blob: 56221c5154a4270df603811d214d32374a2cc88d [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Richard Smith32dbdf62014-07-31 04:25:36 +000078 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000165 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000173 !0 = metadata !{i32 42, null, metadata !"string"}
174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
351 arguments into registers but allows them to be dynamcially
352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
356 This calling convention attempts to make the code in the caller as little
357 intrusive as possible. This calling convention behaves identical to the `C`
358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
371 of code that doesn't many registers. The cold path might need to call out to
372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000497.. _namedtypes:
498
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000499Structure Types
500---------------
Sean Silvab084af42012-12-07 10:36:55 +0000501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
503types <t_struct>`. Literal types are uniqued structurally, but identified types
504are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000505to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000506
507An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000508
509.. code-block:: llvm
510
511 %mytype = type { %mytype*, i32 }
512
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000513Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
514literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000515
516.. _globalvars:
517
518Global Variables
519----------------
520
521Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000522instead of run-time.
523
Bob Wilson85b24f22014-06-12 20:40:33 +0000524Global variables definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525
526Global variables in other translation units can also be declared, in which
527case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000528
Bob Wilson85b24f22014-06-12 20:40:33 +0000529Either global variable definitions or declarations may have an explicit section
530to be placed in and may have an optional explicit alignment specified.
531
Michael Gottesman006039c2013-01-31 05:48:48 +0000532A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000536initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000567Additionally, the global can placed in a comdat if the target has the necessary
568support.
Sean Silvab084af42012-12-07 10:36:55 +0000569
Michael Gottesmane743a302013-02-04 03:22:00 +0000570By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000571variables defined within the module are not modified from their
572initial values before the start of the global initializer. This is
573true even for variables potentially accessible from outside the
574module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000575``@llvm.used`` or dllexported variables. This assumption may be suppressed
576by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000577
Sean Silvab084af42012-12-07 10:36:55 +0000578An explicit alignment may be specified for a global, which must be a
579power of 2. If not present, or if the alignment is set to zero, the
580alignment of the global is set by the target to whatever it feels
581convenient. If an explicit alignment is specified, the global is forced
582to have exactly that alignment. Targets and optimizers are not allowed
583to over-align the global if the global has an assigned section. In this
584case, the extra alignment could be observable: for example, code could
585assume that the globals are densely packed in their section and try to
586iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000587iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000588
Nico Rieck7157bb72014-01-14 15:22:47 +0000589Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
590
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000591Variables and aliasaes can have a
592:ref:`Thread Local Storage Model <tls_model>`.
593
Nico Rieck7157bb72014-01-14 15:22:47 +0000594Syntax::
595
596 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000597 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000598 <global | constant> <Type> [<InitializerConstant>]
599 [, section "name"] [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000600
Sean Silvab084af42012-12-07 10:36:55 +0000601For example, the following defines a global in a numbered address space
602with an initializer, section, and alignment:
603
604.. code-block:: llvm
605
606 @G = addrspace(5) constant float 1.0, section "foo", align 4
607
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000608The following example just declares a global variable
609
610.. code-block:: llvm
611
612 @G = external global i32
613
Sean Silvab084af42012-12-07 10:36:55 +0000614The following example defines a thread-local global with the
615``initialexec`` TLS model:
616
617.. code-block:: llvm
618
619 @G = thread_local(initialexec) global i32 0, align 4
620
621.. _functionstructure:
622
623Functions
624---------
625
626LLVM function definitions consist of the "``define``" keyword, an
627optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000628style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
629an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000630an optional ``unnamed_addr`` attribute, a return type, an optional
631:ref:`parameter attribute <paramattrs>` for the return type, a function
632name, a (possibly empty) argument list (each with optional :ref:`parameter
633attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000634an optional section, an optional alignment,
635an optional :ref:`comdat <langref_comdats>`,
636an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000637curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000638
639LLVM function declarations consist of the "``declare``" keyword, an
640optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000641style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
642an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000643an optional ``unnamed_addr`` attribute, a return type, an optional
644:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000645name, a possibly empty list of arguments, an optional alignment, an optional
646:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000647
Bill Wendling6822ecb2013-10-27 05:09:12 +0000648A function definition contains a list of basic blocks, forming the CFG (Control
649Flow Graph) for the function. Each basic block may optionally start with a label
650(giving the basic block a symbol table entry), contains a list of instructions,
651and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
652function return). If an explicit label is not provided, a block is assigned an
653implicit numbered label, using the next value from the same counter as used for
654unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
655entry block does not have an explicit label, it will be assigned label "%0",
656then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000657
658The first basic block in a function is special in two ways: it is
659immediately executed on entrance to the function, and it is not allowed
660to have predecessor basic blocks (i.e. there can not be any branches to
661the entry block of a function). Because the block can have no
662predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
663
664LLVM allows an explicit section to be specified for functions. If the
665target supports it, it will emit functions to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000666Additionally, the function can placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000667
668An explicit alignment may be specified for a function. If not present,
669or if the alignment is set to zero, the alignment of the function is set
670by the target to whatever it feels convenient. If an explicit alignment
671is specified, the function is forced to have at least that much
672alignment. All alignments must be a power of 2.
673
674If the ``unnamed_addr`` attribute is given, the address is know to not
675be significant and two identical functions can be merged.
676
677Syntax::
678
Nico Rieck7157bb72014-01-14 15:22:47 +0000679 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000680 [cconv] [ret attrs]
681 <ResultType> @<FunctionName> ([argument list])
David Majnemerdad0a642014-06-27 18:19:56 +0000682 [unnamed_addr] [fn Attrs] [section "name"] [comdat $<ComdatName>]
683 [align N] [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000684
Dan Liew2661dfc2014-08-20 15:06:30 +0000685The argument list is a comma seperated sequence of arguments where each
686argument is of the following form
687
688Syntax::
689
690 <type> [parameter Attrs] [name]
691
692
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000693.. _langref_aliases:
694
Sean Silvab084af42012-12-07 10:36:55 +0000695Aliases
696-------
697
Rafael Espindola64c1e182014-06-03 02:41:57 +0000698Aliases, unlike function or variables, don't create any new data. They
699are just a new symbol and metadata for an existing position.
700
701Aliases have a name and an aliasee that is either a global value or a
702constant expression.
703
Nico Rieck7157bb72014-01-14 15:22:47 +0000704Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000705:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
706<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000707
708Syntax::
709
Rafael Espindola464fe022014-07-30 22:51:54 +0000710 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000711
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000712The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000713``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000714might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000715
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000716Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000717the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
718to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000719
Rafael Espindola64c1e182014-06-03 02:41:57 +0000720Since aliases are only a second name, some restrictions apply, of which
721some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000722
Rafael Espindola64c1e182014-06-03 02:41:57 +0000723* The expression defining the aliasee must be computable at assembly
724 time. Since it is just a name, no relocations can be used.
725
726* No alias in the expression can be weak as the possibility of the
727 intermediate alias being overridden cannot be represented in an
728 object file.
729
730* No global value in the expression can be a declaration, since that
731 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000732
David Majnemerdad0a642014-06-27 18:19:56 +0000733.. _langref_comdats:
734
735Comdats
736-------
737
738Comdat IR provides access to COFF and ELF object file COMDAT functionality.
739
Richard Smith32dbdf62014-07-31 04:25:36 +0000740Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000741specify this key will only end up in the final object file if the linker chooses
742that key over some other key. Aliases are placed in the same COMDAT that their
743aliasee computes to, if any.
744
745Comdats have a selection kind to provide input on how the linker should
746choose between keys in two different object files.
747
748Syntax::
749
750 $<Name> = comdat SelectionKind
751
752The selection kind must be one of the following:
753
754``any``
755 The linker may choose any COMDAT key, the choice is arbitrary.
756``exactmatch``
757 The linker may choose any COMDAT key but the sections must contain the
758 same data.
759``largest``
760 The linker will choose the section containing the largest COMDAT key.
761``noduplicates``
762 The linker requires that only section with this COMDAT key exist.
763``samesize``
764 The linker may choose any COMDAT key but the sections must contain the
765 same amount of data.
766
767Note that the Mach-O platform doesn't support COMDATs and ELF only supports
768``any`` as a selection kind.
769
770Here is an example of a COMDAT group where a function will only be selected if
771the COMDAT key's section is the largest:
772
773.. code-block:: llvm
774
775 $foo = comdat largest
776 @foo = global i32 2, comdat $foo
777
778 define void @bar() comdat $foo {
779 ret void
780 }
781
782In a COFF object file, this will create a COMDAT section with selection kind
783``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
784and another COMDAT section with selection kind
785``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000786section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000787
788There are some restrictions on the properties of the global object.
789It, or an alias to it, must have the same name as the COMDAT group when
790targeting COFF.
791The contents and size of this object may be used during link-time to determine
792which COMDAT groups get selected depending on the selection kind.
793Because the name of the object must match the name of the COMDAT group, the
794linkage of the global object must not be local; local symbols can get renamed
795if a collision occurs in the symbol table.
796
797The combined use of COMDATS and section attributes may yield surprising results.
798For example:
799
800.. code-block:: llvm
801
802 $foo = comdat any
803 $bar = comdat any
804 @g1 = global i32 42, section "sec", comdat $foo
805 @g2 = global i32 42, section "sec", comdat $bar
806
807From the object file perspective, this requires the creation of two sections
808with the same name. This is necessary because both globals belong to different
809COMDAT groups and COMDATs, at the object file level, are represented by
810sections.
811
812Note that certain IR constructs like global variables and functions may create
813COMDATs in the object file in addition to any which are specified using COMDAT
814IR. This arises, for example, when a global variable has linkonce_odr linkage.
815
Sean Silvab084af42012-12-07 10:36:55 +0000816.. _namedmetadatastructure:
817
818Named Metadata
819--------------
820
821Named metadata is a collection of metadata. :ref:`Metadata
822nodes <metadata>` (but not metadata strings) are the only valid
823operands for a named metadata.
824
825Syntax::
826
827 ; Some unnamed metadata nodes, which are referenced by the named metadata.
828 !0 = metadata !{metadata !"zero"}
829 !1 = metadata !{metadata !"one"}
830 !2 = metadata !{metadata !"two"}
831 ; A named metadata.
832 !name = !{!0, !1, !2}
833
834.. _paramattrs:
835
836Parameter Attributes
837--------------------
838
839The return type and each parameter of a function type may have a set of
840*parameter attributes* associated with them. Parameter attributes are
841used to communicate additional information about the result or
842parameters of a function. Parameter attributes are considered to be part
843of the function, not of the function type, so functions with different
844parameter attributes can have the same function type.
845
846Parameter attributes are simple keywords that follow the type specified.
847If multiple parameter attributes are needed, they are space separated.
848For example:
849
850.. code-block:: llvm
851
852 declare i32 @printf(i8* noalias nocapture, ...)
853 declare i32 @atoi(i8 zeroext)
854 declare signext i8 @returns_signed_char()
855
856Note that any attributes for the function result (``nounwind``,
857``readonly``) come immediately after the argument list.
858
859Currently, only the following parameter attributes are defined:
860
861``zeroext``
862 This indicates to the code generator that the parameter or return
863 value should be zero-extended to the extent required by the target's
864 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
865 the caller (for a parameter) or the callee (for a return value).
866``signext``
867 This indicates to the code generator that the parameter or return
868 value should be sign-extended to the extent required by the target's
869 ABI (which is usually 32-bits) by the caller (for a parameter) or
870 the callee (for a return value).
871``inreg``
872 This indicates that this parameter or return value should be treated
873 in a special target-dependent fashion during while emitting code for
874 a function call or return (usually, by putting it in a register as
875 opposed to memory, though some targets use it to distinguish between
876 two different kinds of registers). Use of this attribute is
877 target-specific.
878``byval``
879 This indicates that the pointer parameter should really be passed by
880 value to the function. The attribute implies that a hidden copy of
881 the pointee is made between the caller and the callee, so the callee
882 is unable to modify the value in the caller. This attribute is only
883 valid on LLVM pointer arguments. It is generally used to pass
884 structs and arrays by value, but is also valid on pointers to
885 scalars. The copy is considered to belong to the caller not the
886 callee (for example, ``readonly`` functions should not write to
887 ``byval`` parameters). This is not a valid attribute for return
888 values.
889
890 The byval attribute also supports specifying an alignment with the
891 align attribute. It indicates the alignment of the stack slot to
892 form and the known alignment of the pointer specified to the call
893 site. If the alignment is not specified, then the code generator
894 makes a target-specific assumption.
895
Reid Klecknera534a382013-12-19 02:14:12 +0000896.. _attr_inalloca:
897
898``inalloca``
899
Reid Kleckner60d3a832014-01-16 22:59:24 +0000900 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000901 address of outgoing stack arguments. An ``inalloca`` argument must
902 be a pointer to stack memory produced by an ``alloca`` instruction.
903 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000904 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000905 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000906
Reid Kleckner436c42e2014-01-17 23:58:17 +0000907 An argument allocation may be used by a call at most once because
908 the call may deallocate it. The ``inalloca`` attribute cannot be
909 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000910 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
911 ``inalloca`` attribute also disables LLVM's implicit lowering of
912 large aggregate return values, which means that frontend authors
913 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000914
Reid Kleckner60d3a832014-01-16 22:59:24 +0000915 When the call site is reached, the argument allocation must have
916 been the most recent stack allocation that is still live, or the
917 results are undefined. It is possible to allocate additional stack
918 space after an argument allocation and before its call site, but it
919 must be cleared off with :ref:`llvm.stackrestore
920 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000921
922 See :doc:`InAlloca` for more information on how to use this
923 attribute.
924
Sean Silvab084af42012-12-07 10:36:55 +0000925``sret``
926 This indicates that the pointer parameter specifies the address of a
927 structure that is the return value of the function in the source
928 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000929 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000930 not to trap and to be properly aligned. This may only be applied to
931 the first parameter. This is not a valid attribute for return
932 values.
Sean Silva1703e702014-04-08 21:06:22 +0000933
Hal Finkelccc70902014-07-22 16:58:55 +0000934``align <n>``
935 This indicates that the pointer value may be assumed by the optimizer to
936 have the specified alignment.
937
938 Note that this attribute has additional semantics when combined with the
939 ``byval`` attribute.
940
Sean Silva1703e702014-04-08 21:06:22 +0000941.. _noalias:
942
Sean Silvab084af42012-12-07 10:36:55 +0000943``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000944 This indicates that objects accessed via pointer values
945 :ref:`based <pointeraliasing>` on the argument or return value are not also
946 accessed, during the execution of the function, via pointer values not
947 *based* on the argument or return value. The attribute on a return value
948 also has additional semantics described below. The caller shares the
949 responsibility with the callee for ensuring that these requirements are met.
950 For further details, please see the discussion of the NoAlias response in
951 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000952
953 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000954 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000955
956 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000957 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
958 attribute on return values are stronger than the semantics of the attribute
959 when used on function arguments. On function return values, the ``noalias``
960 attribute indicates that the function acts like a system memory allocation
961 function, returning a pointer to allocated storage disjoint from the
962 storage for any other object accessible to the caller.
963
Sean Silvab084af42012-12-07 10:36:55 +0000964``nocapture``
965 This indicates that the callee does not make any copies of the
966 pointer that outlive the callee itself. This is not a valid
967 attribute for return values.
968
969.. _nest:
970
971``nest``
972 This indicates that the pointer parameter can be excised using the
973 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000974 attribute for return values and can only be applied to one parameter.
975
976``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000977 This indicates that the function always returns the argument as its return
978 value. This is an optimization hint to the code generator when generating
979 the caller, allowing tail call optimization and omission of register saves
980 and restores in some cases; it is not checked or enforced when generating
981 the callee. The parameter and the function return type must be valid
982 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
983 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000984
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000985``nonnull``
986 This indicates that the parameter or return pointer is not null. This
987 attribute may only be applied to pointer typed parameters. This is not
988 checked or enforced by LLVM, the caller must ensure that the pointer
989 passed in is non-null, or the callee must ensure that the returned pointer
990 is non-null.
991
Hal Finkelb0407ba2014-07-18 15:51:28 +0000992``dereferenceable(<n>)``
993 This indicates that the parameter or return pointer is dereferenceable. This
994 attribute may only be applied to pointer typed parameters. A pointer that
995 is dereferenceable can be loaded from speculatively without a risk of
996 trapping. The number of bytes known to be dereferenceable must be provided
997 in parentheses. It is legal for the number of bytes to be less than the
998 size of the pointee type. The ``nonnull`` attribute does not imply
999 dereferenceability (consider a pointer to one element past the end of an
1000 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1001 ``addrspace(0)`` (which is the default address space).
1002
Sean Silvab084af42012-12-07 10:36:55 +00001003.. _gc:
1004
1005Garbage Collector Names
1006-----------------------
1007
1008Each function may specify a garbage collector name, which is simply a
1009string:
1010
1011.. code-block:: llvm
1012
1013 define void @f() gc "name" { ... }
1014
1015The compiler declares the supported values of *name*. Specifying a
Richard Smith32dbdf62014-07-31 04:25:36 +00001016collector will cause the compiler to alter its output in order to
Sean Silvab084af42012-12-07 10:36:55 +00001017support the named garbage collection algorithm.
1018
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001019.. _prefixdata:
1020
1021Prefix Data
1022-----------
1023
1024Prefix data is data associated with a function which the code generator
1025will emit immediately before the function body. The purpose of this feature
1026is to allow frontends to associate language-specific runtime metadata with
1027specific functions and make it available through the function pointer while
1028still allowing the function pointer to be called. To access the data for a
1029given function, a program may bitcast the function pointer to a pointer to
1030the constant's type. This implies that the IR symbol points to the start
1031of the prefix data.
1032
1033To maintain the semantics of ordinary function calls, the prefix data must
1034have a particular format. Specifically, it must begin with a sequence of
1035bytes which decode to a sequence of machine instructions, valid for the
1036module's target, which transfer control to the point immediately succeeding
1037the prefix data, without performing any other visible action. This allows
1038the inliner and other passes to reason about the semantics of the function
1039definition without needing to reason about the prefix data. Obviously this
1040makes the format of the prefix data highly target dependent.
1041
Peter Collingbourne213358a2013-09-23 20:14:21 +00001042Prefix data is laid out as if it were an initializer for a global variable
1043of the prefix data's type. No padding is automatically placed between the
1044prefix data and the function body. If padding is required, it must be part
1045of the prefix data.
1046
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001047A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
1048which encodes the ``nop`` instruction:
1049
1050.. code-block:: llvm
1051
1052 define void @f() prefix i8 144 { ... }
1053
1054Generally prefix data can be formed by encoding a relative branch instruction
1055which skips the metadata, as in this example of valid prefix data for the
1056x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1057
1058.. code-block:: llvm
1059
1060 %0 = type <{ i8, i8, i8* }>
1061
1062 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
1063
1064A function may have prefix data but no body. This has similar semantics
1065to the ``available_externally`` linkage in that the data may be used by the
1066optimizers but will not be emitted in the object file.
1067
Bill Wendling63b88192013-02-06 06:52:58 +00001068.. _attrgrp:
1069
1070Attribute Groups
1071----------------
1072
1073Attribute groups are groups of attributes that are referenced by objects within
1074the IR. They are important for keeping ``.ll`` files readable, because a lot of
1075functions will use the same set of attributes. In the degenerative case of a
1076``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1077group will capture the important command line flags used to build that file.
1078
1079An attribute group is a module-level object. To use an attribute group, an
1080object references the attribute group's ID (e.g. ``#37``). An object may refer
1081to more than one attribute group. In that situation, the attributes from the
1082different groups are merged.
1083
1084Here is an example of attribute groups for a function that should always be
1085inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1086
1087.. code-block:: llvm
1088
1089 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001090 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001091
1092 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001093 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001094
1095 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1096 define void @f() #0 #1 { ... }
1097
Sean Silvab084af42012-12-07 10:36:55 +00001098.. _fnattrs:
1099
1100Function Attributes
1101-------------------
1102
1103Function attributes are set to communicate additional information about
1104a function. Function attributes are considered to be part of the
1105function, not of the function type, so functions with different function
1106attributes can have the same function type.
1107
1108Function attributes are simple keywords that follow the type specified.
1109If multiple attributes are needed, they are space separated. For
1110example:
1111
1112.. code-block:: llvm
1113
1114 define void @f() noinline { ... }
1115 define void @f() alwaysinline { ... }
1116 define void @f() alwaysinline optsize { ... }
1117 define void @f() optsize { ... }
1118
Sean Silvab084af42012-12-07 10:36:55 +00001119``alignstack(<n>)``
1120 This attribute indicates that, when emitting the prologue and
1121 epilogue, the backend should forcibly align the stack pointer.
1122 Specify the desired alignment, which must be a power of two, in
1123 parentheses.
1124``alwaysinline``
1125 This attribute indicates that the inliner should attempt to inline
1126 this function into callers whenever possible, ignoring any active
1127 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001128``builtin``
1129 This indicates that the callee function at a call site should be
1130 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001131 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001132 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001133 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001134``cold``
1135 This attribute indicates that this function is rarely called. When
1136 computing edge weights, basic blocks post-dominated by a cold
1137 function call are also considered to be cold; and, thus, given low
1138 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001139``inlinehint``
1140 This attribute indicates that the source code contained a hint that
1141 inlining this function is desirable (such as the "inline" keyword in
1142 C/C++). It is just a hint; it imposes no requirements on the
1143 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001144``jumptable``
1145 This attribute indicates that the function should be added to a
1146 jump-instruction table at code-generation time, and that all address-taken
1147 references to this function should be replaced with a reference to the
1148 appropriate jump-instruction-table function pointer. Note that this creates
1149 a new pointer for the original function, which means that code that depends
1150 on function-pointer identity can break. So, any function annotated with
1151 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001152``minsize``
1153 This attribute suggests that optimization passes and code generator
1154 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001155 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001156 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001157``naked``
1158 This attribute disables prologue / epilogue emission for the
1159 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001160``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001161 This indicates that the callee function at a call site is not recognized as
1162 a built-in function. LLVM will retain the original call and not replace it
1163 with equivalent code based on the semantics of the built-in function, unless
1164 the call site uses the ``builtin`` attribute. This is valid at call sites
1165 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001166``noduplicate``
1167 This attribute indicates that calls to the function cannot be
1168 duplicated. A call to a ``noduplicate`` function may be moved
1169 within its parent function, but may not be duplicated within
1170 its parent function.
1171
1172 A function containing a ``noduplicate`` call may still
1173 be an inlining candidate, provided that the call is not
1174 duplicated by inlining. That implies that the function has
1175 internal linkage and only has one call site, so the original
1176 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001177``noimplicitfloat``
1178 This attributes disables implicit floating point instructions.
1179``noinline``
1180 This attribute indicates that the inliner should never inline this
1181 function in any situation. This attribute may not be used together
1182 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001183``nonlazybind``
1184 This attribute suppresses lazy symbol binding for the function. This
1185 may make calls to the function faster, at the cost of extra program
1186 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001187``noredzone``
1188 This attribute indicates that the code generator should not use a
1189 red zone, even if the target-specific ABI normally permits it.
1190``noreturn``
1191 This function attribute indicates that the function never returns
1192 normally. This produces undefined behavior at runtime if the
1193 function ever does dynamically return.
1194``nounwind``
1195 This function attribute indicates that the function never returns
1196 with an unwind or exceptional control flow. If the function does
1197 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001198``optnone``
1199 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001200 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001201 exception of interprocedural optimization passes.
1202 This attribute cannot be used together with the ``alwaysinline``
1203 attribute; this attribute is also incompatible
1204 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001205
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001206 This attribute requires the ``noinline`` attribute to be specified on
1207 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001208 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001209 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001210``optsize``
1211 This attribute suggests that optimization passes and code generator
1212 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001213 and otherwise do optimizations specifically to reduce code size as
1214 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001215``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001216 On a function, this attribute indicates that the function computes its
1217 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001218 without dereferencing any pointer arguments or otherwise accessing
1219 any mutable state (e.g. memory, control registers, etc) visible to
1220 caller functions. It does not write through any pointer arguments
1221 (including ``byval`` arguments) and never changes any state visible
1222 to callers. This means that it cannot unwind exceptions by calling
1223 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001224
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001225 On an argument, this attribute indicates that the function does not
1226 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001227 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001228``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001229 On a function, this attribute indicates that the function does not write
1230 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001231 modify any state (e.g. memory, control registers, etc) visible to
1232 caller functions. It may dereference pointer arguments and read
1233 state that may be set in the caller. A readonly function always
1234 returns the same value (or unwinds an exception identically) when
1235 called with the same set of arguments and global state. It cannot
1236 unwind an exception by calling the ``C++`` exception throwing
1237 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001238
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001239 On an argument, this attribute indicates that the function does not write
1240 through this pointer argument, even though it may write to the memory that
1241 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001242``returns_twice``
1243 This attribute indicates that this function can return twice. The C
1244 ``setjmp`` is an example of such a function. The compiler disables
1245 some optimizations (like tail calls) in the caller of these
1246 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001247``sanitize_address``
1248 This attribute indicates that AddressSanitizer checks
1249 (dynamic address safety analysis) are enabled for this function.
1250``sanitize_memory``
1251 This attribute indicates that MemorySanitizer checks (dynamic detection
1252 of accesses to uninitialized memory) are enabled for this function.
1253``sanitize_thread``
1254 This attribute indicates that ThreadSanitizer checks
1255 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001256``ssp``
1257 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001258 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001259 placed on the stack before the local variables that's checked upon
1260 return from the function to see if it has been overwritten. A
1261 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001262 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001263
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001264 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1265 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1266 - Calls to alloca() with variable sizes or constant sizes greater than
1267 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001268
Josh Magee24c7f062014-02-01 01:36:16 +00001269 Variables that are identified as requiring a protector will be arranged
1270 on the stack such that they are adjacent to the stack protector guard.
1271
Sean Silvab084af42012-12-07 10:36:55 +00001272 If a function that has an ``ssp`` attribute is inlined into a
1273 function that doesn't have an ``ssp`` attribute, then the resulting
1274 function will have an ``ssp`` attribute.
1275``sspreq``
1276 This attribute indicates that the function should *always* emit a
1277 stack smashing protector. This overrides the ``ssp`` function
1278 attribute.
1279
Josh Magee24c7f062014-02-01 01:36:16 +00001280 Variables that are identified as requiring a protector will be arranged
1281 on the stack such that they are adjacent to the stack protector guard.
1282 The specific layout rules are:
1283
1284 #. Large arrays and structures containing large arrays
1285 (``>= ssp-buffer-size``) are closest to the stack protector.
1286 #. Small arrays and structures containing small arrays
1287 (``< ssp-buffer-size``) are 2nd closest to the protector.
1288 #. Variables that have had their address taken are 3rd closest to the
1289 protector.
1290
Sean Silvab084af42012-12-07 10:36:55 +00001291 If a function that has an ``sspreq`` attribute is inlined into a
1292 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001293 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1294 an ``sspreq`` attribute.
1295``sspstrong``
1296 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001297 protector. This attribute causes a strong heuristic to be used when
1298 determining if a function needs stack protectors. The strong heuristic
1299 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001300
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001301 - Arrays of any size and type
1302 - Aggregates containing an array of any size and type.
1303 - Calls to alloca().
1304 - Local variables that have had their address taken.
1305
Josh Magee24c7f062014-02-01 01:36:16 +00001306 Variables that are identified as requiring a protector will be arranged
1307 on the stack such that they are adjacent to the stack protector guard.
1308 The specific layout rules are:
1309
1310 #. Large arrays and structures containing large arrays
1311 (``>= ssp-buffer-size``) are closest to the stack protector.
1312 #. Small arrays and structures containing small arrays
1313 (``< ssp-buffer-size``) are 2nd closest to the protector.
1314 #. Variables that have had their address taken are 3rd closest to the
1315 protector.
1316
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001317 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001318
1319 If a function that has an ``sspstrong`` attribute is inlined into a
1320 function that doesn't have an ``sspstrong`` attribute, then the
1321 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001322``uwtable``
1323 This attribute indicates that the ABI being targeted requires that
1324 an unwind table entry be produce for this function even if we can
1325 show that no exceptions passes by it. This is normally the case for
1326 the ELF x86-64 abi, but it can be disabled for some compilation
1327 units.
Sean Silvab084af42012-12-07 10:36:55 +00001328
1329.. _moduleasm:
1330
1331Module-Level Inline Assembly
1332----------------------------
1333
1334Modules may contain "module-level inline asm" blocks, which corresponds
1335to the GCC "file scope inline asm" blocks. These blocks are internally
1336concatenated by LLVM and treated as a single unit, but may be separated
1337in the ``.ll`` file if desired. The syntax is very simple:
1338
1339.. code-block:: llvm
1340
1341 module asm "inline asm code goes here"
1342 module asm "more can go here"
1343
1344The strings can contain any character by escaping non-printable
1345characters. The escape sequence used is simply "\\xx" where "xx" is the
1346two digit hex code for the number.
1347
1348The inline asm code is simply printed to the machine code .s file when
1349assembly code is generated.
1350
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001351.. _langref_datalayout:
1352
Sean Silvab084af42012-12-07 10:36:55 +00001353Data Layout
1354-----------
1355
1356A module may specify a target specific data layout string that specifies
1357how data is to be laid out in memory. The syntax for the data layout is
1358simply:
1359
1360.. code-block:: llvm
1361
1362 target datalayout = "layout specification"
1363
1364The *layout specification* consists of a list of specifications
1365separated by the minus sign character ('-'). Each specification starts
1366with a letter and may include other information after the letter to
1367define some aspect of the data layout. The specifications accepted are
1368as follows:
1369
1370``E``
1371 Specifies that the target lays out data in big-endian form. That is,
1372 the bits with the most significance have the lowest address
1373 location.
1374``e``
1375 Specifies that the target lays out data in little-endian form. That
1376 is, the bits with the least significance have the lowest address
1377 location.
1378``S<size>``
1379 Specifies the natural alignment of the stack in bits. Alignment
1380 promotion of stack variables is limited to the natural stack
1381 alignment to avoid dynamic stack realignment. The stack alignment
1382 must be a multiple of 8-bits. If omitted, the natural stack
1383 alignment defaults to "unspecified", which does not prevent any
1384 alignment promotions.
1385``p[n]:<size>:<abi>:<pref>``
1386 This specifies the *size* of a pointer and its ``<abi>`` and
1387 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001388 bits. The address space, ``n`` is optional, and if not specified,
1389 denotes the default address space 0. The value of ``n`` must be
1390 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001391``i<size>:<abi>:<pref>``
1392 This specifies the alignment for an integer type of a given bit
1393 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1394``v<size>:<abi>:<pref>``
1395 This specifies the alignment for a vector type of a given bit
1396 ``<size>``.
1397``f<size>:<abi>:<pref>``
1398 This specifies the alignment for a floating point type of a given bit
1399 ``<size>``. Only values of ``<size>`` that are supported by the target
1400 will work. 32 (float) and 64 (double) are supported on all targets; 80
1401 or 128 (different flavors of long double) are also supported on some
1402 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001403``a:<abi>:<pref>``
1404 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001405``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001406 If present, specifies that llvm names are mangled in the output. The
1407 options are
1408
1409 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1410 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1411 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1412 symbols get a ``_`` prefix.
1413 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1414 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001415``n<size1>:<size2>:<size3>...``
1416 This specifies a set of native integer widths for the target CPU in
1417 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1418 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1419 this set are considered to support most general arithmetic operations
1420 efficiently.
1421
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001422On every specification that takes a ``<abi>:<pref>``, specifying the
1423``<pref>`` alignment is optional. If omitted, the preceding ``:``
1424should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1425
Sean Silvab084af42012-12-07 10:36:55 +00001426When constructing the data layout for a given target, LLVM starts with a
1427default set of specifications which are then (possibly) overridden by
1428the specifications in the ``datalayout`` keyword. The default
1429specifications are given in this list:
1430
1431- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001432- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1433- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1434 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001435- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001436- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1437- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1438- ``i16:16:16`` - i16 is 16-bit aligned
1439- ``i32:32:32`` - i32 is 32-bit aligned
1440- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1441 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001442- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001443- ``f32:32:32`` - float is 32-bit aligned
1444- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001445- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001446- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1447- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001448- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001449
1450When LLVM is determining the alignment for a given type, it uses the
1451following rules:
1452
1453#. If the type sought is an exact match for one of the specifications,
1454 that specification is used.
1455#. If no match is found, and the type sought is an integer type, then
1456 the smallest integer type that is larger than the bitwidth of the
1457 sought type is used. If none of the specifications are larger than
1458 the bitwidth then the largest integer type is used. For example,
1459 given the default specifications above, the i7 type will use the
1460 alignment of i8 (next largest) while both i65 and i256 will use the
1461 alignment of i64 (largest specified).
1462#. If no match is found, and the type sought is a vector type, then the
1463 largest vector type that is smaller than the sought vector type will
1464 be used as a fall back. This happens because <128 x double> can be
1465 implemented in terms of 64 <2 x double>, for example.
1466
1467The function of the data layout string may not be what you expect.
