blob: 381fed5c6d3debcc1cdc02f0544632b25763521e [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
Eric Christopher6c7e8a02009-12-05 02:46:03 +00008 <meta name="description"
Reid Spencer3921c742004-08-26 20:44:00 +00009 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
NAKAMURA Takumi05d02652011-04-18 23:59:50 +000015<h1>LLVM Language Reference Manual</h1>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Bill Wendling3d10a5a2009-07-20 01:03:30 +000023 <li><a href="#linkage">Linkage Types</a>
24 <ol>
Bill Wendling987e7eb2009-07-20 02:41:50 +000025 <li><a href="#linkage_private">'<tt>private</tt>' Linkage</a></li>
26 <li><a href="#linkage_linker_private">'<tt>linker_private</tt>' Linkage</a></li>
Bill Wendling5e721d72010-07-01 21:55:59 +000027 <li><a href="#linkage_linker_private_weak">'<tt>linker_private_weak</tt>' Linkage</a></li>
Bill Wendling55ae5152010-08-20 22:05:50 +000028 <li><a href="#linkage_linker_private_weak_def_auto">'<tt>linker_private_weak_def_auto</tt>' Linkage</a></li>
Bill Wendling987e7eb2009-07-20 02:41:50 +000029 <li><a href="#linkage_internal">'<tt>internal</tt>' Linkage</a></li>
30 <li><a href="#linkage_available_externally">'<tt>available_externally</tt>' Linkage</a></li>
31 <li><a href="#linkage_linkonce">'<tt>linkonce</tt>' Linkage</a></li>
32 <li><a href="#linkage_common">'<tt>common</tt>' Linkage</a></li>
33 <li><a href="#linkage_weak">'<tt>weak</tt>' Linkage</a></li>
34 <li><a href="#linkage_appending">'<tt>appending</tt>' Linkage</a></li>
35 <li><a href="#linkage_externweak">'<tt>extern_weak</tt>' Linkage</a></li>
Chris Lattner5a2d8752009-10-10 18:26:06 +000036 <li><a href="#linkage_linkonce_odr">'<tt>linkonce_odr</tt>' Linkage</a></li>
Bill Wendling987e7eb2009-07-20 02:41:50 +000037 <li><a href="#linkage_weak">'<tt>weak_odr</tt>' Linkage</a></li>
38 <li><a href="#linkage_external">'<tt>externally visible</tt>' Linkage</a></li>
39 <li><a href="#linkage_dllimport">'<tt>dllimport</tt>' Linkage</a></li>
40 <li><a href="#linkage_dllexport">'<tt>dllexport</tt>' Linkage</a></li>
Bill Wendling3d10a5a2009-07-20 01:03:30 +000041 </ol>
42 </li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000043 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnere7886e42009-01-11 20:53:49 +000044 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000045 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000046 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000047 <li><a href="#aliasstructure">Aliases</a></li>
Devang Patelcd1fd252010-01-11 19:35:55 +000048 <li><a href="#namedmetadatastructure">Named Metadata</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000049 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000050 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000051 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000052 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000053 <li><a href="#datalayout">Data Layout</a></li>
Dan Gohman556ca272009-07-27 18:07:55 +000054 <li><a href="#pointeraliasing">Pointer Aliasing Rules</a></li>
Jeffrey Yasskin93e066d2010-04-26 21:21:24 +000055 <li><a href="#volatile">Volatile Memory Accesses</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000056 </ol>
57 </li>
Chris Lattner00950542001-06-06 20:29:01 +000058 <li><a href="#typesystem">Type System</a>
59 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000060 <li><a href="#t_classifications">Type Classifications</a></li>
Eric Christopher6c7e8a02009-12-05 02:46:03 +000061 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000062 <ol>
Nick Lewyckyec38da42009-09-27 00:45:11 +000063 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner4f69f462008-01-04 04:32:38 +000064 <li><a href="#t_floating">Floating Point Types</a></li>
Dale Johannesen21fe99b2010-10-01 00:48:59 +000065 <li><a href="#t_x86mmx">X86mmx Type</a></li>
Chris Lattner4f69f462008-01-04 04:32:38 +000066 <li><a href="#t_void">Void Type</a></li>
67 <li><a href="#t_label">Label Type</a></li>
Nick Lewycky7a0370f2009-05-30 05:06:04 +000068 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000069 </ol>
70 </li>
Chris Lattner00950542001-06-06 20:29:01 +000071 <li><a href="#t_derived">Derived Types</a>
72 <ol>
Chris Lattnerfdfeb692010-02-12 20:49:41 +000073 <li><a href="#t_aggregate">Aggregate Types</a>
74 <ol>
75 <li><a href="#t_array">Array Type</a></li>
76 <li><a href="#t_struct">Structure Type</a></li>
77 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Chris Lattnerfdfeb692010-02-12 20:49:41 +000078 <li><a href="#t_vector">Vector Type</a></li>
79 </ol>
80 </li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000081 <li><a href="#t_function">Function Type</a></li>
82 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000083 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000084 </ol>
85 </li>
Chris Lattner242d61d2009-02-02 07:32:36 +000086 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000087 </ol>
88 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000089 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000090 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000091 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner70882792009-02-28 18:32:25 +000092 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000093 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
94 <li><a href="#undefvalues">Undefined Values</a></li>
Dan Gohmanfff6c532010-04-22 23:14:21 +000095 <li><a href="#trapvalues">Trap Values</a></li>
Chris Lattnerf9d078e2009-10-27 21:19:13 +000096 <li><a href="#blockaddress">Addresses of Basic Blocks</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000097 <li><a href="#constantexprs">Constant Expressions</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000098 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000099 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +0000100 <li><a href="#othervalues">Other Values</a>
101 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000102 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Devang Patelcd1fd252010-01-11 19:35:55 +0000103 <li><a href="#metadata">Metadata Nodes and Metadata Strings</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +0000104 </ol>
105 </li>
Chris Lattner857755c2009-07-20 05:55:19 +0000106 <li><a href="#intrinsic_globals">Intrinsic Global Variables</a>
107 <ol>
108 <li><a href="#intg_used">The '<tt>llvm.used</tt>' Global Variable</a></li>
Chris Lattner401e10c2009-07-20 06:14:25 +0000109 <li><a href="#intg_compiler_used">The '<tt>llvm.compiler.used</tt>'
110 Global Variable</a></li>
Chris Lattner857755c2009-07-20 05:55:19 +0000111 <li><a href="#intg_global_ctors">The '<tt>llvm.global_ctors</tt>'
112 Global Variable</a></li>
113 <li><a href="#intg_global_dtors">The '<tt>llvm.global_dtors</tt>'
114 Global Variable</a></li>
115 </ol>
116 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000117 <li><a href="#instref">Instruction Reference</a>
118 <ol>
119 <li><a href="#terminators">Terminator Instructions</a>
120 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000121 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
122 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000123 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
Chris Lattnerab21db72009-10-28 00:19:10 +0000124 <li><a href="#i_indirectbr">'<tt>indirectbr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000125 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000126 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +0000127 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000128 </ol>
129 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000130 <li><a href="#binaryops">Binary Operations</a>
131 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000132 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000133 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000134 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000135 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000136 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +0000137 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +0000138 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
139 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
140 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +0000141 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
142 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
143 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000144 </ol>
145 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000146 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
147 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000148 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
149 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
150 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000151 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000152 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000153 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000154 </ol>
155 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000156 <li><a href="#vectorops">Vector Operations</a>
157 <ol>
158 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
159 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
160 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000161 </ol>
162 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000163 <li><a href="#aggregateops">Aggregate Operations</a>
164 <ol>
165 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
166 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
167 </ol>
168 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000169 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000170 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000171 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000172 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
173 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
174 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000175 </ol>
176 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000177 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000178 <ol>
179 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
180 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
181 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
182 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
183 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000184 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
185 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
186 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
187 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000188 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
189 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000190 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000191 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000192 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000193 <li><a href="#otherops">Other Operations</a>
194 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000195 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
196 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000197 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000198 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000199 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000200 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000201 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000202 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000203 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000204 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000205 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000206 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000207 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
208 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000209 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
210 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
211 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000212 </ol>
213 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000214 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
215 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000216 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
217 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
218 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000219 </ol>
220 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000221 <li><a href="#int_codegen">Code Generator Intrinsics</a>
222 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000223 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
224 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
225 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
226 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
227 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
228 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
Dan Gohman31f1af12010-05-26 21:56:15 +0000229 <li><a href="#int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000230 </ol>
231 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000232 <li><a href="#int_libc">Standard C Library Intrinsics</a>
233 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000234 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
235 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
236 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
237 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
238 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000239 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
240 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
241 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000242 </ol>
243 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000244 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000245 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000246 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000247 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
248 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
249 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000250 </ol>
251 </li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000252 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
253 <ol>
Bill Wendlingda01af72009-02-08 04:04:40 +0000254 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
255 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
256 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
257 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
258 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendling41b485c2009-02-08 23:00:09 +0000259 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000260 </ol>
261 </li>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +0000262 <li><a href="#int_fp16">Half Precision Floating Point Intrinsics</a>
263 <ol>
Chris Lattner82c3dc62010-03-14 23:03:31 +0000264 <li><a href="#int_convert_to_fp16">'<tt>llvm.convert.to.fp16</tt>' Intrinsic</a></li>
265 <li><a href="#int_convert_from_fp16">'<tt>llvm.convert.from.fp16</tt>' Intrinsic</a></li>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +0000266 </ol>
267 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000268 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000269 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000270 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000271 <ol>
272 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000273 </ol>
274 </li>
Bill Wendling3c44f5b2008-11-18 22:10:53 +0000275 <li><a href="#int_atomics">Atomic intrinsics</a>
276 <ol>
277 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
278 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
279 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
280 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
281 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
282 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
283 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
284 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
285 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
286 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
287 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
288 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
289 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
290 </ol>
291 </li>
Nick Lewyckycc271862009-10-13 07:03:23 +0000292 <li><a href="#int_memorymarkers">Memory Use Markers</a>
293 <ol>
294 <li><a href="#int_lifetime_start"><tt>llvm.lifetime.start</tt></a></li>
295 <li><a href="#int_lifetime_end"><tt>llvm.lifetime.end</tt></a></li>
296 <li><a href="#int_invariant_start"><tt>llvm.invariant.start</tt></a></li>
297 <li><a href="#int_invariant_end"><tt>llvm.invariant.end</tt></a></li>
298 </ol>
299 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000300 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000301 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000302 <li><a href="#int_var_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000303 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000304 <li><a href="#int_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000305 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000306 <li><a href="#int_trap">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000307 '<tt>llvm.trap</tt>' Intrinsic</a></li>
308 <li><a href="#int_stackprotector">
309 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Eric Christopher0e671492009-11-30 08:03:53 +0000310 <li><a href="#int_objectsize">
311 '<tt>llvm.objectsize</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000312 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000313 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000314 </ol>
315 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000316</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000317
318<div class="doc_author">
319 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
320 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000321</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000322
Chris Lattner00950542001-06-06 20:29:01 +0000323<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000324<h2><a name="abstract">Abstract</a></h2>
Chris Lattner261efe92003-11-25 01:02:51 +0000325<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000326
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000327<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000328
329<p>This document is a reference manual for the LLVM assembly language. LLVM is
330 a Static Single Assignment (SSA) based representation that provides type
331 safety, low-level operations, flexibility, and the capability of representing
332 'all' high-level languages cleanly. It is the common code representation
333 used throughout all phases of the LLVM compilation strategy.</p>
334
Misha Brukman9d0919f2003-11-08 01:05:38 +0000335</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000336
Chris Lattner00950542001-06-06 20:29:01 +0000337<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000338<h2><a name="introduction">Introduction</a></h2>
Chris Lattner261efe92003-11-25 01:02:51 +0000339<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000340
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000341<div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000342
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000343<p>The LLVM code representation is designed to be used in three different forms:
344 as an in-memory compiler IR, as an on-disk bitcode representation (suitable
345 for fast loading by a Just-In-Time compiler), and as a human readable
346 assembly language representation. This allows LLVM to provide a powerful
347 intermediate representation for efficient compiler transformations and
348 analysis, while providing a natural means to debug and visualize the
349 transformations. The three different forms of LLVM are all equivalent. This
350 document describes the human readable representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000351
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000352<p>The LLVM representation aims to be light-weight and low-level while being
353 expressive, typed, and extensible at the same time. It aims to be a
354 "universal IR" of sorts, by being at a low enough level that high-level ideas
355 may be cleanly mapped to it (similar to how microprocessors are "universal
356 IR's", allowing many source languages to be mapped to them). By providing
357 type information, LLVM can be used as the target of optimizations: for
358 example, through pointer analysis, it can be proven that a C automatic
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000359 variable is never accessed outside of the current function, allowing it to
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000360 be promoted to a simple SSA value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000361
Chris Lattner00950542001-06-06 20:29:01 +0000362<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000363<h4>
364 <a name="wellformed">Well-Formedness</a>
365</h4>
Chris Lattnerd7923912004-05-23 21:06:01 +0000366
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000367<div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000368
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000369<p>It is important to note that this document describes 'well formed' LLVM
370 assembly language. There is a difference between what the parser accepts and
371 what is considered 'well formed'. For example, the following instruction is
372 syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000373
Benjamin Kramer26fe25f2010-07-13 12:26:09 +0000374<pre class="doc_code">
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000375%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000376</pre>
377
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000378<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
379 LLVM infrastructure provides a verification pass that may be used to verify
380 that an LLVM module is well formed. This pass is automatically run by the
381 parser after parsing input assembly and by the optimizer before it outputs
382 bitcode. The violations pointed out by the verifier pass indicate bugs in
383 transformation passes or input to the parser.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000384
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000385</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000386
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000387</div>
388
Chris Lattnercc689392007-10-03 17:34:29 +0000389<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000390
Chris Lattner00950542001-06-06 20:29:01 +0000391<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000392<h2><a name="identifiers">Identifiers</a></h2>
Chris Lattner00950542001-06-06 20:29:01 +0000393<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000394
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000395<div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000396
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000397<p>LLVM identifiers come in two basic types: global and local. Global
398 identifiers (functions, global variables) begin with the <tt>'@'</tt>
399 character. Local identifiers (register names, types) begin with
400 the <tt>'%'</tt> character. Additionally, there are three different formats
401 for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000402
Chris Lattner00950542001-06-06 20:29:01 +0000403<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000404 <li>Named values are represented as a string of characters with their prefix.
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000405 For example, <tt>%foo</tt>, <tt>@DivisionByZero</tt>,
406 <tt>%a.really.long.identifier</tt>. The actual regular expression used is
407 '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. Identifiers which require
408 other characters in their names can be surrounded with quotes. Special
409 characters may be escaped using <tt>"\xx"</tt> where <tt>xx</tt> is the
410 ASCII code for the character in hexadecimal. In this way, any character
411 can be used in a name value, even quotes themselves.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000412
Reid Spencer2c452282007-08-07 14:34:28 +0000413 <li>Unnamed values are represented as an unsigned numeric value with their
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000414 prefix. For example, <tt>%12</tt>, <tt>@2</tt>, <tt>%44</tt>.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000415
Reid Spencercc16dc32004-12-09 18:02:53 +0000416 <li>Constants, which are described in a <a href="#constants">section about
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000417 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000418</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000419
Reid Spencer2c452282007-08-07 14:34:28 +0000420<p>LLVM requires that values start with a prefix for two reasons: Compilers
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000421 don't need to worry about name clashes with reserved words, and the set of
422 reserved words may be expanded in the future without penalty. Additionally,
423 unnamed identifiers allow a compiler to quickly come up with a temporary
424 variable without having to avoid symbol table conflicts.</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000425
Chris Lattner261efe92003-11-25 01:02:51 +0000426<p>Reserved words in LLVM are very similar to reserved words in other
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000427 languages. There are keywords for different opcodes
428 ('<tt><a href="#i_add">add</a></tt>',
429 '<tt><a href="#i_bitcast">bitcast</a></tt>',
430 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names
431 ('<tt><a href="#t_void">void</a></tt>',
432 '<tt><a href="#t_primitive">i32</a></tt>', etc...), and others. These
433 reserved words cannot conflict with variable names, because none of them
434 start with a prefix character (<tt>'%'</tt> or <tt>'@'</tt>).</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000435
436<p>Here is an example of LLVM code to multiply the integer variable
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000437 '<tt>%X</tt>' by 8:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000438
Misha Brukman9d0919f2003-11-08 01:05:38 +0000439<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000440
Benjamin Kramer26fe25f2010-07-13 12:26:09 +0000441<pre class="doc_code">
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000442%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000443</pre>
444
Misha Brukman9d0919f2003-11-08 01:05:38 +0000445<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000446
Benjamin Kramer26fe25f2010-07-13 12:26:09 +0000447<pre class="doc_code">
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000448%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000449</pre>
450
Misha Brukman9d0919f2003-11-08 01:05:38 +0000451<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000452
Benjamin Kramer26fe25f2010-07-13 12:26:09 +0000453<pre class="doc_code">
Gabor Greifec58f752009-10-28 13:05:07 +0000454%0 = <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
455%1 = <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000456%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000457</pre>
458
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000459<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
460 lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000461
Chris Lattner00950542001-06-06 20:29:01 +0000462<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000463 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000464 line.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000465
466 <li>Unnamed temporaries are created when the result of a computation is not
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000467 assigned to a named value.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000468
Misha Brukman9d0919f2003-11-08 01:05:38 +0000469 <li>Unnamed temporaries are numbered sequentially</li>
470</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000471
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000472<p>It also shows a convention that we follow in this document. When
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000473 demonstrating instructions, we will follow an instruction with a comment that
474 defines the type and name of value produced. Comments are shown in italic
475 text.</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000476
Misha Brukman9d0919f2003-11-08 01:05:38 +0000477</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000478
479<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000480<h2><a name="highlevel">High Level Structure</a></h2>
Chris Lattnerfa730212004-12-09 16:11:40 +0000481<!-- *********************************************************************** -->
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000482<div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000483<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000484<h3>
485 <a name="modulestructure">Module Structure</a>
486</h3>
Chris Lattnerfa730212004-12-09 16:11:40 +0000487
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000488<div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000489
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000490<p>LLVM programs are composed of "Module"s, each of which is a translation unit
491 of the input programs. Each module consists of functions, global variables,
492 and symbol table entries. Modules may be combined together with the LLVM
493 linker, which merges function (and global variable) definitions, resolves
494 forward declarations, and merges symbol table entries. Here is an example of
495 the "hello world" module:</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000496
Benjamin Kramer26fe25f2010-07-13 12:26:09 +0000497<pre class="doc_code">
Chris Lattner63e4ccb2010-08-17 17:13:42 +0000498<i>; Declare the string constant as a global constant.</i>&nbsp;
Nick Lewyckydb9cd762011-01-29 01:09:53 +0000499<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a>&nbsp;<a href="#globalvars">constant</a>&nbsp;<a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>&nbsp;
Chris Lattnerfa730212004-12-09 16:11:40 +0000500
Chris Lattner63e4ccb2010-08-17 17:13:42 +0000501<i>; External declaration of the puts function</i>&nbsp;
502<a href="#functionstructure">declare</a> i32 @puts(i8*) <i>; i32 (i8*)* </i>&nbsp;
Chris Lattnerfa730212004-12-09 16:11:40 +0000503
504<i>; Definition of main function</i>
Chris Lattner63e4ccb2010-08-17 17:13:42 +0000505define i32 @main() { <i>; i32()* </i>&nbsp;
506 <i>; Convert [13 x i8]* to i8 *...</i>&nbsp;
507 %cast210 = <a href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8*</i>&nbsp;
Chris Lattnerfa730212004-12-09 16:11:40 +0000508
Chris Lattner63e4ccb2010-08-17 17:13:42 +0000509 <i>; Call puts function to write out the string to stdout.</i>&nbsp;
510 <a href="#i_call">call</a> i32 @puts(i8* %cast210) <i>; i32</i>&nbsp;
511 <a href="#i_ret">ret</a> i32 0&nbsp;
512}
Devang Patelcd1fd252010-01-11 19:35:55 +0000513
514<i>; Named metadata</i>
515!1 = metadata !{i32 41}
516!foo = !{!1, null}
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000517</pre>
Chris Lattnerfa730212004-12-09 16:11:40 +0000518
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000519<p>This example is made up of a <a href="#globalvars">global variable</a> named
Devang Patelcd1fd252010-01-11 19:35:55 +0000520 "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000521 a <a href="#functionstructure">function definition</a> for
Devang Patelcd1fd252010-01-11 19:35:55 +0000522 "<tt>main</tt>" and <a href="#namedmetadatastructure">named metadata</a>
523 "<tt>foo"</tt>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000524
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000525<p>In general, a module is made up of a list of global values, where both
526 functions and global variables are global values. Global values are
527 represented by a pointer to a memory location (in this case, a pointer to an
528 array of char, and a pointer to a function), and have one of the
529 following <a href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000530
Chris Lattnere5d947b2004-12-09 16:36:40 +0000531</div>
532
533<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000534<h3>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000535 <a name="linkage">Linkage Types</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000536</h3>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000537
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000538<div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000539
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000540<p>All Global Variables and Functions have one of the following types of
541 linkage:</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000542
543<dl>
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000544 <dt><tt><b><a name="linkage_private">private</a></b></tt></dt>
Bill Wendling5e721d72010-07-01 21:55:59 +0000545 <dd>Global values with "<tt>private</tt>" linkage are only directly accessible
546 by objects in the current module. In particular, linking code into a
547 module with an private global value may cause the private to be renamed as
548 necessary to avoid collisions. Because the symbol is private to the
549 module, all references can be updated. This doesn't show up in any symbol
550 table in the object file.</dd>
Rafael Espindolabb46f522009-01-15 20:18:42 +0000551
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000552 <dt><tt><b><a name="linkage_linker_private">linker_private</a></b></tt></dt>
Bill Wendling5e721d72010-07-01 21:55:59 +0000553 <dd>Similar to <tt>private</tt>, but the symbol is passed through the
554 assembler and evaluated by the linker. Unlike normal strong symbols, they
555 are removed by the linker from the final linked image (executable or
556 dynamic library).</dd>
557
558 <dt><tt><b><a name="linkage_linker_private_weak">linker_private_weak</a></b></tt></dt>
559 <dd>Similar to "<tt>linker_private</tt>", but the symbol is weak. Note that
560 <tt>linker_private_weak</tt> symbols are subject to coalescing by the
561 linker. The symbols are removed by the linker from the final linked image
562 (executable or dynamic library).</dd>
Bill Wendling3d10a5a2009-07-20 01:03:30 +0000563
Bill Wendling55ae5152010-08-20 22:05:50 +0000564 <dt><tt><b><a name="linkage_linker_private_weak_def_auto">linker_private_weak_def_auto</a></b></tt></dt>
565 <dd>Similar to "<tt>linker_private_weak</tt>", but it's known that the address
566 of the object is not taken. For instance, functions that had an inline
567 definition, but the compiler decided not to inline it. Note,
568 unlike <tt>linker_private</tt> and <tt>linker_private_weak</tt>,
569 <tt>linker_private_weak_def_auto</tt> may have only <tt>default</tt>
570 visibility. The symbols are removed by the linker from the final linked
571 image (executable or dynamic library).</dd>
572
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000573 <dt><tt><b><a name="linkage_internal">internal</a></b></tt></dt>
Bill Wendling07d31772010-06-29 22:34:52 +0000574 <dd>Similar to private, but the value shows as a local symbol
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000575 (<tt>STB_LOCAL</tt> in the case of ELF) in the object file. This
576 corresponds to the notion of the '<tt>static</tt>' keyword in C.</dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000577
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000578 <dt><tt><b><a name="linkage_available_externally">available_externally</a></b></tt></dt>
Chris Lattner266c7bb2009-04-13 05:44:34 +0000579 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000580 into the object file corresponding to the LLVM module. They exist to
581 allow inlining and other optimizations to take place given knowledge of
582 the definition of the global, which is known to be somewhere outside the
583 module. Globals with <tt>available_externally</tt> linkage are allowed to
584 be discarded at will, and are otherwise the same as <tt>linkonce_odr</tt>.
585 This linkage type is only allowed on definitions, not declarations.</dd>
Chris Lattner266c7bb2009-04-13 05:44:34 +0000586
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000587 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt></dt>
Chris Lattner4887bd82007-01-14 06:51:48 +0000588 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
Chris Lattner873187c2010-01-09 19:15:14 +0000589 the same name when linkage occurs. This can be used to implement
590 some forms of inline functions, templates, or other code which must be
591 generated in each translation unit that uses it, but where the body may
592 be overridden with a more definitive definition later. Unreferenced
593 <tt>linkonce</tt> globals are allowed to be discarded. Note that
594 <tt>linkonce</tt> linkage does not actually allow the optimizer to
595 inline the body of this function into callers because it doesn't know if
596 this definition of the function is the definitive definition within the
597 program or whether it will be overridden by a stronger definition.
598 To enable inlining and other optimizations, use "<tt>linkonce_odr</tt>"
599 linkage.</dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000600
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000601 <dt><tt><b><a name="linkage_weak">weak</a></b></tt></dt>
Chris Lattner26d054d2009-08-05 05:21:07 +0000602 <dd>"<tt>weak</tt>" linkage has the same merging semantics as
603 <tt>linkonce</tt> linkage, except that unreferenced globals with
604 <tt>weak</tt> linkage may not be discarded. This is used for globals that
605 are declared "weak" in C source code.</dd>
606
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000607 <dt><tt><b><a name="linkage_common">common</a></b></tt></dt>
Chris Lattner26d054d2009-08-05 05:21:07 +0000608 <dd>"<tt>common</tt>" linkage is most similar to "<tt>weak</tt>" linkage, but
609 they are used for tentative definitions in C, such as "<tt>int X;</tt>" at
610 global scope.
611 Symbols with "<tt>common</tt>" linkage are merged in the same way as
612 <tt>weak symbols</tt>, and they may not be deleted if unreferenced.
Chris Lattnercd81f5d2009-08-05 05:41:44 +0000613 <tt>common</tt> symbols may not have an explicit section,
Eric Christopher6c7e8a02009-12-05 02:46:03 +0000614 must have a zero initializer, and may not be marked '<a
Chris Lattnercd81f5d2009-08-05 05:41:44 +0000615 href="#globalvars"><tt>constant</tt></a>'. Functions and aliases may not
616 have common linkage.</dd>
Chris Lattner26d054d2009-08-05 05:21:07 +0000617
Chris Lattnere5d947b2004-12-09 16:36:40 +0000618
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000619 <dt><tt><b><a name="linkage_appending">appending</a></b></tt></dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000620 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000621 pointer to array type. When two global variables with appending linkage
622 are linked together, the two global arrays are appended together. This is
623 the LLVM, typesafe, equivalent of having the system linker append together
624 "sections" with identical names when .o files are linked.</dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000625
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000626 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000627 <dd>The semantics of this linkage follow the ELF object file model: the symbol
628 is weak until linked, if not linked, the symbol becomes null instead of
629 being an undefined reference.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000630
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000631 <dt><tt><b><a name="linkage_linkonce_odr">linkonce_odr</a></b></tt></dt>
632 <dt><tt><b><a name="linkage_weak_odr">weak_odr</a></b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000633 <dd>Some languages allow differing globals to be merged, such as two functions
634 with different semantics. Other languages, such as <tt>C++</tt>, ensure
Bill Wendling5e721d72010-07-01 21:55:59 +0000635 that only equivalent globals are ever merged (the "one definition rule"
636 &mdash; "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000637 and <tt>weak_odr</tt> linkage types to indicate that the global will only
638 be merged with equivalent globals. These linkage types are otherwise the
639 same as their non-<tt>odr</tt> versions.</dd>
Duncan Sands667d4b82009-03-07 15:45:40 +0000640
Chris Lattnerfa730212004-12-09 16:11:40 +0000641 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000642 <dd>If none of the above identifiers are used, the global is externally
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000643 visible, meaning that it participates in linkage and can be used to
644 resolve external symbol references.</dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000645</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000646
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000647<p>The next two types of linkage are targeted for Microsoft Windows platform
648 only. They are designed to support importing (exporting) symbols from (to)
649 DLLs (Dynamic Link Libraries).</p>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000650
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000651<dl>
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000652 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt></dt>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000653 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000654 or variable via a global pointer to a pointer that is set up by the DLL
655 exporting the symbol. On Microsoft Windows targets, the pointer name is
656 formed by combining <code>__imp_</code> and the function or variable
657 name.</dd>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000658
Bill Wendlingf82d40a2009-11-02 00:24:16 +0000659 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt></dt>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000660 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000661 pointer to a pointer in a DLL, so that it can be referenced with the
662 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
663 name is formed by combining <code>__imp_</code> and the function or
664 variable name.</dd>
Chris Lattnerfa730212004-12-09 16:11:40 +0000665</dl>
666
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000667<p>For example, since the "<tt>.LC0</tt>" variable is defined to be internal, if
668 another module defined a "<tt>.LC0</tt>" variable and was linked with this
669 one, one of the two would be renamed, preventing a collision. Since
670 "<tt>main</tt>" and "<tt>puts</tt>" are external (i.e., lacking any linkage
671 declarations), they are accessible outside of the current module.</p>
672
673<p>It is illegal for a function <i>declaration</i> to have any linkage type
674 other than "externally visible", <tt>dllimport</tt>
675 or <tt>extern_weak</tt>.</p>
676
Duncan Sands667d4b82009-03-07 15:45:40 +0000677<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000678 or <tt>weak_odr</tt> linkages.</p>
679
Chris Lattnerfa730212004-12-09 16:11:40 +0000680</div>
681
682<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000683<h3>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000684 <a name="callingconv">Calling Conventions</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000685</h3>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000686
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000687<div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000688
689<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000690 and <a href="#i_invoke">invokes</a> can all have an optional calling
691 convention specified for the call. The calling convention of any pair of
692 dynamic caller/callee must match, or the behavior of the program is
693 undefined. The following calling conventions are supported by LLVM, and more
694 may be added in the future:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000695
696<dl>
697 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000698 <dd>This calling convention (the default if no other calling convention is
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000699 specified) matches the target C calling conventions. This calling
700 convention supports varargs function calls and tolerates some mismatch in
701 the declared prototype and implemented declaration of the function (as
702 does normal C).</dd>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000703
704 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000705 <dd>This calling convention attempts to make calls as fast as possible
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000706 (e.g. by passing things in registers). This calling convention allows the
707 target to use whatever tricks it wants to produce fast code for the
708 target, without having to conform to an externally specified ABI
Jeffrey Yasskin95fa80a2010-01-09 19:44:16 +0000709 (Application Binary Interface).
710 <a href="CodeGenerator.html#tailcallopt">Tail calls can only be optimized
Chris Lattner29689432010-03-11 00:22:57 +0000711 when this or the GHC convention is used.</a> This calling convention
712 does not support varargs and requires the prototype of all callees to
713 exactly match the prototype of the function definition.</dd>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000714
715 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000716 <dd>This calling convention attempts to make code in the caller as efficient
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000717 as possible under the assumption that the call is not commonly executed.
718 As such, these calls often preserve all registers so that the call does
719 not break any live ranges in the caller side. This calling convention
720 does not support varargs and requires the prototype of all callees to
721 exactly match the prototype of the function definition.</dd>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000722
Chris Lattner29689432010-03-11 00:22:57 +0000723 <dt><b>"<tt>cc <em>10</em></tt>" - GHC convention</b>:</dt>
724 <dd>This calling convention has been implemented specifically for use by the
725 <a href="http://www.haskell.org/ghc">Glasgow Haskell Compiler (GHC)</a>.
726 It passes everything in registers, going to extremes to achieve this by
727 disabling callee save registers. This calling convention should not be
728 used lightly but only for specific situations such as an alternative to
729 the <em>register pinning</em> performance technique often used when
730 implementing functional programming languages.At the moment only X86
731 supports this convention and it has the following limitations:
732 <ul>
733 <li>On <em>X86-32</em> only supports up to 4 bit type parameters. No
734 floating point types are supported.</li>
735 <li>On <em>X86-64</em> only supports up to 10 bit type parameters and
736 6 floating point parameters.</li>
737 </ul>
738 This calling convention supports
739 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> but
740 requires both the caller and callee are using it.
741 </dd>
742
Chris Lattnercfe6b372005-05-07 01:46:40 +0000743 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000744 <dd>Any calling convention may be specified by number, allowing
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000745 target-specific calling conventions to be used. Target specific calling
746 conventions start at 64.</dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000747</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000748
749<p>More calling conventions can be added/defined on an as-needed basis, to
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000750 support Pascal conventions or any other well-known target-independent
751 convention.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000752
753</div>
754
755<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000756<h3>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000757 <a name="visibility">Visibility Styles</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000758</h3>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000759
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000760<div>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000761
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000762<p>All Global Variables and Functions have one of the following visibility
763 styles:</p>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000764
765<dl>
766 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +0000767 <dd>On targets that use the ELF object file format, default visibility means
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000768 that the declaration is visible to other modules and, in shared libraries,
769 means that the declared entity may be overridden. On Darwin, default
770 visibility means that the declaration is visible to other modules. Default
771 visibility corresponds to "external linkage" in the language.</dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000772
773 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000774 <dd>Two declarations of an object with hidden visibility refer to the same
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000775 object if they are in the same shared object. Usually, hidden visibility
776 indicates that the symbol will not be placed into the dynamic symbol
777 table, so no other module (executable or shared library) can reference it
778 directly.</dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000779
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000780 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000781 <dd>On ELF, protected visibility indicates that the symbol will be placed in
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000782 the dynamic symbol table, but that references within the defining module
783 will bind to the local symbol. That is, the symbol cannot be overridden by
784 another module.</dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000785</dl>
786
787</div>
788
789<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000790<h3>
Chris Lattnere7886e42009-01-11 20:53:49 +0000791 <a name="namedtypes">Named Types</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000792</h3>
Chris Lattnere7886e42009-01-11 20:53:49 +0000793
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000794<div>
Chris Lattnere7886e42009-01-11 20:53:49 +0000795
796<p>LLVM IR allows you to specify name aliases for certain types. This can make
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000797 it easier to read the IR and make the IR more condensed (particularly when
798 recursive types are involved). An example of a name specification is:</p>
Chris Lattnere7886e42009-01-11 20:53:49 +0000799
Benjamin Kramer26fe25f2010-07-13 12:26:09 +0000800<pre class="doc_code">
Chris Lattnere7886e42009-01-11 20:53:49 +0000801%mytype = type { %mytype*, i32 }
802</pre>
Chris Lattnere7886e42009-01-11 20:53:49 +0000803
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000804<p>You may give a name to any <a href="#typesystem">type</a> except
Chris Lattnerdc65f222010-08-17 23:26:04 +0000805 "<a href="#t_void">void</a>". Type name aliases may be used anywhere a type
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000806 is expected with the syntax "%mytype".</p>
Chris Lattnere7886e42009-01-11 20:53:49 +0000807
808<p>Note that type names are aliases for the structural type that they indicate,
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000809 and that you can therefore specify multiple names for the same type. This
810 often leads to confusing behavior when dumping out a .ll file. Since LLVM IR
811 uses structural typing, the name is not part of the type. When printing out
812 LLVM IR, the printer will pick <em>one name</em> to render all types of a
813 particular shape. This means that if you have code where two different
814 source types end up having the same LLVM type, that the dumper will sometimes
815 print the "wrong" or unexpected type. This is an important design point and
816 isn't going to change.</p>
Chris Lattnere7886e42009-01-11 20:53:49 +0000817
818</div>
819
Chris Lattnere7886e42009-01-11 20:53:49 +0000820<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000821<h3>
Chris Lattnerfa730212004-12-09 16:11:40 +0000822 <a name="globalvars">Global Variables</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000823</h3>
Chris Lattnerfa730212004-12-09 16:11:40 +0000824
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000825<div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000826
Chris Lattner3689a342005-02-12 19:30:21 +0000827<p>Global variables define regions of memory allocated at compilation time
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000828 instead of run-time. Global variables may optionally be initialized, may
829 have an explicit section to be placed in, and may have an optional explicit
830 alignment specified. A variable may be defined as "thread_local", which
831 means that it will not be shared by threads (each thread will have a
832 separated copy of the variable). A variable may be defined as a global
833 "constant," which indicates that the contents of the variable
834 will <b>never</b> be modified (enabling better optimization, allowing the
835 global data to be placed in the read-only section of an executable, etc).
836 Note that variables that need runtime initialization cannot be marked
837 "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000838
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000839<p>LLVM explicitly allows <em>declarations</em> of global variables to be marked
840 constant, even if the final definition of the global is not. This capability
841 can be used to enable slightly better optimization of the program, but
842 requires the language definition to guarantee that optimizations based on the
843 'constantness' are valid for the translation units that do not include the
844 definition.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000845
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000846<p>As SSA values, global variables define pointer values that are in scope
847 (i.e. they dominate) all basic blocks in the program. Global variables
848 always define a pointer to their "content" type because they describe a
849 region of memory, and all memory objects in LLVM are accessed through
850 pointers.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000851
Rafael Espindolabea46262011-01-08 16:42:36 +0000852<p>Global variables can be marked with <tt>unnamed_addr</tt> which indicates
853 that the address is not significant, only the content. Constants marked
Rafael Espindolaa5eaa862011-01-15 08:20:57 +0000854 like this can be merged with other constants if they have the same
855 initializer. Note that a constant with significant address <em>can</em>
856 be merged with a <tt>unnamed_addr</tt> constant, the result being a
857 constant whose address is significant.</p>
Rafael Espindolabea46262011-01-08 16:42:36 +0000858
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000859<p>A global variable may be declared to reside in a target-specific numbered
860 address space. For targets that support them, address spaces may affect how
861 optimizations are performed and/or what target instructions are used to
862 access the variable. The default address space is zero. The address space
863 qualifier must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000864
Chris Lattner88f6c462005-11-12 00:45:07 +0000865<p>LLVM allows an explicit section to be specified for globals. If the target
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000866 supports it, it will emit globals to the section specified.</p>
Chris Lattner88f6c462005-11-12 00:45:07 +0000867
Chris Lattnerce99fa92010-04-28 00:13:42 +0000868<p>An explicit alignment may be specified for a global, which must be a power
869 of 2. If not present, or if the alignment is set to zero, the alignment of
870 the global is set by the target to whatever it feels convenient. If an
871 explicit alignment is specified, the global is forced to have exactly that
Chris Lattner2d4b8ee2010-04-28 00:31:12 +0000872 alignment. Targets and optimizers are not allowed to over-align the global
873 if the global has an assigned section. In this case, the extra alignment
874 could be observable: for example, code could assume that the globals are
875 densely packed in their section and try to iterate over them as an array,
876 alignment padding would break this iteration.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +0000877
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000878<p>For example, the following defines a global in a numbered address space with
879 an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000880
Benjamin Kramer26fe25f2010-07-13 12:26:09 +0000881<pre class="doc_code">
Dan Gohman398873c2009-01-11 00:40:00 +0000882@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000883</pre>
884
Chris Lattnerfa730212004-12-09 16:11:40 +0000885</div>
886
887
888<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000889<h3>
Chris Lattnerfa730212004-12-09 16:11:40 +0000890 <a name="functionstructure">Functions</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000891</h3>
Chris Lattnerfa730212004-12-09 16:11:40 +0000892
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000893<div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000894
Dan Gohmanb55a1ee2010-03-01 17:41:39 +0000895<p>LLVM function definitions consist of the "<tt>define</tt>" keyword, an
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000896 optional <a href="#linkage">linkage type</a>, an optional
897 <a href="#visibility">visibility style</a>, an optional
Rafael Espindolabea46262011-01-08 16:42:36 +0000898 <a href="#callingconv">calling convention</a>,
899 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000900 <a href="#paramattrs">parameter attribute</a> for the return type, a function
901 name, a (possibly empty) argument list (each with optional
902 <a href="#paramattrs">parameter attributes</a>), optional
903 <a href="#fnattrs">function attributes</a>, an optional section, an optional
904 alignment, an optional <a href="#gc">garbage collector name</a>, an opening
905 curly brace, a list of basic blocks, and a closing curly brace.</p>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000906
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000907<p>LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
908 optional <a href="#linkage">linkage type</a>, an optional
Eric Christopher6c7e8a02009-12-05 02:46:03 +0000909 <a href="#visibility">visibility style</a>, an optional
Rafael Espindolabea46262011-01-08 16:42:36 +0000910 <a href="#callingconv">calling convention</a>,
911 an optional <tt>unnamed_addr</tt> attribute, a return type, an optional
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000912 <a href="#paramattrs">parameter attribute</a> for the return type, a function
913 name, a possibly empty list of arguments, an optional alignment, and an
914 optional <a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000915
Chris Lattnerd3eda892008-08-05 18:29:16 +0000916<p>A function definition contains a list of basic blocks, forming the CFG
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000917 (Control Flow Graph) for the function. Each basic block may optionally start
918 with a label (giving the basic block a symbol table entry), contains a list
919 of instructions, and ends with a <a href="#terminators">terminator</a>
920 instruction (such as a branch or function return).</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000921
Chris Lattner4a3c9012007-06-08 16:52:14 +0000922<p>The first basic block in a function is special in two ways: it is immediately
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000923 executed on entrance to the function, and it is not allowed to have
924 predecessor basic blocks (i.e. there can not be any branches to the entry
925 block of a function). Because the block can have no predecessors, it also
926 cannot have any <a href="#i_phi">PHI nodes</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000927
Chris Lattner88f6c462005-11-12 00:45:07 +0000928<p>LLVM allows an explicit section to be specified for functions. If the target
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000929 supports it, it will emit functions to the section specified.</p>
Chris Lattner88f6c462005-11-12 00:45:07 +0000930
Chris Lattner2cbdc452005-11-06 08:02:57 +0000931<p>An explicit alignment may be specified for a function. If not present, or if
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000932 the alignment is set to zero, the alignment of the function is set by the
933 target to whatever it feels convenient. If an explicit alignment is
934 specified, the function is forced to have at least that much alignment. All
935 alignments must be a power of 2.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +0000936
Rafael Espindolabea46262011-01-08 16:42:36 +0000937<p>If the <tt>unnamed_addr</tt> attribute is given, the address is know to not
938 be significant and two identical functions can be merged</p>.
