blob: b48769e1ee492d91f68f86b94605395e0644b0c6 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Richard Smith32dbdf62014-07-31 04:25:36 +000078 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000165 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000173 !0 = metadata !{i32 42, null, metadata !"string"}
174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
351 arguments into registers but allows them to be dynamcially
352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
356 This calling convention attempts to make the code in the caller as little
357 intrusive as possible. This calling convention behaves identical to the `C`
358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
371 of code that doesn't many registers. The cold path might need to call out to
372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000497.. _namedtypes:
498
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000499Structure Types
500---------------
Sean Silvab084af42012-12-07 10:36:55 +0000501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
503types <t_struct>`. Literal types are uniqued structurally, but identified types
504are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000505to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000506
507An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000508
509.. code-block:: llvm
510
511 %mytype = type { %mytype*, i32 }
512
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000513Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
514literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000515
516.. _globalvars:
517
518Global Variables
519----------------
520
521Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000522instead of run-time.
523
Bob Wilson85b24f22014-06-12 20:40:33 +0000524Global variables definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525
526Global variables in other translation units can also be declared, in which
527case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000528
Bob Wilson85b24f22014-06-12 20:40:33 +0000529Either global variable definitions or declarations may have an explicit section
530to be placed in and may have an optional explicit alignment specified.
531
Michael Gottesman006039c2013-01-31 05:48:48 +0000532A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000536initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000567Additionally, the global can placed in a comdat if the target has the necessary
568support.
Sean Silvab084af42012-12-07 10:36:55 +0000569
Michael Gottesmane743a302013-02-04 03:22:00 +0000570By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000571variables defined within the module are not modified from their
572initial values before the start of the global initializer. This is
573true even for variables potentially accessible from outside the
574module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000575``@llvm.used`` or dllexported variables. This assumption may be suppressed
576by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000577
Sean Silvab084af42012-12-07 10:36:55 +0000578An explicit alignment may be specified for a global, which must be a
579power of 2. If not present, or if the alignment is set to zero, the
580alignment of the global is set by the target to whatever it feels
581convenient. If an explicit alignment is specified, the global is forced
582to have exactly that alignment. Targets and optimizers are not allowed
583to over-align the global if the global has an assigned section. In this
584case, the extra alignment could be observable: for example, code could
585assume that the globals are densely packed in their section and try to
586iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000587iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000588
Nico Rieck7157bb72014-01-14 15:22:47 +0000589Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
590
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000591Variables and aliasaes can have a
592:ref:`Thread Local Storage Model <tls_model>`.
593
Nico Rieck7157bb72014-01-14 15:22:47 +0000594Syntax::
595
596 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000597 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000598 <global | constant> <Type> [<InitializerConstant>]
599 [, section "name"] [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000600
Sean Silvab084af42012-12-07 10:36:55 +0000601For example, the following defines a global in a numbered address space
602with an initializer, section, and alignment:
603
604.. code-block:: llvm
605
606 @G = addrspace(5) constant float 1.0, section "foo", align 4
607
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000608The following example just declares a global variable
609
610.. code-block:: llvm
611
612 @G = external global i32
613
Sean Silvab084af42012-12-07 10:36:55 +0000614The following example defines a thread-local global with the
615``initialexec`` TLS model:
616
617.. code-block:: llvm
618
619 @G = thread_local(initialexec) global i32 0, align 4
620
621.. _functionstructure:
622
623Functions
624---------
625
626LLVM function definitions consist of the "``define``" keyword, an
627optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000628style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
629an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000630an optional ``unnamed_addr`` attribute, a return type, an optional
631:ref:`parameter attribute <paramattrs>` for the return type, a function
632name, a (possibly empty) argument list (each with optional :ref:`parameter
633attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000634an optional section, an optional alignment,
635an optional :ref:`comdat <langref_comdats>`,
636an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000637curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000638
639LLVM function declarations consist of the "``declare``" keyword, an
640optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000641style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
642an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000643an optional ``unnamed_addr`` attribute, a return type, an optional
644:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000645name, a possibly empty list of arguments, an optional alignment, an optional
646:ref:`garbage collector name <gc>` and an optional :ref:`prefix <prefixdata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000647
Bill Wendling6822ecb2013-10-27 05:09:12 +0000648A function definition contains a list of basic blocks, forming the CFG (Control
649Flow Graph) for the function. Each basic block may optionally start with a label
650(giving the basic block a symbol table entry), contains a list of instructions,
651and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
652function return). If an explicit label is not provided, a block is assigned an
653implicit numbered label, using the next value from the same counter as used for
654unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
655entry block does not have an explicit label, it will be assigned label "%0",
656then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000657
658The first basic block in a function is special in two ways: it is
659immediately executed on entrance to the function, and it is not allowed
660to have predecessor basic blocks (i.e. there can not be any branches to
661the entry block of a function). Because the block can have no
662predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
663
664LLVM allows an explicit section to be specified for functions. If the
665target supports it, it will emit functions to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000666Additionally, the function can placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000667
668An explicit alignment may be specified for a function. If not present,
669or if the alignment is set to zero, the alignment of the function is set
670by the target to whatever it feels convenient. If an explicit alignment
671is specified, the function is forced to have at least that much
672alignment. All alignments must be a power of 2.
673
674If the ``unnamed_addr`` attribute is given, the address is know to not
675be significant and two identical functions can be merged.
676
677Syntax::
678
Nico Rieck7157bb72014-01-14 15:22:47 +0000679 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000680 [cconv] [ret attrs]
681 <ResultType> @<FunctionName> ([argument list])
David Majnemerdad0a642014-06-27 18:19:56 +0000682 [unnamed_addr] [fn Attrs] [section "name"] [comdat $<ComdatName>]
683 [align N] [gc] [prefix Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000684
Dan Liew2661dfc2014-08-20 15:06:30 +0000685The argument list is a comma seperated sequence of arguments where each
686argument is of the following form
687
688Syntax::
689
690 <type> [parameter Attrs] [name]
691
692
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000693.. _langref_aliases:
694
Sean Silvab084af42012-12-07 10:36:55 +0000695Aliases
696-------
697
Rafael Espindola64c1e182014-06-03 02:41:57 +0000698Aliases, unlike function or variables, don't create any new data. They
699are just a new symbol and metadata for an existing position.
700
701Aliases have a name and an aliasee that is either a global value or a
702constant expression.
703
Nico Rieck7157bb72014-01-14 15:22:47 +0000704Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000705:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
706<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000707
708Syntax::
709
Rafael Espindola464fe022014-07-30 22:51:54 +0000710 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000711
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000712The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000713``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000714might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000715
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000716Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000717the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
718to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000719
Rafael Espindola64c1e182014-06-03 02:41:57 +0000720Since aliases are only a second name, some restrictions apply, of which
721some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000722
Rafael Espindola64c1e182014-06-03 02:41:57 +0000723* The expression defining the aliasee must be computable at assembly
724 time. Since it is just a name, no relocations can be used.
725
726* No alias in the expression can be weak as the possibility of the
727 intermediate alias being overridden cannot be represented in an
728 object file.
729
730* No global value in the expression can be a declaration, since that
731 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000732
David Majnemerdad0a642014-06-27 18:19:56 +0000733.. _langref_comdats:
734
735Comdats
736-------
737
738Comdat IR provides access to COFF and ELF object file COMDAT functionality.
739
Richard Smith32dbdf62014-07-31 04:25:36 +0000740Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000741specify this key will only end up in the final object file if the linker chooses
742that key over some other key. Aliases are placed in the same COMDAT that their
743aliasee computes to, if any.
744
745Comdats have a selection kind to provide input on how the linker should
746choose between keys in two different object files.
747
748Syntax::
749
750 $<Name> = comdat SelectionKind
751
752The selection kind must be one of the following:
753
754``any``
755 The linker may choose any COMDAT key, the choice is arbitrary.
756``exactmatch``
757 The linker may choose any COMDAT key but the sections must contain the
758 same data.
759``largest``
760 The linker will choose the section containing the largest COMDAT key.
761``noduplicates``
762 The linker requires that only section with this COMDAT key exist.
763``samesize``
764 The linker may choose any COMDAT key but the sections must contain the
765 same amount of data.
766
767Note that the Mach-O platform doesn't support COMDATs and ELF only supports
768``any`` as a selection kind.
769
770Here is an example of a COMDAT group where a function will only be selected if
771the COMDAT key's section is the largest:
772
773.. code-block:: llvm
774
775 $foo = comdat largest
776 @foo = global i32 2, comdat $foo
777
778 define void @bar() comdat $foo {
779 ret void
780 }
781
782In a COFF object file, this will create a COMDAT section with selection kind
783``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
784and another COMDAT section with selection kind
785``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000786section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000787
788There are some restrictions on the properties of the global object.
789It, or an alias to it, must have the same name as the COMDAT group when
790targeting COFF.
791The contents and size of this object may be used during link-time to determine
792which COMDAT groups get selected depending on the selection kind.
793Because the name of the object must match the name of the COMDAT group, the
794linkage of the global object must not be local; local symbols can get renamed
795if a collision occurs in the symbol table.
796
797The combined use of COMDATS and section attributes may yield surprising results.
798For example:
799
800.. code-block:: llvm
801
802 $foo = comdat any
803 $bar = comdat any
804 @g1 = global i32 42, section "sec", comdat $foo
805 @g2 = global i32 42, section "sec", comdat $bar
806
807From the object file perspective, this requires the creation of two sections
808with the same name. This is necessary because both globals belong to different
809COMDAT groups and COMDATs, at the object file level, are represented by
810sections.
811
812Note that certain IR constructs like global variables and functions may create
813COMDATs in the object file in addition to any which are specified using COMDAT
814IR. This arises, for example, when a global variable has linkonce_odr linkage.
815
Sean Silvab084af42012-12-07 10:36:55 +0000816.. _namedmetadatastructure:
817
818Named Metadata
819--------------
820
821Named metadata is a collection of metadata. :ref:`Metadata
822nodes <metadata>` (but not metadata strings) are the only valid
823operands for a named metadata.
824
825Syntax::
826
827 ; Some unnamed metadata nodes, which are referenced by the named metadata.
828 !0 = metadata !{metadata !"zero"}
829 !1 = metadata !{metadata !"one"}
830 !2 = metadata !{metadata !"two"}
831 ; A named metadata.
832 !name = !{!0, !1, !2}
833
834.. _paramattrs:
835
836Parameter Attributes
837--------------------
838
839The return type and each parameter of a function type may have a set of
840*parameter attributes* associated with them. Parameter attributes are
841used to communicate additional information about the result or
842parameters of a function. Parameter attributes are considered to be part
843of the function, not of the function type, so functions with different
844parameter attributes can have the same function type.
845
846Parameter attributes are simple keywords that follow the type specified.
847If multiple parameter attributes are needed, they are space separated.
848For example:
849
850.. code-block:: llvm
851
852 declare i32 @printf(i8* noalias nocapture, ...)
853 declare i32 @atoi(i8 zeroext)
854 declare signext i8 @returns_signed_char()
855
856Note that any attributes for the function result (``nounwind``,
857``readonly``) come immediately after the argument list.
858
859Currently, only the following parameter attributes are defined:
860
861``zeroext``
862 This indicates to the code generator that the parameter or return
863 value should be zero-extended to the extent required by the target's
864 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
865 the caller (for a parameter) or the callee (for a return value).
866``signext``
867 This indicates to the code generator that the parameter or return
868 value should be sign-extended to the extent required by the target's
869 ABI (which is usually 32-bits) by the caller (for a parameter) or
870 the callee (for a return value).
871``inreg``
872 This indicates that this parameter or return value should be treated
873 in a special target-dependent fashion during while emitting code for
874 a function call or return (usually, by putting it in a register as
875 opposed to memory, though some targets use it to distinguish between
876 two different kinds of registers). Use of this attribute is
877 target-specific.
878``byval``
879 This indicates that the pointer parameter should really be passed by
880 value to the function. The attribute implies that a hidden copy of
881 the pointee is made between the caller and the callee, so the callee
882 is unable to modify the value in the caller. This attribute is only
883 valid on LLVM pointer arguments. It is generally used to pass
884 structs and arrays by value, but is also valid on pointers to
885 scalars. The copy is considered to belong to the caller not the
886 callee (for example, ``readonly`` functions should not write to
887 ``byval`` parameters). This is not a valid attribute for return
888 values.
889
890 The byval attribute also supports specifying an alignment with the
891 align attribute. It indicates the alignment of the stack slot to
892 form and the known alignment of the pointer specified to the call
893 site. If the alignment is not specified, then the code generator
894 makes a target-specific assumption.
895
Reid Klecknera534a382013-12-19 02:14:12 +0000896.. _attr_inalloca:
897
898``inalloca``
899
Reid Kleckner60d3a832014-01-16 22:59:24 +0000900 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000901 address of outgoing stack arguments. An ``inalloca`` argument must
902 be a pointer to stack memory produced by an ``alloca`` instruction.
903 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000904 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000905 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000906
Reid Kleckner436c42e2014-01-17 23:58:17 +0000907 An argument allocation may be used by a call at most once because
908 the call may deallocate it. The ``inalloca`` attribute cannot be
909 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000910 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
911 ``inalloca`` attribute also disables LLVM's implicit lowering of
912 large aggregate return values, which means that frontend authors
913 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000914
Reid Kleckner60d3a832014-01-16 22:59:24 +0000915 When the call site is reached, the argument allocation must have
916 been the most recent stack allocation that is still live, or the
917 results are undefined. It is possible to allocate additional stack
918 space after an argument allocation and before its call site, but it
919 must be cleared off with :ref:`llvm.stackrestore
920 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000921
922 See :doc:`InAlloca` for more information on how to use this
923 attribute.
924
Sean Silvab084af42012-12-07 10:36:55 +0000925``sret``
926 This indicates that the pointer parameter specifies the address of a
927 structure that is the return value of the function in the source
928 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000929 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000930 not to trap and to be properly aligned. This may only be applied to
931 the first parameter. This is not a valid attribute for return
932 values.
Sean Silva1703e702014-04-08 21:06:22 +0000933
Hal Finkelccc70902014-07-22 16:58:55 +0000934``align <n>``
935 This indicates that the pointer value may be assumed by the optimizer to
936 have the specified alignment.
937
938 Note that this attribute has additional semantics when combined with the
939 ``byval`` attribute.
940
Sean Silva1703e702014-04-08 21:06:22 +0000941.. _noalias:
942
Sean Silvab084af42012-12-07 10:36:55 +0000943``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000944 This indicates that objects accessed via pointer values
945 :ref:`based <pointeraliasing>` on the argument or return value are not also
946 accessed, during the execution of the function, via pointer values not
947 *based* on the argument or return value. The attribute on a return value
948 also has additional semantics described below. The caller shares the
949 responsibility with the callee for ensuring that these requirements are met.
950 For further details, please see the discussion of the NoAlias response in
951 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000952
953 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000954 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000955
956 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000957 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
958 attribute on return values are stronger than the semantics of the attribute
959 when used on function arguments. On function return values, the ``noalias``
960 attribute indicates that the function acts like a system memory allocation
961 function, returning a pointer to allocated storage disjoint from the
962 storage for any other object accessible to the caller.
963
Sean Silvab084af42012-12-07 10:36:55 +0000964``nocapture``
965 This indicates that the callee does not make any copies of the
966 pointer that outlive the callee itself. This is not a valid
967 attribute for return values.
968
969.. _nest:
970
971``nest``
972 This indicates that the pointer parameter can be excised using the
973 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000974 attribute for return values and can only be applied to one parameter.
975
976``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000977 This indicates that the function always returns the argument as its return
978 value. This is an optimization hint to the code generator when generating
979 the caller, allowing tail call optimization and omission of register saves
980 and restores in some cases; it is not checked or enforced when generating
981 the callee. The parameter and the function return type must be valid
982 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
983 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000984
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000985``nonnull``
986 This indicates that the parameter or return pointer is not null. This
987 attribute may only be applied to pointer typed parameters. This is not
988 checked or enforced by LLVM, the caller must ensure that the pointer
989 passed in is non-null, or the callee must ensure that the returned pointer
990 is non-null.
991
Hal Finkelb0407ba2014-07-18 15:51:28 +0000992``dereferenceable(<n>)``
993 This indicates that the parameter or return pointer is dereferenceable. This
994 attribute may only be applied to pointer typed parameters. A pointer that
995 is dereferenceable can be loaded from speculatively without a risk of
996 trapping. The number of bytes known to be dereferenceable must be provided
997 in parentheses. It is legal for the number of bytes to be less than the
998 size of the pointee type. The ``nonnull`` attribute does not imply
999 dereferenceability (consider a pointer to one element past the end of an
1000 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1001 ``addrspace(0)`` (which is the default address space).
1002
Sean Silvab084af42012-12-07 10:36:55 +00001003.. _gc:
1004
1005Garbage Collector Names
1006-----------------------
1007
1008Each function may specify a garbage collector name, which is simply a
1009string:
1010
1011.. code-block:: llvm
1012
1013 define void @f() gc "name" { ... }
1014
1015The compiler declares the supported values of *name*. Specifying a
Richard Smith32dbdf62014-07-31 04:25:36 +00001016collector will cause the compiler to alter its output in order to
Sean Silvab084af42012-12-07 10:36:55 +00001017support the named garbage collection algorithm.
1018
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001019.. _prefixdata:
1020
1021Prefix Data
1022-----------
1023
1024Prefix data is data associated with a function which the code generator
1025will emit immediately before the function body. The purpose of this feature
1026is to allow frontends to associate language-specific runtime metadata with
1027specific functions and make it available through the function pointer while
1028still allowing the function pointer to be called. To access the data for a
1029given function, a program may bitcast the function pointer to a pointer to
1030the constant's type. This implies that the IR symbol points to the start
1031of the prefix data.
1032
1033To maintain the semantics of ordinary function calls, the prefix data must
1034have a particular format. Specifically, it must begin with a sequence of
1035bytes which decode to a sequence of machine instructions, valid for the
1036module's target, which transfer control to the point immediately succeeding
1037the prefix data, without performing any other visible action. This allows
1038the inliner and other passes to reason about the semantics of the function
1039definition without needing to reason about the prefix data. Obviously this
1040makes the format of the prefix data highly target dependent.
1041
Peter Collingbourne213358a2013-09-23 20:14:21 +00001042Prefix data is laid out as if it were an initializer for a global variable
1043of the prefix data's type. No padding is automatically placed between the
1044prefix data and the function body. If padding is required, it must be part
1045of the prefix data.
1046
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001047A trivial example of valid prefix data for the x86 architecture is ``i8 144``,
1048which encodes the ``nop`` instruction:
1049
1050.. code-block:: llvm
1051
1052 define void @f() prefix i8 144 { ... }
1053
1054Generally prefix data can be formed by encoding a relative branch instruction
1055which skips the metadata, as in this example of valid prefix data for the
1056x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1057
1058.. code-block:: llvm
1059
1060 %0 = type <{ i8, i8, i8* }>
1061
1062 define void @f() prefix %0 <{ i8 235, i8 8, i8* @md}> { ... }
1063
1064A function may have prefix data but no body. This has similar semantics
1065to the ``available_externally`` linkage in that the data may be used by the
1066optimizers but will not be emitted in the object file.
1067
Bill Wendling63b88192013-02-06 06:52:58 +00001068.. _attrgrp:
1069
1070Attribute Groups
1071----------------
1072
1073Attribute groups are groups of attributes that are referenced by objects within
1074the IR. They are important for keeping ``.ll`` files readable, because a lot of
1075functions will use the same set of attributes. In the degenerative case of a
1076``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1077group will capture the important command line flags used to build that file.
1078
1079An attribute group is a module-level object. To use an attribute group, an
1080object references the attribute group's ID (e.g. ``#37``). An object may refer
1081to more than one attribute group. In that situation, the attributes from the
1082different groups are merged.
1083
1084Here is an example of attribute groups for a function that should always be
1085inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1086
1087.. code-block:: llvm
1088
1089 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001090 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001091
1092 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001093 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001094
1095 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1096 define void @f() #0 #1 { ... }
1097
Sean Silvab084af42012-12-07 10:36:55 +00001098.. _fnattrs:
1099
1100Function Attributes
1101-------------------
1102
1103Function attributes are set to communicate additional information about
1104a function. Function attributes are considered to be part of the
1105function, not of the function type, so functions with different function
1106attributes can have the same function type.
1107
1108Function attributes are simple keywords that follow the type specified.
1109If multiple attributes are needed, they are space separated. For
1110example:
1111
1112.. code-block:: llvm
1113
1114 define void @f() noinline { ... }
1115 define void @f() alwaysinline { ... }
1116 define void @f() alwaysinline optsize { ... }
1117 define void @f() optsize { ... }
1118
Sean Silvab084af42012-12-07 10:36:55 +00001119``alignstack(<n>)``
1120 This attribute indicates that, when emitting the prologue and
1121 epilogue, the backend should forcibly align the stack pointer.
1122 Specify the desired alignment, which must be a power of two, in
1123 parentheses.
1124``alwaysinline``
1125 This attribute indicates that the inliner should attempt to inline
1126 this function into callers whenever possible, ignoring any active
1127 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001128``builtin``
1129 This indicates that the callee function at a call site should be
1130 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001131 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001132 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001133 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001134``cold``
1135 This attribute indicates that this function is rarely called. When
1136 computing edge weights, basic blocks post-dominated by a cold
1137 function call are also considered to be cold; and, thus, given low
1138 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001139``inlinehint``
1140 This attribute indicates that the source code contained a hint that
1141 inlining this function is desirable (such as the "inline" keyword in
1142 C/C++). It is just a hint; it imposes no requirements on the
1143 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001144``jumptable``
1145 This attribute indicates that the function should be added to a
1146 jump-instruction table at code-generation time, and that all address-taken
1147 references to this function should be replaced with a reference to the
1148 appropriate jump-instruction-table function pointer. Note that this creates
1149 a new pointer for the original function, which means that code that depends
1150 on function-pointer identity can break. So, any function annotated with
1151 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001152``minsize``
1153 This attribute suggests that optimization passes and code generator
1154 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001155 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001156 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001157``naked``
1158 This attribute disables prologue / epilogue emission for the
1159 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001160``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001161 This indicates that the callee function at a call site is not recognized as
1162 a built-in function. LLVM will retain the original call and not replace it
1163 with equivalent code based on the semantics of the built-in function, unless
1164 the call site uses the ``builtin`` attribute. This is valid at call sites
1165 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001166``noduplicate``
1167 This attribute indicates that calls to the function cannot be
1168 duplicated. A call to a ``noduplicate`` function may be moved
1169 within its parent function, but may not be duplicated within
1170 its parent function.
1171
1172 A function containing a ``noduplicate`` call may still
1173 be an inlining candidate, provided that the call is not
1174 duplicated by inlining. That implies that the function has
1175 internal linkage and only has one call site, so the original
1176 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001177``noimplicitfloat``
1178 This attributes disables implicit floating point instructions.
1179``noinline``
1180 This attribute indicates that the inliner should never inline this
1181 function in any situation. This attribute may not be used together
1182 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001183``nonlazybind``
1184 This attribute suppresses lazy symbol binding for the function. This
1185 may make calls to the function faster, at the cost of extra program
1186 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001187``noredzone``
1188 This attribute indicates that the code generator should not use a
1189 red zone, even if the target-specific ABI normally permits it.
1190``noreturn``
1191 This function attribute indicates that the function never returns
1192 normally. This produces undefined behavior at runtime if the
1193 function ever does dynamically return.
1194``nounwind``
1195 This function attribute indicates that the function never returns
1196 with an unwind or exceptional control flow. If the function does
1197 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001198``optnone``
1199 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001200 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001201 exception of interprocedural optimization passes.
1202 This attribute cannot be used together with the ``alwaysinline``
1203 attribute; this attribute is also incompatible
1204 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001205
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001206 This attribute requires the ``noinline`` attribute to be specified on
1207 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001208 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001209 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001210``optsize``
1211 This attribute suggests that optimization passes and code generator
1212 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001213 and otherwise do optimizations specifically to reduce code size as
1214 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001215``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001216 On a function, this attribute indicates that the function computes its
1217 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001218 without dereferencing any pointer arguments or otherwise accessing
1219 any mutable state (e.g. memory, control registers, etc) visible to
1220 caller functions. It does not write through any pointer arguments
1221 (including ``byval`` arguments) and never changes any state visible
1222 to callers. This means that it cannot unwind exceptions by calling
1223 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001224
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001225 On an argument, this attribute indicates that the function does not
1226 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001227 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001228``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001229 On a function, this attribute indicates that the function does not write
1230 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001231 modify any state (e.g. memory, control registers, etc) visible to
1232 caller functions. It may dereference pointer arguments and read
1233 state that may be set in the caller. A readonly function always
1234 returns the same value (or unwinds an exception identically) when
1235 called with the same set of arguments and global state. It cannot
1236 unwind an exception by calling the ``C++`` exception throwing
1237 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001238
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001239 On an argument, this attribute indicates that the function does not write
1240 through this pointer argument, even though it may write to the memory that
1241 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001242``returns_twice``
1243 This attribute indicates that this function can return twice. The C
1244 ``setjmp`` is an example of such a function. The compiler disables
1245 some optimizations (like tail calls) in the caller of these
1246 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001247``sanitize_address``
1248 This attribute indicates that AddressSanitizer checks
1249 (dynamic address safety analysis) are enabled for this function.
1250``sanitize_memory``
1251 This attribute indicates that MemorySanitizer checks (dynamic detection
1252 of accesses to uninitialized memory) are enabled for this function.
1253``sanitize_thread``
1254 This attribute indicates that ThreadSanitizer checks
1255 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001256``ssp``
1257 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001258 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001259 placed on the stack before the local variables that's checked upon
1260 return from the function to see if it has been overwritten. A
1261 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001262 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001263
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001264 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1265 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1266 - Calls to alloca() with variable sizes or constant sizes greater than
1267 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001268
Josh Magee24c7f062014-02-01 01:36:16 +00001269 Variables that are identified as requiring a protector will be arranged
1270 on the stack such that they are adjacent to the stack protector guard.
1271
Sean Silvab084af42012-12-07 10:36:55 +00001272 If a function that has an ``ssp`` attribute is inlined into a
1273 function that doesn't have an ``ssp`` attribute, then the resulting
1274 function will have an ``ssp`` attribute.
1275``sspreq``
1276 This attribute indicates that the function should *always* emit a
1277 stack smashing protector. This overrides the ``ssp`` function
1278 attribute.
1279
Josh Magee24c7f062014-02-01 01:36:16 +00001280 Variables that are identified as requiring a protector will be arranged
1281 on the stack such that they are adjacent to the stack protector guard.
1282 The specific layout rules are:
1283
1284 #. Large arrays and structures containing large arrays
1285 (``>= ssp-buffer-size``) are closest to the stack protector.
1286 #. Small arrays and structures containing small arrays
1287 (``< ssp-buffer-size``) are 2nd closest to the protector.
1288 #. Variables that have had their address taken are 3rd closest to the
1289 protector.
1290
Sean Silvab084af42012-12-07 10:36:55 +00001291 If a function that has an ``sspreq`` attribute is inlined into a
1292 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001293 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1294 an ``sspreq`` attribute.
1295``sspstrong``
1296 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001297 protector. This attribute causes a strong heuristic to be used when
1298 determining if a function needs stack protectors. The strong heuristic
1299 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001300
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001301 - Arrays of any size and type
1302 - Aggregates containing an array of any size and type.
1303 - Calls to alloca().
1304 - Local variables that have had their address taken.
1305
Josh Magee24c7f062014-02-01 01:36:16 +00001306 Variables that are identified as requiring a protector will be arranged
1307 on the stack such that they are adjacent to the stack protector guard.
1308 The specific layout rules are:
1309
1310 #. Large arrays and structures containing large arrays
1311 (``>= ssp-buffer-size``) are closest to the stack protector.
1312 #. Small arrays and structures containing small arrays
1313 (``< ssp-buffer-size``) are 2nd closest to the protector.
1314 #. Variables that have had their address taken are 3rd closest to the
1315 protector.
1316
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001317 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001318
1319 If a function that has an ``sspstrong`` attribute is inlined into a
1320 function that doesn't have an ``sspstrong`` attribute, then the
1321 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001322``uwtable``
1323 This attribute indicates that the ABI being targeted requires that
1324 an unwind table entry be produce for this function even if we can
1325 show that no exceptions passes by it. This is normally the case for
1326 the ELF x86-64 abi, but it can be disabled for some compilation
1327 units.
Sean Silvab084af42012-12-07 10:36:55 +00001328
1329.. _moduleasm:
1330
1331Module-Level Inline Assembly
1332----------------------------
1333
1334Modules may contain "module-level inline asm" blocks, which corresponds
1335to the GCC "file scope inline asm" blocks. These blocks are internally
1336concatenated by LLVM and treated as a single unit, but may be separated
1337in the ``.ll`` file if desired. The syntax is very simple:
1338
1339.. code-block:: llvm
1340
1341 module asm "inline asm code goes here"
1342 module asm "more can go here"
1343
1344The strings can contain any character by escaping non-printable
1345characters. The escape sequence used is simply "\\xx" where "xx" is the
1346two digit hex code for the number.
1347
1348The inline asm code is simply printed to the machine code .s file when
1349assembly code is generated.
1350
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001351.. _langref_datalayout:
1352
Sean Silvab084af42012-12-07 10:36:55 +00001353Data Layout
1354-----------
1355
1356A module may specify a target specific data layout string that specifies
1357how data is to be laid out in memory. The syntax for the data layout is
1358simply:
1359
1360.. code-block:: llvm
1361
1362 target datalayout = "layout specification"
1363
1364The *layout specification* consists of a list of specifications
1365separated by the minus sign character ('-'). Each specification starts
1366with a letter and may include other information after the letter to
1367define some aspect of the data layout. The specifications accepted are
1368as follows:
1369
1370``E``
1371 Specifies that the target lays out data in big-endian form. That is,
1372 the bits with the most significance have the lowest address
1373 location.
1374``e``
1375 Specifies that the target lays out data in little-endian form. That
1376 is, the bits with the least significance have the lowest address
1377 location.
1378``S<size>``
1379 Specifies the natural alignment of the stack in bits. Alignment
1380 promotion of stack variables is limited to the natural stack
1381 alignment to avoid dynamic stack realignment. The stack alignment
1382 must be a multiple of 8-bits. If omitted, the natural stack
1383 alignment defaults to "unspecified", which does not prevent any
1384 alignment promotions.
1385``p[n]:<size>:<abi>:<pref>``
1386 This specifies the *size* of a pointer and its ``<abi>`` and
1387 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001388 bits. The address space, ``n`` is optional, and if not specified,
1389 denotes the default address space 0. The value of ``n`` must be
1390 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001391``i<size>:<abi>:<pref>``
1392 This specifies the alignment for an integer type of a given bit
1393 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1394``v<size>:<abi>:<pref>``
1395 This specifies the alignment for a vector type of a given bit
1396 ``<size>``.
1397``f<size>:<abi>:<pref>``
1398 This specifies the alignment for a floating point type of a given bit
1399 ``<size>``. Only values of ``<size>`` that are supported by the target
1400 will work. 32 (float) and 64 (double) are supported on all targets; 80
1401 or 128 (different flavors of long double) are also supported on some
1402 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001403``a:<abi>:<pref>``
1404 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001405``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001406 If present, specifies that llvm names are mangled in the output. The
1407 options are
1408
1409 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1410 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1411 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1412 symbols get a ``_`` prefix.
1413 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1414 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001415``n<size1>:<size2>:<size3>...``
1416 This specifies a set of native integer widths for the target CPU in
1417 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1418 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1419 this set are considered to support most general arithmetic operations
1420 efficiently.
1421
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001422On every specification that takes a ``<abi>:<pref>``, specifying the
1423``<pref>`` alignment is optional. If omitted, the preceding ``:``
1424should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1425
Sean Silvab084af42012-12-07 10:36:55 +00001426When constructing the data layout for a given target, LLVM starts with a
1427default set of specifications which are then (possibly) overridden by
1428the specifications in the ``datalayout`` keyword. The default
1429specifications are given in this list:
1430
1431- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001432- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1433- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1434 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001435- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001436- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1437- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1438- ``i16:16:16`` - i16 is 16-bit aligned
1439- ``i32:32:32`` - i32 is 32-bit aligned
1440- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1441 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001442- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001443- ``f32:32:32`` - float is 32-bit aligned
1444- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001445- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001446- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1447- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001448- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001449
1450When LLVM is determining the alignment for a given type, it uses the
1451following rules:
1452
1453#. If the type sought is an exact match for one of the specifications,
1454 that specification is used.
1455#. If no match is found, and the type sought is an integer type, then
1456 the smallest integer type that is larger than the bitwidth of the
1457 sought type is used. If none of the specifications are larger than
1458 the bitwidth then the largest integer type is used. For example,
1459 given the default specifications above, the i7 type will use the
1460 alignment of i8 (next largest) while both i65 and i256 will use the
1461 alignment of i64 (largest specified).
1462#. If no match is found, and the type sought is a vector type, then the
1463 largest vector type that is smaller than the sought vector type will
1464 be used as a fall back. This happens because <128 x double> can be
1465 implemented in terms of 64 <2 x double>, for example.