1468Notably, this is not a specification from the frontend of what alignment
1469the code generator should use.
1470
1471Instead, if specified, the target data layout is required to match what
1472the ultimate *code generator* expects. This string is used by the
1473mid-level optimizers to improve code, and this only works if it matches
1474what the ultimate code generator uses. If you would like to generate IR
1475that does not embed this target-specific detail into the IR, then you
1476don't have to specify the string. This will disable some optimizations
1477that require precise layout information, but this also prevents those
1478optimizations from introducing target specificity into the IR.
1479
Bill Wendling5cc90842013-10-18 23:41:25 +00001480.. _langref_triple:
1481
1482Target Triple
1483-------------
1484
1485A module may specify a target triple string that describes the target
1486host. The syntax for the target triple is simply:
1487
1488.. code-block:: llvm
1489
1490 target triple = "x86_64-apple-macosx10.7.0"
1491
1492The *target triple* string consists of a series of identifiers delimited
1493by the minus sign character ('-'). The canonical forms are:
1494
1495::
1496
1497 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1498 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1499
1500This information is passed along to the backend so that it generates
1501code for the proper architecture. It's possible to override this on the
1502command line with the ``-mtriple`` command line option.
1503
Sean Silvab084af42012-12-07 10:36:55 +00001504.. _pointeraliasing:
1505
1506Pointer Aliasing Rules
1507----------------------
1508
1509Any memory access must be done through a pointer value associated with
1510an address range of the memory access, otherwise the behavior is
1511undefined. Pointer values are associated with address ranges according
1512to the following rules:
1513
1514- A pointer value is associated with the addresses associated with any
1515 value it is *based* on.
1516- An address of a global variable is associated with the address range
1517 of the variable's storage.
1518- The result value of an allocation instruction is associated with the
1519 address range of the allocated storage.
1520- A null pointer in the default address-space is associated with no
1521 address.
1522- An integer constant other than zero or a pointer value returned from
1523 a function not defined within LLVM may be associated with address
1524 ranges allocated through mechanisms other than those provided by
1525 LLVM. Such ranges shall not overlap with any ranges of addresses
1526 allocated by mechanisms provided by LLVM.
1527
1528A pointer value is *based* on another pointer value according to the
1529following rules:
1530
1531- A pointer value formed from a ``getelementptr`` operation is *based*
1532 on the first operand of the ``getelementptr``.
1533- The result value of a ``bitcast`` is *based* on the operand of the
1534 ``bitcast``.
1535- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1536 values that contribute (directly or indirectly) to the computation of
1537 the pointer's value.
1538- The "*based* on" relationship is transitive.
1539
1540Note that this definition of *"based"* is intentionally similar to the
1541definition of *"based"* in C99, though it is slightly weaker.
1542
1543LLVM IR does not associate types with memory. The result type of a
1544``load`` merely indicates the size and alignment of the memory from
1545which to load, as well as the interpretation of the value. The first
1546operand type of a ``store`` similarly only indicates the size and
1547alignment of the store.
1548
1549Consequently, type-based alias analysis, aka TBAA, aka
1550``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1551:ref:`Metadata <metadata>` may be used to encode additional information
1552which specialized optimization passes may use to implement type-based
1553alias analysis.
1554
1555.. _volatile:
1556
1557Volatile Memory Accesses
1558------------------------
1559
1560Certain memory accesses, such as :ref:`load <i_load>`'s,
1561:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1562marked ``volatile``. The optimizers must not change the number of
1563volatile operations or change their order of execution relative to other
1564volatile operations. The optimizers *may* change the order of volatile
1565operations relative to non-volatile operations. This is not Java's
1566"volatile" and has no cross-thread synchronization behavior.
1567
Andrew Trick89fc5a62013-01-30 21:19:35 +00001568IR-level volatile loads and stores cannot safely be optimized into
1569llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1570flagged volatile. Likewise, the backend should never split or merge
1571target-legal volatile load/store instructions.
1572
Andrew Trick7e6f9282013-01-31 00:49:39 +00001573.. admonition:: Rationale
1574
1575 Platforms may rely on volatile loads and stores of natively supported
1576 data width to be executed as single instruction. For example, in C
1577 this holds for an l-value of volatile primitive type with native
1578 hardware support, but not necessarily for aggregate types. The
1579 frontend upholds these expectations, which are intentionally
1580 unspecified in the IR. The rules above ensure that IR transformation
1581 do not violate the frontend's contract with the language.
1582
Sean Silvab084af42012-12-07 10:36:55 +00001583.. _memmodel:
1584
1585Memory Model for Concurrent Operations
1586--------------------------------------
1587
1588The LLVM IR does not define any way to start parallel threads of
1589execution or to register signal handlers. Nonetheless, there are
1590platform-specific ways to create them, and we define LLVM IR's behavior
1591in their presence. This model is inspired by the C++0x memory model.
1592
1593For a more informal introduction to this model, see the :doc:`Atomics`.
1594
1595We define a *happens-before* partial order as the least partial order
1596that
1597
1598- Is a superset of single-thread program order, and
1599- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1600 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1601 techniques, like pthread locks, thread creation, thread joining,
1602 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1603 Constraints <ordering>`).
1604
1605Note that program order does not introduce *happens-before* edges
1606between a thread and signals executing inside that thread.
1607
1608Every (defined) read operation (load instructions, memcpy, atomic
1609loads/read-modify-writes, etc.) R reads a series of bytes written by
1610(defined) write operations (store instructions, atomic
1611stores/read-modify-writes, memcpy, etc.). For the purposes of this
1612section, initialized globals are considered to have a write of the
1613initializer which is atomic and happens before any other read or write
1614of the memory in question. For each byte of a read R, R\ :sub:`byte`
1615may see any write to the same byte, except:
1616
1617- If write\ :sub:`1` happens before write\ :sub:`2`, and
1618 write\ :sub:`2` happens before R\ :sub:`byte`, then
1619 R\ :sub:`byte` does not see write\ :sub:`1`.
1620- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1621 R\ :sub:`byte` does not see write\ :sub:`3`.
1622
1623Given that definition, R\ :sub:`byte` is defined as follows:
1624
1625- If R is volatile, the result is target-dependent. (Volatile is
1626 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001627 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001628 like normal memory. It does not generally provide cross-thread
1629 synchronization.)
1630- Otherwise, if there is no write to the same byte that happens before
1631 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1632- Otherwise, if R\ :sub:`byte` may see exactly one write,
1633 R\ :sub:`byte` returns the value written by that write.
1634- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1635 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1636 Memory Ordering Constraints <ordering>` section for additional
1637 constraints on how the choice is made.
1638- Otherwise R\ :sub:`byte` returns ``undef``.
1639
1640R returns the value composed of the series of bytes it read. This
1641implies that some bytes within the value may be ``undef`` **without**
1642the entire value being ``undef``. Note that this only defines the
1643semantics of the operation; it doesn't mean that targets will emit more
1644than one instruction to read the series of bytes.
1645
1646Note that in cases where none of the atomic intrinsics are used, this
1647model places only one restriction on IR transformations on top of what
1648is required for single-threaded execution: introducing a store to a byte
1649which might not otherwise be stored is not allowed in general.
1650(Specifically, in the case where another thread might write to and read
1651from an address, introducing a store can change a load that may see
1652exactly one write into a load that may see multiple writes.)
1653
1654.. _ordering:
1655
1656Atomic Memory Ordering Constraints
1657----------------------------------
1658
1659Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1660:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1661:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001662ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001663the same address they *synchronize with*. These semantics are borrowed
1664from Java and C++0x, but are somewhat more colloquial. If these
1665descriptions aren't precise enough, check those specs (see spec
1666references in the :doc:`atomics guide <Atomics>`).
1667:ref:`fence <i_fence>` instructions treat these orderings somewhat
1668differently since they don't take an address. See that instruction's
1669documentation for details.
1670
1671For a simpler introduction to the ordering constraints, see the
1672:doc:`Atomics`.
1673
1674``unordered``
1675 The set of values that can be read is governed by the happens-before
1676 partial order. A value cannot be read unless some operation wrote
1677 it. This is intended to provide a guarantee strong enough to model
1678 Java's non-volatile shared variables. This ordering cannot be
1679 specified for read-modify-write operations; it is not strong enough
1680 to make them atomic in any interesting way.
1681``monotonic``
1682 In addition to the guarantees of ``unordered``, there is a single
1683 total order for modifications by ``monotonic`` operations on each
1684 address. All modification orders must be compatible with the
1685 happens-before order. There is no guarantee that the modification
1686 orders can be combined to a global total order for the whole program
1687 (and this often will not be possible). The read in an atomic
1688 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1689 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1690 order immediately before the value it writes. If one atomic read
1691 happens before another atomic read of the same address, the later
1692 read must see the same value or a later value in the address's
1693 modification order. This disallows reordering of ``monotonic`` (or
1694 stronger) operations on the same address. If an address is written
1695 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1696 read that address repeatedly, the other threads must eventually see
1697 the write. This corresponds to the C++0x/C1x
1698 ``memory_order_relaxed``.
1699``acquire``
1700 In addition to the guarantees of ``monotonic``, a
1701 *synchronizes-with* edge may be formed with a ``release`` operation.
1702 This is intended to model C++'s ``memory_order_acquire``.
1703``release``
1704 In addition to the guarantees of ``monotonic``, if this operation
1705 writes a value which is subsequently read by an ``acquire``
1706 operation, it *synchronizes-with* that operation. (This isn't a
1707 complete description; see the C++0x definition of a release
1708 sequence.) This corresponds to the C++0x/C1x
1709 ``memory_order_release``.
1710``acq_rel`` (acquire+release)
1711 Acts as both an ``acquire`` and ``release`` operation on its
1712 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1713``seq_cst`` (sequentially consistent)
1714 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001715 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001716 writes), there is a global total order on all
1717 sequentially-consistent operations on all addresses, which is
1718 consistent with the *happens-before* partial order and with the
1719 modification orders of all the affected addresses. Each
1720 sequentially-consistent read sees the last preceding write to the
1721 same address in this global order. This corresponds to the C++0x/C1x
1722 ``memory_order_seq_cst`` and Java volatile.
1723
1724.. _singlethread:
1725
1726If an atomic operation is marked ``singlethread``, it only *synchronizes
1727with* or participates in modification and seq\_cst total orderings with
1728other operations running in the same thread (for example, in signal
1729handlers).
1730
1731.. _fastmath:
1732
1733Fast-Math Flags
1734---------------
1735
1736LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1737:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1738:ref:`frem <i_frem>`) have the following flags that can set to enable
1739otherwise unsafe floating point operations
1740
1741``nnan``
1742 No NaNs - Allow optimizations to assume the arguments and result are not
1743 NaN. Such optimizations are required to retain defined behavior over
1744 NaNs, but the value of the result is undefined.
1745
1746``ninf``
1747 No Infs - Allow optimizations to assume the arguments and result are not
1748 +/-Inf. Such optimizations are required to retain defined behavior over
1749 +/-Inf, but the value of the result is undefined.
1750
1751``nsz``
1752 No Signed Zeros - Allow optimizations to treat the sign of a zero
1753 argument or result as insignificant.
1754
1755``arcp``
1756 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1757 argument rather than perform division.
1758
1759``fast``
1760 Fast - Allow algebraically equivalent transformations that may
1761 dramatically change results in floating point (e.g. reassociate). This
1762 flag implies all the others.
1763
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001764.. _uselistorder:
1765
1766Use-list Order Directives
1767-------------------------
1768
1769Use-list directives encode the in-memory order of each use-list, allowing the
1770order to be recreated. ``<order-indexes>`` is a comma-separated list of
1771indexes that are assigned to the referenced value's uses. The referenced
1772value's use-list is immediately sorted by these indexes.
1773
1774Use-list directives may appear at function scope or global scope. They are not
1775instructions, and have no effect on the semantics of the IR. When they're at
1776function scope, they must appear after the terminator of the final basic block.
1777
1778If basic blocks have their address taken via ``blockaddress()`` expressions,
1779``uselistorder_bb`` can be used to reorder their use-lists from outside their
1780function's scope.
1781
1782:Syntax:
1783
1784::
1785
1786 uselistorder <ty> <value>, { <order-indexes> }
1787 uselistorder_bb @function, %block { <order-indexes> }
1788
1789:Examples:
1790
1791::
1792
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001793 define void @foo(i32 %arg1, i32 %arg2) {
1794 entry:
1795 ; ... instructions ...
1796 bb:
1797 ; ... instructions ...
1798
1799 ; At function scope.
1800 uselistorder i32 %arg1, { 1, 0, 2 }
1801 uselistorder label %bb, { 1, 0 }
1802 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001803
1804 ; At global scope.
1805 uselistorder i32* @global, { 1, 2, 0 }
1806 uselistorder i32 7, { 1, 0 }
1807 uselistorder i32 (i32) @bar, { 1, 0 }
1808 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1809
Sean Silvab084af42012-12-07 10:36:55 +00001810.. _typesystem:
1811
1812Type System
1813===========
1814
1815The LLVM type system is one of the most important features of the
1816intermediate representation. Being typed enables a number of
1817optimizations to be performed on the intermediate representation
1818directly, without having to do extra analyses on the side before the
1819transformation. A strong type system makes it easier to read the
1820generated code and enables novel analyses and transformations that are
1821not feasible to perform on normal three address code representations.
1822
Rafael Espindola08013342013-12-07 19:34:20 +00001823.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001824
Rafael Espindola08013342013-12-07 19:34:20 +00001825Void Type
1826---------
Sean Silvab084af42012-12-07 10:36:55 +00001827
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001828:Overview:
1829
Rafael Espindola08013342013-12-07 19:34:20 +00001830
1831The void type does not represent any value and has no size.
1832
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001833:Syntax:
1834
Rafael Espindola08013342013-12-07 19:34:20 +00001835
1836::
1837
1838 void
Sean Silvab084af42012-12-07 10:36:55 +00001839
1840
Rafael Espindola08013342013-12-07 19:34:20 +00001841.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001842
Rafael Espindola08013342013-12-07 19:34:20 +00001843Function Type
1844-------------
Sean Silvab084af42012-12-07 10:36:55 +00001845
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001846:Overview:
1847
Sean Silvab084af42012-12-07 10:36:55 +00001848
Rafael Espindola08013342013-12-07 19:34:20 +00001849The function type can be thought of as a function signature. It consists of a
1850return type and a list of formal parameter types. The return type of a function
1851type is a void type or first class type --- except for :ref:`label <t_label>`
1852and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001853
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001854:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001855
Rafael Espindola08013342013-12-07 19:34:20 +00001856::
Sean Silvab084af42012-12-07 10:36:55 +00001857
Rafael Espindola08013342013-12-07 19:34:20 +00001858 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001859
Rafael Espindola08013342013-12-07 19:34:20 +00001860...where '``<parameter list>``' is a comma-separated list of type
1861specifiers. Optionally, the parameter list may include a type ``...``, which
1862indicates that the function takes a variable number of arguments. Variable
1863argument functions can access their arguments with the :ref:`variable argument
1864handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1865except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001866
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001867:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001868
Rafael Espindola08013342013-12-07 19:34:20 +00001869+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1870| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1871+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1872| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1873+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1874| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1875+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1876| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1877+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1878
1879.. _t_firstclass:
1880
1881First Class Types
1882-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001883
1884The :ref:`first class <t_firstclass>` types are perhaps the most important.
1885Values of these types are the only ones which can be produced by
1886instructions.
1887
Rafael Espindola08013342013-12-07 19:34:20 +00001888.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001889
Rafael Espindola08013342013-12-07 19:34:20 +00001890Single Value Types
1891^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001892
Rafael Espindola08013342013-12-07 19:34:20 +00001893These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001894
1895.. _t_integer:
1896
1897Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001898""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001899
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001900:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001901
1902The integer type is a very simple type that simply specifies an
1903arbitrary bit width for the integer type desired. Any bit width from 1
1904bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1905
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001906:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001907
1908::
1909
1910 iN
1911
1912The number of bits the integer will occupy is specified by the ``N``
1913value.
1914
1915Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001916*********
Sean Silvab084af42012-12-07 10:36:55 +00001917
1918+----------------+------------------------------------------------+
1919| ``i1`` | a single-bit integer. |
1920+----------------+------------------------------------------------+
1921| ``i32`` | a 32-bit integer. |
1922+----------------+------------------------------------------------+
1923| ``i1942652`` | a really big integer of over 1 million bits. |
1924+----------------+------------------------------------------------+
1925
1926.. _t_floating:
1927
1928Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001929""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001930
1931.. list-table::
1932 :header-rows: 1
1933
1934 * - Type
1935 - Description
1936
1937 * - ``half``
1938 - 16-bit floating point value
1939
1940 * - ``float``
1941 - 32-bit floating point value
1942
1943 * - ``double``
1944 - 64-bit floating point value
1945
1946 * - ``fp128``
1947 - 128-bit floating point value (112-bit mantissa)
1948
1949 * - ``x86_fp80``
1950 - 80-bit floating point value (X87)
1951
1952 * - ``ppc_fp128``
1953 - 128-bit floating point value (two 64-bits)
1954
Reid Kleckner9a16d082014-03-05 02:41:37 +00001955X86_mmx Type
1956""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001957
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001958:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001959
Reid Kleckner9a16d082014-03-05 02:41:37 +00001960The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001961machine. The operations allowed on it are quite limited: parameters and
1962return values, load and store, and bitcast. User-specified MMX
1963instructions are represented as intrinsic or asm calls with arguments
1964and/or results of this type. There are no arrays, vectors or constants
1965of this type.
1966
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001967:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001968
1969::
1970
Reid Kleckner9a16d082014-03-05 02:41:37 +00001971 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001972
Sean Silvab084af42012-12-07 10:36:55 +00001973
Rafael Espindola08013342013-12-07 19:34:20 +00001974.. _t_pointer:
1975
1976Pointer Type
1977""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001978
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001979:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001980
Rafael Espindola08013342013-12-07 19:34:20 +00001981The pointer type is used to specify memory locations. Pointers are
1982commonly used to reference objects in memory.
1983
1984Pointer types may have an optional address space attribute defining the
1985numbered address space where the pointed-to object resides. The default
1986address space is number zero. The semantics of non-zero address spaces
1987are target-specific.
1988
1989Note that LLVM does not permit pointers to void (``void*``) nor does it
1990permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001991
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001992:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001993
1994::
1995
Rafael Espindola08013342013-12-07 19:34:20 +00001996 <type> *
1997
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001998:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001999
2000+-------------------------+--------------------------------------------------------------------------------------------------------------+
2001| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2002+-------------------------+--------------------------------------------------------------------------------------------------------------+
2003| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2004+-------------------------+--------------------------------------------------------------------------------------------------------------+
2005| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2006+-------------------------+--------------------------------------------------------------------------------------------------------------+
2007
2008.. _t_vector:
2009
2010Vector Type
2011"""""""""""
2012
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002013:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002014
2015A vector type is a simple derived type that represents a vector of
2016elements. Vector types are used when multiple primitive data are
2017operated in parallel using a single instruction (SIMD). A vector type
2018requires a size (number of elements) and an underlying primitive data
2019type. Vector types are considered :ref:`first class <t_firstclass>`.
2020
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002021:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002022
2023::
2024
2025 < <# elements> x <elementtype> >
2026
2027The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002028elementtype may be any integer, floating point or pointer type. Vectors
2029of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002030
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002031:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002032
2033+-------------------+--------------------------------------------------+
2034| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2035+-------------------+--------------------------------------------------+
2036| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2037+-------------------+--------------------------------------------------+
2038| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2039+-------------------+--------------------------------------------------+
2040| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2041+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002042
2043.. _t_label:
2044
2045Label Type
2046^^^^^^^^^^
2047
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002048:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002049
2050The label type represents code labels.
2051
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002052:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002053
2054::
2055
2056 label
2057
2058.. _t_metadata:
2059
2060Metadata Type
2061^^^^^^^^^^^^^
2062
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002063:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002064
2065The metadata type represents embedded metadata. No derived types may be
2066created from metadata except for :ref:`function <t_function>` arguments.
2067
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002068:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002069
2070::
2071
2072 metadata
2073
Sean Silvab084af42012-12-07 10:36:55 +00002074.. _t_aggregate:
2075
2076Aggregate Types
2077^^^^^^^^^^^^^^^
2078
2079Aggregate Types are a subset of derived types that can contain multiple
2080member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2081aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2082aggregate types.
2083
2084.. _t_array:
2085
2086Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002087""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002088
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002089:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002090
2091The array type is a very simple derived type that arranges elements
2092sequentially in memory. The array type requires a size (number of
2093elements) and an underlying data type.
2094
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002095:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002096
2097::
2098
2099 [<# elements> x <elementtype>]
2100
2101The number of elements is a constant integer value; ``elementtype`` may
2102be any type with a size.
2103
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002104:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002105
2106+------------------+--------------------------------------+
2107| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2108+------------------+--------------------------------------+
2109| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2110+------------------+--------------------------------------+
2111| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2112+------------------+--------------------------------------+
2113
2114Here are some examples of multidimensional arrays:
2115
2116+-----------------------------+----------------------------------------------------------+
2117| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2118+-----------------------------+----------------------------------------------------------+
2119| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2120+-----------------------------+----------------------------------------------------------+
2121| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2122+-----------------------------+----------------------------------------------------------+
2123
2124There is no restriction on indexing beyond the end of the array implied
2125by a static type (though there are restrictions on indexing beyond the
2126bounds of an allocated object in some cases). This means that
2127single-dimension 'variable sized array' addressing can be implemented in
2128LLVM with a zero length array type. An implementation of 'pascal style
2129arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2130example.
2131
Sean Silvab084af42012-12-07 10:36:55 +00002132.. _t_struct:
2133
2134Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002135""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002136
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002137:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002138
2139The structure type is used to represent a collection of data members
2140together in memory. The elements of a structure may be any type that has
2141a size.
2142
2143Structures in memory are accessed using '``load``' and '``store``' by
2144getting a pointer to a field with the '``getelementptr``' instruction.
2145Structures in registers are accessed using the '``extractvalue``' and
2146'``insertvalue``' instructions.
2147
2148Structures may optionally be "packed" structures, which indicate that
2149the alignment of the struct is one byte, and that there is no padding
2150between the elements. In non-packed structs, padding between field types
2151is inserted as defined by the DataLayout string in the module, which is
2152required to match what the underlying code generator expects.
2153
2154Structures can either be "literal" or "identified". A literal structure
2155is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2156identified types are always defined at the top level with a name.
2157Literal types are uniqued by their contents and can never be recursive
2158or opaque since there is no way to write one. Identified types can be
2159recursive, can be opaqued, and are never uniqued.
2160
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002161:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002162
2163::
2164
2165 %T1 = type { <type list> } ; Identified normal struct type
2166 %T2 = type <{ <type list> }> ; Identified packed struct type
2167
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002168:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002169
2170+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2171| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2172+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002173| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002174+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2175| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2176+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2177
2178.. _t_opaque:
2179
2180Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002181""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002182
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002183:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002184
2185Opaque structure types are used to represent named structure types that
2186do not have a body specified. This corresponds (for example) to the C
2187notion of a forward declared structure.
2188
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002189:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002190
2191::
2192
2193 %X = type opaque
2194 %52 = type opaque
2195
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002196:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002197
2198+--------------+-------------------+
2199| ``opaque`` | An opaque type. |
2200+--------------+-------------------+
2201
Sean Silva1703e702014-04-08 21:06:22 +00002202.. _constants:
2203
Sean Silvab084af42012-12-07 10:36:55 +00002204Constants
2205=========
2206
2207LLVM has several different basic types of constants. This section
2208describes them all and their syntax.
2209
2210Simple Constants
2211----------------
2212
2213**Boolean constants**
2214 The two strings '``true``' and '``false``' are both valid constants
2215 of the ``i1`` type.
2216**Integer constants**
2217 Standard integers (such as '4') are constants of the
2218 :ref:`integer <t_integer>` type. Negative numbers may be used with
2219 integer types.
2220**Floating point constants**
2221 Floating point constants use standard decimal notation (e.g.
2222 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2223 hexadecimal notation (see below). The assembler requires the exact
2224 decimal value of a floating-point constant. For example, the
2225 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2226 decimal in binary. Floating point constants must have a :ref:`floating
2227 point <t_floating>` type.
2228**Null pointer constants**
2229 The identifier '``null``' is recognized as a null pointer constant
2230 and must be of :ref:`pointer type <t_pointer>`.
2231
2232The one non-intuitive notation for constants is the hexadecimal form of
2233floating point constants. For example, the form
2234'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2235than) '``double 4.5e+15``'. The only time hexadecimal floating point
2236constants are required (and the only time that they are generated by the
2237disassembler) is when a floating point constant must be emitted but it
2238cannot be represented as a decimal floating point number in a reasonable
2239number of digits. For example, NaN's, infinities, and other special
2240values are represented in their IEEE hexadecimal format so that assembly
2241and disassembly do not cause any bits to change in the constants.
2242
2243When using the hexadecimal form, constants of types half, float, and
2244double are represented using the 16-digit form shown above (which
2245matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002246must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002247precision, respectively. Hexadecimal format is always used for long
2248double, and there are three forms of long double. The 80-bit format used
2249by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2250128-bit format used by PowerPC (two adjacent doubles) is represented by
2251``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002252represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2253will only work if they match the long double format on your target.
2254The IEEE 16-bit format (half precision) is represented by ``0xH``
2255followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2256(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002257
Reid Kleckner9a16d082014-03-05 02:41:37 +00002258There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002259
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002260.. _complexconstants:
2261
Sean Silvab084af42012-12-07 10:36:55 +00002262Complex Constants
2263-----------------
2264
2265Complex constants are a (potentially recursive) combination of simple
2266constants and smaller complex constants.
2267
2268**Structure constants**
2269 Structure constants are represented with notation similar to
2270 structure type definitions (a comma separated list of elements,
2271 surrounded by braces (``{}``)). For example:
2272 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2273 "``@G = external global i32``". Structure constants must have
2274 :ref:`structure type <t_struct>`, and the number and types of elements
2275 must match those specified by the type.
2276**Array constants**
2277 Array constants are represented with notation similar to array type
2278 definitions (a comma separated list of elements, surrounded by
2279 square brackets (``[]``)). For example:
2280 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2281 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002282 match those specified by the type. As a special case, character array
2283 constants may also be represented as a double-quoted string using the ``c``
2284 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002285**Vector constants**
2286 Vector constants are represented with notation similar to vector
2287 type definitions (a comma separated list of elements, surrounded by
2288 less-than/greater-than's (``<>``)). For example:
2289 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2290 must have :ref:`vector type <t_vector>`, and the number and types of
2291 elements must match those specified by the type.
2292**Zero initialization**
2293 The string '``zeroinitializer``' can be used to zero initialize a
2294 value to zero of *any* type, including scalar and
2295 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2296 having to print large zero initializers (e.g. for large arrays) and
2297 is always exactly equivalent to using explicit zero initializers.
2298**Metadata node**
2299 A metadata node is a structure-like constant with :ref:`metadata
2300 type <t_metadata>`. For example:
2301 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2302 constants that are meant to be interpreted as part of the
2303 instruction stream, metadata is a place to attach additional
2304 information such as debug info.
2305
2306Global Variable and Function Addresses
2307--------------------------------------
2308
2309The addresses of :ref:`global variables <globalvars>` and
2310:ref:`functions <functionstructure>` are always implicitly valid
2311(link-time) constants. These constants are explicitly referenced when
2312the :ref:`identifier for the global <identifiers>` is used and always have
2313:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2314file:
2315
2316.. code-block:: llvm
2317
2318 @X = global i32 17
2319 @Y = global i32 42
2320 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2321
2322.. _undefvalues:
2323
2324Undefined Values
2325----------------
2326
2327The string '``undef``' can be used anywhere a constant is expected, and
2328indicates that the user of the value may receive an unspecified
2329bit-pattern. Undefined values may be of any type (other than '``label``'
2330or '``void``') and be used anywhere a constant is permitted.
2331
2332Undefined values are useful because they indicate to the compiler that
2333the program is well defined no matter what value is used. This gives the
2334compiler more freedom to optimize. Here are some examples of
2335(potentially surprising) transformations that are valid (in pseudo IR):
2336
2337.. code-block:: llvm
2338
2339 %A = add %X, undef
2340 %B = sub %X, undef
2341 %C = xor %X, undef
2342 Safe:
2343 %A = undef
2344 %B = undef
2345 %C = undef
2346
2347This is safe because all of the output bits are affected by the undef
2348bits. Any output bit can have a zero or one depending on the input bits.
2349
2350.. code-block:: llvm
2351
2352 %A = or %X, undef
2353 %B = and %X, undef
2354 Safe:
2355 %A = -1
2356 %B = 0
2357 Unsafe:
2358 %A = undef
2359 %B = undef
2360
2361These logical operations have bits that are not always affected by the
2362input. For example, if ``%X`` has a zero bit, then the output of the
2363'``and``' operation will always be a zero for that bit, no matter what
2364the corresponding bit from the '``undef``' is. As such, it is unsafe to
2365optimize or assume that the result of the '``and``' is '``undef``'.
2366However, it is safe to assume that all bits of the '``undef``' could be
23670, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2368all the bits of the '``undef``' operand to the '``or``' could be set,
2369allowing the '``or``' to be folded to -1.
2370
2371.. code-block:: llvm
2372
2373 %A = select undef, %X, %Y
2374 %B = select undef, 42, %Y
2375 %C = select %X, %Y, undef
2376 Safe:
2377 %A = %X (or %Y)
2378 %B = 42 (or %Y)
2379 %C = %Y
2380 Unsafe:
2381 %A = undef
2382 %B = undef
2383 %C = undef
2384
2385This set of examples shows that undefined '``select``' (and conditional
2386branch) conditions can go *either way*, but they have to come from one
2387of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2388both known to have a clear low bit, then ``%A`` would have to have a
2389cleared low bit. However, in the ``%C`` example, the optimizer is
2390allowed to assume that the '``undef``' operand could be the same as
2391``%Y``, allowing the whole '``select``' to be eliminated.
2392
2393.. code-block:: llvm
2394
2395 %A = xor undef, undef
2396
2397 %B = undef
2398 %C = xor %B, %B
2399
2400 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002401 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002402 %F = icmp gte %D, 4
2403
2404 Safe:
2405 %A = undef
2406 %B = undef
2407 %C = undef
2408 %D = undef
2409 %E = undef
2410 %F = undef
2411
2412This example points out that two '``undef``' operands are not
2413necessarily the same. This can be surprising to people (and also matches
2414C semantics) where they assume that "``X^X``" is always zero, even if
2415``X`` is undefined. This isn't true for a number of reasons, but the
2416short answer is that an '``undef``' "variable" can arbitrarily change
2417its value over its "live range". This is true because the variable
2418doesn't actually *have a live range*. Instead, the value is logically
2419read from arbitrary registers that happen to be around when needed, so
2420the value is not necessarily consistent over time. In fact, ``%A`` and
2421``%C`` need to have the same semantics or the core LLVM "replace all
2422uses with" concept would not hold.
2423
2424.. code-block:: llvm
2425
2426 %A = fdiv undef, %X
2427 %B = fdiv %X, undef
2428 Safe:
2429 %A = undef
2430 b: unreachable
2431
2432These examples show the crucial difference between an *undefined value*
2433and *undefined behavior*. An undefined value (like '``undef``') is
2434allowed to have an arbitrary bit-pattern. This means that the ``%A``
2435operation can be constant folded to '``undef``', because the '``undef``'
2436could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2437However, in the second example, we can make a more aggressive
2438assumption: because the ``undef`` is allowed to be an arbitrary value,
2439we are allowed to assume that it could be zero. Since a divide by zero
2440has *undefined behavior*, we are allowed to assume that the operation
2441does not execute at all. This allows us to delete the divide and all
2442code after it. Because the undefined operation "can't happen", the
2443optimizer can assume that it occurs in dead code.
2444
2445.. code-block:: llvm
2446
2447 a: store undef -> %X
2448 b: store %X -> undef
2449 Safe:
2450 a: <deleted>
2451 b: unreachable
2452
2453These examples reiterate the ``fdiv`` example: a store *of* an undefined
2454value can be assumed to not have any effect; we can assume that the
2455value is overwritten with bits that happen to match what was already
2456there. However, a store *to* an undefined location could clobber
2457arbitrary memory, therefore, it has undefined behavior.
2458
2459.. _poisonvalues:
2460
2461Poison Values
2462-------------
2463
2464Poison values are similar to :ref:`undef values <undefvalues>`, however
2465they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002466that cannot evoke side effects has nevertheless detected a condition
2467that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002468
2469There is currently no way of representing a poison value in the IR; they
2470only exist when produced by operations such as :ref:`add <i_add>` with
2471the ``nsw`` flag.
2472
2473Poison value behavior is defined in terms of value *dependence*:
2474
2475- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2476- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2477 their dynamic predecessor basic block.
2478- Function arguments depend on the corresponding actual argument values
2479 in the dynamic callers of their functions.
2480- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2481 instructions that dynamically transfer control back to them.