939
Bill Wendlingc39e3e02009-07-20 02:39:26 +0000940<h5>Syntax:</h5>
Benjamin Kramer26fe25f2010-07-13 12:26:09 +0000941<pre class="doc_code">
Chris Lattner50ad45c2008-10-13 16:55:18 +0000942define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000943 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
944 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
945 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
946 [<a href="#gc">gc</a>] { ... }
947</pre>
Devang Patel307e8ab2008-10-07 17:48:33 +0000948
Chris Lattnerfa730212004-12-09 16:11:40 +0000949</div>
950
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000951<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000952<h3>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000953 <a name="aliasstructure">Aliases</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000954</h3>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000955
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000956<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000957
958<p>Aliases act as "second name" for the aliasee value (which can be either
959 function, global variable, another alias or bitcast of global value). Aliases
960 may have an optional <a href="#linkage">linkage type</a>, and an
961 optional <a href="#visibility">visibility style</a>.</p>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000962
Bill Wendlingc39e3e02009-07-20 02:39:26 +0000963<h5>Syntax:</h5>
Benjamin Kramer26fe25f2010-07-13 12:26:09 +0000964<pre class="doc_code">
Duncan Sands0b23ac12008-09-12 20:48:21 +0000965@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000966</pre>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000967
968</div>
969
Chris Lattner4e9aba72006-01-23 23:23:47 +0000970<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000971<h3>
Devang Patelcd1fd252010-01-11 19:35:55 +0000972 <a name="namedmetadatastructure">Named Metadata</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000973</h3>
Devang Patelcd1fd252010-01-11 19:35:55 +0000974
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000975<div>
Devang Patelcd1fd252010-01-11 19:35:55 +0000976
Chris Lattnere6a5ddd2010-01-15 21:50:19 +0000977<p>Named metadata is a collection of metadata. <a href="#metadata">Metadata
Dan Gohman872814a2010-07-21 18:54:18 +0000978 nodes</a> (but not metadata strings) are the only valid operands for
Chris Lattnere6a5ddd2010-01-15 21:50:19 +0000979 a named metadata.</p>
Devang Patelcd1fd252010-01-11 19:35:55 +0000980
981<h5>Syntax:</h5>
Benjamin Kramer26fe25f2010-07-13 12:26:09 +0000982<pre class="doc_code">
Dan Gohman872814a2010-07-21 18:54:18 +0000983; Some unnamed metadata nodes, which are referenced by the named metadata.
984!0 = metadata !{metadata !"zero"}
Devang Patelcd1fd252010-01-11 19:35:55 +0000985!1 = metadata !{metadata !"one"}
Dan Gohman872814a2010-07-21 18:54:18 +0000986!2 = metadata !{metadata !"two"}
Dan Gohman1005bc52010-07-13 19:48:13 +0000987; A named metadata.
Dan Gohman872814a2010-07-21 18:54:18 +0000988!name = !{!0, !1, !2}
Devang Patelcd1fd252010-01-11 19:35:55 +0000989</pre>
Devang Patelcd1fd252010-01-11 19:35:55 +0000990
991</div>
992
993<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +0000994<h3>
995 <a name="paramattrs">Parameter Attributes</a>
996</h3>
Reid Spencerca86e162006-12-31 07:07:53 +0000997
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +0000998<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +0000999
1000<p>The return type and each parameter of a function type may have a set of
1001 <i>parameter attributes</i> associated with them. Parameter attributes are
1002 used to communicate additional information about the result or parameters of
1003 a function. Parameter attributes are considered to be part of the function,
1004 not of the function type, so functions with different parameter attributes
1005 can have the same function type.</p>
1006
1007<p>Parameter attributes are simple keywords that follow the type specified. If
1008 multiple parameter attributes are needed, they are space separated. For
1009 example:</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001010
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00001011<pre class="doc_code">
Nick Lewyckyb6a7d252009-02-15 23:06:14 +00001012declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattner66d922c2008-10-04 18:33:34 +00001013declare i32 @atoi(i8 zeroext)
1014declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001015</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001016
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001017<p>Note that any attributes for the function result (<tt>nounwind</tt>,
1018 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +00001019
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001020<p>Currently, only the following parameter attributes are defined:</p>
Chris Lattner47507de2008-01-11 06:20:47 +00001021
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001022<dl>
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001023 <dt><tt><b>zeroext</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001024 <dd>This indicates to the code generator that the parameter or return value
Cameron Zwarichebe81732011-03-16 22:20:18 +00001025 should be zero-extended to the extent required by the target's ABI (which
1026 is usually 32-bits, but is 8-bits for a i1 on x86-64) by the caller (for a
1027 parameter) or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +00001028
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001029 <dt><tt><b>signext</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001030 <dd>This indicates to the code generator that the parameter or return value
Cameron Zwarich9e69ff92011-03-17 14:21:58 +00001031 should be sign-extended to the extent required by the target's ABI (which
1032 is usually 32-bits) by the caller (for a parameter) or the callee (for a
1033 return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +00001034
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001035 <dt><tt><b>inreg</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001036 <dd>This indicates that this parameter or return value should be treated in a
1037 special target-dependent fashion during while emitting code for a function
1038 call or return (usually, by putting it in a register as opposed to memory,
1039 though some targets use it to distinguish between two different kinds of
1040 registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +00001041
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001042 <dt><tt><b><a name="byval">byval</a></b></tt></dt>
Chris Lattnera6fd81d2010-11-20 23:49:06 +00001043 <dd><p>This indicates that the pointer parameter should really be passed by
1044 value to the function. The attribute implies that a hidden copy of the
1045 pointee
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001046 is made between the caller and the callee, so the callee is unable to
1047 modify the value in the callee. This attribute is only valid on LLVM
1048 pointer arguments. It is generally used to pass structs and arrays by
1049 value, but is also valid on pointers to scalars. The copy is considered
1050 to belong to the caller not the callee (for example,
1051 <tt><a href="#readonly">readonly</a></tt> functions should not write to
1052 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnera6fd81d2010-11-20 23:49:06 +00001053 values.</p>
1054
1055 <p>The byval attribute also supports specifying an alignment with
1056 the align attribute. It indicates the alignment of the stack slot to
1057 form and the known alignment of the pointer specified to the call site. If
1058 the alignment is not specified, then the code generator makes a
1059 target-specific assumption.</p></dd>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001060
Dan Gohmanff235352010-07-02 23:18:08 +00001061 <dt><tt><b><a name="sret">sret</a></b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001062 <dd>This indicates that the pointer parameter specifies the address of a
1063 structure that is the return value of the function in the source program.
1064 This pointer must be guaranteed by the caller to be valid: loads and
1065 stores to the structure may be assumed by the callee to not to trap. This
1066 may only be applied to the first parameter. This is not a valid attribute
1067 for return values. </dd>
1068
Dan Gohmanff235352010-07-02 23:18:08 +00001069 <dt><tt><b><a name="noalias">noalias</a></b></tt></dt>
Dan Gohman1e109622010-07-02 18:41:32 +00001070 <dd>This indicates that pointer values
1071 <a href="#pointeraliasing"><i>based</i></a> on the argument or return
Dan Gohmanefca7f92010-07-02 23:46:54 +00001072 value do not alias pointer values which are not <i>based</i> on it,
1073 ignoring certain "irrelevant" dependencies.
1074 For a call to the parent function, dependencies between memory
1075 references from before or after the call and from those during the call
1076 are "irrelevant" to the <tt>noalias</tt> keyword for the arguments and
1077 return value used in that call.
Dan Gohman1e109622010-07-02 18:41:32 +00001078 The caller shares the responsibility with the callee for ensuring that
1079 these requirements are met.
1080 For further details, please see the discussion of the NoAlias response in
Dan Gohmanff70fe42010-07-06 15:26:33 +00001081 <a href="AliasAnalysis.html#MustMayNo">alias analysis</a>.<br>
1082<br>
John McCall191d4ee2010-07-06 21:07:14 +00001083 Note that this definition of <tt>noalias</tt> is intentionally
1084 similar to the definition of <tt>restrict</tt> in C99 for function
Chris Lattner211244a2010-07-06 20:51:35 +00001085 arguments, though it is slightly weaker.
Dan Gohmanff70fe42010-07-06 15:26:33 +00001086<br>
1087 For function return values, C99's <tt>restrict</tt> is not meaningful,
1088 while LLVM's <tt>noalias</tt> is.
1089 </dd>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001090
Dan Gohmanff235352010-07-02 23:18:08 +00001091 <dt><tt><b><a name="nocapture">nocapture</a></b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001092 <dd>This indicates that the callee does not make any copies of the pointer
1093 that outlive the callee itself. This is not a valid attribute for return
1094 values.</dd>
1095
Dan Gohmanff235352010-07-02 23:18:08 +00001096 <dt><tt><b><a name="nest">nest</a></b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001097 <dd>This indicates that the pointer parameter can be excised using the
1098 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
1099 attribute for return values.</dd>
1100</dl>
Reid Spencerca86e162006-12-31 07:07:53 +00001101
Reid Spencerca86e162006-12-31 07:07:53 +00001102</div>
1103
1104<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001105<h3>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001106 <a name="gc">Garbage Collector Names</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001107</h3>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001108
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001109<div>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001110
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001111<p>Each function may specify a garbage collector name, which is simply a
1112 string:</p>
1113
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00001114<pre class="doc_code">
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001115define void @f() gc "name" { ... }
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001116</pre>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001117
1118<p>The compiler declares the supported values of <i>name</i>. Specifying a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001119 collector which will cause the compiler to alter its output in order to
1120 support the named garbage collection algorithm.</p>
1121
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001122</div>
1123
1124<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001125<h3>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001126 <a name="fnattrs">Function Attributes</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001127</h3>
Devang Patelf8b94812008-09-04 23:05:13 +00001128
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001129<div>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001130
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001131<p>Function attributes are set to communicate additional information about a
1132 function. Function attributes are considered to be part of the function, not
1133 of the function type, so functions with different parameter attributes can
1134 have the same function type.</p>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001135
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001136<p>Function attributes are simple keywords that follow the type specified. If
1137 multiple attributes are needed, they are space separated. For example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +00001138
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00001139<pre class="doc_code">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001140define void @f() noinline { ... }
1141define void @f() alwaysinline { ... }
1142define void @f() alwaysinline optsize { ... }
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001143define void @f() optsize { ... }
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001144</pre>
Devang Patelf8b94812008-09-04 23:05:13 +00001145
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001146<dl>
Charles Davis1e063d12010-02-12 00:31:15 +00001147 <dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
1148 <dd>This attribute indicates that, when emitting the prologue and epilogue,
1149 the backend should forcibly align the stack pointer. Specify the
1150 desired alignment, which must be a power of two, in parentheses.
1151
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001152 <dt><tt><b>alwaysinline</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001153 <dd>This attribute indicates that the inliner should attempt to inline this
1154 function into callers whenever possible, ignoring any active inlining size
1155 threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001156
Charles Davis970bfcc2010-10-25 15:37:09 +00001157 <dt><tt><b>hotpatch</b></tt></dt>
Charles Davis6f12e292010-10-25 16:29:03 +00001158 <dd>This attribute indicates that the function should be 'hotpatchable',
Charles Davis0076d202010-10-25 19:07:39 +00001159 meaning the function can be patched and/or hooked even while it is
1160 loaded into memory. On x86, the function prologue will be preceded
1161 by six bytes of padding and will begin with a two-byte instruction.
1162 Most of the functions in the Windows system DLLs in Windows XP SP2 or
1163 higher were compiled in this fashion.</dd>
Charles Davis970bfcc2010-10-25 15:37:09 +00001164
Jakob Stoklund Olesen570a4a52010-02-06 01:16:28 +00001165 <dt><tt><b>inlinehint</b></tt></dt>
1166 <dd>This attribute indicates that the source code contained a hint that inlining
1167 this function is desirable (such as the "inline" keyword in C/C++). It
1168 is just a hint; it imposes no requirements on the inliner.</dd>
1169
Nick Lewycky76ec37a2010-07-06 18:24:09 +00001170 <dt><tt><b>naked</b></tt></dt>
1171 <dd>This attribute disables prologue / epilogue emission for the function.
1172 This can have very system-specific consequences.</dd>
1173
1174 <dt><tt><b>noimplicitfloat</b></tt></dt>
1175 <dd>This attributes disables implicit floating point instructions.</dd>
1176
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001177 <dt><tt><b>noinline</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001178 <dd>This attribute indicates that the inliner should never inline this
1179 function in any situation. This attribute may not be used together with
1180 the <tt>alwaysinline</tt> attribute.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001181
Nick Lewycky76ec37a2010-07-06 18:24:09 +00001182 <dt><tt><b>noredzone</b></tt></dt>
1183 <dd>This attribute indicates that the code generator should not use a red
1184 zone, even if the target-specific ABI normally permits it.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001185
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001186 <dt><tt><b>noreturn</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001187 <dd>This function attribute indicates that the function never returns
1188 normally. This produces undefined behavior at runtime if the function
1189 ever does dynamically return.</dd>
Bill Wendling31359ba2008-11-13 01:02:51 +00001190
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001191 <dt><tt><b>nounwind</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001192 <dd>This function attribute indicates that the function never returns with an
1193 unwind or exceptional control flow. If the function does unwind, its
1194 runtime behavior is undefined.</dd>
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001195
Nick Lewycky76ec37a2010-07-06 18:24:09 +00001196 <dt><tt><b>optsize</b></tt></dt>
1197 <dd>This attribute suggests that optimization passes and code generator passes
1198 make choices that keep the code size of this function low, and otherwise
1199 do optimizations specifically to reduce code size.</dd>
1200
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001201 <dt><tt><b>readnone</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001202 <dd>This attribute indicates that the function computes its result (or decides
1203 to unwind an exception) based strictly on its arguments, without
1204 dereferencing any pointer arguments or otherwise accessing any mutable
1205 state (e.g. memory, control registers, etc) visible to caller functions.
1206 It does not write through any pointer arguments
1207 (including <tt><a href="#byval">byval</a></tt> arguments) and never
1208 changes any state visible to callers. This means that it cannot unwind
1209 exceptions by calling the <tt>C++</tt> exception throwing methods, but
1210 could use the <tt>unwind</tt> instruction.</dd>
Devang Patel5d96fda2009-06-12 19:45:19 +00001211
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001212 <dt><tt><b><a name="readonly">readonly</a></b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001213 <dd>This attribute indicates that the function does not write through any
1214 pointer arguments (including <tt><a href="#byval">byval</a></tt>
1215 arguments) or otherwise modify any state (e.g. memory, control registers,
1216 etc) visible to caller functions. It may dereference pointer arguments
1217 and read state that may be set in the caller. A readonly function always
1218 returns the same value (or unwinds an exception identically) when called
1219 with the same set of arguments and global state. It cannot unwind an
1220 exception by calling the <tt>C++</tt> exception throwing methods, but may
1221 use the <tt>unwind</tt> instruction.</dd>
Anton Korobeynikovc5ec8a72009-07-17 18:07:26 +00001222
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001223 <dt><tt><b><a name="ssp">ssp</a></b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001224 <dd>This attribute indicates that the function should emit a stack smashing
1225 protector. It is in the form of a "canary"&mdash;a random value placed on
1226 the stack before the local variables that's checked upon return from the
1227 function to see if it has been overwritten. A heuristic is used to
1228 determine if a function needs stack protectors or not.<br>
1229<br>
1230 If a function that has an <tt>ssp</tt> attribute is inlined into a
1231 function that doesn't have an <tt>ssp</tt> attribute, then the resulting
1232 function will have an <tt>ssp</tt> attribute.</dd>
1233
Bill Wendlingf82d40a2009-11-02 00:24:16 +00001234 <dt><tt><b>sspreq</b></tt></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001235 <dd>This attribute indicates that the function should <em>always</em> emit a
1236 stack smashing protector. This overrides
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001237 the <tt><a href="#ssp">ssp</a></tt> function attribute.<br>
1238<br>
1239 If a function that has an <tt>sspreq</tt> attribute is inlined into a
1240 function that doesn't have an <tt>sspreq</tt> attribute or which has
1241 an <tt>ssp</tt> attribute, then the resulting function will have
1242 an <tt>sspreq</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001243</dl>
1244
Devang Patelf8b94812008-09-04 23:05:13 +00001245</div>
1246
1247<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001248<h3>
Chris Lattner1eeeb0c2006-04-08 04:40:53 +00001249 <a name="moduleasm">Module-Level Inline Assembly</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001250</h3>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001251
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001252<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001253
1254<p>Modules may contain "module-level inline asm" blocks, which corresponds to
1255 the GCC "file scope inline asm" blocks. These blocks are internally
1256 concatenated by LLVM and treated as a single unit, but may be separated in
1257 the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001258
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00001259<pre class="doc_code">
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001260module asm "inline asm code goes here"
1261module asm "more can go here"
1262</pre>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001263
1264<p>The strings can contain any character by escaping non-printable characters.
1265 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001266 for the number.</p>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001267
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001268<p>The inline asm code is simply printed to the machine code .s file when
1269 assembly code is generated.</p>
1270
Chris Lattner4e9aba72006-01-23 23:23:47 +00001271</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001272
Reid Spencerde151942007-02-19 23:54:10 +00001273<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001274<h3>
Reid Spencerde151942007-02-19 23:54:10 +00001275 <a name="datalayout">Data Layout</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001276</h3>
Reid Spencerde151942007-02-19 23:54:10 +00001277
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001278<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001279
Reid Spencerde151942007-02-19 23:54:10 +00001280<p>A module may specify a target specific data layout string that specifies how
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001281 data is to be laid out in memory. The syntax for the data layout is
1282 simply:</p>
1283
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00001284<pre class="doc_code">
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001285target datalayout = "<i>layout specification</i>"
1286</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001287
1288<p>The <i>layout specification</i> consists of a list of specifications
1289 separated by the minus sign character ('-'). Each specification starts with
1290 a letter and may include other information after the letter to define some
1291 aspect of the data layout. The specifications accepted are as follows:</p>
1292
Reid Spencerde151942007-02-19 23:54:10 +00001293<dl>
1294 <dt><tt>E</tt></dt>
1295 <dd>Specifies that the target lays out data in big-endian form. That is, the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001296 bits with the most significance have the lowest address location.</dd>
1297
Reid Spencerde151942007-02-19 23:54:10 +00001298 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001299 <dd>Specifies that the target lays out data in little-endian form. That is,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001300 the bits with the least significance have the lowest address
1301 location.</dd>
1302
Reid Spencerde151942007-02-19 23:54:10 +00001303 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00001304 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001305 <i>preferred</i> alignments. All sizes are in bits. Specifying
1306 the <i>pref</i> alignment is optional. If omitted, the
1307 preceding <tt>:</tt> should be omitted too.</dd>
1308
Reid Spencerde151942007-02-19 23:54:10 +00001309 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1310 <dd>This specifies the alignment for an integer type of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001311 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1312
Reid Spencerde151942007-02-19 23:54:10 +00001313 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00001314 <dd>This specifies the alignment for a vector type of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001315 <i>size</i>.</dd>
1316
Reid Spencerde151942007-02-19 23:54:10 +00001317 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00001318 <dd>This specifies the alignment for a floating point type of a given bit
Dale Johannesen9d8d2212010-05-28 18:54:47 +00001319 <i>size</i>. Only values of <i>size</i> that are supported by the target
1320 will work. 32 (float) and 64 (double) are supported on all targets;
1321 80 or 128 (different flavors of long double) are also supported on some
1322 targets.
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001323
Reid Spencerde151942007-02-19 23:54:10 +00001324 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1325 <dd>This specifies the alignment for an aggregate type of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001326 <i>size</i>.</dd>
1327
Daniel Dunbar87bde0b2009-06-08 22:17:53 +00001328 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1329 <dd>This specifies the alignment for a stack object of a given bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001330 <i>size</i>.</dd>
Chris Lattnere82bdc42009-11-07 09:35:34 +00001331
1332 <dt><tt>n<i>size1</i>:<i>size2</i>:<i>size3</i>...</tt></dt>
1333 <dd>This specifies a set of native integer widths for the target CPU
1334 in bits. For example, it might contain "n32" for 32-bit PowerPC,
1335 "n32:64" for PowerPC 64, or "n8:16:32:64" for X86-64. Elements of
Eric Christopher6c7e8a02009-12-05 02:46:03 +00001336 this set are considered to support most general arithmetic
Chris Lattnere82bdc42009-11-07 09:35:34 +00001337 operations efficiently.</dd>
Reid Spencerde151942007-02-19 23:54:10 +00001338</dl>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001339
Reid Spencerde151942007-02-19 23:54:10 +00001340<p>When constructing the data layout for a given target, LLVM starts with a
Dan Gohman1c70c002010-04-28 00:36:01 +00001341 default set of specifications which are then (possibly) overridden by the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001342 specifications in the <tt>datalayout</tt> keyword. The default specifications
1343 are given in this list:</p>
1344
Reid Spencerde151942007-02-19 23:54:10 +00001345<ul>
1346 <li><tt>E</tt> - big endian</li>
Dan Gohmanfdf2e8c2010-02-23 02:44:03 +00001347 <li><tt>p:64:64:64</tt> - 64-bit pointers with 64-bit alignment</li>
Reid Spencerde151942007-02-19 23:54:10 +00001348 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1349 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1350 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1351 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001352 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001353 alignment of 64-bits</li>
1354 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1355 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1356 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1357 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1358 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar87bde0b2009-06-08 22:17:53 +00001359 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencerde151942007-02-19 23:54:10 +00001360</ul>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001361
1362<p>When LLVM is determining the alignment for a given type, it uses the
1363 following rules:</p>
1364
Reid Spencerde151942007-02-19 23:54:10 +00001365<ol>
1366 <li>If the type sought is an exact match for one of the specifications, that
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001367 specification is used.</li>
1368
Reid Spencerde151942007-02-19 23:54:10 +00001369 <li>If no match is found, and the type sought is an integer type, then the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001370 smallest integer type that is larger than the bitwidth of the sought type
1371 is used. If none of the specifications are larger than the bitwidth then
1372 the the largest integer type is used. For example, given the default
1373 specifications above, the i7 type will use the alignment of i8 (next
1374 largest) while both i65 and i256 will use the alignment of i64 (largest
1375 specified).</li>
1376
Reid Spencerde151942007-02-19 23:54:10 +00001377 <li>If no match is found, and the type sought is a vector type, then the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001378 largest vector type that is smaller than the sought vector type will be
1379 used as a fall back. This happens because &lt;128 x double&gt; can be
1380 implemented in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001381</ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001382
Reid Spencerde151942007-02-19 23:54:10 +00001383</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001384
Dan Gohman556ca272009-07-27 18:07:55 +00001385<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001386<h3>
Dan Gohman556ca272009-07-27 18:07:55 +00001387 <a name="pointeraliasing">Pointer Aliasing Rules</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001388</h3>
Dan Gohman556ca272009-07-27 18:07:55 +00001389
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001390<div>
Dan Gohman556ca272009-07-27 18:07:55 +00001391
Andreas Bolka55e459a2009-07-29 00:02:05 +00001392<p>Any memory access must be done through a pointer value associated
Andreas Bolka99a82052009-07-27 20:37:10 +00001393with an address range of the memory access, otherwise the behavior
Dan Gohman556ca272009-07-27 18:07:55 +00001394is undefined. Pointer values are associated with address ranges
1395according to the following rules:</p>
1396
1397<ul>
Dan Gohman1e109622010-07-02 18:41:32 +00001398 <li>A pointer value is associated with the addresses associated with
1399 any value it is <i>based</i> on.
Andreas Bolka55e459a2009-07-29 00:02:05 +00001400 <li>An address of a global variable is associated with the address
Dan Gohman556ca272009-07-27 18:07:55 +00001401 range of the variable's storage.</li>
1402 <li>The result value of an allocation instruction is associated with
1403 the address range of the allocated storage.</li>
1404 <li>A null pointer in the default address-space is associated with
Andreas Bolka55e459a2009-07-29 00:02:05 +00001405 no address.</li>
Dan Gohman556ca272009-07-27 18:07:55 +00001406 <li>An integer constant other than zero or a pointer value returned
1407 from a function not defined within LLVM may be associated with address
1408 ranges allocated through mechanisms other than those provided by
Andreas Bolka55e459a2009-07-29 00:02:05 +00001409 LLVM. Such ranges shall not overlap with any ranges of addresses
Dan Gohman556ca272009-07-27 18:07:55 +00001410 allocated by mechanisms provided by LLVM.</li>
Dan Gohman1e109622010-07-02 18:41:32 +00001411</ul>
1412
1413<p>A pointer value is <i>based</i> on another pointer value according
1414 to the following rules:</p>
1415
1416<ul>
1417 <li>A pointer value formed from a
1418 <tt><a href="#i_getelementptr">getelementptr</a></tt> operation
1419 is <i>based</i> on the first operand of the <tt>getelementptr</tt>.</li>
1420 <li>The result value of a
1421 <tt><a href="#i_bitcast">bitcast</a></tt> is <i>based</i> on the operand
1422 of the <tt>bitcast</tt>.</li>
1423 <li>A pointer value formed by an
1424 <tt><a href="#i_inttoptr">inttoptr</a></tt> is <i>based</i> on all
1425 pointer values that contribute (directly or indirectly) to the
1426 computation of the pointer's value.</li>
1427 <li>The "<i>based</i> on" relationship is transitive.</li>
1428</ul>
1429
1430<p>Note that this definition of <i>"based"</i> is intentionally
1431 similar to the definition of <i>"based"</i> in C99, though it is
1432 slightly weaker.</p>
Dan Gohman556ca272009-07-27 18:07:55 +00001433
1434<p>LLVM IR does not associate types with memory. The result type of a
Andreas Bolka55e459a2009-07-29 00:02:05 +00001435<tt><a href="#i_load">load</a></tt> merely indicates the size and
1436alignment of the memory from which to load, as well as the
Dan Gohmanc22c0f32010-06-17 19:23:50 +00001437interpretation of the value. The first operand type of a
Andreas Bolka55e459a2009-07-29 00:02:05 +00001438<tt><a href="#i_store">store</a></tt> similarly only indicates the size
1439and alignment of the store.</p>
Dan Gohman556ca272009-07-27 18:07:55 +00001440
1441<p>Consequently, type-based alias analysis, aka TBAA, aka
1442<tt>-fstrict-aliasing</tt>, is not applicable to general unadorned
1443LLVM IR. <a href="#metadata">Metadata</a> may be used to encode
1444additional information which specialized optimization passes may use
1445to implement type-based alias analysis.</p>
1446
1447</div>
1448
Jeffrey Yasskin93e066d2010-04-26 21:21:24 +00001449<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001450<h3>
Jeffrey Yasskin93e066d2010-04-26 21:21:24 +00001451 <a name="volatile">Volatile Memory Accesses</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001452</h3>
Jeffrey Yasskin93e066d2010-04-26 21:21:24 +00001453
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001454<div>
Jeffrey Yasskin93e066d2010-04-26 21:21:24 +00001455
1456<p>Certain memory accesses, such as <a href="#i_load"><tt>load</tt></a>s, <a
1457href="#i_store"><tt>store</tt></a>s, and <a
1458href="#int_memcpy"><tt>llvm.memcpy</tt></a>s may be marked <tt>volatile</tt>.
1459The optimizers must not change the number of volatile operations or change their
1460order of execution relative to other volatile operations. The optimizers
1461<i>may</i> change the order of volatile operations relative to non-volatile
1462operations. This is not Java's "volatile" and has no cross-thread
1463synchronization behavior.</p>
1464
1465</div>
1466
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001467</div>
1468
Chris Lattner00950542001-06-06 20:29:01 +00001469<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001470<h2><a name="typesystem">Type System</a></h2>
Chris Lattner261efe92003-11-25 01:02:51 +00001471<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001472
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001473<div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001474
Misha Brukman9d0919f2003-11-08 01:05:38 +00001475<p>The LLVM type system is one of the most important features of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001476 intermediate representation. Being typed enables a number of optimizations
1477 to be performed on the intermediate representation directly, without having
1478 to do extra analyses on the side before the transformation. A strong type
1479 system makes it easier to read the generated code and enables novel analyses
1480 and transformations that are not feasible to perform on normal three address
1481 code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001482
Chris Lattner00950542001-06-06 20:29:01 +00001483<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001484<h3>
1485 <a name="t_classifications">Type Classifications</a>
1486</h3>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001487
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001488<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001489
1490<p>The types fall into a few useful classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001491
1492<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001493 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001494 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001495 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001496 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001497 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001498 </tr>
1499 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001500 <td><a href="#t_floating">floating point</a></td>
1501 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001502 </tr>
1503 <tr>
1504 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001505 <td><a href="#t_integer">integer</a>,
1506 <a href="#t_floating">floating point</a>,
1507 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001508 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001509 <a href="#t_struct">structure</a>,
1510 <a href="#t_array">array</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001511 <a href="#t_label">label</a>,
1512 <a href="#t_metadata">metadata</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001513 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001514 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001515 <tr>
1516 <td><a href="#t_primitive">primitive</a></td>
1517 <td><a href="#t_label">label</a>,
1518 <a href="#t_void">void</a>,
Tobias Grosser05387292010-12-28 20:29:31 +00001519 <a href="#t_integer">integer</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001520 <a href="#t_floating">floating point</a>,
Dale Johannesen21fe99b2010-10-01 00:48:59 +00001521 <a href="#t_x86mmx">x86mmx</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001522 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001523 </tr>
1524 <tr>
1525 <td><a href="#t_derived">derived</a></td>
Chris Lattnerfdfeb692010-02-12 20:49:41 +00001526 <td><a href="#t_array">array</a>,
Chris Lattner4f69f462008-01-04 04:32:38 +00001527 <a href="#t_function">function</a>,
1528 <a href="#t_pointer">pointer</a>,
1529 <a href="#t_struct">structure</a>,
1530 <a href="#t_pstruct">packed structure</a>,
1531 <a href="#t_vector">vector</a>,
1532 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001533 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001534 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001535 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001536</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001537
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001538<p>The <a href="#t_firstclass">first class</a> types are perhaps the most
1539 important. Values of these types are the only ones which can be produced by
Nick Lewyckyec38da42009-09-27 00:45:11 +00001540 instructions.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001541
Misha Brukman9d0919f2003-11-08 01:05:38 +00001542</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001543
Chris Lattner00950542001-06-06 20:29:01 +00001544<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001545<h3>
1546 <a name="t_primitive">Primitive Types</a>
1547</h3>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001548
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001549<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001550
Chris Lattner4f69f462008-01-04 04:32:38 +00001551<p>The primitive types are the fundamental building blocks of the LLVM
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001552 system.</p>
Chris Lattner4f69f462008-01-04 04:32:38 +00001553
1554<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001555<h4>
1556 <a name="t_integer">Integer Type</a>
1557</h4>
Nick Lewyckyec38da42009-09-27 00:45:11 +00001558
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001559<div>
Nick Lewyckyec38da42009-09-27 00:45:11 +00001560
1561<h5>Overview:</h5>
1562<p>The integer type is a very simple type that simply specifies an arbitrary
1563 bit width for the integer type desired. Any bit width from 1 bit to
1564 2<sup>23</sup>-1 (about 8 million) can be specified.</p>
1565
1566<h5>Syntax:</h5>
1567<pre>
1568 iN
1569</pre>
1570
1571<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1572 value.</p>
1573
1574<h5>Examples:</h5>
1575<table class="layout">
1576 <tr class="layout">
1577 <td class="left"><tt>i1</tt></td>
1578 <td class="left">a single-bit integer.</td>
1579 </tr>
1580 <tr class="layout">
1581 <td class="left"><tt>i32</tt></td>
1582 <td class="left">a 32-bit integer.</td>
1583 </tr>
1584 <tr class="layout">
1585 <td class="left"><tt>i1942652</tt></td>
1586 <td class="left">a really big integer of over 1 million bits.</td>
1587 </tr>
1588</table>
1589
Nick Lewyckyec38da42009-09-27 00:45:11 +00001590</div>
1591
1592<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001593<h4>
1594 <a name="t_floating">Floating Point Types</a>
1595</h4>
Chris Lattner4f69f462008-01-04 04:32:38 +00001596
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001597<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001598
1599<table>
1600 <tbody>
1601 <tr><th>Type</th><th>Description</th></tr>
1602 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1603 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1604 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1605 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1606 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1607 </tbody>
1608</table>
1609
Chris Lattner4f69f462008-01-04 04:32:38 +00001610</div>
1611
1612<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001613<h4>
1614 <a name="t_x86mmx">X86mmx Type</a>
1615</h4>
Dale Johannesen21fe99b2010-10-01 00:48:59 +00001616
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001617<div>
Dale Johannesen21fe99b2010-10-01 00:48:59 +00001618
1619<h5>Overview:</h5>
1620<p>The x86mmx type represents a value held in an MMX register on an x86 machine. The operations allowed on it are quite limited: parameters and return values, load and store, and bitcast. User-specified MMX instructions are represented as intrinsic or asm calls with arguments and/or results of this type. There are no arrays, vectors or constants of this type.</p>
1621
1622<h5>Syntax:</h5>
1623<pre>
Dale Johannesen473a8c82010-10-01 01:07:02 +00001624 x86mmx
Dale Johannesen21fe99b2010-10-01 00:48:59 +00001625</pre>
1626
1627</div>
1628
1629<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001630<h4>
1631 <a name="t_void">Void Type</a>
1632</h4>
Chris Lattner4f69f462008-01-04 04:32:38 +00001633
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001634<div>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001635
Chris Lattner4f69f462008-01-04 04:32:38 +00001636<h5>Overview:</h5>
1637<p>The void type does not represent any value and has no size.</p>
1638
1639<h5>Syntax:</h5>
Chris Lattner4f69f462008-01-04 04:32:38 +00001640<pre>
1641 void
1642</pre>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001643
Chris Lattner4f69f462008-01-04 04:32:38 +00001644</div>
1645
1646<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001647<h4>
1648 <a name="t_label">Label Type</a>
1649</h4>
Chris Lattner4f69f462008-01-04 04:32:38 +00001650
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001651<div>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001652
Chris Lattner4f69f462008-01-04 04:32:38 +00001653<h5>Overview:</h5>
1654<p>The label type represents code labels.</p>
1655
1656<h5>Syntax:</h5>
Chris Lattner4f69f462008-01-04 04:32:38 +00001657<pre>
1658 label
1659</pre>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001660
Chris Lattner4f69f462008-01-04 04:32:38 +00001661</div>
1662
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001663<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001664<h4>
1665 <a name="t_metadata">Metadata Type</a>
1666</h4>
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001667
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001668<div>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001669
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001670<h5>Overview:</h5>
Nick Lewyckyc261df92009-09-27 23:27:42 +00001671<p>The metadata type represents embedded metadata. No derived types may be
1672 created from metadata except for <a href="#t_function">function</a>
1673 arguments.
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001674
1675<h5>Syntax:</h5>
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001676<pre>
1677 metadata
1678</pre>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001679
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001680</div>
1681
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001682</div>
Chris Lattner4f69f462008-01-04 04:32:38 +00001683
1684<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001685<h3>
1686 <a name="t_derived">Derived Types</a>
1687</h3>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001688
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001689<div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001690
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001691<p>The real power in LLVM comes from the derived types in the system. This is
1692 what allows a programmer to represent arrays, functions, pointers, and other
Nick Lewyckyec38da42009-09-27 00:45:11 +00001693 useful types. Each of these types contain one or more element types which
1694 may be a primitive type, or another derived type. For example, it is
1695 possible to have a two dimensional array, using an array as the element type
1696 of another array.</p>
Dan Gohmand8791e52009-01-24 15:58:40 +00001697
Chris Lattnerfdfeb692010-02-12 20:49:41 +00001698
Chris Lattnerfdfeb692010-02-12 20:49:41 +00001699<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001700<h4>
1701 <a name="t_aggregate">Aggregate Types</a>
1702</h4>
Chris Lattnerfdfeb692010-02-12 20:49:41 +00001703
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001704<div>
Chris Lattnerfdfeb692010-02-12 20:49:41 +00001705
1706<p>Aggregate Types are a subset of derived types that can contain multiple
1707 member types. <a href="#t_array">Arrays</a>,
Chris Lattner61c70e92010-08-28 04:09:24 +00001708 <a href="#t_struct">structs</a>, and <a href="#t_vector">vectors</a> are
1709 aggregate types.</p>
Chris Lattnerfdfeb692010-02-12 20:49:41 +00001710
1711</div>
1712
Reid Spencer2b916312007-05-16 18:44:01 +00001713<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001714<h4>
1715 <a name="t_array">Array Type</a>
1716</h4>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001717
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001718<div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001719
Chris Lattner00950542001-06-06 20:29:01 +00001720<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001721<p>The array type is a very simple derived type that arranges elements
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001722 sequentially in memory. The array type requires a size (number of elements)
1723 and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001724
Chris Lattner7faa8832002-04-14 06:13:44 +00001725<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001726<pre>
1727 [&lt;# elements&gt; x &lt;elementtype&gt;]
1728</pre>
1729
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001730<p>The number of elements is a constant integer value; <tt>elementtype</tt> may
1731 be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001732
Chris Lattner7faa8832002-04-14 06:13:44 +00001733<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001734<table class="layout">
1735 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001736 <td class="left"><tt>[40 x i32]</tt></td>
1737 <td class="left">Array of 40 32-bit integer values.</td>
1738 </tr>
1739 <tr class="layout">
1740 <td class="left"><tt>[41 x i32]</tt></td>
1741 <td class="left">Array of 41 32-bit integer values.</td>
1742 </tr>
1743 <tr class="layout">
1744 <td class="left"><tt>[4 x i8]</tt></td>
1745 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001746 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001747</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001748<p>Here are some examples of multidimensional arrays:</p>
1749<table class="layout">
1750 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001751 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1752 <td class="left">3x4 array of 32-bit integer values.</td>
1753 </tr>
1754 <tr class="layout">
1755 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1756 <td class="left">12x10 array of single precision floating point values.</td>
1757 </tr>
1758 <tr class="layout">
1759 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1760 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001761 </tr>
1762</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001763
Dan Gohman7657f6b2009-11-09 19:01:53 +00001764<p>There is no restriction on indexing beyond the end of the array implied by
1765 a static type (though there are restrictions on indexing beyond the bounds
1766 of an allocated object in some cases). This means that single-dimension
1767 'variable sized array' addressing can be implemented in LLVM with a zero
1768 length array type. An implementation of 'pascal style arrays' in LLVM could
1769 use the type "<tt>{ i32, [0 x float]}</tt>", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001770
Misha Brukman9d0919f2003-11-08 01:05:38 +00001771</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001772
Chris Lattner00950542001-06-06 20:29:01 +00001773<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001774<h4>
1775 <a name="t_function">Function Type</a>
1776</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001777
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001778<div>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001779
Chris Lattner00950542001-06-06 20:29:01 +00001780<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001781<p>The function type can be thought of as a function signature. It consists of
1782 a return type and a list of formal parameter types. The return type of a
Chris Lattner61c70e92010-08-28 04:09:24 +00001783 function type is a first class type or a void type.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001784
Chris Lattner00950542001-06-06 20:29:01 +00001785<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001786<pre>
Nick Lewycky51386942009-09-27 07:55:32 +00001787 &lt;returntype&gt; (&lt;parameter list&gt;)
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001788</pre>
1789
John Criswell0ec250c2005-10-24 16:17:18 +00001790<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001791 specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1792 which indicates that the function takes a variable number of arguments.