1466
1467The function of the data layout string may not be what you expect.
1468Notably, this is not a specification from the frontend of what alignment
1469the code generator should use.
1470
1471Instead, if specified, the target data layout is required to match what
1472the ultimate *code generator* expects. This string is used by the
1473mid-level optimizers to improve code, and this only works if it matches
1474what the ultimate code generator uses. If you would like to generate IR
1475that does not embed this target-specific detail into the IR, then you
1476don't have to specify the string. This will disable some optimizations
1477that require precise layout information, but this also prevents those
1478optimizations from introducing target specificity into the IR.
1479
Bill Wendling5cc90842013-10-18 23:41:25 +00001480.. _langref_triple:
1481
1482Target Triple
1483-------------
1484
1485A module may specify a target triple string that describes the target
1486host. The syntax for the target triple is simply:
1487
1488.. code-block:: llvm
1489
1490 target triple = "x86_64-apple-macosx10.7.0"
1491
1492The *target triple* string consists of a series of identifiers delimited
1493by the minus sign character ('-'). The canonical forms are:
1494
1495::
1496
1497 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1498 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1499
1500This information is passed along to the backend so that it generates
1501code for the proper architecture. It's possible to override this on the
1502command line with the ``-mtriple`` command line option.
1503
Sean Silvab084af42012-12-07 10:36:55 +00001504.. _pointeraliasing:
1505
1506Pointer Aliasing Rules
1507----------------------
1508
1509Any memory access must be done through a pointer value associated with
1510an address range of the memory access, otherwise the behavior is
1511undefined. Pointer values are associated with address ranges according
1512to the following rules:
1513
1514- A pointer value is associated with the addresses associated with any
1515 value it is *based* on.
1516- An address of a global variable is associated with the address range
1517 of the variable's storage.
1518- The result value of an allocation instruction is associated with the
1519 address range of the allocated storage.
1520- A null pointer in the default address-space is associated with no
1521 address.
1522- An integer constant other than zero or a pointer value returned from
1523 a function not defined within LLVM may be associated with address
1524 ranges allocated through mechanisms other than those provided by
1525 LLVM. Such ranges shall not overlap with any ranges of addresses
1526 allocated by mechanisms provided by LLVM.
1527
1528A pointer value is *based* on another pointer value according to the
1529following rules:
1530
1531- A pointer value formed from a ``getelementptr`` operation is *based*
1532 on the first operand of the ``getelementptr``.
1533- The result value of a ``bitcast`` is *based* on the operand of the
1534 ``bitcast``.
1535- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1536 values that contribute (directly or indirectly) to the computation of
1537 the pointer's value.
1538- The "*based* on" relationship is transitive.
1539
1540Note that this definition of *"based"* is intentionally similar to the
1541definition of *"based"* in C99, though it is slightly weaker.
1542
1543LLVM IR does not associate types with memory. The result type of a
1544``load`` merely indicates the size and alignment of the memory from
1545which to load, as well as the interpretation of the value. The first
1546operand type of a ``store`` similarly only indicates the size and
1547alignment of the store.
1548
1549Consequently, type-based alias analysis, aka TBAA, aka
1550``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1551:ref:`Metadata <metadata>` may be used to encode additional information
1552which specialized optimization passes may use to implement type-based
1553alias analysis.
1554
1555.. _volatile:
1556
1557Volatile Memory Accesses
1558------------------------
1559
1560Certain memory accesses, such as :ref:`load <i_load>`'s,
1561:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1562marked ``volatile``. The optimizers must not change the number of
1563volatile operations or change their order of execution relative to other
1564volatile operations. The optimizers *may* change the order of volatile
1565operations relative to non-volatile operations. This is not Java's
1566"volatile" and has no cross-thread synchronization behavior.
1567
Andrew Trick89fc5a62013-01-30 21:19:35 +00001568IR-level volatile loads and stores cannot safely be optimized into
1569llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1570flagged volatile. Likewise, the backend should never split or merge
1571target-legal volatile load/store instructions.
1572
Andrew Trick7e6f9282013-01-31 00:49:39 +00001573.. admonition:: Rationale
1574
1575 Platforms may rely on volatile loads and stores of natively supported
1576 data width to be executed as single instruction. For example, in C
1577 this holds for an l-value of volatile primitive type with native
1578 hardware support, but not necessarily for aggregate types. The
1579 frontend upholds these expectations, which are intentionally
1580 unspecified in the IR. The rules above ensure that IR transformation
1581 do not violate the frontend's contract with the language.
1582
Sean Silvab084af42012-12-07 10:36:55 +00001583.. _memmodel:
1584
1585Memory Model for Concurrent Operations
1586--------------------------------------
1587
1588The LLVM IR does not define any way to start parallel threads of
1589execution or to register signal handlers. Nonetheless, there are
1590platform-specific ways to create them, and we define LLVM IR's behavior
1591in their presence. This model is inspired by the C++0x memory model.
1592
1593For a more informal introduction to this model, see the :doc:`Atomics`.
1594
1595We define a *happens-before* partial order as the least partial order
1596that
1597
1598- Is a superset of single-thread program order, and
1599- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1600 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1601 techniques, like pthread locks, thread creation, thread joining,
1602 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1603 Constraints <ordering>`).
1604
1605Note that program order does not introduce *happens-before* edges
1606between a thread and signals executing inside that thread.
1607
1608Every (defined) read operation (load instructions, memcpy, atomic
1609loads/read-modify-writes, etc.) R reads a series of bytes written by
1610(defined) write operations (store instructions, atomic
1611stores/read-modify-writes, memcpy, etc.). For the purposes of this
1612section, initialized globals are considered to have a write of the
1613initializer which is atomic and happens before any other read or write
1614of the memory in question. For each byte of a read R, R\ :sub:`byte`
1615may see any write to the same byte, except:
1616
1617- If write\ :sub:`1` happens before write\ :sub:`2`, and
1618 write\ :sub:`2` happens before R\ :sub:`byte`, then
1619 R\ :sub:`byte` does not see write\ :sub:`1`.
1620- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1621 R\ :sub:`byte` does not see write\ :sub:`3`.
1622
1623Given that definition, R\ :sub:`byte` is defined as follows:
1624
1625- If R is volatile, the result is target-dependent. (Volatile is
1626 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001627 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001628 like normal memory. It does not generally provide cross-thread
1629 synchronization.)
1630- Otherwise, if there is no write to the same byte that happens before
1631 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1632- Otherwise, if R\ :sub:`byte` may see exactly one write,
1633 R\ :sub:`byte` returns the value written by that write.
1634- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1635 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1636 Memory Ordering Constraints <ordering>` section for additional
1637 constraints on how the choice is made.
1638- Otherwise R\ :sub:`byte` returns ``undef``.
1639
1640R returns the value composed of the series of bytes it read. This
1641implies that some bytes within the value may be ``undef`` **without**
1642the entire value being ``undef``. Note that this only defines the
1643semantics of the operation; it doesn't mean that targets will emit more
1644than one instruction to read the series of bytes.
1645
1646Note that in cases where none of the atomic intrinsics are used, this
1647model places only one restriction on IR transformations on top of what
1648is required for single-threaded execution: introducing a store to a byte
1649which might not otherwise be stored is not allowed in general.
1650(Specifically, in the case where another thread might write to and read
1651from an address, introducing a store can change a load that may see
1652exactly one write into a load that may see multiple writes.)
1653
1654.. _ordering:
1655
1656Atomic Memory Ordering Constraints
1657----------------------------------
1658
1659Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1660:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1661:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001662ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001663the same address they *synchronize with*. These semantics are borrowed
1664from Java and C++0x, but are somewhat more colloquial. If these
1665descriptions aren't precise enough, check those specs (see spec
1666references in the :doc:`atomics guide <Atomics>`).
1667:ref:`fence <i_fence>` instructions treat these orderings somewhat
1668differently since they don't take an address. See that instruction's
1669documentation for details.
1670
1671For a simpler introduction to the ordering constraints, see the
1672:doc:`Atomics`.
1673
1674``unordered``
1675 The set of values that can be read is governed by the happens-before
1676 partial order. A value cannot be read unless some operation wrote
1677 it. This is intended to provide a guarantee strong enough to model
1678 Java's non-volatile shared variables. This ordering cannot be
1679 specified for read-modify-write operations; it is not strong enough
1680 to make them atomic in any interesting way.
1681``monotonic``
1682 In addition to the guarantees of ``unordered``, there is a single
1683 total order for modifications by ``monotonic`` operations on each
1684 address. All modification orders must be compatible with the
1685 happens-before order. There is no guarantee that the modification
1686 orders can be combined to a global total order for the whole program
1687 (and this often will not be possible). The read in an atomic
1688 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1689 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1690 order immediately before the value it writes. If one atomic read
1691 happens before another atomic read of the same address, the later
1692 read must see the same value or a later value in the address's
1693 modification order. This disallows reordering of ``monotonic`` (or
1694 stronger) operations on the same address. If an address is written
1695 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1696 read that address repeatedly, the other threads must eventually see
1697 the write. This corresponds to the C++0x/C1x
1698 ``memory_order_relaxed``.
1699``acquire``
1700 In addition to the guarantees of ``monotonic``, a
1701 *synchronizes-with* edge may be formed with a ``release`` operation.
1702 This is intended to model C++'s ``memory_order_acquire``.
1703``release``
1704 In addition to the guarantees of ``monotonic``, if this operation
1705 writes a value which is subsequently read by an ``acquire``
1706 operation, it *synchronizes-with* that operation. (This isn't a
1707 complete description; see the C++0x definition of a release
1708 sequence.) This corresponds to the C++0x/C1x
1709 ``memory_order_release``.
1710``acq_rel`` (acquire+release)
1711 Acts as both an ``acquire`` and ``release`` operation on its
1712 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1713``seq_cst`` (sequentially consistent)
1714 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001715 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001716 writes), there is a global total order on all
1717 sequentially-consistent operations on all addresses, which is
1718 consistent with the *happens-before* partial order and with the
1719 modification orders of all the affected addresses. Each
1720 sequentially-consistent read sees the last preceding write to the
1721 same address in this global order. This corresponds to the C++0x/C1x
1722 ``memory_order_seq_cst`` and Java volatile.
1723
1724.. _singlethread:
1725
1726If an atomic operation is marked ``singlethread``, it only *synchronizes
1727with* or participates in modification and seq\_cst total orderings with
1728other operations running in the same thread (for example, in signal
1729handlers).
1730
1731.. _fastmath:
1732
1733Fast-Math Flags
1734---------------
1735
1736LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1737:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1738:ref:`frem <i_frem>`) have the following flags that can set to enable
1739otherwise unsafe floating point operations
1740
1741``nnan``
1742 No NaNs - Allow optimizations to assume the arguments and result are not
1743 NaN. Such optimizations are required to retain defined behavior over
1744 NaNs, but the value of the result is undefined.
1745
1746``ninf``
1747 No Infs - Allow optimizations to assume the arguments and result are not
1748 +/-Inf. Such optimizations are required to retain defined behavior over
1749 +/-Inf, but the value of the result is undefined.
1750
1751``nsz``
1752 No Signed Zeros - Allow optimizations to treat the sign of a zero
1753 argument or result as insignificant.
1754
1755``arcp``
1756 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1757 argument rather than perform division.
1758
1759``fast``
1760 Fast - Allow algebraically equivalent transformations that may
1761 dramatically change results in floating point (e.g. reassociate). This
1762 flag implies all the others.
1763
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001764.. _uselistorder:
1765
1766Use-list Order Directives
1767-------------------------
1768
1769Use-list directives encode the in-memory order of each use-list, allowing the
1770order to be recreated. ``<order-indexes>`` is a comma-separated list of
1771indexes that are assigned to the referenced value's uses. The referenced
1772value's use-list is immediately sorted by these indexes.
1773
1774Use-list directives may appear at function scope or global scope. They are not
1775instructions, and have no effect on the semantics of the IR. When they're at
1776function scope, they must appear after the terminator of the final basic block.
1777
1778If basic blocks have their address taken via ``blockaddress()`` expressions,
1779``uselistorder_bb`` can be used to reorder their use-lists from outside their
1780function's scope.
1781
1782:Syntax:
1783
1784::
1785
1786 uselistorder <ty> <value>, { <order-indexes> }
1787 uselistorder_bb @function, %block { <order-indexes> }
1788
1789:Examples:
1790
1791::
1792
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001793 define void @foo(i32 %arg1, i32 %arg2) {
1794 entry:
1795 ; ... instructions ...
1796 bb:
1797 ; ... instructions ...
1798
1799 ; At function scope.
1800 uselistorder i32 %arg1, { 1, 0, 2 }
1801 uselistorder label %bb, { 1, 0 }
1802 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001803
1804 ; At global scope.
1805 uselistorder i32* @global, { 1, 2, 0 }
1806 uselistorder i32 7, { 1, 0 }
1807 uselistorder i32 (i32) @bar, { 1, 0 }
1808 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1809
Sean Silvab084af42012-12-07 10:36:55 +00001810.. _typesystem:
1811
1812Type System
1813===========
1814
1815The LLVM type system is one of the most important features of the
1816intermediate representation. Being typed enables a number of
1817optimizations to be performed on the intermediate representation
1818directly, without having to do extra analyses on the side before the
1819transformation. A strong type system makes it easier to read the
1820generated code and enables novel analyses and transformations that are
1821not feasible to perform on normal three address code representations.
1822
Rafael Espindola08013342013-12-07 19:34:20 +00001823.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001824
Rafael Espindola08013342013-12-07 19:34:20 +00001825Void Type
1826---------
Sean Silvab084af42012-12-07 10:36:55 +00001827
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001828:Overview:
1829
Rafael Espindola08013342013-12-07 19:34:20 +00001830
1831The void type does not represent any value and has no size.
1832
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001833:Syntax:
1834
Rafael Espindola08013342013-12-07 19:34:20 +00001835
1836::
1837
1838 void
Sean Silvab084af42012-12-07 10:36:55 +00001839
1840
Rafael Espindola08013342013-12-07 19:34:20 +00001841.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001842
Rafael Espindola08013342013-12-07 19:34:20 +00001843Function Type
1844-------------
Sean Silvab084af42012-12-07 10:36:55 +00001845
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001846:Overview:
1847
Sean Silvab084af42012-12-07 10:36:55 +00001848
Rafael Espindola08013342013-12-07 19:34:20 +00001849The function type can be thought of as a function signature. It consists of a
1850return type and a list of formal parameter types. The return type of a function
1851type is a void type or first class type --- except for :ref:`label <t_label>`
1852and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001853
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001854:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001855
Rafael Espindola08013342013-12-07 19:34:20 +00001856::
Sean Silvab084af42012-12-07 10:36:55 +00001857
Rafael Espindola08013342013-12-07 19:34:20 +00001858 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001859
Rafael Espindola08013342013-12-07 19:34:20 +00001860...where '``<parameter list>``' is a comma-separated list of type
1861specifiers. Optionally, the parameter list may include a type ``...``, which
1862indicates that the function takes a variable number of arguments. Variable
1863argument functions can access their arguments with the :ref:`variable argument
1864handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1865except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001866
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001867:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001868
Rafael Espindola08013342013-12-07 19:34:20 +00001869+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1870| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1871+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1872| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1873+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1874| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1875+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1876| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1877+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1878
1879.. _t_firstclass:
1880
1881First Class Types
1882-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001883
1884The :ref:`first class <t_firstclass>` types are perhaps the most important.
1885Values of these types are the only ones which can be produced by
1886instructions.
1887
Rafael Espindola08013342013-12-07 19:34:20 +00001888.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001889
Rafael Espindola08013342013-12-07 19:34:20 +00001890Single Value Types
1891^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001892
Rafael Espindola08013342013-12-07 19:34:20 +00001893These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001894
1895.. _t_integer:
1896
1897Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001898""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001899
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001900:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001901
1902The integer type is a very simple type that simply specifies an
1903arbitrary bit width for the integer type desired. Any bit width from 1
1904bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1905
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001906:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001907
1908::
1909
1910 iN
1911
1912The number of bits the integer will occupy is specified by the ``N``
1913value.
1914
1915Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001916*********
Sean Silvab084af42012-12-07 10:36:55 +00001917
1918+----------------+------------------------------------------------+
1919| ``i1`` | a single-bit integer. |
1920+----------------+------------------------------------------------+
1921| ``i32`` | a 32-bit integer. |
1922+----------------+------------------------------------------------+
1923| ``i1942652`` | a really big integer of over 1 million bits. |
1924+----------------+------------------------------------------------+
1925
1926.. _t_floating:
1927
1928Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001929""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001930
1931.. list-table::
1932 :header-rows: 1
1933
1934 * - Type
1935 - Description
1936
1937 * - ``half``
1938 - 16-bit floating point value
1939
1940 * - ``float``
1941 - 32-bit floating point value
1942
1943 * - ``double``
1944 - 64-bit floating point value
1945
1946 * - ``fp128``
1947 - 128-bit floating point value (112-bit mantissa)
1948
1949 * - ``x86_fp80``
1950 - 80-bit floating point value (X87)
1951
1952 * - ``ppc_fp128``
1953 - 128-bit floating point value (two 64-bits)
1954
Reid Kleckner9a16d082014-03-05 02:41:37 +00001955X86_mmx Type
1956""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001957
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001958:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001959
Reid Kleckner9a16d082014-03-05 02:41:37 +00001960The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001961machine. The operations allowed on it are quite limited: parameters and
1962return values, load and store, and bitcast. User-specified MMX
1963instructions are represented as intrinsic or asm calls with arguments
1964and/or results of this type. There are no arrays, vectors or constants
1965of this type.
1966
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001967:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001968
1969::
1970
Reid Kleckner9a16d082014-03-05 02:41:37 +00001971 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00001972
Sean Silvab084af42012-12-07 10:36:55 +00001973
Rafael Espindola08013342013-12-07 19:34:20 +00001974.. _t_pointer:
1975
1976Pointer Type
1977""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001978
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001979:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001980
Rafael Espindola08013342013-12-07 19:34:20 +00001981The pointer type is used to specify memory locations. Pointers are
1982commonly used to reference objects in memory.
1983
1984Pointer types may have an optional address space attribute defining the
1985numbered address space where the pointed-to object resides. The default
1986address space is number zero. The semantics of non-zero address spaces
1987are target-specific.
1988
1989Note that LLVM does not permit pointers to void (``void*``) nor does it
1990permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00001991
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001992:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001993
1994::
1995
Rafael Espindola08013342013-12-07 19:34:20 +00001996 <type> *
1997
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001998:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001999
2000+-------------------------+--------------------------------------------------------------------------------------------------------------+
2001| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2002+-------------------------+--------------------------------------------------------------------------------------------------------------+
2003| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2004+-------------------------+--------------------------------------------------------------------------------------------------------------+
2005| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2006+-------------------------+--------------------------------------------------------------------------------------------------------------+
2007
2008.. _t_vector:
2009
2010Vector Type
2011"""""""""""
2012
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002013:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002014
2015A vector type is a simple derived type that represents a vector of
2016elements. Vector types are used when multiple primitive data are
2017operated in parallel using a single instruction (SIMD). A vector type
2018requires a size (number of elements) and an underlying primitive data
2019type. Vector types are considered :ref:`first class <t_firstclass>`.
2020
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002021:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002022
2023::
2024
2025 < <# elements> x <elementtype> >
2026
2027The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002028elementtype may be any integer, floating point or pointer type. Vectors
2029of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002030
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002031:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002032
2033+-------------------+--------------------------------------------------+
2034| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2035+-------------------+--------------------------------------------------+
2036| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2037+-------------------+--------------------------------------------------+
2038| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2039+-------------------+--------------------------------------------------+
2040| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2041+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002042
2043.. _t_label:
2044
2045Label Type
2046^^^^^^^^^^
2047
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002048:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002049
2050The label type represents code labels.
2051
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002052:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002053
2054::
2055
2056 label
2057
2058.. _t_metadata:
2059
2060Metadata Type
2061^^^^^^^^^^^^^
2062
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002063:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002064
2065The metadata type represents embedded metadata. No derived types may be
2066created from metadata except for :ref:`function <t_function>` arguments.
2067
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002068:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002069
2070::
2071
2072 metadata
2073
Sean Silvab084af42012-12-07 10:36:55 +00002074.. _t_aggregate:
2075
2076Aggregate Types
2077^^^^^^^^^^^^^^^
2078
2079Aggregate Types are a subset of derived types that can contain multiple
2080member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2081aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2082aggregate types.
2083
2084.. _t_array:
2085
2086Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002087""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002088
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002089:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002090
2091The array type is a very simple derived type that arranges elements
2092sequentially in memory. The array type requires a size (number of
2093elements) and an underlying data type.
2094
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002095:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002096
2097::
2098
2099 [<# elements> x <elementtype>]
2100
2101The number of elements is a constant integer value; ``elementtype`` may
2102be any type with a size.
2103
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002104:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002105
2106+------------------+--------------------------------------+
2107| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2108+------------------+--------------------------------------+
2109| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2110+------------------+--------------------------------------+
2111| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2112+------------------+--------------------------------------+
2113
2114Here are some examples of multidimensional arrays:
2115
2116+-----------------------------+----------------------------------------------------------+
2117| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2118+-----------------------------+----------------------------------------------------------+
2119| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2120+-----------------------------+----------------------------------------------------------+
2121| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2122+-----------------------------+----------------------------------------------------------+
2123
2124There is no restriction on indexing beyond the end of the array implied
2125by a static type (though there are restrictions on indexing beyond the
2126bounds of an allocated object in some cases). This means that
2127single-dimension 'variable sized array' addressing can be implemented in
2128LLVM with a zero length array type. An implementation of 'pascal style
2129arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2130example.
2131
Sean Silvab084af42012-12-07 10:36:55 +00002132.. _t_struct:
2133
2134Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002135""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002136
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002137:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002138
2139The structure type is used to represent a collection of data members
2140together in memory. The elements of a structure may be any type that has
2141a size.
2142
2143Structures in memory are accessed using '``load``' and '``store``' by
2144getting a pointer to a field with the '``getelementptr``' instruction.
2145Structures in registers are accessed using the '``extractvalue``' and
2146'``insertvalue``' instructions.
2147
2148Structures may optionally be "packed" structures, which indicate that
2149the alignment of the struct is one byte, and that there is no padding
2150between the elements. In non-packed structs, padding between field types
2151is inserted as defined by the DataLayout string in the module, which is
2152required to match what the underlying code generator expects.
2153
2154Structures can either be "literal" or "identified". A literal structure
2155is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2156identified types are always defined at the top level with a name.
2157Literal types are uniqued by their contents and can never be recursive
2158or opaque since there is no way to write one. Identified types can be
2159recursive, can be opaqued, and are never uniqued.
2160
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002161:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002162
2163::
2164
2165 %T1 = type { <type list> } ; Identified normal struct type
2166 %T2 = type <{ <type list> }> ; Identified packed struct type
2167
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002168:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002169
2170+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2171| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2172+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002173| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002174+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2175| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2176+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2177
2178.. _t_opaque:
2179
2180Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002181""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002182
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002183:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002184
2185Opaque structure types are used to represent named structure types that
2186do not have a body specified. This corresponds (for example) to the C
2187notion of a forward declared structure.
2188
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002189:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002190
2191::
2192
2193 %X = type opaque
2194 %52 = type opaque
2195
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002196:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002197
2198+--------------+-------------------+
2199| ``opaque`` | An opaque type. |
2200+--------------+-------------------+
2201
Sean Silva1703e702014-04-08 21:06:22 +00002202.. _constants:
2203
Sean Silvab084af42012-12-07 10:36:55 +00002204Constants
2205=========
2206
2207LLVM has several different basic types of constants. This section
2208describes them all and their syntax.
2209
2210Simple Constants
2211----------------
2212
2213**Boolean constants**
2214 The two strings '``true``' and '``false``' are both valid constants
2215 of the ``i1`` type.
2216**Integer constants**
2217 Standard integers (such as '4') are constants of the
2218 :ref:`integer <t_integer>` type. Negative numbers may be used with
2219 integer types.
2220**Floating point constants**
2221 Floating point constants use standard decimal notation (e.g.
2222 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2223 hexadecimal notation (see below). The assembler requires the exact
2224 decimal value of a floating-point constant. For example, the
2225 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2226 decimal in binary. Floating point constants must have a :ref:`floating
2227 point <t_floating>` type.
2228**Null pointer constants**
2229 The identifier '``null``' is recognized as a null pointer constant
2230 and must be of :ref:`pointer type <t_pointer>`.
2231
2232The one non-intuitive notation for constants is the hexadecimal form of
2233floating point constants. For example, the form
2234'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2235than) '``double 4.5e+15``'. The only time hexadecimal floating point
2236constants are required (and the only time that they are generated by the
2237disassembler) is when a floating point constant must be emitted but it
2238cannot be represented as a decimal floating point number in a reasonable
2239number of digits. For example, NaN's, infinities, and other special
2240values are represented in their IEEE hexadecimal format so that assembly
2241and disassembly do not cause any bits to change in the constants.
2242
2243When using the hexadecimal form, constants of types half, float, and
2244double are represented using the 16-digit form shown above (which
2245matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002246must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002247precision, respectively. Hexadecimal format is always used for long
2248double, and there are three forms of long double. The 80-bit format used
2249by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2250128-bit format used by PowerPC (two adjacent doubles) is represented by
2251``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002252represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2253will only work if they match the long double format on your target.
2254The IEEE 16-bit format (half precision) is represented by ``0xH``
2255followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2256(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002257
Reid Kleckner9a16d082014-03-05 02:41:37 +00002258There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002259
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002260.. _complexconstants:
2261
Sean Silvab084af42012-12-07 10:36:55 +00002262Complex Constants
2263-----------------
2264
2265Complex constants are a (potentially recursive) combination of simple
2266constants and smaller complex constants.
2267
2268**Structure constants**
2269 Structure constants are represented with notation similar to
2270 structure type definitions (a comma separated list of elements,
2271 surrounded by braces (``{}``)). For example:
2272 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2273 "``@G = external global i32``". Structure constants must have
2274 :ref:`structure type <t_struct>`, and the number and types of elements
2275 must match those specified by the type.
2276**Array constants**
2277 Array constants are represented with notation similar to array type
2278 definitions (a comma separated list of elements, surrounded by
2279 square brackets (``[]``)). For example:
2280 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2281 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002282 match those specified by the type. As a special case, character array
2283 constants may also be represented as a double-quoted string using the ``c``
2284 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002285**Vector constants**
2286 Vector constants are represented with notation similar to vector
2287 type definitions (a comma separated list of elements, surrounded by
2288 less-than/greater-than's (``<>``)). For example:
2289 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2290 must have :ref:`vector type <t_vector>`, and the number and types of
2291 elements must match those specified by the type.
2292**Zero initialization**
2293 The string '``zeroinitializer``' can be used to zero initialize a
2294 value to zero of *any* type, including scalar and
2295 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2296 having to print large zero initializers (e.g. for large arrays) and
2297 is always exactly equivalent to using explicit zero initializers.
2298**Metadata node**
2299 A metadata node is a structure-like constant with :ref:`metadata
2300 type <t_metadata>`. For example:
2301 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
2302 constants that are meant to be interpreted as part of the
2303 instruction stream, metadata is a place to attach additional
2304 information such as debug info.
2305
2306Global Variable and Function Addresses
2307--------------------------------------
2308
2309The addresses of :ref:`global variables <globalvars>` and
2310:ref:`functions <functionstructure>` are always implicitly valid
2311(link-time) constants. These constants are explicitly referenced when
2312the :ref:`identifier for the global <identifiers>` is used and always have
2313:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2314file:
2315
2316.. code-block:: llvm
2317
2318 @X = global i32 17
2319 @Y = global i32 42
2320 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2321
2322.. _undefvalues:
2323
2324Undefined Values
2325----------------
2326
2327The string '``undef``' can be used anywhere a constant is expected, and
2328indicates that the user of the value may receive an unspecified
2329bit-pattern. Undefined values may be of any type (other than '``label``'
2330or '``void``') and be used anywhere a constant is permitted.
2331
2332Undefined values are useful because they indicate to the compiler that
2333the program is well defined no matter what value is used. This gives the
2334compiler more freedom to optimize. Here are some examples of
2335(potentially surprising) transformations that are valid (in pseudo IR):
2336
2337.. code-block:: llvm
2338
2339 %A = add %X, undef
2340 %B = sub %X, undef
2341 %C = xor %X, undef
2342 Safe:
2343 %A = undef
2344 %B = undef
2345 %C = undef
2346
2347This is safe because all of the output bits are affected by the undef
2348bits. Any output bit can have a zero or one depending on the input bits.
2349
2350.. code-block:: llvm
2351
2352 %A = or %X, undef
2353 %B = and %X, undef
2354 Safe:
2355 %A = -1
2356 %B = 0
2357 Unsafe:
2358 %A = undef
2359 %B = undef
2360
2361These logical operations have bits that are not always affected by the
2362input. For example, if ``%X`` has a zero bit, then the output of the
2363'``and``' operation will always be a zero for that bit, no matter what
2364the corresponding bit from the '``undef``' is. As such, it is unsafe to
2365optimize or assume that the result of the '``and``' is '``undef``'.
2366However, it is safe to assume that all bits of the '``undef``' could be
23670, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2368all the bits of the '``undef``' operand to the '``or``' could be set,
2369allowing the '``or``' to be folded to -1.
2370
2371.. code-block:: llvm
2372
2373 %A = select undef, %X, %Y
2374 %B = select undef, 42, %Y
2375 %C = select %X, %Y, undef
2376 Safe:
2377 %A = %X (or %Y)
2378 %B = 42 (or %Y)
2379 %C = %Y
2380 Unsafe:
2381 %A = undef
2382 %B = undef
2383 %C = undef
2384
2385This set of examples shows that undefined '``select``' (and conditional
2386branch) conditions can go *either way*, but they have to come from one
2387of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2388both known to have a clear low bit, then ``%A`` would have to have a
2389cleared low bit. However, in the ``%C`` example, the optimizer is
2390allowed to assume that the '``undef``' operand could be the same as
2391``%Y``, allowing the whole '``select``' to be eliminated.
2392
2393.. code-block:: llvm
2394
2395 %A = xor undef, undef
2396
2397 %B = undef
2398 %C = xor %B, %B
2399
2400 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002401 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002402 %F = icmp gte %D, 4
2403
2404 Safe:
2405 %A = undef
2406 %B = undef
2407 %C = undef
2408 %D = undef
2409 %E = undef
2410 %F = undef
2411
2412This example points out that two '``undef``' operands are not
2413necessarily the same. This can be surprising to people (and also matches
2414C semantics) where they assume that "``X^X``" is always zero, even if
2415``X`` is undefined. This isn't true for a number of reasons, but the
2416short answer is that an '``undef``' "variable" can arbitrarily change
2417its value over its "live range". This is true because the variable
2418doesn't actually *have a live range*. Instead, the value is logically
2419read from arbitrary registers that happen to be around when needed, so
2420the value is not necessarily consistent over time. In fact, ``%A`` and
2421``%C`` need to have the same semantics or the core LLVM "replace all
2422uses with" concept would not hold.
2423
2424.. code-block:: llvm
2425
2426 %A = fdiv undef, %X
2427 %B = fdiv %X, undef
2428 Safe:
2429 %A = undef
2430 b: unreachable
2431
2432These examples show the crucial difference between an *undefined value*
2433and *undefined behavior*. An undefined value (like '``undef``') is
2434allowed to have an arbitrary bit-pattern. This means that the ``%A``
2435operation can be constant folded to '``undef``', because the '``undef``'
2436could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2437However, in the second example, we can make a more aggressive
2438assumption: because the ``undef`` is allowed to be an arbitrary value,
2439we are allowed to assume that it could be zero. Since a divide by zero
2440has *undefined behavior*, we are allowed to assume that the operation
2441does not execute at all. This allows us to delete the divide and all
2442code after it. Because the undefined operation "can't happen", the
2443optimizer can assume that it occurs in dead code.
2444
2445.. code-block:: llvm
2446
2447 a: store undef -> %X
2448 b: store %X -> undef
2449 Safe:
2450 a: <deleted>
2451 b: unreachable
2452
2453These examples reiterate the ``fdiv`` example: a store *of* an undefined
2454value can be assumed to not have any effect; we can assume that the
2455value is overwritten with bits that happen to match what was already
2456there. However, a store *to* an undefined location could clobber
2457arbitrary memory, therefore, it has undefined behavior.
2458
2459.. _poisonvalues:
2460
2461Poison Values
2462-------------
2463
2464Poison values are similar to :ref:`undef values <undefvalues>`, however
2465they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002466that cannot evoke side effects has nevertheless detected a condition
2467that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002468
2469There is currently no way of representing a poison value in the IR; they
2470only exist when produced by operations such as :ref:`add <i_add>` with
2471the ``nsw`` flag.
2472
2473Poison value behavior is defined in terms of value *dependence*:
2474
2475- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2476- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2477 their dynamic predecessor basic block.
2478- Function arguments depend on the corresponding actual argument values
2479 in the dynamic callers of their functions.