2482- :ref:`Invoke <i_invoke>` instructions depend on the
2483 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2484 call instructions that dynamically transfer control back to them.
2485- Non-volatile loads and stores depend on the most recent stores to all
2486 of the referenced memory addresses, following the order in the IR
2487 (including loads and stores implied by intrinsics such as
2488 :ref:`@llvm.memcpy <int_memcpy>`.)
2489- An instruction with externally visible side effects depends on the
2490 most recent preceding instruction with externally visible side
2491 effects, following the order in the IR. (This includes :ref:`volatile
2492 operations <volatile>`.)
2493- An instruction *control-depends* on a :ref:`terminator
2494 instruction <terminators>` if the terminator instruction has
2495 multiple successors and the instruction is always executed when
2496 control transfers to one of the successors, and may not be executed
2497 when control is transferred to another.
2498- Additionally, an instruction also *control-depends* on a terminator
2499 instruction if the set of instructions it otherwise depends on would
2500 be different if the terminator had transferred control to a different
2501 successor.
2502- Dependence is transitive.
2503
Richard Smith32dbdf62014-07-31 04:25:36 +00002504Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2505with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002506on a poison value has undefined behavior.
2507
2508Here are some examples:
2509
2510.. code-block:: llvm
2511
2512 entry:
2513 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2514 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2515 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2516 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2517
2518 store i32 %poison, i32* @g ; Poison value stored to memory.
2519 %poison2 = load i32* @g ; Poison value loaded back from memory.
2520
2521 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2522
2523 %narrowaddr = bitcast i32* @g to i16*
2524 %wideaddr = bitcast i32* @g to i64*
2525 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2526 %poison4 = load i64* %wideaddr ; Returns a poison value.
2527
2528 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2529 br i1 %cmp, label %true, label %end ; Branch to either destination.
2530
2531 true:
2532 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2533 ; it has undefined behavior.
2534 br label %end
2535
2536 end:
2537 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2538 ; Both edges into this PHI are
2539 ; control-dependent on %cmp, so this
2540 ; always results in a poison value.
2541
2542 store volatile i32 0, i32* @g ; This would depend on the store in %true
2543 ; if %cmp is true, or the store in %entry
2544 ; otherwise, so this is undefined behavior.
2545
2546 br i1 %cmp, label %second_true, label %second_end
2547 ; The same branch again, but this time the
2548 ; true block doesn't have side effects.
2549
2550 second_true:
2551 ; No side effects!
2552 ret void
2553
2554 second_end:
2555 store volatile i32 0, i32* @g ; This time, the instruction always depends
2556 ; on the store in %end. Also, it is
2557 ; control-equivalent to %end, so this is
2558 ; well-defined (ignoring earlier undefined
2559 ; behavior in this example).
2560
2561.. _blockaddress:
2562
2563Addresses of Basic Blocks
2564-------------------------
2565
2566``blockaddress(@function, %block)``
2567
2568The '``blockaddress``' constant computes the address of the specified
2569basic block in the specified function, and always has an ``i8*`` type.
2570Taking the address of the entry block is illegal.
2571
2572This value only has defined behavior when used as an operand to the
2573':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2574against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002575undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002576no label is equal to the null pointer. This may be passed around as an
2577opaque pointer sized value as long as the bits are not inspected. This
2578allows ``ptrtoint`` and arithmetic to be performed on these values so
2579long as the original value is reconstituted before the ``indirectbr``
2580instruction.
2581
2582Finally, some targets may provide defined semantics when using the value
2583as the operand to an inline assembly, but that is target specific.
2584
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002585.. _constantexprs:
2586
Sean Silvab084af42012-12-07 10:36:55 +00002587Constant Expressions
2588--------------------
2589
2590Constant expressions are used to allow expressions involving other
2591constants to be used as constants. Constant expressions may be of any
2592:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2593that does not have side effects (e.g. load and call are not supported).
2594The following is the syntax for constant expressions:
2595
2596``trunc (CST to TYPE)``
2597 Truncate a constant to another type. The bit size of CST must be
2598 larger than the bit size of TYPE. Both types must be integers.
2599``zext (CST to TYPE)``
2600 Zero extend a constant to another type. The bit size of CST must be
2601 smaller than the bit size of TYPE. Both types must be integers.
2602``sext (CST to TYPE)``
2603 Sign extend a constant to another type. The bit size of CST must be
2604 smaller than the bit size of TYPE. Both types must be integers.
2605``fptrunc (CST to TYPE)``
2606 Truncate a floating point constant to another floating point type.
2607 The size of CST must be larger than the size of TYPE. Both types
2608 must be floating point.
2609``fpext (CST to TYPE)``
2610 Floating point extend a constant to another type. The size of CST
2611 must be smaller or equal to the size of TYPE. Both types must be
2612 floating point.
2613``fptoui (CST to TYPE)``
2614 Convert a floating point constant to the corresponding unsigned
2615 integer constant. TYPE must be a scalar or vector integer type. CST
2616 must be of scalar or vector floating point type. Both CST and TYPE
2617 must be scalars, or vectors of the same number of elements. If the
2618 value won't fit in the integer type, the results are undefined.
2619``fptosi (CST to TYPE)``
2620 Convert a floating point constant to the corresponding signed
2621 integer constant. TYPE must be a scalar or vector integer type. CST
2622 must be of scalar or vector floating point type. Both CST and TYPE
2623 must be scalars, or vectors of the same number of elements. If the
2624 value won't fit in the integer type, the results are undefined.
2625``uitofp (CST to TYPE)``
2626 Convert an unsigned integer constant to the corresponding floating
2627 point constant. TYPE must be a scalar or vector floating point type.
2628 CST must be of scalar or vector integer type. Both CST and TYPE must
2629 be scalars, or vectors of the same number of elements. If the value
2630 won't fit in the floating point type, the results are undefined.
2631``sitofp (CST to TYPE)``
2632 Convert a signed integer constant to the corresponding floating
2633 point constant. TYPE must be a scalar or vector floating point type.
2634 CST must be of scalar or vector integer type. Both CST and TYPE must
2635 be scalars, or vectors of the same number of elements. If the value
2636 won't fit in the floating point type, the results are undefined.
2637``ptrtoint (CST to TYPE)``
2638 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002639 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002640 pointer type. The ``CST`` value is zero extended, truncated, or
2641 unchanged to make it fit in ``TYPE``.
2642``inttoptr (CST to TYPE)``
2643 Convert an integer constant to a pointer constant. TYPE must be a
2644 pointer type. CST must be of integer type. The CST value is zero
2645 extended, truncated, or unchanged to make it fit in a pointer size.
2646 This one is *really* dangerous!
2647``bitcast (CST to TYPE)``
2648 Convert a constant, CST, to another TYPE. The constraints of the
2649 operands are the same as those for the :ref:`bitcast
2650 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002651``addrspacecast (CST to TYPE)``
2652 Convert a constant pointer or constant vector of pointer, CST, to another
2653 TYPE in a different address space. The constraints of the operands are the
2654 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002655``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2656 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2657 constants. As with the :ref:`getelementptr <i_getelementptr>`
2658 instruction, the index list may have zero or more indexes, which are
2659 required to make sense for the type of "CSTPTR".
2660``select (COND, VAL1, VAL2)``
2661 Perform the :ref:`select operation <i_select>` on constants.
2662``icmp COND (VAL1, VAL2)``
2663 Performs the :ref:`icmp operation <i_icmp>` on constants.
2664``fcmp COND (VAL1, VAL2)``
2665 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2666``extractelement (VAL, IDX)``
2667 Perform the :ref:`extractelement operation <i_extractelement>` on
2668 constants.
2669``insertelement (VAL, ELT, IDX)``
2670 Perform the :ref:`insertelement operation <i_insertelement>` on
2671 constants.
2672``shufflevector (VEC1, VEC2, IDXMASK)``
2673 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2674 constants.
2675``extractvalue (VAL, IDX0, IDX1, ...)``
2676 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2677 constants. The index list is interpreted in a similar manner as
2678 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2679 least one index value must be specified.
2680``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2681 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2682 The index list is interpreted in a similar manner as indices in a
2683 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2684 value must be specified.
2685``OPCODE (LHS, RHS)``
2686 Perform the specified operation of the LHS and RHS constants. OPCODE
2687 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2688 binary <bitwiseops>` operations. The constraints on operands are
2689 the same as those for the corresponding instruction (e.g. no bitwise
2690 operations on floating point values are allowed).
2691
2692Other Values
2693============
2694
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002695.. _inlineasmexprs:
2696
Sean Silvab084af42012-12-07 10:36:55 +00002697Inline Assembler Expressions
2698----------------------------
2699
2700LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2701Inline Assembly <moduleasm>`) through the use of a special value. This
2702value represents the inline assembler as a string (containing the
2703instructions to emit), a list of operand constraints (stored as a
2704string), a flag that indicates whether or not the inline asm expression
2705has side effects, and a flag indicating whether the function containing
2706the asm needs to align its stack conservatively. An example inline
2707assembler expression is:
2708
2709.. code-block:: llvm
2710
2711 i32 (i32) asm "bswap $0", "=r,r"
2712
2713Inline assembler expressions may **only** be used as the callee operand
2714of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2715Thus, typically we have:
2716
2717.. code-block:: llvm
2718
2719 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2720
2721Inline asms with side effects not visible in the constraint list must be
2722marked as having side effects. This is done through the use of the
2723'``sideeffect``' keyword, like so:
2724
2725.. code-block:: llvm
2726
2727 call void asm sideeffect "eieio", ""()
2728
2729In some cases inline asms will contain code that will not work unless
2730the stack is aligned in some way, such as calls or SSE instructions on
2731x86, yet will not contain code that does that alignment within the asm.
2732The compiler should make conservative assumptions about what the asm
2733might contain and should generate its usual stack alignment code in the
2734prologue if the '``alignstack``' keyword is present:
2735
2736.. code-block:: llvm
2737
2738 call void asm alignstack "eieio", ""()
2739
2740Inline asms also support using non-standard assembly dialects. The
2741assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2742the inline asm is using the Intel dialect. Currently, ATT and Intel are
2743the only supported dialects. An example is:
2744
2745.. code-block:: llvm
2746
2747 call void asm inteldialect "eieio", ""()
2748
2749If multiple keywords appear the '``sideeffect``' keyword must come
2750first, the '``alignstack``' keyword second and the '``inteldialect``'
2751keyword last.
2752
2753Inline Asm Metadata
2754^^^^^^^^^^^^^^^^^^^
2755
2756The call instructions that wrap inline asm nodes may have a
2757"``!srcloc``" MDNode attached to it that contains a list of constant
2758integers. If present, the code generator will use the integer as the
2759location cookie value when report errors through the ``LLVMContext``
2760error reporting mechanisms. This allows a front-end to correlate backend
2761errors that occur with inline asm back to the source code that produced
2762it. For example:
2763
2764.. code-block:: llvm
2765
2766 call void asm sideeffect "something bad", ""(), !srcloc !42
2767 ...
2768 !42 = !{ i32 1234567 }
2769
2770It is up to the front-end to make sense of the magic numbers it places
2771in the IR. If the MDNode contains multiple constants, the code generator
2772will use the one that corresponds to the line of the asm that the error
2773occurs on.
2774
2775.. _metadata:
2776
2777Metadata Nodes and Metadata Strings
2778-----------------------------------
2779
2780LLVM IR allows metadata to be attached to instructions in the program
2781that can convey extra information about the code to the optimizers and
2782code generator. One example application of metadata is source-level
2783debug information. There are two metadata primitives: strings and nodes.
2784All metadata has the ``metadata`` type and is identified in syntax by a
2785preceding exclamation point ('``!``').
2786
2787A metadata string is a string surrounded by double quotes. It can
2788contain any character by escaping non-printable characters with
2789"``\xx``" where "``xx``" is the two digit hex code. For example:
2790"``!"test\00"``".
2791
2792Metadata nodes are represented with notation similar to structure
2793constants (a comma separated list of elements, surrounded by braces and
2794preceded by an exclamation point). Metadata nodes can have any values as
2795their operand. For example:
2796
2797.. code-block:: llvm
2798
2799 !{ metadata !"test\00", i32 10}
2800
2801A :ref:`named metadata <namedmetadatastructure>` is a collection of
2802metadata nodes, which can be looked up in the module symbol table. For
2803example:
2804
2805.. code-block:: llvm
2806
2807 !foo = metadata !{!4, !3}
2808
2809Metadata can be used as function arguments. Here ``llvm.dbg.value``
2810function is using two metadata arguments:
2811
2812.. code-block:: llvm
2813
2814 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2815
2816Metadata can be attached with an instruction. Here metadata ``!21`` is
2817attached to the ``add`` instruction using the ``!dbg`` identifier:
2818
2819.. code-block:: llvm
2820
2821 %indvar.next = add i64 %indvar, 1, !dbg !21
2822
2823More information about specific metadata nodes recognized by the
2824optimizers and code generator is found below.
2825
2826'``tbaa``' Metadata
2827^^^^^^^^^^^^^^^^^^^
2828
2829In LLVM IR, memory does not have types, so LLVM's own type system is not
2830suitable for doing TBAA. Instead, metadata is added to the IR to
2831describe a type system of a higher level language. This can be used to
2832implement typical C/C++ TBAA, but it can also be used to implement
2833custom alias analysis behavior for other languages.
2834
2835The current metadata format is very simple. TBAA metadata nodes have up
2836to three fields, e.g.:
2837
2838.. code-block:: llvm
2839
2840 !0 = metadata !{ metadata !"an example type tree" }
2841 !1 = metadata !{ metadata !"int", metadata !0 }
2842 !2 = metadata !{ metadata !"float", metadata !0 }
2843 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2844
2845The first field is an identity field. It can be any value, usually a
2846metadata string, which uniquely identifies the type. The most important
2847name in the tree is the name of the root node. Two trees with different
2848root node names are entirely disjoint, even if they have leaves with
2849common names.
2850
2851The second field identifies the type's parent node in the tree, or is
2852null or omitted for a root node. A type is considered to alias all of
2853its descendants and all of its ancestors in the tree. Also, a type is
2854considered to alias all types in other trees, so that bitcode produced
2855from multiple front-ends is handled conservatively.
2856
2857If the third field is present, it's an integer which if equal to 1
2858indicates that the type is "constant" (meaning
2859``pointsToConstantMemory`` should return true; see `other useful
2860AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2861
2862'``tbaa.struct``' Metadata
2863^^^^^^^^^^^^^^^^^^^^^^^^^^
2864
2865The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2866aggregate assignment operations in C and similar languages, however it
2867is defined to copy a contiguous region of memory, which is more than
2868strictly necessary for aggregate types which contain holes due to
2869padding. Also, it doesn't contain any TBAA information about the fields
2870of the aggregate.
2871
2872``!tbaa.struct`` metadata can describe which memory subregions in a
2873memcpy are padding and what the TBAA tags of the struct are.
2874
2875The current metadata format is very simple. ``!tbaa.struct`` metadata
2876nodes are a list of operands which are in conceptual groups of three.
2877For each group of three, the first operand gives the byte offset of a
2878field in bytes, the second gives its size in bytes, and the third gives
2879its tbaa tag. e.g.:
2880
2881.. code-block:: llvm
2882
2883 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2884
2885This describes a struct with two fields. The first is at offset 0 bytes
2886with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2887and has size 4 bytes and has tbaa tag !2.
2888
2889Note that the fields need not be contiguous. In this example, there is a
28904 byte gap between the two fields. This gap represents padding which
2891does not carry useful data and need not be preserved.
2892
Hal Finkel94146652014-07-24 14:25:39 +00002893'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00002894^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00002895
2896``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
2897noalias memory-access sets. This means that some collection of memory access
2898instructions (loads, stores, memory-accessing calls, etc.) that carry
2899``noalias`` metadata can specifically be specified not to alias with some other
2900collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00002901Each type of metadata specifies a list of scopes where each scope has an id and
2902a domain. When evaluating an aliasing query, if for some some domain, the set
2903of scopes with that domain in one instruction's ``alias.scope`` list is a
2904subset of (or qual to) the set of scopes for that domain in another
2905instruction's ``noalias`` list, then the two memory accesses are assumed not to
2906alias.
Hal Finkel94146652014-07-24 14:25:39 +00002907
Hal Finkel029cde62014-07-25 15:50:02 +00002908The metadata identifying each domain is itself a list containing one or two
2909entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00002910string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00002911self-reference can be used to create globally unique domain names. A
2912descriptive string may optionally be provided as a second list entry.
2913
2914The metadata identifying each scope is also itself a list containing two or
2915three entries. The first entry is the name of the scope. Note that if the name
2916is a string then it can be combined accross functions and translation units. A
2917self-reference can be used to create globally unique scope names. A metadata
2918reference to the scope's domain is the second entry. A descriptive string may
2919optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00002920
2921For example,
2922
2923.. code-block:: llvm
2924
Hal Finkel029cde62014-07-25 15:50:02 +00002925 ; Two scope domains:
Hal Finkel94146652014-07-24 14:25:39 +00002926 !0 = metadata !{metadata !0}
Hal Finkel029cde62014-07-25 15:50:02 +00002927 !1 = metadata !{metadata !1}
Hal Finkel94146652014-07-24 14:25:39 +00002928
Hal Finkel029cde62014-07-25 15:50:02 +00002929 ; Some scopes in these domains:
2930 !2 = metadata !{metadata !2, metadata !0}
2931 !3 = metadata !{metadata !3, metadata !0}
2932 !4 = metadata !{metadata !4, metadata !1}
Hal Finkel94146652014-07-24 14:25:39 +00002933
Hal Finkel029cde62014-07-25 15:50:02 +00002934 ; Some scope lists:
2935 !5 = metadata !{metadata !4} ; A list containing only scope !4
2936 !6 = metadata !{metadata !4, metadata !3, metadata !2}
2937 !7 = metadata !{metadata !3}
Hal Finkel94146652014-07-24 14:25:39 +00002938
2939 ; These two instructions don't alias:
Hal Finkel029cde62014-07-25 15:50:02 +00002940 %0 = load float* %c, align 4, !alias.scope !5
2941 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00002942
Hal Finkel029cde62014-07-25 15:50:02 +00002943 ; These two instructions also don't alias (for domain !1, the set of scopes
2944 ; in the !alias.scope equals that in the !noalias list):
2945 %2 = load float* %c, align 4, !alias.scope !5
2946 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00002947
Hal Finkel029cde62014-07-25 15:50:02 +00002948 ; These two instructions don't alias (for domain !0, the set of scopes in
2949 ; the !noalias list is not a superset of, or equal to, the scopes in the
2950 ; !alias.scope list):
2951 %2 = load float* %c, align 4, !alias.scope !6
2952 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00002953
Sean Silvab084af42012-12-07 10:36:55 +00002954'``fpmath``' Metadata
2955^^^^^^^^^^^^^^^^^^^^^
2956
2957``fpmath`` metadata may be attached to any instruction of floating point
2958type. It can be used to express the maximum acceptable error in the
2959result of that instruction, in ULPs, thus potentially allowing the
2960compiler to use a more efficient but less accurate method of computing
2961it. ULP is defined as follows:
2962
2963 If ``x`` is a real number that lies between two finite consecutive
2964 floating-point numbers ``a`` and ``b``, without being equal to one
2965 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2966 distance between the two non-equal finite floating-point numbers
2967 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2968
2969The metadata node shall consist of a single positive floating point
2970number representing the maximum relative error, for example:
2971
2972.. code-block:: llvm
2973
2974 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2975
2976'``range``' Metadata
2977^^^^^^^^^^^^^^^^^^^^
2978
Jingyue Wu37fcb592014-06-19 16:50:16 +00002979``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
2980integer types. It expresses the possible ranges the loaded value or the value
2981returned by the called function at this call site is in. The ranges are
2982represented with a flattened list of integers. The loaded value or the value
2983returned is known to be in the union of the ranges defined by each consecutive
2984pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00002985
2986- The type must match the type loaded by the instruction.
2987- The pair ``a,b`` represents the range ``[a,b)``.
2988- Both ``a`` and ``b`` are constants.
2989- The range is allowed to wrap.
2990- The range should not represent the full or empty set. That is,
2991 ``a!=b``.
2992
2993In addition, the pairs must be in signed order of the lower bound and
2994they must be non-contiguous.
2995
2996Examples:
2997
2998.. code-block:: llvm
2999
3000 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
3001 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00003002 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
3003 %d = invoke i8 @bar() to label %cont
3004 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00003005 ...
3006 !0 = metadata !{ i8 0, i8 2 }
3007 !1 = metadata !{ i8 255, i8 2 }
3008 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
3009 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
3010
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003011'``llvm.loop``'
3012^^^^^^^^^^^^^^^
3013
3014It is sometimes useful to attach information to loop constructs. Currently,
3015loop metadata is implemented as metadata attached to the branch instruction
3016in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00003017guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00003018specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003019
3020The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00003021itself to avoid merging it with any other identifier metadata, e.g.,
3022during module linkage or function inlining. That is, each loop should refer
3023to their own identification metadata even if they reside in separate functions.
3024The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003025constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003026
3027.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00003028
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003029 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003030 !1 = metadata !{ metadata !1 }
3031
Mark Heffernan893752a2014-07-18 19:24:51 +00003032The loop identifier metadata can be used to specify additional
3033per-loop metadata. Any operands after the first operand can be treated
3034as user-defined metadata. For example the ``llvm.loop.unroll.count``
3035suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003036
Paul Redmond5fdf8362013-05-28 20:00:34 +00003037.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003038
Paul Redmond5fdf8362013-05-28 20:00:34 +00003039 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
3040 ...
3041 !0 = metadata !{ metadata !0, metadata !1 }
Mark Heffernan9d20e422014-07-21 23:11:03 +00003042 !1 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003043
Mark Heffernan9d20e422014-07-21 23:11:03 +00003044'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
3045^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00003046
Mark Heffernan9d20e422014-07-21 23:11:03 +00003047Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
3048used to control per-loop vectorization and interleaving parameters such as
3049vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00003050conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00003051``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
3052optimization hints and the optimizer will only interleave and vectorize loops if
3053it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
3054which contains information about loop-carried memory dependencies can be helpful
3055in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00003056
Mark Heffernan9d20e422014-07-21 23:11:03 +00003057'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00003058^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3059
Mark Heffernan9d20e422014-07-21 23:11:03 +00003060This metadata suggests an interleave count to the loop interleaver.
3061The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00003062second operand is an integer specifying the interleave count. For
3063example:
3064
3065.. code-block:: llvm
3066
Mark Heffernan9d20e422014-07-21 23:11:03 +00003067 !0 = metadata !{ metadata !"llvm.loop.interleave.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003068
Mark Heffernan9d20e422014-07-21 23:11:03 +00003069Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3070multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
3071then the interleave count will be determined automatically.
3072
3073'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00003074^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00003075
3076This metadata selectively enables or disables vectorization for the loop. The
3077first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3078is a bit. If the bit operand value is 1 vectorization is enabled. A value of
30790 disables vectorization:
3080
3081.. code-block:: llvm
3082
3083 !0 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 0 }
3084 !1 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 1 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003085
3086'``llvm.loop.vectorize.width``' Metadata
3087^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3088
3089This metadata sets the target width of the vectorizer. The first
3090operand is the string ``llvm.loop.vectorize.width`` and the second
3091operand is an integer specifying the width. For example:
3092
3093.. code-block:: llvm
3094
3095 !0 = metadata !{ metadata !"llvm.loop.vectorize.width", i32 4 }
3096
3097Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3098vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
30990 or if the loop does not have this metadata the width will be
3100determined automatically.
3101
3102'``llvm.loop.unroll``'
3103^^^^^^^^^^^^^^^^^^^^^^
3104
3105Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3106optimization hints such as the unroll factor. ``llvm.loop.unroll``
3107metadata should be used in conjunction with ``llvm.loop`` loop
3108identification metadata. The ``llvm.loop.unroll`` metadata are only
3109optimization hints and the unrolling will only be performed if the
3110optimizer believes it is safe to do so.
3111
Mark Heffernan893752a2014-07-18 19:24:51 +00003112'``llvm.loop.unroll.count``' Metadata
3113^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3114
3115This metadata suggests an unroll factor to the loop unroller. The
3116first operand is the string ``llvm.loop.unroll.count`` and the second
3117operand is a positive integer specifying the unroll factor. For
3118example:
3119
3120.. code-block:: llvm
3121
3122 !0 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
3123
3124If the trip count of the loop is less than the unroll count the loop
3125will be partially unrolled.
3126
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003127'``llvm.loop.unroll.disable``' Metadata
3128^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3129
3130This metadata either disables loop unrolling. The metadata has a single operand
3131which is the string ``llvm.loop.unroll.disable``. For example:
3132
3133.. code-block:: llvm
3134
3135 !0 = metadata !{ metadata !"llvm.loop.unroll.disable" }
3136
3137'``llvm.loop.unroll.full``' Metadata
3138^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3139
3140This metadata either suggests that the loop should be unrolled fully. The
3141metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3142For example:
3143
3144.. code-block:: llvm
3145
3146 !0 = metadata !{ metadata !"llvm.loop.unroll.full" }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003147
3148'``llvm.mem``'
3149^^^^^^^^^^^^^^^
3150
3151Metadata types used to annotate memory accesses with information helpful
3152for optimizations are prefixed with ``llvm.mem``.
3153
3154'``llvm.mem.parallel_loop_access``' Metadata
3155^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3156
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003157The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3158or metadata containing a list of loop identifiers for nested loops.
3159The metadata is attached to memory accessing instructions and denotes that
3160no loop carried memory dependence exist between it and other instructions denoted
3161with the same loop identifier.
3162
3163Precisely, given two instructions ``m1`` and ``m2`` that both have the
3164``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3165set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00003166carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003167``L2``.
3168
3169As a special case, if all memory accessing instructions in a loop have
3170``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3171loop has no loop carried memory dependences and is considered to be a parallel
3172loop.
3173
3174Note that if not all memory access instructions have such metadata referring to
3175the loop, then the loop is considered not being trivially parallel. Additional
3176memory dependence analysis is required to make that determination. As a fail
3177safe mechanism, this causes loops that were originally parallel to be considered
3178sequential (if optimization passes that are unaware of the parallel semantics
3179insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003180
3181Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003182both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003183metadata types that refer to the same loop identifier metadata.
3184
3185.. code-block:: llvm
3186
3187 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003188 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003189 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003190 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003191 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003192 ...
3193 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003194
3195 for.end:
3196 ...
3197 !0 = metadata !{ metadata !0 }
3198
3199It is also possible to have nested parallel loops. In that case the
3200memory accesses refer to a list of loop identifier metadata nodes instead of
3201the loop identifier metadata node directly:
3202
3203.. code-block:: llvm
3204
3205 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003206 ...
3207 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
3208 ...
3209 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003210
3211 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003212 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003213 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003214 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003215 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003216 ...
3217 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003218
3219 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003220 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003221 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003222 ...
3223 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003224
3225 outer.for.end: ; preds = %for.body
3226 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00003227 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
3228 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
3229 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003230
Sean Silvab084af42012-12-07 10:36:55 +00003231Module Flags Metadata
3232=====================
3233
3234Information about the module as a whole is difficult to convey to LLVM's
3235subsystems. The LLVM IR isn't sufficient to transmit this information.
3236The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003237this. These flags are in the form of key / value pairs --- much like a
3238dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003239look it up.
3240
3241The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3242Each triplet has the following form:
3243
3244- The first element is a *behavior* flag, which specifies the behavior
3245 when two (or more) modules are merged together, and it encounters two
3246 (or more) metadata with the same ID. The supported behaviors are
3247 described below.
3248- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003249 metadata. Each module may only have one flag entry for each unique ID (not
3250 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003251- The third element is the value of the flag.
3252
3253When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003254``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3255each unique metadata ID string, there will be exactly one entry in the merged
3256modules ``llvm.module.flags`` metadata table, and the value for that entry will
3257be determined by the merge behavior flag, as described below. The only exception
3258is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003259
3260The following behaviors are supported:
3261
3262.. list-table::
3263 :header-rows: 1
3264 :widths: 10 90
3265
3266 * - Value
3267 - Behavior
3268
3269 * - 1
3270 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003271 Emits an error if two values disagree, otherwise the resulting value
3272 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003273
3274 * - 2
3275 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003276 Emits a warning if two values disagree. The result value will be the
3277 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003278
3279 * - 3
3280 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003281 Adds a requirement that another module flag be present and have a
3282 specified value after linking is performed. The value must be a
3283 metadata pair, where the first element of the pair is the ID of the
3284 module flag to be restricted, and the second element of the pair is
3285 the value the module flag should be restricted to. This behavior can
3286 be used to restrict the allowable results (via triggering of an
3287 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003288
3289 * - 4
3290 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003291 Uses the specified value, regardless of the behavior or value of the
3292 other module. If both modules specify **Override**, but the values
3293 differ, an error will be emitted.
3294
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003295 * - 5
3296 - **Append**
3297 Appends the two values, which are required to be metadata nodes.
3298
3299 * - 6
3300 - **AppendUnique**
3301 Appends the two values, which are required to be metadata
3302 nodes. However, duplicate entries in the second list are dropped
3303 during the append operation.
3304
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003305It is an error for a particular unique flag ID to have multiple behaviors,
3306except in the case of **Require** (which adds restrictions on another metadata
3307value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003308
3309An example of module flags:
3310
3311.. code-block:: llvm
3312
3313 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3314 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3315 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3316 !3 = metadata !{ i32 3, metadata !"qux",
3317 metadata !{
3318 metadata !"foo", i32 1
3319 }
3320 }
3321 !llvm.module.flags = !{ !0, !1, !2, !3 }
3322
3323- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3324 if two or more ``!"foo"`` flags are seen is to emit an error if their
3325 values are not equal.
3326
3327- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3328 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003329 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003330
3331- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3332 behavior if two or more ``!"qux"`` flags are seen is to emit a
3333 warning if their values are not equal.
3334
3335- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3336
3337 ::
3338
3339 metadata !{ metadata !"foo", i32 1 }
3340
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003341 The behavior is to emit an error if the ``llvm.module.flags`` does not
3342 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3343 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003344
3345Objective-C Garbage Collection Module Flags Metadata
3346----------------------------------------------------
3347
3348On the Mach-O platform, Objective-C stores metadata about garbage
3349collection in a special section called "image info". The metadata
3350consists of a version number and a bitmask specifying what types of
3351garbage collection are supported (if any) by the file. If two or more
3352modules are linked together their garbage collection metadata needs to
3353be merged rather than appended together.
3354
3355The Objective-C garbage collection module flags metadata consists of the
3356following key-value pairs:
3357
3358.. list-table::
3359 :header-rows: 1
3360 :widths: 30 70
3361
3362 * - Key
3363 - Value
3364
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003365 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003366 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003367
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003368 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003369 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003370 always 0.
3371
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003372 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003373 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003374 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3375 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3376 Objective-C ABI version 2.
3377
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003378 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003379 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003380 not. Valid values are 0, for no garbage collection, and 2, for garbage
3381 collection supported.
3382
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003383 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003384 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003385 If present, its value must be 6. This flag requires that the
3386 ``Objective-C Garbage Collection`` flag have the value 2.
3387
3388Some important flag interactions:
3389
3390- If a module with ``Objective-C Garbage Collection`` set to 0 is
3391 merged with a module with ``Objective-C Garbage Collection`` set to
3392 2, then the resulting module has the
3393 ``Objective-C Garbage Collection`` flag set to 0.
3394- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3395 merged with a module with ``Objective-C GC Only`` set to 6.
3396
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003397Automatic Linker Flags Module Flags Metadata
3398--------------------------------------------
3399
3400Some targets support embedding flags to the linker inside individual object
3401files. Typically this is used in conjunction with language extensions which
3402allow source files to explicitly declare the libraries they depend on, and have
3403these automatically be transmitted to the linker via object files.
3404
3405These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003406using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003407to be ``AppendUnique``, and the value for the key is expected to be a metadata
3408node which should be a list of other metadata nodes, each of which should be a
3409list of metadata strings defining linker options.
3410
3411For example, the following metadata section specifies two separate sets of
3412linker options, presumably to link against ``libz`` and the ``Cocoa``
3413framework::
3414
Michael Liaoa7699082013-03-06 18:24:34 +00003415 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003416 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003417 metadata !{ metadata !"-lz" },
3418 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003419 !llvm.module.flags = !{ !0 }
3420
3421The metadata encoding as lists of lists of options, as opposed to a collapsed
3422list of options, is chosen so that the IR encoding can use multiple option
3423strings to specify e.g., a single library, while still having that specifier be
3424preserved as an atomic element that can be recognized by a target specific
3425assembly writer or object file emitter.
3426
3427Each individual option is required to be either a valid option for the target's
3428linker, or an option that is reserved by the target specific assembly writer or
3429object file emitter. No other aspect of these options is defined by the IR.
3430
Oliver Stannard5dc29342014-06-20 10:08:11 +00003431C type width Module Flags Metadata
3432----------------------------------
3433
3434The ARM backend emits a section into each generated object file describing the
3435options that it was compiled with (in a compiler-independent way) to prevent
3436linking incompatible objects, and to allow automatic library selection. Some
3437of these options are not visible at the IR level, namely wchar_t width and enum
3438width.
