the destination location, which may overlap. It
7556copies "len" bytes of memory over. If the argument is known to be
7557aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007558otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007559
7560'``llvm.memset.*``' Intrinsics
7561^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7562
7563Syntax:
7564"""""""
7565
7566This is an overloaded intrinsic. You can use llvm.memset on any integer
7567bit width and for different address spaces. However, not all targets
7568support all bit widths.
7569
7570::
7571
7572 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7573 i32 <len>, i32 <align>, i1 <isvolatile>)
7574 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7575 i64 <len>, i32 <align>, i1 <isvolatile>)
7576
7577Overview:
7578"""""""""
7579
7580The '``llvm.memset.*``' intrinsics fill a block of memory with a
7581particular byte value.
7582
7583Note that, unlike the standard libc function, the ``llvm.memset``
7584intrinsic does not return a value and takes extra alignment/volatile
7585arguments. Also, the destination can be in an arbitrary address space.
7586
7587Arguments:
7588""""""""""
7589
7590The first argument is a pointer to the destination to fill, the second
7591is the byte value with which to fill it, the third argument is an
7592integer argument specifying the number of bytes to fill, and the fourth
7593argument is the known alignment of the destination location.
7594
7595If the call to this intrinsic has an alignment value that is not 0 or 1,
7596then the caller guarantees that the destination pointer is aligned to
7597that boundary.
7598
7599If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7600a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7601very cleanly specified and it is unwise to depend on it.
7602
7603Semantics:
7604""""""""""
7605
7606The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7607at the destination location. If the argument is known to be aligned to
7608some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007609it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007610
7611'``llvm.sqrt.*``' Intrinsic
7612^^^^^^^^^^^^^^^^^^^^^^^^^^^
7613
7614Syntax:
7615"""""""
7616
7617This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7618floating point or vector of floating point type. Not all targets support
7619all types however.
7620
7621::
7622
7623 declare float @llvm.sqrt.f32(float %Val)
7624 declare double @llvm.sqrt.f64(double %Val)
7625 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7626 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7627 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7628
7629Overview:
7630"""""""""
7631
7632The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7633returning the same value as the libm '``sqrt``' functions would. Unlike
7634``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7635negative numbers other than -0.0 (which allows for better optimization,
7636because there is no need to worry about errno being set).
7637``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7638
7639Arguments:
7640""""""""""
7641
7642The argument and return value are floating point numbers of the same
7643type.
7644
7645Semantics:
7646""""""""""
7647
7648This function returns the sqrt of the specified operand if it is a
7649nonnegative floating point number.
7650
7651'``llvm.powi.*``' Intrinsic
7652^^^^^^^^^^^^^^^^^^^^^^^^^^^
7653
7654Syntax:
7655"""""""
7656
7657This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7658floating point or vector of floating point type. Not all targets support
7659all types however.
7660
7661::
7662
7663 declare float @llvm.powi.f32(float %Val, i32 %power)
7664 declare double @llvm.powi.f64(double %Val, i32 %power)
7665 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7666 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7667 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7668
7669Overview:
7670"""""""""
7671
7672The '``llvm.powi.*``' intrinsics return the first operand raised to the
7673specified (positive or negative) power. The order of evaluation of
7674multiplications is not defined. When a vector of floating point type is
7675used, the second argument remains a scalar integer value.
7676
7677Arguments:
7678""""""""""
7679
7680The second argument is an integer power, and the first is a value to
7681raise to that power.
7682
7683Semantics:
7684""""""""""
7685
7686This function returns the first value raised to the second power with an
7687unspecified sequence of rounding operations.
7688
7689'``llvm.sin.*``' Intrinsic
7690^^^^^^^^^^^^^^^^^^^^^^^^^^
7691
7692Syntax:
7693"""""""
7694
7695This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7696floating point or vector of floating point type. Not all targets support
7697all types however.
7698
7699::
7700
7701 declare float @llvm.sin.f32(float %Val)
7702 declare double @llvm.sin.f64(double %Val)
7703 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7704 declare fp128 @llvm.sin.f128(fp128 %Val)
7705 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7706
7707Overview:
7708"""""""""
7709
7710The '``llvm.sin.*``' intrinsics return the sine of the operand.
7711
7712Arguments:
7713""""""""""
7714
7715The argument and return value are floating point numbers of the same
7716type.
7717
7718Semantics:
7719""""""""""
7720
7721This function returns the sine of the specified operand, returning the
7722same values as the libm ``sin`` functions would, and handles error
7723conditions in the same way.
7724
7725'``llvm.cos.*``' Intrinsic
7726^^^^^^^^^^^^^^^^^^^^^^^^^^
7727
7728Syntax:
7729"""""""
7730
7731This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7732floating point or vector of floating point type. Not all targets support
7733all types however.
7734
7735::
7736
7737 declare float @llvm.cos.f32(float %Val)
7738 declare double @llvm.cos.f64(double %Val)
7739 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7740 declare fp128 @llvm.cos.f128(fp128 %Val)
7741 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7742
7743Overview:
7744"""""""""
7745
7746The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7747
7748Arguments:
7749""""""""""
7750
7751The argument and return value are floating point numbers of the same
7752type.
7753
7754Semantics:
7755""""""""""
7756
7757This function returns the cosine of the specified operand, returning the
7758same values as the libm ``cos`` functions would, and handles error
7759conditions in the same way.
7760
7761'``llvm.pow.*``' Intrinsic
7762^^^^^^^^^^^^^^^^^^^^^^^^^^
7763
7764Syntax:
7765"""""""
7766
7767This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7768floating point or vector of floating point type. Not all targets support
7769all types however.
7770
7771::
7772
7773 declare float @llvm.pow.f32(float %Val, float %Power)
7774 declare double @llvm.pow.f64(double %Val, double %Power)
7775 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7776 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7777 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7778
7779Overview:
7780"""""""""
7781
7782The '``llvm.pow.*``' intrinsics return the first operand raised to the
7783specified (positive or negative) power.
7784
7785Arguments:
7786""""""""""
7787
7788The second argument is a floating point power, and the first is a value
7789to raise to that power.
7790
7791Semantics:
7792""""""""""
7793
7794This function returns the first value raised to the second power,
7795returning the same values as the libm ``pow`` functions would, and
7796handles error conditions in the same way.