2480- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2481 instructions that dynamically transfer control back to them.
2482- :ref:`Invoke <i_invoke>` instructions depend on the
2483 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2484 call instructions that dynamically transfer control back to them.
2485- Non-volatile loads and stores depend on the most recent stores to all
2486 of the referenced memory addresses, following the order in the IR
2487 (including loads and stores implied by intrinsics such as
2488 :ref:`@llvm.memcpy <int_memcpy>`.)
2489- An instruction with externally visible side effects depends on the
2490 most recent preceding instruction with externally visible side
2491 effects, following the order in the IR. (This includes :ref:`volatile
2492 operations <volatile>`.)
2493- An instruction *control-depends* on a :ref:`terminator
2494 instruction <terminators>` if the terminator instruction has
2495 multiple successors and the instruction is always executed when
2496 control transfers to one of the successors, and may not be executed
2497 when control is transferred to another.
2498- Additionally, an instruction also *control-depends* on a terminator
2499 instruction if the set of instructions it otherwise depends on would
2500 be different if the terminator had transferred control to a different
2501 successor.
2502- Dependence is transitive.
2503
Richard Smith32dbdf62014-07-31 04:25:36 +00002504Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2505with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002506on a poison value has undefined behavior.
2507
2508Here are some examples:
2509
2510.. code-block:: llvm
2511
2512 entry:
2513 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2514 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2515 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2516 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2517
2518 store i32 %poison, i32* @g ; Poison value stored to memory.
2519 %poison2 = load i32* @g ; Poison value loaded back from memory.
2520
2521 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2522
2523 %narrowaddr = bitcast i32* @g to i16*
2524 %wideaddr = bitcast i32* @g to i64*
2525 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2526 %poison4 = load i64* %wideaddr ; Returns a poison value.
2527
2528 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2529 br i1 %cmp, label %true, label %end ; Branch to either destination.
2530
2531 true:
2532 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2533 ; it has undefined behavior.
2534 br label %end
2535
2536 end:
2537 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2538 ; Both edges into this PHI are
2539 ; control-dependent on %cmp, so this
2540 ; always results in a poison value.
2541
2542 store volatile i32 0, i32* @g ; This would depend on the store in %true
2543 ; if %cmp is true, or the store in %entry
2544 ; otherwise, so this is undefined behavior.
2545
2546 br i1 %cmp, label %second_true, label %second_end
2547 ; The same branch again, but this time the
2548 ; true block doesn't have side effects.
2549
2550 second_true:
2551 ; No side effects!
2552 ret void
2553
2554 second_end:
2555 store volatile i32 0, i32* @g ; This time, the instruction always depends
2556 ; on the store in %end. Also, it is
2557 ; control-equivalent to %end, so this is
2558 ; well-defined (ignoring earlier undefined
2559 ; behavior in this example).
2560
2561.. _blockaddress:
2562
2563Addresses of Basic Blocks
2564-------------------------
2565
2566``blockaddress(@function, %block)``
2567
2568The '``blockaddress``' constant computes the address of the specified
2569basic block in the specified function, and always has an ``i8*`` type.
2570Taking the address of the entry block is illegal.
2571
2572This value only has defined behavior when used as an operand to the
2573':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2574against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002575undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002576no label is equal to the null pointer. This may be passed around as an
2577opaque pointer sized value as long as the bits are not inspected. This
2578allows ``ptrtoint`` and arithmetic to be performed on these values so
2579long as the original value is reconstituted before the ``indirectbr``
2580instruction.
2581
2582Finally, some targets may provide defined semantics when using the value
2583as the operand to an inline assembly, but that is target specific.
2584
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002585.. _constantexprs:
2586
Sean Silvab084af42012-12-07 10:36:55 +00002587Constant Expressions
2588--------------------
2589
2590Constant expressions are used to allow expressions involving other
2591constants to be used as constants. Constant expressions may be of any
2592:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2593that does not have side effects (e.g. load and call are not supported).
2594The following is the syntax for constant expressions:
2595
2596``trunc (CST to TYPE)``
2597 Truncate a constant to another type. The bit size of CST must be
2598 larger than the bit size of TYPE. Both types must be integers.
2599``zext (CST to TYPE)``
2600 Zero extend a constant to another type. The bit size of CST must be
2601 smaller than the bit size of TYPE. Both types must be integers.
2602``sext (CST to TYPE)``
2603 Sign extend a constant to another type. The bit size of CST must be
2604 smaller than the bit size of TYPE. Both types must be integers.
2605``fptrunc (CST to TYPE)``
2606 Truncate a floating point constant to another floating point type.
2607 The size of CST must be larger than the size of TYPE. Both types
2608 must be floating point.
2609``fpext (CST to TYPE)``
2610 Floating point extend a constant to another type. The size of CST
2611 must be smaller or equal to the size of TYPE. Both types must be
2612 floating point.
2613``fptoui (CST to TYPE)``
2614 Convert a floating point constant to the corresponding unsigned
2615 integer constant. TYPE must be a scalar or vector integer type. CST
2616 must be of scalar or vector floating point type. Both CST and TYPE
2617 must be scalars, or vectors of the same number of elements. If the
2618 value won't fit in the integer type, the results are undefined.
2619``fptosi (CST to TYPE)``
2620 Convert a floating point constant to the corresponding signed
2621 integer constant. TYPE must be a scalar or vector integer type. CST
2622 must be of scalar or vector floating point type. Both CST and TYPE
2623 must be scalars, or vectors of the same number of elements. If the
2624 value won't fit in the integer type, the results are undefined.
2625``uitofp (CST to TYPE)``
2626 Convert an unsigned integer constant to the corresponding floating
2627 point constant. TYPE must be a scalar or vector floating point type.
2628 CST must be of scalar or vector integer type. Both CST and TYPE must
2629 be scalars, or vectors of the same number of elements. If the value
2630 won't fit in the floating point type, the results are undefined.
2631``sitofp (CST to TYPE)``
2632 Convert a signed integer constant to the corresponding floating
2633 point constant. TYPE must be a scalar or vector floating point type.
2634 CST must be of scalar or vector integer type. Both CST and TYPE must
2635 be scalars, or vectors of the same number of elements. If the value
2636 won't fit in the floating point type, the results are undefined.
2637``ptrtoint (CST to TYPE)``
2638 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002639 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002640 pointer type. The ``CST`` value is zero extended, truncated, or
2641 unchanged to make it fit in ``TYPE``.
2642``inttoptr (CST to TYPE)``
2643 Convert an integer constant to a pointer constant. TYPE must be a
2644 pointer type. CST must be of integer type. The CST value is zero
2645 extended, truncated, or unchanged to make it fit in a pointer size.
2646 This one is *really* dangerous!
2647``bitcast (CST to TYPE)``
2648 Convert a constant, CST, to another TYPE. The constraints of the
2649 operands are the same as those for the :ref:`bitcast
2650 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002651``addrspacecast (CST to TYPE)``
2652 Convert a constant pointer or constant vector of pointer, CST, to another
2653 TYPE in a different address space. The constraints of the operands are the
2654 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002655``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2656 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2657 constants. As with the :ref:`getelementptr <i_getelementptr>`
2658 instruction, the index list may have zero or more indexes, which are
2659 required to make sense for the type of "CSTPTR".
2660``select (COND, VAL1, VAL2)``
2661 Perform the :ref:`select operation <i_select>` on constants.
2662``icmp COND (VAL1, VAL2)``
2663 Performs the :ref:`icmp operation <i_icmp>` on constants.
2664``fcmp COND (VAL1, VAL2)``
2665 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2666``extractelement (VAL, IDX)``
2667 Perform the :ref:`extractelement operation <i_extractelement>` on
2668 constants.
2669``insertelement (VAL, ELT, IDX)``
2670 Perform the :ref:`insertelement operation <i_insertelement>` on
2671 constants.
2672``shufflevector (VEC1, VEC2, IDXMASK)``
2673 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2674 constants.
2675``extractvalue (VAL, IDX0, IDX1, ...)``
2676 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2677 constants. The index list is interpreted in a similar manner as
2678 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2679 least one index value must be specified.
2680``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2681 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2682 The index list is interpreted in a similar manner as indices in a
2683 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2684 value must be specified.
2685``OPCODE (LHS, RHS)``
2686 Perform the specified operation of the LHS and RHS constants. OPCODE
2687 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2688 binary <bitwiseops>` operations. The constraints on operands are
2689 the same as those for the corresponding instruction (e.g. no bitwise
2690 operations on floating point values are allowed).
2691
2692Other Values
2693============
2694
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002695.. _inlineasmexprs:
2696
Sean Silvab084af42012-12-07 10:36:55 +00002697Inline Assembler Expressions
2698----------------------------
2699
2700LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2701Inline Assembly <moduleasm>`) through the use of a special value. This
2702value represents the inline assembler as a string (containing the
2703instructions to emit), a list of operand constraints (stored as a
2704string), a flag that indicates whether or not the inline asm expression
2705has side effects, and a flag indicating whether the function containing
2706the asm needs to align its stack conservatively. An example inline
2707assembler expression is:
2708
2709.. code-block:: llvm
2710
2711 i32 (i32) asm "bswap $0", "=r,r"
2712
2713Inline assembler expressions may **only** be used as the callee operand
2714of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2715Thus, typically we have:
2716
2717.. code-block:: llvm
2718
2719 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2720
2721Inline asms with side effects not visible in the constraint list must be
2722marked as having side effects. This is done through the use of the
2723'``sideeffect``' keyword, like so:
2724
2725.. code-block:: llvm
2726
2727 call void asm sideeffect "eieio", ""()
2728
2729In some cases inline asms will contain code that will not work unless
2730the stack is aligned in some way, such as calls or SSE instructions on
2731x86, yet will not contain code that does that alignment within the asm.
2732The compiler should make conservative assumptions about what the asm
2733might contain and should generate its usual stack alignment code in the
2734prologue if the '``alignstack``' keyword is present:
2735
2736.. code-block:: llvm
2737
2738 call void asm alignstack "eieio", ""()
2739
2740Inline asms also support using non-standard assembly dialects. The
2741assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2742the inline asm is using the Intel dialect. Currently, ATT and Intel are
2743the only supported dialects. An example is:
2744
2745.. code-block:: llvm
2746
2747 call void asm inteldialect "eieio", ""()
2748
2749If multiple keywords appear the '``sideeffect``' keyword must come
2750first, the '``alignstack``' keyword second and the '``inteldialect``'
2751keyword last.
2752
2753Inline Asm Metadata
2754^^^^^^^^^^^^^^^^^^^
2755
2756The call instructions that wrap inline asm nodes may have a
2757"``!srcloc``" MDNode attached to it that contains a list of constant
2758integers. If present, the code generator will use the integer as the
2759location cookie value when report errors through the ``LLVMContext``
2760error reporting mechanisms. This allows a front-end to correlate backend
2761errors that occur with inline asm back to the source code that produced
2762it. For example:
2763
2764.. code-block:: llvm
2765
2766 call void asm sideeffect "something bad", ""(), !srcloc !42
2767 ...
2768 !42 = !{ i32 1234567 }
2769
2770It is up to the front-end to make sense of the magic numbers it places
2771in the IR. If the MDNode contains multiple constants, the code generator
2772will use the one that corresponds to the line of the asm that the error
2773occurs on.
2774
2775.. _metadata:
2776
2777Metadata Nodes and Metadata Strings
2778-----------------------------------
2779
2780LLVM IR allows metadata to be attached to instructions in the program
2781that can convey extra information about the code to the optimizers and
2782code generator. One example application of metadata is source-level
2783debug information. There are two metadata primitives: strings and nodes.
2784All metadata has the ``metadata`` type and is identified in syntax by a
2785preceding exclamation point ('``!``').
2786
2787A metadata string is a string surrounded by double quotes. It can
2788contain any character by escaping non-printable characters with
2789"``\xx``" where "``xx``" is the two digit hex code. For example:
2790"``!"test\00"``".
2791
2792Metadata nodes are represented with notation similar to structure
2793constants (a comma separated list of elements, surrounded by braces and
2794preceded by an exclamation point). Metadata nodes can have any values as
2795their operand. For example:
2796
2797.. code-block:: llvm
2798
2799 !{ metadata !"test\00", i32 10}
2800
2801A :ref:`named metadata <namedmetadatastructure>` is a collection of
2802metadata nodes, which can be looked up in the module symbol table. For
2803example:
2804
2805.. code-block:: llvm
2806
2807 !foo = metadata !{!4, !3}
2808
2809Metadata can be used as function arguments. Here ``llvm.dbg.value``
2810function is using two metadata arguments:
2811
2812.. code-block:: llvm
2813
2814 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2815
2816Metadata can be attached with an instruction. Here metadata ``!21`` is
2817attached to the ``add`` instruction using the ``!dbg`` identifier:
2818
2819.. code-block:: llvm
2820
2821 %indvar.next = add i64 %indvar, 1, !dbg !21
2822
2823More information about specific metadata nodes recognized by the
2824optimizers and code generator is found below.
2825
2826'``tbaa``' Metadata
2827^^^^^^^^^^^^^^^^^^^
2828
2829In LLVM IR, memory does not have types, so LLVM's own type system is not
2830suitable for doing TBAA. Instead, metadata is added to the IR to
2831describe a type system of a higher level language. This can be used to
2832implement typical C/C++ TBAA, but it can also be used to implement
2833custom alias analysis behavior for other languages.
2834
2835The current metadata format is very simple. TBAA metadata nodes have up
2836to three fields, e.g.:
2837
2838.. code-block:: llvm
2839
2840 !0 = metadata !{ metadata !"an example type tree" }
2841 !1 = metadata !{ metadata !"int", metadata !0 }
2842 !2 = metadata !{ metadata !"float", metadata !0 }
2843 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2844
2845The first field is an identity field. It can be any value, usually a
2846metadata string, which uniquely identifies the type. The most important
2847name in the tree is the name of the root node. Two trees with different
2848root node names are entirely disjoint, even if they have leaves with
2849common names.
2850
2851The second field identifies the type's parent node in the tree, or is
2852null or omitted for a root node. A type is considered to alias all of
2853its descendants and all of its ancestors in the tree. Also, a type is
2854considered to alias all types in other trees, so that bitcode produced
2855from multiple front-ends is handled conservatively.
2856
2857If the third field is present, it's an integer which if equal to 1
2858indicates that the type is "constant" (meaning
2859``pointsToConstantMemory`` should return true; see `other useful
2860AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2861
2862'``tbaa.struct``' Metadata
2863^^^^^^^^^^^^^^^^^^^^^^^^^^
2864
2865The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2866aggregate assignment operations in C and similar languages, however it
2867is defined to copy a contiguous region of memory, which is more than
2868strictly necessary for aggregate types which contain holes due to
2869padding. Also, it doesn't contain any TBAA information about the fields
2870of the aggregate.
2871
2872``!tbaa.struct`` metadata can describe which memory subregions in a
2873memcpy are padding and what the TBAA tags of the struct are.
2874
2875The current metadata format is very simple. ``!tbaa.struct`` metadata
2876nodes are a list of operands which are in conceptual groups of three.
2877For each group of three, the first operand gives the byte offset of a
2878field in bytes, the second gives its size in bytes, and the third gives
2879its tbaa tag. e.g.:
2880
2881.. code-block:: llvm
2882
2883 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2884
2885This describes a struct with two fields. The first is at offset 0 bytes
2886with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2887and has size 4 bytes and has tbaa tag !2.
2888
2889Note that the fields need not be contiguous. In this example, there is a
28904 byte gap between the two fields. This gap represents padding which
2891does not carry useful data and need not be preserved.
2892
Hal Finkel94146652014-07-24 14:25:39 +00002893'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00002894^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00002895
2896``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
2897noalias memory-access sets. This means that some collection of memory access
2898instructions (loads, stores, memory-accessing calls, etc.) that carry
2899``noalias`` metadata can specifically be specified not to alias with some other
2900collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00002901Each type of metadata specifies a list of scopes where each scope has an id and
2902a domain. When evaluating an aliasing query, if for some some domain, the set
2903of scopes with that domain in one instruction's ``alias.scope`` list is a
2904subset of (or qual to) the set of scopes for that domain in another
2905instruction's ``noalias`` list, then the two memory accesses are assumed not to
2906alias.
Hal Finkel94146652014-07-24 14:25:39 +00002907
Hal Finkel029cde62014-07-25 15:50:02 +00002908The metadata identifying each domain is itself a list containing one or two
2909entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00002910string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00002911self-reference can be used to create globally unique domain names. A
2912descriptive string may optionally be provided as a second list entry.
2913
2914The metadata identifying each scope is also itself a list containing two or
2915three entries. The first entry is the name of the scope. Note that if the name
2916is a string then it can be combined accross functions and translation units. A
2917self-reference can be used to create globally unique scope names. A metadata
2918reference to the scope's domain is the second entry. A descriptive string may
2919optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00002920
2921For example,
2922
2923.. code-block:: llvm
2924
Hal Finkel029cde62014-07-25 15:50:02 +00002925 ; Two scope domains:
Hal Finkel94146652014-07-24 14:25:39 +00002926 !0 = metadata !{metadata !0}
Hal Finkel029cde62014-07-25 15:50:02 +00002927 !1 = metadata !{metadata !1}
Hal Finkel94146652014-07-24 14:25:39 +00002928
Hal Finkel029cde62014-07-25 15:50:02 +00002929 ; Some scopes in these domains:
2930 !2 = metadata !{metadata !2, metadata !0}
2931 !3 = metadata !{metadata !3, metadata !0}
2932 !4 = metadata !{metadata !4, metadata !1}
Hal Finkel94146652014-07-24 14:25:39 +00002933
Hal Finkel029cde62014-07-25 15:50:02 +00002934 ; Some scope lists:
2935 !5 = metadata !{metadata !4} ; A list containing only scope !4
2936 !6 = metadata !{metadata !4, metadata !3, metadata !2}
2937 !7 = metadata !{metadata !3}
Hal Finkel94146652014-07-24 14:25:39 +00002938
2939 ; These two instructions don't alias:
Hal Finkel029cde62014-07-25 15:50:02 +00002940 %0 = load float* %c, align 4, !alias.scope !5
2941 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00002942
Hal Finkel029cde62014-07-25 15:50:02 +00002943 ; These two instructions also don't alias (for domain !1, the set of scopes
2944 ; in the !alias.scope equals that in the !noalias list):
2945 %2 = load float* %c, align 4, !alias.scope !5
2946 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00002947
Hal Finkel029cde62014-07-25 15:50:02 +00002948 ; These two instructions don't alias (for domain !0, the set of scopes in
2949 ; the !noalias list is not a superset of, or equal to, the scopes in the
2950 ; !alias.scope list):
2951 %2 = load float* %c, align 4, !alias.scope !6
2952 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00002953
Sean Silvab084af42012-12-07 10:36:55 +00002954'``fpmath``' Metadata
2955^^^^^^^^^^^^^^^^^^^^^
2956
2957``fpmath`` metadata may be attached to any instruction of floating point
2958type. It can be used to express the maximum acceptable error in the
2959result of that instruction, in ULPs, thus potentially allowing the
2960compiler to use a more efficient but less accurate method of computing
2961it. ULP is defined as follows:
2962
2963 If ``x`` is a real number that lies between two finite consecutive
2964 floating-point numbers ``a`` and ``b``, without being equal to one
2965 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2966 distance between the two non-equal finite floating-point numbers
2967 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2968
2969The metadata node shall consist of a single positive floating point
2970number representing the maximum relative error, for example:
2971
2972.. code-block:: llvm
2973
2974 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2975
2976'``range``' Metadata
2977^^^^^^^^^^^^^^^^^^^^
2978
Jingyue Wu37fcb592014-06-19 16:50:16 +00002979``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
2980integer types. It expresses the possible ranges the loaded value or the value
2981returned by the called function at this call site is in. The ranges are
2982represented with a flattened list of integers. The loaded value or the value
2983returned is known to be in the union of the ranges defined by each consecutive
2984pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00002985
2986- The type must match the type loaded by the instruction.
2987- The pair ``a,b`` represents the range ``[a,b)``.
2988- Both ``a`` and ``b`` are constants.
2989- The range is allowed to wrap.
2990- The range should not represent the full or empty set. That is,
2991 ``a!=b``.
2992
2993In addition, the pairs must be in signed order of the lower bound and
2994they must be non-contiguous.
2995
2996Examples:
2997
2998.. code-block:: llvm
2999
3000 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
3001 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00003002 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
3003 %d = invoke i8 @bar() to label %cont
3004 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00003005 ...
3006 !0 = metadata !{ i8 0, i8 2 }
3007 !1 = metadata !{ i8 255, i8 2 }
3008 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
3009 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
3010
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003011'``llvm.loop``'
3012^^^^^^^^^^^^^^^
3013
3014It is sometimes useful to attach information to loop constructs. Currently,
3015loop metadata is implemented as metadata attached to the branch instruction
3016in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00003017guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00003018specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003019
3020The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00003021itself to avoid merging it with any other identifier metadata, e.g.,
3022during module linkage or function inlining. That is, each loop should refer
3023to their own identification metadata even if they reside in separate functions.
3024The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003025constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003026
3027.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00003028
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003029 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003030 !1 = metadata !{ metadata !1 }
3031
Mark Heffernan893752a2014-07-18 19:24:51 +00003032The loop identifier metadata can be used to specify additional
3033per-loop metadata. Any operands after the first operand can be treated
3034as user-defined metadata. For example the ``llvm.loop.unroll.count``
3035suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003036
Paul Redmond5fdf8362013-05-28 20:00:34 +00003037.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003038
Paul Redmond5fdf8362013-05-28 20:00:34 +00003039 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
3040 ...
3041 !0 = metadata !{ metadata !0, metadata !1 }
Mark Heffernan9d20e422014-07-21 23:11:03 +00003042 !1 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003043
Mark Heffernan9d20e422014-07-21 23:11:03 +00003044'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
3045^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00003046
Mark Heffernan9d20e422014-07-21 23:11:03 +00003047Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
3048used to control per-loop vectorization and interleaving parameters such as
3049vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00003050conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00003051``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
3052optimization hints and the optimizer will only interleave and vectorize loops if
3053it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
3054which contains information about loop-carried memory dependencies can be helpful
3055in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00003056
Mark Heffernan9d20e422014-07-21 23:11:03 +00003057'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00003058^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3059
Mark Heffernan9d20e422014-07-21 23:11:03 +00003060This metadata suggests an interleave count to the loop interleaver.
3061The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00003062second operand is an integer specifying the interleave count. For
3063example:
3064
3065.. code-block:: llvm
3066
Mark Heffernan9d20e422014-07-21 23:11:03 +00003067 !0 = metadata !{ metadata !"llvm.loop.interleave.count", i32 4 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003068
Mark Heffernan9d20e422014-07-21 23:11:03 +00003069Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3070multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
3071then the interleave count will be determined automatically.
3072
3073'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00003074^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00003075
3076This metadata selectively enables or disables vectorization for the loop. The
3077first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3078is a bit. If the bit operand value is 1 vectorization is enabled. A value of
30790 disables vectorization:
3080
3081.. code-block:: llvm
3082
3083 !0 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 0 }
3084 !1 = metadata !{ metadata !"llvm.loop.vectorize.enable", i1 1 }
Mark Heffernan893752a2014-07-18 19:24:51 +00003085
3086'``llvm.loop.vectorize.width``' Metadata
3087^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3088
3089This metadata sets the target width of the vectorizer. The first
3090operand is the string ``llvm.loop.vectorize.width`` and the second
3091operand is an integer specifying the width. For example:
3092
3093.. code-block:: llvm
3094
3095 !0 = metadata !{ metadata !"llvm.loop.vectorize.width", i32 4 }
3096
3097Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3098vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
30990 or if the loop does not have this metadata the width will be
3100determined automatically.
3101
3102'``llvm.loop.unroll``'
3103^^^^^^^^^^^^^^^^^^^^^^
3104
3105Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3106optimization hints such as the unroll factor. ``llvm.loop.unroll``
3107metadata should be used in conjunction with ``llvm.loop`` loop
3108identification metadata. The ``llvm.loop.unroll`` metadata are only
3109optimization hints and the unrolling will only be performed if the
3110optimizer believes it is safe to do so.
3111
Mark Heffernan893752a2014-07-18 19:24:51 +00003112'``llvm.loop.unroll.count``' Metadata
3113^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3114
3115This metadata suggests an unroll factor to the loop unroller. The
3116first operand is the string ``llvm.loop.unroll.count`` and the second
3117operand is a positive integer specifying the unroll factor. For
3118example:
3119
3120.. code-block:: llvm
3121
3122 !0 = metadata !{ metadata !"llvm.loop.unroll.count", i32 4 }
3123
3124If the trip count of the loop is less than the unroll count the loop
3125will be partially unrolled.
3126
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003127'``llvm.loop.unroll.disable``' Metadata
3128^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3129
3130This metadata either disables loop unrolling. The metadata has a single operand
3131which is the string ``llvm.loop.unroll.disable``. For example:
3132
3133.. code-block:: llvm
3134
3135 !0 = metadata !{ metadata !"llvm.loop.unroll.disable" }
3136
3137'``llvm.loop.unroll.full``' Metadata
3138^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3139
3140This metadata either suggests that the loop should be unrolled fully. The
3141metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3142For example:
3143
3144.. code-block:: llvm
3145
3146 !0 = metadata !{ metadata !"llvm.loop.unroll.full" }
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003147
3148'``llvm.mem``'
3149^^^^^^^^^^^^^^^
3150
3151Metadata types used to annotate memory accesses with information helpful
3152for optimizations are prefixed with ``llvm.mem``.
3153
3154'``llvm.mem.parallel_loop_access``' Metadata
3155^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3156
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003157The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3158or metadata containing a list of loop identifiers for nested loops.
3159The metadata is attached to memory accessing instructions and denotes that
3160no loop carried memory dependence exist between it and other instructions denoted
3161with the same loop identifier.
3162
3163Precisely, given two instructions ``m1`` and ``m2`` that both have the
3164``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3165set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00003166carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003167``L2``.
3168
3169As a special case, if all memory accessing instructions in a loop have
3170``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3171loop has no loop carried memory dependences and is considered to be a parallel
3172loop.
3173
3174Note that if not all memory access instructions have such metadata referring to
3175the loop, then the loop is considered not being trivially parallel. Additional
3176memory dependence analysis is required to make that determination. As a fail
3177safe mechanism, this causes loops that were originally parallel to be considered
3178sequential (if optimization passes that are unaware of the parallel semantics
3179insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003180
3181Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003182both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003183metadata types that refer to the same loop identifier metadata.
3184
3185.. code-block:: llvm
3186
3187 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003188 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003189 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003190 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003191 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003192 ...
3193 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003194
3195 for.end:
3196 ...
3197 !0 = metadata !{ metadata !0 }
3198
3199It is also possible to have nested parallel loops. In that case the
3200memory accesses refer to a list of loop identifier metadata nodes instead of
3201the loop identifier metadata node directly:
3202
3203.. code-block:: llvm
3204
3205 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003206 ...
3207 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
3208 ...
3209 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003210
3211 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003212 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003213 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003214 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003215 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003216 ...
3217 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003218
3219 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003220 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003221 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003222 ...
3223 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003224
3225 outer.for.end: ; preds = %for.body
3226 ...
Paul Redmond5fdf8362013-05-28 20:00:34 +00003227 !0 = metadata !{ metadata !1, metadata !2 } ; a list of loop identifiers
3228 !1 = metadata !{ metadata !1 } ; an identifier for the inner loop
3229 !2 = metadata !{ metadata !2 } ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003230
Sean Silvab084af42012-12-07 10:36:55 +00003231Module Flags Metadata
3232=====================
3233
3234Information about the module as a whole is difficult to convey to LLVM's
3235subsystems. The LLVM IR isn't sufficient to transmit this information.
3236The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003237this. These flags are in the form of key / value pairs --- much like a
3238dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003239look it up.
3240
3241The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3242Each triplet has the following form:
3243
3244- The first element is a *behavior* flag, which specifies the behavior
3245 when two (or more) modules are merged together, and it encounters two
3246 (or more) metadata with the same ID. The supported behaviors are
3247 described below.
3248- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003249 metadata. Each module may only have one flag entry for each unique ID (not
3250 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003251- The third element is the value of the flag.
3252
3253When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003254``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3255each unique metadata ID string, there will be exactly one entry in the merged
3256modules ``llvm.module.flags`` metadata table, and the value for that entry will
3257be determined by the merge behavior flag, as described below. The only exception
3258is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003259
3260The following behaviors are supported:
3261
3262.. list-table::
3263 :header-rows: 1
3264 :widths: 10 90
3265
3266 * - Value
3267 - Behavior
3268
3269 * - 1
3270 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003271 Emits an error if two values disagree, otherwise the resulting value
3272 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003273
3274 * - 2
3275 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003276 Emits a warning if two values disagree. The result value will be the
3277 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003278
3279 * - 3
3280 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003281 Adds a requirement that another module flag be present and have a
3282 specified value after linking is performed. The value must be a
3283 metadata pair, where the first element of the pair is the ID of the
3284 module flag to be restricted, and the second element of the pair is
3285 the value the module flag should be restricted to. This behavior can
3286 be used to restrict the allowable results (via triggering of an
3287 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003288
3289 * - 4
3290 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003291 Uses the specified value, regardless of the behavior or value of the
3292 other module. If both modules specify **Override**, but the values
3293 differ, an error will be emitted.
3294
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003295 * - 5
3296 - **Append**
3297 Appends the two values, which are required to be metadata nodes.
3298
3299 * - 6
3300 - **AppendUnique**
3301 Appends the two values, which are required to be metadata
3302 nodes. However, duplicate entries in the second list are dropped
3303 during the append operation.
3304
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003305It is an error for a particular unique flag ID to have multiple behaviors,
3306except in the case of **Require** (which adds restrictions on another metadata
3307value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003308
3309An example of module flags:
3310
3311.. code-block:: llvm
3312
3313 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
3314 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
3315 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
3316 !3 = metadata !{ i32 3, metadata !"qux",
3317 metadata !{
3318 metadata !"foo", i32 1
3319 }
3320 }
3321 !llvm.module.flags = !{ !0, !1, !2, !3 }
3322
3323- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3324 if two or more ``!"foo"`` flags are seen is to emit an error if their
3325 values are not equal.
3326
3327- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3328 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003329 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003330
3331- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3332 behavior if two or more ``!"qux"`` flags are seen is to emit a
3333 warning if their values are not equal.
3334
3335- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3336
3337 ::
3338
3339 metadata !{ metadata !"foo", i32 1 }
3340
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003341 The behavior is to emit an error if the ``llvm.module.flags`` does not
3342 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3343 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003344
3345Objective-C Garbage Collection Module Flags Metadata
3346----------------------------------------------------
3347
3348On the Mach-O platform, Objective-C stores metadata about garbage
3349collection in a special section called "image info". The metadata
3350consists of a version number and a bitmask specifying what types of
3351garbage collection are supported (if any) by the file. If two or more
3352modules are linked together their garbage collection metadata needs to
3353be merged rather than appended together.
3354
3355The Objective-C garbage collection module flags metadata consists of the
3356following key-value pairs:
3357
3358.. list-table::
3359 :header-rows: 1
3360 :widths: 30 70
3361
3362 * - Key
3363 - Value
3364
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003365 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003366 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003367
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003368 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003369 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003370 always 0.
3371
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003372 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003373 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003374 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3375 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3376 Objective-C ABI version 2.
3377
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003378 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003379 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003380 not. Valid values are 0, for no garbage collection, and 2, for garbage
3381 collection supported.
3382
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003383 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003384 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003385 If present, its value must be 6. This flag requires that the
3386 ``Objective-C Garbage Collection`` flag have the value 2.
3387
3388Some important flag interactions:
3389
3390- If a module with ``Objective-C Garbage Collection`` set to 0 is
3391 merged with a module with ``Objective-C Garbage Collection`` set to
3392 2, then the resulting module has the
3393 ``Objective-C Garbage Collection`` flag set to 0.
3394- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3395 merged with a module with ``Objective-C GC Only`` set to 6.
3396
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003397Automatic Linker Flags Module Flags Metadata
3398--------------------------------------------
3399
3400Some targets support embedding flags to the linker inside individual object
3401files. Typically this is used in conjunction with language extensions which
3402allow source files to explicitly declare the libraries they depend on, and have
3403these automatically be transmitted to the linker via object files.
3404
3405These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003406using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003407to be ``AppendUnique``, and the value for the key is expected to be a metadata
3408node which should be a list of other metadata nodes, each of which should be a
3409list of metadata strings defining linker options.
3410
3411For example, the following metadata section specifies two separate sets of
3412linker options, presumably to link against ``libz`` and the ``Cocoa``
3413framework::
3414
Michael Liaoa7699082013-03-06 18:24:34 +00003415 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003416 metadata !{
Daniel Dunbar95856122013-01-18 19:37:00 +00003417 metadata !{ metadata !"-lz" },
3418 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003419 !llvm.module.flags = !{ !0 }
3420
3421The metadata encoding as lists of lists of options, as opposed to a collapsed
3422list of options, is chosen so that the IR encoding can use multiple option
3423strings to specify e.g., a single library, while still having that specifier be
3424preserved as an atomic element that can be recognized by a target specific
3425assembly writer or object file emitter.