1793 Variable argument functions can access their arguments with
1794 the <a href="#int_varargs">variable argument handling intrinsic</a>
Chris Lattner0724fbd2010-03-02 06:36:51 +00001795 functions. '<tt>&lt;returntype&gt;</tt>' is any type except
Nick Lewyckyc261df92009-09-27 23:27:42 +00001796 <a href="#t_label">label</a>.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001797
Chris Lattner00950542001-06-06 20:29:01 +00001798<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001799<table class="layout">
1800 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001801 <td class="left"><tt>i32 (i32)</tt></td>
1802 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001803 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001804 </tr><tr class="layout">
Chris Lattner0724fbd2010-03-02 06:36:51 +00001805 <td class="left"><tt>float&nbsp;(i16,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001806 </tt></td>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00001807 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
Chris Lattner0724fbd2010-03-02 06:36:51 +00001808 an <tt>i16</tt> and a <a href="#t_pointer">pointer</a> to <tt>i32</tt>,
1809 returning <tt>float</tt>.
Reid Spencer92f82302006-12-31 07:18:34 +00001810 </td>
1811 </tr><tr class="layout">
1812 <td class="left"><tt>i32 (i8*, ...)</tt></td>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00001813 <td class="left">A vararg function that takes at least one
1814 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1815 which returns an integer. This is the signature for <tt>printf</tt> in
Reid Spencer92f82302006-12-31 07:18:34 +00001816 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001817 </td>
Devang Patela582f402008-03-24 05:35:41 +00001818 </tr><tr class="layout">
1819 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Nick Lewycky51386942009-09-27 07:55:32 +00001820 <td class="left">A function taking an <tt>i32</tt>, returning a
1821 <a href="#t_struct">structure</a> containing two <tt>i32</tt> values
Devang Patela582f402008-03-24 05:35:41 +00001822 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001823 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001824</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001825
Misha Brukman9d0919f2003-11-08 01:05:38 +00001826</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001827
Chris Lattner00950542001-06-06 20:29:01 +00001828<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001829<h4>
1830 <a name="t_struct">Structure Type</a>
1831</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001832
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001833<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001834
Chris Lattner00950542001-06-06 20:29:01 +00001835<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001836<p>The structure type is used to represent a collection of data members together
1837 in memory. The packing of the field types is defined to match the ABI of the
1838 underlying processor. The elements of a structure may be any type that has a
1839 size.</p>
1840
Jeffrey Yasskin7a088cf2010-01-11 19:19:26 +00001841<p>Structures in memory are accessed using '<tt><a href="#i_load">load</a></tt>'
1842 and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field
1843 with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
1844 Structures in registers are accessed using the
1845 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' and
1846 '<tt><a href="#i_insertvalue">insertvalue</a></tt>' instructions.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001847<h5>Syntax:</h5>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001848<pre>
1849 { &lt;type list&gt; }
1850</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001851
Chris Lattner00950542001-06-06 20:29:01 +00001852<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001853<table class="layout">
1854 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001855 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1856 <td class="left">A triple of three <tt>i32</tt> values</td>
1857 </tr><tr class="layout">
1858 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1859 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1860 second element is a <a href="#t_pointer">pointer</a> to a
1861 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1862 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001863 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001864</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001865
Misha Brukman9d0919f2003-11-08 01:05:38 +00001866</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001867
Chris Lattner00950542001-06-06 20:29:01 +00001868<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001869<h4>
1870 <a name="t_pstruct">Packed Structure Type</a>
1871</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001872
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001873<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001874
Andrew Lenharth75e10682006-12-08 17:13:00 +00001875<h5>Overview:</h5>
1876<p>The packed structure type is used to represent a collection of data members
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001877 together in memory. There is no padding between fields. Further, the
1878 alignment of a packed structure is 1 byte. The elements of a packed
1879 structure may be any type that has a size.</p>
1880
1881<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> and
1882 '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a field with
1883 the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
1884
Andrew Lenharth75e10682006-12-08 17:13:00 +00001885<h5>Syntax:</h5>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001886<pre>
1887 &lt; { &lt;type list&gt; } &gt;
1888</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001889
Andrew Lenharth75e10682006-12-08 17:13:00 +00001890<h5>Examples:</h5>
1891<table class="layout">
1892 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001893 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1894 <td class="left">A triple of three <tt>i32</tt> values</td>
1895 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001896 <td class="left">
1897<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001898 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1899 second element is a <a href="#t_pointer">pointer</a> to a
1900 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1901 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001902 </tr>
1903</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001904
Andrew Lenharth75e10682006-12-08 17:13:00 +00001905</div>
1906
1907<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001908<h4>
1909 <a name="t_pointer">Pointer Type</a>
1910</h4>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001911
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001912<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001913
1914<h5>Overview:</h5>
Dan Gohmanff3ef322010-02-25 16:50:07 +00001915<p>The pointer type is used to specify memory locations.
1916 Pointers are commonly used to reference objects in memory.</p>
1917
1918<p>Pointer types may have an optional address space attribute defining the
1919 numbered address space where the pointed-to object resides. The default
1920 address space is number zero. The semantics of non-zero address
1921 spaces are target-specific.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001922
1923<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does it
1924 permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001925
Chris Lattner7faa8832002-04-14 06:13:44 +00001926<h5>Syntax:</h5>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00001927<pre>
1928 &lt;type&gt; *
1929</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001930
Chris Lattner7faa8832002-04-14 06:13:44 +00001931<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001932<table class="layout">
1933 <tr class="layout">
Dan Gohman2a08c532009-01-04 23:44:43 +00001934 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner23ff1f92007-12-19 05:04:11 +00001935 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1936 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1937 </tr>
1938 <tr class="layout">
Dan Gohmanfe47aae2010-05-28 17:13:49 +00001939 <td class="left"><tt>i32 (i32*) *</tt></td>
Chris Lattner23ff1f92007-12-19 05:04:11 +00001940 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001941 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001942 <tt>i32</tt>.</td>
1943 </tr>
1944 <tr class="layout">
1945 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1946 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1947 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001948 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001949</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001950
Misha Brukman9d0919f2003-11-08 01:05:38 +00001951</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001952
Chris Lattnera58561b2004-08-12 19:12:28 +00001953<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001954<h4>
1955 <a name="t_vector">Vector Type</a>
1956</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001957
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001958<div>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001959
Chris Lattnera58561b2004-08-12 19:12:28 +00001960<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001961<p>A vector type is a simple derived type that represents a vector of elements.
1962 Vector types are used when multiple primitive data are operated in parallel
1963 using a single instruction (SIMD). A vector type requires a size (number of
Duncan Sandsd40d14e2009-11-27 13:38:03 +00001964 elements) and an underlying primitive data type. Vector types are considered
Bill Wendlinge910b4c2009-07-20 02:29:24 +00001965 <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001966
Chris Lattnera58561b2004-08-12 19:12:28 +00001967<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001968<pre>
1969 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1970</pre>
1971
Chris Lattner7d2e7be2010-10-10 18:20:35 +00001972<p>The number of elements is a constant integer value larger than 0; elementtype
1973 may be any integer or floating point type. Vectors of size zero are not
1974 allowed, and pointers are not allowed as the element type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001975
Chris Lattnera58561b2004-08-12 19:12:28 +00001976<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001977<table class="layout">
1978 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001979 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1980 <td class="left">Vector of 4 32-bit integer values.</td>
1981 </tr>
1982 <tr class="layout">
1983 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1984 <td class="left">Vector of 8 32-bit floating-point values.</td>
1985 </tr>
1986 <tr class="layout">
1987 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1988 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001989 </tr>
1990</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001991
Misha Brukman9d0919f2003-11-08 01:05:38 +00001992</div>
1993
Chris Lattner69c11bb2005-04-25 17:34:15 +00001994<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00001995<h4>
1996 <a name="t_opaque">Opaque Type</a>
1997</h4>
1998
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00001999<div>
Chris Lattner69c11bb2005-04-25 17:34:15 +00002000
2001<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00002002<p>Opaque types are used to represent unknown types in the system. This
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002003 corresponds (for example) to the C notion of a forward declared structure
2004 type. In LLVM, opaque types can eventually be resolved to any type (not just
2005 a structure type).</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00002006
2007<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00002008<pre>
2009 opaque
2010</pre>
2011
2012<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00002013<table class="layout">
2014 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00002015 <td class="left"><tt>opaque</tt></td>
2016 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00002017 </tr>
2018</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002019
Chris Lattner69c11bb2005-04-25 17:34:15 +00002020</div>
2021
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002022</div>
2023
Chris Lattner242d61d2009-02-02 07:32:36 +00002024<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002025<h3>
Chris Lattner242d61d2009-02-02 07:32:36 +00002026 <a name="t_uprefs">Type Up-references</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002027</h3>
Chris Lattner242d61d2009-02-02 07:32:36 +00002028
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002029<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002030
Chris Lattner242d61d2009-02-02 07:32:36 +00002031<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002032<p>An "up reference" allows you to refer to a lexically enclosing type without
2033 requiring it to have a name. For instance, a structure declaration may
2034 contain a pointer to any of the types it is lexically a member of. Example
2035 of up references (with their equivalent as named type declarations)
2036 include:</p>
Chris Lattner242d61d2009-02-02 07:32:36 +00002037
2038<pre>
Chris Lattner3060f5b2009-02-09 10:00:56 +00002039 { \2 * } %x = type { %x* }
Chris Lattner242d61d2009-02-02 07:32:36 +00002040 { \2 }* %y = type { %y }*
2041 \1* %z = type %z*
2042</pre>
2043
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002044<p>An up reference is needed by the asmprinter for printing out cyclic types
2045 when there is no declared name for a type in the cycle. Because the
2046 asmprinter does not want to print out an infinite type string, it needs a
2047 syntax to handle recursive types that have no names (all names are optional
2048 in llvm IR).</p>
Chris Lattner242d61d2009-02-02 07:32:36 +00002049
2050<h5>Syntax:</h5>
2051<pre>
2052 \&lt;level&gt;
2053</pre>
2054
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002055<p>The level is the count of the lexical type that is being referred to.</p>
Chris Lattner242d61d2009-02-02 07:32:36 +00002056
2057<h5>Examples:</h5>
Chris Lattner242d61d2009-02-02 07:32:36 +00002058<table class="layout">
2059 <tr class="layout">
2060 <td class="left"><tt>\1*</tt></td>
2061 <td class="left">Self-referential pointer.</td>
2062 </tr>
2063 <tr class="layout">
2064 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
2065 <td class="left">Recursive structure where the upref refers to the out-most
2066 structure.</td>
2067 </tr>
2068</table>
Chris Lattner242d61d2009-02-02 07:32:36 +00002069
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002070</div>
Chris Lattner69c11bb2005-04-25 17:34:15 +00002071
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002072</div>
2073
Chris Lattnerc3f59762004-12-09 17:30:23 +00002074<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002075<h2><a name="constants">Constants</a></h2>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002076<!-- *********************************************************************** -->
2077
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002078<div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002079
2080<p>LLVM has several different basic types of constants. This section describes
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002081 them all and their syntax.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002082
Chris Lattnerc3f59762004-12-09 17:30:23 +00002083<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002084<h3>
2085 <a name="simpleconstants">Simple Constants</a>
2086</h3>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002087
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002088<div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002089
2090<dl>
2091 <dt><b>Boolean constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002092 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Nick Lewyckyec38da42009-09-27 00:45:11 +00002093 constants of the <tt><a href="#t_integer">i1</a></tt> type.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002094
2095 <dt><b>Integer constants</b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002096 <dd>Standard integers (such as '4') are constants of
2097 the <a href="#t_integer">integer</a> type. Negative numbers may be used
2098 with integer types.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002099
2100 <dt><b>Floating point constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002101 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002102 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
2103 notation (see below). The assembler requires the exact decimal value of a
2104 floating-point constant. For example, the assembler accepts 1.25 but
2105 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
2106 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002107
2108 <dt><b>Null pointer constants</b></dt>
John Criswell9e2485c2004-12-10 15:51:16 +00002109 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002110 and must be of <a href="#t_pointer">pointer type</a>.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002111</dl>
2112
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002113<p>The one non-intuitive notation for constants is the hexadecimal form of
2114 floating point constants. For example, the form '<tt>double
2115 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than)
2116 '<tt>double 4.5e+15</tt>'. The only time hexadecimal floating point
2117 constants are required (and the only time that they are generated by the
2118 disassembler) is when a floating point constant must be emitted but it cannot
2119 be represented as a decimal floating point number in a reasonable number of
2120 digits. For example, NaN's, infinities, and other special values are
2121 represented in their IEEE hexadecimal format so that assembly and disassembly
2122 do not cause any bits to change in the constants.</p>
2123
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00002124<p>When using the hexadecimal form, constants of types float and double are
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002125 represented using the 16-digit form shown above (which matches the IEEE754
2126 representation for double); float values must, however, be exactly
2127 representable as IEE754 single precision. Hexadecimal format is always used
2128 for long double, and there are three forms of long double. The 80-bit format
2129 used by x86 is represented as <tt>0xK</tt> followed by 20 hexadecimal digits.
2130 The 128-bit format used by PowerPC (two adjacent doubles) is represented
2131 by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit format
2132 is represented by <tt>0xL</tt> followed by 32 hexadecimal digits; no
2133 currently supported target uses this format. Long doubles will only work if
2134 they match the long double format on your target. All hexadecimal formats
2135 are big-endian (sign bit at the left).</p>
2136
Dale Johannesen21fe99b2010-10-01 00:48:59 +00002137<p>There are no constants of type x86mmx.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002138</div>
2139
2140<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002141<h3>
Bill Wendlingd9fe2982009-07-20 02:32:41 +00002142<a name="aggregateconstants"></a> <!-- old anchor -->
2143<a name="complexconstants">Complex Constants</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002144</h3>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002145
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002146<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002147
Chris Lattner70882792009-02-28 18:32:25 +00002148<p>Complex constants are a (potentially recursive) combination of simple
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002149 constants and smaller complex constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002150
2151<dl>
2152 <dt><b>Structure constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002153 <dd>Structure constants are represented with notation similar to structure
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002154 type definitions (a comma separated list of elements, surrounded by braces
2155 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
2156 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>".
2157 Structure constants must have <a href="#t_struct">structure type</a>, and
2158 the number and types of elements must match those specified by the
2159 type.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002160
2161 <dt><b>Array constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002162 <dd>Array constants are represented with notation similar to array type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002163 definitions (a comma separated list of elements, surrounded by square
2164 brackets (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74
2165 ]</tt>". Array constants must have <a href="#t_array">array type</a>, and
2166 the number and types of elements must match those specified by the
2167 type.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002168
Reid Spencer485bad12007-02-15 03:07:05 +00002169 <dt><b>Vector constants</b></dt>
Reid Spencer485bad12007-02-15 03:07:05 +00002170 <dd>Vector constants are represented with notation similar to vector type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002171 definitions (a comma separated list of elements, surrounded by
2172 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32
2173 42, i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must
2174 have <a href="#t_vector">vector type</a>, and the number and types of
2175 elements must match those specified by the type.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002176
2177 <dt><b>Zero initialization</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002178 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
Chris Lattnerfdfeb692010-02-12 20:49:41 +00002179 value to zero of <em>any</em> type, including scalar and
2180 <a href="#t_aggregate">aggregate</a> types.
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002181 This is often used to avoid having to print large zero initializers
2182 (e.g. for large arrays) and is always exactly equivalent to using explicit
2183 zero initializers.</dd>
Nick Lewycky21cc4462009-04-04 07:22:01 +00002184
2185 <dt><b>Metadata node</b></dt>
Nick Lewycky1e8c7a62009-05-30 16:08:30 +00002186 <dd>A metadata node is a structure-like constant with
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002187 <a href="#t_metadata">metadata type</a>. For example: "<tt>metadata !{
2188 i32 0, metadata !"test" }</tt>". Unlike other constants that are meant to
2189 be interpreted as part of the instruction stream, metadata is a place to
2190 attach additional information such as debug info.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002191</dl>
2192
2193</div>
2194
2195<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002196<h3>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002197 <a name="globalconstants">Global Variable and Function Addresses</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002198</h3>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002199
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002200<div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002201
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002202<p>The addresses of <a href="#globalvars">global variables</a>
2203 and <a href="#functionstructure">functions</a> are always implicitly valid
2204 (link-time) constants. These constants are explicitly referenced when
2205 the <a href="#identifiers">identifier for the global</a> is used and always
2206 have <a href="#t_pointer">pointer</a> type. For example, the following is a
2207 legal LLVM file:</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002208
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002209<pre class="doc_code">
Chris Lattnera18a4242007-06-06 18:28:13 +00002210@X = global i32 17
2211@Y = global i32 42
2212@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00002213</pre>
2214
2215</div>
2216
2217<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002218<h3>
2219 <a name="undefvalues">Undefined Values</a>
2220</h3>
2221
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002222<div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002223
Chris Lattner48a109c2009-09-07 22:52:39 +00002224<p>The string '<tt>undef</tt>' can be used anywhere a constant is expected, and
Benjamin Kramer8040cd32009-10-12 14:46:08 +00002225 indicates that the user of the value may receive an unspecified bit-pattern.
Bill Wendling1b383ba2010-10-27 01:07:41 +00002226 Undefined values may be of any type (other than '<tt>label</tt>'
2227 or '<tt>void</tt>') and be used anywhere a constant is permitted.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002228
Chris Lattnerc608cb12009-09-11 01:49:31 +00002229<p>Undefined values are useful because they indicate to the compiler that the
Chris Lattner48a109c2009-09-07 22:52:39 +00002230 program is well defined no matter what value is used. This gives the
2231 compiler more freedom to optimize. Here are some examples of (potentially
2232 surprising) transformations that are valid (in pseudo IR):</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002233
Chris Lattner48a109c2009-09-07 22:52:39 +00002234
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002235<pre class="doc_code">
Chris Lattner48a109c2009-09-07 22:52:39 +00002236 %A = add %X, undef
2237 %B = sub %X, undef
2238 %C = xor %X, undef
2239Safe:
2240 %A = undef
2241 %B = undef
2242 %C = undef
2243</pre>
Chris Lattner48a109c2009-09-07 22:52:39 +00002244
2245<p>This is safe because all of the output bits are affected by the undef bits.
Bill Wendling1b383ba2010-10-27 01:07:41 +00002246 Any output bit can have a zero or one depending on the input bits.</p>
Chris Lattner48a109c2009-09-07 22:52:39 +00002247
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002248<pre class="doc_code">
Chris Lattner48a109c2009-09-07 22:52:39 +00002249 %A = or %X, undef
2250 %B = and %X, undef
2251Safe:
2252 %A = -1
2253 %B = 0
2254Unsafe:
2255 %A = undef
2256 %B = undef
2257</pre>
Chris Lattner48a109c2009-09-07 22:52:39 +00002258
2259<p>These logical operations have bits that are not always affected by the input.
Bill Wendling1b383ba2010-10-27 01:07:41 +00002260 For example, if <tt>%X</tt> has a zero bit, then the output of the
2261 '<tt>and</tt>' operation will always be a zero for that bit, no matter what
2262 the corresponding bit from the '<tt>undef</tt>' is. As such, it is unsafe to
2263 optimize or assume that the result of the '<tt>and</tt>' is '<tt>undef</tt>'.
2264 However, it is safe to assume that all bits of the '<tt>undef</tt>' could be
2265 0, and optimize the '<tt>and</tt>' to 0. Likewise, it is safe to assume that
2266 all the bits of the '<tt>undef</tt>' operand to the '<tt>or</tt>' could be
2267 set, allowing the '<tt>or</tt>' to be folded to -1.</p>
Chris Lattner48a109c2009-09-07 22:52:39 +00002268
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002269<pre class="doc_code">
Chris Lattner48a109c2009-09-07 22:52:39 +00002270 %A = select undef, %X, %Y
2271 %B = select undef, 42, %Y
2272 %C = select %X, %Y, undef
2273Safe:
2274 %A = %X (or %Y)
2275 %B = 42 (or %Y)
2276 %C = %Y
2277Unsafe:
2278 %A = undef
2279 %B = undef
2280 %C = undef
2281</pre>
Chris Lattner48a109c2009-09-07 22:52:39 +00002282
Bill Wendling1b383ba2010-10-27 01:07:41 +00002283<p>This set of examples shows that undefined '<tt>select</tt>' (and conditional
2284 branch) conditions can go <em>either way</em>, but they have to come from one
2285 of the two operands. In the <tt>%A</tt> example, if <tt>%X</tt> and
2286 <tt>%Y</tt> were both known to have a clear low bit, then <tt>%A</tt> would
2287 have to have a cleared low bit. However, in the <tt>%C</tt> example, the
2288 optimizer is allowed to assume that the '<tt>undef</tt>' operand could be the
2289 same as <tt>%Y</tt>, allowing the whole '<tt>select</tt>' to be
2290 eliminated.</p>
Chris Lattner48a109c2009-09-07 22:52:39 +00002291
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002292<pre class="doc_code">
Chris Lattner48a109c2009-09-07 22:52:39 +00002293 %A = xor undef, undef
Eric Christopher6c7e8a02009-12-05 02:46:03 +00002294
Chris Lattner48a109c2009-09-07 22:52:39 +00002295 %B = undef
2296 %C = xor %B, %B
2297
2298 %D = undef
2299 %E = icmp lt %D, 4
2300 %F = icmp gte %D, 4
2301
2302Safe:
2303 %A = undef
2304 %B = undef
2305 %C = undef
2306 %D = undef
2307 %E = undef
2308 %F = undef
2309</pre>
Chris Lattner48a109c2009-09-07 22:52:39 +00002310
Bill Wendling1b383ba2010-10-27 01:07:41 +00002311<p>This example points out that two '<tt>undef</tt>' operands are not
2312 necessarily the same. This can be surprising to people (and also matches C
2313 semantics) where they assume that "<tt>X^X</tt>" is always zero, even
2314 if <tt>X</tt> is undefined. This isn't true for a number of reasons, but the
2315 short answer is that an '<tt>undef</tt>' "variable" can arbitrarily change
2316 its value over its "live range". This is true because the variable doesn't
2317 actually <em>have a live range</em>. Instead, the value is logically read
2318 from arbitrary registers that happen to be around when needed, so the value
2319 is not necessarily consistent over time. In fact, <tt>%A</tt> and <tt>%C</tt>
2320 need to have the same semantics or the core LLVM "replace all uses with"
2321 concept would not hold.</p>
Chris Lattner6e9057b2009-09-07 23:33:52 +00002322
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002323<pre class="doc_code">
Chris Lattner6e9057b2009-09-07 23:33:52 +00002324 %A = fdiv undef, %X
2325 %B = fdiv %X, undef
2326Safe:
2327 %A = undef
2328b: unreachable
2329</pre>
Chris Lattner6e9057b2009-09-07 23:33:52 +00002330
2331<p>These examples show the crucial difference between an <em>undefined
Bill Wendling1b383ba2010-10-27 01:07:41 +00002332 value</em> and <em>undefined behavior</em>. An undefined value (like
2333 '<tt>undef</tt>') is allowed to have an arbitrary bit-pattern. This means that
2334 the <tt>%A</tt> operation can be constant folded to '<tt>undef</tt>', because
2335 the '<tt>undef</tt>' could be an SNaN, and <tt>fdiv</tt> is not (currently)
2336 defined on SNaN's. However, in the second example, we can make a more
2337 aggressive assumption: because the <tt>undef</tt> is allowed to be an
2338 arbitrary value, we are allowed to assume that it could be zero. Since a
2339 divide by zero has <em>undefined behavior</em>, we are allowed to assume that
2340 the operation does not execute at all. This allows us to delete the divide and
2341 all code after it. Because the undefined operation "can't happen", the
2342 optimizer can assume that it occurs in dead code.</p>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00002343
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002344<pre class="doc_code">
Chris Lattner6e9057b2009-09-07 23:33:52 +00002345a: store undef -> %X
2346b: store %X -> undef
2347Safe:
2348a: &lt;deleted&gt;
2349b: unreachable
2350</pre>
Chris Lattner6e9057b2009-09-07 23:33:52 +00002351
Bill Wendling1b383ba2010-10-27 01:07:41 +00002352<p>These examples reiterate the <tt>fdiv</tt> example: a store <em>of</em> an
2353 undefined value can be assumed to not have any effect; we can assume that the
2354 value is overwritten with bits that happen to match what was already there.
2355 However, a store <em>to</em> an undefined location could clobber arbitrary
2356 memory, therefore, it has undefined behavior.</p>
Chris Lattner6e9057b2009-09-07 23:33:52 +00002357
Chris Lattnerc3f59762004-12-09 17:30:23 +00002358</div>
2359
2360<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002361<h3>
2362 <a name="trapvalues">Trap Values</a>
2363</h3>
2364
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002365<div>
Dan Gohmanfff6c532010-04-22 23:14:21 +00002366
Dan Gohmanc68ce062010-04-26 20:21:21 +00002367<p>Trap values are similar to <a href="#undefvalues">undef values</a>, however
Dan Gohmanfff6c532010-04-22 23:14:21 +00002368 instead of representing an unspecified bit pattern, they represent the
2369 fact that an instruction or constant expression which cannot evoke side
2370 effects has nevertheless detected a condition which results in undefined
Dan Gohmanc68ce062010-04-26 20:21:21 +00002371 behavior.</p>
Dan Gohmanfff6c532010-04-22 23:14:21 +00002372
Dan Gohman34b3d992010-04-28 00:49:41 +00002373<p>There is currently no way of representing a trap value in the IR; they
Dan Gohman855abed2010-05-03 14:51:43 +00002374 only exist when produced by operations such as
Dan Gohman34b3d992010-04-28 00:49:41 +00002375 <a href="#i_add"><tt>add</tt></a> with the <tt>nsw</tt> flag.</p>
Dan Gohmanae11c3f2010-04-26 23:36:52 +00002376
Dan Gohman34b3d992010-04-28 00:49:41 +00002377<p>Trap value behavior is defined in terms of value <i>dependence</i>:</p>
Dan Gohmanae11c3f2010-04-26 23:36:52 +00002378
Dan Gohman34b3d992010-04-28 00:49:41 +00002379<ul>
2380<li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
2381 their operands.</li>
2382
2383<li><a href="#i_phi"><tt>Phi</tt></a> nodes depend on the operand corresponding
2384 to their dynamic predecessor basic block.</li>
2385
2386<li>Function arguments depend on the corresponding actual argument values in
2387 the dynamic callers of their functions.</li>
2388
2389<li><a href="#i_call"><tt>Call</tt></a> instructions depend on the
2390 <a href="#i_ret"><tt>ret</tt></a> instructions that dynamically transfer
2391 control back to them.</li>
2392
Dan Gohmanb5328162010-05-03 14:55:22 +00002393<li><a href="#i_invoke"><tt>Invoke</tt></a> instructions depend on the
2394 <a href="#i_ret"><tt>ret</tt></a>, <a href="#i_unwind"><tt>unwind</tt></a>,
2395 or exception-throwing call instructions that dynamically transfer control
2396 back to them.</li>
2397
Dan Gohman34b3d992010-04-28 00:49:41 +00002398<li>Non-volatile loads and stores depend on the most recent stores to all of the
2399 referenced memory addresses, following the order in the IR
2400 (including loads and stores implied by intrinsics such as
2401 <a href="#int_memcpy"><tt>@llvm.memcpy</tt></a>.)</li>
2402
Dan Gohman7c24ff12010-05-03 14:59:34 +00002403<!-- TODO: In the case of multiple threads, this only applies if the store
2404 "happens-before" the load or store. -->
Dan Gohmanae11c3f2010-04-26 23:36:52 +00002405
Dan Gohman34b3d992010-04-28 00:49:41 +00002406<!-- TODO: floating-point exception state -->
Dan Gohmanae11c3f2010-04-26 23:36:52 +00002407
Dan Gohman34b3d992010-04-28 00:49:41 +00002408<li>An instruction with externally visible side effects depends on the most
2409 recent preceding instruction with externally visible side effects, following
Dan Gohmanff70fe42010-07-06 15:26:33 +00002410 the order in the IR. (This includes
2411 <a href="#volatile">volatile operations</a>.)</li>
Dan Gohmanfff6c532010-04-22 23:14:21 +00002412
Dan Gohmanb5328162010-05-03 14:55:22 +00002413<li>An instruction <i>control-depends</i> on a
2414 <a href="#terminators">terminator instruction</a>
2415 if the terminator instruction has multiple successors and the instruction
2416 is always executed when control transfers to one of the successors, and
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002417 may not be executed when control is transferred to another.</li>
Dan Gohman34b3d992010-04-28 00:49:41 +00002418
Dan Gohmanca4cac42011-04-12 23:05:59 +00002419<li>Additionally, an instruction also <i>control-depends</i> on a terminator
2420 instruction if the set of instructions it otherwise depends on would be
Chris Lattner7a2bdde2011-04-15 05:18:47 +00002421 different if the terminator had transferred control to a different
Dan Gohmanca4cac42011-04-12 23:05:59 +00002422 successor.</li>
2423
Dan Gohman34b3d992010-04-28 00:49:41 +00002424<li>Dependence is transitive.</li>
2425
2426</ul>
Dan Gohman34b3d992010-04-28 00:49:41 +00002427
2428<p>Whenever a trap value is generated, all values which depend on it evaluate
2429 to trap. If they have side effects, the evoke their side effects as if each
2430 operand with a trap value were undef. If they have externally-visible side
2431 effects, the behavior is undefined.</p>
2432
2433<p>Here are some examples:</p>
Dan Gohmanc30f6e12010-04-26 20:54:53 +00002434
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002435<pre class="doc_code">
Dan Gohmanae11c3f2010-04-26 23:36:52 +00002436entry:
2437 %trap = sub nuw i32 0, 1 ; Results in a trap value.
Dan Gohman34b3d992010-04-28 00:49:41 +00002438 %still_trap = and i32 %trap, 0 ; Whereas (and i32 undef, 0) would return 0.
2439 %trap_yet_again = getelementptr i32* @h, i32 %still_trap
2440 store i32 0, i32* %trap_yet_again ; undefined behavior
2441
2442 store i32 %trap, i32* @g ; Trap value conceptually stored to memory.
2443 %trap2 = load i32* @g ; Returns a trap value, not just undef.
2444
2445 volatile store i32 %trap, i32* @g ; External observation; undefined behavior.
2446
2447 %narrowaddr = bitcast i32* @g to i16*
2448 %wideaddr = bitcast i32* @g to i64*
2449 %trap3 = load 16* %narrowaddr ; Returns a trap value.
2450 %trap4 = load i64* %widaddr ; Returns a trap value.
2451
2452 %cmp = icmp i32 slt %trap, 0 ; Returns a trap value.
Dan Gohmanae11c3f2010-04-26 23:36:52 +00002453 %br i1 %cmp, %true, %end ; Branch to either destination.
2454
2455true:
Dan Gohman34b3d992010-04-28 00:49:41 +00002456 volatile store i32 0, i32* @g ; This is control-dependent on %cmp, so
2457 ; it has undefined behavior.
Dan Gohmanae11c3f2010-04-26 23:36:52 +00002458 br label %end
2459
2460end:
2461 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2462 ; Both edges into this PHI are
2463 ; control-dependent on %cmp, so this
Dan Gohman34b3d992010-04-28 00:49:41 +00002464 ; always results in a trap value.
Dan Gohmanae11c3f2010-04-26 23:36:52 +00002465
Dan Gohmanca4cac42011-04-12 23:05:59 +00002466 volatile store i32 0, i32* @g ; This would depend on the store in %true
2467 ; if %cmp is true, or the store in %entry
2468 ; otherwise, so this is undefined behavior.
2469
2470 %br i1 %cmp, %second_true, %second_end
2471 ; The same branch again, but this time the
2472 ; true block doesn't have side effects.
2473
2474second_true:
2475 ; No side effects!
2476 br label %end
2477
2478second_end:
2479 volatile store i32 0, i32* @g ; This time, the instruction always depends
2480 ; on the store in %end. Also, it is
2481 ; control-equivalent to %end, so this is
2482 ; well- defined (again, ignoring earlier
Dan Gohmanae11c3f2010-04-26 23:36:52 +00002483 ; undefined behavior in this example).
Dan Gohmanae11c3f2010-04-26 23:36:52 +00002484</pre>
Dan Gohmanfff6c532010-04-22 23:14:21 +00002485
Dan Gohmanfff6c532010-04-22 23:14:21 +00002486</div>
2487
2488<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002489<h3>
2490 <a name="blockaddress">Addresses of Basic Blocks</a>
2491</h3>
2492
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002493<div>
Chris Lattnerc6f44362009-10-27 21:01:34 +00002494
Chris Lattnercdfc9402009-11-01 01:27:45 +00002495<p><b><tt>blockaddress(@function, %block)</tt></b></p>
Chris Lattnerc6f44362009-10-27 21:01:34 +00002496
2497<p>The '<tt>blockaddress</tt>' constant computes the address of the specified
Chris Lattner2dfdf2a2009-10-27 21:49:40 +00002498 basic block in the specified function, and always has an i8* type. Taking
Chris Lattnercdfc9402009-11-01 01:27:45 +00002499 the address of the entry block is illegal.</p>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00002500
Chris Lattnerc6f44362009-10-27 21:01:34 +00002501<p>This value only has defined behavior when used as an operand to the
Bill Wendling1b383ba2010-10-27 01:07:41 +00002502 '<a href="#i_indirectbr"><tt>indirectbr</tt></a>' instruction, or for
2503 comparisons against null. Pointer equality tests between labels addresses
2504 results in undefined behavior &mdash; though, again, comparison against null
2505 is ok, and no label is equal to the null pointer. This may be passed around
2506 as an opaque pointer sized value as long as the bits are not inspected. This
2507 allows <tt>ptrtoint</tt> and arithmetic to be performed on these values so
2508 long as the original value is reconstituted before the <tt>indirectbr</tt>
2509 instruction.</p>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00002510
Bill Wendling1b383ba2010-10-27 01:07:41 +00002511<p>Finally, some targets may provide defined semantics when using the value as
2512 the operand to an inline assembly, but that is target specific.</p>
Chris Lattnerc6f44362009-10-27 21:01:34 +00002513
2514</div>
2515
2516
2517<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002518<h3>
2519 <a name="constantexprs">Constant Expressions</a>
2520</h3>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002521
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002522<div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002523
2524<p>Constant expressions are used to allow expressions involving other constants
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002525 to be used as constants. Constant expressions may be of
2526 any <a href="#t_firstclass">first class</a> type and may involve any LLVM
2527 operation that does not have side effects (e.g. load and call are not
Bill Wendling1b383ba2010-10-27 01:07:41 +00002528 supported). The following is the syntax for constant expressions:</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002529
2530<dl>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002531 <dt><b><tt>trunc (CST to TYPE)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002532 <dd>Truncate a constant to another type. The bit size of CST must be larger
2533 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002534
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002535 <dt><b><tt>zext (CST to TYPE)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002536 <dd>Zero extend a constant to another type. The bit size of CST must be
Duncan Sands28afd432010-07-13 12:06:14 +00002537 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002538
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002539 <dt><b><tt>sext (CST to TYPE)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002540 <dd>Sign extend a constant to another type. The bit size of CST must be
Duncan Sands28afd432010-07-13 12:06:14 +00002541 smaller than the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002542
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002543 <dt><b><tt>fptrunc (CST to TYPE)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002544 <dd>Truncate a floating point constant to another floating point type. The
2545 size of CST must be larger than the size of TYPE. Both types must be
2546 floating point.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002547
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002548 <dt><b><tt>fpext (CST to TYPE)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002549 <dd>Floating point extend a constant to another type. The size of CST must be
2550 smaller or equal to the size of TYPE. Both types must be floating
2551 point.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002552
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002553 <dt><b><tt>fptoui (CST to TYPE)</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002554 <dd>Convert a floating point constant to the corresponding unsigned integer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002555 constant. TYPE must be a scalar or vector integer type. CST must be of
2556 scalar or vector floating point type. Both CST and TYPE must be scalars,
2557 or vectors of the same number of elements. If the value won't fit in the
2558 integer type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002559
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002560 <dt><b><tt>fptosi (CST to TYPE)</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002561 <dd>Convert a floating point constant to the corresponding signed integer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002562 constant. TYPE must be a scalar or vector integer type. CST must be of
2563 scalar or vector floating point type. Both CST and TYPE must be scalars,
2564 or vectors of the same number of elements. If the value won't fit in the
2565 integer type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002566
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002567 <dt><b><tt>uitofp (CST to TYPE)</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002568 <dd>Convert an unsigned integer constant to the corresponding floating point
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002569 constant. TYPE must be a scalar or vector floating point type. CST must be
2570 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2571 vectors of the same number of elements. If the value won't fit in the
2572 floating point type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002573
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002574 <dt><b><tt>sitofp (CST to TYPE)</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002575 <dd>Convert a signed integer constant to the corresponding floating point
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002576 constant. TYPE must be a scalar or vector floating point type. CST must be
2577 of scalar or vector integer type. Both CST and TYPE must be scalars, or
2578 vectors of the same number of elements. If the value won't fit in the
2579 floating point type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002580
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002581 <dt><b><tt>ptrtoint (CST to TYPE)</tt></b></dt>
Reid Spencer5c0ef472006-11-11 23:08:07 +00002582 <dd>Convert a pointer typed constant to the corresponding integer constant
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002583 <tt>TYPE</tt> must be an integer type. <tt>CST</tt> must be of pointer
2584 type. The <tt>CST</tt> value is zero extended, truncated, or unchanged to
2585 make it fit in <tt>TYPE</tt>.</dd>
Reid Spencer5c0ef472006-11-11 23:08:07 +00002586
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002587 <dt><b><tt>inttoptr (CST to TYPE)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002588 <dd>Convert a integer constant to a pointer constant. TYPE must be a pointer
2589 type. CST must be of integer type. The CST value is zero extended,
2590 truncated, or unchanged to make it fit in a pointer size. This one is
2591 <i>really</i> dangerous!</dd>
Reid Spencer5c0ef472006-11-11 23:08:07 +00002592
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002593 <dt><b><tt>bitcast (CST to TYPE)</tt></b></dt>
Chris Lattner03bbad62009-02-28 18:27:03 +00002594 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2595 are the same as those for the <a href="#i_bitcast">bitcast
2596 instruction</a>.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002597
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002598 <dt><b><tt>getelementptr (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
2599 <dt><b><tt>getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)</tt></b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002600 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002601 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2602 instruction, the index list may have zero or more indexes, which are
2603 required to make sense for the type of "CSTPTR".</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002604
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002605 <dt><b><tt>select (COND, VAL1, VAL2)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002606 <dd>Perform the <a href="#i_select">select operation</a> on constants.</dd>
Reid Spencer01c42592006-12-04 19:23:19 +00002607
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002608 <dt><b><tt>icmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer01c42592006-12-04 19:23:19 +00002609 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2610
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002611 <dt><b><tt>fcmp COND (VAL1, VAL2)</tt></b></dt>
Reid Spencer01c42592006-12-04 19:23:19 +00002612 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002613
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002614 <dt><b><tt>extractelement (VAL, IDX)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002615 <dd>Perform the <a href="#i_extractelement">extractelement operation</a> on
2616 constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002617
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002618 <dt><b><tt>insertelement (VAL, ELT, IDX)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002619 <dd>Perform the <a href="#i_insertelement">insertelement operation</a> on
2620 constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00002621
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002622 <dt><b><tt>shufflevector (VEC1, VEC2, IDXMASK)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002623 <dd>Perform the <a href="#i_shufflevector">shufflevector operation</a> on
2624 constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00002625
Nick Lewycky9e130ce2010-05-29 06:44:15 +00002626 <dt><b><tt>extractvalue (VAL, IDX0, IDX1, ...)</tt></b></dt>
2627 <dd>Perform the <a href="#i_extractvalue">extractvalue operation</a> on
2628 constants. The index list is interpreted in a similar manner as indices in
2629 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2630 index value must be specified.</dd>
2631
2632 <dt><b><tt>insertvalue (VAL, ELT, IDX0, IDX1, ...)</tt></b></dt>
2633 <dd>Perform the <a href="#i_insertvalue">insertvalue operation</a> on
2634 constants. The index list is interpreted in a similar manner as indices in
2635 a '<a href="#i_getelementptr">getelementptr</a>' operation. At least one
2636 index value must be specified.</dd>
2637
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00002638 <dt><b><tt>OPCODE (LHS, RHS)</tt></b></dt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002639 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2640 be any of the <a href="#binaryops">binary</a>
2641 or <a href="#bitwiseops">bitwise binary</a> operations. The constraints
2642 on operands are the same as those for the corresponding instruction
2643 (e.g. no bitwise operations on floating point values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002644</dl>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002645
Chris Lattnerc3f59762004-12-09 17:30:23 +00002646</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00002647
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002648</div>
2649
Chris Lattner00950542001-06-06 20:29:01 +00002650<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002651<h2><a name="othervalues">Other Values</a></h2>
Chris Lattnere87d6532006-01-25 23:47:57 +00002652<!-- *********************************************************************** -->
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002653<div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002654<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002655<h3>
Chris Lattnere87d6532006-01-25 23:47:57 +00002656<a name="inlineasm">Inline Assembler Expressions</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002657</h3>
Chris Lattnere87d6532006-01-25 23:47:57 +00002658
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002659<div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002660
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002661<p>LLVM supports inline assembler expressions (as opposed
2662 to <a href="#moduleasm"> Module-Level Inline Assembly</a>) through the use of
2663 a special value. This value represents the inline assembler as a string
2664 (containing the instructions to emit), a list of operand constraints (stored
Dale Johannesen09fed252009-10-13 21:56:55 +00002665 as a string), a flag that indicates whether or not the inline asm
Dale Johannesen8ba2d5b2009-10-21 23:28:00 +00002666 expression has side effects, and a flag indicating whether the function
2667 containing the asm needs to align its stack conservatively. An example
2668 inline assembler expression is:</p>
Chris Lattnere87d6532006-01-25 23:47:57 +00002669
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002670<pre class="doc_code">
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002671i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00002672</pre>
2673
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002674<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
2675 a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
2676 have:</p>
Chris Lattnere87d6532006-01-25 23:47:57 +00002677
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002678<pre class="doc_code">
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002679%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00002680</pre>
2681
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002682<p>Inline asms with side effects not visible in the constraint list must be
2683 marked as having side effects. This is done through the use of the
2684 '<tt>sideeffect</tt>' keyword, like so:</p>
Chris Lattnere87d6532006-01-25 23:47:57 +00002685
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002686<pre class="doc_code">
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002687call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00002688</pre>
2689
Dale Johannesen8ba2d5b2009-10-21 23:28:00 +00002690<p>In some cases inline asms will contain code that will not work unless the
2691 stack is aligned in some way, such as calls or SSE instructions on x86,
2692 yet will not contain code that does that alignment within the asm.