7797
7798'``llvm.exp.*``' Intrinsic
7799^^^^^^^^^^^^^^^^^^^^^^^^^^
7800
7801Syntax:
7802"""""""
7803
7804This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7805floating point or vector of floating point type. Not all targets support
7806all types however.
7807
7808::
7809
7810 declare float @llvm.exp.f32(float %Val)
7811 declare double @llvm.exp.f64(double %Val)
7812 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7813 declare fp128 @llvm.exp.f128(fp128 %Val)
7814 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7815
7816Overview:
7817"""""""""
7818
7819The '``llvm.exp.*``' intrinsics perform the exp function.
7820
7821Arguments:
7822""""""""""
7823
7824The argument and return value are floating point numbers of the same
7825type.
7826
7827Semantics:
7828""""""""""
7829
7830This function returns the same values as the libm ``exp`` functions
7831would, and handles error conditions in the same way.
7832
7833'``llvm.exp2.*``' Intrinsic
7834^^^^^^^^^^^^^^^^^^^^^^^^^^^
7835
7836Syntax:
7837"""""""
7838
7839This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7840floating point or vector of floating point type. Not all targets support
7841all types however.
7842
7843::
7844
7845 declare float @llvm.exp2.f32(float %Val)
7846 declare double @llvm.exp2.f64(double %Val)
7847 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7848 declare fp128 @llvm.exp2.f128(fp128 %Val)
7849 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7850
7851Overview:
7852"""""""""
7853
7854The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7855
7856Arguments:
7857""""""""""
7858
7859The argument and return value are floating point numbers of the same
7860type.
7861
7862Semantics:
7863""""""""""
7864
7865This function returns the same values as the libm ``exp2`` functions
7866would, and handles error conditions in the same way.
7867
7868'``llvm.log.*``' Intrinsic
7869^^^^^^^^^^^^^^^^^^^^^^^^^^
7870
7871Syntax:
7872"""""""
7873
7874This is an overloaded intrinsic. You can use ``llvm.log`` on any
7875floating point or vector of floating point type. Not all targets support
7876all types however.
7877
7878::
7879
7880 declare float @llvm.log.f32(float %Val)
7881 declare double @llvm.log.f64(double %Val)
7882 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7883 declare fp128 @llvm.log.f128(fp128 %Val)
7884 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7885
7886Overview:
7887"""""""""
7888
7889The '``llvm.log.*``' intrinsics perform the log function.
7890
7891Arguments:
7892""""""""""
7893
7894The argument and return value are floating point numbers of the same
7895type.
7896
7897Semantics:
7898""""""""""
7899
7900This function returns the same values as the libm ``log`` functions
7901would, and handles error conditions in the same way.
7902
7903'``llvm.log10.*``' Intrinsic
7904^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7905
7906Syntax:
7907"""""""
7908
7909This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7910floating point or vector of floating point type. Not all targets support
7911all types however.
7912
7913::
7914
7915 declare float @llvm.log10.f32(float %Val)
7916 declare double @llvm.log10.f64(double %Val)
7917 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7918 declare fp128 @llvm.log10.f128(fp128 %Val)
7919 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7920
7921Overview:
7922"""""""""
7923
7924The '``llvm.log10.*``' intrinsics perform the log10 function.
7925
7926Arguments:
7927""""""""""
7928
7929The argument and return value are floating point numbers of the same
7930type.
7931
7932Semantics:
7933""""""""""
7934
7935This function returns the same values as the libm ``log10`` functions
7936would, and handles error conditions in the same way.
7937
7938'``llvm.log2.*``' Intrinsic
7939^^^^^^^^^^^^^^^^^^^^^^^^^^^
7940
7941Syntax:
7942"""""""
7943
7944This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7945floating point or vector of floating point type. Not all targets support
7946all types however.
7947
7948::
7949
7950 declare float @llvm.log2.f32(float %Val)
7951 declare double @llvm.log2.f64(double %Val)
7952 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7953 declare fp128 @llvm.log2.f128(fp128 %Val)
7954 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7955
7956Overview:
7957"""""""""
7958
7959The '``llvm.log2.*``' intrinsics perform the log2 function.
7960
7961Arguments:
7962""""""""""
7963
7964The argument and return value are floating point numbers of the same
7965type.
7966
7967Semantics:
7968""""""""""
7969
7970This function returns the same values as the libm ``log2`` functions
7971would, and handles error conditions in the same way.
7972
7973'``llvm.fma.*``' Intrinsic
7974^^^^^^^^^^^^^^^^^^^^^^^^^^
7975
7976Syntax:
7977"""""""
7978
7979This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7980floating point or vector of floating point type. Not all targets support
7981all types however.
7982
7983::
7984
7985 declare float @llvm.fma.f32(float %a, float %b, float %c)
7986 declare double @llvm.fma.f64(double %a, double %b, double %c)
7987 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7988 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7989 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7990
7991Overview:
7992"""""""""
7993
7994The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7995operation.
7996
7997Arguments:
7998""""""""""
7999
8000The argument and return value are floating point numbers of the same
8001type.
8002
8003Semantics:
8004""""""""""
8005
8006This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008007would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00008008
8009'``llvm.fabs.*``' Intrinsic
8010^^^^^^^^^^^^^^^^^^^^^^^^^^^
8011
8012Syntax:
8013"""""""
8014
8015This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
8016floating point or vector of floating point type. Not all targets support
8017all types however.
8018
8019::
8020
8021 declare float @llvm.fabs.f32(float %Val)
8022 declare double @llvm.fabs.f64(double %Val)
8023 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
8024 declare fp128 @llvm.fabs.f128(fp128 %Val)
8025 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
8026
8027Overview:
8028"""""""""
8029
8030The '``llvm.fabs.*``' intrinsics return the absolute value of the
8031operand.
8032
8033Arguments:
8034""""""""""
8035
8036The argument and return value are floating point numbers of the same
8037type.
8038
8039Semantics:
8040""""""""""
8041
8042This function returns the same values as the libm ``fabs`` functions
8043would, and handles error conditions in the same way.
8044
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00008045'``llvm.copysign.*``' Intrinsic
8046^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8047
8048Syntax:
8049"""""""
8050
8051This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
8052floating point or vector of floating point type. Not all targets support
8053all types however.