3426
3427Each individual option is required to be either a valid option for the target's
3428linker, or an option that is reserved by the target specific assembly writer or
3429object file emitter. No other aspect of these options is defined by the IR.
3430
Oliver Stannard5dc29342014-06-20 10:08:11 +00003431C type width Module Flags Metadata
3432----------------------------------
3433
3434The ARM backend emits a section into each generated object file describing the
3435options that it was compiled with (in a compiler-independent way) to prevent
3436linking incompatible objects, and to allow automatic library selection. Some
3437of these options are not visible at the IR level, namely wchar_t width and enum
3438width.
3439
3440To pass this information to the backend, these options are encoded in module
3441flags metadata, using the following key-value pairs:
3442
3443.. list-table::
3444 :header-rows: 1
3445 :widths: 30 70
3446
3447 * - Key
3448 - Value
3449
3450 * - short_wchar
3451 - * 0 --- sizeof(wchar_t) == 4
3452 * 1 --- sizeof(wchar_t) == 2
3453
3454 * - short_enum
3455 - * 0 --- Enums are at least as large as an ``int``.
3456 * 1 --- Enums are stored in the smallest integer type which can
3457 represent all of its values.
3458
3459For example, the following metadata section specifies that the module was
3460compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3461enum is the smallest type which can represent all of its values::
3462
3463 !llvm.module.flags = !{!0, !1}
3464 !0 = metadata !{i32 1, metadata !"short_wchar", i32 1}
3465 !1 = metadata !{i32 1, metadata !"short_enum", i32 0}
3466
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003467.. _intrinsicglobalvariables:
3468
Sean Silvab084af42012-12-07 10:36:55 +00003469Intrinsic Global Variables
3470==========================
3471
3472LLVM has a number of "magic" global variables that contain data that
3473affect code generation or other IR semantics. These are documented here.
3474All globals of this sort should have a section specified as
3475"``llvm.metadata``". This section and all globals that start with
3476"``llvm.``" are reserved for use by LLVM.
3477
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003478.. _gv_llvmused:
3479
Sean Silvab084af42012-12-07 10:36:55 +00003480The '``llvm.used``' Global Variable
3481-----------------------------------
3482
Rafael Espindola74f2e462013-04-22 14:58:02 +00003483The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003484:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003485pointers to named global variables, functions and aliases which may optionally
3486have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003487use of it is:
3488
3489.. code-block:: llvm
3490
3491 @X = global i8 4
3492 @Y = global i32 123
3493
3494 @llvm.used = appending global [2 x i8*] [
3495 i8* @X,
3496 i8* bitcast (i32* @Y to i8*)
3497 ], section "llvm.metadata"
3498
Rafael Espindola74f2e462013-04-22 14:58:02 +00003499If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3500and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003501symbol that it cannot see (which is why they have to be named). For example, if
3502a variable has internal linkage and no references other than that from the
3503``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3504references from inline asms and other things the compiler cannot "see", and
3505corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003506
3507On some targets, the code generator must emit a directive to the
3508assembler or object file to prevent the assembler and linker from
3509molesting the symbol.
3510
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003511.. _gv_llvmcompilerused:
3512
Sean Silvab084af42012-12-07 10:36:55 +00003513The '``llvm.compiler.used``' Global Variable
3514--------------------------------------------
3515
3516The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3517directive, except that it only prevents the compiler from touching the
3518symbol. On targets that support it, this allows an intelligent linker to
3519optimize references to the symbol without being impeded as it would be
3520by ``@llvm.used``.
3521
3522This is a rare construct that should only be used in rare circumstances,
3523and should not be exposed to source languages.
3524
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003525.. _gv_llvmglobalctors:
3526
Sean Silvab084af42012-12-07 10:36:55 +00003527The '``llvm.global_ctors``' Global Variable
3528-------------------------------------------
3529
3530.. code-block:: llvm
3531
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003532 %0 = type { i32, void ()*, i8* }
3533 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003534
3535The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003536functions, priorities, and an optional associated global or function.
3537The functions referenced by this array will be called in ascending order
3538of priority (i.e. lowest first) when the module is loaded. The order of
3539functions with the same priority is not defined.
3540
3541If the third field is present, non-null, and points to a global variable
3542or function, the initializer function will only run if the associated
3543data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003544
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003545.. _llvmglobaldtors:
3546
Sean Silvab084af42012-12-07 10:36:55 +00003547The '``llvm.global_dtors``' Global Variable
3548-------------------------------------------
3549
3550.. code-block:: llvm
3551
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003552 %0 = type { i32, void ()*, i8* }
3553 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003554
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003555The ``@llvm.global_dtors`` array contains a list of destructor
3556functions, priorities, and an optional associated global or function.
3557The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003558order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003559order of functions with the same priority is not defined.
3560
3561If the third field is present, non-null, and points to a global variable
3562or function, the destructor function will only run if the associated
3563data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003564
3565Instruction Reference
3566=====================
3567
3568The LLVM instruction set consists of several different classifications
3569of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3570instructions <binaryops>`, :ref:`bitwise binary
3571instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3572:ref:`other instructions <otherops>`.
3573
3574.. _terminators:
3575
3576Terminator Instructions
3577-----------------------
3578
3579As mentioned :ref:`previously <functionstructure>`, every basic block in a
3580program ends with a "Terminator" instruction, which indicates which
3581block should be executed after the current block is finished. These
3582terminator instructions typically yield a '``void``' value: they produce
3583control flow, not values (the one exception being the
3584':ref:`invoke <i_invoke>`' instruction).
3585
3586The terminator instructions are: ':ref:`ret <i_ret>`',
3587':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3588':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3589':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3590
3591.. _i_ret:
3592
3593'``ret``' Instruction
3594^^^^^^^^^^^^^^^^^^^^^
3595
3596Syntax:
3597"""""""
3598
3599::
3600
3601 ret <type> <value> ; Return a value from a non-void function
3602 ret void ; Return from void function
3603
3604Overview:
3605"""""""""
3606
3607The '``ret``' instruction is used to return control flow (and optionally
3608a value) from a function back to the caller.
3609
3610There are two forms of the '``ret``' instruction: one that returns a
3611value and then causes control flow, and one that just causes control
3612flow to occur.
3613
3614Arguments:
3615""""""""""
3616
3617The '``ret``' instruction optionally accepts a single argument, the
3618return value. The type of the return value must be a ':ref:`first
3619class <t_firstclass>`' type.
3620
3621A function is not :ref:`well formed <wellformed>` if it it has a non-void
3622return type and contains a '``ret``' instruction with no return value or
3623a return value with a type that does not match its type, or if it has a
3624void return type and contains a '``ret``' instruction with a return
3625value.
3626
3627Semantics:
3628""""""""""
3629
3630When the '``ret``' instruction is executed, control flow returns back to
3631the calling function's context. If the caller is a
3632":ref:`call <i_call>`" instruction, execution continues at the
3633instruction after the call. If the caller was an
3634":ref:`invoke <i_invoke>`" instruction, execution continues at the
3635beginning of the "normal" destination block. If the instruction returns
3636a value, that value shall set the call or invoke instruction's return
3637value.
3638
3639Example:
3640""""""""
3641
3642.. code-block:: llvm
3643
3644 ret i32 5 ; Return an integer value of 5
3645 ret void ; Return from a void function
3646 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3647
3648.. _i_br:
3649
3650'``br``' Instruction
3651^^^^^^^^^^^^^^^^^^^^
3652
3653Syntax:
3654"""""""
3655
3656::
3657
3658 br i1 <cond>, label <iftrue>, label <iffalse>
3659 br label <dest> ; Unconditional branch
3660
3661Overview:
3662"""""""""
3663
3664The '``br``' instruction is used to cause control flow to transfer to a
3665different basic block in the current function. There are two forms of
3666this instruction, corresponding to a conditional branch and an
3667unconditional branch.
3668
3669Arguments:
3670""""""""""
3671
3672The conditional branch form of the '``br``' instruction takes a single
3673'``i1``' value and two '``label``' values. The unconditional form of the
3674'``br``' instruction takes a single '``label``' value as a target.
3675
3676Semantics:
3677""""""""""
3678
3679Upon execution of a conditional '``br``' instruction, the '``i1``'
3680argument is evaluated. If the value is ``true``, control flows to the
3681'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3682to the '``iffalse``' ``label`` argument.
3683
3684Example:
3685""""""""
3686
3687.. code-block:: llvm
3688
3689 Test:
3690 %cond = icmp eq i32 %a, %b
3691 br i1 %cond, label %IfEqual, label %IfUnequal
3692 IfEqual:
3693 ret i32 1
3694 IfUnequal:
3695 ret i32 0
3696
3697.. _i_switch:
3698
3699'``switch``' Instruction
3700^^^^^^^^^^^^^^^^^^^^^^^^
3701
3702Syntax:
3703"""""""
3704
3705::
3706
3707 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3708
3709Overview:
3710"""""""""
3711
3712The '``switch``' instruction is used to transfer control flow to one of
3713several different places. It is a generalization of the '``br``'
3714instruction, allowing a branch to occur to one of many possible
3715destinations.
3716
3717Arguments:
3718""""""""""
3719
3720The '``switch``' instruction uses three parameters: an integer
3721comparison value '``value``', a default '``label``' destination, and an
3722array of pairs of comparison value constants and '``label``'s. The table
3723is not allowed to contain duplicate constant entries.
3724
3725Semantics:
3726""""""""""
3727
3728The ``switch`` instruction specifies a table of values and destinations.
3729When the '``switch``' instruction is executed, this table is searched
3730for the given value. If the value is found, control flow is transferred
3731to the corresponding destination; otherwise, control flow is transferred
3732to the default destination.
3733
3734Implementation:
3735"""""""""""""""
3736
3737Depending on properties of the target machine and the particular
3738``switch`` instruction, this instruction may be code generated in
3739different ways. For example, it could be generated as a series of
3740chained conditional branches or with a lookup table.
3741
3742Example:
3743""""""""
3744
3745.. code-block:: llvm
3746
3747 ; Emulate a conditional br instruction
3748 %Val = zext i1 %value to i32
3749 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3750
3751 ; Emulate an unconditional br instruction
3752 switch i32 0, label %dest [ ]
3753
3754 ; Implement a jump table:
3755 switch i32 %val, label %otherwise [ i32 0, label %onzero
3756 i32 1, label %onone
3757 i32 2, label %ontwo ]
3758
3759.. _i_indirectbr:
3760
3761'``indirectbr``' Instruction
3762^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3763
3764Syntax:
3765"""""""
3766
3767::
3768
3769 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3770
3771Overview:
3772"""""""""
3773
3774The '``indirectbr``' instruction implements an indirect branch to a
3775label within the current function, whose address is specified by
3776"``address``". Address must be derived from a
3777:ref:`blockaddress <blockaddress>` constant.
3778
3779Arguments:
3780""""""""""
3781
3782The '``address``' argument is the address of the label to jump to. The
3783rest of the arguments indicate the full set of possible destinations
3784that the address may point to. Blocks are allowed to occur multiple
3785times in the destination list, though this isn't particularly useful.
3786
3787This destination list is required so that dataflow analysis has an
3788accurate understanding of the CFG.
3789
3790Semantics:
3791""""""""""
3792
3793Control transfers to the block specified in the address argument. All
3794possible destination blocks must be listed in the label list, otherwise
3795this instruction has undefined behavior. This implies that jumps to
3796labels defined in other functions have undefined behavior as well.
3797
3798Implementation:
3799"""""""""""""""
3800
3801This is typically implemented with a jump through a register.
3802
3803Example:
3804""""""""
3805
3806.. code-block:: llvm
3807
3808 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3809
3810.. _i_invoke:
3811
3812'``invoke``' Instruction
3813^^^^^^^^^^^^^^^^^^^^^^^^
3814
3815Syntax:
3816"""""""
3817
3818::
3819
3820 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3821 to label <normal label> unwind label <exception label>
3822
3823Overview:
3824"""""""""
3825
3826The '``invoke``' instruction causes control to transfer to a specified
3827function, with the possibility of control flow transfer to either the
3828'``normal``' label or the '``exception``' label. If the callee function
3829returns with the "``ret``" instruction, control flow will return to the
3830"normal" label. If the callee (or any indirect callees) returns via the
3831":ref:`resume <i_resume>`" instruction or other exception handling
3832mechanism, control is interrupted and continued at the dynamically
3833nearest "exception" label.
3834
3835The '``exception``' label is a `landing
3836pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3837'``exception``' label is required to have the
3838":ref:`landingpad <i_landingpad>`" instruction, which contains the
3839information about the behavior of the program after unwinding happens,
3840as its first non-PHI instruction. The restrictions on the
3841"``landingpad``" instruction's tightly couples it to the "``invoke``"
3842instruction, so that the important information contained within the
3843"``landingpad``" instruction can't be lost through normal code motion.
3844
3845Arguments:
3846""""""""""
3847
3848This instruction requires several arguments:
3849
3850#. The optional "cconv" marker indicates which :ref:`calling
3851 convention <callingconv>` the call should use. If none is
3852 specified, the call defaults to using C calling conventions.
3853#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3854 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3855 are valid here.
3856#. '``ptr to function ty``': shall be the signature of the pointer to
3857 function value being invoked. In most cases, this is a direct
3858 function invocation, but indirect ``invoke``'s are just as possible,
3859 branching off an arbitrary pointer to function value.
3860#. '``function ptr val``': An LLVM value containing a pointer to a
3861 function to be invoked.
3862#. '``function args``': argument list whose types match the function
3863 signature argument types and parameter attributes. All arguments must
3864 be of :ref:`first class <t_firstclass>` type. If the function signature
3865 indicates the function accepts a variable number of arguments, the
3866 extra arguments can be specified.
3867#. '``normal label``': the label reached when the called function
3868 executes a '``ret``' instruction.
3869#. '``exception label``': the label reached when a callee returns via
3870 the :ref:`resume <i_resume>` instruction or other exception handling
3871 mechanism.
3872#. The optional :ref:`function attributes <fnattrs>` list. Only
3873 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3874 attributes are valid here.
3875
3876Semantics:
3877""""""""""
3878
3879This instruction is designed to operate as a standard '``call``'
3880instruction in most regards. The primary difference is that it
3881establishes an association with a label, which is used by the runtime
3882library to unwind the stack.
3883
3884This instruction is used in languages with destructors to ensure that
3885proper cleanup is performed in the case of either a ``longjmp`` or a
3886thrown exception. Additionally, this is important for implementation of
3887'``catch``' clauses in high-level languages that support them.
3888
3889For the purposes of the SSA form, the definition of the value returned
3890by the '``invoke``' instruction is deemed to occur on the edge from the
3891current block to the "normal" label. If the callee unwinds then no
3892return value is available.
3893
3894Example:
3895""""""""
3896
3897.. code-block:: llvm
3898
3899 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003900 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003901 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003902 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003903
3904.. _i_resume:
3905
3906'``resume``' Instruction
3907^^^^^^^^^^^^^^^^^^^^^^^^
3908
3909Syntax:
3910"""""""
3911
3912::
3913
3914 resume <type> <value>
3915
3916Overview:
3917"""""""""
3918
3919The '``resume``' instruction is a terminator instruction that has no
3920successors.
3921
3922Arguments:
3923""""""""""
3924
3925The '``resume``' instruction requires one argument, which must have the
3926same type as the result of any '``landingpad``' instruction in the same
3927function.
3928
3929Semantics:
3930""""""""""
3931
3932The '``resume``' instruction resumes propagation of an existing
3933(in-flight) exception whose unwinding was interrupted with a
3934:ref:`landingpad <i_landingpad>` instruction.
3935
3936Example:
3937""""""""
3938
3939.. code-block:: llvm
3940
3941 resume { i8*, i32 } %exn
3942
3943.. _i_unreachable:
3944
3945'``unreachable``' Instruction
3946^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3947
3948Syntax:
3949"""""""
3950
3951::
3952
3953 unreachable
3954
3955Overview:
3956"""""""""
3957
3958The '``unreachable``' instruction has no defined semantics. This
3959instruction is used to inform the optimizer that a particular portion of
3960the code is not reachable. This can be used to indicate that the code
3961after a no-return function cannot be reached, and other facts.
3962
3963Semantics:
3964""""""""""
3965
3966The '``unreachable``' instruction has no defined semantics.
3967
3968.. _binaryops:
3969
3970Binary Operations
3971-----------------
3972
3973Binary operators are used to do most of the computation in a program.
3974They require two operands of the same type, execute an operation on
3975them, and produce a single value. The operands might represent multiple
3976data, as is the case with the :ref:`vector <t_vector>` data type. The
3977result value has the same type as its operands.
3978
3979There are several different binary operators:
3980
3981.. _i_add:
3982
3983'``add``' Instruction
3984^^^^^^^^^^^^^^^^^^^^^
3985
3986Syntax:
3987"""""""
3988
3989::
3990
Tim Northover675a0962014-06-13 14:24:23 +00003991 <result> = add <ty> <op1>, <op2> ; yields ty:result
3992 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
3993 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
3994 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00003995
3996Overview:
3997"""""""""
3998
3999The '``add``' instruction returns the sum of its two operands.
4000
4001Arguments:
4002""""""""""
4003
4004The two arguments to the '``add``' instruction must be
4005:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4006arguments must have identical types.
4007
4008Semantics:
4009""""""""""
4010
4011The value produced is the integer sum of the two operands.
4012
4013If the sum has unsigned overflow, the result returned is the
4014mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4015the result.
4016
4017Because LLVM integers use a two's complement representation, this
4018instruction is appropriate for both signed and unsigned integers.
4019
4020``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4021respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4022result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
4023unsigned and/or signed overflow, respectively, occurs.
4024
4025Example:
4026""""""""
4027
4028.. code-block:: llvm
4029
Tim Northover675a0962014-06-13 14:24:23 +00004030 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004031
4032.. _i_fadd:
4033
4034'``fadd``' Instruction
4035^^^^^^^^^^^^^^^^^^^^^^
4036
4037Syntax:
4038"""""""
4039
4040::
4041
Tim Northover675a0962014-06-13 14:24:23 +00004042 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004043
4044Overview:
4045"""""""""
4046
4047The '``fadd``' instruction returns the sum of its two operands.
4048
4049Arguments:
4050""""""""""
4051
4052The two arguments to the '``fadd``' instruction must be :ref:`floating
4053point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4054Both arguments must have identical types.
4055
4056Semantics:
4057""""""""""
4058
4059The value produced is the floating point sum of the two operands. This
4060instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4061which are optimization hints to enable otherwise unsafe floating point
4062optimizations:
4063
4064Example:
4065""""""""
4066
4067.. code-block:: llvm
4068
Tim Northover675a0962014-06-13 14:24:23 +00004069 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004070
4071'``sub``' Instruction
4072^^^^^^^^^^^^^^^^^^^^^
4073
4074Syntax:
4075"""""""
4076
4077::
4078
Tim Northover675a0962014-06-13 14:24:23 +00004079 <result> = sub <ty> <op1>, <op2> ; yields ty:result
4080 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
4081 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
4082 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004083
4084Overview:
4085"""""""""
4086
4087The '``sub``' instruction returns the difference of its two operands.
4088
4089Note that the '``sub``' instruction is used to represent the '``neg``'
4090instruction present in most other intermediate representations.
4091
4092Arguments:
4093""""""""""
4094
4095The two arguments to the '``sub``' instruction must be
4096:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4097arguments must have identical types.
4098
4099Semantics:
4100""""""""""
4101
4102The value produced is the integer difference of the two operands.
4103
4104If the difference has unsigned overflow, the result returned is the
4105mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4106the result.
4107
4108Because LLVM integers use a two's complement representation, this
4109instruction is appropriate for both signed and unsigned integers.
4110
4111``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4112respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4113result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4114unsigned and/or signed overflow, respectively, occurs.
4115
4116Example:
4117""""""""
4118
4119.. code-block:: llvm
4120
Tim Northover675a0962014-06-13 14:24:23 +00004121 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
4122 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004123
4124.. _i_fsub:
4125
4126'``fsub``' Instruction
4127^^^^^^^^^^^^^^^^^^^^^^
4128
4129Syntax:
4130"""""""
4131
4132::
4133
Tim Northover675a0962014-06-13 14:24:23 +00004134 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004135
4136Overview:
4137"""""""""
4138
4139The '``fsub``' instruction returns the difference of its two operands.
4140
4141Note that the '``fsub``' instruction is used to represent the '``fneg``'
4142instruction present in most other intermediate representations.
4143
4144Arguments:
4145""""""""""
4146
4147The two arguments to the '``fsub``' instruction must be :ref:`floating
4148point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4149Both arguments must have identical types.
4150
4151Semantics:
4152""""""""""
4153
4154The value produced is the floating point difference of the two operands.
4155This instruction can also take any number of :ref:`fast-math
4156flags <fastmath>`, which are optimization hints to enable otherwise
4157unsafe floating point optimizations:
4158
4159Example:
4160""""""""
4161
4162.. code-block:: llvm
4163
Tim Northover675a0962014-06-13 14:24:23 +00004164 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4165 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004166
4167'``mul``' Instruction
4168^^^^^^^^^^^^^^^^^^^^^
4169
4170Syntax:
4171"""""""
4172
4173::
4174
Tim Northover675a0962014-06-13 14:24:23 +00004175 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4176 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4177 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4178 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004179
4180Overview:
4181"""""""""
4182
4183The '``mul``' instruction returns the product of its two operands.
4184
4185Arguments:
4186""""""""""
4187
4188The two arguments to the '``mul``' instruction must be
4189:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4190arguments must have identical types.
4191
4192Semantics:
4193""""""""""
4194
4195The value produced is the integer product of the two operands.
4196
4197If the result of the multiplication has unsigned overflow, the result
4198returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4199bit width of the result.
4200
4201Because LLVM integers use a two's complement representation, and the
4202result is the same width as the operands, this instruction returns the
4203correct result for both signed and unsigned integers. If a full product
4204(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4205sign-extended or zero-extended as appropriate to the width of the full
4206product.
4207
4208``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4209respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4210result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4211unsigned and/or signed overflow, respectively, occurs.
4212
4213Example:
4214""""""""
4215
4216.. code-block:: llvm
4217
Tim Northover675a0962014-06-13 14:24:23 +00004218 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004219
4220.. _i_fmul:
4221
4222'``fmul``' Instruction
4223^^^^^^^^^^^^^^^^^^^^^^
4224
4225Syntax:
4226"""""""
4227
4228::
4229
Tim Northover675a0962014-06-13 14:24:23 +00004230 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004231
4232Overview:
4233"""""""""
4234
4235The '``fmul``' instruction returns the product of its two operands.
4236
4237Arguments:
4238""""""""""
4239
4240The two arguments to the '``fmul``' instruction must be :ref:`floating
4241point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4242Both arguments must have identical types.
4243
4244Semantics:
4245""""""""""
4246
4247The value produced is the floating point product of the two operands.
4248This instruction can also take any number of :ref:`fast-math
4249flags <fastmath>`, which are optimization hints to enable otherwise
4250unsafe floating point optimizations:
4251
4252Example:
4253""""""""
4254
4255.. code-block:: llvm
4256
Tim Northover675a0962014-06-13 14:24:23 +00004257 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004258
4259'``udiv``' Instruction
4260^^^^^^^^^^^^^^^^^^^^^^
4261
4262Syntax:
4263"""""""
4264
4265::
4266
Tim Northover675a0962014-06-13 14:24:23 +00004267 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4268 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004269
4270Overview:
4271"""""""""
4272
4273The '``udiv``' instruction returns the quotient of its two operands.
4274
4275Arguments:
4276""""""""""
4277
4278The two arguments to the '``udiv``' instruction must be
4279:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4280arguments must have identical types.
4281
4282Semantics:
4283""""""""""
4284
4285The value produced is the unsigned integer quotient of the two operands.
4286
4287Note that unsigned integer division and signed integer division are
4288distinct operations; for signed integer division, use '``sdiv``'.
4289
4290Division by zero leads to undefined behavior.
4291
4292If the ``exact`` keyword is present, the result value of the ``udiv`` is
4293a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4294such, "((a udiv exact b) mul b) == a").
4295
4296Example:
4297""""""""
4298
4299.. code-block:: llvm
4300
Tim Northover675a0962014-06-13 14:24:23 +00004301 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004302
4303'``sdiv``' Instruction
4304^^^^^^^^^^^^^^^^^^^^^^
4305
4306Syntax:
4307"""""""
4308
4309::
4310
Tim Northover675a0962014-06-13 14:24:23 +00004311 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4312 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004313
4314Overview:
4315"""""""""
4316
4317The '``sdiv``' instruction returns the quotient of its two operands.
4318
4319Arguments:
4320""""""""""
4321
4322The two arguments to the '``sdiv``' instruction must be
4323:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4324arguments must have identical types.
4325
4326Semantics:
4327""""""""""
4328
4329The value produced is the signed integer quotient of the two operands
4330rounded towards zero.
4331
4332Note that signed integer division and unsigned integer division are
4333distinct operations; for unsigned integer division, use '``udiv``'.
4334
4335Division by zero leads to undefined behavior. Overflow also leads to
4336undefined behavior; this is a rare case, but can occur, for example, by
4337doing a 32-bit division of -2147483648 by -1.
4338
4339If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4340a :ref:`poison value <poisonvalues>` if the result would be rounded.
4341
4342Example:
4343""""""""
4344
4345.. code-block:: llvm
4346
Tim Northover675a0962014-06-13 14:24:23 +00004347 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004348
4349.. _i_fdiv:
4350
4351'``fdiv``' Instruction
4352^^^^^^^^^^^^^^^^^^^^^^
4353
4354Syntax:
4355"""""""
4356
4357::
4358
Tim Northover675a0962014-06-13 14:24:23 +00004359 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004360
4361Overview:
4362"""""""""
4363
4364The '``fdiv``' instruction returns the quotient of its two operands.
4365
4366Arguments:
4367""""""""""
4368
4369The two arguments to the '``fdiv``' instruction must be :ref:`floating
4370point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4371Both arguments must have identical types.
4372
4373Semantics:
4374""""""""""
4375
4376The value produced is the floating point quotient of the two operands.
4377This instruction can also take any number of :ref:`fast-math
4378flags <fastmath>`, which are optimization hints to enable otherwise
4379unsafe floating point optimizations:
4380
4381Example:
4382""""""""
4383
4384.. code-block:: llvm
4385
Tim Northover675a0962014-06-13 14:24:23 +00004386 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004387
4388'``urem``' Instruction
4389^^^^^^^^^^^^^^^^^^^^^^
4390
4391Syntax:
4392"""""""
4393
4394::
4395
Tim Northover675a0962014-06-13 14:24:23 +00004396 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004397
4398Overview:
4399"""""""""
4400
4401The '``urem``' instruction returns the remainder from the unsigned
4402division of its two arguments.
4403
4404Arguments:
4405""""""""""
4406
4407The two arguments to the '``urem``' instruction must be
4408:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4409arguments must have identical types.
4410
4411Semantics:
4412""""""""""
4413
4414This instruction returns the unsigned integer *remainder* of a division.
4415This instruction always performs an unsigned division to get the
4416remainder.
4417
4418Note that unsigned integer remainder and signed integer remainder are
4419distinct operations; for signed integer remainder, use '``srem``'.
4420
4421Taking the remainder of a division by zero leads to undefined behavior.
4422
4423Example:
4424""""""""
4425
4426.. code-block:: llvm
4427
Tim Northover675a0962014-06-13 14:24:23 +00004428 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004429
4430'``srem``' Instruction
4431^^^^^^^^^^^^^^^^^^^^^^
4432
4433Syntax:
4434"""""""
4435
4436::
4437
Tim Northover675a0962014-06-13 14:24:23 +00004438 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004439
4440Overview:
4441"""""""""
4442
4443The '``srem``' instruction returns the remainder from the signed
4444division of its two operands. This instruction can also take
4445:ref:`vector <t_vector>` versions of the values in which case the elements
4446must be integers.
4447
4448Arguments:
4449""""""""""
4450
4451The two arguments to the '``srem``' instruction must be
4452:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4453arguments must have identical types.
4454
4455Semantics:
4456""""""""""
4457
4458This instruction returns the *remainder* of a division (where the result
4459is either zero or has the same sign as the dividend, ``op1``), not the
4460*modulo* operator (where the result is either zero or has the same sign
4461as the divisor, ``op2``) of a value. For more information about the
4462difference, see `The Math
4463Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4464table of how this is implemented in various languages, please see
4465`Wikipedia: modulo
4466operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4467
4468Note that signed integer remainder and unsigned integer remainder are
4469distinct operations; for unsigned integer remainder, use '``urem``'.
4470
4471Taking the remainder of a division by zero leads to undefined behavior.
4472Overflow also leads to undefined behavior; this is a rare case, but can
4473occur, for example, by taking the remainder of a 32-bit division of
4474-2147483648 by -1. (The remainder doesn't actually overflow, but this
4475rule lets srem be implemented using instructions that return both the
4476result of the division and the remainder.)
4477
4478Example:
4479""""""""
4480
4481.. code-block:: llvm
4482
Tim Northover675a0962014-06-13 14:24:23 +00004483 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004484
4485.. _i_frem:
4486
4487'``frem``' Instruction
4488^^^^^^^^^^^^^^^^^^^^^^
4489
4490Syntax:
4491"""""""
4492
4493::
4494
Tim Northover675a0962014-06-13 14:24:23 +00004495 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004496
4497Overview:
4498"""""""""
4499
4500The '``frem``' instruction returns the remainder from the division of
4501its two operands.
4502
4503Arguments:
4504""""""""""
4505
4506The two arguments to the '``frem``' instruction must be :ref:`floating
4507point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4508Both arguments must have identical types.
4509
4510Semantics:
4511""""""""""
4512
4513This instruction returns the *remainder* of a division. The remainder
4514has the same sign as the dividend. This instruction can also take any
4515number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4516to enable otherwise unsafe floating point optimizations:
4517
4518Example:
4519""""""""
4520
4521.. code-block:: llvm
4522
Tim Northover675a0962014-06-13 14:24:23 +00004523 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004524
4525.. _bitwiseops:
4526
4527Bitwise Binary Operations
4528-------------------------
4529
4530Bitwise binary operators are used to do various forms of bit-twiddling
4531in a program. They are generally very efficient instructions and can
4532commonly be strength reduced from other instructions. They require two
4533operands of the same type, execute an operation on them, and produce a
4534single value. The resulting value is the same type as its operands.
4535
4536'``shl``' Instruction
4537^^^^^^^^^^^^^^^^^^^^^
4538
4539Syntax:
4540"""""""
4541
4542::
4543
Tim Northover675a0962014-06-13 14:24:23 +00004544 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4545 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4546 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4547 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004548
4549Overview:
4550"""""""""
4551
4552The '``shl``' instruction returns the first operand shifted to the left
4553a specified number of bits.
4554
4555Arguments:
4556""""""""""
4557
4558Both arguments to the '``shl``' instruction must be the same
4559:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4560'``op2``' is treated as an unsigned value.
4561
4562Semantics:
4563""""""""""
4564
4565The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4566where ``n`` is the width of the result. If ``op2`` is (statically or
4567dynamically) negative or equal to or larger than the number of bits in
4568``op1``, the result is undefined. If the arguments are vectors, each
4569vector element of ``op1`` is shifted by the corresponding shift amount
4570in ``op2``.
4571
4572If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4573value <poisonvalues>` if it shifts out any non-zero bits. If the
4574``nsw`` keyword is present, then the shift produces a :ref:`poison
4575value <poisonvalues>` if it shifts out any bits that disagree with the
4576resultant sign bit. As such, NUW/NSW have the same semantics as they
4577would if the shift were expressed as a mul instruction with the same
4578nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4579
4580Example:
4581""""""""
4582
4583.. code-block:: llvm
4584
Tim Northover675a0962014-06-13 14:24:23 +00004585 <result> = shl i32 4, %var ; yields i32: 4 << %var
4586 <result> = shl i32 4, 2 ; yields i32: 16
4587 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004588 <result> = shl i32 1, 32 ; undefined
4589 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4590
4591'``lshr``' Instruction
4592^^^^^^^^^^^^^^^^^^^^^^
4593
4594Syntax:
4595"""""""
4596
4597::
4598
Tim Northover675a0962014-06-13 14:24:23 +00004599 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4600 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004601
4602Overview:
4603"""""""""
4604
4605The '``lshr``' instruction (logical shift right) returns the first
4606operand shifted to the right a specified number of bits with zero fill.
4607
4608Arguments:
4609""""""""""
4610
4611Both arguments to the '``lshr``' instruction must be the same
4612:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4613'``op2``' is treated as an unsigned value.
4614
4615Semantics:
4616""""""""""
4617
4618This instruction always performs a logical shift right operation. The
4619most significant bits of the result will be filled with zero bits after
4620the shift. If ``op2`` is (statically or dynamically) equal to or larger
4621than the number of bits in ``op1``, the result is undefined. If the
4622arguments are vectors, each vector element of ``op1`` is shifted by the
4623corresponding shift amount in ``op2``.
