blob: c57518befc098a464cf6e96f3c3f9a595f35f52f [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnere7886e42009-01-11 20:53:49 +000025 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000026 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000027 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000028 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000029 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000030 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000031 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000032 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000033 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000034 </ol>
35 </li>
Chris Lattner00950542001-06-06 20:29:01 +000036 <li><a href="#typesystem">Type System</a>
37 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000038 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000039 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000040 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000041 <li><a href="#t_floating">Floating Point Types</a></li>
42 <li><a href="#t_void">Void Type</a></li>
43 <li><a href="#t_label">Label Type</a></li>
Nick Lewycky7a0370f2009-05-30 05:06:04 +000044 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000045 </ol>
46 </li>
Chris Lattner00950542001-06-06 20:29:01 +000047 <li><a href="#t_derived">Derived Types</a>
48 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000049 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000050 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000051 <li><a href="#t_function">Function Type</a></li>
52 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000053 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000054 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000055 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000056 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000057 </ol>
58 </li>
Chris Lattner242d61d2009-02-02 07:32:36 +000059 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000060 </ol>
61 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000062 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000063 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000064 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner70882792009-02-28 18:32:25 +000065 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000066 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
67 <li><a href="#undefvalues">Undefined Values</a></li>
68 <li><a href="#constantexprs">Constant Expressions</a></li>
Nick Lewycky21cc4462009-04-04 07:22:01 +000069 <li><a href="#metadata">Embedded Metadata</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000070 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000071 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000072 <li><a href="#othervalues">Other Values</a>
73 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000074 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +000075 </ol>
76 </li>
Chris Lattner00950542001-06-06 20:29:01 +000077 <li><a href="#instref">Instruction Reference</a>
78 <ol>
79 <li><a href="#terminators">Terminator Instructions</a>
80 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000081 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
82 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000083 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
84 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000085 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000086 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000087 </ol>
88 </li>
Chris Lattner00950542001-06-06 20:29:01 +000089 <li><a href="#binaryops">Binary Operations</a>
90 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000091 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +000092 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000093 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +000094 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000095 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +000096 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000097 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
98 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
99 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +0000100 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
101 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
102 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000103 </ol>
104 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000105 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
106 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000107 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
108 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
109 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000110 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000111 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000112 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000113 </ol>
114 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000115 <li><a href="#vectorops">Vector Operations</a>
116 <ol>
117 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
118 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
119 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000120 </ol>
121 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000122 <li><a href="#aggregateops">Aggregate Operations</a>
123 <ol>
124 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
125 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
126 </ol>
127 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000128 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000129 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000130 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
131 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
132 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000133 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
134 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
135 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000136 </ol>
137 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000138 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000139 <ol>
140 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
141 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
142 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
143 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
144 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000145 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
146 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
147 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
148 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000149 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
150 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000151 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000152 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000153 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000154 <li><a href="#otherops">Other Operations</a>
155 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000156 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
157 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Nate Begemanac80ade2008-05-12 19:01:56 +0000158 <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li>
159 <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000160 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000161 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000162 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000163 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000164 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000165 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000166 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000167 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000168 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000169 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000170 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
171 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000172 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
173 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
174 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000175 </ol>
176 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000177 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
178 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000179 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
180 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
181 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000182 </ol>
183 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000184 <li><a href="#int_codegen">Code Generator Intrinsics</a>
185 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000186 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
187 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
188 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
189 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
190 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
191 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
192 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000193 </ol>