8054
8055::
8056
8057 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
8058 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
8059 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
8060 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8061 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
8062
8063Overview:
8064"""""""""
8065
8066The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8067first operand and the sign of the second operand.
8068
8069Arguments:
8070""""""""""
8071
8072The arguments and return value are floating point numbers of the same
8073type.
8074
8075Semantics:
8076""""""""""
8077
8078This function returns the same values as the libm ``copysign``
8079functions would, and handles error conditions in the same way.
8080
Sean Silvab084af42012-12-07 10:36:55 +00008081'``llvm.floor.*``' Intrinsic
8082^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8083
8084Syntax:
8085"""""""
8086
8087This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8088floating point or vector of floating point type. Not all targets support
8089all types however.
8090
8091::
8092
8093 declare float @llvm.floor.f32(float %Val)
8094 declare double @llvm.floor.f64(double %Val)
8095 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
8096 declare fp128 @llvm.floor.f128(fp128 %Val)
8097 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
8098
8099Overview:
8100"""""""""
8101
8102The '``llvm.floor.*``' intrinsics return the floor of the operand.
8103
8104Arguments:
8105""""""""""
8106
8107The argument and return value are floating point numbers of the same
8108type.
8109
8110Semantics:
8111""""""""""
8112
8113This function returns the same values as the libm ``floor`` functions
8114would, and handles error conditions in the same way.
8115
8116'``llvm.ceil.*``' Intrinsic
8117^^^^^^^^^^^^^^^^^^^^^^^^^^^
8118
8119Syntax:
8120"""""""
8121
8122This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8123floating point or vector of floating point type. Not all targets support
8124all types however.
8125
8126::
8127
8128 declare float @llvm.ceil.f32(float %Val)
8129 declare double @llvm.ceil.f64(double %Val)
8130 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8131 declare fp128 @llvm.ceil.f128(fp128 %Val)
8132 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8133
8134Overview:
8135"""""""""
8136
8137The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8138
8139Arguments:
8140""""""""""
8141
8142The argument and return value are floating point numbers of the same
8143type.
8144
8145Semantics:
8146""""""""""
8147
8148This function returns the same values as the libm ``ceil`` functions
8149would, and handles error conditions in the same way.
8150
8151'``llvm.trunc.*``' Intrinsic
8152^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8153
8154Syntax:
8155"""""""
8156
8157This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8158floating point or vector of floating point type. Not all targets support
8159all types however.
8160
8161::
8162
8163 declare float @llvm.trunc.f32(float %Val)
8164 declare double @llvm.trunc.f64(double %Val)
8165 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8166 declare fp128 @llvm.trunc.f128(fp128 %Val)
8167 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8168
8169Overview:
8170"""""""""
8171
8172The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8173nearest integer not larger in magnitude than the operand.
8174
8175Arguments:
8176""""""""""
8177
8178The argument and return value are floating point numbers of the same
8179type.
8180
8181Semantics:
8182""""""""""
8183
8184This function returns the same values as the libm ``trunc`` functions
8185would, and handles error conditions in the same way.
8186
8187'``llvm.rint.*``' Intrinsic
8188^^^^^^^^^^^^^^^^^^^^^^^^^^^
8189
8190Syntax:
8191"""""""
8192
8193This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8194floating point or vector of floating point type. Not all targets support
8195all types however.
8196
8197::
8198
8199 declare float @llvm.rint.f32(float %Val)
8200 declare double @llvm.rint.f64(double %Val)
8201 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8202 declare fp128 @llvm.rint.f128(fp128 %Val)
8203 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8204
8205Overview:
8206"""""""""
8207
8208The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8209nearest integer. It may raise an inexact floating-point exception if the
8210operand isn't an integer.
8211
8212Arguments:
8213""""""""""
8214
8215The argument and return value are floating point numbers of the same
8216type.
8217
8218Semantics:
8219""""""""""
8220
8221This function returns the same values as the libm ``rint`` functions
8222would, and handles error conditions in the same way.
8223
8224'``llvm.nearbyint.*``' Intrinsic
8225^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8226
8227Syntax:
8228"""""""
8229
8230This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8231floating point or vector of floating point type. Not all targets support
8232all types however.
8233
8234::
8235
8236 declare float @llvm.nearbyint.f32(float %Val)
8237 declare double @llvm.nearbyint.f64(double %Val)
8238 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8239 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8240 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8241
8242Overview:
8243"""""""""
8244
8245The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8246nearest integer.
8247
8248Arguments:
8249""""""""""
8250
8251The argument and return value are floating point numbers of the same
8252type.
8253
8254Semantics:
8255""""""""""
8256
8257This function returns the same values as the libm ``nearbyint``
8258functions would, and handles error conditions in the same way.
8259
Hal Finkel171817e2013-08-07 22:49:12 +00008260'``llvm.round.*``' Intrinsic
8261^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8262
8263Syntax:
8264"""""""
8265
8266This is an overloaded intrinsic. You can use ``llvm.round`` on any
8267floating point or vector of floating point type. Not all targets support
8268all types however.
8269
8270::
8271
8272 declare float @llvm.round.f32(float %Val)
8273 declare double @llvm.round.f64(double %Val)
8274 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8275 declare fp128 @llvm.round.f128(fp128 %Val)
8276 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8277
8278Overview:
8279"""""""""
8280
8281The '``llvm.round.*``' intrinsics returns the operand rounded to the
8282nearest integer.
8283
8284Arguments:
8285""""""""""
8286
8287The argument and return value are floating point numbers of the same
8288type.
8289
8290Semantics:
8291""""""""""
8292
8293This function returns the same values as the libm ``round``
8294functions would, and handles error conditions in the same way.
8295
Sean Silvab084af42012-12-07 10:36:55 +00008296Bit Manipulation Intrinsics
8297---------------------------
8298
8299LLVM provides intrinsics for a few important bit manipulation
8300operations. These allow efficient code generation for some algorithms.