4624
4625If the ``exact`` keyword is present, the result value of the ``lshr`` is
4626a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4627non-zero.
4628
4629Example:
4630""""""""
4631
4632.. code-block:: llvm
4633
Tim Northover675a0962014-06-13 14:24:23 +00004634 <result> = lshr i32 4, 1 ; yields i32:result = 2
4635 <result> = lshr i32 4, 2 ; yields i32:result = 1
4636 <result> = lshr i8 4, 3 ; yields i8:result = 0
4637 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004638 <result> = lshr i32 1, 32 ; undefined
4639 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4640
4641'``ashr``' Instruction
4642^^^^^^^^^^^^^^^^^^^^^^
4643
4644Syntax:
4645"""""""
4646
4647::
4648
Tim Northover675a0962014-06-13 14:24:23 +00004649 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
4650 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004651
4652Overview:
4653"""""""""
4654
4655The '``ashr``' instruction (arithmetic shift right) returns the first
4656operand shifted to the right a specified number of bits with sign
4657extension.
4658
4659Arguments:
4660""""""""""
4661
4662Both arguments to the '``ashr``' instruction must be the same
4663:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4664'``op2``' is treated as an unsigned value.
4665
4666Semantics:
4667""""""""""
4668
4669This instruction always performs an arithmetic shift right operation,
4670The most significant bits of the result will be filled with the sign bit
4671of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4672than the number of bits in ``op1``, the result is undefined. If the
4673arguments are vectors, each vector element of ``op1`` is shifted by the
4674corresponding shift amount in ``op2``.
4675
4676If the ``exact`` keyword is present, the result value of the ``ashr`` is
4677a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4678non-zero.
4679
4680Example:
4681""""""""
4682
4683.. code-block:: llvm
4684
Tim Northover675a0962014-06-13 14:24:23 +00004685 <result> = ashr i32 4, 1 ; yields i32:result = 2
4686 <result> = ashr i32 4, 2 ; yields i32:result = 1
4687 <result> = ashr i8 4, 3 ; yields i8:result = 0
4688 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00004689 <result> = ashr i32 1, 32 ; undefined
4690 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4691
4692'``and``' Instruction
4693^^^^^^^^^^^^^^^^^^^^^
4694
4695Syntax:
4696"""""""
4697
4698::
4699
Tim Northover675a0962014-06-13 14:24:23 +00004700 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004701
4702Overview:
4703"""""""""
4704
4705The '``and``' instruction returns the bitwise logical and of its two
4706operands.
4707
4708Arguments:
4709""""""""""
4710
4711The two arguments to the '``and``' instruction must be
4712:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4713arguments must have identical types.
4714
4715Semantics:
4716""""""""""
4717
4718The truth table used for the '``and``' instruction is:
4719
4720+-----+-----+-----+
4721| In0 | In1 | Out |
4722+-----+-----+-----+
4723| 0 | 0 | 0 |
4724+-----+-----+-----+
4725| 0 | 1 | 0 |
4726+-----+-----+-----+
4727| 1 | 0 | 0 |
4728+-----+-----+-----+
4729| 1 | 1 | 1 |
4730+-----+-----+-----+
4731
4732Example:
4733""""""""
4734
4735.. code-block:: llvm
4736
Tim Northover675a0962014-06-13 14:24:23 +00004737 <result> = and i32 4, %var ; yields i32:result = 4 & %var
4738 <result> = and i32 15, 40 ; yields i32:result = 8
4739 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00004740
4741'``or``' Instruction
4742^^^^^^^^^^^^^^^^^^^^
4743
4744Syntax:
4745"""""""
4746
4747::
4748
Tim Northover675a0962014-06-13 14:24:23 +00004749 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004750
4751Overview:
4752"""""""""
4753
4754The '``or``' instruction returns the bitwise logical inclusive or of its
4755two operands.
4756
4757Arguments:
4758""""""""""
4759
4760The two arguments to the '``or``' instruction must be
4761:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4762arguments must have identical types.
4763
4764Semantics:
4765""""""""""
4766
4767The truth table used for the '``or``' instruction is:
4768
4769+-----+-----+-----+
4770| In0 | In1 | Out |
4771+-----+-----+-----+
4772| 0 | 0 | 0 |
4773+-----+-----+-----+
4774| 0 | 1 | 1 |
4775+-----+-----+-----+
4776| 1 | 0 | 1 |
4777+-----+-----+-----+
4778| 1 | 1 | 1 |
4779+-----+-----+-----+
4780
4781Example:
4782""""""""
4783
4784::
4785
Tim Northover675a0962014-06-13 14:24:23 +00004786 <result> = or i32 4, %var ; yields i32:result = 4 | %var
4787 <result> = or i32 15, 40 ; yields i32:result = 47
4788 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00004789
4790'``xor``' Instruction
4791^^^^^^^^^^^^^^^^^^^^^
4792
4793Syntax:
4794"""""""
4795
4796::
4797
Tim Northover675a0962014-06-13 14:24:23 +00004798 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004799
4800Overview:
4801"""""""""
4802
4803The '``xor``' instruction returns the bitwise logical exclusive or of
4804its two operands. The ``xor`` is used to implement the "one's
4805complement" operation, which is the "~" operator in C.
4806
4807Arguments:
4808""""""""""
4809
4810The two arguments to the '``xor``' instruction must be
4811:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4812arguments must have identical types.
4813
4814Semantics:
4815""""""""""
4816
4817The truth table used for the '``xor``' instruction is:
4818
4819+-----+-----+-----+
4820| In0 | In1 | Out |
4821+-----+-----+-----+
4822| 0 | 0 | 0 |
4823+-----+-----+-----+
4824| 0 | 1 | 1 |
4825+-----+-----+-----+
4826| 1 | 0 | 1 |
4827+-----+-----+-----+
4828| 1 | 1 | 0 |
4829+-----+-----+-----+
4830
4831Example:
4832""""""""
4833
4834.. code-block:: llvm
4835
Tim Northover675a0962014-06-13 14:24:23 +00004836 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
4837 <result> = xor i32 15, 40 ; yields i32:result = 39
4838 <result> = xor i32 4, 8 ; yields i32:result = 12
4839 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00004840
4841Vector Operations
4842-----------------
4843
4844LLVM supports several instructions to represent vector operations in a
4845target-independent manner. These instructions cover the element-access
4846and vector-specific operations needed to process vectors effectively.
4847While LLVM does directly support these vector operations, many
4848sophisticated algorithms will want to use target-specific intrinsics to
4849take full advantage of a specific target.
4850
4851.. _i_extractelement:
4852
4853'``extractelement``' Instruction
4854^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4855
4856Syntax:
4857"""""""
4858
4859::
4860
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004861 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004862
4863Overview:
4864"""""""""
4865
4866The '``extractelement``' instruction extracts a single scalar element
4867from a vector at a specified index.
4868
4869Arguments:
4870""""""""""
4871
4872The first operand of an '``extractelement``' instruction is a value of
4873:ref:`vector <t_vector>` type. The second operand is an index indicating
4874the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004875variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004876
4877Semantics:
4878""""""""""
4879
4880The result is a scalar of the same type as the element type of ``val``.
4881Its value is the value at position ``idx`` of ``val``. If ``idx``
4882exceeds the length of ``val``, the results are undefined.
4883
4884Example:
4885""""""""
4886
4887.. code-block:: llvm
4888
4889 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4890
4891.. _i_insertelement:
4892
4893'``insertelement``' Instruction
4894^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4895
4896Syntax:
4897"""""""
4898
4899::
4900
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004901 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004902
4903Overview:
4904"""""""""
4905
4906The '``insertelement``' instruction inserts a scalar element into a
4907vector at a specified index.
4908
4909Arguments:
4910""""""""""
4911
4912The first operand of an '``insertelement``' instruction is a value of
4913:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4914type must equal the element type of the first operand. The third operand
4915is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004916index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004917
4918Semantics:
4919""""""""""
4920
4921The result is a vector of the same type as ``val``. Its element values
4922are those of ``val`` except at position ``idx``, where it gets the value
4923``elt``. If ``idx`` exceeds the length of ``val``, the results are
4924undefined.
4925
4926Example:
4927""""""""
4928
4929.. code-block:: llvm
4930
4931 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4932
4933.. _i_shufflevector:
4934
4935'``shufflevector``' Instruction
4936^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4937
4938Syntax:
4939"""""""
4940
4941::
4942
4943 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4944
4945Overview:
4946"""""""""
4947
4948The '``shufflevector``' instruction constructs a permutation of elements
4949from two input vectors, returning a vector with the same element type as
4950the input and length that is the same as the shuffle mask.
4951
4952Arguments:
4953""""""""""
4954
4955The first two operands of a '``shufflevector``' instruction are vectors
4956with the same type. The third argument is a shuffle mask whose element
4957type is always 'i32'. The result of the instruction is a vector whose
4958length is the same as the shuffle mask and whose element type is the
4959same as the element type of the first two operands.
4960
4961The shuffle mask operand is required to be a constant vector with either
4962constant integer or undef values.
4963
4964Semantics:
4965""""""""""
4966
4967The elements of the two input vectors are numbered from left to right
4968across both of the vectors. The shuffle mask operand specifies, for each
4969element of the result vector, which element of the two input vectors the
4970result element gets. The element selector may be undef (meaning "don't
4971care") and the second operand may be undef if performing a shuffle from
4972only one vector.
4973
4974Example:
4975""""""""
4976
4977.. code-block:: llvm
4978
4979 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4980 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4981 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4982 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4983 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4984 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4985 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4986 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4987
4988Aggregate Operations
4989--------------------
4990
4991LLVM supports several instructions for working with
4992:ref:`aggregate <t_aggregate>` values.
4993
4994.. _i_extractvalue:
4995
4996'``extractvalue``' Instruction
4997^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4998
4999Syntax:
5000"""""""
5001
5002::
5003
5004 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
5005
5006Overview:
5007"""""""""
5008
5009The '``extractvalue``' instruction extracts the value of a member field
5010from an :ref:`aggregate <t_aggregate>` value.
5011
5012Arguments:
5013""""""""""
5014
5015The first operand of an '``extractvalue``' instruction is a value of
5016:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
5017constant indices to specify which value to extract in a similar manner
5018as indices in a '``getelementptr``' instruction.
5019
5020The major differences to ``getelementptr`` indexing are:
5021
5022- Since the value being indexed is not a pointer, the first index is
5023 omitted and assumed to be zero.
5024- At least one index must be specified.
5025- Not only struct indices but also array indices must be in bounds.
5026
5027Semantics:
5028""""""""""
5029
5030The result is the value at the position in the aggregate specified by
5031the index operands.
5032
5033Example:
5034""""""""
5035
5036.. code-block:: llvm
5037
5038 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
5039
5040.. _i_insertvalue:
5041
5042'``insertvalue``' Instruction
5043^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5044
5045Syntax:
5046"""""""
5047
5048::
5049
5050 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
5051
5052Overview:
5053"""""""""
5054
5055The '``insertvalue``' instruction inserts a value into a member field in
5056an :ref:`aggregate <t_aggregate>` value.
5057
5058Arguments:
5059""""""""""
5060
5061The first operand of an '``insertvalue``' instruction is a value of
5062:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5063a first-class value to insert. The following operands are constant
5064indices indicating the position at which to insert the value in a
5065similar manner as indices in a '``extractvalue``' instruction. The value
5066to insert must have the same type as the value identified by the
5067indices.
5068
5069Semantics:
5070""""""""""
5071
5072The result is an aggregate of the same type as ``val``. Its value is
5073that of ``val`` except that the value at the position specified by the
5074indices is that of ``elt``.
5075
5076Example:
5077""""""""
5078
5079.. code-block:: llvm
5080
5081 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
5082 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00005083 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00005084
5085.. _memoryops:
5086
5087Memory Access and Addressing Operations
5088---------------------------------------
5089
5090A key design point of an SSA-based representation is how it represents
5091memory. In LLVM, no memory locations are in SSA form, which makes things
5092very simple. This section describes how to read, write, and allocate
5093memory in LLVM.
5094
5095.. _i_alloca:
5096
5097'``alloca``' Instruction
5098^^^^^^^^^^^^^^^^^^^^^^^^
5099
5100Syntax:
5101"""""""
5102
5103::
5104
Tim Northover675a0962014-06-13 14:24:23 +00005105 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00005106
5107Overview:
5108"""""""""
5109
5110The '``alloca``' instruction allocates memory on the stack frame of the
5111currently executing function, to be automatically released when this
5112function returns to its caller. The object is always allocated in the
5113generic address space (address space zero).
5114
5115Arguments:
5116""""""""""
5117
5118The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5119bytes of memory on the runtime stack, returning a pointer of the
5120appropriate type to the program. If "NumElements" is specified, it is
5121the number of elements allocated, otherwise "NumElements" is defaulted
5122to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005123allocation is guaranteed to be aligned to at least that boundary. The
5124alignment may not be greater than ``1 << 29``. If not specified, or if
5125zero, the target can choose to align the allocation on any convenient
5126boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00005127
5128'``type``' may be any sized type.
5129
5130Semantics:
5131""""""""""
5132
5133Memory is allocated; a pointer is returned. The operation is undefined
5134if there is insufficient stack space for the allocation. '``alloca``'d
5135memory is automatically released when the function returns. The
5136'``alloca``' instruction is commonly used to represent automatic
5137variables that must have an address available. When the function returns
5138(either with the ``ret`` or ``resume`` instructions), the memory is
5139reclaimed. Allocating zero bytes is legal, but the result is undefined.
5140The order in which memory is allocated (ie., which way the stack grows)
5141is not specified.
5142
5143Example:
5144""""""""
5145
5146.. code-block:: llvm
5147
Tim Northover675a0962014-06-13 14:24:23 +00005148 %ptr = alloca i32 ; yields i32*:ptr
5149 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5150 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5151 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005152
5153.. _i_load:
5154
5155'``load``' Instruction
5156^^^^^^^^^^^^^^^^^^^^^^
5157
5158Syntax:
5159"""""""
5160
5161::
5162
Philip Reamescdb72f32014-10-20 22:40:55 +00005163 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00005164 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5165 !<index> = !{ i32 1 }
5166
5167Overview:
5168"""""""""
5169
5170The '``load``' instruction is used to read from memory.
5171
5172Arguments:
5173""""""""""
5174
Eli Bendersky239a78b2013-04-17 20:17:08 +00005175The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00005176from which to load. The pointer must point to a :ref:`first
5177class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5178then the optimizer is not allowed to modify the number or order of
5179execution of this ``load`` with other :ref:`volatile
5180operations <volatile>`.
5181
5182If the ``load`` is marked as ``atomic``, it takes an extra
5183:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5184``release`` and ``acq_rel`` orderings are not valid on ``load``
5185instructions. Atomic loads produce :ref:`defined <memmodel>` results
5186when they may see multiple atomic stores. The type of the pointee must
5187be an integer type whose bit width is a power of two greater than or
5188equal to eight and less than or equal to a target-specific size limit.
5189``align`` must be explicitly specified on atomic loads, and the load has
5190undefined behavior if the alignment is not set to a value which is at
5191least the size in bytes of the pointee. ``!nontemporal`` does not have
5192any defined semantics for atomic loads.
5193
5194The optional constant ``align`` argument specifies the alignment of the
5195operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005196or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005197alignment for the target. It is the responsibility of the code emitter
5198to ensure that the alignment information is correct. Overestimating the
5199alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005200may produce less efficient code. An alignment of 1 is always safe. The
5201maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005202
5203The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005204metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005205``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005206metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005207that this load is not expected to be reused in the cache. The code
5208generator may select special instructions to save cache bandwidth, such
5209as the ``MOVNT`` instruction on x86.
5210
5211The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005212metadata name ``<index>`` corresponding to a metadata node with no
5213entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00005214instruction tells the optimizer and code generator that the address
5215operand to this load points to memory which can be assumed unchanged.
5216Being invariant does not imply that a location is dereferenceable,
5217but it does imply that once the location is known dereferenceable
5218its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00005219
Philip Reamescdb72f32014-10-20 22:40:55 +00005220The optional ``!nonnull`` metadata must reference a single
5221metadata name ``<index>`` corresponding to a metadata node with no
5222entries. The existence of the ``!nonnull`` metadata on the
5223instruction tells the optimizer that the value loaded is known to
5224never be null. This is analogous to the ''nonnull'' attribute
5225on parameters and return values. This metadata can only be applied
5226to loads of a pointer type.
5227
Sean Silvab084af42012-12-07 10:36:55 +00005228Semantics:
5229""""""""""
5230
5231The location of memory pointed to is loaded. If the value being loaded
5232is of scalar type then the number of bytes read does not exceed the
5233minimum number of bytes needed to hold all bits of the type. For
5234example, loading an ``i24`` reads at most three bytes. When loading a
5235value of a type like ``i20`` with a size that is not an integral number
5236of bytes, the result is undefined if the value was not originally
5237written using a store of the same type.
5238
5239Examples:
5240"""""""""
5241
5242.. code-block:: llvm
5243
Tim Northover675a0962014-06-13 14:24:23 +00005244 %ptr = alloca i32 ; yields i32*:ptr
5245 store i32 3, i32* %ptr ; yields void
5246 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005247
5248.. _i_store:
5249
5250'``store``' Instruction
5251^^^^^^^^^^^^^^^^^^^^^^^
5252
5253Syntax:
5254"""""""
5255
5256::
5257
Tim Northover675a0962014-06-13 14:24:23 +00005258 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5259 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005260
5261Overview:
5262"""""""""
5263
5264The '``store``' instruction is used to write to memory.
5265
5266Arguments:
5267""""""""""
5268
Eli Benderskyca380842013-04-17 17:17:20 +00005269There are two arguments to the ``store`` instruction: a value to store
5270and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005271operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005272the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005273then the optimizer is not allowed to modify the number or order of
5274execution of this ``store`` with other :ref:`volatile
5275operations <volatile>`.
5276
5277If the ``store`` is marked as ``atomic``, it takes an extra
5278:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5279``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5280instructions. Atomic loads produce :ref:`defined <memmodel>` results
5281when they may see multiple atomic stores. The type of the pointee must
5282be an integer type whose bit width is a power of two greater than or
5283equal to eight and less than or equal to a target-specific size limit.
5284``align`` must be explicitly specified on atomic stores, and the store
5285has undefined behavior if the alignment is not set to a value which is
5286at least the size in bytes of the pointee. ``!nontemporal`` does not
5287have any defined semantics for atomic stores.
5288
Eli Benderskyca380842013-04-17 17:17:20 +00005289The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005290operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005291or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005292alignment for the target. It is the responsibility of the code emitter
5293to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005294alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005295alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005296safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005297
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005298The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005299name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005300value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005301tells the optimizer and code generator that this load is not expected to
5302be reused in the cache. The code generator may select special
5303instructions to save cache bandwidth, such as the MOVNT instruction on
5304x86.
5305
5306Semantics:
5307""""""""""
5308
Eli Benderskyca380842013-04-17 17:17:20 +00005309The contents of memory are updated to contain ``<value>`` at the
5310location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005311of scalar type then the number of bytes written does not exceed the
5312minimum number of bytes needed to hold all bits of the type. For
5313example, storing an ``i24`` writes at most three bytes. When writing a
5314value of a type like ``i20`` with a size that is not an integral number
5315of bytes, it is unspecified what happens to the extra bits that do not
5316belong to the type, but they will typically be overwritten.
5317
5318Example:
5319""""""""
5320
5321.. code-block:: llvm
5322
Tim Northover675a0962014-06-13 14:24:23 +00005323 %ptr = alloca i32 ; yields i32*:ptr
5324 store i32 3, i32* %ptr ; yields void
5325 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005326
5327.. _i_fence:
5328
5329'``fence``' Instruction
5330^^^^^^^^^^^^^^^^^^^^^^^
5331
5332Syntax:
5333"""""""
5334
5335::
5336
Tim Northover675a0962014-06-13 14:24:23 +00005337 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005338
5339Overview:
5340"""""""""
5341
5342The '``fence``' instruction is used to introduce happens-before edges
5343between operations.
5344
5345Arguments:
5346""""""""""
5347
5348'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5349defines what *synchronizes-with* edges they add. They can only be given
5350``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5351
5352Semantics:
5353""""""""""
5354
5355A fence A which has (at least) ``release`` ordering semantics
5356*synchronizes with* a fence B with (at least) ``acquire`` ordering
5357semantics if and only if there exist atomic operations X and Y, both
5358operating on some atomic object M, such that A is sequenced before X, X
5359modifies M (either directly or through some side effect of a sequence
5360headed by X), Y is sequenced before B, and Y observes M. This provides a
5361*happens-before* dependency between A and B. Rather than an explicit
5362``fence``, one (but not both) of the atomic operations X or Y might
5363provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5364still *synchronize-with* the explicit ``fence`` and establish the
5365*happens-before* edge.
5366
5367A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5368``acquire`` and ``release`` semantics specified above, participates in
5369the global program order of other ``seq_cst`` operations and/or fences.
5370
5371The optional ":ref:`singlethread <singlethread>`" argument specifies
5372that the fence only synchronizes with other fences in the same thread.
5373(This is useful for interacting with signal handlers.)
5374
5375Example:
5376""""""""
5377
5378.. code-block:: llvm
5379
Tim Northover675a0962014-06-13 14:24:23 +00005380 fence acquire ; yields void
5381 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005382
5383.. _i_cmpxchg:
5384
5385'``cmpxchg``' Instruction
5386^^^^^^^^^^^^^^^^^^^^^^^^^
5387
5388Syntax:
5389"""""""
5390
5391::
5392
Tim Northover675a0962014-06-13 14:24:23 +00005393 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005394
5395Overview:
5396"""""""""
5397
5398The '``cmpxchg``' instruction is used to atomically modify memory. It
5399loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005400equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005401
5402Arguments:
5403""""""""""
5404
5405There are three arguments to the '``cmpxchg``' instruction: an address
5406to operate on, a value to compare to the value currently be at that
5407address, and a new value to place at that address if the compared values
5408are equal. The type of '<cmp>' must be an integer type whose bit width
5409is a power of two greater than or equal to eight and less than or equal
5410to a target-specific size limit. '<cmp>' and '<new>' must have the same
5411type, and the type of '<pointer>' must be a pointer to that type. If the
5412``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5413to modify the number or order of execution of this ``cmpxchg`` with
5414other :ref:`volatile operations <volatile>`.
5415
Tim Northovere94a5182014-03-11 10:48:52 +00005416The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005417``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5418must be at least ``monotonic``, the ordering constraint on failure must be no
5419stronger than that on success, and the failure ordering cannot be either
5420``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005421
5422The optional "``singlethread``" argument declares that the ``cmpxchg``
5423is only atomic with respect to code (usually signal handlers) running in
5424the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5425respect to all other code in the system.
5426
5427The pointer passed into cmpxchg must have alignment greater than or
5428equal to the size in memory of the operand.
5429
5430Semantics:
5431""""""""""
5432
Tim Northover420a2162014-06-13 14:24:07 +00005433The contents of memory at the location specified by the '``<pointer>``' operand
5434is read and compared to '``<cmp>``'; if the read value is the equal, the
5435'``<new>``' is written. The original value at the location is returned, together
5436with a flag indicating success (true) or failure (false).
5437
5438If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5439permitted: the operation may not write ``<new>`` even if the comparison
5440matched.
5441
5442If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5443if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005444
Tim Northovere94a5182014-03-11 10:48:52 +00005445A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5446identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5447load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005448
5449Example:
5450""""""""
5451
5452.. code-block:: llvm
5453
5454 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005455 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005456 br label %loop
5457
5458 loop:
5459 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5460 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005461 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005462 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5463 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005464 br i1 %success, label %done, label %loop
5465
5466 done:
5467 ...
5468
5469.. _i_atomicrmw:
5470
5471'``atomicrmw``' Instruction
5472^^^^^^^^^^^^^^^^^^^^^^^^^^^
5473
5474Syntax:
5475"""""""
5476
5477::
5478
Tim Northover675a0962014-06-13 14:24:23 +00005479 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005480
5481Overview:
5482"""""""""
5483
5484The '``atomicrmw``' instruction is used to atomically modify memory.
5485
5486Arguments:
5487""""""""""
5488
5489There are three arguments to the '``atomicrmw``' instruction: an
5490operation to apply, an address whose value to modify, an argument to the
5491operation. The operation must be one of the following keywords:
5492
5493- xchg
5494- add
5495- sub
5496- and
5497- nand
5498- or
5499- xor
5500- max
5501- min
5502- umax
5503- umin
5504
5505The type of '<value>' must be an integer type whose bit width is a power
5506of two greater than or equal to eight and less than or equal to a
5507target-specific size limit. The type of the '``<pointer>``' operand must
5508be a pointer to that type. If the ``atomicrmw`` is marked as
5509``volatile``, then the optimizer is not allowed to modify the number or
5510order of execution of this ``atomicrmw`` with other :ref:`volatile
5511operations <volatile>`.
5512
5513Semantics:
5514""""""""""
5515
5516The contents of memory at the location specified by the '``<pointer>``'
5517operand are atomically read, modified, and written back. The original
5518value at the location is returned. The modification is specified by the
5519operation argument:
5520
5521- xchg: ``*ptr = val``
5522- add: ``*ptr = *ptr + val``
5523- sub: ``*ptr = *ptr - val``
5524- and: ``*ptr = *ptr & val``
5525- nand: ``*ptr = ~(*ptr & val)``
5526- or: ``*ptr = *ptr | val``
5527- xor: ``*ptr = *ptr ^ val``
5528- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5529- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5530- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5531 comparison)
5532- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5533 comparison)
5534
5535Example:
5536""""""""
5537
5538.. code-block:: llvm
5539
Tim Northover675a0962014-06-13 14:24:23 +00005540 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005541
5542.. _i_getelementptr:
5543
5544'``getelementptr``' Instruction
5545^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5546
5547Syntax:
5548"""""""
5549
5550::
5551
5552 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5553 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5554 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5555
5556Overview:
5557"""""""""
5558
5559The '``getelementptr``' instruction is used to get the address of a
5560subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5561address calculation only and does not access memory.
5562
5563Arguments:
5564""""""""""
5565
5566The first argument is always a pointer or a vector of pointers, and
5567forms the basis of the calculation. The remaining arguments are indices
5568that indicate which of the elements of the aggregate object are indexed.
5569The interpretation of each index is dependent on the type being indexed
5570into. The first index always indexes the pointer value given as the
5571first argument, the second index indexes a value of the type pointed to
5572(not necessarily the value directly pointed to, since the first index
5573can be non-zero), etc. The first type indexed into must be a pointer
5574value, subsequent types can be arrays, vectors, and structs. Note that
5575subsequent types being indexed into can never be pointers, since that
5576would require loading the pointer before continuing calculation.
5577
5578The type of each index argument depends on the type it is indexing into.
5579When indexing into a (optionally packed) structure, only ``i32`` integer
5580**constants** are allowed (when using a vector of indices they must all
5581be the **same** ``i32`` integer constant). When indexing into an array,
5582pointer or vector, integers of any width are allowed, and they are not
5583required to be constant. These integers are treated as signed values
5584where relevant.
5585
5586For example, let's consider a C code fragment and how it gets compiled
5587to LLVM:
5588
5589.. code-block:: c
5590
5591 struct RT {
5592 char A;
5593 int B[10][20];
5594 char C;
5595 };
5596 struct ST {
5597 int X;
5598 double Y;
5599 struct RT Z;
5600 };
5601
5602 int *foo(struct ST *s) {
5603 return &s[1].Z.B[5][13];
5604 }
5605
5606The LLVM code generated by Clang is:
5607
5608.. code-block:: llvm
5609
5610 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5611 %struct.ST = type { i32, double, %struct.RT }
5612
5613 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5614 entry:
5615 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5616 ret i32* %arrayidx
5617 }
5618
5619Semantics:
5620""""""""""
5621
5622In the example above, the first index is indexing into the
5623'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5624= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5625indexes into the third element of the structure, yielding a
5626'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5627structure. The third index indexes into the second element of the
5628structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5629dimensions of the array are subscripted into, yielding an '``i32``'
5630type. The '``getelementptr``' instruction returns a pointer to this
5631element, thus computing a value of '``i32*``' type.
5632
5633Note that it is perfectly legal to index partially through a structure,
5634returning a pointer to an inner element. Because of this, the LLVM code
5635for the given testcase is equivalent to:
5636
5637.. code-block:: llvm
5638
5639 define i32* @foo(%struct.ST* %s) {
5640 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5641 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5642 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5643 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5644 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5645 ret i32* %t5
5646 }
5647
5648If the ``inbounds`` keyword is present, the result value of the
5649``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5650pointer is not an *in bounds* address of an allocated object, or if any
5651of the addresses that would be formed by successive addition of the
5652offsets implied by the indices to the base address with infinitely
5653precise signed arithmetic are not an *in bounds* address of that
5654allocated object. The *in bounds* addresses for an allocated object are
5655all the addresses that point into the object, plus the address one byte
5656past the end. In cases where the base is a vector of pointers the
5657``inbounds`` keyword applies to each of the computations element-wise.
5658
5659If the ``inbounds`` keyword is not present, the offsets are added to the
5660base address with silently-wrapping two's complement arithmetic. If the
5661offsets have a different width from the pointer, they are sign-extended
5662or truncated to the width of the pointer. The result value of the
5663``getelementptr`` may be outside the object pointed to by the base
5664pointer. The result value may not necessarily be used to access memory
5665though, even if it happens to point into allocated storage. See the
5666:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5667information.
5668
5669The getelementptr instruction is often confusing. For some more insight
5670into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5671
5672Example:
5673""""""""
5674
5675.. code-block:: llvm
5676
5677 ; yields [12 x i8]*:aptr
5678 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5679 ; yields i8*:vptr
5680 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5681 ; yields i8*:eptr
5682 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5683 ; yields i32*:iptr
5684 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5685
5686In cases where the pointer argument is a vector of pointers, each index
5687must be a vector with the same number of elements. For example:
5688
5689.. code-block:: llvm
5690
5691 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5692
5693Conversion Operations
5694---------------------
5695
5696The instructions in this category are the conversion instructions
5697(casting) which all take a single operand and a type. They perform
5698various bit conversions on the operand.
5699
5700'``trunc .. to``' Instruction
5701^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5702
5703Syntax:
5704"""""""
5705
5706::
5707
5708 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5709
5710Overview:
5711"""""""""
5712
5713The '``trunc``' instruction truncates its operand to the type ``ty2``.
5714
5715Arguments:
5716""""""""""
5717
5718The '``trunc``' instruction takes a value to trunc, and a type to trunc
5719it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5720of the same number of integers. The bit size of the ``value`` must be
5721larger than the bit size of the destination type, ``ty2``. Equal sized
5722types are not allowed.
5723
5724Semantics:
5725""""""""""
5726
5727The '``trunc``' instruction truncates the high order bits in ``value``
5728and converts the remaining bits to ``ty2``. Since the source size must
5729be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5730It will always truncate bits.
5731
5732Example:
5733""""""""
5734
5735.. code-block:: llvm
5736
5737 %X = trunc i32 257 to i8 ; yields i8:1
5738 %Y = trunc i32 123 to i1 ; yields i1:true
5739 %Z = trunc i32 122 to i1 ; yields i1:false
5740 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5741
5742'``zext .. to``' Instruction
5743^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5744
5745Syntax:
5746"""""""
5747
5748::
5749
5750 <result> = zext <ty> <value> to <ty2> ; yields ty2
5751
5752Overview:
5753"""""""""
5754
5755The '``zext``' instruction zero extends its operand to type ``ty2``.
5756
5757Arguments:
5758""""""""""
5759
5760The '``zext``' instruction takes a value to cast, and a type to cast it
5761to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5762the same number of integers. The bit size of the ``value`` must be
5763smaller than the bit size of the destination type, ``ty2``.
5764
5765Semantics:
5766""""""""""
5767
5768The ``zext`` fills the high order bits of the ``value`` with zero bits
5769until it reaches the size of the destination type, ``ty2``.
5770
5771When zero extending from i1, the result will always be either 0 or 1.
5772
5773Example:
5774""""""""
5775
5776.. code-block:: llvm
5777
5778 %X = zext i32 257 to i64 ; yields i64:257
5779 %Y = zext i1 true to i32 ; yields i32:1
5780 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5781
5782'``sext .. to``' Instruction
5783^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5784
5785Syntax:
5786"""""""
5787
5788::
5789
5790 <result> = sext <ty> <value> to <ty2> ; yields ty2
5791
5792Overview:
5793"""""""""
5794
5795The '``sext``' sign extends ``value`` to the type ``ty2``.
5796
5797Arguments:
5798""""""""""
5799
5800The '``sext``' instruction takes a value to cast, and a type to cast it
5801to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5802the same number of integers. The bit size of the ``value`` must be
5803smaller than the bit size of the destination type, ``ty2``.
5804
5805Semantics:
5806""""""""""
5807
5808The '``sext``' instruction performs a sign extension by copying the sign
5809bit (highest order bit) of the ``value`` until it reaches the bit size
5810of the type ``ty2``.
5811
5812When sign extending from i1, the extension always results in -1 or 0.