3439
3440To pass this information to the backend, these options are encoded in module
3441flags metadata, using the following key-value pairs:
3442
3443.. list-table::
3444 :header-rows: 1
3445 :widths: 30 70
3446
3447 * - Key
3448 - Value
3449
3450 * - short_wchar
3451 - * 0 --- sizeof(wchar_t) == 4
3452 * 1 --- sizeof(wchar_t) == 2
3453
3454 * - short_enum
3455 - * 0 --- Enums are at least as large as an ``int``.
3456 * 1 --- Enums are stored in the smallest integer type which can
3457 represent all of its values.
3458
3459For example, the following metadata section specifies that the module was
3460compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3461enum is the smallest type which can represent all of its values::
3462
3463 !llvm.module.flags = !{!0, !1}
3464 !0 = metadata !{i32 1, metadata !"short_wchar", i32 1}
3465 !1 = metadata !{i32 1, metadata !"short_enum", i32 0}
3466
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003467.. _intrinsicglobalvariables:
3468
Sean Silvab084af42012-12-07 10:36:55 +00003469Intrinsic Global Variables
3470==========================
3471
3472LLVM has a number of "magic" global variables that contain data that
3473affect code generation or other IR semantics. These are documented here.
3474All globals of this sort should have a section specified as
3475"``llvm.metadata``". This section and all globals that start with
3476"``llvm.``" are reserved for use by LLVM.
3477
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003478.. _gv_llvmused:
3479
Sean Silvab084af42012-12-07 10:36:55 +00003480The '``llvm.used``' Global Variable
3481-----------------------------------
3482
Rafael Espindola74f2e462013-04-22 14:58:02 +00003483The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003484:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003485pointers to named global variables, functions and aliases which may optionally
3486have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003487use of it is:
3488
3489.. code-block:: llvm
3490
3491 @X = global i8 4
3492 @Y = global i32 123
3493
3494 @llvm.used = appending global [2 x i8*] [
3495 i8* @X,
3496 i8* bitcast (i32* @Y to i8*)
3497 ], section "llvm.metadata"
3498
Rafael Espindola74f2e462013-04-22 14:58:02 +00003499If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3500and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003501symbol that it cannot see (which is why they have to be named). For example, if
3502a variable has internal linkage and no references other than that from the
3503``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3504references from inline asms and other things the compiler cannot "see", and
3505corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003506
3507On some targets, the code generator must emit a directive to the
3508assembler or object file to prevent the assembler and linker from
3509molesting the symbol.
3510
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003511.. _gv_llvmcompilerused:
3512
Sean Silvab084af42012-12-07 10:36:55 +00003513The '``llvm.compiler.used``' Global Variable
3514--------------------------------------------
3515
3516The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3517directive, except that it only prevents the compiler from touching the
3518symbol. On targets that support it, this allows an intelligent linker to
3519optimize references to the symbol without being impeded as it would be
3520by ``@llvm.used``.
3521
3522This is a rare construct that should only be used in rare circumstances,
3523and should not be exposed to source languages.
3524
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003525.. _gv_llvmglobalctors:
3526
Sean Silvab084af42012-12-07 10:36:55 +00003527The '``llvm.global_ctors``' Global Variable
3528-------------------------------------------
3529
3530.. code-block:: llvm
3531
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003532 %0 = type { i32, void ()*, i8* }
3533 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003534
3535The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003536functions, priorities, and an optional associated global or function.
3537The functions referenced by this array will be called in ascending order
3538of priority (i.e. lowest first) when the module is loaded. The order of
3539functions with the same priority is not defined.
3540
3541If the third field is present, non-null, and points to a global variable
3542or function, the initializer function will only run if the associated
3543data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003544
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003545.. _llvmglobaldtors:
3546
Sean Silvab084af42012-12-07 10:36:55 +00003547The '``llvm.global_dtors``' Global Variable
3548-------------------------------------------
3549
3550.. code-block:: llvm
3551
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003552 %0 = type { i32, void ()*, i8* }
3553 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003554
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003555The ``@llvm.global_dtors`` array contains a list of destructor
3556functions, priorities, and an optional associated global or function.
3557The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003558order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003559order of functions with the same priority is not defined.
3560
3561If the third field is present, non-null, and points to a global variable
3562or function, the destructor function will only run if the associated
3563data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003564
3565Instruction Reference
3566=====================
3567
3568The LLVM instruction set consists of several different classifications
3569of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3570instructions <binaryops>`, :ref:`bitwise binary
3571instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3572:ref:`other instructions <otherops>`.
3573
3574.. _terminators:
3575
3576Terminator Instructions
3577-----------------------
3578
3579As mentioned :ref:`previously <functionstructure>`, every basic block in a
3580program ends with a "Terminator" instruction, which indicates which
3581block should be executed after the current block is finished. These
3582terminator instructions typically yield a '``void``' value: they produce
3583control flow, not values (the one exception being the
3584':ref:`invoke <i_invoke>`' instruction).
3585
3586The terminator instructions are: ':ref:`ret <i_ret>`',
3587':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3588':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3589':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3590
3591.. _i_ret:
3592
3593'``ret``' Instruction
3594^^^^^^^^^^^^^^^^^^^^^
3595
3596Syntax:
3597"""""""
3598
3599::
3600
3601 ret <type> <value> ; Return a value from a non-void function
3602 ret void ; Return from void function
3603
3604Overview:
3605"""""""""
3606
3607The '``ret``' instruction is used to return control flow (and optionally
3608a value) from a function back to the caller.
3609
3610There are two forms of the '``ret``' instruction: one that returns a
3611value and then causes control flow, and one that just causes control
3612flow to occur.
3613
3614Arguments:
3615""""""""""
3616
3617The '``ret``' instruction optionally accepts a single argument, the
3618return value. The type of the return value must be a ':ref:`first
3619class <t_firstclass>`' type.
3620
3621A function is not :ref:`well formed <wellformed>` if it it has a non-void
3622return type and contains a '``ret``' instruction with no return value or
3623a return value with a type that does not match its type, or if it has a
3624void return type and contains a '``ret``' instruction with a return
3625value.
3626
3627Semantics:
3628""""""""""
3629
3630When the '``ret``' instruction is executed, control flow returns back to
3631the calling function's context. If the caller is a
3632":ref:`call <i_call>`" instruction, execution continues at the
3633instruction after the call. If the caller was an
3634":ref:`invoke <i_invoke>`" instruction, execution continues at the
3635beginning of the "normal" destination block. If the instruction returns
3636a value, that value shall set the call or invoke instruction's return
3637value.
3638
3639Example:
3640""""""""
3641
3642.. code-block:: llvm
3643
3644 ret i32 5 ; Return an integer value of 5
3645 ret void ; Return from a void function
3646 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3647
3648.. _i_br:
3649
3650'``br``' Instruction
3651^^^^^^^^^^^^^^^^^^^^
3652
3653Syntax:
3654"""""""
3655
3656::
3657
3658 br i1 <cond>, label <iftrue>, label <iffalse>
3659 br label <dest> ; Unconditional branch
3660
3661Overview:
3662"""""""""
3663
3664The '``br``' instruction is used to cause control flow to transfer to a
3665different basic block in the current function. There are two forms of
3666this instruction, corresponding to a conditional branch and an
3667unconditional branch.
3668
3669Arguments:
3670""""""""""
3671
3672The conditional branch form of the '``br``' instruction takes a single
3673'``i1``' value and two '``label``' values. The unconditional form of the
3674'``br``' instruction takes a single '``label``' value as a target.
3675
3676Semantics:
3677""""""""""
3678
3679Upon execution of a conditional '``br``' instruction, the '``i1``'
3680argument is evaluated. If the value is ``true``, control flows to the
3681'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3682to the '``iffalse``' ``label`` argument.
3683
3684Example:
3685""""""""
3686
3687.. code-block:: llvm
3688
3689 Test:
3690 %cond = icmp eq i32 %a, %b
3691 br i1 %cond, label %IfEqual, label %IfUnequal
3692 IfEqual:
3693 ret i32 1
3694 IfUnequal:
3695 ret i32 0
3696
3697.. _i_switch:
3698
3699'``switch``' Instruction
3700^^^^^^^^^^^^^^^^^^^^^^^^
3701
3702Syntax:
3703"""""""
3704
3705::
3706
3707 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3708
3709Overview:
3710"""""""""
3711
3712The '``switch``' instruction is used to transfer control flow to one of
3713several different places. It is a generalization of the '``br``'
3714instruction, allowing a branch to occur to one of many possible
3715destinations.
3716
3717Arguments:
3718""""""""""
3719
3720The '``switch``' instruction uses three parameters: an integer
3721comparison value '``value``', a default '``label``' destination, and an
3722array of pairs of comparison value constants and '``label``'s. The table
3723is not allowed to contain duplicate constant entries.
3724
3725Semantics:
3726""""""""""
3727
3728The ``switch`` instruction specifies a table of values and destinations.
3729When the '``switch``' instruction is executed, this table is searched
3730for the given value. If the value is found, control flow is transferred
3731to the corresponding destination; otherwise, control flow is transferred
3732to the default destination.
3733
3734Implementation:
3735"""""""""""""""
3736
3737Depending on properties of the target machine and the particular
3738``switch`` instruction, this instruction may be code generated in
3739different ways. For example, it could be generated as a series of
3740chained conditional branches or with a lookup table.
3741
3742Example:
3743""""""""
3744
3745.. code-block:: llvm
3746
3747 ; Emulate a conditional br instruction
3748 %Val = zext i1 %value to i32
3749 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3750
3751 ; Emulate an unconditional br instruction
3752 switch i32 0, label %dest [ ]
3753
3754 ; Implement a jump table:
3755 switch i32 %val, label %otherwise [ i32 0, label %onzero
3756 i32 1, label %onone
3757 i32 2, label %ontwo ]
3758
3759.. _i_indirectbr:
3760
3761'``indirectbr``' Instruction
3762^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3763
3764Syntax:
3765"""""""
3766
3767::
3768
3769 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3770
3771Overview:
3772"""""""""
3773
3774The '``indirectbr``' instruction implements an indirect branch to a
3775label within the current function, whose address is specified by
3776"``address``". Address must be derived from a
3777:ref:`blockaddress <blockaddress>` constant.
3778
3779Arguments:
3780""""""""""
3781
3782The '``address``' argument is the address of the label to jump to. The
3783rest of the arguments indicate the full set of possible destinations
3784that the address may point to. Blocks are allowed to occur multiple
3785times in the destination list, though this isn't particularly useful.
3786
3787This destination list is required so that dataflow analysis has an
3788accurate understanding of the CFG.
3789
3790Semantics:
3791""""""""""
3792
3793Control transfers to the block specified in the address argument. All
3794possible destination blocks must be listed in the label list, otherwise
3795this instruction has undefined behavior. This implies that jumps to
3796labels defined in other functions have undefined behavior as well.
3797
3798Implementation:
3799"""""""""""""""
3800
3801This is typically implemented with a jump through a register.
3802
3803Example:
3804""""""""
3805
3806.. code-block:: llvm
3807
3808 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3809
3810.. _i_invoke:
3811
3812'``invoke``' Instruction
3813^^^^^^^^^^^^^^^^^^^^^^^^
3814
3815Syntax:
3816"""""""
3817
3818::
3819
3820 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3821 to label <normal label> unwind label <exception label>
3822
3823Overview:
3824"""""""""
3825
3826The '``invoke``' instruction causes control to transfer to a specified
3827function, with the possibility of control flow transfer to either the
3828'``normal``' label or the '``exception``' label. If the callee function
3829returns with the "``ret``" instruction, control flow will return to the
3830"normal" label. If the callee (or any indirect callees) returns via the
3831":ref:`resume <i_resume>`" instruction or other exception handling
3832mechanism, control is interrupted and continued at the dynamically
3833nearest "exception" label.
3834
3835The '``exception``' label is a `landing
3836pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3837'``exception``' label is required to have the
3838":ref:`landingpad <i_landingpad>`" instruction, which contains the
3839information about the behavior of the program after unwinding happens,
3840as its first non-PHI instruction. The restrictions on the
3841"``landingpad``" instruction's tightly couples it to the "``invoke``"
3842instruction, so that the important information contained within the
3843"``landingpad``" instruction can't be lost through normal code motion.
3844
3845Arguments:
3846""""""""""
3847
3848This instruction requires several arguments:
3849
3850#. The optional "cconv" marker indicates which :ref:`calling
3851 convention <callingconv>` the call should use. If none is
3852 specified, the call defaults to using C calling conventions.
3853#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3854 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3855 are valid here.
3856#. '``ptr to function ty``': shall be the signature of the pointer to
3857 function value being invoked. In most cases, this is a direct
3858 function invocation, but indirect ``invoke``'s are just as possible,
3859 branching off an arbitrary pointer to function value.
3860#. '``function ptr val``': An LLVM value containing a pointer to a
3861 function to be invoked.
3862#. '``function args``': argument list whose types match the function
3863 signature argument types and parameter attributes. All arguments must
3864 be of :ref:`first class <t_firstclass>` type. If the function signature
3865 indicates the function accepts a variable number of arguments, the
3866 extra arguments can be specified.
3867#. '``normal label``': the label reached when the called function
3868 executes a '``ret``' instruction.
3869#. '``exception label``': the label reached when a callee returns via
3870 the :ref:`resume <i_resume>` instruction or other exception handling
3871 mechanism.
3872#. The optional :ref:`function attributes <fnattrs>` list. Only
3873 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3874 attributes are valid here.
3875
3876Semantics:
3877""""""""""
3878
3879This instruction is designed to operate as a standard '``call``'
3880instruction in most regards. The primary difference is that it
3881establishes an association with a label, which is used by the runtime
3882library to unwind the stack.
3883
3884This instruction is used in languages with destructors to ensure that
3885proper cleanup is performed in the case of either a ``longjmp`` or a
3886thrown exception. Additionally, this is important for implementation of
3887'``catch``' clauses in high-level languages that support them.
3888
3889For the purposes of the SSA form, the definition of the value returned
3890by the '``invoke``' instruction is deemed to occur on the edge from the
3891current block to the "normal" label. If the callee unwinds then no
3892return value is available.
3893
3894Example:
3895""""""""
3896
3897.. code-block:: llvm
3898
3899 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003900 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003901 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003902 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003903
3904.. _i_resume:
3905
3906'``resume``' Instruction
3907^^^^^^^^^^^^^^^^^^^^^^^^
3908
3909Syntax:
3910"""""""
3911
3912::
3913
3914 resume <type> <value>
3915
3916Overview:
3917"""""""""
3918
3919The '``resume``' instruction is a terminator instruction that has no
3920successors.
3921
3922Arguments:
3923""""""""""
3924
3925The '``resume``' instruction requires one argument, which must have the
3926same type as the result of any '``landingpad``' instruction in the same
3927function.
3928
3929Semantics:
3930""""""""""
3931
3932The '``resume``' instruction resumes propagation of an existing
3933(in-flight) exception whose unwinding was interrupted with a
3934:ref:`landingpad <i_landingpad>` instruction.
3935
3936Example:
3937""""""""
3938
3939.. code-block:: llvm
3940
3941 resume { i8*, i32 } %exn
3942
3943.. _i_unreachable:
3944
3945'``unreachable``' Instruction
3946^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3947
3948Syntax:
3949"""""""
3950
3951::
3952
3953 unreachable
3954
3955Overview:
3956"""""""""
3957
3958The '``unreachable``' instruction has no defined semantics. This
3959instruction is used to inform the optimizer that a particular portion of
3960the code is not reachable. This can be used to indicate that the code
3961after a no-return function cannot be reached, and other facts.
3962
3963Semantics:
3964""""""""""
3965
3966The '``unreachable``' instruction has no defined semantics.
3967
3968.. _binaryops:
3969
3970Binary Operations
3971-----------------
3972
3973Binary operators are used to do most of the computation in a program.
3974They require two operands of the same type, execute an operation on
3975them, and produce a single value. The operands might represent multiple
3976data, as is the case with the :ref:`vector <t_vector>` data type. The
3977result value has the same type as its operands.
3978
3979There are several different binary operators:
3980
3981.. _i_add:
3982
3983'``add``' Instruction
3984^^^^^^^^^^^^^^^^^^^^^
3985
3986Syntax:
3987"""""""
3988
3989::
3990
Tim Northover675a0962014-06-13 14:24:23 +00003991 <result> = add <ty> <op1>, <op2> ; yields ty:result
3992 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
3993 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
3994 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003995
3996Overview:
3997"""""""""
3998
3999The '``add``' instruction returns the sum of its two operands.
4000
4001Arguments:
4002""""""""""
4003
4004The two arguments to the '``add``' instruction must be
4005:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4006arguments must have identical types.
4007
4008Semantics:
4009""""""""""
4010
4011The value produced is the integer sum of the two operands.
4012
4013If the sum has unsigned overflow, the result returned is the
4014mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4015the result.
4016
4017Because LLVM integers use a two's complement representation, this
4018instruction is appropriate for both signed and unsigned integers.
4019
4020``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4021respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4022result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
4023unsigned and/or signed overflow, respectively, occurs.
4024
4025Example:
4026""""""""
4027
4028.. code-block:: llvm
4029
Tim Northover675a0962014-06-13 14:24:23 +00004030 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004031
4032.. _i_fadd:
4033
4034'``fadd``' Instruction
4035^^^^^^^^^^^^^^^^^^^^^^
4036
4037Syntax:
4038"""""""
4039
4040::
4041
Tim Northover675a0962014-06-13 14:24:23 +00004042 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004043
4044Overview:
4045"""""""""
4046
4047The '``fadd``' instruction returns the sum of its two operands.
4048
4049Arguments:
4050""""""""""
4051
4052The two arguments to the '``fadd``' instruction must be :ref:`floating
4053point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4054Both arguments must have identical types.
4055
4056Semantics:
4057""""""""""
4058
4059The value produced is the floating point sum of the two operands. This
4060instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4061which are optimization hints to enable otherwise unsafe floating point
4062optimizations:
4063
4064Example:
4065""""""""
4066
4067.. code-block:: llvm
4068
Tim Northover675a0962014-06-13 14:24:23 +00004069 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004070
4071'``sub``' Instruction
4072^^^^^^^^^^^^^^^^^^^^^
4073
4074Syntax:
4075"""""""
4076
4077::
4078
Tim Northover675a0962014-06-13 14:24:23 +00004079 <result> = sub <ty> <op1>, <op2> ; yields ty:result
4080 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
4081 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
4082 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004083
4084Overview:
4085"""""""""
4086
4087The '``sub``' instruction returns the difference of its two operands.
4088
4089Note that the '``sub``' instruction is used to represent the '``neg``'
4090instruction present in most other intermediate representations.
4091
4092Arguments:
4093""""""""""
4094
4095The two arguments to the '``sub``' instruction must be
4096:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4097arguments must have identical types.
4098
4099Semantics:
4100""""""""""
4101
4102The value produced is the integer difference of the two operands.
4103
4104If the difference has unsigned overflow, the result returned is the
4105mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4106the result.
4107
4108Because LLVM integers use a two's complement representation, this
4109instruction is appropriate for both signed and unsigned integers.
4110
4111``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4112respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4113result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4114unsigned and/or signed overflow, respectively, occurs.
4115
4116Example:
4117""""""""
4118
4119.. code-block:: llvm
4120
Tim Northover675a0962014-06-13 14:24:23 +00004121 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
4122 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004123
4124.. _i_fsub:
4125
4126'``fsub``' Instruction
4127^^^^^^^^^^^^^^^^^^^^^^
4128
4129Syntax:
4130"""""""
4131
4132::
4133
Tim Northover675a0962014-06-13 14:24:23 +00004134 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004135
4136Overview:
4137"""""""""
4138
4139The '``fsub``' instruction returns the difference of its two operands.
4140
4141Note that the '``fsub``' instruction is used to represent the '``fneg``'
4142instruction present in most other intermediate representations.
4143
4144Arguments:
4145""""""""""
4146
4147The two arguments to the '``fsub``' instruction must be :ref:`floating
4148point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4149Both arguments must have identical types.
4150
4151Semantics:
4152""""""""""
4153
4154The value produced is the floating point difference of the two operands.
4155This instruction can also take any number of :ref:`fast-math
4156flags <fastmath>`, which are optimization hints to enable otherwise
4157unsafe floating point optimizations:
4158
4159Example:
4160""""""""
4161
4162.. code-block:: llvm
4163
Tim Northover675a0962014-06-13 14:24:23 +00004164 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4165 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004166
4167'``mul``' Instruction
4168^^^^^^^^^^^^^^^^^^^^^
4169
4170Syntax:
4171"""""""
4172
4173::
4174
Tim Northover675a0962014-06-13 14:24:23 +00004175 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4176 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4177 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4178 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004179
4180Overview:
4181"""""""""
4182
4183The '``mul``' instruction returns the product of its two operands.
4184
4185Arguments:
4186""""""""""
4187
4188The two arguments to the '``mul``' instruction must be
4189:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4190arguments must have identical types.
4191
4192Semantics:
4193""""""""""
4194
4195The value produced is the integer product of the two operands.
4196
4197If the result of the multiplication has unsigned overflow, the result
4198returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4199bit width of the result.
4200
4201Because LLVM integers use a two's complement representation, and the
4202result is the same width as the operands, this instruction returns the
4203correct result for both signed and unsigned integers. If a full product
4204(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4205sign-extended or zero-extended as appropriate to the width of the full
4206product.
4207
4208``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4209respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4210result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4211unsigned and/or signed overflow, respectively, occurs.
4212
4213Example:
4214""""""""
4215
4216.. code-block:: llvm
4217
Tim Northover675a0962014-06-13 14:24:23 +00004218 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004219
4220.. _i_fmul:
4221
4222'``fmul``' Instruction
4223^^^^^^^^^^^^^^^^^^^^^^
4224
4225Syntax:
4226"""""""
4227
4228::
4229
Tim Northover675a0962014-06-13 14:24:23 +00004230 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004231
4232Overview:
4233"""""""""
4234
4235The '``fmul``' instruction returns the product of its two operands.
4236
4237Arguments:
4238""""""""""
4239
4240The two arguments to the '``fmul``' instruction must be :ref:`floating
4241point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4242Both arguments must have identical types.
4243
4244Semantics:
4245""""""""""
4246
4247The value produced is the floating point product of the two operands.
4248This instruction can also take any number of :ref:`fast-math
4249flags <fastmath>`, which are optimization hints to enable otherwise
4250unsafe floating point optimizations:
4251
4252Example:
4253""""""""
4254
4255.. code-block:: llvm
4256
Tim Northover675a0962014-06-13 14:24:23 +00004257 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004258
4259'``udiv``' Instruction
4260^^^^^^^^^^^^^^^^^^^^^^
4261
4262Syntax:
4263"""""""
4264
4265::
4266
Tim Northover675a0962014-06-13 14:24:23 +00004267 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4268 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004269
4270Overview:
4271"""""""""
4272
4273The '``udiv``' instruction returns the quotient of its two operands.
4274
4275Arguments:
4276""""""""""
4277
4278The two arguments to the '``udiv``' instruction must be
4279:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4280arguments must have identical types.
4281
4282Semantics:
4283""""""""""
4284
4285The value produced is the unsigned integer quotient of the two operands.
4286
4287Note that unsigned integer division and signed integer division are
4288distinct operations; for signed integer division, use '``sdiv``'.
4289
4290Division by zero leads to undefined behavior.
4291
4292If the ``exact`` keyword is present, the result value of the ``udiv`` is
4293a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4294such, "((a udiv exact b) mul b) == a").
4295
4296Example:
4297""""""""
4298
4299.. code-block:: llvm
4300
Tim Northover675a0962014-06-13 14:24:23 +00004301 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004302
4303'``sdiv``' Instruction
4304^^^^^^^^^^^^^^^^^^^^^^
4305
4306Syntax:
4307"""""""
4308
4309::
4310
Tim Northover675a0962014-06-13 14:24:23 +00004311 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4312 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004313
4314Overview:
4315"""""""""
4316
4317The '``sdiv``' instruction returns the quotient of its two operands.
4318
4319Arguments:
4320""""""""""
4321
4322The two arguments to the '``sdiv``' instruction must be
4323:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4324arguments must have identical types.
4325
4326Semantics:
4327""""""""""
4328
4329The value produced is the signed integer quotient of the two operands
4330rounded towards zero.
4331
4332Note that signed integer division and unsigned integer division are
4333distinct operations; for unsigned integer division, use '``udiv``'.
4334
4335Division by zero leads to undefined behavior. Overflow also leads to
4336undefined behavior; this is a rare case, but can occur, for example, by
4337doing a 32-bit division of -2147483648 by -1.
4338
4339If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4340a :ref:`poison value <poisonvalues>` if the result would be rounded.
4341
4342Example:
4343""""""""
4344
4345.. code-block:: llvm
4346
Tim Northover675a0962014-06-13 14:24:23 +00004347 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004348
4349.. _i_fdiv:
4350
4351'``fdiv``' Instruction
4352^^^^^^^^^^^^^^^^^^^^^^
4353
4354Syntax:
4355"""""""
4356
4357::
4358
Tim Northover675a0962014-06-13 14:24:23 +00004359 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004360
4361Overview:
4362"""""""""
4363
4364The '``fdiv``' instruction returns the quotient of its two operands.
4365
4366Arguments:
4367""""""""""
4368
4369The two arguments to the '``fdiv``' instruction must be :ref:`floating
4370point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4371Both arguments must have identical types.
4372
4373Semantics:
4374""""""""""
4375
4376The value produced is the floating point quotient of the two operands.
4377This instruction can also take any number of :ref:`fast-math
4378flags <fastmath>`, which are optimization hints to enable otherwise
4379unsafe floating point optimizations:
4380
4381Example:
4382""""""""
4383
4384.. code-block:: llvm
4385
Tim Northover675a0962014-06-13 14:24:23 +00004386 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004387
4388'``urem``' Instruction
4389^^^^^^^^^^^^^^^^^^^^^^
4390
4391Syntax:
4392"""""""
4393
4394::
4395
Tim Northover675a0962014-06-13 14:24:23 +00004396 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004397
4398Overview:
4399"""""""""
4400
4401The '``urem``' instruction returns the remainder from the unsigned
4402division of its two arguments.
4403
4404Arguments:
4405""""""""""
4406
4407The two arguments to the '``urem``' instruction must be
4408:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4409arguments must have identical types.
4410
4411Semantics:
4412""""""""""
4413
4414This instruction returns the unsigned integer *remainder* of a division.
4415This instruction always performs an unsigned division to get the
4416remainder.
4417
4418Note that unsigned integer remainder and signed integer remainder are
4419distinct operations; for signed integer remainder, use '``srem``'.
4420
4421Taking the remainder of a division by zero leads to undefined behavior.
4422
4423Example:
4424""""""""
4425
4426.. code-block:: llvm
4427
Tim Northover675a0962014-06-13 14:24:23 +00004428 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004429
4430'``srem``' Instruction
4431^^^^^^^^^^^^^^^^^^^^^^
4432
4433Syntax:
4434"""""""
4435
4436::
4437
Tim Northover675a0962014-06-13 14:24:23 +00004438 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004439
4440Overview:
4441"""""""""
4442
4443The '``srem``' instruction returns the remainder from the signed
4444division of its two operands. This instruction can also take
4445:ref:`vector <t_vector>` versions of the values in which case the elements
4446must be integers.
4447
4448Arguments:
4449""""""""""
4450
4451The two arguments to the '``srem``' instruction must be
4452:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4453arguments must have identical types.
4454
4455Semantics:
4456""""""""""
4457
4458This instruction returns the *remainder* of a division (where the result
4459is either zero or has the same sign as the dividend, ``op1``), not the
4460*modulo* operator (where the result is either zero or has the same sign
4461as the divisor, ``op2``) of a value. For more information about the
4462difference, see `The Math
4463Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4464table of how this is implemented in various languages, please see
4465`Wikipedia: modulo
4466operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4467
4468Note that signed integer remainder and unsigned integer remainder are
4469distinct operations; for unsigned integer remainder, use '``urem``'.
4470
4471Taking the remainder of a division by zero leads to undefined behavior.
4472Overflow also leads to undefined behavior; this is a rare case, but can
4473occur, for example, by taking the remainder of a 32-bit division of
4474-2147483648 by -1. (The remainder doesn't actually overflow, but this
4475rule lets srem be implemented using instructions that return both the
4476result of the division and the remainder.)
4477
4478Example:
4479""""""""
4480
4481.. code-block:: llvm
4482
Tim Northover675a0962014-06-13 14:24:23 +00004483 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004484
4485.. _i_frem:
4486
4487'``frem``' Instruction
4488^^^^^^^^^^^^^^^^^^^^^^
4489
4490Syntax:
4491"""""""
4492
4493::
4494
Tim Northover675a0962014-06-13 14:24:23 +00004495 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004496
4497Overview:
4498"""""""""
4499
4500The '``frem``' instruction returns the remainder from the division of
4501its two operands.
4502
4503Arguments:
4504""""""""""
4505
4506The two arguments to the '``frem``' instruction must be :ref:`floating
4507point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4508Both arguments must have identical types.
4509
4510Semantics:
4511""""""""""
4512
4513This instruction returns the *remainder* of a division. The remainder
4514has the same sign as the dividend. This instruction can also take any
4515number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4516to enable otherwise unsafe floating point optimizations:
4517
4518Example:
4519""""""""
4520
4521.. code-block:: llvm
4522
Tim Northover675a0962014-06-13 14:24:23 +00004523 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004524
4525.. _bitwiseops:
4526
4527Bitwise Binary Operations
4528-------------------------
4529
4530Bitwise binary operators are used to do various forms of bit-twiddling
4531in a program. They are generally very efficient instructions and can
4532commonly be strength reduced from other instructions. They require two
4533operands of the same type, execute an operation on them, and produce a
4534single value. The resulting value is the same type as its operands.
4535
4536'``shl``' Instruction
4537^^^^^^^^^^^^^^^^^^^^^
4538
4539Syntax:
4540"""""""
4541
4542::
4543
Tim Northover675a0962014-06-13 14:24:23 +00004544 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4545 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4546 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4547 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004548
4549Overview:
4550"""""""""
4551
4552The '``shl``' instruction returns the first operand shifted to the left
4553a specified number of bits.
4554
4555Arguments:
4556""""""""""
4557
4558Both arguments to the '``shl``' instruction must be the same
4559:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4560'``op2``' is treated as an unsigned value.
4561
4562Semantics:
4563""""""""""
4564
4565The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4566where ``n`` is the width of the result. If ``op2`` is (statically or
4567dynamically) negative or equal to or larger than the number of bits in
4568``op1``, the result is undefined. If the arguments are vectors, each
4569vector element of ``op1`` is shifted by the corresponding shift amount
4570in ``op2``.
4571
4572If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4573value <poisonvalues>` if it shifts out any non-zero bits. If the
4574``nsw`` keyword is present, then the shift produces a :ref:`poison
4575value <poisonvalues>` if it shifts out any bits that disagree with the
4576resultant sign bit. As such, NUW/NSW have the same semantics as they
4577would if the shift were expressed as a mul instruction with the same
4578nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4579
4580Example:
4581""""""""
4582
4583.. code-block:: llvm
4584
Tim Northover675a0962014-06-13 14:24:23 +00004585 <result> = shl i32 4, %var ; yields i32: 4 << %var
4586 <result> = shl i32 4, 2 ; yields i32: 16
4587 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004588 <result> = shl i32 1, 32 ; undefined
4589 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4590
4591'``lshr``' Instruction
4592^^^^^^^^^^^^^^^^^^^^^^
4593
4594Syntax:
4595"""""""
4596
4597::
4598
Tim Northover675a0962014-06-13 14:24:23 +00004599 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4600 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004601
4602Overview:
4603"""""""""
4604
4605The '``lshr``' instruction (logical shift right) returns the first
4606operand shifted to the right a specified number of bits with zero fill.
4607
4608Arguments:
4609""""""""""
4610
4611Both arguments to the '``lshr``' instruction must be the same
4612:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4613'``op2``' is treated as an unsigned value.
4614
4615Semantics:
4616""""""""""
4617
4618This instruction always performs a logical shift right operation. The
4619most significant bits of the result will be filled with zero bits after
4620the shift. If ``op2`` is (statically or dynamically) equal to or larger
4621than the number of bits in ``op1``, the result is undefined. If the
4622arguments are vectors, each vector element of ``op1`` is shifted by the
4623corresponding shift amount in ``op2``.
4624
4625If the ``exact`` keyword is present, the result value of the ``lshr`` is
4626a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4627non-zero.