8301
8302'``llvm.bswap.*``' Intrinsics
8303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8304
8305Syntax:
8306"""""""
8307
8308This is an overloaded intrinsic function. You can use bswap on any
8309integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8310
8311::
8312
8313 declare i16 @llvm.bswap.i16(i16 <id>)
8314 declare i32 @llvm.bswap.i32(i32 <id>)
8315 declare i64 @llvm.bswap.i64(i64 <id>)
8316
8317Overview:
8318"""""""""
8319
8320The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8321values with an even number of bytes (positive multiple of 16 bits).
8322These are useful for performing operations on data that is not in the
8323target's native byte order.
8324
8325Semantics:
8326""""""""""
8327
8328The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8329and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8330intrinsic returns an i32 value that has the four bytes of the input i32
8331swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8332returned i32 will have its bytes in 3, 2, 1, 0 order. The
8333``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8334concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8335respectively).
8336
8337'``llvm.ctpop.*``' Intrinsic
8338^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8339
8340Syntax:
8341"""""""
8342
8343This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8344bit width, or on any vector with integer elements. Not all targets
8345support all bit widths or vector types, however.
8346
8347::
8348
8349 declare i8 @llvm.ctpop.i8(i8 <src>)
8350 declare i16 @llvm.ctpop.i16(i16 <src>)
8351 declare i32 @llvm.ctpop.i32(i32 <src>)
8352 declare i64 @llvm.ctpop.i64(i64 <src>)
8353 declare i256 @llvm.ctpop.i256(i256 <src>)
8354 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8355
8356Overview:
8357"""""""""
8358
8359The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8360in a value.
8361
8362Arguments:
8363""""""""""
8364
8365The only argument is the value to be counted. The argument may be of any
8366integer type, or a vector with integer elements. The return type must
8367match the argument type.
8368
8369Semantics:
8370""""""""""
8371
8372The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8373each element of a vector.
8374
8375'``llvm.ctlz.*``' Intrinsic
8376^^^^^^^^^^^^^^^^^^^^^^^^^^^
8377
8378Syntax:
8379"""""""
8380
8381This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8382integer bit width, or any vector whose elements are integers. Not all
8383targets support all bit widths or vector types, however.
8384
8385::
8386
8387 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8388 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8389 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8390 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8391 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8392 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8393
8394Overview:
8395"""""""""
8396
8397The '``llvm.ctlz``' family of intrinsic functions counts the number of
8398leading zeros in a variable.
8399
8400Arguments:
8401""""""""""
8402
8403The first argument is the value to be counted. This argument may be of
8404any integer type, or a vectory with integer element type. The return
8405type must match the first argument type.
8406
8407The second argument must be a constant and is a flag to indicate whether
8408the intrinsic should ensure that a zero as the first argument produces a
8409defined result. Historically some architectures did not provide a
8410defined result for zero values as efficiently, and many algorithms are
8411now predicated on avoiding zero-value inputs.
8412
8413Semantics:
8414""""""""""
8415
8416The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8417zeros in a variable, or within each element of the vector. If
8418``src == 0`` then the result is the size in bits of the type of ``src``
8419if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8420``llvm.ctlz(i32 2) = 30``.
8421
8422'``llvm.cttz.*``' Intrinsic
8423^^^^^^^^^^^^^^^^^^^^^^^^^^^
8424
8425Syntax:
8426"""""""
8427
8428This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8429integer bit width, or any vector of integer elements. Not all targets
8430support all bit widths or vector types, however.
8431
8432::
8433
8434 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8435 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8436 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8437 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8438 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8439 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8440
8441Overview:
8442"""""""""
8443
8444The '``llvm.cttz``' family of intrinsic functions counts the number of
8445trailing zeros.
8446
8447Arguments:
8448""""""""""
8449
8450The first argument is the value to be counted. This argument may be of
8451any integer type, or a vectory with integer element type. The return
8452type must match the first argument type.
8453
8454The second argument must be a constant and is a flag to indicate whether
8455the intrinsic should ensure that a zero as the first argument produces a
8456defined result. Historically some architectures did not provide a
8457defined result for zero values as efficiently, and many algorithms are
8458now predicated on avoiding zero-value inputs.
8459
8460Semantics:
8461""""""""""
8462
8463The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8464zeros in a variable, or within each element of a vector. If ``src == 0``
8465then the result is the size in bits of the type of ``src`` if
8466``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8467``llvm.cttz(2) = 1``.
8468
8469Arithmetic with Overflow Intrinsics
8470-----------------------------------
8471
8472LLVM provides intrinsics for some arithmetic with overflow operations.
8473
8474'``llvm.sadd.with.overflow.*``' Intrinsics
8475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8476
8477Syntax:
8478"""""""
8479
8480This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8481on any integer bit width.
8482
8483::
8484
8485 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8486 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8487 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8488
8489Overview:
8490"""""""""
8491
8492The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8493a signed addition of the two arguments, and indicate whether an overflow
8494occurred during the signed summation.
8495
8496Arguments:
8497""""""""""
8498
8499The arguments (%a and %b) and the first element of the result structure
8500may be of integer types of any bit width, but they must have the same
8501bit width. The second element of the result structure must be of type
8502``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8503addition.
8504
8505Semantics:
8506""""""""""
8507
8508The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008509a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008510first element of which is the signed summation, and the second element
8511of which is a bit specifying if the signed summation resulted in an
8512overflow.
8513
8514Examples:
8515"""""""""
8516
8517.. code-block:: llvm
8518
8519 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8520 %sum = extractvalue {i32, i1} %res, 0
8521 %obit = extractvalue {i32, i1} %res, 1
8522 br i1 %obit, label %overflow, label %normal
8523
8524'``llvm.uadd.with.overflow.*``' Intrinsics
8525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8526
8527Syntax:
8528"""""""
8529
8530This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8531on any integer bit width.
8532
8533::
8534
8535 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8536 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8537 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8538
8539Overview:
8540"""""""""
8541
8542The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8543an unsigned addition of the two arguments, and indicate whether a carry
8544occurred during the unsigned summation.
8545
8546Arguments:
8547""""""""""
8548
8549The arguments (%a and %b) and the first element of the result structure
8550may be of integer types of any bit width, but they must have the same
8551bit width. The second element of the result structure must be of type
8552``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8553addition.
8554
8555Semantics:
8556""""""""""
8557
8558The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008559an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008560first element of which is the sum, and the second element of which is a
8561bit specifying if the unsigned summation resulted in a carry.