5813
5814Example:
5815""""""""
5816
5817.. code-block:: llvm
5818
5819 %X = sext i8 -1 to i16 ; yields i16 :65535
5820 %Y = sext i1 true to i32 ; yields i32:-1
5821 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5822
5823'``fptrunc .. to``' Instruction
5824^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5825
5826Syntax:
5827"""""""
5828
5829::
5830
5831 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5832
5833Overview:
5834"""""""""
5835
5836The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5837
5838Arguments:
5839""""""""""
5840
5841The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5842value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5843The size of ``value`` must be larger than the size of ``ty2``. This
5844implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5845
5846Semantics:
5847""""""""""
5848
5849The '``fptrunc``' instruction truncates a ``value`` from a larger
5850:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5851point <t_floating>` type. If the value cannot fit within the
5852destination type, ``ty2``, then the results are undefined.
5853
5854Example:
5855""""""""
5856
5857.. code-block:: llvm
5858
5859 %X = fptrunc double 123.0 to float ; yields float:123.0
5860 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5861
5862'``fpext .. to``' Instruction
5863^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5864
5865Syntax:
5866"""""""
5867
5868::
5869
5870 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5871
5872Overview:
5873"""""""""
5874
5875The '``fpext``' extends a floating point ``value`` to a larger floating
5876point value.
5877
5878Arguments:
5879""""""""""
5880
5881The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5882``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5883to. The source type must be smaller than the destination type.
5884
5885Semantics:
5886""""""""""
5887
5888The '``fpext``' instruction extends the ``value`` from a smaller
5889:ref:`floating point <t_floating>` type to a larger :ref:`floating
5890point <t_floating>` type. The ``fpext`` cannot be used to make a
5891*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5892*no-op cast* for a floating point cast.
5893
5894Example:
5895""""""""
5896
5897.. code-block:: llvm
5898
5899 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5900 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5901
5902'``fptoui .. to``' Instruction
5903^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5904
5905Syntax:
5906"""""""
5907
5908::
5909
5910 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5911
5912Overview:
5913"""""""""
5914
5915The '``fptoui``' converts a floating point ``value`` to its unsigned
5916integer equivalent of type ``ty2``.
5917
5918Arguments:
5919""""""""""
5920
5921The '``fptoui``' instruction takes a value to cast, which must be a
5922scalar or vector :ref:`floating point <t_floating>` value, and a type to
5923cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5924``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5925type with the same number of elements as ``ty``
5926
5927Semantics:
5928""""""""""
5929
5930The '``fptoui``' instruction converts its :ref:`floating
5931point <t_floating>` operand into the nearest (rounding towards zero)
5932unsigned integer value. If the value cannot fit in ``ty2``, the results
5933are undefined.
5934
5935Example:
5936""""""""
5937
5938.. code-block:: llvm
5939
5940 %X = fptoui double 123.0 to i32 ; yields i32:123
5941 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5942 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5943
5944'``fptosi .. to``' Instruction
5945^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5946
5947Syntax:
5948"""""""
5949
5950::
5951
5952 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5953
5954Overview:
5955"""""""""
5956
5957The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5958``value`` to type ``ty2``.
5959
5960Arguments:
5961""""""""""
5962
5963The '``fptosi``' instruction takes a value to cast, which must be a
5964scalar or vector :ref:`floating point <t_floating>` value, and a type to
5965cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5966``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5967type with the same number of elements as ``ty``
5968
5969Semantics:
5970""""""""""
5971
5972The '``fptosi``' instruction converts its :ref:`floating
5973point <t_floating>` operand into the nearest (rounding towards zero)
5974signed integer value. If the value cannot fit in ``ty2``, the results
5975are undefined.
5976
5977Example:
5978""""""""
5979
5980.. code-block:: llvm
5981
5982 %X = fptosi double -123.0 to i32 ; yields i32:-123
5983 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5984 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5985
5986'``uitofp .. to``' Instruction
5987^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5988
5989Syntax:
5990"""""""
5991
5992::
5993
5994 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5995
5996Overview:
5997"""""""""
5998
5999The '``uitofp``' instruction regards ``value`` as an unsigned integer
6000and converts that value to the ``ty2`` type.
6001
6002Arguments:
6003""""""""""
6004
6005The '``uitofp``' instruction takes a value to cast, which must be a
6006scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6007``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6008``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6009type with the same number of elements as ``ty``
6010
6011Semantics:
6012""""""""""
6013
6014The '``uitofp``' instruction interprets its operand as an unsigned
6015integer quantity and converts it to the corresponding floating point
6016value. If the value cannot fit in the floating point value, the results
6017are undefined.
6018
6019Example:
6020""""""""
6021
6022.. code-block:: llvm
6023
6024 %X = uitofp i32 257 to float ; yields float:257.0
6025 %Y = uitofp i8 -1 to double ; yields double:255.0
6026
6027'``sitofp .. to``' Instruction
6028^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6029
6030Syntax:
6031"""""""
6032
6033::
6034
6035 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
6036
6037Overview:
6038"""""""""
6039
6040The '``sitofp``' instruction regards ``value`` as a signed integer and
6041converts that value to the ``ty2`` type.
6042
6043Arguments:
6044""""""""""
6045
6046The '``sitofp``' instruction takes a value to cast, which must be a
6047scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6048``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6049``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6050type with the same number of elements as ``ty``
6051
6052Semantics:
6053""""""""""
6054
6055The '``sitofp``' instruction interprets its operand as a signed integer
6056quantity and converts it to the corresponding floating point value. If
6057the value cannot fit in the floating point value, the results are
6058undefined.
6059
6060Example:
6061""""""""
6062
6063.. code-block:: llvm
6064
6065 %X = sitofp i32 257 to float ; yields float:257.0
6066 %Y = sitofp i8 -1 to double ; yields double:-1.0
6067
6068.. _i_ptrtoint:
6069
6070'``ptrtoint .. to``' Instruction
6071^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6072
6073Syntax:
6074"""""""
6075
6076::
6077
6078 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
6079
6080Overview:
6081"""""""""
6082
6083The '``ptrtoint``' instruction converts the pointer or a vector of
6084pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6085
6086Arguments:
6087""""""""""
6088
6089The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
6090a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
6091type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6092a vector of integers type.
6093
6094Semantics:
6095""""""""""
6096
6097The '``ptrtoint``' instruction converts ``value`` to integer type
6098``ty2`` by interpreting the pointer value as an integer and either
6099truncating or zero extending that value to the size of the integer type.
6100If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6101``value`` is larger than ``ty2`` then a truncation is done. If they are
6102the same size, then nothing is done (*no-op cast*) other than a type
6103change.
6104
6105Example:
6106""""""""
6107
6108.. code-block:: llvm
6109
6110 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
6111 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
6112 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6113
6114.. _i_inttoptr:
6115
6116'``inttoptr .. to``' Instruction
6117^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6118
6119Syntax:
6120"""""""
6121
6122::
6123
6124 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
6125
6126Overview:
6127"""""""""
6128
6129The '``inttoptr``' instruction converts an integer ``value`` to a
6130pointer type, ``ty2``.
6131
6132Arguments:
6133""""""""""
6134
6135The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6136cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6137type.
6138
6139Semantics:
6140""""""""""
6141
6142The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6143applying either a zero extension or a truncation depending on the size
6144of the integer ``value``. If ``value`` is larger than the size of a
6145pointer then a truncation is done. If ``value`` is smaller than the size
6146of a pointer then a zero extension is done. If they are the same size,
6147nothing is done (*no-op cast*).
6148
6149Example:
6150""""""""
6151
6152.. code-block:: llvm
6153
6154 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6155 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6156 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6157 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6158
6159.. _i_bitcast:
6160
6161'``bitcast .. to``' Instruction
6162^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6163
6164Syntax:
6165"""""""
6166
6167::
6168
6169 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6170
6171Overview:
6172"""""""""
6173
6174The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6175changing any bits.
6176
6177Arguments:
6178""""""""""
6179
6180The '``bitcast``' instruction takes a value to cast, which must be a
6181non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006182also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6183bit sizes of ``value`` and the destination type, ``ty2``, must be
6184identical. If the source type is a pointer, the destination type must
6185also be a pointer of the same size. This instruction supports bitwise
6186conversion of vectors to integers and to vectors of other types (as
6187long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006188
6189Semantics:
6190""""""""""
6191
Matt Arsenault24b49c42013-07-31 17:49:08 +00006192The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6193is always a *no-op cast* because no bits change with this
6194conversion. The conversion is done as if the ``value`` had been stored
6195to memory and read back as type ``ty2``. Pointer (or vector of
6196pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006197pointers) types with the same address space through this instruction.
6198To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6199or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006200
6201Example:
6202""""""""
6203
6204.. code-block:: llvm
6205
6206 %X = bitcast i8 255 to i8 ; yields i8 :-1
6207 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6208 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6209 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6210
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006211.. _i_addrspacecast:
6212
6213'``addrspacecast .. to``' Instruction
6214^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6215
6216Syntax:
6217"""""""
6218
6219::
6220
6221 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6222
6223Overview:
6224"""""""""
6225
6226The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6227address space ``n`` to type ``pty2`` in address space ``m``.
6228
6229Arguments:
6230""""""""""
6231
6232The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6233to cast and a pointer type to cast it to, which must have a different
6234address space.
6235
6236Semantics:
6237""""""""""
6238
6239The '``addrspacecast``' instruction converts the pointer value
6240``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006241value modification, depending on the target and the address space
6242pair. Pointer conversions within the same address space must be
6243performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006244conversion is legal then both result and operand refer to the same memory
6245location.
6246
6247Example:
6248""""""""
6249
6250.. code-block:: llvm
6251
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006252 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6253 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6254 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006255
Sean Silvab084af42012-12-07 10:36:55 +00006256.. _otherops:
6257
6258Other Operations
6259----------------
6260
6261The instructions in this category are the "miscellaneous" instructions,
6262which defy better classification.
6263
6264.. _i_icmp:
6265
6266'``icmp``' Instruction
6267^^^^^^^^^^^^^^^^^^^^^^
6268
6269Syntax:
6270"""""""
6271
6272::
6273
Tim Northover675a0962014-06-13 14:24:23 +00006274 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006275
6276Overview:
6277"""""""""
6278
6279The '``icmp``' instruction returns a boolean value or a vector of
6280boolean values based on comparison of its two integer, integer vector,
6281pointer, or pointer vector operands.
6282
6283Arguments:
6284""""""""""
6285
6286The '``icmp``' instruction takes three operands. The first operand is
6287the condition code indicating the kind of comparison to perform. It is
6288not a value, just a keyword. The possible condition code are:
6289
6290#. ``eq``: equal
6291#. ``ne``: not equal
6292#. ``ugt``: unsigned greater than
6293#. ``uge``: unsigned greater or equal
6294#. ``ult``: unsigned less than
6295#. ``ule``: unsigned less or equal
6296#. ``sgt``: signed greater than
6297#. ``sge``: signed greater or equal
6298#. ``slt``: signed less than
6299#. ``sle``: signed less or equal
6300
6301The remaining two arguments must be :ref:`integer <t_integer>` or
6302:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6303must also be identical types.
6304
6305Semantics:
6306""""""""""
6307
6308The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6309code given as ``cond``. The comparison performed always yields either an
6310:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6311
6312#. ``eq``: yields ``true`` if the operands are equal, ``false``
6313 otherwise. No sign interpretation is necessary or performed.
6314#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6315 otherwise. No sign interpretation is necessary or performed.
6316#. ``ugt``: interprets the operands as unsigned values and yields
6317 ``true`` if ``op1`` is greater than ``op2``.
6318#. ``uge``: interprets the operands as unsigned values and yields
6319 ``true`` if ``op1`` is greater than or equal to ``op2``.
6320#. ``ult``: interprets the operands as unsigned values and yields
6321 ``true`` if ``op1`` is less than ``op2``.
6322#. ``ule``: interprets the operands as unsigned values and yields
6323 ``true`` if ``op1`` is less than or equal to ``op2``.
6324#. ``sgt``: interprets the operands as signed values and yields ``true``
6325 if ``op1`` is greater than ``op2``.
6326#. ``sge``: interprets the operands as signed values and yields ``true``
6327 if ``op1`` is greater than or equal to ``op2``.
6328#. ``slt``: interprets the operands as signed values and yields ``true``
6329 if ``op1`` is less than ``op2``.
6330#. ``sle``: interprets the operands as signed values and yields ``true``
6331 if ``op1`` is less than or equal to ``op2``.
6332
6333If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6334are compared as if they were integers.
6335
6336If the operands are integer vectors, then they are compared element by
6337element. The result is an ``i1`` vector with the same number of elements
6338as the values being compared. Otherwise, the result is an ``i1``.
6339
6340Example:
6341""""""""
6342
6343.. code-block:: llvm
6344
6345 <result> = icmp eq i32 4, 5 ; yields: result=false
6346 <result> = icmp ne float* %X, %X ; yields: result=false
6347 <result> = icmp ult i16 4, 5 ; yields: result=true
6348 <result> = icmp sgt i16 4, 5 ; yields: result=false
6349 <result> = icmp ule i16 -4, 5 ; yields: result=false
6350 <result> = icmp sge i16 4, 5 ; yields: result=false
6351
6352Note that the code generator does not yet support vector types with the
6353``icmp`` instruction.
6354
6355.. _i_fcmp:
6356
6357'``fcmp``' Instruction
6358^^^^^^^^^^^^^^^^^^^^^^
6359
6360Syntax:
6361"""""""
6362
6363::
6364
Tim Northover675a0962014-06-13 14:24:23 +00006365 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006366
6367Overview:
6368"""""""""
6369
6370The '``fcmp``' instruction returns a boolean value or vector of boolean
6371values based on comparison of its operands.
6372
6373If the operands are floating point scalars, then the result type is a
6374boolean (:ref:`i1 <t_integer>`).
6375
6376If the operands are floating point vectors, then the result type is a
6377vector of boolean with the same number of elements as the operands being
6378compared.
6379
6380Arguments:
6381""""""""""
6382
6383The '``fcmp``' instruction takes three operands. The first operand is
6384the condition code indicating the kind of comparison to perform. It is
6385not a value, just a keyword. The possible condition code are:
6386
6387#. ``false``: no comparison, always returns false
6388#. ``oeq``: ordered and equal
6389#. ``ogt``: ordered and greater than
6390#. ``oge``: ordered and greater than or equal
6391#. ``olt``: ordered and less than
6392#. ``ole``: ordered and less than or equal
6393#. ``one``: ordered and not equal
6394#. ``ord``: ordered (no nans)
6395#. ``ueq``: unordered or equal
6396#. ``ugt``: unordered or greater than
6397#. ``uge``: unordered or greater than or equal
6398#. ``ult``: unordered or less than
6399#. ``ule``: unordered or less than or equal
6400#. ``une``: unordered or not equal
6401#. ``uno``: unordered (either nans)
6402#. ``true``: no comparison, always returns true
6403
6404*Ordered* means that neither operand is a QNAN while *unordered* means
6405that either operand may be a QNAN.
6406
6407Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6408point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6409type. They must have identical types.
6410
6411Semantics:
6412""""""""""
6413
6414The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6415condition code given as ``cond``. If the operands are vectors, then the
6416vectors are compared element by element. Each comparison performed
6417always yields an :ref:`i1 <t_integer>` result, as follows:
6418
6419#. ``false``: always yields ``false``, regardless of operands.
6420#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6421 is equal to ``op2``.
6422#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6423 is greater than ``op2``.
6424#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6425 is greater than or equal to ``op2``.
6426#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6427 is less than ``op2``.
6428#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6429 is less than or equal to ``op2``.
6430#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6431 is not equal to ``op2``.
6432#. ``ord``: yields ``true`` if both operands are not a QNAN.
6433#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6434 equal to ``op2``.
6435#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6436 greater than ``op2``.
6437#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6438 greater than or equal to ``op2``.
6439#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6440 less than ``op2``.
6441#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6442 less than or equal to ``op2``.
6443#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6444 not equal to ``op2``.
6445#. ``uno``: yields ``true`` if either operand is a QNAN.
6446#. ``true``: always yields ``true``, regardless of operands.
6447
6448Example:
6449""""""""
6450
6451.. code-block:: llvm
6452
6453 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6454 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6455 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6456 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6457
6458Note that the code generator does not yet support vector types with the
6459``fcmp`` instruction.
6460
6461.. _i_phi:
6462
6463'``phi``' Instruction
6464^^^^^^^^^^^^^^^^^^^^^
6465
6466Syntax:
6467"""""""
6468
6469::
6470
6471 <result> = phi <ty> [ <val0>, <label0>], ...
6472
6473Overview:
6474"""""""""
6475
6476The '``phi``' instruction is used to implement the φ node in the SSA
6477graph representing the function.
6478
6479Arguments:
6480""""""""""
6481
6482The type of the incoming values is specified with the first type field.
6483After this, the '``phi``' instruction takes a list of pairs as
6484arguments, with one pair for each predecessor basic block of the current
6485block. Only values of :ref:`first class <t_firstclass>` type may be used as
6486the value arguments to the PHI node. Only labels may be used as the
6487label arguments.
6488
6489There must be no non-phi instructions between the start of a basic block
6490and the PHI instructions: i.e. PHI instructions must be first in a basic
6491block.
6492
6493For the purposes of the SSA form, the use of each incoming value is
6494deemed to occur on the edge from the corresponding predecessor block to
6495the current block (but after any definition of an '``invoke``'
6496instruction's return value on the same edge).
6497
6498Semantics:
6499""""""""""
6500
6501At runtime, the '``phi``' instruction logically takes on the value
6502specified by the pair corresponding to the predecessor basic block that
6503executed just prior to the current block.
6504
6505Example:
6506""""""""
6507
6508.. code-block:: llvm
6509
6510 Loop: ; Infinite loop that counts from 0 on up...
6511 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6512 %nextindvar = add i32 %indvar, 1
6513 br label %Loop
6514
6515.. _i_select:
6516
6517'``select``' Instruction
6518^^^^^^^^^^^^^^^^^^^^^^^^
6519
6520Syntax:
6521"""""""
6522
6523::
6524
6525 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6526
6527 selty is either i1 or {<N x i1>}
6528
6529Overview:
6530"""""""""
6531
6532The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006533condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006534
6535Arguments:
6536""""""""""
6537
6538The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6539values indicating the condition, and two values of the same :ref:`first
6540class <t_firstclass>` type. If the val1/val2 are vectors and the
6541condition is a scalar, then entire vectors are selected, not individual
6542elements.
6543
6544Semantics:
6545""""""""""
6546
6547If the condition is an i1 and it evaluates to 1, the instruction returns
6548the first value argument; otherwise, it returns the second value
6549argument.
6550
6551If the condition is a vector of i1, then the value arguments must be
6552vectors of the same size, and the selection is done element by element.
6553
6554Example:
6555""""""""
6556
6557.. code-block:: llvm
6558
6559 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6560
6561.. _i_call:
6562
6563'``call``' Instruction
6564^^^^^^^^^^^^^^^^^^^^^^
6565
6566Syntax:
6567"""""""
6568
6569::
6570
Reid Kleckner5772b772014-04-24 20:14:34 +00006571 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006572
6573Overview:
6574"""""""""
6575
6576The '``call``' instruction represents a simple function call.
6577
6578Arguments:
6579""""""""""
6580
6581This instruction requires several arguments:
6582
Reid Kleckner5772b772014-04-24 20:14:34 +00006583#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6584 should perform tail call optimization. The ``tail`` marker is a hint that
6585 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6586 means that the call must be tail call optimized in order for the program to
6587 be correct. The ``musttail`` marker provides these guarantees:
6588
6589 #. The call will not cause unbounded stack growth if it is part of a
6590 recursive cycle in the call graph.
6591 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6592 forwarded in place.
6593
6594 Both markers imply that the callee does not access allocas or varargs from
6595 the caller. Calls marked ``musttail`` must obey the following additional
6596 rules:
6597
6598 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6599 or a pointer bitcast followed by a ret instruction.
6600 - The ret instruction must return the (possibly bitcasted) value
6601 produced by the call or void.
6602 - The caller and callee prototypes must match. Pointer types of
6603 parameters or return types may differ in pointee type, but not
6604 in address space.
6605 - The calling conventions of the caller and callee must match.
6606 - All ABI-impacting function attributes, such as sret, byval, inreg,
6607 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00006608 - The callee must be varargs iff the caller is varargs. Bitcasting a
6609 non-varargs function to the appropriate varargs type is legal so
6610 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00006611
6612 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6613 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006614
6615 - Caller and callee both have the calling convention ``fastcc``.
6616 - The call is in tail position (ret immediately follows call and ret
6617 uses value of call or is void).
6618 - Option ``-tailcallopt`` is enabled, or
6619 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00006620 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00006621 met. <CodeGenerator.html#tailcallopt>`_
6622
6623#. The optional "cconv" marker indicates which :ref:`calling
6624 convention <callingconv>` the call should use. If none is
6625 specified, the call defaults to using C calling conventions. The
6626 calling convention of the call must match the calling convention of
6627 the target function, or else the behavior is undefined.
6628#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6629 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6630 are valid here.
6631#. '``ty``': the type of the call instruction itself which is also the
6632 type of the return value. Functions that return no value are marked
6633 ``void``.
6634#. '``fnty``': shall be the signature of the pointer to function value
6635 being invoked. The argument types must match the types implied by
6636 this signature. This type can be omitted if the function is not
6637 varargs and if the function type does not return a pointer to a
6638 function.
6639#. '``fnptrval``': An LLVM value containing a pointer to a function to
6640 be invoked. In most cases, this is a direct function invocation, but
6641 indirect ``call``'s are just as possible, calling an arbitrary pointer
6642 to function value.
6643#. '``function args``': argument list whose types match the function
6644 signature argument types and parameter attributes. All arguments must
6645 be of :ref:`first class <t_firstclass>` type. If the function signature
6646 indicates the function accepts a variable number of arguments, the
6647 extra arguments can be specified.
6648#. The optional :ref:`function attributes <fnattrs>` list. Only
6649 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6650 attributes are valid here.
6651
6652Semantics:
6653""""""""""
6654
6655The '``call``' instruction is used to cause control flow to transfer to
6656a specified function, with its incoming arguments bound to the specified
6657values. Upon a '``ret``' instruction in the called function, control
6658flow continues with the instruction after the function call, and the
6659return value of the function is bound to the result argument.
6660
6661Example:
6662""""""""
6663
6664.. code-block:: llvm
6665
6666 %retval = call i32 @test(i32 %argc)
6667 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6668 %X = tail call i32 @foo() ; yields i32
6669 %Y = tail call fastcc i32 @foo() ; yields i32
6670 call void %foo(i8 97 signext)
6671
6672 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00006673 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00006674 %gr = extractvalue %struct.A %r, 0 ; yields i32
6675 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6676 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6677 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6678
6679llvm treats calls to some functions with names and arguments that match
6680the standard C99 library as being the C99 library functions, and may
6681perform optimizations or generate code for them under that assumption.
6682This is something we'd like to change in the future to provide better
6683support for freestanding environments and non-C-based languages.
6684
6685.. _i_va_arg:
6686
6687'``va_arg``' Instruction
6688^^^^^^^^^^^^^^^^^^^^^^^^
6689
6690Syntax:
6691"""""""
6692
6693::
6694
6695 <resultval> = va_arg <va_list*> <arglist>, <argty>
6696
6697Overview:
6698"""""""""
6699
6700The '``va_arg``' instruction is used to access arguments passed through
6701the "variable argument" area of a function call. It is used to implement
6702the ``va_arg`` macro in C.
6703
6704Arguments:
6705""""""""""
6706
6707This instruction takes a ``va_list*`` value and the type of the
6708argument. It returns a value of the specified argument type and
6709increments the ``va_list`` to point to the next argument. The actual
6710type of ``va_list`` is target specific.
6711
6712Semantics:
6713""""""""""
6714
6715The '``va_arg``' instruction loads an argument of the specified type
6716from the specified ``va_list`` and causes the ``va_list`` to point to
6717the next argument. For more information, see the variable argument
6718handling :ref:`Intrinsic Functions <int_varargs>`.
6719
6720It is legal for this instruction to be called in a function which does
6721not take a variable number of arguments, for example, the ``vfprintf``
6722function.
6723
6724``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6725function <intrinsics>` because it takes a type as an argument.
6726
6727Example:
6728""""""""
6729
6730See the :ref:`variable argument processing <int_varargs>` section.
6731
6732Note that the code generator does not yet fully support va\_arg on many
6733targets. Also, it does not currently support va\_arg with aggregate
6734types on any target.
6735
6736.. _i_landingpad:
6737
6738'``landingpad``' Instruction
6739^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6740
6741Syntax:
6742"""""""
6743
6744::
6745
6746 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6747 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6748
6749 <clause> := catch <type> <value>
6750 <clause> := filter <array constant type> <array constant>
6751
6752Overview:
6753"""""""""
6754
6755The '``landingpad``' instruction is used by `LLVM's exception handling
6756system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006757is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006758code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6759defines values supplied by the personality function (``pers_fn``) upon
6760re-entry to the function. The ``resultval`` has the type ``resultty``.
6761
6762Arguments:
6763""""""""""
6764
6765This instruction takes a ``pers_fn`` value. This is the personality
6766function associated with the unwinding mechanism. The optional
6767``cleanup`` flag indicates that the landing pad block is a cleanup.
6768
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006769A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006770contains the global variable representing the "type" that may be caught
6771or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6772clause takes an array constant as its argument. Use
6773"``[0 x i8**] undef``" for a filter which cannot throw. The
6774'``landingpad``' instruction must contain *at least* one ``clause`` or
6775the ``cleanup`` flag.
6776
6777Semantics:
6778""""""""""
6779
6780The '``landingpad``' instruction defines the values which are set by the
6781personality function (``pers_fn``) upon re-entry to the function, and
6782therefore the "result type" of the ``landingpad`` instruction. As with
6783calling conventions, how the personality function results are
6784represented in LLVM IR is target specific.
6785
6786The clauses are applied in order from top to bottom. If two
6787``landingpad`` instructions are merged together through inlining, the
6788clauses from the calling function are appended to the list of clauses.
6789When the call stack is being unwound due to an exception being thrown,
6790the exception is compared against each ``clause`` in turn. If it doesn't
6791match any of the clauses, and the ``cleanup`` flag is not set, then
6792unwinding continues further up the call stack.
6793
6794The ``landingpad`` instruction has several restrictions:
6795
6796- A landing pad block is a basic block which is the unwind destination
6797 of an '``invoke``' instruction.
6798- A landing pad block must have a '``landingpad``' instruction as its
6799 first non-PHI instruction.
6800- There can be only one '``landingpad``' instruction within the landing
6801 pad block.
6802- A basic block that is not a landing pad block may not include a
6803 '``landingpad``' instruction.
6804- All '``landingpad``' instructions in a function must have the same
6805 personality function.
6806
6807Example:
6808""""""""
6809
6810.. code-block:: llvm
6811
6812 ;; A landing pad which can catch an integer.
6813 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6814 catch i8** @_ZTIi
6815 ;; A landing pad that is a cleanup.
6816 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6817 cleanup
6818 ;; A landing pad which can catch an integer and can only throw a double.
6819 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6820 catch i8** @_ZTIi
6821 filter [1 x i8**] [@_ZTId]
6822
6823.. _intrinsics:
6824
6825Intrinsic Functions
6826===================
6827
6828LLVM supports the notion of an "intrinsic function". These functions
6829have well known names and semantics and are required to follow certain
6830restrictions. Overall, these intrinsics represent an extension mechanism
6831for the LLVM language that does not require changing all of the
6832transformations in LLVM when adding to the language (or the bitcode
6833reader/writer, the parser, etc...).
6834
6835Intrinsic function names must all start with an "``llvm.``" prefix. This
6836prefix is reserved in LLVM for intrinsic names; thus, function names may
6837not begin with this prefix. Intrinsic functions must always be external
6838functions: you cannot define the body of intrinsic functions. Intrinsic
6839functions may only be used in call or invoke instructions: it is illegal
6840to take the address of an intrinsic function. Additionally, because
6841intrinsic functions are part of the LLVM language, it is required if any
6842are added that they be documented here.
6843
6844Some intrinsic functions can be overloaded, i.e., the intrinsic
6845represents a family of functions that perform the same operation but on
6846different data types. Because LLVM can represent over 8 million
6847different integer types, overloading is used commonly to allow an
6848intrinsic function to operate on any integer type. One or more of the
6849argument types or the result type can be overloaded to accept any
6850integer type. Argument types may also be defined as exactly matching a
6851previous argument's type or the result type. This allows an intrinsic
6852function which accepts multiple arguments, but needs all of them to be
6853of the same type, to only be overloaded with respect to a single
6854argument or the result.
6855
6856Overloaded intrinsics will have the names of its overloaded argument
6857types encoded into its function name, each preceded by a period. Only
6858those types which are overloaded result in a name suffix. Arguments
6859whose type is matched against another type do not. For example, the
6860``llvm.ctpop`` function can take an integer of any width and returns an
6861integer of exactly the same integer width. This leads to a family of
6862functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6863``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6864overloaded, and only one type suffix is required. Because the argument's
6865type is matched against the return type, it does not require its own
6866name suffix.
6867
6868To learn how to add an intrinsic function, please see the `Extending
6869LLVM Guide <ExtendingLLVM.html>`_.
6870
6871.. _int_varargs:
6872
6873Variable Argument Handling Intrinsics
6874-------------------------------------
6875
6876Variable argument support is defined in LLVM with the
6877:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6878functions. These functions are related to the similarly named macros
6879defined in the ``<stdarg.h>`` header file.
6880
6881All of these functions operate on arguments that use a target-specific
6882value type "``va_list``". The LLVM assembly language reference manual
6883does not define what this type is, so all transformations should be
6884prepared to handle these functions regardless of the type used.
6885
6886This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6887variable argument handling intrinsic functions are used.
6888
6889.. code-block:: llvm
6890
Tim Northoverab60bb92014-11-02 01:21:51 +00006891 ; This struct is different for every platform. For most platforms,
6892 ; it is merely an i8*.
6893 %struct.va_list = type { i8* }
6894
6895 ; For Unix x86_64 platforms, va_list is the following struct:
6896 ; %struct.va_list = type { i32, i32, i8*, i8* }
6897
Sean Silvab084af42012-12-07 10:36:55 +00006898 define i32 @test(i32 %X, ...) {
6899 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00006900 %ap = alloca %struct.va_list
6901 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00006902 call void @llvm.va_start(i8* %ap2)
6903
6904 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00006905 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00006906
6907 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6908 %aq = alloca i8*
6909 %aq2 = bitcast i8** %aq to i8*
6910 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6911 call void @llvm.va_end(i8* %aq2)
6912
6913 ; Stop processing of arguments.
6914 call void @llvm.va_end(i8* %ap2)
6915 ret i32 %tmp
6916 }
6917
6918 declare void @llvm.va_start(i8*)
6919 declare void @llvm.va_copy(i8*, i8*)
6920 declare void @llvm.va_end(i8*)
6921
6922.. _int_va_start:
6923
6924'``llvm.va_start``' Intrinsic
6925^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6926
6927Syntax:
6928"""""""
6929
6930::
6931
Nick Lewycky04f6de02013-09-11 22:04:52 +00006932 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006933
6934Overview:
6935"""""""""
6936
6937The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6938subsequent use by ``va_arg``.
6939
6940Arguments:
6941""""""""""
6942
6943The argument is a pointer to a ``va_list`` element to initialize.
6944
6945Semantics:
6946""""""""""
6947
6948The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6949available in C. In a target-dependent way, it initializes the
6950``va_list`` element to which the argument points, so that the next call
6951to ``va_arg`` will produce the first variable argument passed to the
6952function. Unlike the C ``va_start`` macro, this intrinsic does not need
6953to know the last argument of the function as the compiler can figure
6954that out.
6955
6956'``llvm.va_end``' Intrinsic
6957^^^^^^^^^^^^^^^^^^^^^^^^^^^
6958
6959Syntax:
6960"""""""
6961
6962::
6963
6964 declare void @llvm.va_end(i8* <arglist>)
6965
6966Overview:
6967"""""""""
6968
6969The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6970initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6971
6972Arguments:
6973""""""""""
6974
6975The argument is a pointer to a ``va_list`` to destroy.
6976
6977Semantics:
6978""""""""""
6979
6980The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6981available in C. In a target-dependent way, it destroys the ``va_list``
6982element to which the argument points. Calls to
6983:ref:`llvm.va_start <int_va_start>` and
6984:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6985``llvm.va_end``.
6986
6987.. _int_va_copy:
6988
6989'``llvm.va_copy``' Intrinsic
6990^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6991
6992Syntax:
6993"""""""
6994
6995::
6996
6997 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6998
6999Overview:
7000"""""""""
7001
7002The '``llvm.va_copy``' intrinsic copies the current argument position
7003from the source argument list to the destination argument list.
7004
7005Arguments:
7006""""""""""
7007
7008The first argument is a pointer to a ``va_list`` element to initialize.
7009The second argument is a pointer to a ``va_list`` element to copy from.