2693 The compiler should make conservative assumptions about what the asm might
2694 contain and should generate its usual stack alignment code in the prologue
2695 if the '<tt>alignstack</tt>' keyword is present:</p>
Dale Johannesen09fed252009-10-13 21:56:55 +00002696
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002697<pre class="doc_code">
Dale Johannesen8ba2d5b2009-10-21 23:28:00 +00002698call void asm alignstack "eieio", ""()
Dale Johannesen09fed252009-10-13 21:56:55 +00002699</pre>
Dale Johannesen09fed252009-10-13 21:56:55 +00002700
2701<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
2702 first.</p>
2703
Chris Lattnere87d6532006-01-25 23:47:57 +00002704<p>TODO: The format of the asm and constraints string still need to be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002705 documented here. Constraints on what can be done (e.g. duplication, moving,
2706 etc need to be documented). This is probably best done by reference to
2707 another document that covers inline asm from a holistic perspective.</p>
Chris Lattnercf9a4152010-04-07 05:38:05 +00002708
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002709<h4>
Chris Lattnercf9a4152010-04-07 05:38:05 +00002710<a name="inlineasm_md">Inline Asm Metadata</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002711</h4>
Chris Lattnercf9a4152010-04-07 05:38:05 +00002712
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002713<div>
Chris Lattnercf9a4152010-04-07 05:38:05 +00002714
2715<p>The call instructions that wrap inline asm nodes may have a "!srcloc" MDNode
Chris Lattnerce1b9ad2010-11-17 08:20:42 +00002716 attached to it that contains a list of constant integers. If present, the
2717 code generator will use the integer as the location cookie value when report
Chris Lattnercf9a4152010-04-07 05:38:05 +00002718 errors through the LLVMContext error reporting mechanisms. This allows a
Dan Gohman1c70c002010-04-28 00:36:01 +00002719 front-end to correlate backend errors that occur with inline asm back to the
Chris Lattnercf9a4152010-04-07 05:38:05 +00002720 source code that produced it. For example:</p>
2721
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002722<pre class="doc_code">
Chris Lattnercf9a4152010-04-07 05:38:05 +00002723call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
2724...
2725!42 = !{ i32 1234567 }
2726</pre>
Chris Lattnercf9a4152010-04-07 05:38:05 +00002727
2728<p>It is up to the front-end to make sense of the magic numbers it places in the
Chris Lattnerce1b9ad2010-11-17 08:20:42 +00002729 IR. If the MDNode contains multiple constants, the code generator will use
2730 the one that corresponds to the line of the asm that the error occurs on.</p>
Chris Lattnere87d6532006-01-25 23:47:57 +00002731
2732</div>
2733
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002734</div>
2735
Chris Lattnere6a5ddd2010-01-15 21:50:19 +00002736<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002737<h3>
2738 <a name="metadata">Metadata Nodes and Metadata Strings</a>
2739</h3>
Chris Lattnere6a5ddd2010-01-15 21:50:19 +00002740
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002741<div>
Chris Lattnere6a5ddd2010-01-15 21:50:19 +00002742
2743<p>LLVM IR allows metadata to be attached to instructions in the program that
2744 can convey extra information about the code to the optimizers and code
2745 generator. One example application of metadata is source-level debug
2746 information. There are two metadata primitives: strings and nodes. All
2747 metadata has the <tt>metadata</tt> type and is identified in syntax by a
2748 preceding exclamation point ('<tt>!</tt>').</p>
2749
2750<p>A metadata string is a string surrounded by double quotes. It can contain
2751 any character by escaping non-printable characters with "\xx" where "xx" is
2752 the two digit hex code. For example: "<tt>!"test\00"</tt>".</p>
2753
2754<p>Metadata nodes are represented with notation similar to structure constants
2755 (a comma separated list of elements, surrounded by braces and preceded by an
2756 exclamation point). For example: "<tt>!{ metadata !"test\00", i32
2757 10}</tt>". Metadata nodes can have any values as their operand.</p>
2758
2759<p>A <a href="#namedmetadatastructure">named metadata</a> is a collection of
2760 metadata nodes, which can be looked up in the module symbol table. For
2761 example: "<tt>!foo = metadata !{!4, !3}</tt>".
2762
Devang Patele1d50cd2010-03-04 23:44:48 +00002763<p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt>
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002764 function is using two metadata arguments.</p>
Devang Patele1d50cd2010-03-04 23:44:48 +00002765
Bill Wendling9ff5de92011-03-02 02:17:11 +00002766<div class="doc_code">
2767<pre>
2768call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2769</pre>
2770</div>
Devang Patele1d50cd2010-03-04 23:44:48 +00002771
2772<p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00002773 attached with <tt>add</tt> instruction using <tt>!dbg</tt> identifier.</p>
Devang Patele1d50cd2010-03-04 23:44:48 +00002774
Bill Wendling9ff5de92011-03-02 02:17:11 +00002775<div class="doc_code">
2776<pre>
2777%indvar.next = add i64 %indvar, 1, !dbg !21
2778</pre>
2779</div>
2780
Chris Lattnere6a5ddd2010-01-15 21:50:19 +00002781</div>
2782
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002783</div>
Chris Lattner857755c2009-07-20 05:55:19 +00002784
2785<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002786<h2>
Chris Lattner857755c2009-07-20 05:55:19 +00002787 <a name="intrinsic_globals">Intrinsic Global Variables</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002788</h2>
Chris Lattner857755c2009-07-20 05:55:19 +00002789<!-- *********************************************************************** -->
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002790<div>
Chris Lattner857755c2009-07-20 05:55:19 +00002791<p>LLVM has a number of "magic" global variables that contain data that affect
2792code generation or other IR semantics. These are documented here. All globals
Chris Lattner401e10c2009-07-20 06:14:25 +00002793of this sort should have a section specified as "<tt>llvm.metadata</tt>". This
2794section and all globals that start with "<tt>llvm.</tt>" are reserved for use
2795by LLVM.</p>
Chris Lattner857755c2009-07-20 05:55:19 +00002796
2797<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002798<h3>
Chris Lattner857755c2009-07-20 05:55:19 +00002799<a name="intg_used">The '<tt>llvm.used</tt>' Global Variable</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002800</h3>
Chris Lattner857755c2009-07-20 05:55:19 +00002801
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002802<div>
Chris Lattner857755c2009-07-20 05:55:19 +00002803
2804<p>The <tt>@llvm.used</tt> global is an array with i8* element type which has <a
2805href="#linkage_appending">appending linkage</a>. This array contains a list of
2806pointers to global variables and functions which may optionally have a pointer
2807cast formed of bitcast or getelementptr. For example, a legal use of it is:</p>
2808
2809<pre>
2810 @X = global i8 4
2811 @Y = global i32 123
2812
2813 @llvm.used = appending global [2 x i8*] [
2814 i8* @X,
2815 i8* bitcast (i32* @Y to i8*)
2816 ], section "llvm.metadata"
2817</pre>
2818
2819<p>If a global variable appears in the <tt>@llvm.used</tt> list, then the
2820compiler, assembler, and linker are required to treat the symbol as if there is
2821a reference to the global that it cannot see. For example, if a variable has
2822internal linkage and no references other than that from the <tt>@llvm.used</tt>
2823list, it cannot be deleted. This is commonly used to represent references from
2824inline asms and other things the compiler cannot "see", and corresponds to
2825"attribute((used))" in GNU C.</p>
2826
2827<p>On some targets, the code generator must emit a directive to the assembler or
2828object file to prevent the assembler and linker from molesting the symbol.</p>
2829
2830</div>
2831
2832<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002833<h3>
2834 <a name="intg_compiler_used">
2835 The '<tt>llvm.compiler.used</tt>' Global Variable
2836 </a>
2837</h3>
Chris Lattner401e10c2009-07-20 06:14:25 +00002838
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002839<div>
Chris Lattner401e10c2009-07-20 06:14:25 +00002840
2841<p>The <tt>@llvm.compiler.used</tt> directive is the same as the
2842<tt>@llvm.used</tt> directive, except that it only prevents the compiler from
2843touching the symbol. On targets that support it, this allows an intelligent
2844linker to optimize references to the symbol without being impeded as it would be
2845by <tt>@llvm.used</tt>.</p>
2846
2847<p>This is a rare construct that should only be used in rare circumstances, and
2848should not be exposed to source languages.</p>
2849
2850</div>
2851
2852<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002853<h3>
Chris Lattner857755c2009-07-20 05:55:19 +00002854<a name="intg_global_ctors">The '<tt>llvm.global_ctors</tt>' Global Variable</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002855</h3>
Chris Lattner857755c2009-07-20 05:55:19 +00002856
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002857<div>
David Chisnalle31e9962010-04-30 19:23:49 +00002858<pre>
2859%0 = type { i32, void ()* }
David Chisnall27195a52010-04-30 19:27:35 +00002860@llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
David Chisnalle31e9962010-04-30 19:23:49 +00002861</pre>
2862<p>The <tt>@llvm.global_ctors</tt> array contains a list of constructor functions and associated priorities. The functions referenced by this array will be called in ascending order of priority (i.e. lowest first) when the module is loaded. The order of functions with the same priority is not defined.
2863</p>
Chris Lattner857755c2009-07-20 05:55:19 +00002864
2865</div>
2866
2867<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002868<h3>
Chris Lattner857755c2009-07-20 05:55:19 +00002869<a name="intg_global_dtors">The '<tt>llvm.global_dtors</tt>' Global Variable</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002870</h3>
Chris Lattner857755c2009-07-20 05:55:19 +00002871
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002872<div>
David Chisnalle31e9962010-04-30 19:23:49 +00002873<pre>
2874%0 = type { i32, void ()* }
David Chisnall27195a52010-04-30 19:27:35 +00002875@llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
David Chisnalle31e9962010-04-30 19:23:49 +00002876</pre>
Chris Lattner857755c2009-07-20 05:55:19 +00002877
David Chisnalle31e9962010-04-30 19:23:49 +00002878<p>The <tt>@llvm.global_dtors</tt> array contains a list of destructor functions and associated priorities. The functions referenced by this array will be called in descending order of priority (i.e. highest first) when the module is loaded. The order of functions with the same priority is not defined.
2879</p>
Chris Lattner857755c2009-07-20 05:55:19 +00002880
2881</div>
2882
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002883</div>
Chris Lattner857755c2009-07-20 05:55:19 +00002884
Chris Lattnere87d6532006-01-25 23:47:57 +00002885<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002886<h2><a name="instref">Instruction Reference</a></h2>
Chris Lattner261efe92003-11-25 01:02:51 +00002887<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00002888
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002889<div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002890
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002891<p>The LLVM instruction set consists of several different classifications of
2892 instructions: <a href="#terminators">terminator
2893 instructions</a>, <a href="#binaryops">binary instructions</a>,
2894 <a href="#bitwiseops">bitwise binary instructions</a>,
2895 <a href="#memoryops">memory instructions</a>, and
2896 <a href="#otherops">other instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002897
Chris Lattner00950542001-06-06 20:29:01 +00002898<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002899<h3>
2900 <a name="terminators">Terminator Instructions</a>
2901</h3>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002902
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002903<div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002904
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002905<p>As mentioned <a href="#functionstructure">previously</a>, every basic block
2906 in a program ends with a "Terminator" instruction, which indicates which
2907 block should be executed after the current block is finished. These
2908 terminator instructions typically yield a '<tt>void</tt>' value: they produce
2909 control flow, not values (the one exception being the
2910 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
2911
Duncan Sands83821c82010-04-15 20:35:54 +00002912<p>There are seven different terminator instructions: the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002913 '<a href="#i_ret"><tt>ret</tt></a>' instruction, the
2914 '<a href="#i_br"><tt>br</tt></a>' instruction, the
2915 '<a href="#i_switch"><tt>switch</tt></a>' instruction, the
Bill Wendling21c346e2009-11-02 00:25:26 +00002916 '<a href="#i_indirectbr">'<tt>indirectbr</tt></a>' Instruction, the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002917 '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the
2918 '<a href="#i_unwind"><tt>unwind</tt></a>' instruction, and the
2919 '<a href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002920
Chris Lattner00950542001-06-06 20:29:01 +00002921<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002922<h4>
2923 <a name="i_ret">'<tt>ret</tt>' Instruction</a>
2924</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002925
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002926<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002927
Chris Lattner00950542001-06-06 20:29:01 +00002928<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002929<pre>
2930 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002931 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00002932</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002933
Chris Lattner00950542001-06-06 20:29:01 +00002934<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002935<p>The '<tt>ret</tt>' instruction is used to return control flow (and optionally
2936 a value) from a function back to the caller.</p>
2937
2938<p>There are two forms of the '<tt>ret</tt>' instruction: one that returns a
2939 value and then causes control flow, and one that just causes control flow to
2940 occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002941
Chris Lattner00950542001-06-06 20:29:01 +00002942<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002943<p>The '<tt>ret</tt>' instruction optionally accepts a single argument, the
2944 return value. The type of the return value must be a
2945 '<a href="#t_firstclass">first class</a>' type.</p>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002946
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002947<p>A function is not <a href="#wellformed">well formed</a> if it it has a
2948 non-void return type and contains a '<tt>ret</tt>' instruction with no return
2949 value or a return value with a type that does not match its type, or if it
2950 has a void return type and contains a '<tt>ret</tt>' instruction with a
2951 return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002952
Chris Lattner00950542001-06-06 20:29:01 +00002953<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002954<p>When the '<tt>ret</tt>' instruction is executed, control flow returns back to
2955 the calling function's context. If the caller is a
2956 "<a href="#i_call"><tt>call</tt></a>" instruction, execution continues at the
2957 instruction after the call. If the caller was an
2958 "<a href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues at
2959 the beginning of the "normal" destination block. If the instruction returns
2960 a value, that value shall set the call or invoke instruction's return
2961 value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002962
Chris Lattner00950542001-06-06 20:29:01 +00002963<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002964<pre>
2965 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002966 ret void <i>; Return from a void function</i>
Bill Wendling0a4bbbf2009-02-28 22:12:54 +00002967 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00002968</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002969
Misha Brukman9d0919f2003-11-08 01:05:38 +00002970</div>
Chris Lattner00950542001-06-06 20:29:01 +00002971<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00002972<h4>
2973 <a name="i_br">'<tt>br</tt>' Instruction</a>
2974</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002975
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00002976<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002977
Chris Lattner00950542001-06-06 20:29:01 +00002978<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002979<pre>
2980 br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00002981</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002982
Chris Lattner00950542001-06-06 20:29:01 +00002983<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002984<p>The '<tt>br</tt>' instruction is used to cause control flow to transfer to a
2985 different basic block in the current function. There are two forms of this
2986 instruction, corresponding to a conditional branch and an unconditional
2987 branch.</p>
2988
Chris Lattner00950542001-06-06 20:29:01 +00002989<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002990<p>The conditional branch form of the '<tt>br</tt>' instruction takes a single
2991 '<tt>i1</tt>' value and two '<tt>label</tt>' values. The unconditional form
2992 of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>' value as a
2993 target.</p>
2994
Chris Lattner00950542001-06-06 20:29:01 +00002995<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002996<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Bill Wendlinge910b4c2009-07-20 02:29:24 +00002997 argument is evaluated. If the value is <tt>true</tt>, control flows to the
2998 '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2999 control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
3000
Chris Lattner00950542001-06-06 20:29:01 +00003001<h5>Example:</h5>
Bill Wendlingc39e3e02009-07-20 02:39:26 +00003002<pre>
3003Test:
3004 %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b
3005 br i1 %cond, label %IfEqual, label %IfUnequal
3006IfEqual:
3007 <a href="#i_ret">ret</a> i32 1
3008IfUnequal:
3009 <a href="#i_ret">ret</a> i32 0
3010</pre>
3011
Misha Brukman9d0919f2003-11-08 01:05:38 +00003012</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003013
Chris Lattner00950542001-06-06 20:29:01 +00003014<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003015<h4>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003016 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003017</h4>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003018
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003019<div>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003020
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003021<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003022<pre>
3023 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
3024</pre>
3025
Chris Lattner00950542001-06-06 20:29:01 +00003026<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003027<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003028 several different places. It is a generalization of the '<tt>br</tt>'
3029 instruction, allowing a branch to occur to one of many possible
3030 destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003031
Chris Lattner00950542001-06-06 20:29:01 +00003032<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003033<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003034 comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination,
3035 and an array of pairs of comparison value constants and '<tt>label</tt>'s.
3036 The table is not allowed to contain duplicate constant entries.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003037
Chris Lattner00950542001-06-06 20:29:01 +00003038<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003039<p>The <tt>switch</tt> instruction specifies a table of values and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003040 destinations. When the '<tt>switch</tt>' instruction is executed, this table
3041 is searched for the given value. If the value is found, control flow is
Benjamin Kramer8040cd32009-10-12 14:46:08 +00003042 transferred to the corresponding destination; otherwise, control flow is
3043 transferred to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003044
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003045<h5>Implementation:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003046<p>Depending on properties of the target machine and the particular
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003047 <tt>switch</tt> instruction, this instruction may be code generated in
3048 different ways. For example, it could be generated as a series of chained
3049 conditional branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003050
3051<h5>Example:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003052<pre>
3053 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003054 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman2a08c532009-01-04 23:44:43 +00003055 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003056
3057 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003058 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00003059
3060 <i>; Implement a jump table:</i>
Dan Gohman2a08c532009-01-04 23:44:43 +00003061 switch i32 %val, label %otherwise [ i32 0, label %onzero
3062 i32 1, label %onone
3063 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00003064</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003065
Misha Brukman9d0919f2003-11-08 01:05:38 +00003066</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003067
Chris Lattnerf9be95f2009-10-27 19:13:16 +00003068
3069<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003070<h4>
Chris Lattnerab21db72009-10-28 00:19:10 +00003071 <a name="i_indirectbr">'<tt>indirectbr</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003072</h4>
Chris Lattnerf9be95f2009-10-27 19:13:16 +00003073
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003074<div>
Chris Lattnerf9be95f2009-10-27 19:13:16 +00003075
3076<h5>Syntax:</h5>
3077<pre>
Chris Lattnerab21db72009-10-28 00:19:10 +00003078 indirectbr &lt;somety&gt;* &lt;address&gt;, [ label &lt;dest1&gt;, label &lt;dest2&gt;, ... ]
Chris Lattnerf9be95f2009-10-27 19:13:16 +00003079</pre>
3080
3081<h5>Overview:</h5>
3082
Chris Lattnerab21db72009-10-28 00:19:10 +00003083<p>The '<tt>indirectbr</tt>' instruction implements an indirect branch to a label
Chris Lattnerf9be95f2009-10-27 19:13:16 +00003084 within the current function, whose address is specified by
Chris Lattnerc6f44362009-10-27 21:01:34 +00003085 "<tt>address</tt>". Address must be derived from a <a
3086 href="#blockaddress">blockaddress</a> constant.</p>
Chris Lattnerf9be95f2009-10-27 19:13:16 +00003087
3088<h5>Arguments:</h5>
3089
3090<p>The '<tt>address</tt>' argument is the address of the label to jump to. The
3091 rest of the arguments indicate the full set of possible destinations that the
3092 address may point to. Blocks are allowed to occur multiple times in the
3093 destination list, though this isn't particularly useful.</p>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003094
Chris Lattnerf9be95f2009-10-27 19:13:16 +00003095<p>This destination list is required so that dataflow analysis has an accurate
3096 understanding of the CFG.</p>
3097
3098<h5>Semantics:</h5>
3099
3100<p>Control transfers to the block specified in the address argument. All
3101 possible destination blocks must be listed in the label list, otherwise this
3102 instruction has undefined behavior. This implies that jumps to labels
3103 defined in other functions have undefined behavior as well.</p>
3104
3105<h5>Implementation:</h5>
3106
3107<p>This is typically implemented with a jump through a register.</p>
3108
3109<h5>Example:</h5>
3110<pre>
Chris Lattnerab21db72009-10-28 00:19:10 +00003111 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
Chris Lattnerf9be95f2009-10-27 19:13:16 +00003112</pre>
3113
3114</div>
3115
3116
Chris Lattner00950542001-06-06 20:29:01 +00003117<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003118<h4>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003119 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003120</h4>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003121
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003122<div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003123
Chris Lattner00950542001-06-06 20:29:01 +00003124<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003125<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00003126 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00003127 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003128</pre>
3129
Chris Lattner6536cfe2002-05-06 22:08:29 +00003130<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003131<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003132 function, with the possibility of control flow transfer to either the
3133 '<tt>normal</tt>' label or the '<tt>exception</tt>' label. If the callee
3134 function returns with the "<tt><a href="#i_ret">ret</a></tt>" instruction,
3135 control flow will return to the "normal" label. If the callee (or any
3136 indirect callees) returns with the "<a href="#i_unwind"><tt>unwind</tt></a>"
3137 instruction, control is interrupted and continued at the dynamically nearest
3138 "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003139
Chris Lattner00950542001-06-06 20:29:01 +00003140<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003141<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003142
Chris Lattner00950542001-06-06 20:29:01 +00003143<ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003144 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
3145 convention</a> the call should use. If none is specified, the call
3146 defaults to using C calling conventions.</li>
Devang Patelf642f472008-10-06 18:50:38 +00003147
3148 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003149 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
3150 '<tt>inreg</tt>' attributes are valid here.</li>
Devang Patelf642f472008-10-06 18:50:38 +00003151
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003152 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003153 function value being invoked. In most cases, this is a direct function
3154 invocation, but indirect <tt>invoke</tt>s are just as possible, branching
3155 off an arbitrary pointer to function value.</li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003156
3157 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003158 function to be invoked. </li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003159
3160 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner0724fbd2010-03-02 06:36:51 +00003161 signature argument types and parameter attributes. All arguments must be
3162 of <a href="#t_firstclass">first class</a> type. If the function
3163 signature indicates the function accepts a variable number of arguments,
3164 the extra arguments can be specified.</li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003165
3166 <li>'<tt>normal label</tt>': the label reached when the called function
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003167 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003168
3169 <li>'<tt>exception label</tt>': the label reached when a callee returns with
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003170 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003171
Devang Patel307e8ab2008-10-07 17:48:33 +00003172 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003173 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
3174 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00003175</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003176
Chris Lattner00950542001-06-06 20:29:01 +00003177<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003178<p>This instruction is designed to operate as a standard
3179 '<tt><a href="#i_call">call</a></tt>' instruction in most regards. The
3180 primary difference is that it establishes an association with a label, which
3181 is used by the runtime library to unwind the stack.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003182
3183<p>This instruction is used in languages with destructors to ensure that proper
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003184 cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
3185 exception. Additionally, this is important for implementation of
3186 '<tt>catch</tt>' clauses in high-level languages that support them.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003187
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003188<p>For the purposes of the SSA form, the definition of the value returned by the
3189 '<tt>invoke</tt>' instruction is deemed to occur on the edge from the current
3190 block to the "normal" label. If the callee unwinds then no return value is
3191 available.</p>
Dan Gohmanf96a4992009-05-22 21:47:08 +00003192
Chris Lattnerdf7a6802010-01-15 18:08:37 +00003193<p>Note that the code generator does not yet completely support unwind, and
3194that the invoke/unwind semantics are likely to change in future versions.</p>
3195
Chris Lattner00950542001-06-06 20:29:01 +00003196<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003197<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00003198 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003199 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00003200 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003201 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00003202</pre>
Chris Lattner35eca582004-10-16 18:04:13 +00003203
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003204</div>
Chris Lattner35eca582004-10-16 18:04:13 +00003205
Chris Lattner27f71f22003-09-03 00:41:47 +00003206<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00003207
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003208<h4>
3209 <a name="i_unwind">'<tt>unwind</tt>' Instruction</a>
3210</h4>
Chris Lattner35eca582004-10-16 18:04:13 +00003211
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003212<div>
Chris Lattner35eca582004-10-16 18:04:13 +00003213
Chris Lattner27f71f22003-09-03 00:41:47 +00003214<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00003215<pre>
3216 unwind
3217</pre>
3218
Chris Lattner27f71f22003-09-03 00:41:47 +00003219<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00003220<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003221 at the first callee in the dynamic call stack which used
3222 an <a href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call.
3223 This is primarily used to implement exception handling.</p>
Chris Lattner35eca582004-10-16 18:04:13 +00003224
Chris Lattner27f71f22003-09-03 00:41:47 +00003225<h5>Semantics:</h5>
Chris Lattner72ed2002008-04-19 21:01:16 +00003226<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003227 immediately halt. The dynamic call stack is then searched for the
3228 first <a href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack.
3229 Once found, execution continues at the "exceptional" destination block
3230 specified by the <tt>invoke</tt> instruction. If there is no <tt>invoke</tt>
3231 instruction in the dynamic call chain, undefined behavior results.</p>
3232
Chris Lattnerdf7a6802010-01-15 18:08:37 +00003233<p>Note that the code generator does not yet completely support unwind, and
3234that the invoke/unwind semantics are likely to change in future versions.</p>
3235
Misha Brukman9d0919f2003-11-08 01:05:38 +00003236</div>
Chris Lattner35eca582004-10-16 18:04:13 +00003237
3238<!-- _______________________________________________________________________ -->
3239
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003240<h4>
3241 <a name="i_unreachable">'<tt>unreachable</tt>' Instruction</a>
3242</h4>
Chris Lattner35eca582004-10-16 18:04:13 +00003243
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003244<div>
Chris Lattner35eca582004-10-16 18:04:13 +00003245
3246<h5>Syntax:</h5>
3247<pre>
3248 unreachable
3249</pre>
3250
3251<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00003252<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003253 instruction is used to inform the optimizer that a particular portion of the
3254 code is not reachable. This can be used to indicate that the code after a
3255 no-return function cannot be reached, and other facts.</p>
Chris Lattner35eca582004-10-16 18:04:13 +00003256
3257<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00003258<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003259
Chris Lattner35eca582004-10-16 18:04:13 +00003260</div>
3261
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003262</div>
3263
Chris Lattner00950542001-06-06 20:29:01 +00003264<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003265<h3>
3266 <a name="binaryops">Binary Operations</a>
3267</h3>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003268
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003269<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003270
3271<p>Binary operators are used to do most of the computation in a program. They
3272 require two operands of the same type, execute an operation on them, and
3273 produce a single value. The operands might represent multiple data, as is
3274 the case with the <a href="#t_vector">vector</a> data type. The result value
3275 has the same type as its operands.</p>
3276
Misha Brukman9d0919f2003-11-08 01:05:38 +00003277<p>There are several different binary operators:</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003278
Chris Lattner00950542001-06-06 20:29:01 +00003279<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003280<h4>
Chris Lattner5568e942008-05-20 20:48:21 +00003281 <a name="i_add">'<tt>add</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003282</h4>
Chris Lattner5568e942008-05-20 20:48:21 +00003283
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003284<div>
Chris Lattner5568e942008-05-20 20:48:21 +00003285
Chris Lattner00950542001-06-06 20:29:01 +00003286<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003287<pre>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003288 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanfdfca792009-09-02 17:31:42 +00003289 &lt;result&gt; = add nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3290 &lt;result&gt; = add nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3291 &lt;result&gt; = add nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003292</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003293
Chris Lattner00950542001-06-06 20:29:01 +00003294<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003295<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003296
Chris Lattner00950542001-06-06 20:29:01 +00003297<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003298<p>The two arguments to the '<tt>add</tt>' instruction must
3299 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3300 integer values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003301
Chris Lattner00950542001-06-06 20:29:01 +00003302<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003303<p>The value produced is the integer sum of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003304
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003305<p>If the sum has unsigned overflow, the result returned is the mathematical
3306 result modulo 2<sup>n</sup>, where n is the bit width of the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003307
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003308<p>Because LLVM integers use a two's complement representation, this instruction
3309 is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003310
Dan Gohman08d012e2009-07-22 22:44:56 +00003311<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3312 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3313 <tt>nsw</tt> keywords are present, the result value of the <tt>add</tt>
Dan Gohmanfff6c532010-04-22 23:14:21 +00003314 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3315 respectively, occurs.</p>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003316
Chris Lattner00950542001-06-06 20:29:01 +00003317<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003318<pre>
3319 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00003320</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003321
Misha Brukman9d0919f2003-11-08 01:05:38 +00003322</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003323
Chris Lattner00950542001-06-06 20:29:01 +00003324<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003325<h4>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003326 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003327</h4>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003328
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003329<div>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003330
3331<h5>Syntax:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003332<pre>
3333 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3334</pre>
3335
3336<h5>Overview:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003337<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
3338
3339<h5>Arguments:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003340<p>The two arguments to the '<tt>fadd</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003341 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3342 floating point values. Both arguments must have identical types.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003343
3344<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003345<p>The value produced is the floating point sum of the two operands.</p>
3346
3347<h5>Example:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003348<pre>
3349 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
3350</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003351
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003352</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003353
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003354<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003355<h4>
Chris Lattner5568e942008-05-20 20:48:21 +00003356 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003357</h4>
Chris Lattner5568e942008-05-20 20:48:21 +00003358
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003359<div>
Chris Lattner5568e942008-05-20 20:48:21 +00003360
Chris Lattner00950542001-06-06 20:29:01 +00003361<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003362<pre>
Dan Gohman08d012e2009-07-22 22:44:56 +00003363 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanfdfca792009-09-02 17:31:42 +00003364 &lt;result&gt; = sub nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3365 &lt;result&gt; = sub nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3366 &lt;result&gt; = sub nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003367</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003368
Chris Lattner00950542001-06-06 20:29:01 +00003369<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003370<p>The '<tt>sub</tt>' instruction returns the difference of its two
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003371 operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003372
3373<p>Note that the '<tt>sub</tt>' instruction is used to represent the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003374 '<tt>neg</tt>' instruction present in most other intermediate
3375 representations.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003376
Chris Lattner00950542001-06-06 20:29:01 +00003377<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003378<p>The two arguments to the '<tt>sub</tt>' instruction must
3379 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3380 integer values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003381
Chris Lattner00950542001-06-06 20:29:01 +00003382<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003383<p>The value produced is the integer difference of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003384
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003385<p>If the difference has unsigned overflow, the result returned is the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003386 mathematical result modulo 2<sup>n</sup>, where n is the bit width of the
3387 result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003388
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003389<p>Because LLVM integers use a two's complement representation, this instruction
3390 is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003391
Dan Gohman08d012e2009-07-22 22:44:56 +00003392<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3393 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3394 <tt>nsw</tt> keywords are present, the result value of the <tt>sub</tt>
Dan Gohmanfff6c532010-04-22 23:14:21 +00003395 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3396 respectively, occurs.</p>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003397
Chris Lattner00950542001-06-06 20:29:01 +00003398<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00003399<pre>
3400 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003401 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00003402</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003403
Misha Brukman9d0919f2003-11-08 01:05:38 +00003404</div>
Chris Lattner5568e942008-05-20 20:48:21 +00003405
Chris Lattner00950542001-06-06 20:29:01 +00003406<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003407<h4>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003408 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003409</h4>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003410
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003411<div>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003412
3413<h5>Syntax:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003414<pre>
3415 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3416</pre>
3417
3418<h5>Overview:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003419<p>The '<tt>fsub</tt>' instruction returns the difference of its two
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003420 operands.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003421
3422<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003423 '<tt>fneg</tt>' instruction present in most other intermediate
3424 representations.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003425
3426<h5>Arguments:</h5>
Bill Wendlingd9fe2982009-07-20 02:32:41 +00003427<p>The two arguments to the '<tt>fsub</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003428 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3429 floating point values. Both arguments must have identical types.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003430
3431<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003432<p>The value produced is the floating point difference of the two operands.</p>
3433
3434<h5>Example:</h5>
3435<pre>
3436 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
3437 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
3438</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003439
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003440</div>
3441
3442<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003443<h4>
Chris Lattner5568e942008-05-20 20:48:21 +00003444 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003445</h4>
Chris Lattner5568e942008-05-20 20:48:21 +00003446
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003447<div>
Chris Lattner5568e942008-05-20 20:48:21 +00003448
Chris Lattner00950542001-06-06 20:29:01 +00003449<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003450<pre>
Dan Gohman08d012e2009-07-22 22:44:56 +00003451 &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanfdfca792009-09-02 17:31:42 +00003452 &lt;result&gt; = mul nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3453 &lt;result&gt; = mul nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3454 &lt;result&gt; = mul nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003455</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003456
Chris Lattner00950542001-06-06 20:29:01 +00003457<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003458<p>The '<tt>mul</tt>' instruction returns the product of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003459
Chris Lattner00950542001-06-06 20:29:01 +00003460<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003461<p>The two arguments to the '<tt>mul</tt>' instruction must
3462 be <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3463 integer values. Both arguments must have identical types.</p>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003464
Chris Lattner00950542001-06-06 20:29:01 +00003465<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003466<p>The value produced is the integer product of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003467
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003468<p>If the result of the multiplication has unsigned overflow, the result
3469 returned is the mathematical result modulo 2<sup>n</sup>, where n is the bit
3470 width of the result.</p>
3471
3472<p>Because LLVM integers use a two's complement representation, and the result
3473 is the same width as the operands, this instruction returns the correct
3474 result for both signed and unsigned integers. If a full product
3475 (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands should
3476 be sign-extended or zero-extended as appropriate to the width of the full
3477 product.</p>
3478
Dan Gohman08d012e2009-07-22 22:44:56 +00003479<p><tt>nuw</tt> and <tt>nsw</tt> stand for &quot;No Unsigned Wrap&quot;
3480 and &quot;No Signed Wrap&quot;, respectively. If the <tt>nuw</tt> and/or
3481 <tt>nsw</tt> keywords are present, the result value of the <tt>mul</tt>
Dan Gohmanfff6c532010-04-22 23:14:21 +00003482 is a <a href="#trapvalues">trap value</a> if unsigned and/or signed overflow,
3483 respectively, occurs.</p>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003484
Chris Lattner00950542001-06-06 20:29:01 +00003485<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003486<pre>
3487 &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00003488</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003489
Misha Brukman9d0919f2003-11-08 01:05:38 +00003490</div>
Chris Lattner5568e942008-05-20 20:48:21 +00003491
Chris Lattner00950542001-06-06 20:29:01 +00003492<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003493<h4>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003494 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003495</h4>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003496
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003497<div>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003498
3499<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003500<pre>
3501 &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003502</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003503
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003504<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003505<p>The '<tt>fmul</tt>' instruction returns the product of its two operands.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003506
3507<h5>Arguments:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003508<p>The two arguments to the '<tt>fmul</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003509 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3510 floating point values. Both arguments must have identical types.</p>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003511
3512<h5>Semantics:</h5>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003513<p>The value produced is the floating point product of the two operands.</p>
3514
3515<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003516<pre>
3517 &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003518</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003519
Dan Gohmanae3a0be2009-06-04 22:49:04 +00003520</div>
3521
3522<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003523<h4>
3524 <a name="i_udiv">'<tt>udiv</tt>' Instruction</a>
3525</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003526
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003527<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003528
Reid Spencer1628cec2006-10-26 06:15:43 +00003529<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003530<pre>
Chris Lattner35bda892011-02-06 21:44:57 +00003531 &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3532 &lt;result&gt; = udiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00003533</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003534
Reid Spencer1628cec2006-10-26 06:15:43 +00003535<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003536<p>The '<tt>udiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003537
Reid Spencer1628cec2006-10-26 06:15:43 +00003538<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003539<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003540 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3541 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003542
Reid Spencer1628cec2006-10-26 06:15:43 +00003543<h5>Semantics:</h5>
Chris Lattner5ec89832008-01-28 00:36:27 +00003544<p>The value produced is the unsigned integer quotient of the two operands.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003545
Chris Lattner5ec89832008-01-28 00:36:27 +00003546<p>Note that unsigned integer division and signed integer division are distinct
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003547 operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
3548
Chris Lattner5ec89832008-01-28 00:36:27 +00003549<p>Division by zero leads to undefined behavior.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003550
Chris Lattner35bda892011-02-06 21:44:57 +00003551<p>If the <tt>exact</tt> keyword is present, the result value of the
3552 <tt>udiv</tt> is a <a href="#trapvalues">trap value</a> if %op1 is not a
3553 multiple of %op2 (as such, "((a udiv exact b) mul b) == a").</p>
3554
3555
Reid Spencer1628cec2006-10-26 06:15:43 +00003556<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003557<pre>
3558 &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00003559</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003560
Reid Spencer1628cec2006-10-26 06:15:43 +00003561</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003562
Reid Spencer1628cec2006-10-26 06:15:43 +00003563<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003564<h4>
3565 <a name="i_sdiv">'<tt>sdiv</tt>' Instruction</a>
3566</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003567
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003568<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003569
Reid Spencer1628cec2006-10-26 06:15:43 +00003570<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003571<pre>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003572 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Dan Gohmanfdfca792009-09-02 17:31:42 +00003573 &lt;result&gt; = sdiv exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00003574</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003575
Reid Spencer1628cec2006-10-26 06:15:43 +00003576<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003577<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003578
Reid Spencer1628cec2006-10-26 06:15:43 +00003579<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003580<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003581 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3582 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003583
Reid Spencer1628cec2006-10-26 06:15:43 +00003584<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003585<p>The value produced is the signed integer quotient of the two operands rounded
3586 towards zero.</p>
3587
Chris Lattner5ec89832008-01-28 00:36:27 +00003588<p>Note that signed integer division and unsigned integer division are distinct
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003589 operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
3590
Chris Lattner5ec89832008-01-28 00:36:27 +00003591<p>Division by zero leads to undefined behavior. Overflow also leads to
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003592 undefined behavior; this is a rare case, but can occur, for example, by doing
3593 a 32-bit division of -2147483648 by -1.</p>
3594
Dan Gohman9c5beed2009-07-22 00:04:19 +00003595<p>If the <tt>exact</tt> keyword is present, the result value of the
Dan Gohman27ef9972010-04-23 15:23:32 +00003596 <tt>sdiv</tt> is a <a href="#trapvalues">trap value</a> if the result would
Dan Gohman38da9272010-07-11 00:08:34 +00003597 be rounded.</p>
Dan Gohmancbb38f22009-07-20 22:41:19 +00003598
Reid Spencer1628cec2006-10-26 06:15:43 +00003599<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003600<pre>
3601 &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00003602</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003603
Reid Spencer1628cec2006-10-26 06:15:43 +00003604</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003605
Reid Spencer1628cec2006-10-26 06:15:43 +00003606<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003607<h4>
3608 <a name="i_fdiv">'<tt>fdiv</tt>' Instruction</a>
3609</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003610
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003611<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003612
Chris Lattner00950542001-06-06 20:29:01 +00003613<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003614<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00003615 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003616</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003617
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003618<h5>Overview:</h5>
3619<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003620
Chris Lattner261efe92003-11-25 01:02:51 +00003621<h5>Arguments:</h5>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003622<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003623 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3624 floating point values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003625
Chris Lattner261efe92003-11-25 01:02:51 +00003626<h5>Semantics:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00003627<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003628
Chris Lattner261efe92003-11-25 01:02:51 +00003629<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003630<pre>
3631 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003632</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003633
Chris Lattner261efe92003-11-25 01:02:51 +00003634</div>
Chris Lattner5568e942008-05-20 20:48:21 +00003635
Chris Lattner261efe92003-11-25 01:02:51 +00003636<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003637<h4>
3638 <a name="i_urem">'<tt>urem</tt>' Instruction</a>
3639</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003640
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003641<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003642
Reid Spencer0a783f72006-11-02 01:53:59 +00003643<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003644<pre>
3645 &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00003646</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003647
Reid Spencer0a783f72006-11-02 01:53:59 +00003648<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003649<p>The '<tt>urem</tt>' instruction returns the remainder from the unsigned
3650 division of its two arguments.</p>
3651
Reid Spencer0a783f72006-11-02 01:53:59 +00003652<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003653<p>The two arguments to the '<tt>urem</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003654 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3655 values. Both arguments must have identical types.</p>
3656
Reid Spencer0a783f72006-11-02 01:53:59 +00003657<h5>Semantics:</h5>
3658<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003659 This instruction always performs an unsigned division to get the
3660 remainder.</p>
3661
Chris Lattner5ec89832008-01-28 00:36:27 +00003662<p>Note that unsigned integer remainder and signed integer remainder are
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003663 distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
3664
Chris Lattner5ec89832008-01-28 00:36:27 +00003665<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003666
Reid Spencer0a783f72006-11-02 01:53:59 +00003667<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003668<pre>
3669 &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00003670</pre>
3671
3672</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003673
Reid Spencer0a783f72006-11-02 01:53:59 +00003674<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003675<h4>
Chris Lattner5568e942008-05-20 20:48:21 +00003676 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003677</h4>
Chris Lattner5568e942008-05-20 20:48:21 +00003678
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003679<div>
Chris Lattner5568e942008-05-20 20:48:21 +00003680
Chris Lattner261efe92003-11-25 01:02:51 +00003681<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003682<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00003683 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003684</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003685
Chris Lattner261efe92003-11-25 01:02:51 +00003686<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003687<p>The '<tt>srem</tt>' instruction returns the remainder from the signed
3688 division of its two operands. This instruction can also take
3689 <a href="#t_vector">vector</a> versions of the values in which case the
3690 elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00003691
Chris Lattner261efe92003-11-25 01:02:51 +00003692<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003693<p>The two arguments to the '<tt>srem</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003694 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3695 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003696
Chris Lattner261efe92003-11-25 01:02:51 +00003697<h5>Semantics:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00003698<p>This instruction returns the <i>remainder</i> of a division (where the result
Duncan Sandsdea3a5e2011-03-07 09:12:24 +00003699 is either zero or has the same sign as the dividend, <tt>op1</tt>), not the
3700 <i>modulo</i> operator (where the result is either zero or has the same sign
3701 as the divisor, <tt>op2</tt>) of a value.