8562
8563Examples:
8564"""""""""
8565
8566.. code-block:: llvm
8567
8568 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8569 %sum = extractvalue {i32, i1} %res, 0
8570 %obit = extractvalue {i32, i1} %res, 1
8571 br i1 %obit, label %carry, label %normal
8572
8573'``llvm.ssub.with.overflow.*``' Intrinsics
8574^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8575
8576Syntax:
8577"""""""
8578
8579This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8580on any integer bit width.
8581
8582::
8583
8584 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8585 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8586 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8587
8588Overview:
8589"""""""""
8590
8591The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8592a signed subtraction of the two arguments, and indicate whether an
8593overflow occurred during the signed subtraction.
8594
8595Arguments:
8596""""""""""
8597
8598The arguments (%a and %b) and the first element of the result structure
8599may be of integer types of any bit width, but they must have the same
8600bit width. The second element of the result structure must be of type
8601``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8602subtraction.
8603
8604Semantics:
8605""""""""""
8606
8607The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008608a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008609first element of which is the subtraction, and the second element of
8610which is a bit specifying if the signed subtraction resulted in an
8611overflow.
8612
8613Examples:
8614"""""""""
8615
8616.. code-block:: llvm
8617
8618 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8619 %sum = extractvalue {i32, i1} %res, 0
8620 %obit = extractvalue {i32, i1} %res, 1
8621 br i1 %obit, label %overflow, label %normal
8622
8623'``llvm.usub.with.overflow.*``' Intrinsics
8624^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8625
8626Syntax:
8627"""""""
8628
8629This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8630on any integer bit width.
8631
8632::
8633
8634 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8635 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8636 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8637
8638Overview:
8639"""""""""
8640
8641The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8642an unsigned subtraction of the two arguments, and indicate whether an
8643overflow occurred during the unsigned subtraction.
8644
8645Arguments:
8646""""""""""
8647
8648The arguments (%a and %b) and the first element of the result structure
8649may be of integer types of any bit width, but they must have the same
8650bit width. The second element of the result structure must be of type
8651``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8652subtraction.
8653
8654Semantics:
8655""""""""""
8656
8657The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008658an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008659the first element of which is the subtraction, and the second element of
8660which is a bit specifying if the unsigned subtraction resulted in an
8661overflow.
8662
8663Examples:
8664"""""""""
8665
8666.. code-block:: llvm
8667
8668 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8669 %sum = extractvalue {i32, i1} %res, 0
8670 %obit = extractvalue {i32, i1} %res, 1
8671 br i1 %obit, label %overflow, label %normal
8672
8673'``llvm.smul.with.overflow.*``' Intrinsics
8674^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8675
8676Syntax:
8677"""""""
8678
8679This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8680on any integer bit width.
8681
8682::
8683
8684 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8685 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8686 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8687
8688Overview:
8689"""""""""
8690
8691The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8692a signed multiplication of the two arguments, and indicate whether an
8693overflow occurred during the signed multiplication.
8694
8695Arguments:
8696""""""""""
8697
8698The arguments (%a and %b) and the first element of the result structure
8699may be of integer types of any bit width, but they must have the same
8700bit width. The second element of the result structure must be of type
8701``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8702multiplication.
8703
8704Semantics:
8705""""""""""
8706
8707The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008708a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008709the first element of which is the multiplication, and the second element
8710of which is a bit specifying if the signed multiplication resulted in an
8711overflow.
8712
8713Examples:
8714"""""""""
8715
8716.. code-block:: llvm
8717
8718 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8719 %sum = extractvalue {i32, i1} %res, 0
8720 %obit = extractvalue {i32, i1} %res, 1
8721 br i1 %obit, label %overflow, label %normal
8722
8723'``llvm.umul.with.overflow.*``' Intrinsics
8724^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8725
8726Syntax:
8727"""""""
8728
8729This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8730on any integer bit width.
8731
8732::
8733
8734 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8735 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8736 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8737
8738Overview:
8739"""""""""
8740
8741The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8742a unsigned multiplication of the two arguments, and indicate whether an
8743overflow occurred during the unsigned multiplication.
8744
8745Arguments:
8746""""""""""
8747
8748The arguments (%a and %b) and the first element of the result structure
8749may be of integer types of any bit width, but they must have the same
8750bit width. The second element of the result structure must be of type
8751``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8752multiplication.
8753
8754Semantics:
8755""""""""""
8756
8757The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008758an unsigned multiplication of the two arguments. They return a structure ---
8759the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008760element of which is a bit specifying if the unsigned multiplication
8761resulted in an overflow.
8762
8763Examples:
8764"""""""""
8765
8766.. code-block:: llvm
8767
8768 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8769 %sum = extractvalue {i32, i1} %res, 0
8770 %obit = extractvalue {i32, i1} %res, 1
8771 br i1 %obit, label %overflow, label %normal
8772
8773Specialised Arithmetic Intrinsics
8774---------------------------------
8775
8776'``llvm.fmuladd.*``' Intrinsic
8777^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8778
8779Syntax:
8780"""""""
8781
8782::
8783
8784 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8785 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8786
8787Overview:
8788"""""""""
8789
8790The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008791expressions that can be fused if the code generator determines that (a) the
8792target instruction set has support for a fused operation, and (b) that the
8793fused operation is more efficient than the equivalent, separate pair of mul
8794and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008795
8796Arguments:
8797""""""""""
8798
8799The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8800multiplicands, a and b, and an addend c.
8801
8802Semantics:
8803""""""""""
8804
8805The expression:
8806
8807::
8808
8809 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8810
8811is equivalent to the expression a \* b + c, except that rounding will
8812not be performed between the multiplication and addition steps if the
8813code generator fuses the operations. Fusion is not guaranteed, even if
8814the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008815corresponding llvm.fma.\* intrinsic function should be used
8816instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008817
8818Examples:
8819"""""""""
8820
8821.. code-block:: llvm
8822
Tim Northover675a0962014-06-13 14:24:23 +00008823 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00008824
8825Half Precision Floating Point Intrinsics
8826----------------------------------------
8827
8828For most target platforms, half precision floating point is a
8829storage-only format. This means that it is a dense encoding (in memory)
8830but does not support computation in the format.