4628
4629Example:
4630""""""""
4631
4632.. code-block:: llvm
4633
Tim Northover675a0962014-06-13 14:24:23 +00004634 <result> = lshr i32 4, 1 ; yields i32:result = 2
4635 <result> = lshr i32 4, 2 ; yields i32:result = 1
4636 <result> = lshr i8 4, 3 ; yields i8:result = 0
4637 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004638 <result> = lshr i32 1, 32 ; undefined
4639 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4640
4641'``ashr``' Instruction
4642^^^^^^^^^^^^^^^^^^^^^^
4643
4644Syntax:
4645"""""""
4646
4647::
4648
Tim Northover675a0962014-06-13 14:24:23 +00004649 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
4650 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004651
4652Overview:
4653"""""""""
4654
4655The '``ashr``' instruction (arithmetic shift right) returns the first
4656operand shifted to the right a specified number of bits with sign
4657extension.
4658
4659Arguments:
4660""""""""""
4661
4662Both arguments to the '``ashr``' instruction must be the same
4663:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4664'``op2``' is treated as an unsigned value.
4665
4666Semantics:
4667""""""""""
4668
4669This instruction always performs an arithmetic shift right operation,
4670The most significant bits of the result will be filled with the sign bit
4671of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4672than the number of bits in ``op1``, the result is undefined. If the
4673arguments are vectors, each vector element of ``op1`` is shifted by the
4674corresponding shift amount in ``op2``.
4675
4676If the ``exact`` keyword is present, the result value of the ``ashr`` is
4677a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4678non-zero.
4679
4680Example:
4681""""""""
4682
4683.. code-block:: llvm
4684
Tim Northover675a0962014-06-13 14:24:23 +00004685 <result> = ashr i32 4, 1 ; yields i32:result = 2
4686 <result> = ashr i32 4, 2 ; yields i32:result = 1
4687 <result> = ashr i8 4, 3 ; yields i8:result = 0
4688 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00004689 <result> = ashr i32 1, 32 ; undefined
4690 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4691
4692'``and``' Instruction
4693^^^^^^^^^^^^^^^^^^^^^
4694
4695Syntax:
4696"""""""
4697
4698::
4699
Tim Northover675a0962014-06-13 14:24:23 +00004700 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004701
4702Overview:
4703"""""""""
4704
4705The '``and``' instruction returns the bitwise logical and of its two
4706operands.
4707
4708Arguments:
4709""""""""""
4710
4711The two arguments to the '``and``' instruction must be
4712:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4713arguments must have identical types.
4714
4715Semantics:
4716""""""""""
4717
4718The truth table used for the '``and``' instruction is:
4719
4720+-----+-----+-----+
4721| In0 | In1 | Out |
4722+-----+-----+-----+
4723| 0 | 0 | 0 |
4724+-----+-----+-----+
4725| 0 | 1 | 0 |
4726+-----+-----+-----+
4727| 1 | 0 | 0 |
4728+-----+-----+-----+
4729| 1 | 1 | 1 |
4730+-----+-----+-----+
4731
4732Example:
4733""""""""
4734
4735.. code-block:: llvm
4736
Tim Northover675a0962014-06-13 14:24:23 +00004737 <result> = and i32 4, %var ; yields i32:result = 4 & %var
4738 <result> = and i32 15, 40 ; yields i32:result = 8
4739 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00004740
4741'``or``' Instruction
4742^^^^^^^^^^^^^^^^^^^^
4743
4744Syntax:
4745"""""""
4746
4747::
4748
Tim Northover675a0962014-06-13 14:24:23 +00004749 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004750
4751Overview:
4752"""""""""
4753
4754The '``or``' instruction returns the bitwise logical inclusive or of its
4755two operands.
4756
4757Arguments:
4758""""""""""
4759
4760The two arguments to the '``or``' instruction must be
4761:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4762arguments must have identical types.
4763
4764Semantics:
4765""""""""""
4766
4767The truth table used for the '``or``' instruction is:
4768
4769+-----+-----+-----+
4770| In0 | In1 | Out |
4771+-----+-----+-----+
4772| 0 | 0 | 0 |
4773+-----+-----+-----+
4774| 0 | 1 | 1 |
4775+-----+-----+-----+
4776| 1 | 0 | 1 |
4777+-----+-----+-----+
4778| 1 | 1 | 1 |
4779+-----+-----+-----+
4780
4781Example:
4782""""""""
4783
4784::
4785
Tim Northover675a0962014-06-13 14:24:23 +00004786 <result> = or i32 4, %var ; yields i32:result = 4 | %var
4787 <result> = or i32 15, 40 ; yields i32:result = 47
4788 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00004789
4790'``xor``' Instruction
4791^^^^^^^^^^^^^^^^^^^^^
4792
4793Syntax:
4794"""""""
4795
4796::
4797
Tim Northover675a0962014-06-13 14:24:23 +00004798 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004799
4800Overview:
4801"""""""""
4802
4803The '``xor``' instruction returns the bitwise logical exclusive or of
4804its two operands. The ``xor`` is used to implement the "one's
4805complement" operation, which is the "~" operator in C.
4806
4807Arguments:
4808""""""""""
4809
4810The two arguments to the '``xor``' instruction must be
4811:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4812arguments must have identical types.
4813
4814Semantics:
4815""""""""""
4816
4817The truth table used for the '``xor``' instruction is:
4818
4819+-----+-----+-----+
4820| In0 | In1 | Out |
4821+-----+-----+-----+
4822| 0 | 0 | 0 |
4823+-----+-----+-----+
4824| 0 | 1 | 1 |
4825+-----+-----+-----+
4826| 1 | 0 | 1 |
4827+-----+-----+-----+
4828| 1 | 1 | 0 |
4829+-----+-----+-----+
4830
4831Example:
4832""""""""
4833
4834.. code-block:: llvm
4835
Tim Northover675a0962014-06-13 14:24:23 +00004836 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
4837 <result> = xor i32 15, 40 ; yields i32:result = 39
4838 <result> = xor i32 4, 8 ; yields i32:result = 12
4839 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00004840
4841Vector Operations
4842-----------------
4843
4844LLVM supports several instructions to represent vector operations in a
4845target-independent manner. These instructions cover the element-access
4846and vector-specific operations needed to process vectors effectively.
4847While LLVM does directly support these vector operations, many
4848sophisticated algorithms will want to use target-specific intrinsics to
4849take full advantage of a specific target.
4850
4851.. _i_extractelement:
4852
4853'``extractelement``' Instruction
4854^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4855
4856Syntax:
4857"""""""
4858
4859::
4860
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004861 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004862
4863Overview:
4864"""""""""
4865
4866The '``extractelement``' instruction extracts a single scalar element
4867from a vector at a specified index.
4868
4869Arguments:
4870""""""""""
4871
4872The first operand of an '``extractelement``' instruction is a value of
4873:ref:`vector <t_vector>` type. The second operand is an index indicating
4874the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004875variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004876
4877Semantics:
4878""""""""""
4879
4880The result is a scalar of the same type as the element type of ``val``.
4881Its value is the value at position ``idx`` of ``val``. If ``idx``
4882exceeds the length of ``val``, the results are undefined.
4883
4884Example:
4885""""""""
4886
4887.. code-block:: llvm
4888
4889 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4890
4891.. _i_insertelement:
4892
4893'``insertelement``' Instruction
4894^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4895
4896Syntax:
4897"""""""
4898
4899::
4900
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004901 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004902
4903Overview:
4904"""""""""
4905
4906The '``insertelement``' instruction inserts a scalar element into a
4907vector at a specified index.
4908
4909Arguments:
4910""""""""""
4911
4912The first operand of an '``insertelement``' instruction is a value of
4913:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4914type must equal the element type of the first operand. The third operand
4915is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004916index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004917
4918Semantics:
4919""""""""""
4920
4921The result is a vector of the same type as ``val``. Its element values
4922are those of ``val`` except at position ``idx``, where it gets the value
4923``elt``. If ``idx`` exceeds the length of ``val``, the results are
4924undefined.
4925
4926Example:
4927""""""""
4928
4929.. code-block:: llvm
4930
4931 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4932
4933.. _i_shufflevector:
4934
4935'``shufflevector``' Instruction
4936^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4937
4938Syntax:
4939"""""""
4940
4941::
4942
4943 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4944
4945Overview:
4946"""""""""
4947
4948The '``shufflevector``' instruction constructs a permutation of elements
4949from two input vectors, returning a vector with the same element type as
4950the input and length that is the same as the shuffle mask.
4951
4952Arguments:
4953""""""""""
4954
4955The first two operands of a '``shufflevector``' instruction are vectors
4956with the same type. The third argument is a shuffle mask whose element
4957type is always 'i32'. The result of the instruction is a vector whose
4958length is the same as the shuffle mask and whose element type is the
4959same as the element type of the first two operands.
4960
4961The shuffle mask operand is required to be a constant vector with either
4962constant integer or undef values.
4963
4964Semantics:
4965""""""""""
4966
4967The elements of the two input vectors are numbered from left to right
4968across both of the vectors. The shuffle mask operand specifies, for each
4969element of the result vector, which element of the two input vectors the
4970result element gets. The element selector may be undef (meaning "don't
4971care") and the second operand may be undef if performing a shuffle from
4972only one vector.
4973
4974Example:
4975""""""""
4976
4977.. code-block:: llvm
4978
4979 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4980 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4981 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4982 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4983 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4984 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4985 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4986 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4987
4988Aggregate Operations
4989--------------------
4990
4991LLVM supports several instructions for working with
4992:ref:`aggregate <t_aggregate>` values.
4993
4994.. _i_extractvalue:
4995
4996'``extractvalue``' Instruction
4997^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4998
4999Syntax:
5000"""""""
5001
5002::
5003
5004 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
5005
5006Overview:
5007"""""""""
5008
5009The '``extractvalue``' instruction extracts the value of a member field
5010from an :ref:`aggregate <t_aggregate>` value.
5011
5012Arguments:
5013""""""""""
5014
5015The first operand of an '``extractvalue``' instruction is a value of
5016:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
5017constant indices to specify which value to extract in a similar manner
5018as indices in a '``getelementptr``' instruction.
5019
5020The major differences to ``getelementptr`` indexing are:
5021
5022- Since the value being indexed is not a pointer, the first index is
5023 omitted and assumed to be zero.
5024- At least one index must be specified.
5025- Not only struct indices but also array indices must be in bounds.
5026
5027Semantics:
5028""""""""""
5029
5030The result is the value at the position in the aggregate specified by
5031the index operands.
5032
5033Example:
5034""""""""
5035
5036.. code-block:: llvm
5037
5038 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
5039
5040.. _i_insertvalue:
5041
5042'``insertvalue``' Instruction
5043^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5044
5045Syntax:
5046"""""""
5047
5048::
5049
5050 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
5051
5052Overview:
5053"""""""""
5054
5055The '``insertvalue``' instruction inserts a value into a member field in
5056an :ref:`aggregate <t_aggregate>` value.
5057
5058Arguments:
5059""""""""""
5060
5061The first operand of an '``insertvalue``' instruction is a value of
5062:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5063a first-class value to insert. The following operands are constant
5064indices indicating the position at which to insert the value in a
5065similar manner as indices in a '``extractvalue``' instruction. The value
5066to insert must have the same type as the value identified by the
5067indices.
5068
5069Semantics:
5070""""""""""
5071
5072The result is an aggregate of the same type as ``val``. Its value is
5073that of ``val`` except that the value at the position specified by the
5074indices is that of ``elt``.
5075
5076Example:
5077""""""""
5078
5079.. code-block:: llvm
5080
5081 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
5082 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00005083 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00005084
5085.. _memoryops:
5086
5087Memory Access and Addressing Operations
5088---------------------------------------
5089
5090A key design point of an SSA-based representation is how it represents
5091memory. In LLVM, no memory locations are in SSA form, which makes things
5092very simple. This section describes how to read, write, and allocate
5093memory in LLVM.
5094
5095.. _i_alloca:
5096
5097'``alloca``' Instruction
5098^^^^^^^^^^^^^^^^^^^^^^^^
5099
5100Syntax:
5101"""""""
5102
5103::
5104
Tim Northover675a0962014-06-13 14:24:23 +00005105 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00005106
5107Overview:
5108"""""""""
5109
5110The '``alloca``' instruction allocates memory on the stack frame of the
5111currently executing function, to be automatically released when this
5112function returns to its caller. The object is always allocated in the
5113generic address space (address space zero).
5114
5115Arguments:
5116""""""""""
5117
5118The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5119bytes of memory on the runtime stack, returning a pointer of the
5120appropriate type to the program. If "NumElements" is specified, it is
5121the number of elements allocated, otherwise "NumElements" is defaulted
5122to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005123allocation is guaranteed to be aligned to at least that boundary. The
5124alignment may not be greater than ``1 << 29``. If not specified, or if
5125zero, the target can choose to align the allocation on any convenient
5126boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00005127
5128'``type``' may be any sized type.
5129
5130Semantics:
5131""""""""""
5132
5133Memory is allocated; a pointer is returned. The operation is undefined
5134if there is insufficient stack space for the allocation. '``alloca``'d
5135memory is automatically released when the function returns. The
5136'``alloca``' instruction is commonly used to represent automatic
5137variables that must have an address available. When the function returns
5138(either with the ``ret`` or ``resume`` instructions), the memory is
5139reclaimed. Allocating zero bytes is legal, but the result is undefined.
5140The order in which memory is allocated (ie., which way the stack grows)
5141is not specified.
5142
5143Example:
5144""""""""
5145
5146.. code-block:: llvm
5147
Tim Northover675a0962014-06-13 14:24:23 +00005148 %ptr = alloca i32 ; yields i32*:ptr
5149 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5150 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5151 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005152
5153.. _i_load:
5154
5155'``load``' Instruction
5156^^^^^^^^^^^^^^^^^^^^^^
5157
5158Syntax:
5159"""""""
5160
5161::
5162
Philip Reamescdb72f32014-10-20 22:40:55 +00005163 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00005164 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5165 !<index> = !{ i32 1 }
5166
5167Overview:
5168"""""""""
5169
5170The '``load``' instruction is used to read from memory.
5171
5172Arguments:
5173""""""""""
5174
Eli Bendersky239a78b2013-04-17 20:17:08 +00005175The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00005176from which to load. The pointer must point to a :ref:`first
5177class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5178then the optimizer is not allowed to modify the number or order of
5179execution of this ``load`` with other :ref:`volatile
5180operations <volatile>`.
5181
5182If the ``load`` is marked as ``atomic``, it takes an extra
5183:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5184``release`` and ``acq_rel`` orderings are not valid on ``load``
5185instructions. Atomic loads produce :ref:`defined <memmodel>` results
5186when they may see multiple atomic stores. The type of the pointee must
5187be an integer type whose bit width is a power of two greater than or
5188equal to eight and less than or equal to a target-specific size limit.
5189``align`` must be explicitly specified on atomic loads, and the load has
5190undefined behavior if the alignment is not set to a value which is at
5191least the size in bytes of the pointee. ``!nontemporal`` does not have
5192any defined semantics for atomic loads.
5193
5194The optional constant ``align`` argument specifies the alignment of the
5195operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005196or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005197alignment for the target. It is the responsibility of the code emitter
5198to ensure that the alignment information is correct. Overestimating the
5199alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005200may produce less efficient code. An alignment of 1 is always safe. The
5201maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005202
5203The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005204metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005205``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005206metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005207that this load is not expected to be reused in the cache. The code
5208generator may select special instructions to save cache bandwidth, such
5209as the ``MOVNT`` instruction on x86.
5210
5211The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005212metadata name ``<index>`` corresponding to a metadata node with no
5213entries. The existence of the ``!invariant.load`` metadata on the
Sean Silvab084af42012-12-07 10:36:55 +00005214instruction tells the optimizer and code generator that this load
5215address points to memory which does not change value during program
5216execution. The optimizer may then move this load around, for example, by
5217hoisting it out of loops using loop invariant code motion.
5218
Philip Reamescdb72f32014-10-20 22:40:55 +00005219The optional ``!nonnull`` metadata must reference a single
5220metadata name ``<index>`` corresponding to a metadata node with no
5221entries. The existence of the ``!nonnull`` metadata on the
5222instruction tells the optimizer that the value loaded is known to
5223never be null. This is analogous to the ''nonnull'' attribute
5224on parameters and return values. This metadata can only be applied
5225to loads of a pointer type.
5226
Sean Silvab084af42012-12-07 10:36:55 +00005227Semantics:
5228""""""""""
5229
5230The location of memory pointed to is loaded. If the value being loaded
5231is of scalar type then the number of bytes read does not exceed the
5232minimum number of bytes needed to hold all bits of the type. For
5233example, loading an ``i24`` reads at most three bytes. When loading a
5234value of a type like ``i20`` with a size that is not an integral number
5235of bytes, the result is undefined if the value was not originally
5236written using a store of the same type.
5237
5238Examples:
5239"""""""""
5240
5241.. code-block:: llvm
5242
Tim Northover675a0962014-06-13 14:24:23 +00005243 %ptr = alloca i32 ; yields i32*:ptr
5244 store i32 3, i32* %ptr ; yields void
5245 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005246
5247.. _i_store:
5248
5249'``store``' Instruction
5250^^^^^^^^^^^^^^^^^^^^^^^
5251
5252Syntax:
5253"""""""
5254
5255::
5256
Tim Northover675a0962014-06-13 14:24:23 +00005257 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5258 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005259
5260Overview:
5261"""""""""
5262
5263The '``store``' instruction is used to write to memory.
5264
5265Arguments:
5266""""""""""
5267
Eli Benderskyca380842013-04-17 17:17:20 +00005268There are two arguments to the ``store`` instruction: a value to store
5269and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005270operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005271the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005272then the optimizer is not allowed to modify the number or order of
5273execution of this ``store`` with other :ref:`volatile
5274operations <volatile>`.
5275
5276If the ``store`` is marked as ``atomic``, it takes an extra
5277:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5278``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5279instructions. Atomic loads produce :ref:`defined <memmodel>` results
5280when they may see multiple atomic stores. The type of the pointee must
5281be an integer type whose bit width is a power of two greater than or
5282equal to eight and less than or equal to a target-specific size limit.
5283``align`` must be explicitly specified on atomic stores, and the store
5284has undefined behavior if the alignment is not set to a value which is
5285at least the size in bytes of the pointee. ``!nontemporal`` does not
5286have any defined semantics for atomic stores.
5287
Eli Benderskyca380842013-04-17 17:17:20 +00005288The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005289operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005290or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005291alignment for the target. It is the responsibility of the code emitter
5292to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005293alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005294alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005295safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005296
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005297The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005298name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005299value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005300tells the optimizer and code generator that this load is not expected to
5301be reused in the cache. The code generator may select special
5302instructions to save cache bandwidth, such as the MOVNT instruction on
5303x86.
5304
5305Semantics:
5306""""""""""
5307
Eli Benderskyca380842013-04-17 17:17:20 +00005308The contents of memory are updated to contain ``<value>`` at the
5309location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005310of scalar type then the number of bytes written does not exceed the
5311minimum number of bytes needed to hold all bits of the type. For
5312example, storing an ``i24`` writes at most three bytes. When writing a
5313value of a type like ``i20`` with a size that is not an integral number
5314of bytes, it is unspecified what happens to the extra bits that do not
5315belong to the type, but they will typically be overwritten.
5316
5317Example:
5318""""""""
5319
5320.. code-block:: llvm
5321
Tim Northover675a0962014-06-13 14:24:23 +00005322 %ptr = alloca i32 ; yields i32*:ptr
5323 store i32 3, i32* %ptr ; yields void
5324 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005325
5326.. _i_fence:
5327
5328'``fence``' Instruction
5329^^^^^^^^^^^^^^^^^^^^^^^
5330
5331Syntax:
5332"""""""
5333
5334::
5335
Tim Northover675a0962014-06-13 14:24:23 +00005336 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005337
5338Overview:
5339"""""""""
5340
5341The '``fence``' instruction is used to introduce happens-before edges
5342between operations.
5343
5344Arguments:
5345""""""""""
5346
5347'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5348defines what *synchronizes-with* edges they add. They can only be given
5349``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5350
5351Semantics:
5352""""""""""
5353
5354A fence A which has (at least) ``release`` ordering semantics
5355*synchronizes with* a fence B with (at least) ``acquire`` ordering
5356semantics if and only if there exist atomic operations X and Y, both
5357operating on some atomic object M, such that A is sequenced before X, X
5358modifies M (either directly or through some side effect of a sequence
5359headed by X), Y is sequenced before B, and Y observes M. This provides a
5360*happens-before* dependency between A and B. Rather than an explicit
5361``fence``, one (but not both) of the atomic operations X or Y might
5362provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5363still *synchronize-with* the explicit ``fence`` and establish the
5364*happens-before* edge.
5365
5366A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5367``acquire`` and ``release`` semantics specified above, participates in
5368the global program order of other ``seq_cst`` operations and/or fences.
5369
5370The optional ":ref:`singlethread <singlethread>`" argument specifies
5371that the fence only synchronizes with other fences in the same thread.
5372(This is useful for interacting with signal handlers.)
5373
5374Example:
5375""""""""
5376
5377.. code-block:: llvm
5378
Tim Northover675a0962014-06-13 14:24:23 +00005379 fence acquire ; yields void
5380 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005381
5382.. _i_cmpxchg:
5383
5384'``cmpxchg``' Instruction
5385^^^^^^^^^^^^^^^^^^^^^^^^^
5386
5387Syntax:
5388"""""""
5389
5390::
5391
Tim Northover675a0962014-06-13 14:24:23 +00005392 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005393
5394Overview:
5395"""""""""
5396
5397The '``cmpxchg``' instruction is used to atomically modify memory. It
5398loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005399equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005400
5401Arguments:
5402""""""""""
5403
5404There are three arguments to the '``cmpxchg``' instruction: an address
5405to operate on, a value to compare to the value currently be at that
5406address, and a new value to place at that address if the compared values
5407are equal. The type of '<cmp>' must be an integer type whose bit width
5408is a power of two greater than or equal to eight and less than or equal
5409to a target-specific size limit. '<cmp>' and '<new>' must have the same
5410type, and the type of '<pointer>' must be a pointer to that type. If the
5411``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5412to modify the number or order of execution of this ``cmpxchg`` with
5413other :ref:`volatile operations <volatile>`.
5414
Tim Northovere94a5182014-03-11 10:48:52 +00005415The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005416``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5417must be at least ``monotonic``, the ordering constraint on failure must be no
5418stronger than that on success, and the failure ordering cannot be either
5419``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005420
5421The optional "``singlethread``" argument declares that the ``cmpxchg``
5422is only atomic with respect to code (usually signal handlers) running in
5423the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5424respect to all other code in the system.
5425
5426The pointer passed into cmpxchg must have alignment greater than or
5427equal to the size in memory of the operand.
5428
5429Semantics:
5430""""""""""
5431
Tim Northover420a2162014-06-13 14:24:07 +00005432The contents of memory at the location specified by the '``<pointer>``' operand
5433is read and compared to '``<cmp>``'; if the read value is the equal, the
5434'``<new>``' is written. The original value at the location is returned, together
5435with a flag indicating success (true) or failure (false).
5436
5437If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5438permitted: the operation may not write ``<new>`` even if the comparison
5439matched.
5440
5441If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5442if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005443
Tim Northovere94a5182014-03-11 10:48:52 +00005444A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5445identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5446load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005447
5448Example:
5449""""""""
5450
5451.. code-block:: llvm
5452
5453 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005454 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005455 br label %loop
5456
5457 loop:
5458 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5459 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005460 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005461 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5462 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005463 br i1 %success, label %done, label %loop
5464
5465 done:
5466 ...
5467
5468.. _i_atomicrmw:
5469
5470'``atomicrmw``' Instruction
5471^^^^^^^^^^^^^^^^^^^^^^^^^^^
5472
5473Syntax:
5474"""""""
5475
5476::
5477
Tim Northover675a0962014-06-13 14:24:23 +00005478 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005479
5480Overview:
5481"""""""""
5482
5483The '``atomicrmw``' instruction is used to atomically modify memory.
5484
5485Arguments:
5486""""""""""
5487
5488There are three arguments to the '``atomicrmw``' instruction: an
5489operation to apply, an address whose value to modify, an argument to the
5490operation. The operation must be one of the following keywords:
5491
5492- xchg
5493- add
5494- sub
5495- and
5496- nand
5497- or
5498- xor
5499- max
5500- min
5501- umax
5502- umin
5503
5504The type of '<value>' must be an integer type whose bit width is a power
5505of two greater than or equal to eight and less than or equal to a
5506target-specific size limit. The type of the '``<pointer>``' operand must
5507be a pointer to that type. If the ``atomicrmw`` is marked as
5508``volatile``, then the optimizer is not allowed to modify the number or
5509order of execution of this ``atomicrmw`` with other :ref:`volatile
5510operations <volatile>`.
5511
5512Semantics:
5513""""""""""
5514
5515The contents of memory at the location specified by the '``<pointer>``'
5516operand are atomically read, modified, and written back. The original
5517value at the location is returned. The modification is specified by the
5518operation argument:
5519
5520- xchg: ``*ptr = val``
5521- add: ``*ptr = *ptr + val``
5522- sub: ``*ptr = *ptr - val``
5523- and: ``*ptr = *ptr & val``
5524- nand: ``*ptr = ~(*ptr & val)``
5525- or: ``*ptr = *ptr | val``
5526- xor: ``*ptr = *ptr ^ val``
5527- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5528- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5529- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5530 comparison)
5531- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5532 comparison)
5533
5534Example:
5535""""""""
5536
5537.. code-block:: llvm
5538
Tim Northover675a0962014-06-13 14:24:23 +00005539 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005540
5541.. _i_getelementptr:
5542
5543'``getelementptr``' Instruction
5544^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5545
5546Syntax:
5547"""""""
5548
5549::
5550
5551 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5552 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5553 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5554
5555Overview:
5556"""""""""
5557
5558The '``getelementptr``' instruction is used to get the address of a
5559subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5560address calculation only and does not access memory.
5561
5562Arguments:
5563""""""""""
5564
5565The first argument is always a pointer or a vector of pointers, and
5566forms the basis of the calculation. The remaining arguments are indices
5567that indicate which of the elements of the aggregate object are indexed.
5568The interpretation of each index is dependent on the type being indexed
5569into. The first index always indexes the pointer value given as the
5570first argument, the second index indexes a value of the type pointed to
5571(not necessarily the value directly pointed to, since the first index
5572can be non-zero), etc. The first type indexed into must be a pointer
5573value, subsequent types can be arrays, vectors, and structs. Note that
5574subsequent types being indexed into can never be pointers, since that
5575would require loading the pointer before continuing calculation.
5576
5577The type of each index argument depends on the type it is indexing into.
5578When indexing into a (optionally packed) structure, only ``i32`` integer
5579**constants** are allowed (when using a vector of indices they must all
5580be the **same** ``i32`` integer constant). When indexing into an array,
5581pointer or vector, integers of any width are allowed, and they are not
5582required to be constant. These integers are treated as signed values
5583where relevant.
5584
5585For example, let's consider a C code fragment and how it gets compiled
5586to LLVM:
5587
5588.. code-block:: c
5589
5590 struct RT {
5591 char A;
5592 int B[10][20];
5593 char C;
5594 };
5595 struct ST {
5596 int X;
5597 double Y;
5598 struct RT Z;
5599 };
5600
5601 int *foo(struct ST *s) {
5602 return &s[1].Z.B[5][13];
5603 }
5604
5605The LLVM code generated by Clang is:
5606
5607.. code-block:: llvm
5608
5609 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5610 %struct.ST = type { i32, double, %struct.RT }
5611
5612 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5613 entry:
5614 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5615 ret i32* %arrayidx
5616 }
5617
5618Semantics:
5619""""""""""
5620
5621In the example above, the first index is indexing into the
5622'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5623= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5624indexes into the third element of the structure, yielding a
5625'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5626structure. The third index indexes into the second element of the
5627structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5628dimensions of the array are subscripted into, yielding an '``i32``'
5629type. The '``getelementptr``' instruction returns a pointer to this
5630element, thus computing a value of '``i32*``' type.
5631
5632Note that it is perfectly legal to index partially through a structure,
5633returning a pointer to an inner element. Because of this, the LLVM code
5634for the given testcase is equivalent to:
5635
5636.. code-block:: llvm
5637
5638 define i32* @foo(%struct.ST* %s) {
5639 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5640 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5641 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5642 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5643 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5644 ret i32* %t5
5645 }
5646
5647If the ``inbounds`` keyword is present, the result value of the
5648``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5649pointer is not an *in bounds* address of an allocated object, or if any
5650of the addresses that would be formed by successive addition of the
5651offsets implied by the indices to the base address with infinitely
5652precise signed arithmetic are not an *in bounds* address of that
5653allocated object. The *in bounds* addresses for an allocated object are
5654all the addresses that point into the object, plus the address one byte
5655past the end. In cases where the base is a vector of pointers the
5656``inbounds`` keyword applies to each of the computations element-wise.
5657
5658If the ``inbounds`` keyword is not present, the offsets are added to the
5659base address with silently-wrapping two's complement arithmetic. If the
5660offsets have a different width from the pointer, they are sign-extended
5661or truncated to the width of the pointer. The result value of the
5662``getelementptr`` may be outside the object pointed to by the base
5663pointer. The result value may not necessarily be used to access memory
5664though, even if it happens to point into allocated storage. See the
5665:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5666information.
5667
5668The getelementptr instruction is often confusing. For some more insight
5669into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5670
5671Example:
5672""""""""
5673
5674.. code-block:: llvm
5675
5676 ; yields [12 x i8]*:aptr
5677 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5678 ; yields i8*:vptr
5679 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5680 ; yields i8*:eptr
5681 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5682 ; yields i32*:iptr
5683 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5684
5685In cases where the pointer argument is a vector of pointers, each index
5686must be a vector with the same number of elements. For example:
5687
5688.. code-block:: llvm
5689
5690 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5691
5692Conversion Operations
5693---------------------
5694
5695The instructions in this category are the conversion instructions
5696(casting) which all take a single operand and a type. They perform
5697various bit conversions on the operand.
5698
5699'``trunc .. to``' Instruction
5700^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5701
5702Syntax:
5703"""""""
5704
5705::
5706
5707 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5708
5709Overview:
5710"""""""""
5711
5712The '``trunc``' instruction truncates its operand to the type ``ty2``.
5713
5714Arguments:
5715""""""""""
5716
5717The '``trunc``' instruction takes a value to trunc, and a type to trunc
5718it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5719of the same number of integers. The bit size of the ``value`` must be
5720larger than the bit size of the destination type, ``ty2``. Equal sized
5721types are not allowed.
5722
5723Semantics:
5724""""""""""
5725
5726The '``trunc``' instruction truncates the high order bits in ``value``
5727and converts the remaining bits to ``ty2``. Since the source size must
5728be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5729It will always truncate bits.
5730
5731Example:
5732""""""""
5733
5734.. code-block:: llvm
5735
5736 %X = trunc i32 257 to i8 ; yields i8:1
5737 %Y = trunc i32 123 to i1 ; yields i1:true
5738 %Z = trunc i32 122 to i1 ; yields i1:false
5739 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5740
5741'``zext .. to``' Instruction
5742^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5743
5744Syntax:
5745"""""""
5746
5747::
5748
5749 <result> = zext <ty> <value> to <ty2> ; yields ty2
5750
5751Overview:
5752"""""""""
5753
5754The '``zext``' instruction zero extends its operand to type ``ty2``.
5755
5756Arguments:
5757""""""""""
5758
5759The '``zext``' instruction takes a value to cast, and a type to cast it
5760to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5761the same number of integers. The bit size of the ``value`` must be
5762smaller than the bit size of the destination type, ``ty2``.
5763
5764Semantics:
5765""""""""""
5766
5767The ``zext`` fills the high order bits of the ``value`` with zero bits
5768until it reaches the size of the destination type, ``ty2``.
5769
5770When zero extending from i1, the result will always be either 0 or 1.
5771
5772Example:
5773""""""""
5774
5775.. code-block:: llvm
5776
5777 %X = zext i32 257 to i64 ; yields i64:257
5778 %Y = zext i1 true to i32 ; yields i32:1
5779 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5780
5781'``sext .. to``' Instruction
5782^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5783
5784Syntax:
5785"""""""
5786
5787::
5788
5789 <result> = sext <ty> <value> to <ty2> ; yields ty2
5790
5791Overview:
5792"""""""""
5793
5794The '``sext``' sign extends ``value`` to the type ``ty2``.
5795
5796Arguments:
5797""""""""""
5798
5799The '``sext``' instruction takes a value to cast, and a type to cast it
5800to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5801the same number of integers. The bit size of the ``value`` must be
5802smaller than the bit size of the destination type, ``ty2``.
5803
5804Semantics:
5805""""""""""
5806
5807The '``sext``' instruction performs a sign extension by copying the sign
5808bit (highest order bit) of the ``value`` until it reaches the bit size
5809of the type ``ty2``.
5810
5811When sign extending from i1, the extension always results in -1 or 0.