3702 For more information about the difference,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003703 see <a href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
3704 Math Forum</a>. For a table of how this is implemented in various languages,
3705 please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
3706 Wikipedia: modulo operation</a>.</p>
3707
Chris Lattner5ec89832008-01-28 00:36:27 +00003708<p>Note that signed integer remainder and unsigned integer remainder are
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003709 distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
3710
Chris Lattner5ec89832008-01-28 00:36:27 +00003711<p>Taking the remainder of a division by zero leads to undefined behavior.
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003712 Overflow also leads to undefined behavior; this is a rare case, but can
3713 occur, for example, by taking the remainder of a 32-bit division of
3714 -2147483648 by -1. (The remainder doesn't actually overflow, but this rule
3715 lets srem be implemented using instructions that return both the result of
3716 the division and the remainder.)</p>
3717
Chris Lattner261efe92003-11-25 01:02:51 +00003718<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003719<pre>
3720 &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00003721</pre>
3722
3723</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003724
Reid Spencer0a783f72006-11-02 01:53:59 +00003725<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003726<h4>
3727 <a name="i_frem">'<tt>frem</tt>' Instruction</a>
3728</h4>
Chris Lattner5568e942008-05-20 20:48:21 +00003729
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003730<div>
Chris Lattner5568e942008-05-20 20:48:21 +00003731
Reid Spencer0a783f72006-11-02 01:53:59 +00003732<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003733<pre>
3734 &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00003735</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003736
Reid Spencer0a783f72006-11-02 01:53:59 +00003737<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003738<p>The '<tt>frem</tt>' instruction returns the remainder from the division of
3739 its two operands.</p>
3740
Reid Spencer0a783f72006-11-02 01:53:59 +00003741<h5>Arguments:</h5>
3742<p>The two arguments to the '<tt>frem</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003743 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
3744 floating point values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003745
Reid Spencer0a783f72006-11-02 01:53:59 +00003746<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003747<p>This instruction returns the <i>remainder</i> of a division. The remainder
3748 has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003749
Reid Spencer0a783f72006-11-02 01:53:59 +00003750<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003751<pre>
3752 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003753</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003754
Misha Brukman9d0919f2003-11-08 01:05:38 +00003755</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00003756
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003757</div>
3758
Reid Spencer8e11bf82007-02-02 13:57:07 +00003759<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003760<h3>
3761 <a name="bitwiseops">Bitwise Binary Operations</a>
3762</h3>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003763
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003764<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003765
3766<p>Bitwise binary operators are used to do various forms of bit-twiddling in a
3767 program. They are generally very efficient instructions and can commonly be
3768 strength reduced from other instructions. They require two operands of the
3769 same type, execute an operation on them, and produce a single value. The
3770 resulting value is the same type as its operands.</p>
3771
Reid Spencer569f2fa2007-01-31 21:39:12 +00003772<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003773<h4>
3774 <a name="i_shl">'<tt>shl</tt>' Instruction</a>
3775</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003776
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003777<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003778
Reid Spencer569f2fa2007-01-31 21:39:12 +00003779<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003780<pre>
Chris Lattnerf067d582011-02-07 16:40:21 +00003781 &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3782 &lt;result&gt; = shl nuw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3783 &lt;result&gt; = shl nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3784 &lt;result&gt; = shl nuw nsw &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003785</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003786
Reid Spencer569f2fa2007-01-31 21:39:12 +00003787<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003788<p>The '<tt>shl</tt>' instruction returns the first operand shifted to the left
3789 a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003790
Reid Spencer569f2fa2007-01-31 21:39:12 +00003791<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003792<p>Both arguments to the '<tt>shl</tt>' instruction must be the
3793 same <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
3794 integer type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003795
Reid Spencer569f2fa2007-01-31 21:39:12 +00003796<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003797<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod
3798 2<sup>n</sup>, where <tt>n</tt> is the width of the result. If <tt>op2</tt>
3799 is (statically or dynamically) negative or equal to or larger than the number
3800 of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3801 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3802 shift amount in <tt>op2</tt>.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003803
Chris Lattnerf067d582011-02-07 16:40:21 +00003804<p>If the <tt>nuw</tt> keyword is present, then the shift produces a
3805 <a href="#trapvalues">trap value</a> if it shifts out any non-zero bits. If
Chris Lattner66298c12011-02-09 16:44:44 +00003806 the <tt>nsw</tt> keyword is present, then the shift produces a
Chris Lattnerf067d582011-02-07 16:40:21 +00003807 <a href="#trapvalues">trap value</a> if it shifts out any bits that disagree
3808 with the resultant sign bit. As such, NUW/NSW have the same semantics as
3809 they would if the shift were expressed as a mul instruction with the same
3810 nsw/nuw bits in (mul %op1, (shl 1, %op2)).</p>
3811
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003812<h5>Example:</h5>
3813<pre>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003814 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
3815 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
3816 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003817 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00003818 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003819</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003820
Reid Spencer569f2fa2007-01-31 21:39:12 +00003821</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003822
Reid Spencer569f2fa2007-01-31 21:39:12 +00003823<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003824<h4>
3825 <a name="i_lshr">'<tt>lshr</tt>' Instruction</a>
3826</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003827
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003828<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003829
Reid Spencer569f2fa2007-01-31 21:39:12 +00003830<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003831<pre>
Chris Lattnerf067d582011-02-07 16:40:21 +00003832 &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3833 &lt;result&gt; = lshr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003834</pre>
3835
3836<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003837<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
3838 operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003839
3840<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003841<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003842 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3843 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003844
3845<h5>Semantics:</h5>
3846<p>This instruction always performs a logical shift right operation. The most
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003847 significant bits of the result will be filled with zero bits after the shift.
3848 If <tt>op2</tt> is (statically or dynamically) equal to or larger than the
3849 number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
3850 vectors, each vector element of <tt>op1</tt> is shifted by the corresponding
3851 shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003852
Chris Lattnerf067d582011-02-07 16:40:21 +00003853<p>If the <tt>exact</tt> keyword is present, the result value of the
3854 <tt>lshr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
3855 shifted out are non-zero.</p>
3856
3857
Reid Spencer569f2fa2007-01-31 21:39:12 +00003858<h5>Example:</h5>
3859<pre>
3860 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
3861 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
3862 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
3863 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003864 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00003865 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003866</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003867
Reid Spencer569f2fa2007-01-31 21:39:12 +00003868</div>
3869
Reid Spencer8e11bf82007-02-02 13:57:07 +00003870<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003871<h4>
3872 <a name="i_ashr">'<tt>ashr</tt>' Instruction</a>
3873</h4>
3874
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003875<div>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003876
3877<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003878<pre>
Chris Lattnerf067d582011-02-07 16:40:21 +00003879 &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3880 &lt;result&gt; = ashr exact &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003881</pre>
3882
3883<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003884<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
3885 operand shifted to the right a specified number of bits with sign
3886 extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003887
3888<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003889<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003890 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3891 type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003892
3893<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003894<p>This instruction always performs an arithmetic shift right operation, The
3895 most significant bits of the result will be filled with the sign bit
3896 of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
3897 larger than the number of bits in <tt>op1</tt>, the result is undefined. If
3898 the arguments are vectors, each vector element of <tt>op1</tt> is shifted by
3899 the corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003900
Chris Lattnerf067d582011-02-07 16:40:21 +00003901<p>If the <tt>exact</tt> keyword is present, the result value of the
3902 <tt>ashr</tt> is a <a href="#trapvalues">trap value</a> if any of the bits
3903 shifted out are non-zero.</p>
3904
Reid Spencer569f2fa2007-01-31 21:39:12 +00003905<h5>Example:</h5>
3906<pre>
3907 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3908 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3909 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3910 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003911 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00003912 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003913</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003914
Reid Spencer569f2fa2007-01-31 21:39:12 +00003915</div>
3916
Chris Lattner00950542001-06-06 20:29:01 +00003917<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003918<h4>
3919 <a name="i_and">'<tt>and</tt>' Instruction</a>
3920</h4>
Chris Lattner5568e942008-05-20 20:48:21 +00003921
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003922<div>
Chris Lattner5568e942008-05-20 20:48:21 +00003923
Chris Lattner00950542001-06-06 20:29:01 +00003924<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003925<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00003926 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003927</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003928
Chris Lattner00950542001-06-06 20:29:01 +00003929<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003930<p>The '<tt>and</tt>' instruction returns the bitwise logical and of its two
3931 operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003932
Chris Lattner00950542001-06-06 20:29:01 +00003933<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003934<p>The two arguments to the '<tt>and</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003935 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3936 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003937
Chris Lattner00950542001-06-06 20:29:01 +00003938<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003939<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003940
Misha Brukman9d0919f2003-11-08 01:05:38 +00003941<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00003942 <tbody>
3943 <tr>
3944 <td>In0</td>
3945 <td>In1</td>
3946 <td>Out</td>
3947 </tr>
3948 <tr>
3949 <td>0</td>
3950 <td>0</td>
3951 <td>0</td>
3952 </tr>
3953 <tr>
3954 <td>0</td>
3955 <td>1</td>
3956 <td>0</td>
3957 </tr>
3958 <tr>
3959 <td>1</td>
3960 <td>0</td>
3961 <td>0</td>
3962 </tr>
3963 <tr>
3964 <td>1</td>
3965 <td>1</td>
3966 <td>1</td>
3967 </tr>
3968 </tbody>
3969</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003970
Chris Lattner00950542001-06-06 20:29:01 +00003971<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003972<pre>
3973 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003974 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3975 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00003976</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003977</div>
Chris Lattner00950542001-06-06 20:29:01 +00003978<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00003979<h4>
3980 <a name="i_or">'<tt>or</tt>' Instruction</a>
3981</h4>
Chris Lattner5568e942008-05-20 20:48:21 +00003982
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00003983<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003984
3985<h5>Syntax:</h5>
3986<pre>
3987 &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
3988</pre>
3989
3990<h5>Overview:</h5>
3991<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive or of its
3992 two operands.</p>
3993
3994<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00003995<p>The two arguments to the '<tt>or</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00003996 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3997 values. Both arguments must have identical types.</p>
3998
Chris Lattner00950542001-06-06 20:29:01 +00003999<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004000<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004001
Chris Lattner261efe92003-11-25 01:02:51 +00004002<table border="1" cellspacing="0" cellpadding="4">
4003 <tbody>
4004 <tr>
4005 <td>In0</td>
4006 <td>In1</td>
4007 <td>Out</td>
4008 </tr>
4009 <tr>
4010 <td>0</td>
4011 <td>0</td>
4012 <td>0</td>
4013 </tr>
4014 <tr>
4015 <td>0</td>
4016 <td>1</td>
4017 <td>1</td>
4018 </tr>
4019 <tr>
4020 <td>1</td>
4021 <td>0</td>
4022 <td>1</td>
4023 </tr>
4024 <tr>
4025 <td>1</td>
4026 <td>1</td>
4027 <td>1</td>
4028 </tr>
4029 </tbody>
4030</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004031
Chris Lattner00950542001-06-06 20:29:01 +00004032<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004033<pre>
4034 &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004035 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
4036 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00004037</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004038
Misha Brukman9d0919f2003-11-08 01:05:38 +00004039</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004040
Chris Lattner00950542001-06-06 20:29:01 +00004041<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004042<h4>
4043 <a name="i_xor">'<tt>xor</tt>' Instruction</a>
4044</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004045
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004046<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004047
Chris Lattner00950542001-06-06 20:29:01 +00004048<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004049<pre>
4050 &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00004051</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004052
Chris Lattner00950542001-06-06 20:29:01 +00004053<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004054<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive or of
4055 its two operands. The <tt>xor</tt> is used to implement the "one's
4056 complement" operation, which is the "~" operator in C.</p>
4057
Chris Lattner00950542001-06-06 20:29:01 +00004058<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004059<p>The two arguments to the '<tt>xor</tt>' instruction must be
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004060 <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
4061 values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004062
Chris Lattner00950542001-06-06 20:29:01 +00004063<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004064<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004065
Chris Lattner261efe92003-11-25 01:02:51 +00004066<table border="1" cellspacing="0" cellpadding="4">
4067 <tbody>
4068 <tr>
4069 <td>In0</td>
4070 <td>In1</td>
4071 <td>Out</td>
4072 </tr>
4073 <tr>
4074 <td>0</td>
4075 <td>0</td>
4076 <td>0</td>
4077 </tr>
4078 <tr>
4079 <td>0</td>
4080 <td>1</td>
4081 <td>1</td>
4082 </tr>
4083 <tr>
4084 <td>1</td>
4085 <td>0</td>
4086 <td>1</td>
4087 </tr>
4088 <tr>
4089 <td>1</td>
4090 <td>1</td>
4091 <td>0</td>
4092 </tr>
4093 </tbody>
4094</table>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004095
Chris Lattner00950542001-06-06 20:29:01 +00004096<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004097<pre>
4098 &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004099 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
4100 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
4101 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00004102</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004103
Misha Brukman9d0919f2003-11-08 01:05:38 +00004104</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004105
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004106</div>
4107
Chris Lattner00950542001-06-06 20:29:01 +00004108<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004109<h3>
Chris Lattner3df241e2006-04-08 23:07:04 +00004110 <a name="vectorops">Vector Operations</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004111</h3>
Chris Lattner3df241e2006-04-08 23:07:04 +00004112
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004113<div>
Chris Lattner3df241e2006-04-08 23:07:04 +00004114
4115<p>LLVM supports several instructions to represent vector operations in a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004116 target-independent manner. These instructions cover the element-access and
4117 vector-specific operations needed to process vectors effectively. While LLVM
4118 does directly support these vector operations, many sophisticated algorithms
4119 will want to use target-specific intrinsics to take full advantage of a
4120 specific target.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004121
Chris Lattner3df241e2006-04-08 23:07:04 +00004122<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004123<h4>
Chris Lattner3df241e2006-04-08 23:07:04 +00004124 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004125</h4>
Chris Lattner3df241e2006-04-08 23:07:04 +00004126
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004127<div>
Chris Lattner3df241e2006-04-08 23:07:04 +00004128
4129<h5>Syntax:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00004130<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004131 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00004132</pre>
4133
4134<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004135<p>The '<tt>extractelement</tt>' instruction extracts a single scalar element
4136 from a vector at a specified index.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004137
4138
4139<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004140<p>The first operand of an '<tt>extractelement</tt>' instruction is a value
4141 of <a href="#t_vector">vector</a> type. The second operand is an index
4142 indicating the position from which to extract the element. The index may be
4143 a variable.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004144
4145<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004146<p>The result is a scalar of the same type as the element type of
4147 <tt>val</tt>. Its value is the value at position <tt>idx</tt> of
4148 <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4149 results are undefined.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004150
4151<h5>Example:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00004152<pre>
Gabor Greifa5b6f452009-10-28 13:14:50 +00004153 &lt;result&gt; = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00004154</pre>
Chris Lattner3df241e2006-04-08 23:07:04 +00004155
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004156</div>
Chris Lattner3df241e2006-04-08 23:07:04 +00004157
4158<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004159<h4>
Chris Lattner3df241e2006-04-08 23:07:04 +00004160 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004161</h4>
Chris Lattner3df241e2006-04-08 23:07:04 +00004162
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004163<div>
Chris Lattner3df241e2006-04-08 23:07:04 +00004164
4165<h5>Syntax:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00004166<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00004167 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00004168</pre>
4169
4170<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004171<p>The '<tt>insertelement</tt>' instruction inserts a scalar element into a
4172 vector at a specified index.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004173
4174<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004175<p>The first operand of an '<tt>insertelement</tt>' instruction is a value
4176 of <a href="#t_vector">vector</a> type. The second operand is a scalar value
4177 whose type must equal the element type of the first operand. The third
4178 operand is an index indicating the position at which to insert the value.
4179 The index may be a variable.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004180
4181<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004182<p>The result is a vector of the same type as <tt>val</tt>. Its element values
4183 are those of <tt>val</tt> except at position <tt>idx</tt>, where it gets the
4184 value <tt>elt</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
4185 results are undefined.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004186
4187<h5>Example:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00004188<pre>
Gabor Greifa5b6f452009-10-28 13:14:50 +00004189 &lt;result&gt; = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00004190</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004191
Chris Lattner3df241e2006-04-08 23:07:04 +00004192</div>
4193
4194<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004195<h4>
Chris Lattner3df241e2006-04-08 23:07:04 +00004196 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004197</h4>
Chris Lattner3df241e2006-04-08 23:07:04 +00004198
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004199<div>
Chris Lattner3df241e2006-04-08 23:07:04 +00004200
4201<h5>Syntax:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00004202<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00004203 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00004204</pre>
4205
4206<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004207<p>The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
4208 from two input vectors, returning a vector with the same element type as the
4209 input and length that is the same as the shuffle mask.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004210
4211<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004212<p>The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
4213 with types that match each other. The third argument is a shuffle mask whose
4214 element type is always 'i32'. The result of the instruction is a vector
4215 whose length is the same as the shuffle mask and whose element type is the
4216 same as the element type of the first two operands.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004217
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004218<p>The shuffle mask operand is required to be a constant vector with either
4219 constant integer or undef values.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004220
4221<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004222<p>The elements of the two input vectors are numbered from left to right across
4223 both of the vectors. The shuffle mask operand specifies, for each element of
4224 the result vector, which element of the two input vectors the result element
4225 gets. The element selector may be undef (meaning "don't care") and the
4226 second operand may be undef if performing a shuffle from only one vector.</p>
Chris Lattner3df241e2006-04-08 23:07:04 +00004227
4228<h5>Example:</h5>
Chris Lattner3df241e2006-04-08 23:07:04 +00004229<pre>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004230 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00004231 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004232 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
Reid Spencerca86e162006-12-31 07:07:53 +00004233 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004234 &lt;result&gt; = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
Mon P Wangaeb06d22008-11-10 04:46:22 +00004235 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004236 &lt;result&gt; = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Mon P Wangaeb06d22008-11-10 04:46:22 +00004237 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00004238</pre>
Chris Lattner3df241e2006-04-08 23:07:04 +00004239
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004240</div>
Tanya Lattner09474292006-04-14 19:24:33 +00004241
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004242</div>
4243
Chris Lattner3df241e2006-04-08 23:07:04 +00004244<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004245<h3>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004246 <a name="aggregateops">Aggregate Operations</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004247</h3>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004248
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004249<div>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004250
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004251<p>LLVM supports several instructions for working with
4252 <a href="#t_aggregate">aggregate</a> values.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004253
Dan Gohmana334d5f2008-05-12 23:51:09 +00004254<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004255<h4>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004256 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004257</h4>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004258
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004259<div>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004260
4261<h5>Syntax:</h5>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004262<pre>
4263 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
4264</pre>
4265
4266<h5>Overview:</h5>
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004267<p>The '<tt>extractvalue</tt>' instruction extracts the value of a member field
4268 from an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004269
4270<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004271<p>The first operand of an '<tt>extractvalue</tt>' instruction is a value
Chris Lattner61c70e92010-08-28 04:09:24 +00004272 of <a href="#t_struct">struct</a> or
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004273 <a href="#t_array">array</a> type. The operands are constant indices to
4274 specify which value to extract in a similar manner as indices in a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004275 '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.</p>
Frits van Bommel13242892010-12-05 20:54:38 +00004276 <p>The major differences to <tt>getelementptr</tt> indexing are:</p>
4277 <ul>
4278 <li>Since the value being indexed is not a pointer, the first index is
4279 omitted and assumed to be zero.</li>
4280 <li>At least one index must be specified.</li>
4281 <li>Not only struct indices but also array indices must be in
4282 bounds.</li>
4283 </ul>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004284
4285<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004286<p>The result is the value at the position in the aggregate specified by the
4287 index operands.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004288
4289<h5>Example:</h5>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004290<pre>
Gabor Greifa5b6f452009-10-28 13:14:50 +00004291 &lt;result&gt; = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004292</pre>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004293
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004294</div>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004295
4296<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004297<h4>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004298 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004299</h4>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004300
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004301<div>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004302
4303<h5>Syntax:</h5>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004304<pre>
Jeffrey Yasskin7a088cf2010-01-11 19:19:26 +00004305 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, &lt;idx&gt; <i>; yields &lt;aggregate type&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004306</pre>
4307
4308<h5>Overview:</h5>
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004309<p>The '<tt>insertvalue</tt>' instruction inserts a value into a member field
4310 in an <a href="#t_aggregate">aggregate</a> value.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004311
4312<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004313<p>The first operand of an '<tt>insertvalue</tt>' instruction is a value
Chris Lattner61c70e92010-08-28 04:09:24 +00004314 of <a href="#t_struct">struct</a> or
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004315 <a href="#t_array">array</a> type. The second operand is a first-class
4316 value to insert. The following operands are constant indices indicating
4317 the position at which to insert the value in a similar manner as indices in a
Frits van Bommel13242892010-12-05 20:54:38 +00004318 '<tt><a href="#i_extractvalue">extractvalue</a></tt>' instruction. The
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004319 value to insert must have the same type as the value identified by the
4320 indices.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004321
4322<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004323<p>The result is an aggregate of the same type as <tt>val</tt>. Its value is
4324 that of <tt>val</tt> except that the value at the position specified by the
4325 indices is that of <tt>elt</tt>.</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004326
4327<h5>Example:</h5>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004328<pre>
Jeffrey Yasskin7a088cf2010-01-11 19:19:26 +00004329 %agg1 = insertvalue {i32, float} undef, i32 1, 0 <i>; yields {i32 1, float undef}</i>
4330 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 <i>; yields {i32 1, float %val}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004331</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004332
Dan Gohmana334d5f2008-05-12 23:51:09 +00004333</div>
4334
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004335</div>
Dan Gohmana334d5f2008-05-12 23:51:09 +00004336
4337<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004338<h3>
Chris Lattner884a9702006-08-15 00:45:58 +00004339 <a name="memoryops">Memory Access and Addressing Operations</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004340</h3>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004341
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004342<div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004343
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004344<p>A key design point of an SSA-based representation is how it represents
4345 memory. In LLVM, no memory locations are in SSA form, which makes things
Victor Hernandez2fee2942009-10-26 23:44:29 +00004346 very simple. This section describes how to read, write, and allocate
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004347 memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004348
Chris Lattner00950542001-06-06 20:29:01 +00004349<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004350<h4>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004351 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004352</h4>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004353
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004354<div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004355
Chris Lattner00950542001-06-06 20:29:01 +00004356<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004357<pre>
Dan Gohmanf75a7d32010-05-28 01:14:11 +00004358 &lt;result&gt; = alloca &lt;type&gt;[, &lt;ty&gt; &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00004359</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004360
Chris Lattner00950542001-06-06 20:29:01 +00004361<h5>Overview:</h5>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00004362<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004363 currently executing function, to be automatically released when this function
4364 returns to its caller. The object is always allocated in the generic address
4365 space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004366
Chris Lattner00950542001-06-06 20:29:01 +00004367<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004368<p>The '<tt>alloca</tt>' instruction
4369 allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt> bytes of memory on the
4370 runtime stack, returning a pointer of the appropriate type to the program.
4371 If "NumElements" is specified, it is the number of elements allocated,
4372 otherwise "NumElements" is defaulted to be one. If a constant alignment is
4373 specified, the value result of the allocation is guaranteed to be aligned to
4374 at least that boundary. If not specified, or if zero, the target can choose
4375 to align the allocation on any convenient boundary compatible with the
4376 type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004377
Misha Brukman9d0919f2003-11-08 01:05:38 +00004378<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004379
Chris Lattner00950542001-06-06 20:29:01 +00004380<h5>Semantics:</h5>
Bill Wendling871eb0a2009-05-08 20:49:29 +00004381<p>Memory is allocated; a pointer is returned. The operation is undefined if
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004382 there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
4383 memory is automatically released when the function returns. The
4384 '<tt>alloca</tt>' instruction is commonly used to represent automatic
4385 variables that must have an address available. When the function returns
4386 (either with the <tt><a href="#i_ret">ret</a></tt>
4387 or <tt><a href="#i_unwind">unwind</a></tt> instructions), the memory is
4388 reclaimed. Allocating zero bytes is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004389
Chris Lattner00950542001-06-06 20:29:01 +00004390<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004391<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00004392 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
4393 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
4394 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
4395 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00004396</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004397
Misha Brukman9d0919f2003-11-08 01:05:38 +00004398</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00004399
Chris Lattner00950542001-06-06 20:29:01 +00004400<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004401<h4>
4402 <a name="i_load">'<tt>load</tt>' Instruction</a>
4403</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004404
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004405<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004406
Chris Lattner2b7d3202002-05-06 03:03:22 +00004407<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004408<pre>
Bill Wendling7c78dbb2010-02-25 21:23:24 +00004409 &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4410 &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;]
4411 !&lt;index&gt; = !{ i32 1 }
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004412</pre>
4413
Chris Lattner2b7d3202002-05-06 03:03:22 +00004414<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004415<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004416
Chris Lattner2b7d3202002-05-06 03:03:22 +00004417<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004418<p>The argument to the '<tt>load</tt>' instruction specifies the memory address
4419 from which to load. The pointer must point to
4420 a <a href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
4421 marked as <tt>volatile</tt>, then the optimizer is not allowed to modify the
Jeffrey Yasskin93e066d2010-04-26 21:21:24 +00004422 number or order of execution of this <tt>load</tt> with other <a
4423 href="#volatile">volatile operations</a>.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004424
Bill Wendling7c78dbb2010-02-25 21:23:24 +00004425<p>The optional constant <tt>align</tt> argument specifies the alignment of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004426 operation (that is, the alignment of the memory address). A value of 0 or an
Bill Wendling7c78dbb2010-02-25 21:23:24 +00004427 omitted <tt>align</tt> argument means that the operation has the preferential
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004428 alignment for the target. It is the responsibility of the code emitter to
4429 ensure that the alignment information is correct. Overestimating the
Bill Wendling7c78dbb2010-02-25 21:23:24 +00004430 alignment results in undefined behavior. Underestimating the alignment may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004431 produce less efficient code. An alignment of 1 is always safe.</p>
4432
Bill Wendling7c78dbb2010-02-25 21:23:24 +00004433<p>The optional <tt>!nontemporal</tt> metadata must reference a single
4434 metatadata name &lt;index&gt; corresponding to a metadata node with
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00004435 one <tt>i32</tt> entry of value 1. The existence of
Bill Wendling7c78dbb2010-02-25 21:23:24 +00004436 the <tt>!nontemporal</tt> metatadata on the instruction tells the optimizer
4437 and code generator that this load is not expected to be reused in the cache.
4438 The code generator may select special instructions to save cache bandwidth,
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00004439 such as the <tt>MOVNT</tt> instruction on x86.</p>
David Greene8939b0d2010-02-16 20:50:18 +00004440
Chris Lattner2b7d3202002-05-06 03:03:22 +00004441<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004442<p>The location of memory pointed to is loaded. If the value being loaded is of
4443 scalar type then the number of bytes read does not exceed the minimum number
4444 of bytes needed to hold all bits of the type. For example, loading an
4445 <tt>i24</tt> reads at most three bytes. When loading a value of a type like
4446 <tt>i20</tt> with a size that is not an integral number of bytes, the result
4447 is undefined if the value was not originally written using a store of the
4448 same type.</p>
4449
Chris Lattner2b7d3202002-05-06 03:03:22 +00004450<h5>Examples:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004451<pre>
4452 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
4453 <a href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004454 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00004455</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004456
Misha Brukman9d0919f2003-11-08 01:05:38 +00004457</div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004458
Chris Lattner2b7d3202002-05-06 03:03:22 +00004459<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004460<h4>
4461 <a name="i_store">'<tt>store</tt>' Instruction</a>
4462</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004463
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004464<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004465
Chris Lattner2b7d3202002-05-06 03:03:22 +00004466<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004467<pre>
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00004468 store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
4469 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00004470</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004471
Chris Lattner2b7d3202002-05-06 03:03:22 +00004472<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004473<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004474
Chris Lattner2b7d3202002-05-06 03:03:22 +00004475<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004476<p>There are two arguments to the '<tt>store</tt>' instruction: a value to store
4477 and an address at which to store it. The type of the
4478 '<tt>&lt;pointer&gt;</tt>' operand must be a pointer to
4479 the <a href="#t_firstclass">first class</a> type of the
Jeffrey Yasskin93e066d2010-04-26 21:21:24 +00004480 '<tt>&lt;value&gt;</tt>' operand. If the <tt>store</tt> is marked as
4481 <tt>volatile</tt>, then the optimizer is not allowed to modify the number or
4482 order of execution of this <tt>store</tt> with other <a
4483 href="#volatile">volatile operations</a>.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004484
4485<p>The optional constant "align" argument specifies the alignment of the
4486 operation (that is, the alignment of the memory address). A value of 0 or an
4487 omitted "align" argument means that the operation has the preferential
4488 alignment for the target. It is the responsibility of the code emitter to
4489 ensure that the alignment information is correct. Overestimating the
4490 alignment results in an undefined behavior. Underestimating the alignment may
4491 produce less efficient code. An alignment of 1 is always safe.</p>
4492
David Greene8939b0d2010-02-16 20:50:18 +00004493<p>The optional !nontemporal metadata must reference a single metatadata
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00004494 name &lt;index&gt; corresponding to a metadata node with one i32 entry of
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00004495 value 1. The existence of the !nontemporal metatadata on the
David Greene8939b0d2010-02-16 20:50:18 +00004496 instruction tells the optimizer and code generator that this load is
4497 not expected to be reused in the cache. The code generator may
4498 select special instructions to save cache bandwidth, such as the
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00004499 MOVNT instruction on x86.</p>
David Greene8939b0d2010-02-16 20:50:18 +00004500
4501
Chris Lattner261efe92003-11-25 01:02:51 +00004502<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004503<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>' at the
4504 location specified by the '<tt>&lt;pointer&gt;</tt>' operand. If
4505 '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes written
4506 does not exceed the minimum number of bytes needed to hold all bits of the
4507 type. For example, storing an <tt>i24</tt> writes at most three bytes. When
4508 writing a value of a type like <tt>i20</tt> with a size that is not an
4509 integral number of bytes, it is unspecified what happens to the extra bits
4510 that do not belong to the type, but they will typically be overwritten.</p>
4511
Chris Lattner2b7d3202002-05-06 03:03:22 +00004512<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004513<pre>
4514 %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00004515 store i32 3, i32* %ptr <i>; yields {void}</i>
4516 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00004517</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004518
Reid Spencer47ce1792006-11-09 21:15:49 +00004519</div>
4520
Chris Lattner2b7d3202002-05-06 03:03:22 +00004521<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004522<h4>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004523 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004524</h4>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004525
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004526<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004527
Chris Lattner7faa8832002-04-14 06:13:44 +00004528<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004529<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00004530 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Dan Gohmandd8004d2009-07-27 21:53:46 +00004531 &lt;result&gt; = getelementptr inbounds &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004532</pre>
4533
Chris Lattner7faa8832002-04-14 06:13:44 +00004534<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004535<p>The '<tt>getelementptr</tt>' instruction is used to get the address of a
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004536 subelement of an <a href="#t_aggregate">aggregate</a> data structure.
4537 It performs address calculation only and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004538
Chris Lattner7faa8832002-04-14 06:13:44 +00004539<h5>Arguments:</h5>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00004540<p>The first argument is always a pointer, and forms the basis of the
Chris Lattnerc8eef442009-07-29 06:44:13 +00004541 calculation. The remaining arguments are indices that indicate which of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004542 elements of the aggregate object are indexed. The interpretation of each
4543 index is dependent on the type being indexed into. The first index always
4544 indexes the pointer value given as the first argument, the second index
4545 indexes a value of the type pointed to (not necessarily the value directly
4546 pointed to, since the first index can be non-zero), etc. The first type
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004547 indexed into must be a pointer value, subsequent types can be arrays,
Chris Lattner61c70e92010-08-28 04:09:24 +00004548 vectors, and structs. Note that subsequent types being indexed into
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004549 can never be pointers, since that would require loading the pointer before
4550 continuing calculation.</p>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00004551
4552<p>The type of each index argument depends on the type it is indexing into.