8831
8832This means that code must first load the half-precision floating point
8833value as an i16, then convert it to float with
8834:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8835then be performed on the float value (including extending to double
8836etc). To store the value back to memory, it is first converted to float
8837if needed, then converted to i16 with
8838:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8839i16 value.
8840
8841.. _int_convert_to_fp16:
8842
8843'``llvm.convert.to.fp16``' Intrinsic
8844^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8845
8846Syntax:
8847"""""""
8848
8849::
8850
Tim Northoverfd7e4242014-07-17 10:51:23 +00008851 declare i16 @llvm.convert.to.fp16.f32(float %a)
8852 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00008853
8854Overview:
8855"""""""""
8856
Tim Northoverfd7e4242014-07-17 10:51:23 +00008857The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8858conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00008859
8860Arguments:
8861""""""""""
8862
8863The intrinsic function contains single argument - the value to be
8864converted.
8865
8866Semantics:
8867""""""""""
8868
Tim Northoverfd7e4242014-07-17 10:51:23 +00008869The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8870conventional floating point format to half precision floating point format. The
8871return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00008872
8873Examples:
8874"""""""""
8875
8876.. code-block:: llvm
8877
Tim Northoverfd7e4242014-07-17 10:51:23 +00008878 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00008879 store i16 %res, i16* @x, align 2
8880
8881.. _int_convert_from_fp16:
8882
8883'``llvm.convert.from.fp16``' Intrinsic
8884^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8885
8886Syntax:
8887"""""""
8888
8889::
8890
Tim Northoverfd7e4242014-07-17 10:51:23 +00008891 declare float @llvm.convert.from.fp16.f32(i16 %a)
8892 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008893
8894Overview:
8895"""""""""
8896
8897The '``llvm.convert.from.fp16``' intrinsic function performs a
8898conversion from half precision floating point format to single precision
8899floating point format.
8900
8901Arguments:
8902""""""""""
8903
8904The intrinsic function contains single argument - the value to be
8905converted.
8906
8907Semantics:
8908""""""""""
8909
8910The '``llvm.convert.from.fp16``' intrinsic function performs a
8911conversion from half single precision floating point format to single
8912precision floating point format. The input half-float value is
8913represented by an ``i16`` value.
8914
8915Examples:
8916"""""""""
8917
8918.. code-block:: llvm
8919
8920 %a = load i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00008921 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008922
8923Debugger Intrinsics
8924-------------------
8925
8926The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8927prefix), are described in the `LLVM Source Level
8928Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8929document.
8930
8931Exception Handling Intrinsics
8932-----------------------------
8933
8934The LLVM exception handling intrinsics (which all start with
8935``llvm.eh.`` prefix), are described in the `LLVM Exception
8936Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8937
8938.. _int_trampoline:
8939
8940Trampoline Intrinsics
8941---------------------
8942
8943These intrinsics make it possible to excise one parameter, marked with
8944the :ref:`nest <nest>` attribute, from a function. The result is a
8945callable function pointer lacking the nest parameter - the caller does
8946not need to provide a value for it. Instead, the value to use is stored
8947in advance in a "trampoline", a block of memory usually allocated on the
8948stack, which also contains code to splice the nest value into the
8949argument list. This is used to implement the GCC nested function address
8950extension.
8951
8952For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8953then the resulting function pointer has signature ``i32 (i32, i32)*``.
8954It can be created as follows:
8955
8956.. code-block:: llvm
8957
8958 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8959 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8960 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8961 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8962 %fp = bitcast i8* %p to i32 (i32, i32)*
8963
8964The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8965``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8966
8967.. _int_it:
8968
8969'``llvm.init.trampoline``' Intrinsic
8970^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8971
8972Syntax:
8973"""""""
8974
8975::
8976
8977 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8978
8979Overview:
8980"""""""""
8981
8982This fills the memory pointed to by ``tramp`` with executable code,
8983turning it into a trampoline.
8984
8985Arguments:
8986""""""""""
8987
8988The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8989pointers. The ``tramp`` argument must point to a sufficiently large and
8990sufficiently aligned block of memory; this memory is written to by the
8991intrinsic. Note that the size and the alignment are target-specific -
8992LLVM currently provides no portable way of determining them, so a
8993front-end that generates this intrinsic needs to have some
8994target-specific knowledge. The ``func`` argument must hold a function
8995bitcast to an ``i8*``.
8996
8997Semantics:
8998""""""""""
8999
9000The block of memory pointed to by ``tramp`` is filled with target
9001dependent code, turning it into a function. Then ``tramp`` needs to be
9002passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
9003be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
9004function's signature is the same as that of ``func`` with any arguments
9005marked with the ``nest`` attribute removed. At most one such ``nest``
9006argument is allowed, and it must be of pointer type. Calling the new
9007function is equivalent to calling ``func`` with the same argument list,
9008but with ``nval`` used for the missing ``nest`` argument. If, after
9009calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
9010modified, then the effect of any later call to the returned function
9011pointer is undefined.
9012
9013.. _int_at:
9014
9015'``llvm.adjust.trampoline``' Intrinsic
9016^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9017
9018Syntax:
9019"""""""
9020
9021::
9022
9023 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
9024
9025Overview:
9026"""""""""
9027
9028This performs any required machine-specific adjustment to the address of
9029a trampoline (passed as ``tramp``).
9030
9031Arguments:
9032""""""""""
9033
9034``tramp`` must point to a block of memory which already has trampoline
9035code filled in by a previous call to
9036:ref:`llvm.init.trampoline <int_it>`.
9037
9038Semantics:
9039""""""""""
9040
9041On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009042different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00009043intrinsic returns the executable address corresponding to ``tramp``
9044after performing the required machine specific adjustments. The pointer
9045returned can then be :ref:`bitcast and executed <int_trampoline>`.
9046
9047Memory Use Markers
9048------------------
9049
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009050This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00009051memory objects and ranges where variables are immutable.
9052
Reid Klecknera534a382013-12-19 02:14:12 +00009053.. _int_lifestart:
9054
Sean Silvab084af42012-12-07 10:36:55 +00009055'``llvm.lifetime.start``' Intrinsic
9056^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9057
9058Syntax:
9059"""""""
9060
9061::
9062
9063 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
9064
9065Overview:
9066"""""""""
9067
9068The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
9069object's lifetime.