5812
5813Example:
5814""""""""
5815
5816.. code-block:: llvm
5817
5818 %X = sext i8 -1 to i16 ; yields i16 :65535
5819 %Y = sext i1 true to i32 ; yields i32:-1
5820 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5821
5822'``fptrunc .. to``' Instruction
5823^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5824
5825Syntax:
5826"""""""
5827
5828::
5829
5830 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5831
5832Overview:
5833"""""""""
5834
5835The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5836
5837Arguments:
5838""""""""""
5839
5840The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5841value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5842The size of ``value`` must be larger than the size of ``ty2``. This
5843implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5844
5845Semantics:
5846""""""""""
5847
5848The '``fptrunc``' instruction truncates a ``value`` from a larger
5849:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5850point <t_floating>` type. If the value cannot fit within the
5851destination type, ``ty2``, then the results are undefined.
5852
5853Example:
5854""""""""
5855
5856.. code-block:: llvm
5857
5858 %X = fptrunc double 123.0 to float ; yields float:123.0
5859 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5860
5861'``fpext .. to``' Instruction
5862^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5863
5864Syntax:
5865"""""""
5866
5867::
5868
5869 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5870
5871Overview:
5872"""""""""
5873
5874The '``fpext``' extends a floating point ``value`` to a larger floating
5875point value.
5876
5877Arguments:
5878""""""""""
5879
5880The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5881``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5882to. The source type must be smaller than the destination type.
5883
5884Semantics:
5885""""""""""
5886
5887The '``fpext``' instruction extends the ``value`` from a smaller
5888:ref:`floating point <t_floating>` type to a larger :ref:`floating
5889point <t_floating>` type. The ``fpext`` cannot be used to make a
5890*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5891*no-op cast* for a floating point cast.
5892
5893Example:
5894""""""""
5895
5896.. code-block:: llvm
5897
5898 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5899 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5900
5901'``fptoui .. to``' Instruction
5902^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5903
5904Syntax:
5905"""""""
5906
5907::
5908
5909 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5910
5911Overview:
5912"""""""""
5913
5914The '``fptoui``' converts a floating point ``value`` to its unsigned
5915integer equivalent of type ``ty2``.
5916
5917Arguments:
5918""""""""""
5919
5920The '``fptoui``' instruction takes a value to cast, which must be a
5921scalar or vector :ref:`floating point <t_floating>` value, and a type to
5922cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5923``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5924type with the same number of elements as ``ty``
5925
5926Semantics:
5927""""""""""
5928
5929The '``fptoui``' instruction converts its :ref:`floating
5930point <t_floating>` operand into the nearest (rounding towards zero)
5931unsigned integer value. If the value cannot fit in ``ty2``, the results
5932are undefined.
5933
5934Example:
5935""""""""
5936
5937.. code-block:: llvm
5938
5939 %X = fptoui double 123.0 to i32 ; yields i32:123
5940 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5941 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5942
5943'``fptosi .. to``' Instruction
5944^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5945
5946Syntax:
5947"""""""
5948
5949::
5950
5951 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5952
5953Overview:
5954"""""""""
5955
5956The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5957``value`` to type ``ty2``.
5958
5959Arguments:
5960""""""""""
5961
5962The '``fptosi``' instruction takes a value to cast, which must be a
5963scalar or vector :ref:`floating point <t_floating>` value, and a type to
5964cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5965``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5966type with the same number of elements as ``ty``
5967
5968Semantics:
5969""""""""""
5970
5971The '``fptosi``' instruction converts its :ref:`floating
5972point <t_floating>` operand into the nearest (rounding towards zero)
5973signed integer value. If the value cannot fit in ``ty2``, the results
5974are undefined.
5975
5976Example:
5977""""""""
5978
5979.. code-block:: llvm
5980
5981 %X = fptosi double -123.0 to i32 ; yields i32:-123
5982 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5983 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5984
5985'``uitofp .. to``' Instruction
5986^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5987
5988Syntax:
5989"""""""
5990
5991::
5992
5993 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5994
5995Overview:
5996"""""""""
5997
5998The '``uitofp``' instruction regards ``value`` as an unsigned integer
5999and converts that value to the ``ty2`` type.
6000
6001Arguments:
6002""""""""""
6003
6004The '``uitofp``' instruction takes a value to cast, which must be a
6005scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6006``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6007``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6008type with the same number of elements as ``ty``
6009
6010Semantics:
6011""""""""""
6012
6013The '``uitofp``' instruction interprets its operand as an unsigned
6014integer quantity and converts it to the corresponding floating point
6015value. If the value cannot fit in the floating point value, the results
6016are undefined.
6017
6018Example:
6019""""""""
6020
6021.. code-block:: llvm
6022
6023 %X = uitofp i32 257 to float ; yields float:257.0
6024 %Y = uitofp i8 -1 to double ; yields double:255.0
6025
6026'``sitofp .. to``' Instruction
6027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6028
6029Syntax:
6030"""""""
6031
6032::
6033
6034 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
6035
6036Overview:
6037"""""""""
6038
6039The '``sitofp``' instruction regards ``value`` as a signed integer and
6040converts that value to the ``ty2`` type.
6041
6042Arguments:
6043""""""""""
6044
6045The '``sitofp``' instruction takes a value to cast, which must be a
6046scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6047``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6048``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6049type with the same number of elements as ``ty``
6050
6051Semantics:
6052""""""""""
6053
6054The '``sitofp``' instruction interprets its operand as a signed integer
6055quantity and converts it to the corresponding floating point value. If
6056the value cannot fit in the floating point value, the results are
6057undefined.
6058
6059Example:
6060""""""""
6061
6062.. code-block:: llvm
6063
6064 %X = sitofp i32 257 to float ; yields float:257.0
6065 %Y = sitofp i8 -1 to double ; yields double:-1.0
6066
6067.. _i_ptrtoint:
6068
6069'``ptrtoint .. to``' Instruction
6070^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6071
6072Syntax:
6073"""""""
6074
6075::
6076
6077 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
6078
6079Overview:
6080"""""""""
6081
6082The '``ptrtoint``' instruction converts the pointer or a vector of
6083pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6084
6085Arguments:
6086""""""""""
6087
6088The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
6089a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
6090type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6091a vector of integers type.
6092
6093Semantics:
6094""""""""""
6095
6096The '``ptrtoint``' instruction converts ``value`` to integer type
6097``ty2`` by interpreting the pointer value as an integer and either
6098truncating or zero extending that value to the size of the integer type.
6099If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6100``value`` is larger than ``ty2`` then a truncation is done. If they are
6101the same size, then nothing is done (*no-op cast*) other than a type
6102change.
6103
6104Example:
6105""""""""
6106
6107.. code-block:: llvm
6108
6109 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
6110 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
6111 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6112
6113.. _i_inttoptr:
6114
6115'``inttoptr .. to``' Instruction
6116^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6117
6118Syntax:
6119"""""""
6120
6121::
6122
6123 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
6124
6125Overview:
6126"""""""""
6127
6128The '``inttoptr``' instruction converts an integer ``value`` to a
6129pointer type, ``ty2``.
6130
6131Arguments:
6132""""""""""
6133
6134The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6135cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6136type.
6137
6138Semantics:
6139""""""""""
6140
6141The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6142applying either a zero extension or a truncation depending on the size
6143of the integer ``value``. If ``value`` is larger than the size of a
6144pointer then a truncation is done. If ``value`` is smaller than the size
6145of a pointer then a zero extension is done. If they are the same size,
6146nothing is done (*no-op cast*).
6147
6148Example:
6149""""""""
6150
6151.. code-block:: llvm
6152
6153 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6154 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6155 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6156 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6157
6158.. _i_bitcast:
6159
6160'``bitcast .. to``' Instruction
6161^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6162
6163Syntax:
6164"""""""
6165
6166::
6167
6168 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6169
6170Overview:
6171"""""""""
6172
6173The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6174changing any bits.
6175
6176Arguments:
6177""""""""""
6178
6179The '``bitcast``' instruction takes a value to cast, which must be a
6180non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006181also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6182bit sizes of ``value`` and the destination type, ``ty2``, must be
6183identical. If the source type is a pointer, the destination type must
6184also be a pointer of the same size. This instruction supports bitwise
6185conversion of vectors to integers and to vectors of other types (as
6186long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006187
6188Semantics:
6189""""""""""
6190
Matt Arsenault24b49c42013-07-31 17:49:08 +00006191The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6192is always a *no-op cast* because no bits change with this
6193conversion. The conversion is done as if the ``value`` had been stored
6194to memory and read back as type ``ty2``. Pointer (or vector of
6195pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006196pointers) types with the same address space through this instruction.
6197To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6198or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006199
6200Example:
6201""""""""
6202
6203.. code-block:: llvm
6204
6205 %X = bitcast i8 255 to i8 ; yields i8 :-1
6206 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6207 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6208 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6209
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006210.. _i_addrspacecast:
6211
6212'``addrspacecast .. to``' Instruction
6213^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6214
6215Syntax:
6216"""""""
6217
6218::
6219
6220 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6221
6222Overview:
6223"""""""""
6224
6225The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6226address space ``n`` to type ``pty2`` in address space ``m``.
6227
6228Arguments:
6229""""""""""
6230
6231The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6232to cast and a pointer type to cast it to, which must have a different
6233address space.
6234
6235Semantics:
6236""""""""""
6237
6238The '``addrspacecast``' instruction converts the pointer value
6239``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006240value modification, depending on the target and the address space
6241pair. Pointer conversions within the same address space must be
6242performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006243conversion is legal then both result and operand refer to the same memory
6244location.
6245
6246Example:
6247""""""""
6248
6249.. code-block:: llvm
6250
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006251 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6252 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6253 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006254
Sean Silvab084af42012-12-07 10:36:55 +00006255.. _otherops:
6256
6257Other Operations
6258----------------
6259
6260The instructions in this category are the "miscellaneous" instructions,
6261which defy better classification.
6262
6263.. _i_icmp:
6264
6265'``icmp``' Instruction
6266^^^^^^^^^^^^^^^^^^^^^^
6267
6268Syntax:
6269"""""""
6270
6271::
6272
Tim Northover675a0962014-06-13 14:24:23 +00006273 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006274
6275Overview:
6276"""""""""
6277
6278The '``icmp``' instruction returns a boolean value or a vector of
6279boolean values based on comparison of its two integer, integer vector,
6280pointer, or pointer vector operands.
6281
6282Arguments:
6283""""""""""
6284
6285The '``icmp``' instruction takes three operands. The first operand is
6286the condition code indicating the kind of comparison to perform. It is
6287not a value, just a keyword. The possible condition code are:
6288
6289#. ``eq``: equal
6290#. ``ne``: not equal
6291#. ``ugt``: unsigned greater than
6292#. ``uge``: unsigned greater or equal
6293#. ``ult``: unsigned less than
6294#. ``ule``: unsigned less or equal
6295#. ``sgt``: signed greater than
6296#. ``sge``: signed greater or equal
6297#. ``slt``: signed less than
6298#. ``sle``: signed less or equal
6299
6300The remaining two arguments must be :ref:`integer <t_integer>` or
6301:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6302must also be identical types.
6303
6304Semantics:
6305""""""""""
6306
6307The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6308code given as ``cond``. The comparison performed always yields either an
6309:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6310
6311#. ``eq``: yields ``true`` if the operands are equal, ``false``
6312 otherwise. No sign interpretation is necessary or performed.
6313#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6314 otherwise. No sign interpretation is necessary or performed.
6315#. ``ugt``: interprets the operands as unsigned values and yields
6316 ``true`` if ``op1`` is greater than ``op2``.
6317#. ``uge``: interprets the operands as unsigned values and yields
6318 ``true`` if ``op1`` is greater than or equal to ``op2``.
6319#. ``ult``: interprets the operands as unsigned values and yields
6320 ``true`` if ``op1`` is less than ``op2``.
6321#. ``ule``: interprets the operands as unsigned values and yields
6322 ``true`` if ``op1`` is less than or equal to ``op2``.
6323#. ``sgt``: interprets the operands as signed values and yields ``true``
6324 if ``op1`` is greater than ``op2``.
6325#. ``sge``: interprets the operands as signed values and yields ``true``
6326 if ``op1`` is greater than or equal to ``op2``.
6327#. ``slt``: interprets the operands as signed values and yields ``true``
6328 if ``op1`` is less than ``op2``.
6329#. ``sle``: interprets the operands as signed values and yields ``true``
6330 if ``op1`` is less than or equal to ``op2``.
6331
6332If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6333are compared as if they were integers.
6334
6335If the operands are integer vectors, then they are compared element by
6336element. The result is an ``i1`` vector with the same number of elements
6337as the values being compared. Otherwise, the result is an ``i1``.
6338
6339Example:
6340""""""""
6341
6342.. code-block:: llvm
6343
6344 <result> = icmp eq i32 4, 5 ; yields: result=false
6345 <result> = icmp ne float* %X, %X ; yields: result=false
6346 <result> = icmp ult i16 4, 5 ; yields: result=true
6347 <result> = icmp sgt i16 4, 5 ; yields: result=false
6348 <result> = icmp ule i16 -4, 5 ; yields: result=false
6349 <result> = icmp sge i16 4, 5 ; yields: result=false
6350
6351Note that the code generator does not yet support vector types with the
6352``icmp`` instruction.
6353
6354.. _i_fcmp:
6355
6356'``fcmp``' Instruction
6357^^^^^^^^^^^^^^^^^^^^^^
6358
6359Syntax:
6360"""""""
6361
6362::
6363
Tim Northover675a0962014-06-13 14:24:23 +00006364 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006365
6366Overview:
6367"""""""""
6368
6369The '``fcmp``' instruction returns a boolean value or vector of boolean
6370values based on comparison of its operands.
6371
6372If the operands are floating point scalars, then the result type is a
6373boolean (:ref:`i1 <t_integer>`).
6374
6375If the operands are floating point vectors, then the result type is a
6376vector of boolean with the same number of elements as the operands being
6377compared.
6378
6379Arguments:
6380""""""""""
6381
6382The '``fcmp``' instruction takes three operands. The first operand is
6383the condition code indicating the kind of comparison to perform. It is
6384not a value, just a keyword. The possible condition code are:
6385
6386#. ``false``: no comparison, always returns false
6387#. ``oeq``: ordered and equal
6388#. ``ogt``: ordered and greater than
6389#. ``oge``: ordered and greater than or equal
6390#. ``olt``: ordered and less than
6391#. ``ole``: ordered and less than or equal
6392#. ``one``: ordered and not equal
6393#. ``ord``: ordered (no nans)
6394#. ``ueq``: unordered or equal
6395#. ``ugt``: unordered or greater than
6396#. ``uge``: unordered or greater than or equal
6397#. ``ult``: unordered or less than
6398#. ``ule``: unordered or less than or equal
6399#. ``une``: unordered or not equal
6400#. ``uno``: unordered (either nans)
6401#. ``true``: no comparison, always returns true
6402
6403*Ordered* means that neither operand is a QNAN while *unordered* means
6404that either operand may be a QNAN.
6405
6406Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6407point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6408type. They must have identical types.
6409
6410Semantics:
6411""""""""""
6412
6413The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6414condition code given as ``cond``. If the operands are vectors, then the
6415vectors are compared element by element. Each comparison performed
6416always yields an :ref:`i1 <t_integer>` result, as follows:
6417
6418#. ``false``: always yields ``false``, regardless of operands.
6419#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6420 is equal to ``op2``.
6421#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6422 is greater than ``op2``.
6423#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6424 is greater than or equal to ``op2``.
6425#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6426 is less than ``op2``.
6427#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6428 is less than or equal to ``op2``.
6429#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6430 is not equal to ``op2``.
6431#. ``ord``: yields ``true`` if both operands are not a QNAN.
6432#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6433 equal to ``op2``.
6434#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6435 greater than ``op2``.
6436#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6437 greater than or equal to ``op2``.
6438#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6439 less than ``op2``.
6440#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6441 less than or equal to ``op2``.
6442#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6443 not equal to ``op2``.
6444#. ``uno``: yields ``true`` if either operand is a QNAN.
6445#. ``true``: always yields ``true``, regardless of operands.
6446
6447Example:
6448""""""""
6449
6450.. code-block:: llvm
6451
6452 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6453 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6454 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6455 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6456
6457Note that the code generator does not yet support vector types with the
6458``fcmp`` instruction.
6459
6460.. _i_phi:
6461
6462'``phi``' Instruction
6463^^^^^^^^^^^^^^^^^^^^^
6464
6465Syntax:
6466"""""""
6467
6468::
6469
6470 <result> = phi <ty> [ <val0>, <label0>], ...
6471
6472Overview:
6473"""""""""
6474
6475The '``phi``' instruction is used to implement the φ node in the SSA
6476graph representing the function.
6477
6478Arguments:
6479""""""""""
6480
6481The type of the incoming values is specified with the first type field.
6482After this, the '``phi``' instruction takes a list of pairs as
6483arguments, with one pair for each predecessor basic block of the current
6484block. Only values of :ref:`first class <t_firstclass>` type may be used as
6485the value arguments to the PHI node. Only labels may be used as the
6486label arguments.
6487
6488There must be no non-phi instructions between the start of a basic block
6489and the PHI instructions: i.e. PHI instructions must be first in a basic
6490block.
6491
6492For the purposes of the SSA form, the use of each incoming value is
6493deemed to occur on the edge from the corresponding predecessor block to
6494the current block (but after any definition of an '``invoke``'
6495instruction's return value on the same edge).
6496
6497Semantics:
6498""""""""""
6499
6500At runtime, the '``phi``' instruction logically takes on the value
6501specified by the pair corresponding to the predecessor basic block that
6502executed just prior to the current block.
6503
6504Example:
6505""""""""
6506
6507.. code-block:: llvm
6508
6509 Loop: ; Infinite loop that counts from 0 on up...
6510 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6511 %nextindvar = add i32 %indvar, 1
6512 br label %Loop
6513
6514.. _i_select:
6515
6516'``select``' Instruction
6517^^^^^^^^^^^^^^^^^^^^^^^^
6518
6519Syntax:
6520"""""""
6521
6522::
6523
6524 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6525
6526 selty is either i1 or {<N x i1>}
6527
6528Overview:
6529"""""""""
6530
6531The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006532condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006533
6534Arguments:
6535""""""""""
6536
6537The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6538values indicating the condition, and two values of the same :ref:`first
6539class <t_firstclass>` type. If the val1/val2 are vectors and the
6540condition is a scalar, then entire vectors are selected, not individual
6541elements.
6542
6543Semantics:
6544""""""""""
6545
6546If the condition is an i1 and it evaluates to 1, the instruction returns
6547the first value argument; otherwise, it returns the second value
6548argument.
6549
6550If the condition is a vector of i1, then the value arguments must be
6551vectors of the same size, and the selection is done element by element.
6552
6553Example:
6554""""""""
6555
6556.. code-block:: llvm
6557
6558 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6559
6560.. _i_call:
6561
6562'``call``' Instruction
6563^^^^^^^^^^^^^^^^^^^^^^
6564
6565Syntax:
6566"""""""
6567
6568::
6569
Reid Kleckner5772b772014-04-24 20:14:34 +00006570 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006571
6572Overview:
6573"""""""""
6574
6575The '``call``' instruction represents a simple function call.
6576
6577Arguments:
6578""""""""""
6579
6580This instruction requires several arguments:
6581
Reid Kleckner5772b772014-04-24 20:14:34 +00006582#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6583 should perform tail call optimization. The ``tail`` marker is a hint that
6584 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6585 means that the call must be tail call optimized in order for the program to
6586 be correct. The ``musttail`` marker provides these guarantees:
6587
6588 #. The call will not cause unbounded stack growth if it is part of a
6589 recursive cycle in the call graph.
6590 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6591 forwarded in place.
6592
6593 Both markers imply that the callee does not access allocas or varargs from
6594 the caller. Calls marked ``musttail`` must obey the following additional
6595 rules:
6596
6597 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6598 or a pointer bitcast followed by a ret instruction.
6599 - The ret instruction must return the (possibly bitcasted) value
6600 produced by the call or void.
6601 - The caller and callee prototypes must match. Pointer types of
6602 parameters or return types may differ in pointee type, but not
6603 in address space.
6604 - The calling conventions of the caller and callee must match.
6605 - All ABI-impacting function attributes, such as sret, byval, inreg,
6606 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00006607 - The callee must be varargs iff the caller is varargs. Bitcasting a
6608 non-varargs function to the appropriate varargs type is legal so
6609 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00006610
6611 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6612 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006613
6614 - Caller and callee both have the calling convention ``fastcc``.
6615 - The call is in tail position (ret immediately follows call and ret
6616 uses value of call or is void).
6617 - Option ``-tailcallopt`` is enabled, or
6618 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00006619 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00006620 met. <CodeGenerator.html#tailcallopt>`_
6621
6622#. The optional "cconv" marker indicates which :ref:`calling
6623 convention <callingconv>` the call should use. If none is
6624 specified, the call defaults to using C calling conventions. The
6625 calling convention of the call must match the calling convention of
6626 the target function, or else the behavior is undefined.
6627#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6628 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6629 are valid here.
6630#. '``ty``': the type of the call instruction itself which is also the
6631 type of the return value. Functions that return no value are marked
6632 ``void``.
6633#. '``fnty``': shall be the signature of the pointer to function value
6634 being invoked. The argument types must match the types implied by
6635 this signature. This type can be omitted if the function is not
6636 varargs and if the function type does not return a pointer to a
6637 function.
6638#. '``fnptrval``': An LLVM value containing a pointer to a function to
6639 be invoked. In most cases, this is a direct function invocation, but
6640 indirect ``call``'s are just as possible, calling an arbitrary pointer
6641 to function value.
6642#. '``function args``': argument list whose types match the function
6643 signature argument types and parameter attributes. All arguments must
6644 be of :ref:`first class <t_firstclass>` type. If the function signature
6645 indicates the function accepts a variable number of arguments, the
6646 extra arguments can be specified.
6647#. The optional :ref:`function attributes <fnattrs>` list. Only
6648 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6649 attributes are valid here.
6650
6651Semantics:
6652""""""""""
6653
6654The '``call``' instruction is used to cause control flow to transfer to
6655a specified function, with its incoming arguments bound to the specified
6656values. Upon a '``ret``' instruction in the called function, control
6657flow continues with the instruction after the function call, and the
6658return value of the function is bound to the result argument.
6659
6660Example:
6661""""""""
6662
6663.. code-block:: llvm
6664
6665 %retval = call i32 @test(i32 %argc)
6666 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6667 %X = tail call i32 @foo() ; yields i32
6668 %Y = tail call fastcc i32 @foo() ; yields i32
6669 call void %foo(i8 97 signext)
6670
6671 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00006672 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00006673 %gr = extractvalue %struct.A %r, 0 ; yields i32
6674 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6675 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6676 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6677
6678llvm treats calls to some functions with names and arguments that match
6679the standard C99 library as being the C99 library functions, and may
6680perform optimizations or generate code for them under that assumption.
6681This is something we'd like to change in the future to provide better
6682support for freestanding environments and non-C-based languages.
6683
6684.. _i_va_arg:
6685
6686'``va_arg``' Instruction
6687^^^^^^^^^^^^^^^^^^^^^^^^
6688
6689Syntax:
6690"""""""
6691
6692::
6693
6694 <resultval> = va_arg <va_list*> <arglist>, <argty>
6695
6696Overview:
6697"""""""""
6698
6699The '``va_arg``' instruction is used to access arguments passed through
6700the "variable argument" area of a function call. It is used to implement
6701the ``va_arg`` macro in C.
6702
6703Arguments:
6704""""""""""
6705
6706This instruction takes a ``va_list*`` value and the type of the
6707argument. It returns a value of the specified argument type and
6708increments the ``va_list`` to point to the next argument. The actual
6709type of ``va_list`` is target specific.
6710
6711Semantics:
6712""""""""""
6713
6714The '``va_arg``' instruction loads an argument of the specified type
6715from the specified ``va_list`` and causes the ``va_list`` to point to
6716the next argument. For more information, see the variable argument
6717handling :ref:`Intrinsic Functions <int_varargs>`.
6718
6719It is legal for this instruction to be called in a function which does
6720not take a variable number of arguments, for example, the ``vfprintf``
6721function.
6722
6723``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6724function <intrinsics>` because it takes a type as an argument.
6725
6726Example:
6727""""""""
6728
6729See the :ref:`variable argument processing <int_varargs>` section.
6730
6731Note that the code generator does not yet fully support va\_arg on many
6732targets. Also, it does not currently support va\_arg with aggregate
6733types on any target.
6734
6735.. _i_landingpad:
6736
6737'``landingpad``' Instruction
6738^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6739
6740Syntax:
6741"""""""
6742
6743::
6744
6745 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6746 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6747
6748 <clause> := catch <type> <value>
6749 <clause> := filter <array constant type> <array constant>
6750
6751Overview:
6752"""""""""
6753
6754The '``landingpad``' instruction is used by `LLVM's exception handling
6755system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006756is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006757code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6758defines values supplied by the personality function (``pers_fn``) upon
6759re-entry to the function. The ``resultval`` has the type ``resultty``.
6760
6761Arguments:
6762""""""""""
6763
6764This instruction takes a ``pers_fn`` value. This is the personality
6765function associated with the unwinding mechanism. The optional
6766``cleanup`` flag indicates that the landing pad block is a cleanup.
6767
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006768A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006769contains the global variable representing the "type" that may be caught
6770or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6771clause takes an array constant as its argument. Use
6772"``[0 x i8**] undef``" for a filter which cannot throw. The
6773'``landingpad``' instruction must contain *at least* one ``clause`` or
6774the ``cleanup`` flag.
6775
6776Semantics:
6777""""""""""
6778
6779The '``landingpad``' instruction defines the values which are set by the
6780personality function (``pers_fn``) upon re-entry to the function, and
6781therefore the "result type" of the ``landingpad`` instruction. As with
6782calling conventions, how the personality function results are
6783represented in LLVM IR is target specific.
6784
6785The clauses are applied in order from top to bottom. If two
6786``landingpad`` instructions are merged together through inlining, the
6787clauses from the calling function are appended to the list of clauses.
6788When the call stack is being unwound due to an exception being thrown,
6789the exception is compared against each ``clause`` in turn. If it doesn't
6790match any of the clauses, and the ``cleanup`` flag is not set, then
6791unwinding continues further up the call stack.
6792
6793The ``landingpad`` instruction has several restrictions:
6794
6795- A landing pad block is a basic block which is the unwind destination
6796 of an '``invoke``' instruction.
6797- A landing pad block must have a '``landingpad``' instruction as its
6798 first non-PHI instruction.
6799- There can be only one '``landingpad``' instruction within the landing
6800 pad block.
6801- A basic block that is not a landing pad block may not include a
6802 '``landingpad``' instruction.
6803- All '``landingpad``' instructions in a function must have the same
6804 personality function.
6805
6806Example:
6807""""""""
6808
6809.. code-block:: llvm
6810
6811 ;; A landing pad which can catch an integer.
6812 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6813 catch i8** @_ZTIi
6814 ;; A landing pad that is a cleanup.
6815 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6816 cleanup
6817 ;; A landing pad which can catch an integer and can only throw a double.
6818 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6819 catch i8** @_ZTIi
6820 filter [1 x i8**] [@_ZTId]
6821
6822.. _intrinsics:
6823
6824Intrinsic Functions
6825===================
6826
6827LLVM supports the notion of an "intrinsic function". These functions
6828have well known names and semantics and are required to follow certain
6829restrictions. Overall, these intrinsics represent an extension mechanism
6830for the LLVM language that does not require changing all of the
6831transformations in LLVM when adding to the language (or the bitcode
6832reader/writer, the parser, etc...).
6833
6834Intrinsic function names must all start with an "``llvm.``" prefix. This
6835prefix is reserved in LLVM for intrinsic names; thus, function names may
6836not begin with this prefix. Intrinsic functions must always be external
6837functions: you cannot define the body of intrinsic functions. Intrinsic
6838functions may only be used in call or invoke instructions: it is illegal
6839to take the address of an intrinsic function. Additionally, because
6840intrinsic functions are part of the LLVM language, it is required if any
6841are added that they be documented here.
6842
6843Some intrinsic functions can be overloaded, i.e., the intrinsic
6844represents a family of functions that perform the same operation but on
6845different data types. Because LLVM can represent over 8 million
6846different integer types, overloading is used commonly to allow an
6847intrinsic function to operate on any integer type. One or more of the
6848argument types or the result type can be overloaded to accept any
6849integer type. Argument types may also be defined as exactly matching a
6850previous argument's type or the result type. This allows an intrinsic
6851function which accepts multiple arguments, but needs all of them to be
6852of the same type, to only be overloaded with respect to a single
6853argument or the result.
6854
6855Overloaded intrinsics will have the names of its overloaded argument
6856types encoded into its function name, each preceded by a period. Only
6857those types which are overloaded result in a name suffix. Arguments
6858whose type is matched against another type do not. For example, the
6859``llvm.ctpop`` function can take an integer of any width and returns an
6860integer of exactly the same integer width. This leads to a family of
6861functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6862``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6863overloaded, and only one type suffix is required. Because the argument's
6864type is matched against the return type, it does not require its own
6865name suffix.
6866
6867To learn how to add an intrinsic function, please see the `Extending
6868LLVM Guide <ExtendingLLVM.html>`_.
6869
6870.. _int_varargs:
6871
6872Variable Argument Handling Intrinsics
6873-------------------------------------
6874
6875Variable argument support is defined in LLVM with the
6876:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6877functions. These functions are related to the similarly named macros
6878defined in the ``<stdarg.h>`` header file.
6879
6880All of these functions operate on arguments that use a target-specific
6881value type "``va_list``". The LLVM assembly language reference manual
6882does not define what this type is, so all transformations should be
6883prepared to handle these functions regardless of the type used.
6884
6885This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6886variable argument handling intrinsic functions are used.
6887
6888.. code-block:: llvm
6889
Tim Northoverab60bb92014-11-02 01:21:51 +00006890 ; This struct is different for every platform. For most platforms,
6891 ; it is merely an i8*.
6892 %struct.va_list = type { i8* }
6893
6894 ; For Unix x86_64 platforms, va_list is the following struct:
6895 ; %struct.va_list = type { i32, i32, i8*, i8* }
6896
Sean Silvab084af42012-12-07 10:36:55 +00006897 define i32 @test(i32 %X, ...) {
6898 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00006899 %ap = alloca %struct.va_list
6900 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00006901 call void @llvm.va_start(i8* %ap2)
6902
6903 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00006904 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00006905
6906 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6907 %aq = alloca i8*
6908 %aq2 = bitcast i8** %aq to i8*
6909 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6910 call void @llvm.va_end(i8* %aq2)
6911
6912 ; Stop processing of arguments.
6913 call void @llvm.va_end(i8* %ap2)
6914 ret i32 %tmp
6915 }
6916
6917 declare void @llvm.va_start(i8*)
6918 declare void @llvm.va_copy(i8*, i8*)
6919 declare void @llvm.va_end(i8*)
6920
6921.. _int_va_start:
6922
6923'``llvm.va_start``' Intrinsic
6924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6925
6926Syntax:
6927"""""""
6928
6929::
6930
Nick Lewycky04f6de02013-09-11 22:04:52 +00006931 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006932
6933Overview:
6934"""""""""
6935
6936The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6937subsequent use by ``va_arg``.
6938
6939Arguments:
6940""""""""""
6941
6942The argument is a pointer to a ``va_list`` element to initialize.
6943
6944Semantics:
6945""""""""""
6946
6947The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6948available in C. In a target-dependent way, it initializes the
6949``va_list`` element to which the argument points, so that the next call
6950to ``va_arg`` will produce the first variable argument passed to the
6951function. Unlike the C ``va_start`` macro, this intrinsic does not need
6952to know the last argument of the function as the compiler can figure
6953that out.
6954
6955'``llvm.va_end``' Intrinsic
6956^^^^^^^^^^^^^^^^^^^^^^^^^^^
6957
6958Syntax:
6959"""""""
6960
6961::
6962
6963 declare void @llvm.va_end(i8* <arglist>)
6964
6965Overview:
6966"""""""""
6967
6968The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6969initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6970
6971Arguments:
6972""""""""""
6973
6974The argument is a pointer to a ``va_list`` to destroy.
6975
6976Semantics:
6977""""""""""
6978
6979The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6980available in C. In a target-dependent way, it destroys the ``va_list``
6981element to which the argument points. Calls to
6982:ref:`llvm.va_start <int_va_start>` and
6983:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6984``llvm.va_end``.
6985
6986.. _int_va_copy:
6987
6988'``llvm.va_copy``' Intrinsic
6989^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6990
6991Syntax:
6992"""""""
6993
6994::
6995
6996 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6997
6998Overview:
6999"""""""""
7000
7001The '``llvm.va_copy``' intrinsic copies the current argument position
7002from the source argument list to the destination argument list.
7003
7004Arguments:
7005""""""""""
7006
7007The first argument is a pointer to a ``va_list`` element to initialize.
7008The second argument is a pointer to a ``va_list`` element to copy from.
7009
7010Semantics:
7011""""""""""
7012
7013The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
7014available in C. In a target-dependent way, it copies the source
7015``va_list`` element into the destination ``va_list`` element. This
7016intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
7017arbitrarily complex and require, for example, memory allocation.