Chris Lattner61c70e92010-08-28 04:09:24 +00004553 When indexing into a (optionally packed) structure, only <tt>i32</tt>
Chris Lattnerfdfeb692010-02-12 20:49:41 +00004554 integer <b>constants</b> are allowed. When indexing into an array, pointer
4555 or vector, integers of any width are allowed, and they are not required to be
Chris Lattnerc8eef442009-07-29 06:44:13 +00004556 constant.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004557
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004558<p>For example, let's consider a C code fragment and how it gets compiled to
4559 LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004560
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00004561<pre class="doc_code">
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004562struct RT {
4563 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00004564 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004565 char C;
4566};
4567struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00004568 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004569 double Y;
4570 struct RT Z;
4571};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004572
Chris Lattnercabc8462007-05-29 15:43:56 +00004573int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004574 return &amp;s[1].Z.B[5][13];
4575}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004576</pre>
4577
Misha Brukman9d0919f2003-11-08 01:05:38 +00004578<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004579
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00004580<pre class="doc_code">
Chris Lattnere7886e42009-01-11 20:53:49 +00004581%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
4582%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004583
Dan Gohman4df605b2009-07-25 02:23:48 +00004584define i32* @foo(%ST* %s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004585entry:
4586 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
4587 ret i32* %reg
4588}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004589</pre>
4590
Chris Lattner7faa8832002-04-14 06:13:44 +00004591<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004592<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004593 type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
4594 }</tt>' type, a structure. The second index indexes into the third element
4595 of the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
4596 i8 }</tt>' type, another structure. The third index indexes into the second
4597 element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
4598 array. The two dimensions of the array are subscripted into, yielding an
4599 '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a
4600 pointer to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004601
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004602<p>Note that it is perfectly legal to index partially through a structure,
4603 returning a pointer to an inner element. Because of this, the LLVM code for
4604 the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004605
4606<pre>
Dan Gohman4df605b2009-07-25 02:23:48 +00004607 define i32* @foo(%ST* %s) {
Reid Spencerca86e162006-12-31 07:07:53 +00004608 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00004609 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
4610 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004611 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
4612 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
4613 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004614 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00004615</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00004616
Dan Gohmandd8004d2009-07-27 21:53:46 +00004617<p>If the <tt>inbounds</tt> keyword is present, the result value of the
Dan Gohman27ef9972010-04-23 15:23:32 +00004618 <tt>getelementptr</tt> is a <a href="#trapvalues">trap value</a> if the
4619 base pointer is not an <i>in bounds</i> address of an allocated object,
4620 or if any of the addresses that would be formed by successive addition of
4621 the offsets implied by the indices to the base address with infinitely
4622 precise arithmetic are not an <i>in bounds</i> address of that allocated
4623 object. The <i>in bounds</i> addresses for an allocated object are all
4624 the addresses that point into the object, plus the address one byte past
4625 the end.</p>
Dan Gohmandd8004d2009-07-27 21:53:46 +00004626
4627<p>If the <tt>inbounds</tt> keyword is not present, the offsets are added to
4628 the base address with silently-wrapping two's complement arithmetic, and
4629 the result value of the <tt>getelementptr</tt> may be outside the object
4630 pointed to by the base pointer. The result value may not necessarily be
4631 used to access memory though, even if it happens to point into allocated
4632 storage. See the <a href="#pointeraliasing">Pointer Aliasing Rules</a>
4633 section for more information.</p>
4634
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004635<p>The getelementptr instruction is often confusing. For some more insight into
4636 how it works, see <a href="GetElementPtr.html">the getelementptr FAQ</a>.</p>
Chris Lattner884a9702006-08-15 00:45:58 +00004637
Chris Lattner7faa8832002-04-14 06:13:44 +00004638<h5>Example:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004639<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004640 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00004641 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
4642 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004643 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00004644 <i>; yields i8*:eptr</i>
4645 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta9f805c22009-04-25 07:27:44 +00004646 <i>; yields i32*:iptr</i>
Sanjiv Gupta16ffa802009-04-24 16:38:13 +00004647 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004648</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004649
Chris Lattnerf74d5c72004-04-05 01:30:49 +00004650</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00004651
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004652</div>
4653
Chris Lattner00950542001-06-06 20:29:01 +00004654<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004655<h3>
4656 <a name="convertops">Conversion Operations</a>
4657</h3>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004658
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004659<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004660
Reid Spencer2fd21e62006-11-08 01:18:52 +00004661<p>The instructions in this category are the conversion instructions (casting)
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004662 which all take a single operand and a type. They perform various bit
4663 conversions on the operand.</p>
4664
Chris Lattner6536cfe2002-05-06 22:08:29 +00004665<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004666<h4>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004667 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004668</h4>
4669
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004670<div>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004671
4672<h5>Syntax:</h5>
4673<pre>
4674 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4675</pre>
4676
4677<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004678<p>The '<tt>trunc</tt>' instruction truncates its operand to the
4679 type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004680
4681<h5>Arguments:</h5>
Nadav Rotem8c20ec52011-02-24 21:01:34 +00004682<p>The '<tt>trunc</tt>' instruction takes a value to trunc, and a type to trunc it to.
4683 Both types must be of <a href="#t_integer">integer</a> types, or vectors
4684 of the same number of integers.
4685 The bit size of the <tt>value</tt> must be larger than
4686 the bit size of the destination type, <tt>ty2</tt>.
4687 Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004688
4689<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004690<p>The '<tt>trunc</tt>' instruction truncates the high order bits
4691 in <tt>value</tt> and converts the remaining bits to <tt>ty2</tt>. Since the
4692 source size must be larger than the destination size, <tt>trunc</tt> cannot
4693 be a <i>no-op cast</i>. It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004694
4695<h5>Example:</h5>
4696<pre>
Nadav Rotem8c20ec52011-02-24 21:01:34 +00004697 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
4698 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
4699 %Z = trunc i32 122 to i1 <i>; yields i1:false</i>
4700 %W = trunc &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i8&gt; <i>; yields &lt;i8 8, i8 7&gt;</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004701</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004702
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004703</div>
4704
4705<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004706<h4>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004707 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004708</h4>
4709
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004710<div>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004711
4712<h5>Syntax:</h5>
4713<pre>
4714 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4715</pre>
4716
4717<h5>Overview:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004718<p>The '<tt>zext</tt>' instruction zero extends its operand to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004719 <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004720
4721
4722<h5>Arguments:</h5>
Nadav Rotemed9b9342011-02-20 12:37:50 +00004723<p>The '<tt>zext</tt>' instruction takes a value to cast, and a type to cast it to.
4724 Both types must be of <a href="#t_integer">integer</a> types, or vectors
4725 of the same number of integers.
4726 The bit size of the <tt>value</tt> must be smaller than
4727 the bit size of the destination type,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004728 <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004729
4730<h5>Semantics:</h5>
4731<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004732 bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004733
Reid Spencerb5929522007-01-12 15:46:11 +00004734<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004735
4736<h5>Example:</h5>
4737<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004738 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00004739 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Nadav Rotemed9b9342011-02-20 12:37:50 +00004740 %Z = zext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004741</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004742
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004743</div>
4744
4745<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004746<h4>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004747 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004748</h4>
4749
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004750<div>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004751
4752<h5>Syntax:</h5>
4753<pre>
4754 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4755</pre>
4756
4757<h5>Overview:</h5>
4758<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
4759
4760<h5>Arguments:</h5>
Nadav Rotem8c20ec52011-02-24 21:01:34 +00004761<p>The '<tt>sext</tt>' instruction takes a value to cast, and a type to cast it to.
4762 Both types must be of <a href="#t_integer">integer</a> types, or vectors
4763 of the same number of integers.
4764 The bit size of the <tt>value</tt> must be smaller than
4765 the bit size of the destination type,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004766 <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004767
4768<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004769<p>The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
4770 bit (highest order bit) of the <tt>value</tt> until it reaches the bit size
4771 of the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004772
Reid Spencerc78f3372007-01-12 03:35:51 +00004773<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004774
4775<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004776<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004777 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00004778 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Nadav Rotem8c20ec52011-02-24 21:01:34 +00004779 %Z = sext &lt;2 x i16&gt; &lt;i16 8, i16 7&gt; to &lt;2 x i32&gt; <i>; yields &lt;i32 8, i32 7&gt;</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004780</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004781
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004782</div>
4783
4784<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004785<h4>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004786 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004787</h4>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004788
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004789<div>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004790
4791<h5>Syntax:</h5>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004792<pre>
4793 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4794</pre>
4795
4796<h5>Overview:</h5>
4797<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004798 <tt>ty2</tt>.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004799
4800<h5>Arguments:</h5>
4801<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004802 point</a> value to cast and a <a href="#t_floating">floating point</a> type
4803 to cast it to. The size of <tt>value</tt> must be larger than the size of
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004804 <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004805 <i>no-op cast</i>.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004806
4807<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004808<p>The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004809 <a href="#t_floating">floating point</a> type to a smaller
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004810 <a href="#t_floating">floating point</a> type. If the value cannot fit
4811 within the destination type, <tt>ty2</tt>, then the results are
4812 undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004813
4814<h5>Example:</h5>
4815<pre>
4816 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4817 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4818</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004819
Reid Spencer3fa91b02006-11-09 21:48:10 +00004820</div>
4821
4822<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004823<h4>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004824 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004825</h4>
4826
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004827<div>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004828
4829<h5>Syntax:</h5>
4830<pre>
4831 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4832</pre>
4833
4834<h5>Overview:</h5>
4835<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004836 floating point value.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004837
4838<h5>Arguments:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004839<p>The '<tt>fpext</tt>' instruction takes a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004840 <a href="#t_floating">floating point</a> <tt>value</tt> to cast, and
4841 a <a href="#t_floating">floating point</a> type to cast it to. The source
4842 type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004843
4844<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004845<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004846 <a href="#t_floating">floating point</a> type to a larger
4847 <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
4848 used to make a <i>no-op cast</i> because it always changes bits. Use
4849 <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004850
4851<h5>Example:</h5>
4852<pre>
Nick Lewycky5bb3ece2011-03-31 18:20:19 +00004853 %X = fpext float 3.125 to double <i>; yields double:3.125000e+00</i>
4854 %Y = fpext double %X to fp128 <i>; yields fp128:0xL00000000000000004000900000000000</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004855</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004856
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004857</div>
4858
4859<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004860<h4>
Reid Spencer24d6da52007-01-21 00:29:26 +00004861 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004862</h4>
4863
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004864<div>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004865
4866<h5>Syntax:</h5>
4867<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004868 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004869</pre>
4870
4871<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004872<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004873 unsigned integer equivalent of type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004874
4875<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004876<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
4877 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4878 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4879 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4880 vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004881
4882<h5>Semantics:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004883<p>The '<tt>fptoui</tt>' instruction converts its
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004884 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4885 towards zero) unsigned integer value. If the value cannot fit
4886 in <tt>ty2</tt>, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004887
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004888<h5>Example:</h5>
4889<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004890 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00004891 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Gabor Greif6a292012009-10-28 09:21:30 +00004892 %Z = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004893</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004894
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004895</div>
4896
4897<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004898<h4>
Reid Spencerd4448792006-11-09 23:03:26 +00004899 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004900</h4>
4901
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004902<div>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004903
4904<h5>Syntax:</h5>
4905<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004906 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004907</pre>
4908
4909<h5>Overview:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004910<p>The '<tt>fptosi</tt>' instruction converts
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004911 <a href="#t_floating">floating point</a> <tt>value</tt> to
4912 type <tt>ty2</tt>.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004913
Chris Lattner6536cfe2002-05-06 22:08:29 +00004914<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004915<p>The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
4916 scalar or vector <a href="#t_floating">floating point</a> value, and a type
4917 to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4918 type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4919 vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004920
Chris Lattner6536cfe2002-05-06 22:08:29 +00004921<h5>Semantics:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00004922<p>The '<tt>fptosi</tt>' instruction converts its
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004923 <a href="#t_floating">floating point</a> operand into the nearest (rounding
4924 towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4925 the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004926
Chris Lattner33ba0d92001-07-09 00:26:23 +00004927<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004928<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004929 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00004930 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Gabor Greif6a292012009-10-28 09:21:30 +00004931 %Z = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004932</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004933
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004934</div>
4935
4936<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004937<h4>
Reid Spencerd4448792006-11-09 23:03:26 +00004938 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004939</h4>
4940
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004941<div>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004942
4943<h5>Syntax:</h5>
4944<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004945 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004946</pre>
4947
4948<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004949<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004950 integer and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004951
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004952<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004953<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004954 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4955 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4956 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4957 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004958
4959<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004960<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004961 integer quantity and converts it to the corresponding floating point
4962 value. If the value cannot fit in the floating point value, the results are
4963 undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004964
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004965<h5>Example:</h5>
4966<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004967 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004968 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004969</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004970
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004971</div>
4972
4973<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004974<h4>
Reid Spencerd4448792006-11-09 23:03:26 +00004975 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00004976</h4>
4977
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00004978<div>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004979
4980<h5>Syntax:</h5>
4981<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004982 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004983</pre>
4984
4985<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004986<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed integer
4987 and converts that value to the <tt>ty2</tt> type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004988
4989<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004990<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004991 scalar or vector <a href="#t_integer">integer</a> value, and a type to cast
4992 it to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4993 type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4994 floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004995
4996<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00004997<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed integer
4998 quantity and converts it to the corresponding floating point value. If the
4999 value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005000
5001<h5>Example:</h5>
5002<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00005003 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005004 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005005</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005006
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005007</div>
5008
5009<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005010<h4>
Reid Spencer72679252006-11-11 21:00:47 +00005011 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005012</h4>
5013
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005014<div>
Reid Spencer72679252006-11-11 21:00:47 +00005015
5016<h5>Syntax:</h5>
5017<pre>
5018 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5019</pre>
5020
5021<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005022<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
5023 the integer type <tt>ty2</tt>.</p>
Reid Spencer72679252006-11-11 21:00:47 +00005024
5025<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005026<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
5027 must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
5028 <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00005029
5030<h5>Semantics:</h5>
5031<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005032 <tt>ty2</tt> by interpreting the pointer value as an integer and either
5033 truncating or zero extending that value to the size of the integer type. If
5034 <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
5035 <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
5036 are the same size, then nothing is done (<i>no-op cast</i>) other than a type
5037 change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00005038
5039<h5>Example:</h5>
5040<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005041 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
5042 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00005043</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005044
Reid Spencer72679252006-11-11 21:00:47 +00005045</div>
5046
5047<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005048<h4>
Reid Spencer72679252006-11-11 21:00:47 +00005049 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005050</h4>
5051
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005052<div>
Reid Spencer72679252006-11-11 21:00:47 +00005053
5054<h5>Syntax:</h5>
5055<pre>
5056 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
5057</pre>
5058
5059<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005060<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to a
5061 pointer type, <tt>ty2</tt>.</p>
Reid Spencer72679252006-11-11 21:00:47 +00005062
5063<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00005064<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005065 value to cast, and a type to cast it to, which must be a
5066 <a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00005067
5068<h5>Semantics:</h5>
5069<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005070 <tt>ty2</tt> by applying either a zero extension or a truncation depending on
5071 the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
5072 size of a pointer then a truncation is done. If <tt>value</tt> is smaller
5073 than the size of a pointer then a zero extension is done. If they are the
5074 same size, nothing is done (<i>no-op cast</i>).</p>
Reid Spencer72679252006-11-11 21:00:47 +00005075
5076<h5>Example:</h5>
5077<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005078 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
Gabor Greif6a292012009-10-28 09:21:30 +00005079 %Y = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
5080 %Z = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00005081</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005082
Reid Spencer72679252006-11-11 21:00:47 +00005083</div>
5084
5085<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005086<h4>
Reid Spencer5c0ef472006-11-11 23:08:07 +00005087 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005088</h4>
5089
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005090<div>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005091
5092<h5>Syntax:</h5>
5093<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00005094 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005095</pre>
5096
5097<h5>Overview:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00005098<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005099 <tt>ty2</tt> without changing any bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005100
5101<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005102<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be a
5103 non-aggregate first class value, and a type to cast it to, which must also be
5104 a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes
5105 of <tt>value</tt> and the destination type, <tt>ty2</tt>, must be
5106 identical. If the source type is a pointer, the destination type must also be
5107 a pointer. This instruction supports bitwise conversion of vectors to
5108 integers and to vectors of other types (as long as they have the same
5109 size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005110
5111<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00005112<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005113 <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
5114 this conversion. The conversion is done as if the <tt>value</tt> had been
5115 stored to memory and read back as type <tt>ty2</tt>. Pointer types may only
5116 be converted to other pointer types with this instruction. To convert
5117 pointers to other types, use the <a href="#i_inttoptr">inttoptr</a> or
5118 <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00005119
5120<h5>Example:</h5>
5121<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005122 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00005123 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005124 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00005125</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005126
Misha Brukman9d0919f2003-11-08 01:05:38 +00005127</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005128
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005129</div>
5130
Reid Spencer2fd21e62006-11-08 01:18:52 +00005131<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005132<h3>
5133 <a name="otherops">Other Operations</a>
5134</h3>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005135
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005136<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005137
5138<p>The instructions in this category are the "miscellaneous" instructions, which
5139 defy better classification.</p>
5140
Reid Spencerf3a70a62006-11-18 21:50:54 +00005141<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005142<h4>
5143 <a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
5144</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005145
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005146<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005147
Reid Spencerf3a70a62006-11-18 21:50:54 +00005148<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005149<pre>
5150 &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00005151</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005152
Reid Spencerf3a70a62006-11-18 21:50:54 +00005153<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005154<p>The '<tt>icmp</tt>' instruction returns a boolean value or a vector of
5155 boolean values based on comparison of its two integer, integer vector, or
5156 pointer operands.</p>
5157
Reid Spencerf3a70a62006-11-18 21:50:54 +00005158<h5>Arguments:</h5>
5159<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005160 the condition code indicating the kind of comparison to perform. It is not a
5161 value, just a keyword. The possible condition code are:</p>
5162
Reid Spencerf3a70a62006-11-18 21:50:54 +00005163<ol>
5164 <li><tt>eq</tt>: equal</li>
5165 <li><tt>ne</tt>: not equal </li>
5166 <li><tt>ugt</tt>: unsigned greater than</li>
5167 <li><tt>uge</tt>: unsigned greater or equal</li>
5168 <li><tt>ult</tt>: unsigned less than</li>
5169 <li><tt>ule</tt>: unsigned less or equal</li>
5170 <li><tt>sgt</tt>: signed greater than</li>
5171 <li><tt>sge</tt>: signed greater or equal</li>
5172 <li><tt>slt</tt>: signed less than</li>
5173 <li><tt>sle</tt>: signed less or equal</li>
5174</ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005175
Chris Lattner3b19d652007-01-15 01:54:13 +00005176<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005177 <a href="#t_pointer">pointer</a> or integer <a href="#t_vector">vector</a>
5178 typed. They must also be identical types.</p>
5179
Reid Spencerf3a70a62006-11-18 21:50:54 +00005180<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005181<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to the
5182 condition code given as <tt>cond</tt>. The comparison performed always yields
Nick Lewyckyec38da42009-09-27 00:45:11 +00005183 either an <a href="#t_integer"><tt>i1</tt></a> or vector of <tt>i1</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005184 result, as follows:</p>
5185
Reid Spencerf3a70a62006-11-18 21:50:54 +00005186<ol>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005187 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005188 <tt>false</tt> otherwise. No sign interpretation is necessary or
5189 performed.</li>
5190
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005191 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005192 <tt>false</tt> otherwise. No sign interpretation is necessary or
5193 performed.</li>
5194
Reid Spencerf3a70a62006-11-18 21:50:54 +00005195 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005196 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5197
Reid Spencerf3a70a62006-11-18 21:50:54 +00005198 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005199 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5200 to <tt>op2</tt>.</li>
5201
Reid Spencerf3a70a62006-11-18 21:50:54 +00005202 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005203 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5204
Reid Spencerf3a70a62006-11-18 21:50:54 +00005205 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005206 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5207
Reid Spencerf3a70a62006-11-18 21:50:54 +00005208 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005209 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5210
Reid Spencerf3a70a62006-11-18 21:50:54 +00005211 <li><tt>sge</tt>: interprets the operands as signed values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005212 <tt>true</tt> if <tt>op1</tt> is greater than or equal
5213 to <tt>op2</tt>.</li>
5214
Reid Spencerf3a70a62006-11-18 21:50:54 +00005215 <li><tt>slt</tt>: interprets the operands as signed values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005216 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
5217
Reid Spencerf3a70a62006-11-18 21:50:54 +00005218 <li><tt>sle</tt>: interprets the operands as signed values and yields
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005219 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00005220</ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005221
Reid Spencerf3a70a62006-11-18 21:50:54 +00005222<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005223 values are compared as if they were integers.</p>
5224
5225<p>If the operands are integer vectors, then they are compared element by
5226 element. The result is an <tt>i1</tt> vector with the same number of elements
5227 as the values being compared. Otherwise, the result is an <tt>i1</tt>.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00005228
5229<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005230<pre>
5231 &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
Reid Spencerca86e162006-12-31 07:07:53 +00005232 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
5233 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
5234 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
5235 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
5236 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00005237</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00005238
5239<p>Note that the code generator does not yet support vector types with
5240 the <tt>icmp</tt> instruction.</p>
5241
Reid Spencerf3a70a62006-11-18 21:50:54 +00005242</div>
5243
5244<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005245<h4>
5246 <a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
5247</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005248
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005249<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005250
Reid Spencerf3a70a62006-11-18 21:50:54 +00005251<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005252<pre>
5253 &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00005254</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005255
Reid Spencerf3a70a62006-11-18 21:50:54 +00005256<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005257<p>The '<tt>fcmp</tt>' instruction returns a boolean value or vector of boolean
5258 values based on comparison of its operands.</p>
5259
5260<p>If the operands are floating point scalars, then the result type is a boolean
Nick Lewyckyec38da42009-09-27 00:45:11 +00005261(<a href="#t_integer"><tt>i1</tt></a>).</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005262
5263<p>If the operands are floating point vectors, then the result type is a vector
5264 of boolean with the same number of elements as the operands being
5265 compared.</p>
5266
Reid Spencerf3a70a62006-11-18 21:50:54 +00005267<h5>Arguments:</h5>
5268<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005269 the condition code indicating the kind of comparison to perform. It is not a
5270 value, just a keyword. The possible condition code are:</p>
5271
Reid Spencerf3a70a62006-11-18 21:50:54 +00005272<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00005273 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00005274 <li><tt>oeq</tt>: ordered and equal</li>
5275 <li><tt>ogt</tt>: ordered and greater than </li>
5276 <li><tt>oge</tt>: ordered and greater than or equal</li>
5277 <li><tt>olt</tt>: ordered and less than </li>
5278 <li><tt>ole</tt>: ordered and less than or equal</li>
5279 <li><tt>one</tt>: ordered and not equal</li>
5280 <li><tt>ord</tt>: ordered (no nans)</li>
5281 <li><tt>ueq</tt>: unordered or equal</li>
5282 <li><tt>ugt</tt>: unordered or greater than </li>
5283 <li><tt>uge</tt>: unordered or greater than or equal</li>
5284 <li><tt>ult</tt>: unordered or less than </li>
5285 <li><tt>ule</tt>: unordered or less than or equal</li>
5286 <li><tt>une</tt>: unordered or not equal</li>
5287 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00005288 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00005289</ol>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005290
Jeff Cohenb627eab2007-04-29 01:07:00 +00005291<p><i>Ordered</i> means that neither operand is a QNAN while
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005292 <i>unordered</i> means that either operand may be a QNAN.</p>
5293
5294<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be either
5295 a <a href="#t_floating">floating point</a> type or
5296 a <a href="#t_vector">vector</a> of floating point type. They must have
5297 identical types.</p>
5298
Reid Spencerf3a70a62006-11-18 21:50:54 +00005299<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00005300<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005301 according to the condition code given as <tt>cond</tt>. If the operands are
5302 vectors, then the vectors are compared element by element. Each comparison
Nick Lewyckyec38da42009-09-27 00:45:11 +00005303 performed always yields an <a href="#t_integer">i1</a> result, as
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005304 follows:</p>
5305
Reid Spencerf3a70a62006-11-18 21:50:54 +00005306<ol>
5307 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005308
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005309 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005310 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5311
Reid Spencerb7f26282006-11-19 03:00:14 +00005312 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00005313 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005314
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005315 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005316 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5317
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005318 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005319 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5320
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005321 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005322 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5323
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005324 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005325 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5326
Reid Spencerb7f26282006-11-19 03:00:14 +00005327 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005328
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005329 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005330 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
5331
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005332 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005333 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
5334
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005335 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005336 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
5337
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005338 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005339 <tt>op1</tt> is less than <tt>op2</tt>.</li>
5340
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005341 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005342 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
5343
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005344 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005345 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
5346
Reid Spencerb7f26282006-11-19 03:00:14 +00005347 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005348
Reid Spencerf3a70a62006-11-18 21:50:54 +00005349 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
5350</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00005351
5352<h5>Example:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005353<pre>
5354 &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00005355 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
5356 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
5357 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00005358</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00005359
5360<p>Note that the code generator does not yet support vector types with
5361 the <tt>fcmp</tt> instruction.</p>
5362
Reid Spencerf3a70a62006-11-18 21:50:54 +00005363</div>
5364
Reid Spencer2fd21e62006-11-08 01:18:52 +00005365<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005366<h4>
Chris Lattner5568e942008-05-20 20:48:21 +00005367 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005368</h4>
Chris Lattner5568e942008-05-20 20:48:21 +00005369
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005370<div>
Chris Lattner5568e942008-05-20 20:48:21 +00005371
Reid Spencer2fd21e62006-11-08 01:18:52 +00005372<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005373<pre>
5374 &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...
5375</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00005376
Reid Spencer2fd21e62006-11-08 01:18:52 +00005377<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005378<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in the
5379 SSA graph representing the function.</p>
5380
Reid Spencer2fd21e62006-11-08 01:18:52 +00005381<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005382<p>The type of the incoming values is specified with the first type field. After
5383 this, the '<tt>phi</tt>' instruction takes a list of pairs as arguments, with
5384 one pair for each predecessor basic block of the current block. Only values
5385 of <a href="#t_firstclass">first class</a> type may be used as the value
5386 arguments to the PHI node. Only labels may be used as the label
5387 arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00005388
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005389<p>There must be no non-phi instructions between the start of a basic block and
5390 the PHI instructions: i.e. PHI instructions must be first in a basic
5391 block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00005392
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005393<p>For the purposes of the SSA form, the use of each incoming value is deemed to
5394 occur on the edge from the corresponding predecessor block to the current
5395 block (but after any definition of an '<tt>invoke</tt>' instruction's return
5396 value on the same edge).</p>
Jay Foadd2449092009-06-03 10:20:10 +00005397
Reid Spencer2fd21e62006-11-08 01:18:52 +00005398<h5>Semantics:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005399<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005400 specified by the pair corresponding to the predecessor basic block that
5401 executed just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00005402
Reid Spencer2fd21e62006-11-08 01:18:52 +00005403<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00005404<pre>
5405Loop: ; Infinite loop that counts from 0 on up...
5406 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5407 %nextindvar = add i32 %indvar, 1
5408 br label %Loop
5409</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005410
Reid Spencer2fd21e62006-11-08 01:18:52 +00005411</div>
5412
Chris Lattnercc37aae2004-03-12 05:50:16 +00005413<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005414<h4>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005415 <a name="i_select">'<tt>select</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005416</h4>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005417
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005418<div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005419
5420<h5>Syntax:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005421<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00005422 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
5423
Dan Gohman0e451ce2008-10-14 16:51:45 +00005424 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00005425</pre>
5426
5427<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005428<p>The '<tt>select</tt>' instruction is used to choose one value based on a
5429 condition, without branching.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005430
5431
5432<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005433<p>The '<tt>select</tt>' instruction requires an 'i1' value or a vector of 'i1'
5434 values indicating the condition, and two values of the
5435 same <a href="#t_firstclass">first class</a> type. If the val1/val2 are
5436 vectors and the condition is a scalar, then entire vectors are selected, not
5437 individual elements.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005438
5439<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005440<p>If the condition is an i1 and it evaluates to 1, the instruction returns the
5441 first value argument; otherwise, it returns the second value argument.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005442
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005443<p>If the condition is a vector of i1, then the value arguments must be vectors
5444 of the same size, and the selection is done element by element.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005445
5446<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005447<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00005448 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00005449</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00005450
5451<p>Note that the code generator does not yet support conditions
5452 with vector type.</p>
5453
Chris Lattnercc37aae2004-03-12 05:50:16 +00005454</div>
5455
Robert Bocchino05ccd702006-01-15 20:48:27 +00005456<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005457<h4>
Chris Lattner2bff5242005-05-06 05:47:36 +00005458 <a name="i_call">'<tt>call</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005459</h4>
Chris Lattner2bff5242005-05-06 05:47:36 +00005460
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005461<div>
Chris Lattner2bff5242005-05-06 05:47:36 +00005462
Chris Lattner00950542001-06-06 20:29:01 +00005463<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00005464<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00005465 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00005466</pre>
5467
Chris Lattner00950542001-06-06 20:29:01 +00005468<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00005469<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00005470
Chris Lattner00950542001-06-06 20:29:01 +00005471<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00005472<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00005473
Chris Lattner6536cfe2002-05-06 22:08:29 +00005474<ol>
Jeffrey Yasskin95fa80a2010-01-09 19:44:16 +00005475 <li>The optional "tail" marker indicates that the callee function does not
5476 access any allocas or varargs in the caller. Note that calls may be
5477 marked "tail" even if they do not occur before
5478 a <a href="#i_ret"><tt>ret</tt></a> instruction. If the "tail" marker is
5479 present, the function call is eligible for tail call optimization,
5480 but <a href="CodeGenerator.html#tailcallopt">might not in fact be
Evan Chengdc444e92010-03-08 21:05:02 +00005481 optimized into a jump</a>. The code generator may optimize calls marked
5482 "tail" with either 1) automatic <a href="CodeGenerator.html#sibcallopt">
5483 sibling call optimization</a> when the caller and callee have
5484 matching signatures, or 2) forced tail call optimization when the
5485 following extra requirements are met:
Jeffrey Yasskin95fa80a2010-01-09 19:44:16 +00005486 <ul>
5487 <li>Caller and callee both have the calling
5488 convention <tt>fastcc</tt>.</li>
5489 <li>The call is in tail position (ret immediately follows call and ret
5490 uses value of call or is void).</li>
5491 <li>Option <tt>-tailcallopt</tt> is enabled,
Dan Gohmanfbbee8d2010-03-02 01:08:11 +00005492 or <code>llvm::GuaranteedTailCallOpt</code> is <code>true</code>.</li>
Jeffrey Yasskin95fa80a2010-01-09 19:44:16 +00005493 <li><a href="CodeGenerator.html#tailcallopt">Platform specific
5494 constraints are met.</a></li>
5495 </ul>
5496 </li>
Devang Patelf642f472008-10-06 18:50:38 +00005497
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005498 <li>The optional "cconv" marker indicates which <a href="#callingconv">calling
5499 convention</a> the call should use. If none is specified, the call
Jeffrey Yasskin95fa80a2010-01-09 19:44:16 +00005500 defaults to using C calling conventions. The calling convention of the
5501 call must match the calling convention of the target function, or else the
5502 behavior is undefined.</li>
Devang Patelf642f472008-10-06 18:50:38 +00005503
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005504 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
5505 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', and
5506 '<tt>inreg</tt>' attributes are valid here.</li>
5507
5508 <li>'<tt>ty</tt>': the type of the call instruction itself which is also the
5509 type of the return value. Functions that return no value are marked
5510 <tt><a href="#t_void">void</a></tt>.</li>
5511
5512 <li>'<tt>fnty</tt>': shall be the signature of the pointer to function value
5513 being invoked. The argument types must match the types implied by this
5514 signature. This type can be omitted if the function is not varargs and if
5515 the function type does not return a pointer to a function.</li>
5516
5517 <li>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
5518 be invoked. In most cases, this is a direct function invocation, but
5519 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
5520 to function value.</li>
5521
5522 <li>'<tt>function args</tt>': argument list whose types match the function
Chris Lattner0724fbd2010-03-02 06:36:51 +00005523 signature argument types and parameter attributes. All arguments must be
5524 of <a href="#t_firstclass">first class</a> type. If the function
5525 signature indicates the function accepts a variable number of arguments,
5526 the extra arguments can be specified.</li>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005527
5528 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
5529 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
5530 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00005531</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00005532
Chris Lattner00950542001-06-06 20:29:01 +00005533<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005534<p>The '<tt>call</tt>' instruction is used to cause control flow to transfer to
5535 a specified function, with its incoming arguments bound to the specified
5536 values. Upon a '<tt><a href="#i_ret">ret</a></tt>' instruction in the called
5537 function, control flow continues with the instruction after the function
5538 call, and the return value of the function is bound to the result
5539 argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00005540
Chris Lattner00950542001-06-06 20:29:01 +00005541<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00005542<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00005543 %retval = call i32 @test(i32 %argc)
Dan Gohmanfe47aae2010-05-28 17:13:49 +00005544 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) <i>; yields i32</i>
Chris Lattner772fccf2008-03-21 17:24:17 +00005545 %X = tail call i32 @foo() <i>; yields i32</i>
5546 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
5547 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00005548
5549 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00005550 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00005551 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
5552 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00005553 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00005554 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00005555</pre>
5556
Dale Johannesen07de8d12009-09-24 18:38:21 +00005557<p>llvm treats calls to some functions with names and arguments that match the
Dale Johannesen9f8380b2009-09-25 17:04:42 +00005558standard C99 library as being the C99 library functions, and may perform
5559optimizations or generate code for them under that assumption. This is
5560something we'd like to change in the future to provide better support for
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00005561freestanding environments and non-C-based languages.</p>
Dale Johannesen07de8d12009-09-24 18:38:21 +00005562
Misha Brukman9d0919f2003-11-08 01:05:38 +00005563</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005564
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005565<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005566<h4>
Chris Lattnerfb6977d2006-01-13 23:26:01 +00005567 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005568</h4>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005569
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005570<div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005571
Chris Lattner8d1a81d2003-10-18 05:51:36 +00005572<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005573<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005574 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00005575</pre>
5576
Chris Lattner8d1a81d2003-10-18 05:51:36 +00005577<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005578<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005579 the "variable argument" area of a function call. It is used to implement the
5580 <tt>va_arg</tt> macro in C.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005581
Chris Lattner8d1a81d2003-10-18 05:51:36 +00005582<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005583<p>This instruction takes a <tt>va_list*</tt> value and the type of the
5584 argument. It returns a value of the specified argument type and increments
5585 the <tt>va_list</tt> to point to the next argument. The actual type
5586 of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005587
Chris Lattner8d1a81d2003-10-18 05:51:36 +00005588<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005589<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified type
5590 from the specified <tt>va_list</tt> and causes the <tt>va_list</tt> to point
5591 to the next argument. For more information, see the variable argument
5592 handling <a href="#int_varargs">Intrinsic Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005593
5594<p>It is legal for this instruction to be called in a function which does not
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005595 take a variable number of arguments, for example, the <tt>vfprintf</tt>
5596 function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005597
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005598<p><tt>va_arg</tt> is an LLVM instruction instead of
5599 an <a href="#intrinsics">intrinsic function</a> because it takes a type as an
5600 argument.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005601
Chris Lattner8d1a81d2003-10-18 05:51:36 +00005602<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00005603<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
5604
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005605<p>Note that the code generator does not yet fully support va_arg on many
5606 targets. Also, it does not currently support va_arg with aggregate types on
5607 any target.</p>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00005608
Misha Brukman9d0919f2003-11-08 01:05:38 +00005609</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005610
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005611</div>
5612
5613</div>
5614
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005615<!-- *********************************************************************** -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005616<h2><a name="intrinsics">Intrinsic Functions</a></h2>
Chris Lattner261efe92003-11-25 01:02:51 +00005617<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00005618
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005619<div>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005620
5621<p>LLVM supports the notion of an "intrinsic function". These functions have
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005622 well known names and semantics and are required to follow certain
5623 restrictions. Overall, these intrinsics represent an extension mechanism for
5624 the LLVM language that does not require changing all of the transformations
5625 in LLVM when adding to the language (or the bitcode reader/writer, the
5626 parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005627
John Criswellfc6b8952005-05-16 16:17:45 +00005628<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005629 prefix is reserved in LLVM for intrinsic names; thus, function names may not
5630 begin with this prefix. Intrinsic functions must always be external
5631 functions: you cannot define the body of intrinsic functions. Intrinsic
5632 functions may only be used in call or invoke instructions: it is illegal to
5633 take the address of an intrinsic function. Additionally, because intrinsic
5634 functions are part of the LLVM language, it is required if any are added that
5635 they be documented here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005636
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005637<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents a
5638 family of functions that perform the same operation but on different data
5639 types. Because LLVM can represent over 8 million different integer types,
5640 overloading is used commonly to allow an intrinsic function to operate on any
5641 integer type. One or more of the argument types or the result type can be
5642 overloaded to accept any integer type. Argument types may also be defined as
5643 exactly matching a previous argument's type or the result type. This allows
5644 an intrinsic function which accepts multiple arguments, but needs all of them
5645 to be of the same type, to only be overloaded with respect to a single
5646 argument or the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005647
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005648<p>Overloaded intrinsics will have the names of its overloaded argument types
5649 encoded into its function name, each preceded by a period. Only those types
5650 which are overloaded result in a name suffix. Arguments whose type is matched
5651 against another type do not. For example, the <tt>llvm.ctpop</tt> function
5652 can take an integer of any width and returns an integer of exactly the same
5653 integer width. This leads to a family of functions such as
5654 <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29
5655 %val)</tt>. Only one type, the return type, is overloaded, and only one type
5656 suffix is required. Because the argument's type is matched against the return
5657 type, it does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00005658
Eric Christopher6c7e8a02009-12-05 02:46:03 +00005659<p>To learn how to add an intrinsic function, please see the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005660 <a href="ExtendingLLVM.html">Extending LLVM Guide</a>.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005661
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005662<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005663<h3>
Chris Lattner8ff75902004-01-06 05:31:32 +00005664 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005665</h3>
Chris Lattner8ff75902004-01-06 05:31:32 +00005666
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005667<div>
Chris Lattnerd7923912004-05-23 21:06:01 +00005668
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005669<p>Variable argument support is defined in LLVM with
5670 the <a href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
5671 intrinsic functions. These functions are related to the similarly named
5672 macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005673
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005674<p>All of these functions operate on arguments that use a target-specific value
5675 type "<tt>va_list</tt>". The LLVM assembly language reference manual does
5676 not define what this type is, so all transformations should be prepared to
5677 handle these functions regardless of the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005678
Chris Lattner374ab302006-05-15 17:26:46 +00005679<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005680 instruction and the variable argument handling intrinsic functions are
5681 used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005682
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00005683<pre class="doc_code">
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00005684define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00005685 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00005686 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00005687 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00005688 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005689
5690 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00005691 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00005692
5693 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00005694 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00005695 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00005696 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00005697 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005698
5699 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00005700 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00005701 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00005702}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00005703
5704declare void @llvm.va_start(i8*)
5705declare void @llvm.va_copy(i8*, i8*)
5706declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005707</pre>
Chris Lattner8ff75902004-01-06 05:31:32 +00005708
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005709<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005710<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00005711 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005712</h4>
Chris Lattner8ff75902004-01-06 05:31:32 +00005713
5714
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005715<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005716
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005717<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005718<pre>
5719 declare void %llvm.va_start(i8* &lt;arglist&gt;)
5720</pre>
5721
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005722<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005723<p>The '<tt>llvm.va_start</tt>' intrinsic initializes <tt>*&lt;arglist&gt;</tt>
5724 for subsequent use by <tt><a href="#i_va_arg">va_arg</a></tt>.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005725
5726<h5>Arguments:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005727<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005728
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005729<h5>Semantics:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00005730<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005731 macro available in C. In a target-dependent way, it initializes
5732 the <tt>va_list</tt> element to which the argument points, so that the next
5733 call to <tt>va_arg</tt> will produce the first variable argument passed to
5734 the function. Unlike the C <tt>va_start</tt> macro, this intrinsic does not
5735 need to know the last argument of the function as the compiler can figure
5736 that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005737
Misha Brukman9d0919f2003-11-08 01:05:38 +00005738</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005739
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005740<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005741<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00005742 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005743</h4>
Chris Lattner8ff75902004-01-06 05:31:32 +00005744
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005745<div>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005746
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005747<h5>Syntax:</h5>
5748<pre>
5749 declare void @llvm.va_end(i8* &lt;arglist&gt;)
5750</pre>
5751
5752<h5>Overview:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005753<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005754 which has been initialized previously
5755 with <tt><a href="#int_va_start">llvm.va_start</a></tt>
5756 or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005757
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005758<h5>Arguments:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005759<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005760
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005761<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00005762<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005763 macro available in C. In a target-dependent way, it destroys
5764 the <tt>va_list</tt> element to which the argument points. Calls
5765 to <a href="#int_va_start"><tt>llvm.va_start</tt></a>
5766 and <a href="#int_va_copy"> <tt>llvm.va_copy</tt></a> must be matched exactly
5767 with calls to <tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005768
Misha Brukman9d0919f2003-11-08 01:05:38 +00005769</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005770
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005771<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005772<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00005773 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005774</h4>
Chris Lattner8ff75902004-01-06 05:31:32 +00005775
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005776<div>
Chris Lattnerd7923912004-05-23 21:06:01 +00005777
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005778<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005779<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005780 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00005781</pre>
5782
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005783<h5>Overview:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005784<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005785 from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005786
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005787<h5>Arguments:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005788<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005789 The second argument is a pointer to a <tt>va_list</tt> element to copy
5790 from.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005791
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005792<h5>Semantics:</h5>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005793<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005794 macro available in C. In a target-dependent way, it copies the
5795 source <tt>va_list</tt> element into the destination <tt>va_list</tt>
5796 element. This intrinsic is necessary because
5797 the <tt><a href="#int_va_start"> llvm.va_start</a></tt> intrinsic may be
5798 arbitrarily complex and require, for example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005799
Misha Brukman9d0919f2003-11-08 01:05:38 +00005800</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005801
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005802</div>
5803
Chris Lattner33aec9e2004-02-12 17:01:32 +00005804<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005805<h3>
Chris Lattnerd7923912004-05-23 21:06:01 +00005806 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005807</h3>
Chris Lattnerd7923912004-05-23 21:06:01 +00005808
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005809<div>
Chris Lattnerd7923912004-05-23 21:06:01 +00005810
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005811<p>LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00005812Collection</a> (GC) requires the implementation and generation of these
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005813intrinsics. These intrinsics allow identification of <a href="#int_gcroot">GC
5814roots on the stack</a>, as well as garbage collector implementations that
5815require <a href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a>
5816barriers. Front-ends for type-safe garbage collected languages should generate
5817these intrinsics to make use of the LLVM garbage collectors. For more details,
5818see <a href="GarbageCollection.html">Accurate Garbage Collection with
5819LLVM</a>.</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00005820
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005821<p>The garbage collection intrinsics only operate on objects in the generic
5822 address space (address space zero).</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00005823
Chris Lattnerd7923912004-05-23 21:06:01 +00005824<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005825<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00005826 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005827</h4>
Chris Lattnerd7923912004-05-23 21:06:01 +00005828
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005829<div>
Chris Lattnerd7923912004-05-23 21:06:01 +00005830
5831<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005832<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005833 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00005834</pre>
5835
5836<h5>Overview:</h5>
John Criswell9e2485c2004-12-10 15:51:16 +00005837<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005838 the code generator, and allows some metadata to be associated with it.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005839
5840<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005841<p>The first argument specifies the address of a stack object that contains the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005842 root pointer. The second pointer (which must be either a constant or a
5843 global value address) contains the meta-data to be associated with the
5844 root.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005845
5846<h5>Semantics:</h5>
Chris Lattner05d67092008-04-24 05:59:56 +00005847<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005848 location. At compile-time, the code generator generates information to allow
5849 the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5850 intrinsic may only be used in a function which <a href="#gc">specifies a GC
5851 algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005852
5853</div>
5854
Chris Lattnerd7923912004-05-23 21:06:01 +00005855<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005856<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00005857 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005858</h4>
Chris Lattnerd7923912004-05-23 21:06:01 +00005859
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005860<div>
Chris Lattnerd7923912004-05-23 21:06:01 +00005861
5862<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005863<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005864 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00005865</pre>
5866
5867<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005868<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005869 locations, allowing garbage collector implementations that require read
5870 barriers.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005871
5872<h5>Arguments:</h5>
Chris Lattner80626e92006-03-14 20:02:51 +00005873<p>The second argument is the address to read from, which should be an address
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005874 allocated from the garbage collector. The first object is a pointer to the
5875 start of the referenced object, if needed by the language runtime (otherwise
5876 null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005877
5878<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005879<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005880 instruction, but may be replaced with substantially more complex code by the
5881 garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5882 may only be used in a function which <a href="#gc">specifies a GC
5883 algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005884
5885</div>
5886
Chris Lattnerd7923912004-05-23 21:06:01 +00005887<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005888<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00005889 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005890</h4>
Chris Lattnerd7923912004-05-23 21:06:01 +00005891
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005892<div>
Chris Lattnerd7923912004-05-23 21:06:01 +00005893
5894<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005895<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005896 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00005897</pre>
5898
5899<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005900<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005901 locations, allowing garbage collector implementations that require write
5902 barriers (such as generational or reference counting collectors).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005903
5904<h5>Arguments:</h5>
Chris Lattner80626e92006-03-14 20:02:51 +00005905<p>The first argument is the reference to store, the second is the start of the
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005906 object to store it to, and the third is the address of the field of Obj to
5907 store to. If the runtime does not require a pointer to the object, Obj may
5908 be null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005909
5910<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005911<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005912 instruction, but may be replaced with substantially more complex code by the
5913 garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5914 may only be used in a function which <a href="#gc">specifies a GC
5915 algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005916
5917</div>
5918
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005919</div>
5920
Chris Lattnerd7923912004-05-23 21:06:01 +00005921<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005922<h3>
Chris Lattner10610642004-02-14 04:08:35 +00005923 <a name="int_codegen">Code Generator Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005924</h3>
Chris Lattner10610642004-02-14 04:08:35 +00005925
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005926<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005927
5928<p>These intrinsics are provided by LLVM to expose special features that may
5929 only be implemented with code generator support.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005930
Chris Lattner10610642004-02-14 04:08:35 +00005931<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005932<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00005933 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005934</h4>
Chris Lattner10610642004-02-14 04:08:35 +00005935
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005936<div>
Chris Lattner10610642004-02-14 04:08:35 +00005937
5938<h5>Syntax:</h5>
5939<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005940 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005941</pre>
5942
5943<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005944<p>The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5945 target-specific value indicating the return address of the current function
5946 or one of its callers.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005947
5948<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005949<p>The argument to this intrinsic indicates which function to return the address
5950 for. Zero indicates the calling function, one indicates its caller, etc.