9070
9071Arguments:
9072""""""""""
9073
9074The first argument is a constant integer representing the size of the
9075object, or -1 if it is variable sized. The second argument is a pointer
9076to the object.
9077
9078Semantics:
9079""""""""""
9080
9081This intrinsic indicates that before this point in the code, the value
9082of the memory pointed to by ``ptr`` is dead. This means that it is known
9083to never be used and has an undefined value. A load from the pointer
9084that precedes this intrinsic can be replaced with ``'undef'``.
9085
Reid Klecknera534a382013-12-19 02:14:12 +00009086.. _int_lifeend:
9087
Sean Silvab084af42012-12-07 10:36:55 +00009088'``llvm.lifetime.end``' Intrinsic
9089^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9090
9091Syntax:
9092"""""""
9093
9094::
9095
9096 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
9097
9098Overview:
9099"""""""""
9100
9101The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
9102object's lifetime.
9103
9104Arguments:
9105""""""""""
9106
9107The first argument is a constant integer representing the size of the
9108object, or -1 if it is variable sized. The second argument is a pointer
9109to the object.
9110
9111Semantics:
9112""""""""""
9113
9114This intrinsic indicates that after this point in the code, the value of
9115the memory pointed to by ``ptr`` is dead. This means that it is known to
9116never be used and has an undefined value. Any stores into the memory
9117object following this intrinsic may be removed as dead.
9118
9119'``llvm.invariant.start``' Intrinsic
9120^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9121
9122Syntax:
9123"""""""
9124
9125::
9126
9127 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9128
9129Overview:
9130"""""""""
9131
9132The '``llvm.invariant.start``' intrinsic specifies that the contents of
9133a memory object will not change.
9134
9135Arguments:
9136""""""""""
9137
9138The first argument is a constant integer representing the size of the
9139object, or -1 if it is variable sized. The second argument is a pointer
9140to the object.
9141
9142Semantics:
9143""""""""""
9144
9145This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9146the return value, the referenced memory location is constant and
9147unchanging.
9148
9149'``llvm.invariant.end``' Intrinsic
9150^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9151
9152Syntax:
9153"""""""
9154
9155::
9156
9157 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9158
9159Overview:
9160"""""""""
9161
9162The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9163memory object are mutable.
9164
9165Arguments:
9166""""""""""
9167
9168The first argument is the matching ``llvm.invariant.start`` intrinsic.
9169The second argument is a constant integer representing the size of the
9170object, or -1 if it is variable sized and the third argument is a
9171pointer to the object.
9172
9173Semantics:
9174""""""""""
9175
9176This intrinsic indicates that the memory is mutable again.
9177
9178General Intrinsics
9179------------------
9180
9181This class of intrinsics is designed to be generic and has no specific
9182purpose.
9183
9184'``llvm.var.annotation``' Intrinsic
9185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9186
9187Syntax:
9188"""""""
9189
9190::
9191
9192 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9193
9194Overview:
9195"""""""""
9196
9197The '``llvm.var.annotation``' intrinsic.
9198
9199Arguments:
9200""""""""""
9201
9202The first argument is a pointer to a value, the second is a pointer to a
9203global string, the third is a pointer to a global string which is the
9204source file name, and the last argument is the line number.
9205
9206Semantics:
9207""""""""""
9208
9209This intrinsic allows annotation of local variables with arbitrary
9210strings. This can be useful for special purpose optimizations that want
9211to look for these annotations. These have no other defined use; they are
9212ignored by code generation and optimization.
9213
Michael Gottesman88d18832013-03-26 00:34:27 +00009214'``llvm.ptr.annotation.*``' Intrinsic
9215^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9216
9217Syntax:
9218"""""""
9219
9220This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9221pointer to an integer of any width. *NOTE* you must specify an address space for
9222the pointer. The identifier for the default address space is the integer
9223'``0``'.
9224
9225::
9226
9227 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9228 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9229 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9230 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9231 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9232
9233Overview:
9234"""""""""
9235
9236The '``llvm.ptr.annotation``' intrinsic.
9237
9238Arguments:
9239""""""""""
9240
9241The first argument is a pointer to an integer value of arbitrary bitwidth
9242(result of some expression), the second is a pointer to a global string, the
9243third is a pointer to a global string which is the source file name, and the
9244last argument is the line number. It returns the value of the first argument.
9245
9246Semantics:
9247""""""""""
9248
9249This intrinsic allows annotation of a pointer to an integer with arbitrary
9250strings. This can be useful for special purpose optimizations that want to look
9251for these annotations. These have no other defined use; they are ignored by code
9252generation and optimization.
9253
Sean Silvab084af42012-12-07 10:36:55 +00009254'``llvm.annotation.*``' Intrinsic
9255^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9256
9257Syntax:
9258"""""""
9259
9260This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9261any integer bit width.
9262
9263::
9264
9265 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9266 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9267 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9268 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9269 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9270
9271Overview:
9272"""""""""
9273
9274The '``llvm.annotation``' intrinsic.
9275
9276Arguments:
9277""""""""""
9278
9279The first argument is an integer value (result of some expression), the
9280second is a pointer to a global string, the third is a pointer to a
9281global string which is the source file name, and the last argument is
9282the line number. It returns the value of the first argument.
9283
9284Semantics:
9285""""""""""
9286
9287This intrinsic allows annotations to be put on arbitrary expressions
9288with arbitrary strings. This can be useful for special purpose
9289optimizations that want to look for these annotations. These have no
9290other defined use; they are ignored by code generation and optimization.
9291
9292'``llvm.trap``' Intrinsic
9293^^^^^^^^^^^^^^^^^^^^^^^^^
9294
9295Syntax:
9296"""""""
9297
9298::
9299
9300 declare void @llvm.trap() noreturn nounwind
9301
9302Overview:
9303"""""""""
9304
9305The '``llvm.trap``' intrinsic.
9306
9307Arguments:
9308""""""""""
9309
9310None.
9311
9312Semantics:
9313""""""""""
9314
9315This intrinsic is lowered to the target dependent trap instruction. If
9316the target does not have a trap instruction, this intrinsic will be
9317lowered to a call of the ``abort()`` function.