7018
7019Accurate Garbage Collection Intrinsics
7020--------------------------------------
7021
7022LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
7023(GC) requires the implementation and generation of these intrinsics.
7024These intrinsics allow identification of :ref:`GC roots on the
7025stack <int_gcroot>`, as well as garbage collector implementations that
7026require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
7027Front-ends for type-safe garbage collected languages should generate
7028these intrinsics to make use of the LLVM garbage collectors. For more
7029details, see `Accurate Garbage Collection with
7030LLVM <GarbageCollection.html>`_.
7031
7032The garbage collection intrinsics only operate on objects in the generic
7033address space (address space zero).
7034
7035.. _int_gcroot:
7036
7037'``llvm.gcroot``' Intrinsic
7038^^^^^^^^^^^^^^^^^^^^^^^^^^^
7039
7040Syntax:
7041"""""""
7042
7043::
7044
7045 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
7046
7047Overview:
7048"""""""""
7049
7050The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
7051the code generator, and allows some metadata to be associated with it.
7052
7053Arguments:
7054""""""""""
7055
7056The first argument specifies the address of a stack object that contains
7057the root pointer. The second pointer (which must be either a constant or
7058a global value address) contains the meta-data to be associated with the
7059root.
7060
7061Semantics:
7062""""""""""
7063
7064At runtime, a call to this intrinsic stores a null pointer into the
7065"ptrloc" location. At compile-time, the code generator generates
7066information to allow the runtime to find the pointer at GC safe points.
7067The '``llvm.gcroot``' intrinsic may only be used in a function which
7068:ref:`specifies a GC algorithm <gc>`.
7069
7070.. _int_gcread:
7071
7072'``llvm.gcread``' Intrinsic
7073^^^^^^^^^^^^^^^^^^^^^^^^^^^
7074
7075Syntax:
7076"""""""
7077
7078::
7079
7080 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7081
7082Overview:
7083"""""""""
7084
7085The '``llvm.gcread``' intrinsic identifies reads of references from heap
7086locations, allowing garbage collector implementations that require read
7087barriers.
7088
7089Arguments:
7090""""""""""
7091
7092The second argument is the address to read from, which should be an
7093address allocated from the garbage collector. The first object is a
7094pointer to the start of the referenced object, if needed by the language
7095runtime (otherwise null).
7096
7097Semantics:
7098""""""""""
7099
7100The '``llvm.gcread``' intrinsic has the same semantics as a load
7101instruction, but may be replaced with substantially more complex code by
7102the garbage collector runtime, as needed. The '``llvm.gcread``'
7103intrinsic may only be used in a function which :ref:`specifies a GC
7104algorithm <gc>`.
7105
7106.. _int_gcwrite:
7107
7108'``llvm.gcwrite``' Intrinsic
7109^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7110
7111Syntax:
7112"""""""
7113
7114::
7115
7116 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7117
7118Overview:
7119"""""""""
7120
7121The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7122locations, allowing garbage collector implementations that require write
7123barriers (such as generational or reference counting collectors).
7124
7125Arguments:
7126""""""""""
7127
7128The first argument is the reference to store, the second is the start of
7129the object to store it to, and the third is the address of the field of
7130Obj to store to. If the runtime does not require a pointer to the
7131object, Obj may be null.
7132
7133Semantics:
7134""""""""""
7135
7136The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7137instruction, but may be replaced with substantially more complex code by
7138the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7139intrinsic may only be used in a function which :ref:`specifies a GC
7140algorithm <gc>`.
7141
7142Code Generator Intrinsics
7143-------------------------
7144
7145These intrinsics are provided by LLVM to expose special features that
7146may only be implemented with code generator support.
7147
7148'``llvm.returnaddress``' Intrinsic
7149^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7150
7151Syntax:
7152"""""""
7153
7154::
7155
7156 declare i8 *@llvm.returnaddress(i32 <level>)
7157
7158Overview:
7159"""""""""
7160
7161The '``llvm.returnaddress``' intrinsic attempts to compute a
7162target-specific value indicating the return address of the current
7163function or one of its callers.
7164
7165Arguments:
7166""""""""""
7167
7168The argument to this intrinsic indicates which function to return the
7169address for. Zero indicates the calling function, one indicates its
7170caller, etc. The argument is **required** to be a constant integer
7171value.
7172
7173Semantics:
7174""""""""""
7175
7176The '``llvm.returnaddress``' intrinsic either returns a pointer
7177indicating the return address of the specified call frame, or zero if it
7178cannot be identified. The value returned by this intrinsic is likely to
7179be incorrect or 0 for arguments other than zero, so it should only be
7180used for debugging purposes.
7181
7182Note that calling this intrinsic does not prevent function inlining or
7183other aggressive transformations, so the value returned may not be that
7184of the obvious source-language caller.
7185
7186'``llvm.frameaddress``' Intrinsic
7187^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7188
7189Syntax:
7190"""""""
7191
7192::
7193
7194 declare i8* @llvm.frameaddress(i32 <level>)
7195
7196Overview:
7197"""""""""
7198
7199The '``llvm.frameaddress``' intrinsic attempts to return the
7200target-specific frame pointer value for the specified stack frame.
7201
7202Arguments:
7203""""""""""
7204
7205The argument to this intrinsic indicates which function to return the
7206frame pointer for. Zero indicates the calling function, one indicates
7207its caller, etc. The argument is **required** to be a constant integer
7208value.
7209
7210Semantics:
7211""""""""""
7212
7213The '``llvm.frameaddress``' intrinsic either returns a pointer
7214indicating the frame address of the specified call frame, or zero if it
7215cannot be identified. The value returned by this intrinsic is likely to
7216be incorrect or 0 for arguments other than zero, so it should only be
7217used for debugging purposes.
7218
7219Note that calling this intrinsic does not prevent function inlining or
7220other aggressive transformations, so the value returned may not be that
7221of the obvious source-language caller.
7222
Renato Golinc7aea402014-05-06 16:51:25 +00007223.. _int_read_register:
7224.. _int_write_register:
7225
7226'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7227^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7228
7229Syntax:
7230"""""""
7231
7232::
7233
7234 declare i32 @llvm.read_register.i32(metadata)
7235 declare i64 @llvm.read_register.i64(metadata)
7236 declare void @llvm.write_register.i32(metadata, i32 @value)
7237 declare void @llvm.write_register.i64(metadata, i64 @value)
7238 !0 = metadata !{metadata !"sp\00"}
7239
7240Overview:
7241"""""""""
7242
7243The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7244provides access to the named register. The register must be valid on
7245the architecture being compiled to. The type needs to be compatible
7246with the register being read.
7247
7248Semantics:
7249""""""""""
7250
7251The '``llvm.read_register``' intrinsic returns the current value of the
7252register, where possible. The '``llvm.write_register``' intrinsic sets
7253the current value of the register, where possible.
7254
7255This is useful to implement named register global variables that need
7256to always be mapped to a specific register, as is common practice on
7257bare-metal programs including OS kernels.
7258
7259The compiler doesn't check for register availability or use of the used
7260register in surrounding code, including inline assembly. Because of that,
7261allocatable registers are not supported.
7262
7263Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007264architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007265work is needed to support other registers and even more so, allocatable
7266registers.
7267
Sean Silvab084af42012-12-07 10:36:55 +00007268.. _int_stacksave:
7269
7270'``llvm.stacksave``' Intrinsic
7271^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7272
7273Syntax:
7274"""""""
7275
7276::
7277
7278 declare i8* @llvm.stacksave()
7279
7280Overview:
7281"""""""""
7282
7283The '``llvm.stacksave``' intrinsic is used to remember the current state
7284of the function stack, for use with
7285:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7286implementing language features like scoped automatic variable sized
7287arrays in C99.
7288
7289Semantics:
7290""""""""""
7291
7292This intrinsic returns a opaque pointer value that can be passed to
7293:ref:`llvm.stackrestore <int_stackrestore>`. When an
7294``llvm.stackrestore`` intrinsic is executed with a value saved from
7295``llvm.stacksave``, it effectively restores the state of the stack to
7296the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7297practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7298were allocated after the ``llvm.stacksave`` was executed.
7299
7300.. _int_stackrestore:
7301
7302'``llvm.stackrestore``' Intrinsic
7303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7304
7305Syntax:
7306"""""""
7307
7308::
7309
7310 declare void @llvm.stackrestore(i8* %ptr)
7311
7312Overview:
7313"""""""""
7314
7315The '``llvm.stackrestore``' intrinsic is used to restore the state of
7316the function stack to the state it was in when the corresponding
7317:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7318useful for implementing language features like scoped automatic variable
7319sized arrays in C99.
7320
7321Semantics:
7322""""""""""
7323
7324See the description for :ref:`llvm.stacksave <int_stacksave>`.
7325
7326'``llvm.prefetch``' Intrinsic
7327^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7328
7329Syntax:
7330"""""""
7331
7332::
7333
7334 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7335
7336Overview:
7337"""""""""
7338
7339The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7340insert a prefetch instruction if supported; otherwise, it is a noop.
7341Prefetches have no effect on the behavior of the program but can change
7342its performance characteristics.
7343
7344Arguments:
7345""""""""""
7346
7347``address`` is the address to be prefetched, ``rw`` is the specifier
7348determining if the fetch should be for a read (0) or write (1), and
7349``locality`` is a temporal locality specifier ranging from (0) - no
7350locality, to (3) - extremely local keep in cache. The ``cache type``
7351specifies whether the prefetch is performed on the data (1) or
7352instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7353arguments must be constant integers.
7354
7355Semantics:
7356""""""""""
7357
7358This intrinsic does not modify the behavior of the program. In
7359particular, prefetches cannot trap and do not produce a value. On
7360targets that support this intrinsic, the prefetch can provide hints to
7361the processor cache for better performance.
7362
7363'``llvm.pcmarker``' Intrinsic
7364^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7365
7366Syntax:
7367"""""""
7368
7369::
7370
7371 declare void @llvm.pcmarker(i32 <id>)
7372
7373Overview:
7374"""""""""
7375
7376The '``llvm.pcmarker``' intrinsic is a method to export a Program
7377Counter (PC) in a region of code to simulators and other tools. The
7378method is target specific, but it is expected that the marker will use
7379exported symbols to transmit the PC of the marker. The marker makes no
7380guarantees that it will remain with any specific instruction after
7381optimizations. It is possible that the presence of a marker will inhibit
7382optimizations. The intended use is to be inserted after optimizations to
7383allow correlations of simulation runs.
7384
7385Arguments:
7386""""""""""
7387
7388``id`` is a numerical id identifying the marker.
7389
7390Semantics:
7391""""""""""
7392
7393This intrinsic does not modify the behavior of the program. Backends
7394that do not support this intrinsic may ignore it.
7395
7396'``llvm.readcyclecounter``' Intrinsic
7397^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7398
7399Syntax:
7400"""""""
7401
7402::
7403
7404 declare i64 @llvm.readcyclecounter()
7405
7406Overview:
7407"""""""""
7408
7409The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7410counter register (or similar low latency, high accuracy clocks) on those
7411targets that support it. On X86, it should map to RDTSC. On Alpha, it
7412should map to RPCC. As the backing counters overflow quickly (on the
7413order of 9 seconds on alpha), this should only be used for small
7414timings.
7415
7416Semantics:
7417""""""""""
7418
7419When directly supported, reading the cycle counter should not modify any
7420memory. Implementations are allowed to either return a application
7421specific value or a system wide value. On backends without support, this
7422is lowered to a constant 0.
7423
Tim Northoverbc933082013-05-23 19:11:20 +00007424Note that runtime support may be conditional on the privilege-level code is
7425running at and the host platform.
7426
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007427'``llvm.clear_cache``' Intrinsic
7428^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7429
7430Syntax:
7431"""""""
7432
7433::
7434
7435 declare void @llvm.clear_cache(i8*, i8*)
7436
7437Overview:
7438"""""""""
7439
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007440The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7441in the specified range to the execution unit of the processor. On
7442targets with non-unified instruction and data cache, the implementation
7443flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007444
7445Semantics:
7446""""""""""
7447
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007448On platforms with coherent instruction and data caches (e.g. x86), this
7449intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007450cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007451instructions or a system call, if cache flushing requires special
7452privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007453
Sean Silvad02bf3e2014-04-07 22:29:53 +00007454The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007455time library.
Renato Golin93010e62014-03-26 14:01:32 +00007456
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007457This instrinsic does *not* empty the instruction pipeline. Modifications
7458of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007459
Sean Silvab084af42012-12-07 10:36:55 +00007460Standard C Library Intrinsics
7461-----------------------------
7462
7463LLVM provides intrinsics for a few important standard C library
7464functions. These intrinsics allow source-language front-ends to pass
7465information about the alignment of the pointer arguments to the code
7466generator, providing opportunity for more efficient code generation.
7467
7468.. _int_memcpy:
7469
7470'``llvm.memcpy``' Intrinsic
7471^^^^^^^^^^^^^^^^^^^^^^^^^^^
7472
7473Syntax:
7474"""""""
7475
7476This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7477integer bit width and for different address spaces. Not all targets
7478support all bit widths however.
7479
7480::
7481
7482 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7483 i32 <len>, i32 <align>, i1 <isvolatile>)
7484 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7485 i64 <len>, i32 <align>, i1 <isvolatile>)
7486
7487Overview:
7488"""""""""
7489
7490The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7491source location to the destination location.
7492
7493Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7494intrinsics do not return a value, takes extra alignment/isvolatile
7495arguments and the pointers can be in specified address spaces.
7496
7497Arguments:
7498""""""""""
7499
7500The first argument is a pointer to the destination, the second is a
7501pointer to the source. The third argument is an integer argument
7502specifying the number of bytes to copy, the fourth argument is the
7503alignment of the source and destination locations, and the fifth is a
7504boolean indicating a volatile access.
7505
7506If the call to this intrinsic has an alignment value that is not 0 or 1,
7507then the caller guarantees that both the source and destination pointers
7508are aligned to that boundary.
7509
7510If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7511a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7512very cleanly specified and it is unwise to depend on it.
7513
7514Semantics:
7515""""""""""
7516
7517The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7518source location to the destination location, which are not allowed to
7519overlap. It copies "len" bytes of memory over. If the argument is known
7520to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007521argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007522
7523'``llvm.memmove``' Intrinsic
7524^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7525
7526Syntax:
7527"""""""
7528
7529This is an overloaded intrinsic. You can use llvm.memmove on any integer
7530bit width and for different address space. Not all targets support all
7531bit widths however.
7532
7533::
7534
7535 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7536 i32 <len>, i32 <align>, i1 <isvolatile>)
7537 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7538 i64 <len>, i32 <align>, i1 <isvolatile>)
7539
7540Overview:
7541"""""""""
7542
7543The '``llvm.memmove.*``' intrinsics move a block of memory from the
7544source location to the destination location. It is similar to the
7545'``llvm.memcpy``' intrinsic but allows the two memory locations to
7546overlap.
7547
7548Note that, unlike the standard libc function, the ``llvm.memmove.*``
7549intrinsics do not return a value, takes extra alignment/isvolatile
7550arguments and the pointers can be in specified address spaces.
7551
7552Arguments:
7553""""""""""
7554
7555The first argument is a pointer to the destination, the second is a
7556pointer to the source. The third argument is an integer argument
7557specifying the number of bytes to copy, the fourth argument is the
7558alignment of the source and destination locations, and the fifth is a
7559boolean indicating a volatile access.
7560
7561If the call to this intrinsic has an alignment value that is not 0 or 1,
7562then the caller guarantees that the source and destination pointers are
7563aligned to that boundary.
7564
7565If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7566is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7567not very cleanly specified and it is unwise to depend on it.
7568
7569Semantics:
7570""""""""""
7571
7572The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7573source location to the destination location, which may overlap. It
7574copies "len" bytes of memory over. If the argument is known to be
7575aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007576otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007577
7578'``llvm.memset.*``' Intrinsics
7579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7580
7581Syntax:
7582"""""""
7583
7584This is an overloaded intrinsic. You can use llvm.memset on any integer
7585bit width and for different address spaces. However, not all targets
7586support all bit widths.
7587
7588::
7589
7590 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7591 i32 <len>, i32 <align>, i1 <isvolatile>)
7592 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7593 i64 <len>, i32 <align>, i1 <isvolatile>)
7594
7595Overview:
7596"""""""""
7597
7598The '``llvm.memset.*``' intrinsics fill a block of memory with a
7599particular byte value.
7600
7601Note that, unlike the standard libc function, the ``llvm.memset``
7602intrinsic does not return a value and takes extra alignment/volatile
7603arguments. Also, the destination can be in an arbitrary address space.
7604
7605Arguments:
7606""""""""""
7607
7608The first argument is a pointer to the destination to fill, the second
7609is the byte value with which to fill it, the third argument is an
7610integer argument specifying the number of bytes to fill, and the fourth
7611argument is the known alignment of the destination location.
7612
7613If the call to this intrinsic has an alignment value that is not 0 or 1,
7614then the caller guarantees that the destination pointer is aligned to
7615that boundary.
7616
7617If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7618a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7619very cleanly specified and it is unwise to depend on it.
7620
7621Semantics:
7622""""""""""
7623
7624The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7625at the destination location. If the argument is known to be aligned to
7626some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007627it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007628
7629'``llvm.sqrt.*``' Intrinsic
7630^^^^^^^^^^^^^^^^^^^^^^^^^^^
7631
7632Syntax:
7633"""""""
7634
7635This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7636floating point or vector of floating point type. Not all targets support
7637all types however.
7638
7639::
7640
7641 declare float @llvm.sqrt.f32(float %Val)
7642 declare double @llvm.sqrt.f64(double %Val)
7643 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7644 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7645 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7646
7647Overview:
7648"""""""""
7649
7650The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7651returning the same value as the libm '``sqrt``' functions would. Unlike
7652``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7653negative numbers other than -0.0 (which allows for better optimization,
7654because there is no need to worry about errno being set).
7655``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7656
7657Arguments:
7658""""""""""
7659
7660The argument and return value are floating point numbers of the same
7661type.
7662
7663Semantics:
7664""""""""""
7665
7666This function returns the sqrt of the specified operand if it is a
7667nonnegative floating point number.
7668
7669'``llvm.powi.*``' Intrinsic
7670^^^^^^^^^^^^^^^^^^^^^^^^^^^
7671
7672Syntax:
7673"""""""
7674
7675This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7676floating point or vector of floating point type. Not all targets support
7677all types however.
7678
7679::
7680
7681 declare float @llvm.powi.f32(float %Val, i32 %power)
7682 declare double @llvm.powi.f64(double %Val, i32 %power)
7683 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7684 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7685 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7686
7687Overview:
7688"""""""""
7689
7690The '``llvm.powi.*``' intrinsics return the first operand raised to the
7691specified (positive or negative) power. The order of evaluation of
7692multiplications is not defined. When a vector of floating point type is
7693used, the second argument remains a scalar integer value.
7694
7695Arguments:
7696""""""""""
7697
7698The second argument is an integer power, and the first is a value to
7699raise to that power.
7700
7701Semantics:
7702""""""""""
7703
7704This function returns the first value raised to the second power with an
7705unspecified sequence of rounding operations.
7706
7707'``llvm.sin.*``' Intrinsic
7708^^^^^^^^^^^^^^^^^^^^^^^^^^
7709
7710Syntax:
7711"""""""
7712
7713This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7714floating point or vector of floating point type. Not all targets support
7715all types however.
7716
7717::
7718
7719 declare float @llvm.sin.f32(float %Val)
7720 declare double @llvm.sin.f64(double %Val)
7721 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7722 declare fp128 @llvm.sin.f128(fp128 %Val)
7723 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7724
7725Overview:
7726"""""""""
7727
7728The '``llvm.sin.*``' intrinsics return the sine of the operand.
7729
7730Arguments:
7731""""""""""
7732
7733The argument and return value are floating point numbers of the same
7734type.
7735
7736Semantics:
7737""""""""""
7738
7739This function returns the sine of the specified operand, returning the
7740same values as the libm ``sin`` functions would, and handles error
7741conditions in the same way.
7742
7743'``llvm.cos.*``' Intrinsic
7744^^^^^^^^^^^^^^^^^^^^^^^^^^
7745
7746Syntax:
7747"""""""
7748
7749This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7750floating point or vector of floating point type. Not all targets support
7751all types however.
7752
7753::
7754
7755 declare float @llvm.cos.f32(float %Val)
7756 declare double @llvm.cos.f64(double %Val)
7757 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7758 declare fp128 @llvm.cos.f128(fp128 %Val)
7759 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7760
7761Overview:
7762"""""""""
7763
7764The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7765
7766Arguments:
7767""""""""""
7768
7769The argument and return value are floating point numbers of the same
7770type.
7771
7772Semantics:
7773""""""""""
7774
7775This function returns the cosine of the specified operand, returning the
7776same values as the libm ``cos`` functions would, and handles error
7777conditions in the same way.
7778
7779'``llvm.pow.*``' Intrinsic
7780^^^^^^^^^^^^^^^^^^^^^^^^^^
7781
7782Syntax:
7783"""""""
7784
7785This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7786floating point or vector of floating point type. Not all targets support
7787all types however.
7788
7789::
7790
7791 declare float @llvm.pow.f32(float %Val, float %Power)
7792 declare double @llvm.pow.f64(double %Val, double %Power)
7793 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7794 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7795 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7796
7797Overview:
7798"""""""""
7799
7800The '``llvm.pow.*``' intrinsics return the first operand raised to the
7801specified (positive or negative) power.
7802
7803Arguments:
7804""""""""""
7805
7806The second argument is a floating point power, and the first is a value
7807to raise to that power.
7808
7809Semantics:
7810""""""""""
7811
7812This function returns the first value raised to the second power,
7813returning the same values as the libm ``pow`` functions would, and
7814handles error conditions in the same way.
7815
7816'``llvm.exp.*``' Intrinsic
7817^^^^^^^^^^^^^^^^^^^^^^^^^^
7818
7819Syntax:
7820"""""""
7821
7822This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7823floating point or vector of floating point type. Not all targets support
7824all types however.
7825
7826::
7827
7828 declare float @llvm.exp.f32(float %Val)
7829 declare double @llvm.exp.f64(double %Val)
7830 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7831 declare fp128 @llvm.exp.f128(fp128 %Val)
7832 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7833
7834Overview:
7835"""""""""
7836
7837The '``llvm.exp.*``' intrinsics perform the exp function.
7838
7839Arguments:
7840""""""""""
7841
7842The argument and return value are floating point numbers of the same
7843type.
7844
7845Semantics:
7846""""""""""
7847
7848This function returns the same values as the libm ``exp`` functions
7849would, and handles error conditions in the same way.
7850
7851'``llvm.exp2.*``' Intrinsic
7852^^^^^^^^^^^^^^^^^^^^^^^^^^^
7853
7854Syntax:
7855"""""""
7856
7857This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7858floating point or vector of floating point type. Not all targets support
7859all types however.
7860
7861::
7862
7863 declare float @llvm.exp2.f32(float %Val)
7864 declare double @llvm.exp2.f64(double %Val)
7865 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7866 declare fp128 @llvm.exp2.f128(fp128 %Val)
7867 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7868
7869Overview:
7870"""""""""
7871
7872The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7873
7874Arguments:
7875""""""""""
7876
7877The argument and return value are floating point numbers of the same
7878type.
7879
7880Semantics:
7881""""""""""
7882
7883This function returns the same values as the libm ``exp2`` functions
7884would, and handles error conditions in the same way.
7885
7886'``llvm.log.*``' Intrinsic
7887^^^^^^^^^^^^^^^^^^^^^^^^^^
7888
7889Syntax:
7890"""""""
7891
7892This is an overloaded intrinsic. You can use ``llvm.log`` on any
7893floating point or vector of floating point type. Not all targets support
7894all types however.
7895
7896::
7897
7898 declare float @llvm.log.f32(float %Val)
7899 declare double @llvm.log.f64(double %Val)
7900 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7901 declare fp128 @llvm.log.f128(fp128 %Val)
7902 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7903
7904Overview:
7905"""""""""
7906
7907The '``llvm.log.*``' intrinsics perform the log function.
7908
7909Arguments:
7910""""""""""
7911
7912The argument and return value are floating point numbers of the same
7913type.
7914
7915Semantics:
7916""""""""""
7917
7918This function returns the same values as the libm ``log`` functions
7919would, and handles error conditions in the same way.
7920
7921'``llvm.log10.*``' Intrinsic
7922^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7923
7924Syntax:
7925"""""""
7926
7927This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7928floating point or vector of floating point type. Not all targets support
7929all types however.
7930
7931::
7932
7933 declare float @llvm.log10.f32(float %Val)
7934 declare double @llvm.log10.f64(double %Val)
7935 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7936 declare fp128 @llvm.log10.f128(fp128 %Val)
7937 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7938
7939Overview:
7940"""""""""
7941
7942The '``llvm.log10.*``' intrinsics perform the log10 function.
7943
7944Arguments:
7945""""""""""
7946
7947The argument and return value are floating point numbers of the same
7948type.
7949
7950Semantics:
7951""""""""""
7952
7953This function returns the same values as the libm ``log10`` functions
7954would, and handles error conditions in the same way.
7955
7956'``llvm.log2.*``' Intrinsic
7957^^^^^^^^^^^^^^^^^^^^^^^^^^^
7958
7959Syntax:
7960"""""""
7961
7962This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7963floating point or vector of floating point type. Not all targets support
7964all types however.
7965
7966::
7967
7968 declare float @llvm.log2.f32(float %Val)
7969 declare double @llvm.log2.f64(double %Val)
7970 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7971 declare fp128 @llvm.log2.f128(fp128 %Val)
7972 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7973
7974Overview:
7975"""""""""
7976
7977The '``llvm.log2.*``' intrinsics perform the log2 function.
7978
7979Arguments:
7980""""""""""
7981
7982The argument and return value are floating point numbers of the same
7983type.
7984
7985Semantics:
7986""""""""""
7987
7988This function returns the same values as the libm ``log2`` functions
7989would, and handles error conditions in the same way.
7990
7991'``llvm.fma.*``' Intrinsic
7992^^^^^^^^^^^^^^^^^^^^^^^^^^
7993
7994Syntax:
7995"""""""
7996
7997This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7998floating point or vector of floating point type. Not all targets support
7999all types however.
8000
8001::
8002
8003 declare float @llvm.fma.f32(float %a, float %b, float %c)
8004 declare double @llvm.fma.f64(double %a, double %b, double %c)
8005 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
8006 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
8007 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
8008
8009Overview:
8010"""""""""
8011
8012The '``llvm.fma.*``' intrinsics perform the fused multiply-add
8013operation.
8014
8015Arguments:
8016""""""""""
8017
8018The argument and return value are floating point numbers of the same
8019type.
8020
8021Semantics:
8022""""""""""
8023
8024This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008025would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00008026
8027'``llvm.fabs.*``' Intrinsic
8028^^^^^^^^^^^^^^^^^^^^^^^^^^^
8029
8030Syntax:
8031"""""""
8032
8033This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
8034floating point or vector of floating point type. Not all targets support
8035all types however.
8036
8037::
8038
8039 declare float @llvm.fabs.f32(float %Val)
8040 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008041 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008042 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008043 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008044
8045Overview:
8046"""""""""
8047
8048The '``llvm.fabs.*``' intrinsics return the absolute value of the
8049operand.
8050
8051Arguments:
8052""""""""""
8053
8054The argument and return value are floating point numbers of the same
8055type.
8056
8057Semantics:
8058""""""""""
8059
8060This function returns the same values as the libm ``fabs`` functions
8061would, and handles error conditions in the same way.
8062
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008063'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008064^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008065
8066Syntax:
8067"""""""
8068
8069This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
8070floating point or vector of floating point type. Not all targets support
8071all types however.
8072
8073::
8074
Matt Arsenault64313c92014-10-22 18:25:02 +00008075 declare float @llvm.minnum.f32(float %Val0, float %Val1)
8076 declare double @llvm.minnum.f64(double %Val0, double %Val1)
8077 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8078 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
8079 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008080
8081Overview:
8082"""""""""
8083
8084The '``llvm.minnum.*``' intrinsics return the minimum of the two
8085arguments.
8086
8087
8088Arguments:
8089""""""""""
8090
8091The arguments and return value are floating point numbers of the same
8092type.
8093
8094Semantics:
8095""""""""""
8096
8097Follows the IEEE-754 semantics for minNum, which also match for libm's
8098fmin.
8099
8100If either operand is a NaN, returns the other non-NaN operand. Returns
8101NaN only if both operands are NaN. If the operands compare equal,
8102returns a value that compares equal to both operands. This means that
8103fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8104
8105'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008106^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008107
8108Syntax:
8109"""""""
8110
8111This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
8112floating point or vector of floating point type. Not all targets support
8113all types however.
8114
8115::
8116
Matt Arsenault64313c92014-10-22 18:25:02 +00008117 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
8118 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
8119 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8120 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
8121 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008122
8123Overview:
8124"""""""""
8125
8126The '``llvm.maxnum.*``' intrinsics return the maximum of the two
8127arguments.
8128
8129
8130Arguments:
8131""""""""""
8132
8133The arguments and return value are floating point numbers of the same
8134type.
8135
8136Semantics:
8137""""""""""
8138Follows the IEEE-754 semantics for maxNum, which also match for libm's
8139fmax.
8140
8141If either operand is a NaN, returns the other non-NaN operand. Returns
8142NaN only if both operands are NaN. If the operands compare equal,
8143returns a value that compares equal to both operands. This means that
8144fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8145
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00008146'``llvm.copysign.*``' Intrinsic
8147^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8148
8149Syntax:
8150"""""""
8151
8152This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
8153floating point or vector of floating point type. Not all targets support
8154all types however.
8155
8156::
8157
8158 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
8159 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
8160 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
8161 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8162 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
8163
8164Overview:
8165"""""""""
8166
8167The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8168first operand and the sign of the second operand.
8169
8170Arguments:
8171""""""""""
8172
8173The arguments and return value are floating point numbers of the same
8174type.
8175
8176Semantics:
8177""""""""""
8178
8179This function returns the same values as the libm ``copysign``
8180functions would, and handles error conditions in the same way.
8181
Sean Silvab084af42012-12-07 10:36:55 +00008182'``llvm.floor.*``' Intrinsic
8183^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8184
8185Syntax:
8186"""""""
8187
8188This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8189floating point or vector of floating point type. Not all targets support
8190all types however.
8191
8192::
8193
8194 declare float @llvm.floor.f32(float %Val)
8195 declare double @llvm.floor.f64(double %Val)
8196 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
8197 declare fp128 @llvm.floor.f128(fp128 %Val)
8198 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
8199
8200Overview:
8201"""""""""
8202
8203The '``llvm.floor.*``' intrinsics return the floor of the operand.
8204
8205Arguments:
8206""""""""""
8207
8208The argument and return value are floating point numbers of the same
8209type.
8210
8211Semantics:
8212""""""""""
8213
8214This function returns the same values as the libm ``floor`` functions
8215would, and handles error conditions in the same way.
8216
8217'``llvm.ceil.*``' Intrinsic
8218^^^^^^^^^^^^^^^^^^^^^^^^^^^
8219
8220Syntax:
8221"""""""
8222
8223This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8224floating point or vector of floating point type. Not all targets support
8225all types however.
8226
8227::
8228
8229 declare float @llvm.ceil.f32(float %Val)
8230 declare double @llvm.ceil.f64(double %Val)
8231 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8232 declare fp128 @llvm.ceil.f128(fp128 %Val)
8233 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8234
8235Overview:
8236"""""""""
8237
8238The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8239
8240Arguments:
8241""""""""""
8242
8243The argument and return value are floating point numbers of the same
8244type.
8245
8246Semantics:
8247""""""""""
8248
8249This function returns the same values as the libm ``ceil`` functions
8250would, and handles error conditions in the same way.
8251
8252'``llvm.trunc.*``' Intrinsic
8253^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8254
8255Syntax:
8256"""""""
8257
8258This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8259floating point or vector of floating point type. Not all targets support
8260all types however.
8261
8262::
8263
8264 declare float @llvm.trunc.f32(float %Val)
8265 declare double @llvm.trunc.f64(double %Val)
8266 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8267 declare fp128 @llvm.trunc.f128(fp128 %Val)
8268 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8269
8270Overview:
8271"""""""""
8272
8273The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8274nearest integer not larger in magnitude than the operand.
8275
8276Arguments:
8277""""""""""
8278
8279The argument and return value are floating point numbers of the same
8280type.
8281
8282Semantics:
8283""""""""""
8284
8285This function returns the same values as the libm ``trunc`` functions
8286would, and handles error conditions in the same way.
8287
8288'``llvm.rint.*``' Intrinsic
8289^^^^^^^^^^^^^^^^^^^^^^^^^^^
8290
8291Syntax:
8292"""""""
8293
8294This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8295floating point or vector of floating point type. Not all targets support
8296all types however.
8297
8298::
8299
8300 declare float @llvm.rint.f32(float %Val)
8301 declare double @llvm.rint.f64(double %Val)
8302 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8303 declare fp128 @llvm.rint.f128(fp128 %Val)
8304 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8305
8306Overview:
8307"""""""""
8308
8309The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8310nearest integer. It may raise an inexact floating-point exception if the
8311operand isn't an integer.