5951 The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005952
5953<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005954<p>The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer
5955 indicating the return address of the specified call frame, or zero if it
5956 cannot be identified. The value returned by this intrinsic is likely to be
5957 incorrect or 0 for arguments other than zero, so it should only be used for
5958 debugging purposes.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005959
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005960<p>Note that calling this intrinsic does not prevent function inlining or other
5961 aggressive transformations, so the value returned may not be that of the
5962 obvious source-language caller.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005963
Chris Lattner10610642004-02-14 04:08:35 +00005964</div>
5965
Chris Lattner10610642004-02-14 04:08:35 +00005966<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005967<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00005968 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00005969</h4>
Chris Lattner10610642004-02-14 04:08:35 +00005970
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00005971<div>
Chris Lattner10610642004-02-14 04:08:35 +00005972
5973<h5>Syntax:</h5>
5974<pre>
Dan Gohmanfe47aae2010-05-28 17:13:49 +00005975 declare i8* @llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005976</pre>
5977
5978<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005979<p>The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5980 target-specific frame pointer value for the specified stack frame.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005981
5982<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005983<p>The argument to this intrinsic indicates which function to return the frame
5984 pointer for. Zero indicates the calling function, one indicates its caller,
5985 etc. The argument is <b>required</b> to be a constant integer value.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005986
5987<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005988<p>The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer
5989 indicating the frame address of the specified call frame, or zero if it
5990 cannot be identified. The value returned by this intrinsic is likely to be
5991 incorrect or 0 for arguments other than zero, so it should only be used for
5992 debugging purposes.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005993
Bill Wendlinge910b4c2009-07-20 02:29:24 +00005994<p>Note that calling this intrinsic does not prevent function inlining or other
5995 aggressive transformations, so the value returned may not be that of the
5996 obvious source-language caller.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005997
Chris Lattner10610642004-02-14 04:08:35 +00005998</div>
5999
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00006000<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006001<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006002 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006003</h4>
Chris Lattner57e1f392006-01-13 02:03:13 +00006004
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006005<div>
Chris Lattner57e1f392006-01-13 02:03:13 +00006006
6007<h5>Syntax:</h5>
6008<pre>
Dan Gohmanfe47aae2010-05-28 17:13:49 +00006009 declare i8* @llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00006010</pre>
6011
6012<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006013<p>The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state
6014 of the function stack, for use
6015 with <a href="#int_stackrestore"> <tt>llvm.stackrestore</tt></a>. This is
6016 useful for implementing language features like scoped automatic variable
6017 sized arrays in C99.</p>
Chris Lattner57e1f392006-01-13 02:03:13 +00006018
6019<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006020<p>This intrinsic returns a opaque pointer value that can be passed
6021 to <a href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When
6022 an <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved
6023 from <tt>llvm.stacksave</tt>, it effectively restores the state of the stack
6024 to the state it was in when the <tt>llvm.stacksave</tt> intrinsic executed.
6025 In practice, this pops any <a href="#i_alloca">alloca</a> blocks from the
6026 stack that were allocated after the <tt>llvm.stacksave</tt> was executed.</p>
Chris Lattner57e1f392006-01-13 02:03:13 +00006027
6028</div>
6029
6030<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006031<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006032 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006033</h4>
Chris Lattner57e1f392006-01-13 02:03:13 +00006034
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006035<div>
Chris Lattner57e1f392006-01-13 02:03:13 +00006036
6037<h5>Syntax:</h5>
6038<pre>
Dan Gohmanfe47aae2010-05-28 17:13:49 +00006039 declare void @llvm.stackrestore(i8* %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00006040</pre>
6041
6042<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006043<p>The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
6044 the function stack to the state it was in when the
6045 corresponding <a href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic
6046 executed. This is useful for implementing language features like scoped
6047 automatic variable sized arrays in C99.</p>
Chris Lattner57e1f392006-01-13 02:03:13 +00006048
6049<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006050<p>See the description
6051 for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.</p>
Chris Lattner57e1f392006-01-13 02:03:13 +00006052
6053</div>
6054
Chris Lattner57e1f392006-01-13 02:03:13 +00006055<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006056<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006057 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006058</h4>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00006059
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006060<div>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00006061
6062<h5>Syntax:</h5>
6063<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00006064 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00006065</pre>
6066
6067<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006068<p>The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to
6069 insert a prefetch instruction if supported; otherwise, it is a noop.
6070 Prefetches have no effect on the behavior of the program but can change its
6071 performance characteristics.</p>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00006072
6073<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006074<p><tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the
6075 specifier determining if the fetch should be for a read (0) or write (1),
6076 and <tt>locality</tt> is a temporal locality specifier ranging from (0) - no
6077 locality, to (3) - extremely local keep in cache. The <tt>rw</tt>
6078 and <tt>locality</tt> arguments must be constant integers.</p>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00006079
6080<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006081<p>This intrinsic does not modify the behavior of the program. In particular,
6082 prefetches cannot trap and do not produce a value. On targets that support
6083 this intrinsic, the prefetch can provide hints to the processor cache for
6084 better performance.</p>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00006085
6086</div>
6087
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00006088<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006089<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006090 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006091</h4>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00006092
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006093<div>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00006094
6095<h5>Syntax:</h5>
6096<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00006097 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00006098</pre>
6099
6100<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006101<p>The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program
6102 Counter (PC) in a region of code to simulators and other tools. The method
6103 is target specific, but it is expected that the marker will use exported
6104 symbols to transmit the PC of the marker. The marker makes no guarantees
6105 that it will remain with any specific instruction after optimizations. It is
6106 possible that the presence of a marker will inhibit optimizations. The
6107 intended use is to be inserted after optimizations to allow correlations of
6108 simulation runs.</p>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00006109
6110<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006111<p><tt>id</tt> is a numerical id identifying the marker.</p>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00006112
6113<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006114<p>This intrinsic does not modify the behavior of the program. Backends that do
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00006115 not support this intrinsic may ignore it.</p>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00006116
6117</div>
6118
Andrew Lenharth51b8d542005-11-11 16:47:30 +00006119<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006120<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006121 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006122</h4>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00006123
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006124<div>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00006125
6126<h5>Syntax:</h5>
6127<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00006128 declare i64 @llvm.readcyclecounter()
Andrew Lenharth51b8d542005-11-11 16:47:30 +00006129</pre>
6130
6131<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006132<p>The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
6133 counter register (or similar low latency, high accuracy clocks) on those
6134 targets that support it. On X86, it should map to RDTSC. On Alpha, it
6135 should map to RPCC. As the backing counters overflow quickly (on the order
6136 of 9 seconds on alpha), this should only be used for small timings.</p>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00006137
6138<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006139<p>When directly supported, reading the cycle counter should not modify any
6140 memory. Implementations are allowed to either return a application specific
6141 value or a system wide value. On backends without support, this is lowered
6142 to a constant 0.</p>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00006143
6144</div>
6145
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006146</div>
6147
Chris Lattner10610642004-02-14 04:08:35 +00006148<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006149<h3>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006150 <a name="int_libc">Standard C Library Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006151</h3>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006152
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006153<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006154
6155<p>LLVM provides intrinsics for a few important standard C library functions.
6156 These intrinsics allow source-language front-ends to pass information about
6157 the alignment of the pointer arguments to the code generator, providing
6158 opportunity for more efficient code generation.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006159
Chris Lattner33aec9e2004-02-12 17:01:32 +00006160<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006161<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006162 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006163</h4>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006164
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006165<div>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006166
6167<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006168<p>This is an overloaded intrinsic. You can use <tt>llvm.memcpy</tt> on any
Mon P Wange88909b2010-04-07 06:35:53 +00006169 integer bit width and for different address spaces. Not all targets support
6170 all bit widths however.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006171
Chris Lattner33aec9e2004-02-12 17:01:32 +00006172<pre>
Dan Gohmanfe47aae2010-05-28 17:13:49 +00006173 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattner9f636de2010-04-08 00:53:57 +00006174 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanfe47aae2010-05-28 17:13:49 +00006175 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattner9f636de2010-04-08 00:53:57 +00006176 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00006177</pre>
6178
6179<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006180<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6181 source location to the destination location.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006182
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006183<p>Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
Chris Lattner9f636de2010-04-08 00:53:57 +00006184 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6185 and the pointers can be in specified address spaces.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006186
6187<h5>Arguments:</h5>
Chris Lattner9f636de2010-04-08 00:53:57 +00006188
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006189<p>The first argument is a pointer to the destination, the second is a pointer
6190 to the source. The third argument is an integer argument specifying the
Chris Lattner9f636de2010-04-08 00:53:57 +00006191 number of bytes to copy, the fourth argument is the alignment of the
6192 source and destination locations, and the fifth is a boolean indicating a
6193 volatile access.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006194
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00006195<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006196 then the caller guarantees that both the source and destination pointers are
6197 aligned to that boundary.</p>
Chris Lattner3301ced2004-02-12 21:18:15 +00006198
Jeffrey Yasskin93e066d2010-04-26 21:21:24 +00006199<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6200 <tt>llvm.memcpy</tt> call is a <a href="#volatile">volatile operation</a>.
6201 The detailed access behavior is not very cleanly specified and it is unwise
6202 to depend on it.</p>
Chris Lattner9f636de2010-04-08 00:53:57 +00006203
Chris Lattner33aec9e2004-02-12 17:01:32 +00006204<h5>Semantics:</h5>
Chris Lattner9f636de2010-04-08 00:53:57 +00006205
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006206<p>The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the
6207 source location to the destination location, which are not allowed to
6208 overlap. It copies "len" bytes of memory over. If the argument is known to
6209 be aligned to some boundary, this can be specified as the fourth argument,
6210 otherwise it should be set to 0 or 1.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00006211
Chris Lattner33aec9e2004-02-12 17:01:32 +00006212</div>
6213
Chris Lattner0eb51b42004-02-12 18:10:10 +00006214<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006215<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006216 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006217</h4>
Chris Lattner0eb51b42004-02-12 18:10:10 +00006218
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006219<div>
Chris Lattner0eb51b42004-02-12 18:10:10 +00006220
6221<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00006222<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
Mon P Wange88909b2010-04-07 06:35:53 +00006223 width and for different address space. Not all targets support all bit
6224 widths however.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006225
Chris Lattner0eb51b42004-02-12 18:10:10 +00006226<pre>
Dan Gohmanfe47aae2010-05-28 17:13:49 +00006227 declare void @llvm.memmove.p0i8.p0i8.i32(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattner9f636de2010-04-08 00:53:57 +00006228 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanfe47aae2010-05-28 17:13:49 +00006229 declare void @llvm.memmove.p0i8.p0i8.i64(i8* &lt;dest&gt;, i8* &lt;src&gt;,
Chris Lattner9f636de2010-04-08 00:53:57 +00006230 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00006231</pre>
6232
6233<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006234<p>The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the
6235 source location to the destination location. It is similar to the
6236 '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to
6237 overlap.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00006238
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006239<p>Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
Chris Lattner9f636de2010-04-08 00:53:57 +00006240 intrinsics do not return a value, takes extra alignment/isvolatile arguments
6241 and the pointers can be in specified address spaces.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00006242
6243<h5>Arguments:</h5>
Chris Lattner9f636de2010-04-08 00:53:57 +00006244
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006245<p>The first argument is a pointer to the destination, the second is a pointer
6246 to the source. The third argument is an integer argument specifying the
Chris Lattner9f636de2010-04-08 00:53:57 +00006247 number of bytes to copy, the fourth argument is the alignment of the
6248 source and destination locations, and the fifth is a boolean indicating a
6249 volatile access.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00006250
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00006251<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006252 then the caller guarantees that the source and destination pointers are
6253 aligned to that boundary.</p>
Chris Lattner3301ced2004-02-12 21:18:15 +00006254
Jeffrey Yasskin93e066d2010-04-26 21:21:24 +00006255<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6256 <tt>llvm.memmove</tt> call is a <a href="#volatile">volatile operation</a>.
6257 The detailed access behavior is not very cleanly specified and it is unwise
6258 to depend on it.</p>
Chris Lattner9f636de2010-04-08 00:53:57 +00006259
Chris Lattner0eb51b42004-02-12 18:10:10 +00006260<h5>Semantics:</h5>
Chris Lattner9f636de2010-04-08 00:53:57 +00006261
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006262<p>The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the
6263 source location to the destination location, which may overlap. It copies
6264 "len" bytes of memory over. If the argument is known to be aligned to some
6265 boundary, this can be specified as the fourth argument, otherwise it should
6266 be set to 0 or 1.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00006267
Chris Lattner0eb51b42004-02-12 18:10:10 +00006268</div>
6269
Chris Lattner10610642004-02-14 04:08:35 +00006270<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006271<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006272 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006273</h4>
Chris Lattner10610642004-02-14 04:08:35 +00006274
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006275<div>
Chris Lattner10610642004-02-14 04:08:35 +00006276
6277<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00006278<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
John Criswellcdcbbfc2010-07-30 16:30:28 +00006279 width and for different address spaces. However, not all targets support all
6280 bit widths.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006281
Chris Lattner10610642004-02-14 04:08:35 +00006282<pre>
Dan Gohmanfe47aae2010-05-28 17:13:49 +00006283 declare void @llvm.memset.p0i8.i32(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattnerff35c3f2010-04-08 00:54:34 +00006284 i32 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Dan Gohmanfe47aae2010-05-28 17:13:49 +00006285 declare void @llvm.memset.p0i8.i64(i8* &lt;dest&gt;, i8 &lt;val&gt;,
Chris Lattnerff35c3f2010-04-08 00:54:34 +00006286 i64 &lt;len&gt;, i32 &lt;align&gt;, i1 &lt;isvolatile&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00006287</pre>
6288
6289<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006290<p>The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a
6291 particular byte value.</p>
Chris Lattner10610642004-02-14 04:08:35 +00006292
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006293<p>Note that, unlike the standard libc function, the <tt>llvm.memset</tt>
John Criswellcdcbbfc2010-07-30 16:30:28 +00006294 intrinsic does not return a value and takes extra alignment/volatile
6295 arguments. Also, the destination can be in an arbitrary address space.</p>
Chris Lattner10610642004-02-14 04:08:35 +00006296
6297<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006298<p>The first argument is a pointer to the destination to fill, the second is the
John Criswellcdcbbfc2010-07-30 16:30:28 +00006299 byte value with which to fill it, the third argument is an integer argument
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006300 specifying the number of bytes to fill, and the fourth argument is the known
John Criswellcdcbbfc2010-07-30 16:30:28 +00006301 alignment of the destination location.</p>
Chris Lattner10610642004-02-14 04:08:35 +00006302
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00006303<p>If the call to this intrinsic has an alignment value that is not 0 or 1,
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006304 then the caller guarantees that the destination pointer is aligned to that
6305 boundary.</p>
Chris Lattner10610642004-02-14 04:08:35 +00006306
Jeffrey Yasskin93e066d2010-04-26 21:21:24 +00006307<p>If the <tt>isvolatile</tt> parameter is <tt>true</tt>, the
6308 <tt>llvm.memset</tt> call is a <a href="#volatile">volatile operation</a>.
6309 The detailed access behavior is not very cleanly specified and it is unwise
6310 to depend on it.</p>
Chris Lattner9f636de2010-04-08 00:53:57 +00006311
Chris Lattner10610642004-02-14 04:08:35 +00006312<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006313<p>The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting
6314 at the destination location. If the argument is known to be aligned to some
6315 boundary, this can be specified as the fourth argument, otherwise it should
6316 be set to 0 or 1.</p>
Chris Lattner10610642004-02-14 04:08:35 +00006317
Chris Lattner10610642004-02-14 04:08:35 +00006318</div>
6319
Chris Lattner32006282004-06-11 02:28:03 +00006320<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006321<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006322 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006323</h4>
Chris Lattnera4d74142005-07-21 01:29:16 +00006324
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006325<div>
Chris Lattnera4d74142005-07-21 01:29:16 +00006326
6327<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006328<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
6329 floating point or vector of floating point type. Not all targets support all
6330 types however.</p>
6331
Chris Lattnera4d74142005-07-21 01:29:16 +00006332<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00006333 declare float @llvm.sqrt.f32(float %Val)
6334 declare double @llvm.sqrt.f64(double %Val)
6335 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6336 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6337 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00006338</pre>
6339
6340<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006341<p>The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
6342 returning the same value as the libm '<tt>sqrt</tt>' functions would.
6343 Unlike <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined
6344 behavior for negative numbers other than -0.0 (which allows for better
6345 optimization, because there is no need to worry about errno being
6346 set). <tt>llvm.sqrt(-0.0)</tt> is defined to return -0.0 like IEEE sqrt.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00006347
6348<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006349<p>The argument and return value are floating point numbers of the same
6350 type.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00006351
6352<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006353<p>This function returns the sqrt of the specified operand if it is a
6354 nonnegative floating point number.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00006355
Chris Lattnera4d74142005-07-21 01:29:16 +00006356</div>
6357
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006358<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006359<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006360 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006361</h4>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006362
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006363<div>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006364
6365<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006366<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
6367 floating point or vector of floating point type. Not all targets support all
6368 types however.</p>
6369
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006370<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00006371 declare float @llvm.powi.f32(float %Val, i32 %power)
6372 declare double @llvm.powi.f64(double %Val, i32 %power)
6373 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6374 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6375 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006376</pre>
6377
6378<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006379<p>The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
6380 specified (positive or negative) power. The order of evaluation of
6381 multiplications is not defined. When a vector of floating point type is
6382 used, the second argument remains a scalar integer value.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006383
6384<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006385<p>The second argument is an integer power, and the first is a value to raise to
6386 that power.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006387
6388<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006389<p>This function returns the first value raised to the second power with an
6390 unspecified sequence of rounding operations.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006391
Chris Lattnerf4d252d2006-09-08 06:34:02 +00006392</div>
6393
Dan Gohman91c284c2007-10-15 20:30:11 +00006394<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006395<h4>
Dan Gohman91c284c2007-10-15 20:30:11 +00006396 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006397</h4>
Dan Gohman91c284c2007-10-15 20:30:11 +00006398
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006399<div>
Dan Gohman91c284c2007-10-15 20:30:11 +00006400
6401<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006402<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
6403 floating point or vector of floating point type. Not all targets support all
6404 types however.</p>
6405
Dan Gohman91c284c2007-10-15 20:30:11 +00006406<pre>
6407 declare float @llvm.sin.f32(float %Val)
6408 declare double @llvm.sin.f64(double %Val)
6409 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6410 declare fp128 @llvm.sin.f128(fp128 %Val)
6411 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6412</pre>
6413
6414<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006415<p>The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006416
6417<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006418<p>The argument and return value are floating point numbers of the same
6419 type.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006420
6421<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006422<p>This function returns the sine of the specified operand, returning the same
6423 values as the libm <tt>sin</tt> functions would, and handles error conditions
6424 in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006425
Dan Gohman91c284c2007-10-15 20:30:11 +00006426</div>
6427
6428<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006429<h4>
Dan Gohman91c284c2007-10-15 20:30:11 +00006430 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006431</h4>
Dan Gohman91c284c2007-10-15 20:30:11 +00006432
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006433<div>
Dan Gohman91c284c2007-10-15 20:30:11 +00006434
6435<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006436<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
6437 floating point or vector of floating point type. Not all targets support all
6438 types however.</p>
6439
Dan Gohman91c284c2007-10-15 20:30:11 +00006440<pre>
6441 declare float @llvm.cos.f32(float %Val)
6442 declare double @llvm.cos.f64(double %Val)
6443 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6444 declare fp128 @llvm.cos.f128(fp128 %Val)
6445 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6446</pre>
6447
6448<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006449<p>The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006450
6451<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006452<p>The argument and return value are floating point numbers of the same
6453 type.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006454
6455<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006456<p>This function returns the cosine of the specified operand, returning the same
6457 values as the libm <tt>cos</tt> functions would, and handles error conditions
6458 in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006459
Dan Gohman91c284c2007-10-15 20:30:11 +00006460</div>
6461
6462<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006463<h4>
Dan Gohman91c284c2007-10-15 20:30:11 +00006464 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006465</h4>
Dan Gohman91c284c2007-10-15 20:30:11 +00006466
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006467<div>
Dan Gohman91c284c2007-10-15 20:30:11 +00006468
6469<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006470<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
6471 floating point or vector of floating point type. Not all targets support all
6472 types however.</p>
6473
Dan Gohman91c284c2007-10-15 20:30:11 +00006474<pre>
6475 declare float @llvm.pow.f32(float %Val, float %Power)
6476 declare double @llvm.pow.f64(double %Val, double %Power)
6477 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6478 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6479 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6480</pre>
6481
6482<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006483<p>The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
6484 specified (positive or negative) power.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006485
6486<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006487<p>The second argument is a floating point power, and the first is a value to
6488 raise to that power.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006489
6490<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006491<p>This function returns the first value raised to the second power, returning
6492 the same values as the libm <tt>pow</tt> functions would, and handles error
6493 conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00006494
Dan Gohman91c284c2007-10-15 20:30:11 +00006495</div>
6496
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006497</div>
6498
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006499<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006500<h3>
Nate Begeman7e36c472006-01-13 23:26:38 +00006501 <a name="int_manip">Bit Manipulation Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006502</h3>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006503
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006504<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006505
6506<p>LLVM provides intrinsics for a few important bit manipulation operations.
6507 These allow efficient code generation for some algorithms.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006508
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006509<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006510<h4>
Reid Spencera3e435f2007-04-04 02:42:35 +00006511 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006512</h4>
Nate Begeman7e36c472006-01-13 23:26:38 +00006513
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006514<div>
Nate Begeman7e36c472006-01-13 23:26:38 +00006515
6516<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00006517<p>This is an overloaded intrinsic function. You can use bswap on any integer
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006518 type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
6519
Nate Begeman7e36c472006-01-13 23:26:38 +00006520<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006521 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
6522 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
6523 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00006524</pre>
6525
6526<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006527<p>The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
6528 values with an even number of bytes (positive multiple of 16 bits). These
6529 are useful for performing operations on data that is not in the target's
6530 native byte order.</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00006531
6532<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006533<p>The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
6534 and low byte of the input i16 swapped. Similarly,
6535 the <tt>llvm.bswap.i32</tt> intrinsic returns an i32 value that has the four
6536 bytes of the input i32 swapped, so that if the input bytes are numbered 0, 1,
6537 2, 3 then the returned i32 will have its bytes in 3, 2, 1, 0 order.
6538 The <tt>llvm.bswap.i48</tt>, <tt>llvm.bswap.i64</tt> and other intrinsics
6539 extend this concept to additional even-byte lengths (6 bytes, 8 bytes and
6540 more, respectively).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00006541
6542</div>
6543
6544<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006545<h4>
Reid Spencer0b118202006-01-16 21:12:35 +00006546 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006547</h4>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006548
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006549<div>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006550
6551<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00006552<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006553 width. Not all targets support all bit widths however.</p>
6554
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006555<pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006556 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00006557 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00006558 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00006559 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
6560 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006561</pre>
6562
6563<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006564<p>The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set
6565 in a value.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006566
6567<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006568<p>The only argument is the value to be counted. The argument may be of any
6569 integer type. The return type must match the argument type.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006570
6571<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006572<p>The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006573
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006574</div>
6575
6576<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006577<h4>
Chris Lattner8a886be2006-01-16 22:34:14 +00006578 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006579</h4>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006580
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006581<div>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006582
6583<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006584<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
6585 integer bit width. Not all targets support all bit widths however.</p>
6586
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006587<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006588 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
6589 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00006590 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00006591 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
6592 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006593</pre>
6594
6595<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006596<p>The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
6597 leading zeros in a variable.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006598
6599<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006600<p>The only argument is the value to be counted. The argument may be of any
6601 integer type. The return type must match the argument type.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006602
6603<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006604<p>The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant)
6605 zeros in a variable. If the src == 0 then the result is the size in bits of
6606 the type of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006607
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006608</div>
Chris Lattner32006282004-06-11 02:28:03 +00006609
Chris Lattnereff29ab2005-05-15 19:39:26 +00006610<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006611<h4>
Chris Lattner8a886be2006-01-16 22:34:14 +00006612 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006613</h4>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006614
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006615<div>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006616
6617<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006618<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
6619 integer bit width. Not all targets support all bit widths however.</p>
6620
Chris Lattnereff29ab2005-05-15 19:39:26 +00006621<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006622 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
6623 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00006624 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00006625 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
6626 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00006627</pre>
6628
6629<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006630<p>The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
6631 trailing zeros.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006632
6633<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006634<p>The only argument is the value to be counted. The argument may be of any
6635 integer type. The return type must match the argument type.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006636
6637<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006638<p>The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant)
6639 zeros in a variable. If the src == 0 then the result is the size in bits of
6640 the type of src. For example, <tt>llvm.cttz(2) = 1</tt>.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006641
Chris Lattnereff29ab2005-05-15 19:39:26 +00006642</div>
6643
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006644</div>
6645
Bill Wendlingda01af72009-02-08 04:04:40 +00006646<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006647<h3>
Bill Wendlingda01af72009-02-08 04:04:40 +00006648 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006649</h3>
Bill Wendlingda01af72009-02-08 04:04:40 +00006650
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006651<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006652
6653<p>LLVM provides intrinsics for some arithmetic with overflow operations.</p>
Bill Wendlingda01af72009-02-08 04:04:40 +00006654
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006655<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006656<h4>
6657 <a name="int_sadd_overflow">
6658 '<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics
6659 </a>
6660</h4>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006661
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006662<div>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006663
6664<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006665<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006666 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006667
6668<pre>
6669 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6670 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6671 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6672</pre>
6673
6674<h5>Overview:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006675<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006676 a signed addition of the two arguments, and indicate whether an overflow
6677 occurred during the signed summation.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006678
6679<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006680<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006681 be of integer types of any bit width, but they must have the same bit
6682 width. The second element of the result structure must be of
6683 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6684 undergo signed addition.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006685
6686<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006687<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006688 a signed addition of the two variables. They return a structure &mdash; the
6689 first element of which is the signed summation, and the second element of
6690 which is a bit specifying if the signed summation resulted in an
6691 overflow.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006692
6693<h5>Examples:</h5>
6694<pre>
6695 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6696 %sum = extractvalue {i32, i1} %res, 0
6697 %obit = extractvalue {i32, i1} %res, 1
6698 br i1 %obit, label %overflow, label %normal
6699</pre>
6700
6701</div>
6702
6703<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006704<h4>
6705 <a name="int_uadd_overflow">
6706 '<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics
6707 </a>
6708</h4>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006709
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006710<div>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006711
6712<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006713<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006714 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006715
6716<pre>
6717 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6718 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6719 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6720</pre>
6721
6722<h5>Overview:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006723<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006724 an unsigned addition of the two arguments, and indicate whether a carry
6725 occurred during the unsigned summation.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006726
6727<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006728<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006729 be of integer types of any bit width, but they must have the same bit
6730 width. The second element of the result structure must be of
6731 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6732 undergo unsigned addition.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006733
6734<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006735<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006736 an unsigned addition of the two arguments. They return a structure &mdash;
6737 the first element of which is the sum, and the second element of which is a
6738 bit specifying if the unsigned summation resulted in a carry.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006739
6740<h5>Examples:</h5>
6741<pre>
6742 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6743 %sum = extractvalue {i32, i1} %res, 0
6744 %obit = extractvalue {i32, i1} %res, 1
6745 br i1 %obit, label %carry, label %normal
6746</pre>
6747
6748</div>
6749
6750<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006751<h4>
6752 <a name="int_ssub_overflow">
6753 '<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics
6754 </a>
6755</h4>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006756
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006757<div>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006758
6759<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006760<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006761 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006762
6763<pre>
6764 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6765 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6766 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6767</pre>
6768
6769<h5>Overview:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006770<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006771 a signed subtraction of the two arguments, and indicate whether an overflow
6772 occurred during the signed subtraction.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006773
6774<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006775<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006776 be of integer types of any bit width, but they must have the same bit
6777 width. The second element of the result structure must be of
6778 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6779 undergo signed subtraction.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006780
6781<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006782<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006783 a signed subtraction of the two arguments. They return a structure &mdash;
6784 the first element of which is the subtraction, and the second element of
6785 which is a bit specifying if the signed subtraction resulted in an
6786 overflow.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006787
6788<h5>Examples:</h5>
6789<pre>
6790 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6791 %sum = extractvalue {i32, i1} %res, 0
6792 %obit = extractvalue {i32, i1} %res, 1
6793 br i1 %obit, label %overflow, label %normal
6794</pre>
6795
6796</div>
6797
6798<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006799<h4>
6800 <a name="int_usub_overflow">
6801 '<tt>llvm.usub.with.overflow.*</tt>' Intrinsics
6802 </a>
6803</h4>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006804
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006805<div>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006806
6807<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006808<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006809 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006810
6811<pre>
6812 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6813 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6814 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6815</pre>
6816
6817<h5>Overview:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006818<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006819 an unsigned subtraction of the two arguments, and indicate whether an
6820 overflow occurred during the unsigned subtraction.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006821
6822<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006823<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006824 be of integer types of any bit width, but they must have the same bit
6825 width. The second element of the result structure must be of
6826 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6827 undergo unsigned subtraction.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006828
6829<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006830<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006831 an unsigned subtraction of the two arguments. They return a structure &mdash;
6832 the first element of which is the subtraction, and the second element of
6833 which is a bit specifying if the unsigned subtraction resulted in an
6834 overflow.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006835
6836<h5>Examples:</h5>
6837<pre>
6838 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6839 %sum = extractvalue {i32, i1} %res, 0
6840 %obit = extractvalue {i32, i1} %res, 1
6841 br i1 %obit, label %overflow, label %normal
6842</pre>
6843
6844</div>
6845
6846<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006847<h4>
6848 <a name="int_smul_overflow">
6849 '<tt>llvm.smul.with.overflow.*</tt>' Intrinsics
6850 </a>
6851</h4>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006852
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006853<div>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006854
6855<h5>Syntax:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006856<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006857 on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006858
6859<pre>
6860 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6861 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6862 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6863</pre>
6864
6865<h5>Overview:</h5>
6866
6867<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006868 a signed multiplication of the two arguments, and indicate whether an
6869 overflow occurred during the signed multiplication.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006870
6871<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006872<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006873 be of integer types of any bit width, but they must have the same bit
6874 width. The second element of the result structure must be of
6875 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6876 undergo signed multiplication.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006877
6878<h5>Semantics:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006879<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006880 a signed multiplication of the two arguments. They return a structure &mdash;
6881 the first element of which is the multiplication, and the second element of
6882 which is a bit specifying if the signed multiplication resulted in an
6883 overflow.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006884
6885<h5>Examples:</h5>
6886<pre>
6887 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6888 %sum = extractvalue {i32, i1} %res, 0
6889 %obit = extractvalue {i32, i1} %res, 1
6890 br i1 %obit, label %overflow, label %normal
6891</pre>
6892
Reid Spencerf86037f2007-04-11 23:23:49 +00006893</div>
6894
Bill Wendling41b485c2009-02-08 23:00:09 +00006895<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006896<h4>
6897 <a name="int_umul_overflow">
6898 '<tt>llvm.umul.with.overflow.*</tt>' Intrinsics
6899 </a>
6900</h4>
Bill Wendling41b485c2009-02-08 23:00:09 +00006901
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006902<div>
Bill Wendling41b485c2009-02-08 23:00:09 +00006903
6904<h5>Syntax:</h5>
Bill Wendling41b485c2009-02-08 23:00:09 +00006905<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006906 on any integer bit width.</p>
Bill Wendling41b485c2009-02-08 23:00:09 +00006907
6908<pre>
6909 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6910 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6911 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6912</pre>
6913
6914<h5>Overview:</h5>
Bill Wendling41b485c2009-02-08 23:00:09 +00006915<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006916 a unsigned multiplication of the two arguments, and indicate whether an
6917 overflow occurred during the unsigned multiplication.</p>
Bill Wendling41b485c2009-02-08 23:00:09 +00006918
6919<h5>Arguments:</h5>
Bill Wendling41b485c2009-02-08 23:00:09 +00006920<p>The arguments (%a and %b) and the first element of the result structure may
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006921 be of integer types of any bit width, but they must have the same bit
6922 width. The second element of the result structure must be of
6923 type <tt>i1</tt>. <tt>%a</tt> and <tt>%b</tt> are the two values that will
6924 undergo unsigned multiplication.</p>
Bill Wendling41b485c2009-02-08 23:00:09 +00006925
6926<h5>Semantics:</h5>
Bill Wendling41b485c2009-02-08 23:00:09 +00006927<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
Bill Wendlinge910b4c2009-07-20 02:29:24 +00006928 an unsigned multiplication of the two arguments. They return a structure
6929 &mdash; the first element of which is the multiplication, and the second
6930 element of which is a bit specifying if the unsigned multiplication resulted
6931 in an overflow.</p>
Bill Wendling41b485c2009-02-08 23:00:09 +00006932
6933<h5>Examples:</h5>
6934<pre>
6935 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6936 %sum = extractvalue {i32, i1} %res, 0
6937 %obit = extractvalue {i32, i1} %res, 1
6938 br i1 %obit, label %overflow, label %normal
6939</pre>
6940
6941</div>
6942
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006943</div>
6944
Chris Lattner8ff75902004-01-06 05:31:32 +00006945<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006946<h3>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00006947 <a name="int_fp16">Half Precision Floating Point Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006948</h3>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00006949
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006950<div>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00006951
Chris Lattner0cec9c82010-03-15 04:12:21 +00006952<p>Half precision floating point is a storage-only format. This means that it is
6953 a dense encoding (in memory) but does not support computation in the
6954 format.</p>
Chris Lattner82c3dc62010-03-14 23:03:31 +00006955
Chris Lattner0cec9c82010-03-15 04:12:21 +00006956<p>This means that code must first load the half-precision floating point
Chris Lattner82c3dc62010-03-14 23:03:31 +00006957 value as an i16, then convert it to float with <a
6958 href="#int_convert_from_fp16"><tt>llvm.convert.from.fp16</tt></a>.