9318
9319'``llvm.debugtrap``' Intrinsic
9320^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9321
9322Syntax:
9323"""""""
9324
9325::
9326
9327 declare void @llvm.debugtrap() nounwind
9328
9329Overview:
9330"""""""""
9331
9332The '``llvm.debugtrap``' intrinsic.
9333
9334Arguments:
9335""""""""""
9336
9337None.
9338
9339Semantics:
9340""""""""""
9341
9342This intrinsic is lowered to code which is intended to cause an
9343execution trap with the intention of requesting the attention of a
9344debugger.
9345
9346'``llvm.stackprotector``' Intrinsic
9347^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9348
9349Syntax:
9350"""""""
9351
9352::
9353
9354 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9355
9356Overview:
9357"""""""""
9358
9359The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9360onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9361is placed on the stack before local variables.
9362
9363Arguments:
9364""""""""""
9365
9366The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9367The first argument is the value loaded from the stack guard
9368``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9369enough space to hold the value of the guard.
9370
9371Semantics:
9372""""""""""
9373
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009374This intrinsic causes the prologue/epilogue inserter to force the position of
9375the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9376to ensure that if a local variable on the stack is overwritten, it will destroy
9377the value of the guard. When the function exits, the guard on the stack is
9378checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9379different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9380calling the ``__stack_chk_fail()`` function.
9381
9382'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009383^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009384
9385Syntax:
9386"""""""
9387
9388::
9389
9390 declare void @llvm.stackprotectorcheck(i8** <guard>)
9391
9392Overview:
9393"""""""""
9394
9395The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009396created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009397``__stack_chk_fail()`` function.
9398
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009399Arguments:
9400""""""""""
9401
9402The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9403the variable ``@__stack_chk_guard``.
9404
9405Semantics:
9406""""""""""
9407
9408This intrinsic is provided to perform the stack protector check by comparing
9409``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9410values do not match call the ``__stack_chk_fail()`` function.
9411
9412The reason to provide this as an IR level intrinsic instead of implementing it
9413via other IR operations is that in order to perform this operation at the IR
9414level without an intrinsic, one would need to create additional basic blocks to
9415handle the success/failure cases. This makes it difficult to stop the stack
9416protector check from disrupting sibling tail calls in Codegen. With this
9417intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009418codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009419
Sean Silvab084af42012-12-07 10:36:55 +00009420'``llvm.objectsize``' Intrinsic
9421^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9422
9423Syntax:
9424"""""""
9425
9426::
9427
9428 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9429 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9430
9431Overview:
9432"""""""""
9433
9434The ``llvm.objectsize`` intrinsic is designed to provide information to
9435the optimizers to determine at compile time whether a) an operation
9436(like memcpy) will overflow a buffer that corresponds to an object, or
9437b) that a runtime check for overflow isn't necessary. An object in this
9438context means an allocation of a specific class, structure, array, or
9439other object.
9440
9441Arguments:
9442""""""""""
9443
9444The ``llvm.objectsize`` intrinsic takes two arguments. The first
9445argument is a pointer to or into the ``object``. The second argument is
9446a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9447or -1 (if false) when the object size is unknown. The second argument
9448only accepts constants.
9449
9450Semantics:
9451""""""""""
9452
9453The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9454the size of the object concerned. If the size cannot be determined at
9455compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9456on the ``min`` argument).
9457
9458'``llvm.expect``' Intrinsic
9459^^^^^^^^^^^^^^^^^^^^^^^^^^^
9460
9461Syntax:
9462"""""""
9463
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009464This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9465integer bit width.
9466
Sean Silvab084af42012-12-07 10:36:55 +00009467::
9468
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009469 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009470 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9471 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9472
9473Overview:
9474"""""""""
9475
9476The ``llvm.expect`` intrinsic provides information about expected (the
9477most probable) value of ``val``, which can be used by optimizers.
9478
9479Arguments:
9480""""""""""
9481
9482The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9483a value. The second argument is an expected value, this needs to be a
9484constant value, variables are not allowed.
9485
9486Semantics:
9487""""""""""
9488
9489This intrinsic is lowered to the ``val``.
9490
Hal Finkel93046912014-07-25 21:13:35 +00009491'``llvm.assume``' Intrinsic
9492^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9493
9494Syntax:
9495"""""""
9496
9497::
9498
9499 declare void @llvm.assume(i1 %cond)
9500
9501Overview:
9502"""""""""
9503
9504The ``llvm.assume`` allows the optimizer to assume that the provided
9505condition is true. This information can then be used in simplifying other parts
9506of the code.
9507
9508Arguments:
9509""""""""""
9510
9511The condition which the optimizer may assume is always true.
9512
9513Semantics:
9514""""""""""
9515
9516The intrinsic allows the optimizer to assume that the provided condition is
9517always true whenever the control flow reaches the intrinsic call. No code is
9518generated for this intrinsic, and instructions that contribute only to the
9519provided condition are not used for code generation. If the condition is
9520violated during execution, the behavior is undefined.
9521
9522Please note that optimizer might limit the transformations performed on values
9523used by the ``llvm.assume`` intrinsic in order to preserve the instructions
9524only used to form the intrinsic's input argument. This might prove undesirable
9525if the extra information provided by the ``llvm.assume`` intrinsic does cause
9526sufficient overall improvement in code quality. For this reason,
9527``llvm.assume`` should not be used to document basic mathematical invariants
9528that the optimizer can otherwise deduce or facts that are of little use to the
9529optimizer.
9530
Sean Silvab084af42012-12-07 10:36:55 +00009531'``llvm.donothing``' Intrinsic
9532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9533
9534Syntax:
9535"""""""
9536
9537::
9538
9539 declare void @llvm.donothing() nounwind readnone
9540
9541Overview:
9542"""""""""
9543
9544The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
9545only intrinsic that can be called with an invoke instruction.
9546
9547Arguments:
9548""""""""""
9549
9550None.
9551
9552Semantics:
9553""""""""""
9554
9555This intrinsic does nothing, and it's removed by optimizers and ignored
9556by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009557
9558Stack Map Intrinsics
9559--------------------
9560
9561LLVM provides experimental intrinsics to support runtime patching
9562mechanisms commonly desired in dynamic language JITs. These intrinsics
9563are described in :doc:`StackMaps`.