7010
7011Semantics:
7012""""""""""
7013
7014The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
7015available in C. In a target-dependent way, it copies the source
7016``va_list`` element into the destination ``va_list`` element. This
7017intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
7018arbitrarily complex and require, for example, memory allocation.
7019
7020Accurate Garbage Collection Intrinsics
7021--------------------------------------
7022
7023LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
7024(GC) requires the implementation and generation of these intrinsics.
7025These intrinsics allow identification of :ref:`GC roots on the
7026stack <int_gcroot>`, as well as garbage collector implementations that
7027require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
7028Front-ends for type-safe garbage collected languages should generate
7029these intrinsics to make use of the LLVM garbage collectors. For more
7030details, see `Accurate Garbage Collection with
7031LLVM <GarbageCollection.html>`_.
7032
7033The garbage collection intrinsics only operate on objects in the generic
7034address space (address space zero).
7035
7036.. _int_gcroot:
7037
7038'``llvm.gcroot``' Intrinsic
7039^^^^^^^^^^^^^^^^^^^^^^^^^^^
7040
7041Syntax:
7042"""""""
7043
7044::
7045
7046 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
7047
7048Overview:
7049"""""""""
7050
7051The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
7052the code generator, and allows some metadata to be associated with it.
7053
7054Arguments:
7055""""""""""
7056
7057The first argument specifies the address of a stack object that contains
7058the root pointer. The second pointer (which must be either a constant or
7059a global value address) contains the meta-data to be associated with the
7060root.
7061
7062Semantics:
7063""""""""""
7064
7065At runtime, a call to this intrinsic stores a null pointer into the
7066"ptrloc" location. At compile-time, the code generator generates
7067information to allow the runtime to find the pointer at GC safe points.
7068The '``llvm.gcroot``' intrinsic may only be used in a function which
7069:ref:`specifies a GC algorithm <gc>`.
7070
7071.. _int_gcread:
7072
7073'``llvm.gcread``' Intrinsic
7074^^^^^^^^^^^^^^^^^^^^^^^^^^^
7075
7076Syntax:
7077"""""""
7078
7079::
7080
7081 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7082
7083Overview:
7084"""""""""
7085
7086The '``llvm.gcread``' intrinsic identifies reads of references from heap
7087locations, allowing garbage collector implementations that require read
7088barriers.
7089
7090Arguments:
7091""""""""""
7092
7093The second argument is the address to read from, which should be an
7094address allocated from the garbage collector. The first object is a
7095pointer to the start of the referenced object, if needed by the language
7096runtime (otherwise null).
7097
7098Semantics:
7099""""""""""
7100
7101The '``llvm.gcread``' intrinsic has the same semantics as a load
7102instruction, but may be replaced with substantially more complex code by
7103the garbage collector runtime, as needed. The '``llvm.gcread``'
7104intrinsic may only be used in a function which :ref:`specifies a GC
7105algorithm <gc>`.
7106
7107.. _int_gcwrite:
7108
7109'``llvm.gcwrite``' Intrinsic
7110^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7111
7112Syntax:
7113"""""""
7114
7115::
7116
7117 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7118
7119Overview:
7120"""""""""
7121
7122The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7123locations, allowing garbage collector implementations that require write
7124barriers (such as generational or reference counting collectors).
7125
7126Arguments:
7127""""""""""
7128
7129The first argument is the reference to store, the second is the start of
7130the object to store it to, and the third is the address of the field of
7131Obj to store to. If the runtime does not require a pointer to the
7132object, Obj may be null.
7133
7134Semantics:
7135""""""""""
7136
7137The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7138instruction, but may be replaced with substantially more complex code by
7139the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7140intrinsic may only be used in a function which :ref:`specifies a GC
7141algorithm <gc>`.
7142
7143Code Generator Intrinsics
7144-------------------------
7145
7146These intrinsics are provided by LLVM to expose special features that
7147may only be implemented with code generator support.
7148
7149'``llvm.returnaddress``' Intrinsic
7150^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7151
7152Syntax:
7153"""""""
7154
7155::
7156
7157 declare i8 *@llvm.returnaddress(i32 <level>)
7158
7159Overview:
7160"""""""""
7161
7162The '``llvm.returnaddress``' intrinsic attempts to compute a
7163target-specific value indicating the return address of the current
7164function or one of its callers.
7165
7166Arguments:
7167""""""""""
7168
7169The argument to this intrinsic indicates which function to return the
7170address for. Zero indicates the calling function, one indicates its
7171caller, etc. The argument is **required** to be a constant integer
7172value.
7173
7174Semantics:
7175""""""""""
7176
7177The '``llvm.returnaddress``' intrinsic either returns a pointer
7178indicating the return address of the specified call frame, or zero if it
7179cannot be identified. The value returned by this intrinsic is likely to
7180be incorrect or 0 for arguments other than zero, so it should only be
7181used for debugging purposes.
7182
7183Note that calling this intrinsic does not prevent function inlining or
7184other aggressive transformations, so the value returned may not be that
7185of the obvious source-language caller.
7186
7187'``llvm.frameaddress``' Intrinsic
7188^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7189
7190Syntax:
7191"""""""
7192
7193::
7194
7195 declare i8* @llvm.frameaddress(i32 <level>)
7196
7197Overview:
7198"""""""""
7199
7200The '``llvm.frameaddress``' intrinsic attempts to return the
7201target-specific frame pointer value for the specified stack frame.
7202
7203Arguments:
7204""""""""""
7205
7206The argument to this intrinsic indicates which function to return the
7207frame pointer for. Zero indicates the calling function, one indicates
7208its caller, etc. The argument is **required** to be a constant integer
7209value.
7210
7211Semantics:
7212""""""""""
7213
7214The '``llvm.frameaddress``' intrinsic either returns a pointer
7215indicating the frame address of the specified call frame, or zero if it
7216cannot be identified. The value returned by this intrinsic is likely to
7217be incorrect or 0 for arguments other than zero, so it should only be
7218used for debugging purposes.
7219
7220Note that calling this intrinsic does not prevent function inlining or
7221other aggressive transformations, so the value returned may not be that
7222of the obvious source-language caller.
7223
Renato Golinc7aea402014-05-06 16:51:25 +00007224.. _int_read_register:
7225.. _int_write_register:
7226
7227'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7228^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7229
7230Syntax:
7231"""""""
7232
7233::
7234
7235 declare i32 @llvm.read_register.i32(metadata)
7236 declare i64 @llvm.read_register.i64(metadata)
7237 declare void @llvm.write_register.i32(metadata, i32 @value)
7238 declare void @llvm.write_register.i64(metadata, i64 @value)
7239 !0 = metadata !{metadata !"sp\00"}
7240
7241Overview:
7242"""""""""
7243
7244The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7245provides access to the named register. The register must be valid on
7246the architecture being compiled to. The type needs to be compatible
7247with the register being read.
7248
7249Semantics:
7250""""""""""
7251
7252The '``llvm.read_register``' intrinsic returns the current value of the
7253register, where possible. The '``llvm.write_register``' intrinsic sets
7254the current value of the register, where possible.
7255
7256This is useful to implement named register global variables that need
7257to always be mapped to a specific register, as is common practice on
7258bare-metal programs including OS kernels.
7259
7260The compiler doesn't check for register availability or use of the used
7261register in surrounding code, including inline assembly. Because of that,
7262allocatable registers are not supported.
7263
7264Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007265architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007266work is needed to support other registers and even more so, allocatable
7267registers.
7268
Sean Silvab084af42012-12-07 10:36:55 +00007269.. _int_stacksave:
7270
7271'``llvm.stacksave``' Intrinsic
7272^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7273
7274Syntax:
7275"""""""
7276
7277::
7278
7279 declare i8* @llvm.stacksave()
7280
7281Overview:
7282"""""""""
7283
7284The '``llvm.stacksave``' intrinsic is used to remember the current state
7285of the function stack, for use with
7286:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7287implementing language features like scoped automatic variable sized
7288arrays in C99.
7289
7290Semantics:
7291""""""""""
7292
7293This intrinsic returns a opaque pointer value that can be passed to
7294:ref:`llvm.stackrestore <int_stackrestore>`. When an
7295``llvm.stackrestore`` intrinsic is executed with a value saved from
7296``llvm.stacksave``, it effectively restores the state of the stack to
7297the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7298practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7299were allocated after the ``llvm.stacksave`` was executed.
7300
7301.. _int_stackrestore:
7302
7303'``llvm.stackrestore``' Intrinsic
7304^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7305
7306Syntax:
7307"""""""
7308
7309::
7310
7311 declare void @llvm.stackrestore(i8* %ptr)
7312
7313Overview:
7314"""""""""
7315
7316The '``llvm.stackrestore``' intrinsic is used to restore the state of
7317the function stack to the state it was in when the corresponding
7318:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7319useful for implementing language features like scoped automatic variable
7320sized arrays in C99.
7321
7322Semantics:
7323""""""""""
7324
7325See the description for :ref:`llvm.stacksave <int_stacksave>`.
7326
7327'``llvm.prefetch``' Intrinsic
7328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7329
7330Syntax:
7331"""""""
7332
7333::
7334
7335 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7336
7337Overview:
7338"""""""""
7339
7340The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7341insert a prefetch instruction if supported; otherwise, it is a noop.
7342Prefetches have no effect on the behavior of the program but can change
7343its performance characteristics.
7344
7345Arguments:
7346""""""""""
7347
7348``address`` is the address to be prefetched, ``rw`` is the specifier
7349determining if the fetch should be for a read (0) or write (1), and
7350``locality`` is a temporal locality specifier ranging from (0) - no
7351locality, to (3) - extremely local keep in cache. The ``cache type``
7352specifies whether the prefetch is performed on the data (1) or
7353instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7354arguments must be constant integers.
7355
7356Semantics:
7357""""""""""
7358
7359This intrinsic does not modify the behavior of the program. In
7360particular, prefetches cannot trap and do not produce a value. On
7361targets that support this intrinsic, the prefetch can provide hints to
7362the processor cache for better performance.
7363
7364'``llvm.pcmarker``' Intrinsic
7365^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7366
7367Syntax:
7368"""""""
7369
7370::
7371
7372 declare void @llvm.pcmarker(i32 <id>)
7373
7374Overview:
7375"""""""""
7376
7377The '``llvm.pcmarker``' intrinsic is a method to export a Program
7378Counter (PC) in a region of code to simulators and other tools. The
7379method is target specific, but it is expected that the marker will use
7380exported symbols to transmit the PC of the marker. The marker makes no
7381guarantees that it will remain with any specific instruction after
7382optimizations. It is possible that the presence of a marker will inhibit
7383optimizations. The intended use is to be inserted after optimizations to
7384allow correlations of simulation runs.
7385
7386Arguments:
7387""""""""""
7388
7389``id`` is a numerical id identifying the marker.
7390
7391Semantics:
7392""""""""""
7393
7394This intrinsic does not modify the behavior of the program. Backends
7395that do not support this intrinsic may ignore it.
7396
7397'``llvm.readcyclecounter``' Intrinsic
7398^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7399
7400Syntax:
7401"""""""
7402
7403::
7404
7405 declare i64 @llvm.readcyclecounter()
7406
7407Overview:
7408"""""""""
7409
7410The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7411counter register (or similar low latency, high accuracy clocks) on those
7412targets that support it. On X86, it should map to RDTSC. On Alpha, it
7413should map to RPCC. As the backing counters overflow quickly (on the
7414order of 9 seconds on alpha), this should only be used for small
7415timings.
7416
7417Semantics:
7418""""""""""
7419
7420When directly supported, reading the cycle counter should not modify any
7421memory. Implementations are allowed to either return a application
7422specific value or a system wide value. On backends without support, this
7423is lowered to a constant 0.
7424
Tim Northoverbc933082013-05-23 19:11:20 +00007425Note that runtime support may be conditional on the privilege-level code is
7426running at and the host platform.
7427
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007428'``llvm.clear_cache``' Intrinsic
7429^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7430
7431Syntax:
7432"""""""
7433
7434::
7435
7436 declare void @llvm.clear_cache(i8*, i8*)
7437
7438Overview:
7439"""""""""
7440
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007441The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7442in the specified range to the execution unit of the processor. On
7443targets with non-unified instruction and data cache, the implementation
7444flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007445
7446Semantics:
7447""""""""""
7448
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007449On platforms with coherent instruction and data caches (e.g. x86), this
7450intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007451cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007452instructions or a system call, if cache flushing requires special
7453privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007454
Sean Silvad02bf3e2014-04-07 22:29:53 +00007455The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007456time library.
Renato Golin93010e62014-03-26 14:01:32 +00007457
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007458This instrinsic does *not* empty the instruction pipeline. Modifications
7459of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007460
Sean Silvab084af42012-12-07 10:36:55 +00007461Standard C Library Intrinsics
7462-----------------------------
7463
7464LLVM provides intrinsics for a few important standard C library
7465functions. These intrinsics allow source-language front-ends to pass
7466information about the alignment of the pointer arguments to the code
7467generator, providing opportunity for more efficient code generation.
7468
7469.. _int_memcpy:
7470
7471'``llvm.memcpy``' Intrinsic
7472^^^^^^^^^^^^^^^^^^^^^^^^^^^
7473
7474Syntax:
7475"""""""
7476
7477This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7478integer bit width and for different address spaces. Not all targets
7479support all bit widths however.
7480
7481::
7482
7483 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7484 i32 <len>, i32 <align>, i1 <isvolatile>)
7485 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7486 i64 <len>, i32 <align>, i1 <isvolatile>)
7487
7488Overview:
7489"""""""""
7490
7491The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7492source location to the destination location.
7493
7494Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7495intrinsics do not return a value, takes extra alignment/isvolatile
7496arguments and the pointers can be in specified address spaces.
7497
7498Arguments:
7499""""""""""
7500
7501The first argument is a pointer to the destination, the second is a
7502pointer to the source. The third argument is an integer argument
7503specifying the number of bytes to copy, the fourth argument is the
7504alignment of the source and destination locations, and the fifth is a
7505boolean indicating a volatile access.
7506
7507If the call to this intrinsic has an alignment value that is not 0 or 1,
7508then the caller guarantees that both the source and destination pointers
7509are aligned to that boundary.
7510
7511If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7512a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7513very cleanly specified and it is unwise to depend on it.
7514
7515Semantics:
7516""""""""""
7517
7518The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7519source location to the destination location, which are not allowed to
7520overlap. It copies "len" bytes of memory over. If the argument is known
7521to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007522argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007523
7524'``llvm.memmove``' Intrinsic
7525^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7526
7527Syntax:
7528"""""""
7529
7530This is an overloaded intrinsic. You can use llvm.memmove on any integer
7531bit width and for different address space. Not all targets support all
7532bit widths however.
7533
7534::
7535
7536 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7537 i32 <len>, i32 <align>, i1 <isvolatile>)
7538 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7539 i64 <len>, i32 <align>, i1 <isvolatile>)
7540
7541Overview:
7542"""""""""
7543
7544The '``llvm.memmove.*``' intrinsics move a block of memory from the
7545source location to the destination location. It is similar to the
7546'``llvm.memcpy``' intrinsic but allows the two memory locations to
7547overlap.
7548
7549Note that, unlike the standard libc function, the ``llvm.memmove.*``
7550intrinsics do not return a value, takes extra alignment/isvolatile
7551arguments and the pointers can be in specified address spaces.
7552
7553Arguments:
7554""""""""""
7555
7556The first argument is a pointer to the destination, the second is a
7557pointer to the source. The third argument is an integer argument
7558specifying the number of bytes to copy, the fourth argument is the
7559alignment of the source and destination locations, and the fifth is a
7560boolean indicating a volatile access.
7561
7562If the call to this intrinsic has an alignment value that is not 0 or 1,
7563then the caller guarantees that the source and destination pointers are
7564aligned to that boundary.
7565
7566If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7567is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7568not very cleanly specified and it is unwise to depend on it.
7569
7570Semantics:
7571""""""""""
7572
7573The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7574source location to the destination location, which may overlap. It
7575copies "len" bytes of memory over. If the argument is known to be
7576aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007577otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007578
7579'``llvm.memset.*``' Intrinsics
7580^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7581
7582Syntax:
7583"""""""
7584
7585This is an overloaded intrinsic. You can use llvm.memset on any integer
7586bit width and for different address spaces. However, not all targets
7587support all bit widths.
7588
7589::
7590
7591 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7592 i32 <len>, i32 <align>, i1 <isvolatile>)
7593 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7594 i64 <len>, i32 <align>, i1 <isvolatile>)
7595
7596Overview:
7597"""""""""
7598
7599The '``llvm.memset.*``' intrinsics fill a block of memory with a
7600particular byte value.
7601
7602Note that, unlike the standard libc function, the ``llvm.memset``
7603intrinsic does not return a value and takes extra alignment/volatile
7604arguments. Also, the destination can be in an arbitrary address space.
7605
7606Arguments:
7607""""""""""
7608
7609The first argument is a pointer to the destination to fill, the second
7610is the byte value with which to fill it, the third argument is an
7611integer argument specifying the number of bytes to fill, and the fourth
7612argument is the known alignment of the destination location.
7613
7614If the call to this intrinsic has an alignment value that is not 0 or 1,
7615then the caller guarantees that the destination pointer is aligned to
7616that boundary.
7617
7618If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7619a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7620very cleanly specified and it is unwise to depend on it.
7621
7622Semantics:
7623""""""""""
7624
7625The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7626at the destination location. If the argument is known to be aligned to
7627some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007628it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007629
7630'``llvm.sqrt.*``' Intrinsic
7631^^^^^^^^^^^^^^^^^^^^^^^^^^^
7632
7633Syntax:
7634"""""""
7635
7636This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7637floating point or vector of floating point type. Not all targets support
7638all types however.
7639
7640::
7641
7642 declare float @llvm.sqrt.f32(float %Val)
7643 declare double @llvm.sqrt.f64(double %Val)
7644 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7645 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7646 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7647
7648Overview:
7649"""""""""
7650
7651The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7652returning the same value as the libm '``sqrt``' functions would. Unlike
7653``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7654negative numbers other than -0.0 (which allows for better optimization,
7655because there is no need to worry about errno being set).
7656``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7657
7658Arguments:
7659""""""""""
7660
7661The argument and return value are floating point numbers of the same
7662type.
7663
7664Semantics:
7665""""""""""
7666
7667This function returns the sqrt of the specified operand if it is a
7668nonnegative floating point number.
7669
7670'``llvm.powi.*``' Intrinsic
7671^^^^^^^^^^^^^^^^^^^^^^^^^^^
7672
7673Syntax:
7674"""""""
7675
7676This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7677floating point or vector of floating point type. Not all targets support
7678all types however.
7679
7680::
7681
7682 declare float @llvm.powi.f32(float %Val, i32 %power)
7683 declare double @llvm.powi.f64(double %Val, i32 %power)
7684 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7685 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7686 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7687
7688Overview:
7689"""""""""
7690
7691The '``llvm.powi.*``' intrinsics return the first operand raised to the
7692specified (positive or negative) power. The order of evaluation of
7693multiplications is not defined. When a vector of floating point type is
7694used, the second argument remains a scalar integer value.
7695
7696Arguments:
7697""""""""""
7698
7699The second argument is an integer power, and the first is a value to
7700raise to that power.
7701
7702Semantics:
7703""""""""""
7704
7705This function returns the first value raised to the second power with an
7706unspecified sequence of rounding operations.
7707
7708'``llvm.sin.*``' Intrinsic
7709^^^^^^^^^^^^^^^^^^^^^^^^^^
7710
7711Syntax:
7712"""""""
7713
7714This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7715floating point or vector of floating point type. Not all targets support
7716all types however.
7717
7718::
7719
7720 declare float @llvm.sin.f32(float %Val)
7721 declare double @llvm.sin.f64(double %Val)
7722 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7723 declare fp128 @llvm.sin.f128(fp128 %Val)
7724 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7725
7726Overview:
7727"""""""""
7728
7729The '``llvm.sin.*``' intrinsics return the sine of the operand.
7730
7731Arguments:
7732""""""""""
7733
7734The argument and return value are floating point numbers of the same
7735type.
7736
7737Semantics:
7738""""""""""
7739
7740This function returns the sine of the specified operand, returning the
7741same values as the libm ``sin`` functions would, and handles error
7742conditions in the same way.
7743
7744'``llvm.cos.*``' Intrinsic
7745^^^^^^^^^^^^^^^^^^^^^^^^^^
7746
7747Syntax:
7748"""""""
7749
7750This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7751floating point or vector of floating point type. Not all targets support
7752all types however.
7753
7754::
7755
7756 declare float @llvm.cos.f32(float %Val)
7757 declare double @llvm.cos.f64(double %Val)
7758 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7759 declare fp128 @llvm.cos.f128(fp128 %Val)
7760 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7761
7762Overview:
7763"""""""""
7764
7765The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7766
7767Arguments:
7768""""""""""
7769
7770The argument and return value are floating point numbers of the same
7771type.
7772
7773Semantics:
7774""""""""""
7775
7776This function returns the cosine of the specified operand, returning the
7777same values as the libm ``cos`` functions would, and handles error
7778conditions in the same way.
7779
7780'``llvm.pow.*``' Intrinsic
7781^^^^^^^^^^^^^^^^^^^^^^^^^^
7782
7783Syntax:
7784"""""""
7785
7786This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7787floating point or vector of floating point type. Not all targets support
7788all types however.
7789
7790::
7791
7792 declare float @llvm.pow.f32(float %Val, float %Power)
7793 declare double @llvm.pow.f64(double %Val, double %Power)
7794 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7795 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7796 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7797
7798Overview:
7799"""""""""
7800
7801The '``llvm.pow.*``' intrinsics return the first operand raised to the
7802specified (positive or negative) power.
7803
7804Arguments:
7805""""""""""
7806
7807The second argument is a floating point power, and the first is a value
7808to raise to that power.
7809
7810Semantics:
7811""""""""""
7812
7813This function returns the first value raised to the second power,
7814returning the same values as the libm ``pow`` functions would, and
7815handles error conditions in the same way.
7816
7817'``llvm.exp.*``' Intrinsic
7818^^^^^^^^^^^^^^^^^^^^^^^^^^
7819
7820Syntax:
7821"""""""
7822
7823This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7824floating point or vector of floating point type. Not all targets support
7825all types however.
7826
7827::
7828
7829 declare float @llvm.exp.f32(float %Val)
7830 declare double @llvm.exp.f64(double %Val)
7831 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7832 declare fp128 @llvm.exp.f128(fp128 %Val)
7833 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7834
7835Overview:
7836"""""""""
7837
7838The '``llvm.exp.*``' intrinsics perform the exp function.
7839
7840Arguments:
7841""""""""""
7842
7843The argument and return value are floating point numbers of the same
7844type.
7845
7846Semantics:
7847""""""""""
7848
7849This function returns the same values as the libm ``exp`` functions
7850would, and handles error conditions in the same way.
7851
7852'``llvm.exp2.*``' Intrinsic
7853^^^^^^^^^^^^^^^^^^^^^^^^^^^
7854
7855Syntax:
7856"""""""
7857
7858This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7859floating point or vector of floating point type. Not all targets support
7860all types however.
7861
7862::
7863
7864 declare float @llvm.exp2.f32(float %Val)
7865 declare double @llvm.exp2.f64(double %Val)
7866 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7867 declare fp128 @llvm.exp2.f128(fp128 %Val)
7868 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7869
7870Overview:
7871"""""""""
7872
7873The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7874
7875Arguments:
7876""""""""""
7877
7878The argument and return value are floating point numbers of the same
7879type.
7880
7881Semantics:
7882""""""""""
7883
7884This function returns the same values as the libm ``exp2`` functions
7885would, and handles error conditions in the same way.
7886
7887'``llvm.log.*``' Intrinsic
7888^^^^^^^^^^^^^^^^^^^^^^^^^^
7889
7890Syntax:
7891"""""""
7892
7893This is an overloaded intrinsic. You can use ``llvm.log`` on any
7894floating point or vector of floating point type. Not all targets support
7895all types however.
7896
7897::
7898
7899 declare float @llvm.log.f32(float %Val)
7900 declare double @llvm.log.f64(double %Val)
7901 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7902 declare fp128 @llvm.log.f128(fp128 %Val)
7903 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7904
7905Overview:
7906"""""""""
7907
7908The '``llvm.log.*``' intrinsics perform the log function.
7909
7910Arguments:
7911""""""""""
7912
7913The argument and return value are floating point numbers of the same
7914type.
7915
7916Semantics:
7917""""""""""
7918
7919This function returns the same values as the libm ``log`` functions
7920would, and handles error conditions in the same way.
7921
7922'``llvm.log10.*``' Intrinsic
7923^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7924
7925Syntax:
7926"""""""
7927
7928This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7929floating point or vector of floating point type. Not all targets support
7930all types however.
7931
7932::
7933
7934 declare float @llvm.log10.f32(float %Val)
7935 declare double @llvm.log10.f64(double %Val)
7936 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7937 declare fp128 @llvm.log10.f128(fp128 %Val)
7938 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7939
7940Overview:
7941"""""""""
7942
7943The '``llvm.log10.*``' intrinsics perform the log10 function.
7944
7945Arguments:
7946""""""""""
7947
7948The argument and return value are floating point numbers of the same
7949type.
7950
7951Semantics:
7952""""""""""
7953
7954This function returns the same values as the libm ``log10`` functions
7955would, and handles error conditions in the same way.
7956
7957'``llvm.log2.*``' Intrinsic
7958^^^^^^^^^^^^^^^^^^^^^^^^^^^
7959
7960Syntax:
7961"""""""
7962
7963This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7964floating point or vector of floating point type. Not all targets support
7965all types however.
7966
7967::
7968
7969 declare float @llvm.log2.f32(float %Val)
7970 declare double @llvm.log2.f64(double %Val)
7971 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7972 declare fp128 @llvm.log2.f128(fp128 %Val)
7973 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7974
7975Overview:
7976"""""""""
7977
7978The '``llvm.log2.*``' intrinsics perform the log2 function.
7979
7980Arguments:
7981""""""""""
7982
7983The argument and return value are floating point numbers of the same
7984type.
7985
7986Semantics:
7987""""""""""
7988
7989This function returns the same values as the libm ``log2`` functions
7990would, and handles error conditions in the same way.
7991
7992'``llvm.fma.*``' Intrinsic
7993^^^^^^^^^^^^^^^^^^^^^^^^^^
7994
7995Syntax:
7996"""""""
7997
7998This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7999floating point or vector of floating point type. Not all targets support
8000all types however.
8001
8002::
8003
8004 declare float @llvm.fma.f32(float %a, float %b, float %c)
8005 declare double @llvm.fma.f64(double %a, double %b, double %c)
8006 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
8007 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
8008 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
8009
8010Overview:
8011"""""""""
8012
8013The '``llvm.fma.*``' intrinsics perform the fused multiply-add
8014operation.
8015
8016Arguments:
8017""""""""""
8018
8019The argument and return value are floating point numbers of the same
8020type.
8021
8022Semantics:
8023""""""""""
8024
8025This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008026would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00008027
8028'``llvm.fabs.*``' Intrinsic
8029^^^^^^^^^^^^^^^^^^^^^^^^^^^
8030
8031Syntax:
8032"""""""
8033
8034This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
8035floating point or vector of floating point type. Not all targets support
8036all types however.
8037
8038::
8039
8040 declare float @llvm.fabs.f32(float %Val)
8041 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008042 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008043 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008044 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008045
8046Overview:
8047"""""""""
8048
8049The '``llvm.fabs.*``' intrinsics return the absolute value of the
8050operand.
8051
8052Arguments:
8053""""""""""
8054
8055The argument and return value are floating point numbers of the same
8056type.
8057
8058Semantics:
8059""""""""""
8060
8061This function returns the same values as the libm ``fabs`` functions
8062would, and handles error conditions in the same way.
8063
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008064'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008065^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008066
8067Syntax:
8068"""""""
8069
8070This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
8071floating point or vector of floating point type. Not all targets support
8072all types however.
8073
8074::
8075
Matt Arsenault64313c92014-10-22 18:25:02 +00008076 declare float @llvm.minnum.f32(float %Val0, float %Val1)
8077 declare double @llvm.minnum.f64(double %Val0, double %Val1)
8078 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8079 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
8080 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008081
8082Overview:
8083"""""""""
8084
8085The '``llvm.minnum.*``' intrinsics return the minimum of the two
8086arguments.
8087
8088
8089Arguments:
8090""""""""""
8091
8092The arguments and return value are floating point numbers of the same
8093type.
8094
8095Semantics:
8096""""""""""
8097
8098Follows the IEEE-754 semantics for minNum, which also match for libm's
8099fmin.
8100
8101If either operand is a NaN, returns the other non-NaN operand. Returns
8102NaN only if both operands are NaN. If the operands compare equal,
8103returns a value that compares equal to both operands. This means that
8104fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8105
8106'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008107^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008108
8109Syntax:
8110"""""""
8111
8112This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
8113floating point or vector of floating point type. Not all targets support
8114all types however.
8115
8116::
8117
Matt Arsenault64313c92014-10-22 18:25:02 +00008118 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
8119 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
8120 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8121 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
8122 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008123
8124Overview:
8125"""""""""
8126
8127The '``llvm.maxnum.*``' intrinsics return the maximum of the two
8128arguments.
8129
8130
8131Arguments:
8132""""""""""
8133
8134The arguments and return value are floating point numbers of the same
8135type.
8136
8137Semantics:
8138""""""""""
8139Follows the IEEE-754 semantics for maxNum, which also match for libm's
8140fmax.
8141
8142If either operand is a NaN, returns the other non-NaN operand. Returns
8143NaN only if both operands are NaN. If the operands compare equal,
8144returns a value that compares equal to both operands. This means that
8145fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8146
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00008147'``llvm.copysign.*``' Intrinsic
8148^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8149
8150Syntax:
8151"""""""
8152
8153This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
8154floating point or vector of floating point type. Not all targets support
8155all types however.
8156
8157::
8158
8159 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
8160 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
8161 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
8162 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8163 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
8164
8165Overview:
8166"""""""""
8167
8168The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8169first operand and the sign of the second operand.
8170
8171Arguments:
8172""""""""""
8173
8174The arguments and return value are floating point numbers of the same
8175type.
8176
8177Semantics:
8178""""""""""
8179
8180This function returns the same values as the libm ``copysign``
8181functions would, and handles error conditions in the same way.
8182
Sean Silvab084af42012-12-07 10:36:55 +00008183'``llvm.floor.*``' Intrinsic
8184^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8185
8186Syntax:
8187"""""""
8188
8189This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8190floating point or vector of floating point type. Not all targets support
8191all types however.
8192
8193::
8194
8195 declare float @llvm.floor.f32(float %Val)
8196 declare double @llvm.floor.f64(double %Val)
8197 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
8198 declare fp128 @llvm.floor.f128(fp128 %Val)
8199 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
8200
8201Overview:
8202"""""""""
8203
8204The '``llvm.floor.*``' intrinsics return the floor of the operand.
8205
8206Arguments:
8207""""""""""
8208
8209The argument and return value are floating point numbers of the same
8210type.
8211
8212Semantics:
8213""""""""""
8214
8215This function returns the same values as the libm ``floor`` functions
8216would, and handles error conditions in the same way.
8217
8218'``llvm.ceil.*``' Intrinsic
8219^^^^^^^^^^^^^^^^^^^^^^^^^^^
8220
8221Syntax:
8222"""""""
8223
8224This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8225floating point or vector of floating point type. Not all targets support
8226all types however.
8227
8228::
8229
8230 declare float @llvm.ceil.f32(float %Val)
8231 declare double @llvm.ceil.f64(double %Val)
8232 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8233 declare fp128 @llvm.ceil.f128(fp128 %Val)
8234 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8235
8236Overview:
8237"""""""""
8238
8239The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8240
8241Arguments:
8242""""""""""
8243
8244The argument and return value are floating point numbers of the same
8245type.
8246
8247Semantics:
8248""""""""""
8249
8250This function returns the same values as the libm ``ceil`` functions
8251would, and handles error conditions in the same way.
8252
8253'``llvm.trunc.*``' Intrinsic
8254^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8255
8256Syntax:
8257"""""""
8258
8259This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8260floating point or vector of floating point type. Not all targets support
8261all types however.
8262
8263::
8264
8265 declare float @llvm.trunc.f32(float %Val)
8266 declare double @llvm.trunc.f64(double %Val)
8267 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8268 declare fp128 @llvm.trunc.f128(fp128 %Val)
8269 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8270
8271Overview:
8272"""""""""
8273
8274The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8275nearest integer not larger in magnitude than the operand.
8276
8277Arguments:
8278""""""""""
8279
8280The argument and return value are floating point numbers of the same
8281type.
8282
8283Semantics:
8284""""""""""
8285
8286This function returns the same values as the libm ``trunc`` functions
8287would, and handles error conditions in the same way.
8288
8289'``llvm.rint.*``' Intrinsic
8290^^^^^^^^^^^^^^^^^^^^^^^^^^^
8291
8292Syntax:
8293"""""""
8294
8295This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8296floating point or vector of floating point type. Not all targets support
8297all types however.