194 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000195 <li><a href="#int_libc">Standard C Library Intrinsics</a>
196 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000197 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
200 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
201 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000202 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
203 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
204 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000205 </ol>
206 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000207 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000208 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000209 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000210 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
211 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
212 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Reid Spencerf86037f2007-04-11 23:23:49 +0000213 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
214 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000215 </ol>
216 </li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000217 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
218 <ol>
Bill Wendlingda01af72009-02-08 04:04:40 +0000219 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
220 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
221 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
222 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
223 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendling41b485c2009-02-08 23:00:09 +0000224 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000225 </ol>
226 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000227 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000228 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000229 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000230 <ol>
231 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000232 </ol>
233 </li>
Bill Wendling3c44f5b2008-11-18 22:10:53 +0000234 <li><a href="#int_atomics">Atomic intrinsics</a>
235 <ol>
236 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
237 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
238 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
239 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
240 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
241 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
242 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
243 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
244 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
245 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
246 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
247 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
248 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
249 </ol>
250 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000251 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000252 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000253 <li><a href="#int_var_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000254 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000255 <li><a href="#int_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000256 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000257 <li><a href="#int_trap">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000258 '<tt>llvm.trap</tt>' Intrinsic</a></li>
259 <li><a href="#int_stackprotector">
260 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000261 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000262 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000263 </ol>
264 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000265</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000266
267<div class="doc_author">
268 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
269 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000270</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000271
Chris Lattner00950542001-06-06 20:29:01 +0000272<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000273<div class="doc_section"> <a name="abstract">Abstract </a></div>
274<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000275
Misha Brukman9d0919f2003-11-08 01:05:38 +0000276<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000277<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000278LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000279type safety, low-level operations, flexibility, and the capability of
280representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000281representation used throughout all phases of the LLVM compilation
282strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000283</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000284
Chris Lattner00950542001-06-06 20:29:01 +0000285<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000286<div class="doc_section"> <a name="introduction">Introduction</a> </div>
287<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000288
Misha Brukman9d0919f2003-11-08 01:05:38 +0000289<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000290
Chris Lattner261efe92003-11-25 01:02:51 +0000291<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000292different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000293representation (suitable for fast loading by a Just-In-Time compiler),
294and as a human readable assembly language representation. This allows
295LLVM to provide a powerful intermediate representation for efficient
296compiler transformations and analysis, while providing a natural means
297to debug and visualize the transformations. The three different forms
298of LLVM are all equivalent. This document describes the human readable
299representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000300
John Criswellc1f786c2005-05-13 22:25:59 +0000301<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000302while being expressive, typed, and extensible at the same time. It
303aims to be a "universal IR" of sorts, by being at a low enough level
304that high-level ideas may be cleanly mapped to it (similar to how
305microprocessors are "universal IR's", allowing many source languages to
306be mapped to them). By providing type information, LLVM can be used as
307the target of optimizations: for example, through pointer analysis, it
308can be proven that a C automatic variable is never accessed outside of
309the current function... allowing it to be promoted to a simple SSA
310value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000311
Misha Brukman9d0919f2003-11-08 01:05:38 +0000312</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000313
Chris Lattner00950542001-06-06 20:29:01 +0000314<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000315<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000316
Misha Brukman9d0919f2003-11-08 01:05:38 +0000317<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000318
Chris Lattner261efe92003-11-25 01:02:51 +0000319<p>It is important to note that this document describes 'well formed'
320LLVM assembly language. There is a difference between what the parser
321accepts and what is considered 'well formed'. For example, the
322following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000323
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000324<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000325<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000326%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000327</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000328</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000329
Chris Lattner261efe92003-11-25 01:02:51 +0000330<p>...because the definition of <tt>%x</tt> does not dominate all of
331its uses. The LLVM infrastructure provides a verification pass that may
332be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000333automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000334the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000335by the verifier pass indicate bugs in transformation passes or input to
336the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000337</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000338
Chris Lattnercc689392007-10-03 17:34:29 +0000339<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000340
Chris Lattner00950542001-06-06 20:29:01 +0000341<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000342<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000343<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000344
Misha Brukman9d0919f2003-11-08 01:05:38 +0000345<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000346
Reid Spencer2c452282007-08-07 14:34:28 +0000347 <p>LLVM identifiers come in two basic types: global and local. Global
348 identifiers (functions, global variables) begin with the @ character. Local
349 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohman0e451ce2008-10-14 16:51:45 +0000350 there are three different formats for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000351
Chris Lattner00950542001-06-06 20:29:01 +0000352<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000353 <li>Named values are represented as a string of characters with their prefix.