6959 Computation can then be performed on the float value (including extending to
Chris Lattner0cec9c82010-03-15 04:12:21 +00006960 double etc). To store the value back to memory, it is first converted to
6961 float if needed, then converted to i16 with
Chris Lattner82c3dc62010-03-14 23:03:31 +00006962 <a href="#int_convert_to_fp16"><tt>llvm.convert.to.fp16</tt></a>, then
6963 storing as an i16 value.</p>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00006964
6965<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00006966<h4>
6967 <a name="int_convert_to_fp16">
6968 '<tt>llvm.convert.to.fp16</tt>' Intrinsic
6969 </a>
6970</h4>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00006971
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00006972<div>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00006973
6974<h5>Syntax:</h5>
6975<pre>
6976 declare i16 @llvm.convert.to.fp16(f32 %a)
6977</pre>
6978
6979<h5>Overview:</h5>
6980<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
6981 a conversion from single precision floating point format to half precision
6982 floating point format.</p>
6983
6984<h5>Arguments:</h5>
6985<p>The intrinsic function contains single argument - the value to be
6986 converted.</p>
6987
6988<h5>Semantics:</h5>
6989<p>The '<tt>llvm.convert.to.fp16</tt>' intrinsic function performs
6990 a conversion from single precision floating point format to half precision
Chris Lattner0cec9c82010-03-15 04:12:21 +00006991 floating point format. The return value is an <tt>i16</tt> which
Chris Lattner82c3dc62010-03-14 23:03:31 +00006992 contains the converted number.</p>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00006993
6994<h5>Examples:</h5>
6995<pre>
6996 %res = call i16 @llvm.convert.to.fp16(f32 %a)
6997 store i16 %res, i16* @x, align 2
6998</pre>
6999
7000</div>
7001
7002<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007003<h4>
7004 <a name="int_convert_from_fp16">
7005 '<tt>llvm.convert.from.fp16</tt>' Intrinsic
7006 </a>
7007</h4>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00007008
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007009<div>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00007010
7011<h5>Syntax:</h5>
7012<pre>
7013 declare f32 @llvm.convert.from.fp16(i16 %a)
7014</pre>
7015
7016<h5>Overview:</h5>
7017<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs
7018 a conversion from half precision floating point format to single precision
7019 floating point format.</p>
7020
7021<h5>Arguments:</h5>
7022<p>The intrinsic function contains single argument - the value to be
7023 converted.</p>
7024
7025<h5>Semantics:</h5>
7026<p>The '<tt>llvm.convert.from.fp16</tt>' intrinsic function performs a
Chris Lattner0cec9c82010-03-15 04:12:21 +00007027 conversion from half single precision floating point format to single
Chris Lattner82c3dc62010-03-14 23:03:31 +00007028 precision floating point format. The input half-float value is represented by
7029 an <tt>i16</tt> value.</p>
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00007030
7031<h5>Examples:</h5>
7032<pre>
7033 %a = load i16* @x, align 2
7034 %res = call f32 @llvm.convert.from.fp16(i16 %a)
7035</pre>
7036
7037</div>
7038
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007039</div>
7040
Anton Korobeynikovf02e7302010-03-14 18:42:47 +00007041<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007042<h3>
Chris Lattner8ff75902004-01-06 05:31:32 +00007043 <a name="int_debugger">Debugger Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007044</h3>
Chris Lattner8ff75902004-01-06 05:31:32 +00007045
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007046<div>
Chris Lattner8ff75902004-01-06 05:31:32 +00007047
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007048<p>The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt>
7049 prefix), are described in
7050 the <a href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source
7051 Level Debugging</a> document.</p>
7052
7053</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00007054
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00007055<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007056<h3>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00007057 <a name="int_eh">Exception Handling Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007058</h3>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00007059
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007060<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007061
7062<p>The LLVM exception handling intrinsics (which all start with
7063 <tt>llvm.eh.</tt> prefix), are described in
7064 the <a href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
7065 Handling</a> document.</p>
7066
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00007067</div>
7068
Tanya Lattner6d806e92007-06-15 20:50:54 +00007069<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007070<h3>
Duncan Sandsf7331b32007-09-11 14:10:23 +00007071 <a name="int_trampoline">Trampoline Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007072</h3>
Duncan Sands36397f52007-07-27 12:58:54 +00007073
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007074<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007075
7076<p>This intrinsic makes it possible to excise one parameter, marked with
Dan Gohmanff235352010-07-02 23:18:08 +00007077 the <a href="#nest"><tt>nest</tt></a> attribute, from a function.
7078 The result is a callable
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007079 function pointer lacking the nest parameter - the caller does not need to
7080 provide a value for it. Instead, the value to use is stored in advance in a
7081 "trampoline", a block of memory usually allocated on the stack, which also
7082 contains code to splice the nest value into the argument list. This is used
7083 to implement the GCC nested function address extension.</p>
7084
7085<p>For example, if the function is
7086 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
7087 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
7088 follows:</p>
7089
Benjamin Kramer26fe25f2010-07-13 12:26:09 +00007090<pre class="doc_code">
Duncan Sandsf7331b32007-09-11 14:10:23 +00007091 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
7092 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007093 %p = call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval)
Duncan Sandsf7331b32007-09-11 14:10:23 +00007094 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00007095</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007096
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007097<p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
7098 to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007099
Duncan Sands36397f52007-07-27 12:58:54 +00007100<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007101<h4>
7102 <a name="int_it">
7103 '<tt>llvm.init.trampoline</tt>' Intrinsic
7104 </a>
7105</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007106
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007107<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007108
Duncan Sands36397f52007-07-27 12:58:54 +00007109<h5>Syntax:</h5>
7110<pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007111 declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00007112</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007113
Duncan Sands36397f52007-07-27 12:58:54 +00007114<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007115<p>This fills the memory pointed to by <tt>tramp</tt> with code and returns a
7116 function pointer suitable for executing it.</p>
7117
Duncan Sands36397f52007-07-27 12:58:54 +00007118<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007119<p>The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
7120 pointers. The <tt>tramp</tt> argument must point to a sufficiently large and
7121 sufficiently aligned block of memory; this memory is written to by the
7122 intrinsic. Note that the size and the alignment are target-specific - LLVM
7123 currently provides no portable way of determining them, so a front-end that
7124 generates this intrinsic needs to have some target-specific knowledge.
7125 The <tt>func</tt> argument must hold a function bitcast to
7126 an <tt>i8*</tt>.</p>
7127
Duncan Sands36397f52007-07-27 12:58:54 +00007128<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007129<p>The block of memory pointed to by <tt>tramp</tt> is filled with target
7130 dependent code, turning it into a function. A pointer to this function is
7131 returned, but needs to be bitcast to an <a href="#int_trampoline">appropriate
7132 function pointer type</a> before being called. The new function's signature
7133 is the same as that of <tt>func</tt> with any arguments marked with
7134 the <tt>nest</tt> attribute removed. At most one such <tt>nest</tt> argument
7135 is allowed, and it must be of pointer type. Calling the new function is
7136 equivalent to calling <tt>func</tt> with the same argument list, but
7137 with <tt>nval</tt> used for the missing <tt>nest</tt> argument. If, after
7138 calling <tt>llvm.init.trampoline</tt>, the memory pointed to
7139 by <tt>tramp</tt> is modified, then the effect of any later call to the
7140 returned function pointer is undefined.</p>
7141
Duncan Sands36397f52007-07-27 12:58:54 +00007142</div>
7143
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007144</div>
7145
Duncan Sands36397f52007-07-27 12:58:54 +00007146<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007147<h3>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007148 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007149</h3>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007150
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007151<div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007152
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007153<p>These intrinsic functions expand the "universal IR" of LLVM to represent
7154 hardware constructs for atomic operations and memory synchronization. This
7155 provides an interface to the hardware, not an interface to the programmer. It
7156 is aimed at a low enough level to allow any programming models or APIs
7157 (Application Programming Interfaces) which need atomic behaviors to map
7158 cleanly onto it. It is also modeled primarily on hardware behavior. Just as
7159 hardware provides a "universal IR" for source languages, it also provides a
7160 starting point for developing a "universal" atomic operation and
7161 synchronization IR.</p>
7162
7163<p>These do <em>not</em> form an API such as high-level threading libraries,
7164 software transaction memory systems, atomic primitives, and intrinsic
7165 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
7166 application libraries. The hardware interface provided by LLVM should allow
7167 a clean implementation of all of these APIs and parallel programming models.
7168 No one model or paradigm should be selected above others unless the hardware
7169 itself ubiquitously does so.</p>
7170
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007171<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007172<h4>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007173 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007174</h4>
7175
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007176<div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007177<h5>Syntax:</h5>
7178<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007179 declare void @llvm.memory.barrier(i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;, i1 &lt;device&gt;)
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007180</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007181
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007182<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007183<p>The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
7184 specific pairs of memory access types.</p>
7185
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007186<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007187<p>The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
7188 The first four arguments enables a specific barrier as listed below. The
Dan Gohmanb55a1ee2010-03-01 17:41:39 +00007189 fifth argument specifies that the barrier applies to io or device or uncached
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007190 memory.</p>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007191
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007192<ul>
7193 <li><tt>ll</tt>: load-load barrier</li>
7194 <li><tt>ls</tt>: load-store barrier</li>
7195 <li><tt>sl</tt>: store-load barrier</li>
7196 <li><tt>ss</tt>: store-store barrier</li>
7197 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
7198</ul>
7199
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007200<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007201<p>This intrinsic causes the system to enforce some ordering constraints upon
7202 the loads and stores of the program. This barrier does not
7203 indicate <em>when</em> any events will occur, it only enforces
7204 an <em>order</em> in which they occur. For any of the specified pairs of load
7205 and store operations (f.ex. load-load, or store-load), all of the first
7206 operations preceding the barrier will complete before any of the second
7207 operations succeeding the barrier begin. Specifically the semantics for each
7208 pairing is as follows:</p>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007209
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007210<ul>
7211 <li><tt>ll</tt>: All loads before the barrier must complete before any load
7212 after the barrier begins.</li>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00007213 <li><tt>ls</tt>: All loads before the barrier must complete before any
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007214 store after the barrier begins.</li>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00007215 <li><tt>ss</tt>: All stores before the barrier must complete before any
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007216 store after the barrier begins.</li>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00007217 <li><tt>sl</tt>: All stores before the barrier must complete before any
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007218 load after the barrier begins.</li>
7219</ul>
7220
7221<p>These semantics are applied with a logical "and" behavior when more than one
7222 is enabled in a single memory barrier intrinsic.</p>
7223
7224<p>Backends may implement stronger barriers than those requested when they do
7225 not support as fine grained a barrier as requested. Some architectures do
7226 not need all types of barriers and on such architectures, these become
7227 noops.</p>
7228
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007229<h5>Example:</h5>
7230<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00007231%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7232%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007233 store i32 4, %ptr
7234
7235%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007236 call void @llvm.memory.barrier(i1 false, i1 true, i1 false, i1 false)
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007237 <i>; guarantee the above finishes</i>
7238 store i32 8, %ptr <i>; before this begins</i>
7239</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007240
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007241</div>
7242
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007243<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007244<h4>
Mon P Wang28873102008-06-25 08:15:39 +00007245 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007246</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007247
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007248<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007249
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007250<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007251<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
7252 any integer bit width and for different address spaces. Not all targets
7253 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007254
7255<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007256 declare i8 @llvm.atomic.cmp.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt;)
7257 declare i16 @llvm.atomic.cmp.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt;)
7258 declare i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt;)
7259 declare i64 @llvm.atomic.cmp.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt;)
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007260</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007261
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007262<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007263<p>This loads a value in memory and compares it to a given value. If they are
7264 equal, it stores a new value into the memory.</p>
7265
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007266<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007267<p>The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result
7268 as well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
7269 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
7270 this integer type. While any bit width integer may be used, targets may only
7271 lower representations they support in hardware.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007272
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007273<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007274<p>This entire intrinsic must be executed atomically. It first loads the value
7275 in memory pointed to by <tt>ptr</tt> and compares it with the
7276 value <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the
7277 memory. The loaded value is yielded in all cases. This provides the
7278 equivalent of an atomic compare-and-swap operation within the SSA
7279 framework.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007280
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007281<h5>Examples:</h5>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007282<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00007283%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7284%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007285 store i32 4, %ptr
7286
7287%val1 = add i32 4, 4
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007288%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 4, %val1)
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007289 <i>; yields {i32}:result1 = 4</i>
7290%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
7291%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
7292
7293%val2 = add i32 1, 1
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007294%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32(i32* %ptr, i32 5, %val2)
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007295 <i>; yields {i32}:result2 = 8</i>
7296%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
7297
7298%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
7299</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007300
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007301</div>
7302
7303<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007304<h4>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007305 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007306</h4>
7307
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007308<div>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007309<h5>Syntax:</h5>
7310
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007311<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
7312 integer bit width. Not all targets support all bit widths however.</p>
7313
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007314<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007315 declare i8 @llvm.atomic.swap.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;val&gt;)
7316 declare i16 @llvm.atomic.swap.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;val&gt;)
7317 declare i32 @llvm.atomic.swap.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;val&gt;)
7318 declare i64 @llvm.atomic.swap.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;val&gt;)
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007319</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007320
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007321<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007322<p>This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
7323 the value from memory. It then stores the value in <tt>val</tt> in the memory
7324 at <tt>ptr</tt>.</p>
7325
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007326<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007327<p>The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both
7328 the <tt>val</tt> argument and the result must be integers of the same bit
7329 width. The first argument, <tt>ptr</tt>, must be a pointer to a value of this
7330 integer type. The targets may only lower integer representations they
7331 support.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007332
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007333<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007334<p>This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
7335 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
7336 equivalent of an atomic swap operation within the SSA framework.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007337
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007338<h5>Examples:</h5>
7339<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00007340%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7341%ptr = bitcast i8* %mallocP to i32*
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007342 store i32 4, %ptr
7343
7344%val1 = add i32 4, 4
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007345%result1 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val1)
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007346 <i>; yields {i32}:result1 = 4</i>
7347%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
7348%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
7349
7350%val2 = add i32 1, 1
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007351%result2 = call i32 @llvm.atomic.swap.i32.p0i32(i32* %ptr, i32 %val2)
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007352 <i>; yields {i32}:result2 = 8</i>
7353
7354%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
7355%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
7356</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007357
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007358</div>
7359
7360<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007361<h4>
Mon P Wang28873102008-06-25 08:15:39 +00007362 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007363</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007364
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007365<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007366
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007367<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007368<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on
7369 any integer bit width. Not all targets support all bit widths however.</p>
7370
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007371<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007372 declare i8 @llvm.atomic.load.add.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7373 declare i16 @llvm.atomic.load.add.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7374 declare i32 @llvm.atomic.load.add.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7375 declare i64 @llvm.atomic.load.add.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007376</pre>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007377
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007378<h5>Overview:</h5>
7379<p>This intrinsic adds <tt>delta</tt> to the value stored in memory
7380 at <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
7381
7382<h5>Arguments:</h5>
7383<p>The intrinsic takes two arguments, the first a pointer to an integer value
7384 and the second an integer value. The result is also an integer value. These
7385 integer types can have any bit width, but they must all have the same bit
7386 width. The targets may only lower integer representations they support.</p>
7387
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007388<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007389<p>This intrinsic does a series of operations atomically. It first loads the
7390 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
7391 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007392
7393<h5>Examples:</h5>
7394<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00007395%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7396%ptr = bitcast i8* %mallocP to i32*
7397 store i32 4, %ptr
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007398%result1 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 4)
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007399 <i>; yields {i32}:result1 = 4</i>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007400%result2 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 2)
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007401 <i>; yields {i32}:result2 = 8</i>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007402%result3 = call i32 @llvm.atomic.load.add.i32.p0i32(i32* %ptr, i32 5)
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007403 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00007404%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007405</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007406
Andrew Lenharthab0b9492008-02-21 06:45:13 +00007407</div>
7408
Mon P Wang28873102008-06-25 08:15:39 +00007409<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007410<h4>
Mon P Wang28873102008-06-25 08:15:39 +00007411 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007412</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007413
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007414<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007415
Mon P Wang28873102008-06-25 08:15:39 +00007416<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007417<p>This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
7418 any integer bit width and for different address spaces. Not all targets
7419 support all bit widths however.</p>
7420
Mon P Wang28873102008-06-25 08:15:39 +00007421<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007422 declare i8 @llvm.atomic.load.sub.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7423 declare i16 @llvm.atomic.load.sub.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7424 declare i32 @llvm.atomic.load.sub.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7425 declare i64 @llvm.atomic.load.sub.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang28873102008-06-25 08:15:39 +00007426</pre>
Mon P Wang28873102008-06-25 08:15:39 +00007427
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007428<h5>Overview:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00007429<p>This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007430 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.</p>
7431
7432<h5>Arguments:</h5>
7433<p>The intrinsic takes two arguments, the first a pointer to an integer value
7434 and the second an integer value. The result is also an integer value. These
7435 integer types can have any bit width, but they must all have the same bit
7436 width. The targets may only lower integer representations they support.</p>
7437
Mon P Wang28873102008-06-25 08:15:39 +00007438<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007439<p>This intrinsic does a series of operations atomically. It first loads the
7440 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
7441 result to <tt>ptr</tt>. It yields the original value stored
7442 at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00007443
7444<h5>Examples:</h5>
7445<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00007446%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7447%ptr = bitcast i8* %mallocP to i32*
7448 store i32 8, %ptr
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007449%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 4)
Mon P Wang28873102008-06-25 08:15:39 +00007450 <i>; yields {i32}:result1 = 8</i>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007451%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 2)
Mon P Wang28873102008-06-25 08:15:39 +00007452 <i>; yields {i32}:result2 = 4</i>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007453%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %ptr, i32 5)
Mon P Wang28873102008-06-25 08:15:39 +00007454 <i>; yields {i32}:result3 = 2</i>
7455%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
7456</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007457
Mon P Wang28873102008-06-25 08:15:39 +00007458</div>
7459
7460<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007461<h4>
7462 <a name="int_atomic_load_and">
7463 '<tt>llvm.atomic.load.and.*</tt>' Intrinsic
7464 </a>
7465 <br>
7466 <a name="int_atomic_load_nand">
7467 '<tt>llvm.atomic.load.nand.*</tt>' Intrinsic
7468 </a>
7469 <br>
7470 <a name="int_atomic_load_or">
7471 '<tt>llvm.atomic.load.or.*</tt>' Intrinsic
7472 </a>
7473 <br>
7474 <a name="int_atomic_load_xor">
7475 '<tt>llvm.atomic.load.xor.*</tt>' Intrinsic
7476 </a>
7477</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007478
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007479<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007480
Mon P Wang28873102008-06-25 08:15:39 +00007481<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007482<p>These are overloaded intrinsics. You can
7483 use <tt>llvm.atomic.load_and</tt>, <tt>llvm.atomic.load_nand</tt>,
7484 <tt>llvm.atomic.load_or</tt>, and <tt>llvm.atomic.load_xor</tt> on any integer
7485 bit width and for different address spaces. Not all targets support all bit
7486 widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00007487
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007488<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007489 declare i8 @llvm.atomic.load.and.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7490 declare i16 @llvm.atomic.load.and.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7491 declare i32 @llvm.atomic.load.and.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7492 declare i64 @llvm.atomic.load.and.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang28873102008-06-25 08:15:39 +00007493</pre>
7494
7495<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007496 declare i8 @llvm.atomic.load.or.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7497 declare i16 @llvm.atomic.load.or.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7498 declare i32 @llvm.atomic.load.or.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7499 declare i64 @llvm.atomic.load.or.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang28873102008-06-25 08:15:39 +00007500</pre>
7501
7502<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007503 declare i8 @llvm.atomic.load.nand.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7504 declare i16 @llvm.atomic.load.nand.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7505 declare i32 @llvm.atomic.load.nand.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7506 declare i64 @llvm.atomic.load.nand.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang28873102008-06-25 08:15:39 +00007507</pre>
7508
7509<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007510 declare i8 @llvm.atomic.load.xor.i8.p0i32(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7511 declare i16 @llvm.atomic.load.xor.i16.p0i32(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7512 declare i32 @llvm.atomic.load.xor.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7513 declare i64 @llvm.atomic.load.xor.i64.p0i32(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang28873102008-06-25 08:15:39 +00007514</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007515
Mon P Wang28873102008-06-25 08:15:39 +00007516<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007517<p>These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
7518 the value stored in memory at <tt>ptr</tt>. It yields the original value
7519 at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00007520
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007521<h5>Arguments:</h5>
7522<p>These intrinsics take two arguments, the first a pointer to an integer value
7523 and the second an integer value. The result is also an integer value. These
7524 integer types can have any bit width, but they must all have the same bit
7525 width. The targets may only lower integer representations they support.</p>
7526
Mon P Wang28873102008-06-25 08:15:39 +00007527<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007528<p>These intrinsics does a series of operations atomically. They first load the
7529 value stored at <tt>ptr</tt>. They then do the bitwise
7530 operation <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the
7531 original value stored at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00007532
7533<h5>Examples:</h5>
7534<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00007535%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7536%ptr = bitcast i8* %mallocP to i32*
7537 store i32 0x0F0F, %ptr
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007538%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32(i32* %ptr, i32 0xFF)
Mon P Wang28873102008-06-25 08:15:39 +00007539 <i>; yields {i32}:result0 = 0x0F0F</i>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007540%result1 = call i32 @llvm.atomic.load.and.i32.p0i32(i32* %ptr, i32 0xFF)
Mon P Wang28873102008-06-25 08:15:39 +00007541 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007542%result2 = call i32 @llvm.atomic.load.or.i32.p0i32(i32* %ptr, i32 0F)
Mon P Wang28873102008-06-25 08:15:39 +00007543 <i>; yields {i32}:result2 = 0xF0</i>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007544%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32(i32* %ptr, i32 0F)
Mon P Wang28873102008-06-25 08:15:39 +00007545 <i>; yields {i32}:result3 = FF</i>
7546%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
7547</pre>
Mon P Wang28873102008-06-25 08:15:39 +00007548
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007549</div>
Mon P Wang28873102008-06-25 08:15:39 +00007550
7551<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007552<h4>
7553 <a name="int_atomic_load_max">
7554 '<tt>llvm.atomic.load.max.*</tt>' Intrinsic
7555 </a>
7556 <br>
7557 <a name="int_atomic_load_min">
7558 '<tt>llvm.atomic.load.min.*</tt>' Intrinsic
7559 </a>
7560 <br>
7561 <a name="int_atomic_load_umax">
7562 '<tt>llvm.atomic.load.umax.*</tt>' Intrinsic
7563 </a>
7564 <br>
7565 <a name="int_atomic_load_umin">
7566 '<tt>llvm.atomic.load.umin.*</tt>' Intrinsic
7567 </a>
7568</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007569
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007570<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007571
Mon P Wang28873102008-06-25 08:15:39 +00007572<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007573<p>These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
7574 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
7575 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
7576 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00007577
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007578<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007579 declare i8 @llvm.atomic.load.max.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7580 declare i16 @llvm.atomic.load.max.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7581 declare i32 @llvm.atomic.load.max.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7582 declare i64 @llvm.atomic.load.max.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang28873102008-06-25 08:15:39 +00007583</pre>
7584
7585<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007586 declare i8 @llvm.atomic.load.min.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7587 declare i16 @llvm.atomic.load.min.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7588 declare i32 @llvm.atomic.load.min.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7589 declare i64 @llvm.atomic.load.min.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang28873102008-06-25 08:15:39 +00007590</pre>
7591
7592<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007593 declare i8 @llvm.atomic.load.umax.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7594 declare i16 @llvm.atomic.load.umax.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7595 declare i32 @llvm.atomic.load.umax.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7596 declare i64 @llvm.atomic.load.umax.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang28873102008-06-25 08:15:39 +00007597</pre>
7598
7599<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007600 declare i8 @llvm.atomic.load.umin.i8.p0i8(i8* &lt;ptr&gt;, i8 &lt;delta&gt;)
7601 declare i16 @llvm.atomic.load.umin.i16.p0i16(i16* &lt;ptr&gt;, i16 &lt;delta&gt;)
7602 declare i32 @llvm.atomic.load.umin.i32.p0i32(i32* &lt;ptr&gt;, i32 &lt;delta&gt;)
7603 declare i64 @llvm.atomic.load.umin.i64.p0i64(i64* &lt;ptr&gt;, i64 &lt;delta&gt;)
Mon P Wang28873102008-06-25 08:15:39 +00007604</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007605
Mon P Wang28873102008-06-25 08:15:39 +00007606<h5>Overview:</h5>
Eric Christopher6c7e8a02009-12-05 02:46:03 +00007607<p>These intrinsics takes the signed or unsigned minimum or maximum of
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007608 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
7609 original value at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00007610
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007611<h5>Arguments:</h5>
7612<p>These intrinsics take two arguments, the first a pointer to an integer value
7613 and the second an integer value. The result is also an integer value. These
7614 integer types can have any bit width, but they must all have the same bit
7615 width. The targets may only lower integer representations they support.</p>
7616
Mon P Wang28873102008-06-25 08:15:39 +00007617<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007618<p>These intrinsics does a series of operations atomically. They first load the
7619 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or
7620 max <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They
7621 yield the original value stored at <tt>ptr</tt>.</p>
Mon P Wang28873102008-06-25 08:15:39 +00007622
7623<h5>Examples:</h5>
7624<pre>
Victor Hernandez2fee2942009-10-26 23:44:29 +00007625%mallocP = tail call i8* @malloc(i32 ptrtoint (i32* getelementptr (i32* null, i32 1) to i32))
7626%ptr = bitcast i8* %mallocP to i32*
7627 store i32 7, %ptr
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007628%result0 = call i32 @llvm.atomic.load.min.i32.p0i32(i32* %ptr, i32 -2)
Mon P Wang28873102008-06-25 08:15:39 +00007629 <i>; yields {i32}:result0 = 7</i>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007630%result1 = call i32 @llvm.atomic.load.max.i32.p0i32(i32* %ptr, i32 8)
Mon P Wang28873102008-06-25 08:15:39 +00007631 <i>; yields {i32}:result1 = -2</i>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007632%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32(i32* %ptr, i32 10)
Mon P Wang28873102008-06-25 08:15:39 +00007633 <i>; yields {i32}:result2 = 8</i>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007634%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32(i32* %ptr, i32 30)
Mon P Wang28873102008-06-25 08:15:39 +00007635 <i>; yields {i32}:result3 = 8</i>
7636%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
7637</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007638
Mon P Wang28873102008-06-25 08:15:39 +00007639</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007640
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007641</div>
Nick Lewyckycc271862009-10-13 07:03:23 +00007642
7643<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007644<h3>
Nick Lewyckycc271862009-10-13 07:03:23 +00007645 <a name="int_memorymarkers">Memory Use Markers</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007646</h3>
Nick Lewyckycc271862009-10-13 07:03:23 +00007647
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007648<div>
Nick Lewyckycc271862009-10-13 07:03:23 +00007649
7650<p>This class of intrinsics exists to information about the lifetime of memory
7651 objects and ranges where variables are immutable.</p>
7652
Nick Lewyckycc271862009-10-13 07:03:23 +00007653<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007654<h4>
Nick Lewyckycc271862009-10-13 07:03:23 +00007655 <a name="int_lifetime_start">'<tt>llvm.lifetime.start</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007656</h4>
Nick Lewyckycc271862009-10-13 07:03:23 +00007657
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007658<div>
Nick Lewyckycc271862009-10-13 07:03:23 +00007659
7660<h5>Syntax:</h5>
7661<pre>
7662 declare void @llvm.lifetime.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7663</pre>
7664
7665<h5>Overview:</h5>
7666<p>The '<tt>llvm.lifetime.start</tt>' intrinsic specifies the start of a memory
7667 object's lifetime.</p>
7668
7669<h5>Arguments:</h5>
Nick Lewycky321333e2009-10-13 07:57:33 +00007670<p>The first argument is a constant integer representing the size of the
7671 object, or -1 if it is variable sized. The second argument is a pointer to
7672 the object.</p>
Nick Lewyckycc271862009-10-13 07:03:23 +00007673
7674<h5>Semantics:</h5>
7675<p>This intrinsic indicates that before this point in the code, the value of the
7676 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
Nick Lewycky8d336592009-10-27 16:56:58 +00007677 never be used and has an undefined value. A load from the pointer that
7678 precedes this intrinsic can be replaced with
Nick Lewyckycc271862009-10-13 07:03:23 +00007679 <tt>'<a href="#undefvalues">undef</a>'</tt>.</p>
7680
7681</div>
7682
7683<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007684<h4>
Nick Lewyckycc271862009-10-13 07:03:23 +00007685 <a name="int_lifetime_end">'<tt>llvm.lifetime.end</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007686</h4>
Nick Lewyckycc271862009-10-13 07:03:23 +00007687
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007688<div>
Nick Lewyckycc271862009-10-13 07:03:23 +00007689
7690<h5>Syntax:</h5>
7691<pre>
7692 declare void @llvm.lifetime.end(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7693</pre>
7694
7695<h5>Overview:</h5>
7696<p>The '<tt>llvm.lifetime.end</tt>' intrinsic specifies the end of a memory
7697 object's lifetime.</p>
7698
7699<h5>Arguments:</h5>
Nick Lewycky321333e2009-10-13 07:57:33 +00007700<p>The first argument is a constant integer representing the size of the
7701 object, or -1 if it is variable sized. The second argument is a pointer to
7702 the object.</p>
Nick Lewyckycc271862009-10-13 07:03:23 +00007703
7704<h5>Semantics:</h5>
7705<p>This intrinsic indicates that after this point in the code, the value of the
7706 memory pointed to by <tt>ptr</tt> is dead. This means that it is known to
7707 never be used and has an undefined value. Any stores into the memory object
7708 following this intrinsic may be removed as dead.
7709
7710</div>
7711
7712<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007713<h4>
Nick Lewyckycc271862009-10-13 07:03:23 +00007714 <a name="int_invariant_start">'<tt>llvm.invariant.start</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007715</h4>
Nick Lewyckycc271862009-10-13 07:03:23 +00007716
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007717<div>
Nick Lewyckycc271862009-10-13 07:03:23 +00007718
7719<h5>Syntax:</h5>
7720<pre>
Nick Lewycky29b6cb42010-11-30 04:13:41 +00007721 declare {}* @llvm.invariant.start(i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
Nick Lewyckycc271862009-10-13 07:03:23 +00007722</pre>
7723
7724<h5>Overview:</h5>
7725<p>The '<tt>llvm.invariant.start</tt>' intrinsic specifies that the contents of
7726 a memory object will not change.</p>
7727
7728<h5>Arguments:</h5>
Nick Lewycky321333e2009-10-13 07:57:33 +00007729<p>The first argument is a constant integer representing the size of the
7730 object, or -1 if it is variable sized. The second argument is a pointer to
7731 the object.</p>
Nick Lewyckycc271862009-10-13 07:03:23 +00007732
7733<h5>Semantics:</h5>
7734<p>This intrinsic indicates that until an <tt>llvm.invariant.end</tt> that uses
7735 the return value, the referenced memory location is constant and
7736 unchanging.</p>
7737
7738</div>
7739
7740<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007741<h4>
Nick Lewyckycc271862009-10-13 07:03:23 +00007742 <a name="int_invariant_end">'<tt>llvm.invariant.end</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007743</h4>
Nick Lewyckycc271862009-10-13 07:03:23 +00007744
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007745<div>
Nick Lewyckycc271862009-10-13 07:03:23 +00007746
7747<h5>Syntax:</h5>
7748<pre>
7749 declare void @llvm.invariant.end({}* &lt;start&gt;, i64 &lt;size&gt;, i8* nocapture &lt;ptr&gt;)
7750</pre>
7751
7752<h5>Overview:</h5>
7753<p>The '<tt>llvm.invariant.end</tt>' intrinsic specifies that the contents of
7754 a memory object are mutable.</p>
7755
7756<h5>Arguments:</h5>
7757<p>The first argument is the matching <tt>llvm.invariant.start</tt> intrinsic.
Nick Lewycky321333e2009-10-13 07:57:33 +00007758 The second argument is a constant integer representing the size of the
7759 object, or -1 if it is variable sized and the third argument is a pointer
7760 to the object.</p>
Nick Lewyckycc271862009-10-13 07:03:23 +00007761
7762<h5>Semantics:</h5>
7763<p>This intrinsic indicates that the memory is mutable again.</p>
7764
7765</div>
7766
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007767</div>
7768
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007769<!-- ======================================================================= -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007770<h3>
Tanya Lattner6d806e92007-06-15 20:50:54 +00007771 <a name="int_general">General Intrinsics</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007772</h3>
Tanya Lattner6d806e92007-06-15 20:50:54 +00007773
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007774<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007775
7776<p>This class of intrinsics is designed to be generic and has no specific
7777 purpose.</p>
7778
Tanya Lattner6d806e92007-06-15 20:50:54 +00007779<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007780<h4>
Tanya Lattner6d806e92007-06-15 20:50:54 +00007781 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007782</h4>
Tanya Lattner6d806e92007-06-15 20:50:54 +00007783
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007784<div>
Tanya Lattner6d806e92007-06-15 20:50:54 +00007785
7786<h5>Syntax:</h5>
7787<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007788 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattner6d806e92007-06-15 20:50:54 +00007789</pre>
7790
7791<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007792<p>The '<tt>llvm.var.annotation</tt>' intrinsic.</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00007793
7794<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007795<p>The first argument is a pointer to a value, the second is a pointer to a
7796 global string, the third is a pointer to a global string which is the source
7797 file name, and the last argument is the line number.</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00007798
7799<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007800<p>This intrinsic allows annotation of local variables with arbitrary strings.
7801 This can be useful for special purpose optimizations that want to look for
7802 these annotations. These have no other defined use, they are ignored by code
7803 generation and optimization.</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00007804
Tanya Lattner6d806e92007-06-15 20:50:54 +00007805</div>
7806
Tanya Lattnerb6367882007-09-21 22:59:12 +00007807<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007808<h4>
Tanya Lattnere1a8da02007-09-21 23:57:59 +00007809 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007810</h4>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007811
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007812<div>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007813
7814<h5>Syntax:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007815<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
7816 any integer bit width.</p>
7817
Tanya Lattnerb6367882007-09-21 22:59:12 +00007818<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007819 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7820 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7821 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7822 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
7823 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt;)
Tanya Lattnerb6367882007-09-21 22:59:12 +00007824</pre>
7825
7826<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007827<p>The '<tt>llvm.annotation</tt>' intrinsic.</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007828
7829<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007830<p>The first argument is an integer value (result of some expression), the
7831 second is a pointer to a global string, the third is a pointer to a global
7832 string which is the source file name, and the last argument is the line
7833 number. It returns the value of the first argument.</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007834
7835<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007836<p>This intrinsic allows annotations to be put on arbitrary expressions with
7837 arbitrary strings. This can be useful for special purpose optimizations that
7838 want to look for these annotations. These have no other defined use, they
7839 are ignored by code generation and optimization.</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007840
Tanya Lattnerb6367882007-09-21 22:59:12 +00007841</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00007842
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007843<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007844<h4>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007845 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007846</h4>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007847
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007848<div>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007849
7850<h5>Syntax:</h5>
7851<pre>
7852 declare void @llvm.trap()
7853</pre>
7854
7855<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007856<p>The '<tt>llvm.trap</tt>' intrinsic.</p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007857
7858<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007859<p>None.</p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007860
7861<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007862<p>This intrinsics is lowered to the target dependent trap instruction. If the
7863 target does not have a trap instruction, this intrinsic will be lowered to
7864 the call of the <tt>abort()</tt> function.</p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007865
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007866</div>
7867
Bill Wendling69e4adb2008-11-19 05:56:17 +00007868<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007869<h4>
Misha Brukmandccb0252008-11-22 23:55:29 +00007870 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007871</h4>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007872
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007873<div>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007874
Bill Wendling69e4adb2008-11-19 05:56:17 +00007875<h5>Syntax:</h5>
7876<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007877 declare void @llvm.stackprotector(i8* &lt;guard&gt;, i8** &lt;slot&gt;)
Bill Wendling69e4adb2008-11-19 05:56:17 +00007878</pre>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007879
Bill Wendling69e4adb2008-11-19 05:56:17 +00007880<h5>Overview:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007881<p>The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and
7882 stores it onto the stack at <tt>slot</tt>. The stack slot is adjusted to
7883 ensure that it is placed on the stack before local variables.</p>
7884
Bill Wendling69e4adb2008-11-19 05:56:17 +00007885<h5>Arguments:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007886<p>The <tt>llvm.stackprotector</tt> intrinsic requires two pointer
7887 arguments. The first argument is the value loaded from the stack
7888 guard <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt>
7889 that has enough space to hold the value of the guard.</p>
7890
Bill Wendling69e4adb2008-11-19 05:56:17 +00007891<h5>Semantics:</h5>
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007892<p>This intrinsic causes the prologue/epilogue inserter to force the position of
7893 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7894 stack. This is to ensure that if a local variable on the stack is
7895 overwritten, it will destroy the value of the guard. When the function exits,
Bill Wendling1b383ba2010-10-27 01:07:41 +00007896 the guard on the stack is checked against the original guard. If they are
Bill Wendlinge910b4c2009-07-20 02:29:24 +00007897 different, then the program aborts by calling the <tt>__stack_chk_fail()</tt>
7898 function.</p>
7899
Bill Wendling69e4adb2008-11-19 05:56:17 +00007900</div>
7901
Eric Christopher0e671492009-11-30 08:03:53 +00007902<!-- _______________________________________________________________________ -->
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007903<h4>
Eric Christopher0e671492009-11-30 08:03:53 +00007904 <a name="int_objectsize">'<tt>llvm.objectsize</tt>' Intrinsic</a>
NAKAMURA Takumi05d02652011-04-18 23:59:50 +00007905</h4>
Eric Christopher0e671492009-11-30 08:03:53 +00007906
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007907<div>
Eric Christopher0e671492009-11-30 08:03:53 +00007908
7909<h5>Syntax:</h5>
7910<pre>
Dan Gohman3dfb3cf2010-05-28 17:07:41 +00007911 declare i32 @llvm.objectsize.i32(i8* &lt;object&gt;, i1 &lt;type&gt;)
7912 declare i64 @llvm.objectsize.i64(i8* &lt;object&gt;, i1 &lt;type&gt;)
Eric Christopher0e671492009-11-30 08:03:53 +00007913</pre>
7914
7915<h5>Overview:</h5>
Bill Wendling1b383ba2010-10-27 01:07:41 +00007916<p>The <tt>llvm.objectsize</tt> intrinsic is designed to provide information to
7917 the optimizers to determine at compile time whether a) an operation (like
7918 memcpy) will overflow a buffer that corresponds to an object, or b) that a
7919 runtime check for overflow isn't necessary. An object in this context means
7920 an allocation of a specific class, structure, array, or other object.</p>
Eric Christopher0e671492009-11-30 08:03:53 +00007921
7922<h5>Arguments:</h5>
Bill Wendling1b383ba2010-10-27 01:07:41 +00007923<p>The <tt>llvm.objectsize</tt> intrinsic takes two arguments. The first
Eric Christopher8295a0a2009-12-23 00:29:49 +00007924 argument is a pointer to or into the <tt>object</tt>. The second argument
Bill Wendling1b383ba2010-10-27 01:07:41 +00007925 is a boolean 0 or 1. This argument determines whether you want the
7926 maximum (0) or minimum (1) bytes remaining. This needs to be a literal 0 or
Eric Christopher8295a0a2009-12-23 00:29:49 +00007927 1, variables are not allowed.</p>
7928
Eric Christopher0e671492009-11-30 08:03:53 +00007929<h5>Semantics:</h5>
7930<p>The <tt>llvm.objectsize</tt> intrinsic is lowered to either a constant
Bill Wendling1b383ba2010-10-27 01:07:41 +00007931 representing the size of the object concerned, or <tt>i32/i64 -1 or 0</tt>,
7932 depending on the <tt>type</tt> argument, if the size cannot be determined at
7933 compile time.</p>
Eric Christopher0e671492009-11-30 08:03:53 +00007934
7935</div>
7936
NAKAMURA Takumif5af6ad2011-04-23 00:30:22 +00007937</div>
7938
7939</div>
7940
Chris Lattner00950542001-06-06 20:29:01 +00007941<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00007942<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007943<address>
7944 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007945 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007946 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007947 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007948
7949 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
NAKAMURA Takumib9a33632011-04-09 02:13:37 +00007950 <a href="http://llvm.org/">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007951 Last modified: $Date$
7952</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00007953
Misha Brukman9d0919f2003-11-08 01:05:38 +00007954</body>
7955</html>