8298
8299::
8300
8301 declare float @llvm.rint.f32(float %Val)
8302 declare double @llvm.rint.f64(double %Val)
8303 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8304 declare fp128 @llvm.rint.f128(fp128 %Val)
8305 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8306
8307Overview:
8308"""""""""
8309
8310The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8311nearest integer. It may raise an inexact floating-point exception if the
8312operand isn't an integer.
8313
8314Arguments:
8315""""""""""
8316
8317The argument and return value are floating point numbers of the same
8318type.
8319
8320Semantics:
8321""""""""""
8322
8323This function returns the same values as the libm ``rint`` functions
8324would, and handles error conditions in the same way.
8325
8326'``llvm.nearbyint.*``' Intrinsic
8327^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8328
8329Syntax:
8330"""""""
8331
8332This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8333floating point or vector of floating point type. Not all targets support
8334all types however.
8335
8336::
8337
8338 declare float @llvm.nearbyint.f32(float %Val)
8339 declare double @llvm.nearbyint.f64(double %Val)
8340 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8341 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8342 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8343
8344Overview:
8345"""""""""
8346
8347The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8348nearest integer.
8349
8350Arguments:
8351""""""""""
8352
8353The argument and return value are floating point numbers of the same
8354type.
8355
8356Semantics:
8357""""""""""
8358
8359This function returns the same values as the libm ``nearbyint``
8360functions would, and handles error conditions in the same way.
8361
Hal Finkel171817e2013-08-07 22:49:12 +00008362'``llvm.round.*``' Intrinsic
8363^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8364
8365Syntax:
8366"""""""
8367
8368This is an overloaded intrinsic. You can use ``llvm.round`` on any
8369floating point or vector of floating point type. Not all targets support
8370all types however.
8371
8372::
8373
8374 declare float @llvm.round.f32(float %Val)
8375 declare double @llvm.round.f64(double %Val)
8376 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8377 declare fp128 @llvm.round.f128(fp128 %Val)
8378 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8379
8380Overview:
8381"""""""""
8382
8383The '``llvm.round.*``' intrinsics returns the operand rounded to the
8384nearest integer.
8385
8386Arguments:
8387""""""""""
8388
8389The argument and return value are floating point numbers of the same
8390type.
8391
8392Semantics:
8393""""""""""
8394
8395This function returns the same values as the libm ``round``
8396functions would, and handles error conditions in the same way.
8397
Sean Silvab084af42012-12-07 10:36:55 +00008398Bit Manipulation Intrinsics
8399---------------------------
8400
8401LLVM provides intrinsics for a few important bit manipulation
8402operations. These allow efficient code generation for some algorithms.
8403
8404'``llvm.bswap.*``' Intrinsics
8405^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8406
8407Syntax:
8408"""""""
8409
8410This is an overloaded intrinsic function. You can use bswap on any
8411integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8412
8413::
8414
8415 declare i16 @llvm.bswap.i16(i16 <id>)
8416 declare i32 @llvm.bswap.i32(i32 <id>)
8417 declare i64 @llvm.bswap.i64(i64 <id>)
8418
8419Overview:
8420"""""""""
8421
8422The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8423values with an even number of bytes (positive multiple of 16 bits).
8424These are useful for performing operations on data that is not in the
8425target's native byte order.
8426
8427Semantics:
8428""""""""""
8429
8430The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8431and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8432intrinsic returns an i32 value that has the four bytes of the input i32
8433swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8434returned i32 will have its bytes in 3, 2, 1, 0 order. The
8435``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8436concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8437respectively).
8438
8439'``llvm.ctpop.*``' Intrinsic
8440^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8441
8442Syntax:
8443"""""""
8444
8445This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8446bit width, or on any vector with integer elements. Not all targets
8447support all bit widths or vector types, however.
8448
8449::
8450
8451 declare i8 @llvm.ctpop.i8(i8 <src>)
8452 declare i16 @llvm.ctpop.i16(i16 <src>)
8453 declare i32 @llvm.ctpop.i32(i32 <src>)
8454 declare i64 @llvm.ctpop.i64(i64 <src>)
8455 declare i256 @llvm.ctpop.i256(i256 <src>)
8456 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8457
8458Overview:
8459"""""""""
8460
8461The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8462in a value.
8463
8464Arguments:
8465""""""""""
8466
8467The only argument is the value to be counted. The argument may be of any
8468integer type, or a vector with integer elements. The return type must
8469match the argument type.
8470
8471Semantics:
8472""""""""""
8473
8474The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8475each element of a vector.
8476
8477'``llvm.ctlz.*``' Intrinsic
8478^^^^^^^^^^^^^^^^^^^^^^^^^^^
8479
8480Syntax:
8481"""""""
8482
8483This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8484integer bit width, or any vector whose elements are integers. Not all
8485targets support all bit widths or vector types, however.
8486
8487::
8488
8489 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8490 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8491 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8492 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8493 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8494 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8495
8496Overview:
8497"""""""""
8498
8499The '``llvm.ctlz``' family of intrinsic functions counts the number of
8500leading zeros in a variable.
8501
8502Arguments:
8503""""""""""
8504
8505The first argument is the value to be counted. This argument may be of
8506any integer type, or a vectory with integer element type. The return
8507type must match the first argument type.
8508
8509The second argument must be a constant and is a flag to indicate whether
8510the intrinsic should ensure that a zero as the first argument produces a
8511defined result. Historically some architectures did not provide a
8512defined result for zero values as efficiently, and many algorithms are
8513now predicated on avoiding zero-value inputs.
8514
8515Semantics:
8516""""""""""
8517
8518The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8519zeros in a variable, or within each element of the vector. If
8520``src == 0`` then the result is the size in bits of the type of ``src``
8521if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8522``llvm.ctlz(i32 2) = 30``.
8523
8524'``llvm.cttz.*``' Intrinsic
8525^^^^^^^^^^^^^^^^^^^^^^^^^^^
8526
8527Syntax:
8528"""""""
8529
8530This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8531integer bit width, or any vector of integer elements. Not all targets
8532support all bit widths or vector types, however.
8533
8534::
8535
8536 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8537 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8538 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8539 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8540 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8541 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8542
8543Overview:
8544"""""""""
8545
8546The '``llvm.cttz``' family of intrinsic functions counts the number of
8547trailing zeros.
8548
8549Arguments:
8550""""""""""
8551
8552The first argument is the value to be counted. This argument may be of
8553any integer type, or a vectory with integer element type. The return
8554type must match the first argument type.
8555
8556The second argument must be a constant and is a flag to indicate whether
8557the intrinsic should ensure that a zero as the first argument produces a
8558defined result. Historically some architectures did not provide a
8559defined result for zero values as efficiently, and many algorithms are
8560now predicated on avoiding zero-value inputs.
8561
8562Semantics:
8563""""""""""
8564
8565The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8566zeros in a variable, or within each element of a vector. If ``src == 0``
8567then the result is the size in bits of the type of ``src`` if
8568``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8569``llvm.cttz(2) = 1``.
8570
8571Arithmetic with Overflow Intrinsics
8572-----------------------------------
8573
8574LLVM provides intrinsics for some arithmetic with overflow operations.
8575
8576'``llvm.sadd.with.overflow.*``' Intrinsics
8577^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8578
8579Syntax:
8580"""""""
8581
8582This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8583on any integer bit width.
8584
8585::
8586
8587 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8588 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8589 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8590
8591Overview:
8592"""""""""
8593
8594The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8595a signed addition of the two arguments, and indicate whether an overflow
8596occurred during the signed summation.
8597
8598Arguments:
8599""""""""""
8600
8601The arguments (%a and %b) and the first element of the result structure
8602may be of integer types of any bit width, but they must have the same
8603bit width. The second element of the result structure must be of type
8604``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8605addition.
8606
8607Semantics:
8608""""""""""
8609
8610The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008611a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008612first element of which is the signed summation, and the second element
8613of which is a bit specifying if the signed summation resulted in an
8614overflow.
8615
8616Examples:
8617"""""""""
8618
8619.. code-block:: llvm
8620
8621 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8622 %sum = extractvalue {i32, i1} %res, 0
8623 %obit = extractvalue {i32, i1} %res, 1
8624 br i1 %obit, label %overflow, label %normal
8625
8626'``llvm.uadd.with.overflow.*``' Intrinsics
8627^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8628
8629Syntax:
8630"""""""
8631
8632This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8633on any integer bit width.
8634
8635::
8636
8637 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8638 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8639 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8640
8641Overview:
8642"""""""""
8643
8644The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8645an unsigned addition of the two arguments, and indicate whether a carry
8646occurred during the unsigned summation.
8647
8648Arguments:
8649""""""""""
8650
8651The arguments (%a and %b) and the first element of the result structure
8652may be of integer types of any bit width, but they must have the same
8653bit width. The second element of the result structure must be of type
8654``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8655addition.
8656
8657Semantics:
8658""""""""""
8659
8660The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008661an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008662first element of which is the sum, and the second element of which is a
8663bit specifying if the unsigned summation resulted in a carry.
8664
8665Examples:
8666"""""""""
8667
8668.. code-block:: llvm
8669
8670 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8671 %sum = extractvalue {i32, i1} %res, 0
8672 %obit = extractvalue {i32, i1} %res, 1
8673 br i1 %obit, label %carry, label %normal
8674
8675'``llvm.ssub.with.overflow.*``' Intrinsics
8676^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8677
8678Syntax:
8679"""""""
8680
8681This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8682on any integer bit width.
8683
8684::
8685
8686 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8687 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8688 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8689
8690Overview:
8691"""""""""
8692
8693The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8694a signed subtraction of the two arguments, and indicate whether an
8695overflow occurred during the signed subtraction.
8696
8697Arguments:
8698""""""""""
8699
8700The arguments (%a and %b) and the first element of the result structure
8701may be of integer types of any bit width, but they must have the same
8702bit width. The second element of the result structure must be of type
8703``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8704subtraction.
8705
8706Semantics:
8707""""""""""
8708
8709The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008710a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008711first element of which is the subtraction, and the second element of
8712which is a bit specifying if the signed subtraction resulted in an
8713overflow.
8714
8715Examples:
8716"""""""""
8717
8718.. code-block:: llvm
8719
8720 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8721 %sum = extractvalue {i32, i1} %res, 0
8722 %obit = extractvalue {i32, i1} %res, 1
8723 br i1 %obit, label %overflow, label %normal
8724
8725'``llvm.usub.with.overflow.*``' Intrinsics
8726^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8727
8728Syntax:
8729"""""""
8730
8731This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8732on any integer bit width.
8733
8734::
8735
8736 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8737 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8738 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8739
8740Overview:
8741"""""""""
8742
8743The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8744an unsigned subtraction of the two arguments, and indicate whether an
8745overflow occurred during the unsigned subtraction.
8746
8747Arguments:
8748""""""""""
8749
8750The arguments (%a and %b) and the first element of the result structure
8751may be of integer types of any bit width, but they must have the same
8752bit width. The second element of the result structure must be of type
8753``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8754subtraction.
8755
8756Semantics:
8757""""""""""
8758
8759The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008760an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008761the first element of which is the subtraction, and the second element of
8762which is a bit specifying if the unsigned subtraction resulted in an
8763overflow.
8764
8765Examples:
8766"""""""""
8767
8768.. code-block:: llvm
8769
8770 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8771 %sum = extractvalue {i32, i1} %res, 0
8772 %obit = extractvalue {i32, i1} %res, 1
8773 br i1 %obit, label %overflow, label %normal
8774
8775'``llvm.smul.with.overflow.*``' Intrinsics
8776^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8777
8778Syntax:
8779"""""""
8780
8781This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8782on any integer bit width.
8783
8784::
8785
8786 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8787 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8788 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8789
8790Overview:
8791"""""""""
8792
8793The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8794a signed multiplication of the two arguments, and indicate whether an
8795overflow occurred during the signed multiplication.
8796
8797Arguments:
8798""""""""""
8799
8800The arguments (%a and %b) and the first element of the result structure
8801may be of integer types of any bit width, but they must have the same
8802bit width. The second element of the result structure must be of type
8803``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8804multiplication.
8805
8806Semantics:
8807""""""""""
8808
8809The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008810a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008811the first element of which is the multiplication, and the second element
8812of which is a bit specifying if the signed multiplication resulted in an
8813overflow.
8814
8815Examples:
8816"""""""""
8817
8818.. code-block:: llvm
8819
8820 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8821 %sum = extractvalue {i32, i1} %res, 0
8822 %obit = extractvalue {i32, i1} %res, 1
8823 br i1 %obit, label %overflow, label %normal
8824
8825'``llvm.umul.with.overflow.*``' Intrinsics
8826^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8827
8828Syntax:
8829"""""""
8830
8831This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8832on any integer bit width.
8833
8834::
8835
8836 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8837 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8838 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8839
8840Overview:
8841"""""""""
8842
8843The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8844a unsigned multiplication of the two arguments, and indicate whether an
8845overflow occurred during the unsigned multiplication.
8846
8847Arguments:
8848""""""""""
8849
8850The arguments (%a and %b) and the first element of the result structure
8851may be of integer types of any bit width, but they must have the same
8852bit width. The second element of the result structure must be of type
8853``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8854multiplication.
8855
8856Semantics:
8857""""""""""
8858
8859The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008860an unsigned multiplication of the two arguments. They return a structure ---
8861the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008862element of which is a bit specifying if the unsigned multiplication
8863resulted in an overflow.
8864
8865Examples:
8866"""""""""
8867
8868.. code-block:: llvm
8869
8870 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8871 %sum = extractvalue {i32, i1} %res, 0
8872 %obit = extractvalue {i32, i1} %res, 1
8873 br i1 %obit, label %overflow, label %normal
8874
8875Specialised Arithmetic Intrinsics
8876---------------------------------
8877
8878'``llvm.fmuladd.*``' Intrinsic
8879^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8880
8881Syntax:
8882"""""""
8883
8884::
8885
8886 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8887 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8888
8889Overview:
8890"""""""""
8891
8892The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008893expressions that can be fused if the code generator determines that (a) the
8894target instruction set has support for a fused operation, and (b) that the
8895fused operation is more efficient than the equivalent, separate pair of mul
8896and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008897
8898Arguments:
8899""""""""""
8900
8901The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8902multiplicands, a and b, and an addend c.
8903
8904Semantics:
8905""""""""""
8906
8907The expression:
8908
8909::
8910
8911 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8912
8913is equivalent to the expression a \* b + c, except that rounding will
8914not be performed between the multiplication and addition steps if the
8915code generator fuses the operations. Fusion is not guaranteed, even if
8916the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008917corresponding llvm.fma.\* intrinsic function should be used
8918instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00008919
8920Examples:
8921"""""""""
8922
8923.. code-block:: llvm
8924
Tim Northover675a0962014-06-13 14:24:23 +00008925 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00008926
8927Half Precision Floating Point Intrinsics
8928----------------------------------------
8929
8930For most target platforms, half precision floating point is a
8931storage-only format. This means that it is a dense encoding (in memory)
8932but does not support computation in the format.
8933
8934This means that code must first load the half-precision floating point
8935value as an i16, then convert it to float with
8936:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
8937then be performed on the float value (including extending to double
8938etc). To store the value back to memory, it is first converted to float
8939if needed, then converted to i16 with
8940:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
8941i16 value.
8942
8943.. _int_convert_to_fp16:
8944
8945'``llvm.convert.to.fp16``' Intrinsic
8946^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8947
8948Syntax:
8949"""""""
8950
8951::
8952
Tim Northoverfd7e4242014-07-17 10:51:23 +00008953 declare i16 @llvm.convert.to.fp16.f32(float %a)
8954 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00008955
8956Overview:
8957"""""""""
8958
Tim Northoverfd7e4242014-07-17 10:51:23 +00008959The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8960conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00008961
8962Arguments:
8963""""""""""
8964
8965The intrinsic function contains single argument - the value to be
8966converted.
8967
8968Semantics:
8969""""""""""
8970
Tim Northoverfd7e4242014-07-17 10:51:23 +00008971The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
8972conventional floating point format to half precision floating point format. The
8973return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00008974
8975Examples:
8976"""""""""
8977
8978.. code-block:: llvm
8979
Tim Northoverfd7e4242014-07-17 10:51:23 +00008980 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00008981 store i16 %res, i16* @x, align 2
8982
8983.. _int_convert_from_fp16:
8984
8985'``llvm.convert.from.fp16``' Intrinsic
8986^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8987
8988Syntax:
8989"""""""
8990
8991::
8992
Tim Northoverfd7e4242014-07-17 10:51:23 +00008993 declare float @llvm.convert.from.fp16.f32(i16 %a)
8994 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00008995
8996Overview:
8997"""""""""
8998
8999The '``llvm.convert.from.fp16``' intrinsic function performs a
9000conversion from half precision floating point format to single precision
9001floating point format.
9002
9003Arguments:
9004""""""""""
9005
9006The intrinsic function contains single argument - the value to be
9007converted.
9008
9009Semantics:
9010""""""""""
9011
9012The '``llvm.convert.from.fp16``' intrinsic function performs a
9013conversion from half single precision floating point format to single
9014precision floating point format. The input half-float value is
9015represented by an ``i16`` value.
9016
9017Examples:
9018"""""""""
9019
9020.. code-block:: llvm
9021
9022 %a = load i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00009023 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009024
9025Debugger Intrinsics
9026-------------------
9027
9028The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
9029prefix), are described in the `LLVM Source Level
9030Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
9031document.
9032
9033Exception Handling Intrinsics
9034-----------------------------
9035
9036The LLVM exception handling intrinsics (which all start with
9037``llvm.eh.`` prefix), are described in the `LLVM Exception
9038Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
9039
9040.. _int_trampoline:
9041
9042Trampoline Intrinsics
9043---------------------
9044
9045These intrinsics make it possible to excise one parameter, marked with
9046the :ref:`nest <nest>` attribute, from a function. The result is a
9047callable function pointer lacking the nest parameter - the caller does
9048not need to provide a value for it. Instead, the value to use is stored
9049in advance in a "trampoline", a block of memory usually allocated on the
9050stack, which also contains code to splice the nest value into the
9051argument list. This is used to implement the GCC nested function address
9052extension.
9053
9054For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
9055then the resulting function pointer has signature ``i32 (i32, i32)*``.
9056It can be created as follows:
9057
9058.. code-block:: llvm
9059
9060 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
9061 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
9062 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
9063 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
9064 %fp = bitcast i8* %p to i32 (i32, i32)*
9065
9066The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
9067``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
9068
9069.. _int_it:
9070
9071'``llvm.init.trampoline``' Intrinsic
9072^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9073
9074Syntax:
9075"""""""
9076
9077::
9078
9079 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
9080
9081Overview:
9082"""""""""
9083
9084This fills the memory pointed to by ``tramp`` with executable code,
9085turning it into a trampoline.
9086
9087Arguments:
9088""""""""""
9089
9090The ``llvm.init.trampoline`` intrinsic takes three arguments, all
9091pointers. The ``tramp`` argument must point to a sufficiently large and
9092sufficiently aligned block of memory; this memory is written to by the
9093intrinsic. Note that the size and the alignment are target-specific -
9094LLVM currently provides no portable way of determining them, so a
9095front-end that generates this intrinsic needs to have some
9096target-specific knowledge. The ``func`` argument must hold a function
9097bitcast to an ``i8*``.
9098
9099Semantics:
9100""""""""""
9101
9102The block of memory pointed to by ``tramp`` is filled with target
9103dependent code, turning it into a function. Then ``tramp`` needs to be
9104passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
9105be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
9106function's signature is the same as that of ``func`` with any arguments
9107marked with the ``nest`` attribute removed. At most one such ``nest``
9108argument is allowed, and it must be of pointer type. Calling the new
9109function is equivalent to calling ``func`` with the same argument list,
9110but with ``nval`` used for the missing ``nest`` argument. If, after
9111calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
9112modified, then the effect of any later call to the returned function
9113pointer is undefined.
9114
9115.. _int_at:
9116
9117'``llvm.adjust.trampoline``' Intrinsic
9118^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9119
9120Syntax:
9121"""""""
9122
9123::
9124
9125 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
9126
9127Overview:
9128"""""""""
9129
9130This performs any required machine-specific adjustment to the address of
9131a trampoline (passed as ``tramp``).
9132
9133Arguments:
9134""""""""""
9135
9136``tramp`` must point to a block of memory which already has trampoline
9137code filled in by a previous call to
9138:ref:`llvm.init.trampoline <int_it>`.
9139
9140Semantics:
9141""""""""""
9142
9143On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009144different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00009145intrinsic returns the executable address corresponding to ``tramp``
9146after performing the required machine specific adjustments. The pointer
9147returned can then be :ref:`bitcast and executed <int_trampoline>`.
9148
9149Memory Use Markers
9150------------------
9151
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009152This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00009153memory objects and ranges where variables are immutable.
9154
Reid Klecknera534a382013-12-19 02:14:12 +00009155.. _int_lifestart:
9156
Sean Silvab084af42012-12-07 10:36:55 +00009157'``llvm.lifetime.start``' Intrinsic
9158^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9159
9160Syntax:
9161"""""""
9162
9163::
9164
9165 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
9166
9167Overview:
9168"""""""""
9169
9170The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
9171object's lifetime.
9172
9173Arguments:
9174""""""""""
9175
9176The first argument is a constant integer representing the size of the
9177object, or -1 if it is variable sized. The second argument is a pointer
9178to the object.
9179
9180Semantics:
9181""""""""""
9182
9183This intrinsic indicates that before this point in the code, the value
9184of the memory pointed to by ``ptr`` is dead. This means that it is known
9185to never be used and has an undefined value. A load from the pointer
9186that precedes this intrinsic can be replaced with ``'undef'``.
9187
Reid Klecknera534a382013-12-19 02:14:12 +00009188.. _int_lifeend:
9189
Sean Silvab084af42012-12-07 10:36:55 +00009190'``llvm.lifetime.end``' Intrinsic
9191^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9192
9193Syntax:
9194"""""""
9195
9196::
9197
9198 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
9199
9200Overview:
9201"""""""""
9202
9203The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
9204object's lifetime.
9205
9206Arguments:
9207""""""""""
9208
9209The first argument is a constant integer representing the size of the
9210object, or -1 if it is variable sized. The second argument is a pointer
9211to the object.
9212
9213Semantics:
9214""""""""""
9215
9216This intrinsic indicates that after this point in the code, the value of
9217the memory pointed to by ``ptr`` is dead. This means that it is known to
9218never be used and has an undefined value. Any stores into the memory
9219object following this intrinsic may be removed as dead.
9220
9221'``llvm.invariant.start``' Intrinsic
9222^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9223
9224Syntax:
9225"""""""
9226
9227::
9228
9229 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9230
9231Overview:
9232"""""""""
9233
9234The '``llvm.invariant.start``' intrinsic specifies that the contents of
9235a memory object will not change.
9236
9237Arguments:
9238""""""""""
9239
9240The first argument is a constant integer representing the size of the
9241object, or -1 if it is variable sized. The second argument is a pointer
9242to the object.
9243
9244Semantics:
9245""""""""""
9246
9247This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9248the return value, the referenced memory location is constant and
9249unchanging.
9250
9251'``llvm.invariant.end``' Intrinsic
9252^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9253
9254Syntax:
9255"""""""
9256
9257::
9258
9259 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9260
9261Overview:
9262"""""""""
9263
9264The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9265memory object are mutable.
9266
9267Arguments:
9268""""""""""
9269
9270The first argument is the matching ``llvm.invariant.start`` intrinsic.
9271The second argument is a constant integer representing the size of the
9272object, or -1 if it is variable sized and the third argument is a
9273pointer to the object.
9274
9275Semantics:
9276""""""""""
9277
9278This intrinsic indicates that the memory is mutable again.
9279
9280General Intrinsics
9281------------------
9282
9283This class of intrinsics is designed to be generic and has no specific
9284purpose.
9285
9286'``llvm.var.annotation``' Intrinsic
9287^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9288
9289Syntax:
9290"""""""
9291
9292::
9293
9294 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9295
9296Overview:
9297"""""""""
9298
9299The '``llvm.var.annotation``' intrinsic.
9300
9301Arguments:
9302""""""""""
9303
9304The first argument is a pointer to a value, the second is a pointer to a
9305global string, the third is a pointer to a global string which is the
9306source file name, and the last argument is the line number.
9307
9308Semantics:
9309""""""""""
9310
9311This intrinsic allows annotation of local variables with arbitrary
9312strings. This can be useful for special purpose optimizations that want
9313to look for these annotations. These have no other defined use; they are
9314ignored by code generation and optimization.
9315
Michael Gottesman88d18832013-03-26 00:34:27 +00009316'``llvm.ptr.annotation.*``' Intrinsic
9317^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9318
9319Syntax:
9320"""""""
9321
9322This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9323pointer to an integer of any width. *NOTE* you must specify an address space for
9324the pointer. The identifier for the default address space is the integer
9325'``0``'.
9326
9327::
9328
9329 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9330 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9331 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9332 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9333 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9334
9335Overview:
9336"""""""""
9337
9338The '``llvm.ptr.annotation``' intrinsic.
9339
9340Arguments:
9341""""""""""
9342
9343The first argument is a pointer to an integer value of arbitrary bitwidth
9344(result of some expression), the second is a pointer to a global string, the
9345third is a pointer to a global string which is the source file name, and the
9346last argument is the line number. It returns the value of the first argument.
9347
9348Semantics:
9349""""""""""
9350
9351This intrinsic allows annotation of a pointer to an integer with arbitrary
9352strings. This can be useful for special purpose optimizations that want to look
9353for these annotations. These have no other defined use; they are ignored by code
9354generation and optimization.
9355
Sean Silvab084af42012-12-07 10:36:55 +00009356'``llvm.annotation.*``' Intrinsic
9357^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9358
9359Syntax:
9360"""""""
9361
9362This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9363any integer bit width.
9364
9365::
9366
9367 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9368 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9369 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9370 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9371 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9372
9373Overview:
9374"""""""""
9375
9376The '``llvm.annotation``' intrinsic.
9377
9378Arguments:
9379""""""""""
9380
9381The first argument is an integer value (result of some expression), the
9382second is a pointer to a global string, the third is a pointer to a
9383global string which is the source file name, and the last argument is
9384the line number. It returns the value of the first argument.
9385
9386Semantics:
9387""""""""""
9388
9389This intrinsic allows annotations to be put on arbitrary expressions
9390with arbitrary strings. This can be useful for special purpose
9391optimizations that want to look for these annotations. These have no
9392other defined use; they are ignored by code generation and optimization.
9393
9394'``llvm.trap``' Intrinsic
9395^^^^^^^^^^^^^^^^^^^^^^^^^
9396
9397Syntax:
9398"""""""
9399
9400::
9401
9402 declare void @llvm.trap() noreturn nounwind
9403
9404Overview:
9405"""""""""
9406
9407The '``llvm.trap``' intrinsic.
9408
9409Arguments:
9410""""""""""
9411
9412None.
9413
9414Semantics:
9415""""""""""
9416
9417This intrinsic is lowered to the target dependent trap instruction. If
9418the target does not have a trap instruction, this intrinsic will be
9419lowered to a call of the ``abort()`` function.
9420
9421'``llvm.debugtrap``' Intrinsic
9422^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9423
9424Syntax:
9425"""""""
9426
9427::
9428
9429 declare void @llvm.debugtrap() nounwind
9430
9431Overview:
9432"""""""""
9433
9434The '``llvm.debugtrap``' intrinsic.
9435
9436Arguments:
9437""""""""""
9438
9439None.
9440
9441Semantics:
9442""""""""""
9443
9444This intrinsic is lowered to code which is intended to cause an
9445execution trap with the intention of requesting the attention of a
9446debugger.
9447
9448'``llvm.stackprotector``' Intrinsic
9449^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9450
9451Syntax:
9452"""""""
9453
9454::
9455
9456 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9457
9458Overview:
9459"""""""""
9460
9461The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9462onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9463is placed on the stack before local variables.
9464
9465Arguments:
9466""""""""""
9467
9468The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9469The first argument is the value loaded from the stack guard
9470``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9471enough space to hold the value of the guard.
9472
9473Semantics:
9474""""""""""
9475
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009476This intrinsic causes the prologue/epilogue inserter to force the position of
9477the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9478to ensure that if a local variable on the stack is overwritten, it will destroy
9479the value of the guard. When the function exits, the guard on the stack is
9480checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9481different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9482calling the ``__stack_chk_fail()`` function.
9483
9484'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009485^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009486
9487Syntax:
9488"""""""
9489
9490::
9491
9492 declare void @llvm.stackprotectorcheck(i8** <guard>)
9493
9494Overview:
9495"""""""""
9496
9497The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009498created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009499``__stack_chk_fail()`` function.
9500
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009501Arguments:
9502""""""""""
9503
9504The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9505the variable ``@__stack_chk_guard``.
9506
9507Semantics:
9508""""""""""
9509
9510This intrinsic is provided to perform the stack protector check by comparing
9511``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9512values do not match call the ``__stack_chk_fail()`` function.
9513
9514The reason to provide this as an IR level intrinsic instead of implementing it
9515via other IR operations is that in order to perform this operation at the IR
9516level without an intrinsic, one would need to create additional basic blocks to
9517handle the success/failure cases. This makes it difficult to stop the stack
9518protector check from disrupting sibling tail calls in Codegen. With this
9519intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009520codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009521
Sean Silvab084af42012-12-07 10:36:55 +00009522'``llvm.objectsize``' Intrinsic
9523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9524
9525Syntax:
9526"""""""
9527
9528::
9529
9530 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9531 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9532
9533Overview:
9534"""""""""
9535
9536The ``llvm.objectsize`` intrinsic is designed to provide information to
9537the optimizers to determine at compile time whether a) an operation
9538(like memcpy) will overflow a buffer that corresponds to an object, or
9539b) that a runtime check for overflow isn't necessary. An object in this
9540context means an allocation of a specific class, structure, array, or
9541other object.
9542
9543Arguments:
9544""""""""""
9545
9546The ``llvm.objectsize`` intrinsic takes two arguments. The first
9547argument is a pointer to or into the ``object``. The second argument is
9548a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9549or -1 (if false) when the object size is unknown. The second argument
9550only accepts constants.
9551
9552Semantics:
9553""""""""""
9554
9555The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9556the size of the object concerned. If the size cannot be determined at
9557compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9558on the ``min`` argument).
9559
9560'``llvm.expect``' Intrinsic
9561^^^^^^^^^^^^^^^^^^^^^^^^^^^
9562
9563Syntax:
9564"""""""
9565
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009566This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9567integer bit width.
9568
Sean Silvab084af42012-12-07 10:36:55 +00009569::
9570
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009571 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009572 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9573 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9574
9575Overview:
9576"""""""""
9577
9578The ``llvm.expect`` intrinsic provides information about expected (the
9579most probable) value of ``val``, which can be used by optimizers.
9580
9581Arguments:
9582""""""""""
9583
9584The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9585a value. The second argument is an expected value, this needs to be a
9586constant value, variables are not allowed.
9587
9588Semantics:
9589""""""""""
9590
9591This intrinsic is lowered to the ``val``.
9592
Hal Finkel93046912014-07-25 21:13:35 +00009593'``llvm.assume``' Intrinsic
9594^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9595
9596Syntax:
9597"""""""
9598
9599::
9600
9601 declare void @llvm.assume(i1 %cond)
9602
9603Overview:
9604"""""""""
9605
9606The ``llvm.assume`` allows the optimizer to assume that the provided
9607condition is true. This information can then be used in simplifying other parts
9608of the code.
9609
9610Arguments:
9611""""""""""
9612
9613The condition which the optimizer may assume is always true.
9614
9615Semantics:
9616""""""""""
9617
9618The intrinsic allows the optimizer to assume that the provided condition is
9619always true whenever the control flow reaches the intrinsic call. No code is
9620generated for this intrinsic, and instructions that contribute only to the
9621provided condition are not used for code generation. If the condition is
9622violated during execution, the behavior is undefined.
9623
9624Please note that optimizer might limit the transformations performed on values
9625used by the ``llvm.assume`` intrinsic in order to preserve the instructions
9626only used to form the intrinsic's input argument. This might prove undesirable
9627if the extra information provided by the ``llvm.assume`` intrinsic does cause
9628sufficient overall improvement in code quality. For this reason,
9629``llvm.assume`` should not be used to document basic mathematical invariants
9630that the optimizer can otherwise deduce or facts that are of little use to the
9631optimizer.
9632
Sean Silvab084af42012-12-07 10:36:55 +00009633'``llvm.donothing``' Intrinsic
9634^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9635
9636Syntax:
9637"""""""
9638
9639::
9640
9641 declare void @llvm.donothing() nounwind readnone
9642
9643Overview:
9644"""""""""
9645
Juergen Ributzkac9161192014-10-23 22:36:13 +00009646The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
9647two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
9648with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009649
9650Arguments:
9651""""""""""
9652
9653None.
9654
9655Semantics:
9656""""""""""
9657
9658This intrinsic does nothing, and it's removed by optimizers and ignored
9659by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009660
9661Stack Map Intrinsics
9662--------------------
9663
9664LLVM provides experimental intrinsics to support runtime patching
9665mechanisms commonly desired in dynamic language JITs. These intrinsics
9666are described in :doc:`StackMaps`.