8312
8313Arguments:
8314""""""""""
8315
8316The argument and return value are floating point numbers of the same
8317type.
8318
8319Semantics:
8320""""""""""
8321
8322This function returns the same values as the libm ``rint`` functions
8323would, and handles error conditions in the same way.
8324
8325'``llvm.nearbyint.*``' Intrinsic
8326^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8327
8328Syntax:
8329"""""""
8330
8331This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8332floating point or vector of floating point type. Not all targets support
8333all types however.
8334
8335::
8336
8337 declare float @llvm.nearbyint.f32(float %Val)
8338 declare double @llvm.nearbyint.f64(double %Val)
8339 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8340 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8341 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8342
8343Overview:
8344"""""""""
8345
8346The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8347nearest integer.
8348
8349Arguments:
8350""""""""""
8351
8352The argument and return value are floating point numbers of the same
8353type.
8354
8355Semantics:
8356""""""""""
8357
8358This function returns the same values as the libm ``nearbyint``
8359functions would, and handles error conditions in the same way.
8360
Hal Finkel171817e2013-08-07 22:49:12 +00008361'``llvm.round.*``' Intrinsic
8362^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8363
8364Syntax:
8365"""""""
8366
8367This is an overloaded intrinsic. You can use ``llvm.round`` on any
8368floating point or vector of floating point type. Not all targets support
8369all types however.
8370
8371::
8372
8373 declare float @llvm.round.f32(float %Val)
8374 declare double @llvm.round.f64(double %Val)
8375 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8376 declare fp128 @llvm.round.f128(fp128 %Val)
8377 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8378
8379Overview:
8380"""""""""
8381
8382The '``llvm.round.*``' intrinsics returns the operand rounded to the
8383nearest integer.
8384
8385Arguments:
8386""""""""""
8387
8388The argument and return value are floating point numbers of the same
8389type.
8390
8391Semantics:
8392""""""""""
8393
8394This function returns the same values as the libm ``round``
8395functions would, and handles error conditions in the same way.
8396
Sean Silvab084af42012-12-07 10:36:55 +00008397Bit Manipulation Intrinsics
8398---------------------------
8399
8400LLVM provides intrinsics for a few important bit manipulation
8401operations. These allow efficient code generation for some algorithms.
8402
8403'``llvm.bswap.*``' Intrinsics
8404^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8405
8406Syntax:
8407"""""""
8408
8409This is an overloaded intrinsic function. You can use bswap on any
8410integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8411
8412::
8413
8414 declare i16 @llvm.bswap.i16(i16 <id>)
8415 declare i32 @llvm.bswap.i32(i32 <id>)
8416 declare i64 @llvm.bswap.i64(i64 <id>)
8417
8418Overview:
8419"""""""""
8420
8421The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8422values with an even number of bytes (positive multiple of 16 bits).
8423These are useful for performing operations on data that is not in the
8424target's native byte order.
8425
8426Semantics:
8427""""""""""
8428
8429The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8430and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8431intrinsic returns an i32 value that has the four bytes of the input i32
8432swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8433returned i32 will have its bytes in 3, 2, 1, 0 order. The
8434``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8435concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8436respectively).
8437
8438'``llvm.ctpop.*``' Intrinsic
8439^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8440
8441Syntax:
8442"""""""
8443
8444This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8445bit width, or on any vector with integer elements. Not all targets
8446support all bit widths or vector types, however.
8447
8448::
8449
8450 declare i8 @llvm.ctpop.i8(i8 <src>)
8451 declare i16 @llvm.ctpop.i16(i16 <src>)
8452 declare i32 @llvm.ctpop.i32(i32 <src>)
8453 declare i64 @llvm.ctpop.i64(i64 <src>)
8454 declare i256 @llvm.ctpop.i256(i256 <src>)
8455 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8456
8457Overview:
8458"""""""""
8459
8460The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8461in a value.
8462
8463Arguments:
8464""""""""""
8465
8466The only argument is the value to be counted. The argument may be of any
8467integer type, or a vector with integer elements. The return type must
8468match the argument type.
8469
8470Semantics:
8471""""""""""
8472
8473The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8474each element of a vector.
8475
8476'``llvm.ctlz.*``' Intrinsic
8477^^^^^^^^^^^^^^^^^^^^^^^^^^^
8478
8479Syntax:
8480"""""""
8481
8482This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8483integer bit width, or any vector whose elements are integers. Not all
8484targets support all bit widths or vector types, however.
8485
8486::
8487
8488 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8489 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8490 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8491 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8492 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8493 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8494
8495Overview:
8496"""""""""
8497
8498The '``llvm.ctlz``' family of intrinsic functions counts the number of
8499leading zeros in a variable.
8500
8501Arguments:
8502""""""""""
8503
8504The first argument is the value to be counted. This argument may be of
8505any integer type, or a vectory with integer element type. The return
8506type must match the first argument type.
8507
8508The second argument must be a constant and is a flag to indicate whether
8509the intrinsic should ensure that a zero as the first argument produces a
8510defined result. Historically some architectures did not provide a
8511defined result for zero values as efficiently, and many algorithms are
8512now predicated on avoiding zero-value inputs.
8513
8514Semantics:
8515""""""""""
8516
8517The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8518zeros in a variable, or within each element of the vector. If
8519``src == 0`` then the result is the size in bits of the type of ``src``
8520if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8521``llvm.ctlz(i32 2) = 30``.
8522
8523'``llvm.cttz.*``' Intrinsic
8524^^^^^^^^^^^^^^^^^^^^^^^^^^^
8525
8526Syntax:
8527"""""""
8528
8529This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8530integer bit width, or any vector of integer elements. Not all targets
8531support all bit widths or vector types, however.
8532
8533::
8534
8535 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8536 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8537 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8538 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8539 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8540 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8541
8542Overview:
8543"""""""""
8544
8545The '``llvm.cttz``' family of intrinsic functions counts the number of
8546trailing zeros.
8547
8548Arguments:
8549""""""""""
8550
8551The first argument is the value to be counted. This argument may be of
8552any integer type, or a vectory with integer element type. The return
8553type must match the first argument type.
8554
8555The second argument must be a constant and is a flag to indicate whether
8556the intrinsic should ensure that a zero as the first argument produces a
8557defined result. Historically some architectures did not provide a
8558defined result for zero values as efficiently, and many algorithms are
8559now predicated on avoiding zero-value inputs.
8560
8561Semantics:
8562""""""""""
8563
8564The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8565zeros in a variable, or within each element of a vector. If ``src == 0``
8566then the result is the size in bits of the type of ``src`` if
8567``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8568``llvm.cttz(2) = 1``.
8569
8570Arithmetic with Overflow Intrinsics
8571-----------------------------------
8572
8573LLVM provides intrinsics for some arithmetic with overflow operations.
8574
8575'``llvm.sadd.with.overflow.*``' Intrinsics
8576^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8577
8578Syntax:
8579"""""""
8580
8581This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8582on any integer bit width.
8583
8584::
8585
8586 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8587 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8588 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8589
8590Overview:
8591"""""""""
8592
8593The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8594a signed addition of the two arguments, and indicate whether an overflow
8595occurred during the signed summation.
8596
8597Arguments:
8598""""""""""
8599
8600The arguments (%a and %b) and the first element of the result structure
8601may be of integer types of any bit width, but they must have the same
8602bit width. The second element of the result structure must be of type
8603``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8604addition.
8605
8606Semantics:
8607""""""""""
8608
8609The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008610a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008611first element of which is the signed summation, and the second element
8612of which is a bit specifying if the signed summation resulted in an
8613overflow.
8614
8615Examples:
8616"""""""""
8617
8618.. code-block:: llvm
8619
8620 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8621 %sum = extractvalue {i32, i1} %res, 0
8622 %obit = extractvalue {i32, i1} %res, 1
8623 br i1 %obit, label %overflow, label %normal
8624
8625'``llvm.uadd.with.overflow.*``' Intrinsics
8626^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8627
8628Syntax:
8629"""""""
8630
8631This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8632on any integer bit width.
8633
8634::
8635
8636 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8637 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8638 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8639
8640Overview:
8641"""""""""
8642
8643The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8644an unsigned addition of the two arguments, and indicate whether a carry
8645occurred during the unsigned summation.
8646
8647Arguments:
8648""""""""""
8649
8650The arguments (%a and %b) and the first element of the result structure
8651may be of integer types of any bit width, but they must have the same
8652bit width. The second element of the result structure must be of type
8653``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8654addition.
8655
8656Semantics:
8657""""""""""
8658
8659The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008660an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008661first element of which is the sum, and the second element of which is a
8662bit specifying if the unsigned summation resulted in a carry.
8663
8664Examples:
8665"""""""""
8666
8667.. code-block:: llvm
8668
8669 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8670 %sum = extractvalue {i32, i1} %res, 0
8671 %obit = extractvalue {i32, i1} %res, 1
8672 br i1 %obit, label %carry, label %normal
8673
8674'``llvm.ssub.with.overflow.*``' Intrinsics
8675^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8676
8677Syntax:
8678"""""""
8679
8680This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8681on any integer bit width.
8682
8683::
8684
8685 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8686 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8687 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8688
8689Overview:
8690"""""""""
8691
8692The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8693a signed subtraction of the two arguments, and indicate whether an
8694overflow occurred during the signed subtraction.
8695
8696Arguments:
8697""""""""""
8698
8699The arguments (%a and %b) and the first element of the result structure
8700may be of integer types of any bit width, but they must have the same
8701bit width. The second element of the result structure must be of type
8702``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8703subtraction.
8704
8705Semantics:
8706""""""""""
8707
8708The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008709a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008710first element of which is the subtraction, and the second element of
8711which is a bit specifying if the signed subtraction resulted in an
8712overflow.
8713
8714Examples:
8715"""""""""
8716
8717.. code-block:: llvm
8718
8719 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8720 %sum = extractvalue {i32, i1} %res, 0
8721 %obit = extractvalue {i32, i1} %res, 1
8722 br i1 %obit, label %overflow, label %normal
8723
8724'``llvm.usub.with.overflow.*``' Intrinsics
8725^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8726
8727Syntax:
8728"""""""
8729
8730This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8731on any integer bit width.
8732
8733::
8734
8735 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8736 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8737 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8738
8739Overview:
8740"""""""""
8741
8742The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8743an unsigned subtraction of the two arguments, and indicate whether an
8744overflow occurred during the unsigned subtraction.
8745
8746Arguments:
8747""""""""""
8748
8749The arguments (%a and %b) and the first element of the result structure
8750may be of integer types of any bit width, but they must have the same
8751bit width. The second element of the result structure must be of type
8752``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8753subtraction.
8754
8755Semantics:
8756""""""""""
8757
8758The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008759an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008760the first element of which is the subtraction, and the second element of
8761which is a bit specifying if the unsigned subtraction resulted in an
8762overflow.
8763
8764Examples:
8765"""""""""
8766
8767.. code-block:: llvm
8768
8769 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8770 %sum = extractvalue {i32, i1} %res, 0
8771 %obit = extractvalue {i32, i1} %res, 1
8772 br i1 %obit, label %overflow, label %normal
8773
8774'``llvm.smul.with.overflow.*``' Intrinsics
8775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8776
8777Syntax:
8778"""""""
8779
8780This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8781on any integer bit width.
8782
8783::
8784
8785 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8786 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8787 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8788
8789Overview:
8790"""""""""
8791
8792The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8793a signed multiplication of the two arguments, and indicate whether an
8794overflow occurred during the signed multiplication.
8795
8796Arguments:
8797""""""""""
8798
8799The arguments (%a and %b) and the first element of the result structure
8800may be of integer types of any bit width, but they must have the same
8801bit width. The second element of the result structure must be of type
8802``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8803multiplication.
8804
8805Semantics:
8806""""""""""
8807
8808The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008809a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008810the first element of which is the multiplication, and the second element
8811of which is a bit specifying if the signed multiplication resulted in an
8812overflow.
8813
8814Examples:
8815"""""""""
8816
8817.. code-block:: llvm
8818
8819 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8820 %sum = extractvalue {i32, i1} %res, 0
8821 %obit = extractvalue {i32, i1} %res, 1
8822 br i1 %obit, label %overflow, label %normal
8823
8824'``llvm.umul.with.overflow.*``' Intrinsics
8825^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8826
8827Syntax:
8828"""""""
8829
8830This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8831on any integer bit width.
8832
8833::
8834
8835 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8836 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8837 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8838
8839Overview:
8840"""""""""
8841
8842The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8843a unsigned multiplication of the two arguments, and indicate whether an
8844overflow occurred during the unsigned multiplication.
8845
8846Arguments:
8847""""""""""
8848
8849The arguments (%a and %b) and the first element of the result structure
8850may be of integer types of any bit width, but they must have the same
8851bit width. The second element of the result structure must be of type
8852``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8853multiplication.
8854
8855Semantics:
8856""""""""""
8857
8858The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008859an unsigned multiplication of the two arguments. They return a structure ---
8860the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008861element of which is a bit specifying if the unsigned multiplication
8862resulted in an overflow.
8863
8864Examples:
8865"""""""""
8866
8867.. code-block:: llvm
8868
8869 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8870 %sum = extractvalue {i32, i1} %res, 0
8871 %obit = extractvalue {i32, i1} %res, 1
8872 br i1 %obit, label %overflow, label %normal
8873
8874Specialised Arithmetic Intrinsics
8875---------------------------------
8876
8877'``llvm.fmuladd.*``' Intrinsic
8878^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8879
8880Syntax:
8881"""""""
8882
8883::
8884
8885 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8886 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8887
8888Overview:
8889"""""""""
8890
8891The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008892expressions that can be fused if the code generator determines that (a) the
8893target instruction set has support for a fused operation, and (b) that the
8894fused operation is more efficient than the equivalent, separate pair of mul
8895and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008896
8897Arguments:
8898""""""""""
8899
8900The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8901multiplicands, a and b, and an addend c.
8902
8903Semantics:
8904""""""""""
8905
8906The expression:
8907
8908::
8909
8910 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8911
8912is equivalent to the expression a \* b + c, except that rounding will
8913not be performed between the multiplication and addition steps if the
8914code generator fuses the operations. Fusion is not guaranteed, even if
8915the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008916corresponding llvm.fma.\* intrinsic function should be used
8917instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008918
8919Examples:
8920"""""""""
8921
8922.. code-block:: llvm
8923
Tim Northover675a0962014-06-13 14:24:23 +00008924 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00008925
8926Half Precision Floating Point Intrinsics
8927----------------------------------------
8928
8929For most target platforms, half precision floating point is a
8930storage-only format. This means that it is a dense encoding (in memory)
8931but does not support computation in the format.
8932
8933This means that code must first load the half-precision floating point
8934value as an i16, then convert it to float with
8935:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8936then be performed on the float value (including extending to double
8937etc). To store the value back to memory, it is first converted to float
8938if needed, then converted to i16 with
8939:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8940i16 value.
8941
8942.. _int_convert_to_fp16:
8943
8944'``llvm.convert.to.fp16``' Intrinsic
8945^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8946
8947Syntax:
8948"""""""
8949
8950::
8951
Tim Northoverfd7e4242014-07-17 10:51:23 +00008952 declare i16 @llvm.convert.to.fp16.f32(float %a)
8953 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00008954
8955Overview:
8956"""""""""
8957
Tim Northoverfd7e4242014-07-17 10:51:23 +00008958The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8959conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00008960
8961Arguments:
8962""""""""""
8963
8964The intrinsic function contains single argument - the value to be
8965converted.
8966
8967Semantics:
8968""""""""""
8969
Tim Northoverfd7e4242014-07-17 10:51:23 +00008970The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8971conventional floating point format to half precision floating point format. The
8972return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00008973
8974Examples:
8975"""""""""
8976
8977.. code-block:: llvm
8978
Tim Northoverfd7e4242014-07-17 10:51:23 +00008979 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00008980 store i16 %res, i16* @x, align 2
8981
8982.. _int_convert_from_fp16:
8983
8984'``llvm.convert.from.fp16``' Intrinsic
8985^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8986
8987Syntax:
8988"""""""
8989
8990::
8991
Tim Northoverfd7e4242014-07-17 10:51:23 +00008992 declare float @llvm.convert.from.fp16.f32(i16 %a)
8993 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008994
8995Overview:
8996"""""""""
8997
8998The '``llvm.convert.from.fp16``' intrinsic function performs a
8999conversion from half precision floating point format to single precision
9000floating point format.
9001
9002Arguments:
9003""""""""""
9004
9005The intrinsic function contains single argument - the value to be
9006converted.
9007
9008Semantics:
9009""""""""""
9010
9011The '``llvm.convert.from.fp16``' intrinsic function performs a
9012conversion from half single precision floating point format to single
9013precision floating point format. The input half-float value is
9014represented by an ``i16`` value.
9015
9016Examples:
9017"""""""""
9018
9019.. code-block:: llvm
9020
9021 %a = load i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00009022 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009023
9024Debugger Intrinsics
9025-------------------
9026
9027The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
9028prefix), are described in the `LLVM Source Level
9029Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
9030document.
9031
9032Exception Handling Intrinsics
9033-----------------------------
9034
9035The LLVM exception handling intrinsics (which all start with
9036``llvm.eh.`` prefix), are described in the `LLVM Exception
9037Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
9038
9039.. _int_trampoline:
9040
9041Trampoline Intrinsics
9042---------------------
9043
9044These intrinsics make it possible to excise one parameter, marked with
9045the :ref:`nest <nest>` attribute, from a function. The result is a
9046callable function pointer lacking the nest parameter - the caller does
9047not need to provide a value for it. Instead, the value to use is stored
9048in advance in a "trampoline", a block of memory usually allocated on the
9049stack, which also contains code to splice the nest value into the
9050argument list. This is used to implement the GCC nested function address
9051extension.
9052
9053For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
9054then the resulting function pointer has signature ``i32 (i32, i32)*``.
9055It can be created as follows:
9056
9057.. code-block:: llvm
9058
9059 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
9060 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
9061 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
9062 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
9063 %fp = bitcast i8* %p to i32 (i32, i32)*
9064
9065The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
9066``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
9067
9068.. _int_it:
9069
9070'``llvm.init.trampoline``' Intrinsic
9071^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9072
9073Syntax:
9074"""""""
9075
9076::
9077
9078 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
9079
9080Overview:
9081"""""""""
9082
9083This fills the memory pointed to by ``tramp`` with executable code,
9084turning it into a trampoline.
9085
9086Arguments:
9087""""""""""
9088
9089The ``llvm.init.trampoline`` intrinsic takes three arguments, all
9090pointers. The ``tramp`` argument must point to a sufficiently large and
9091sufficiently aligned block of memory; this memory is written to by the
9092intrinsic. Note that the size and the alignment are target-specific -
9093LLVM currently provides no portable way of determining them, so a
9094front-end that generates this intrinsic needs to have some
9095target-specific knowledge. The ``func`` argument must hold a function
9096bitcast to an ``i8*``.
9097
9098Semantics:
9099""""""""""
9100
9101The block of memory pointed to by ``tramp`` is filled with target
9102dependent code, turning it into a function. Then ``tramp`` needs to be
9103passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
9104be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
9105function's signature is the same as that of ``func`` with any arguments
9106marked with the ``nest`` attribute removed. At most one such ``nest``
9107argument is allowed, and it must be of pointer type. Calling the new
9108function is equivalent to calling ``func`` with the same argument list,
9109but with ``nval`` used for the missing ``nest`` argument. If, after
9110calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
9111modified, then the effect of any later call to the returned function
9112pointer is undefined.
9113
9114.. _int_at:
9115
9116'``llvm.adjust.trampoline``' Intrinsic
9117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9118
9119Syntax:
9120"""""""
9121
9122::
9123
9124 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
9125
9126Overview:
9127"""""""""
9128
9129This performs any required machine-specific adjustment to the address of
9130a trampoline (passed as ``tramp``).
9131
9132Arguments:
9133""""""""""
9134
9135``tramp`` must point to a block of memory which already has trampoline
9136code filled in by a previous call to
9137:ref:`llvm.init.trampoline <int_it>`.
9138
9139Semantics:
9140""""""""""
9141
9142On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009143different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00009144intrinsic returns the executable address corresponding to ``tramp``
9145after performing the required machine specific adjustments. The pointer
9146returned can then be :ref:`bitcast and executed <int_trampoline>`.
9147
9148Memory Use Markers
9149------------------
9150
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009151This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00009152memory objects and ranges where variables are immutable.
9153
Reid Klecknera534a382013-12-19 02:14:12 +00009154.. _int_lifestart:
9155
Sean Silvab084af42012-12-07 10:36:55 +00009156'``llvm.lifetime.start``' Intrinsic
9157^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9158
9159Syntax:
9160"""""""
9161
9162::
9163
9164 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
9165
9166Overview:
9167"""""""""
9168
9169The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
9170object's lifetime.
9171
9172Arguments:
9173""""""""""
9174
9175The first argument is a constant integer representing the size of the
9176object, or -1 if it is variable sized. The second argument is a pointer
9177to the object.
9178
9179Semantics:
9180""""""""""
9181
9182This intrinsic indicates that before this point in the code, the value
9183of the memory pointed to by ``ptr`` is dead. This means that it is known
9184to never be used and has an undefined value. A load from the pointer
9185that precedes this intrinsic can be replaced with ``'undef'``.
9186
Reid Klecknera534a382013-12-19 02:14:12 +00009187.. _int_lifeend:
9188
Sean Silvab084af42012-12-07 10:36:55 +00009189'``llvm.lifetime.end``' Intrinsic
9190^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9191
9192Syntax:
9193"""""""
9194
9195::
9196
9197 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
9198
9199Overview:
9200"""""""""
9201
9202The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
9203object's lifetime.
9204
9205Arguments:
9206""""""""""
9207
9208The first argument is a constant integer representing the size of the
9209object, or -1 if it is variable sized. The second argument is a pointer
9210to the object.
9211
9212Semantics:
9213""""""""""
9214
9215This intrinsic indicates that after this point in the code, the value of
9216the memory pointed to by ``ptr`` is dead. This means that it is known to
9217never be used and has an undefined value. Any stores into the memory
9218object following this intrinsic may be removed as dead.
9219
9220'``llvm.invariant.start``' Intrinsic
9221^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9222
9223Syntax:
9224"""""""
9225
9226::
9227
9228 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9229
9230Overview:
9231"""""""""
9232
9233The '``llvm.invariant.start``' intrinsic specifies that the contents of
9234a memory object will not change.
9235
9236Arguments:
9237""""""""""
9238
9239The first argument is a constant integer representing the size of the
9240object, or -1 if it is variable sized. The second argument is a pointer
9241to the object.
9242
9243Semantics:
9244""""""""""
9245
9246This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9247the return value, the referenced memory location is constant and
9248unchanging.
9249
9250'``llvm.invariant.end``' Intrinsic
9251^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9252
9253Syntax:
9254"""""""
9255
9256::
9257
9258 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9259
9260Overview:
9261"""""""""
9262
9263The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9264memory object are mutable.
9265
9266Arguments:
9267""""""""""
9268
9269The first argument is the matching ``llvm.invariant.start`` intrinsic.
9270The second argument is a constant integer representing the size of the
9271object, or -1 if it is variable sized and the third argument is a
9272pointer to the object.
9273
9274Semantics:
9275""""""""""
9276
9277This intrinsic indicates that the memory is mutable again.
9278
9279General Intrinsics
9280------------------
9281
9282This class of intrinsics is designed to be generic and has no specific
9283purpose.
9284
9285'``llvm.var.annotation``' Intrinsic
9286^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9287
9288Syntax:
9289"""""""
9290
9291::
9292
9293 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9294
9295Overview:
9296"""""""""
9297
9298The '``llvm.var.annotation``' intrinsic.
9299
9300Arguments:
9301""""""""""
9302
9303The first argument is a pointer to a value, the second is a pointer to a
9304global string, the third is a pointer to a global string which is the
9305source file name, and the last argument is the line number.
9306
9307Semantics:
9308""""""""""
9309
9310This intrinsic allows annotation of local variables with arbitrary
9311strings. This can be useful for special purpose optimizations that want
9312to look for these annotations. These have no other defined use; they are
9313ignored by code generation and optimization.
9314
Michael Gottesman88d18832013-03-26 00:34:27 +00009315'``llvm.ptr.annotation.*``' Intrinsic
9316^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9317
9318Syntax:
9319"""""""
9320
9321This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9322pointer to an integer of any width. *NOTE* you must specify an address space for
9323the pointer. The identifier for the default address space is the integer
9324'``0``'.
9325
9326::
9327
9328 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9329 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9330 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9331 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9332 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9333
9334Overview:
9335"""""""""
9336
9337The '``llvm.ptr.annotation``' intrinsic.
9338
9339Arguments:
9340""""""""""
9341
9342The first argument is a pointer to an integer value of arbitrary bitwidth
9343(result of some expression), the second is a pointer to a global string, the
9344third is a pointer to a global string which is the source file name, and the
9345last argument is the line number. It returns the value of the first argument.
9346
9347Semantics:
9348""""""""""
9349
9350This intrinsic allows annotation of a pointer to an integer with arbitrary
9351strings. This can be useful for special purpose optimizations that want to look
9352for these annotations. These have no other defined use; they are ignored by code
9353generation and optimization.
9354
Sean Silvab084af42012-12-07 10:36:55 +00009355'``llvm.annotation.*``' Intrinsic
9356^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9357
9358Syntax:
9359"""""""
9360
9361This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9362any integer bit width.
9363
9364::
9365
9366 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9367 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9368 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9369 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9370 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9371
9372Overview:
9373"""""""""
9374
9375The '``llvm.annotation``' intrinsic.
9376
9377Arguments:
9378""""""""""
9379
9380The first argument is an integer value (result of some expression), the
9381second is a pointer to a global string, the third is a pointer to a
9382global string which is the source file name, and the last argument is
9383the line number. It returns the value of the first argument.
9384
9385Semantics:
9386""""""""""
9387
9388This intrinsic allows annotations to be put on arbitrary expressions
9389with arbitrary strings. This can be useful for special purpose
9390optimizations that want to look for these annotations. These have no
9391other defined use; they are ignored by code generation and optimization.
9392
9393'``llvm.trap``' Intrinsic
9394^^^^^^^^^^^^^^^^^^^^^^^^^
9395
9396Syntax:
9397"""""""
9398
9399::
9400
9401 declare void @llvm.trap() noreturn nounwind
9402
9403Overview:
9404"""""""""
9405
9406The '``llvm.trap``' intrinsic.
9407
9408Arguments:
9409""""""""""
9410
9411None.
9412
9413Semantics:
9414""""""""""
9415
9416This intrinsic is lowered to the target dependent trap instruction. If
9417the target does not have a trap instruction, this intrinsic will be
9418lowered to a call of the ``abort()`` function.
9419
9420'``llvm.debugtrap``' Intrinsic
9421^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9422
9423Syntax:
9424"""""""
9425
9426::
9427
9428 declare void @llvm.debugtrap() nounwind
9429
9430Overview:
9431"""""""""
9432
9433The '``llvm.debugtrap``' intrinsic.
9434
9435Arguments:
9436""""""""""
9437
9438None.
9439
9440Semantics:
9441""""""""""
9442
9443This intrinsic is lowered to code which is intended to cause an
9444execution trap with the intention of requesting the attention of a
9445debugger.
9446
9447'``llvm.stackprotector``' Intrinsic
9448^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9449
9450Syntax:
9451"""""""
9452
9453::
9454
9455 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9456
9457Overview:
9458"""""""""
9459
9460The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9461onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9462is placed on the stack before local variables.
9463
9464Arguments:
9465""""""""""
9466
9467The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9468The first argument is the value loaded from the stack guard
9469``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9470enough space to hold the value of the guard.
9471
9472Semantics:
9473""""""""""
9474
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009475This intrinsic causes the prologue/epilogue inserter to force the position of
9476the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9477to ensure that if a local variable on the stack is overwritten, it will destroy
9478the value of the guard. When the function exits, the guard on the stack is
9479checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9480different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9481calling the ``__stack_chk_fail()`` function.
9482
9483'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009484^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009485
9486Syntax:
9487"""""""
9488
9489::
9490
9491 declare void @llvm.stackprotectorcheck(i8** <guard>)
9492
9493Overview:
9494"""""""""
9495
9496The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009497created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009498``__stack_chk_fail()`` function.
9499
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009500Arguments:
9501""""""""""
9502
9503The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9504the variable ``@__stack_chk_guard``.
9505
9506Semantics:
9507""""""""""
9508
9509This intrinsic is provided to perform the stack protector check by comparing
9510``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9511values do not match call the ``__stack_chk_fail()`` function.
9512
9513The reason to provide this as an IR level intrinsic instead of implementing it
9514via other IR operations is that in order to perform this operation at the IR
9515level without an intrinsic, one would need to create additional basic blocks to
9516handle the success/failure cases. This makes it difficult to stop the stack
9517protector check from disrupting sibling tail calls in Codegen. With this
9518intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009519codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009520
Sean Silvab084af42012-12-07 10:36:55 +00009521'``llvm.objectsize``' Intrinsic
9522^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9523
9524Syntax:
9525"""""""
9526
9527::
9528
9529 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9530 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9531
9532Overview:
9533"""""""""
9534
9535The ``llvm.objectsize`` intrinsic is designed to provide information to
9536the optimizers to determine at compile time whether a) an operation
9537(like memcpy) will overflow a buffer that corresponds to an object, or
9538b) that a runtime check for overflow isn't necessary. An object in this
9539context means an allocation of a specific class, structure, array, or
9540other object.
9541
9542Arguments:
9543""""""""""
9544
9545The ``llvm.objectsize`` intrinsic takes two arguments. The first
9546argument is a pointer to or into the ``object``. The second argument is
9547a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9548or -1 (if false) when the object size is unknown. The second argument
9549only accepts constants.
9550
9551Semantics:
9552""""""""""
9553
9554The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9555the size of the object concerned. If the size cannot be determined at
9556compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9557on the ``min`` argument).
9558
9559'``llvm.expect``' Intrinsic
9560^^^^^^^^^^^^^^^^^^^^^^^^^^^
9561
9562Syntax:
9563"""""""
9564
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009565This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9566integer bit width.
9567
Sean Silvab084af42012-12-07 10:36:55 +00009568::
9569
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009570 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009571 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9572 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9573
9574Overview:
9575"""""""""
9576
9577The ``llvm.expect`` intrinsic provides information about expected (the
9578most probable) value of ``val``, which can be used by optimizers.
9579
9580Arguments:
9581""""""""""
9582
9583The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9584a value. The second argument is an expected value, this needs to be a
9585constant value, variables are not allowed.
9586
9587Semantics:
9588""""""""""
9589
9590This intrinsic is lowered to the ``val``.
9591
Hal Finkel93046912014-07-25 21:13:35 +00009592'``llvm.assume``' Intrinsic
9593^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9594
9595Syntax:
9596"""""""
9597
9598::
9599
9600 declare void @llvm.assume(i1 %cond)
9601
9602Overview:
9603"""""""""
9604
9605The ``llvm.assume`` allows the optimizer to assume that the provided
9606condition is true. This information can then be used in simplifying other parts
9607of the code.
9608
9609Arguments:
9610""""""""""
9611
9612The condition which the optimizer may assume is always true.
9613
9614Semantics:
9615""""""""""
9616
9617The intrinsic allows the optimizer to assume that the provided condition is
9618always true whenever the control flow reaches the intrinsic call. No code is
9619generated for this intrinsic, and instructions that contribute only to the
9620provided condition are not used for code generation. If the condition is
9621violated during execution, the behavior is undefined.
9622
9623Please note that optimizer might limit the transformations performed on values
9624used by the ``llvm.assume`` intrinsic in order to preserve the instructions
9625only used to form the intrinsic's input argument. This might prove undesirable
9626if the extra information provided by the ``llvm.assume`` intrinsic does cause
9627sufficient overall improvement in code quality. For this reason,
9628``llvm.assume`` should not be used to document basic mathematical invariants
9629that the optimizer can otherwise deduce or facts that are of little use to the
9630optimizer.
9631
Sean Silvab084af42012-12-07 10:36:55 +00009632'``llvm.donothing``' Intrinsic
9633^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9634
9635Syntax:
9636"""""""
9637
9638::
9639
9640 declare void @llvm.donothing() nounwind readnone
9641
9642Overview:
9643"""""""""
9644
Juergen Ributzkac9161192014-10-23 22:36:13 +00009645The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
9646two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
9647with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009648
9649Arguments:
9650""""""""""
9651
9652None.
9653
9654Semantics:
9655""""""""""
9656
9657This intrinsic does nothing, and it's removed by optimizers and ignored
9658by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009659
9660Stack Map Intrinsics
9661--------------------
9662
9663LLVM provides experimental intrinsics to support runtime patching
9664mechanisms commonly desired in dynamic language JITs. These intrinsics
9665are described in :doc:`StackMaps`.