354 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
355 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000356 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar76dea952008-10-14 23:51:43 +0000357 with quotes. Special characters may be escaped using "\xx" where xx is the
358 ASCII code for the character in hexadecimal. In this way, any character can
359 be used in a name value, even quotes themselves.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000360
Reid Spencer2c452282007-08-07 14:34:28 +0000361 <li>Unnamed values are represented as an unsigned numeric value with their
362 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000363
Reid Spencercc16dc32004-12-09 18:02:53 +0000364 <li>Constants, which are described in a <a href="#constants">section about
365 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000366</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000367
Reid Spencer2c452282007-08-07 14:34:28 +0000368<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000369don't need to worry about name clashes with reserved words, and the set of
370reserved words may be expanded in the future without penalty. Additionally,
371unnamed identifiers allow a compiler to quickly come up with a temporary
372variable without having to avoid symbol table conflicts.</p>
373
Chris Lattner261efe92003-11-25 01:02:51 +0000374<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000375languages. There are keywords for different opcodes
376('<tt><a href="#i_add">add</a></tt>',
377 '<tt><a href="#i_bitcast">bitcast</a></tt>',
378 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000379href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000380and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000381none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000382
383<p>Here is an example of LLVM code to multiply the integer variable
384'<tt>%X</tt>' by 8:</p>
385
Misha Brukman9d0919f2003-11-08 01:05:38 +0000386<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000387
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000388<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000389<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000390%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000391</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000392</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000393
Misha Brukman9d0919f2003-11-08 01:05:38 +0000394<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000395
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000396<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000397<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000398%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000399</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000400</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000401
Misha Brukman9d0919f2003-11-08 01:05:38 +0000402<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000403
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000404<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000405<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000406<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
407<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
408%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000409</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000410</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000411
Chris Lattner261efe92003-11-25 01:02:51 +0000412<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
413important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000414
Chris Lattner00950542001-06-06 20:29:01 +0000415<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000416
417 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
418 line.</li>
419
420 <li>Unnamed temporaries are created when the result of a computation is not
421 assigned to a named value.</li>
422
Misha Brukman9d0919f2003-11-08 01:05:38 +0000423 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000424
Misha Brukman9d0919f2003-11-08 01:05:38 +0000425</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000426
John Criswelle4c57cc2005-05-12 16:52:32 +0000427<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000428demonstrating instructions, we will follow an instruction with a comment that
429defines the type and name of value produced. Comments are shown in italic
430text.</p>
431
Misha Brukman9d0919f2003-11-08 01:05:38 +0000432</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000433
434<!-- *********************************************************************** -->
435<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
436<!-- *********************************************************************** -->
437
438<!-- ======================================================================= -->
439<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
440</div>
441
442<div class="doc_text">
443
444<p>LLVM programs are composed of "Module"s, each of which is a
445translation unit of the input programs. Each module consists of
446functions, global variables, and symbol table entries. Modules may be
447combined together with the LLVM linker, which merges function (and
448global variable) definitions, resolves forward declarations, and merges
449symbol table entries. Here is an example of the "hello world" module:</p>
450
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000451<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000452<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000453<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
454 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000455
456<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000457<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000458
459<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000460define i32 @main() { <i>; i32()* </i>
Dan Gohman2a08c532009-01-04 23:44:43 +0000461 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000462 %cast210 = <a
Dan Gohman2a08c532009-01-04 23:44:43 +0000463 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000464
465 <i>; Call puts function to write out the string to stdout...</i>
466 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000467 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000468 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000469 href="#i_ret">ret</a> i32 0<br>}<br>
470</pre>
471</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000472
473<p>This example is made up of a <a href="#globalvars">global variable</a>
474named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
475function, and a <a href="#functionstructure">function definition</a>
476for "<tt>main</tt>".</p>
477
Chris Lattnere5d947b2004-12-09 16:36:40 +0000478<p>In general, a module is made up of a list of global values,
479where both functions and global variables are global values. Global values are
480represented by a pointer to a memory location (in this case, a pointer to an
481array of char, and a pointer to a function), and have one of the following <a
482href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000483
Chris Lattnere5d947b2004-12-09 16:36:40 +0000484</div>
485
486<!-- ======================================================================= -->
487<div class="doc_subsection">
488 <a name="linkage">Linkage Types</a>
489</div>
490
491<div class="doc_text">
492
493<p>
494All Global Variables and Functions have one of the following types of linkage:
495</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000496
497<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000498
Rafael Espindolabb46f522009-01-15 20:18:42 +0000499 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
500
501 <dd>Global values with private linkage are only directly accessible by
502 objects in the current module. In particular, linking code into a module with
503 an private global value may cause the private to be renamed as necessary to
504 avoid collisions. Because the symbol is private to the module, all
505 references can be updated. This doesn't show up in any symbol table in the
506 object file.
507 </dd>
508
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000509 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000510
Duncan Sands81d05c22009-01-16 09:29:46 +0000511 <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in
Rafael Espindolabb46f522009-01-15 20:18:42 +0000512 the case of ELF) in the object file. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000513 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000514 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000515
Chris Lattner266c7bb2009-04-13 05:44:34 +0000516 <dt><tt><b><a name="available_externally">available_externally</a></b></tt>:
517 </dt>
518
519 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
520 into the object file corresponding to the LLVM module. They exist to
521 allow inlining and other optimizations to take place given knowledge of the
522 definition of the global, which is known to be somewhere outside the module.
523 Globals with <tt>available_externally</tt> linkage are allowed to be discarded
524 at will, and are otherwise the same as <tt>linkonce_odr</tt>. This linkage
525 type is only allowed on definitions, not declarations.</dd>
526
Chris Lattnerfa730212004-12-09 16:11:40 +0000527 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000528
Chris Lattner4887bd82007-01-14 06:51:48 +0000529 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
530 the same name when linkage occurs. This is typically used to implement
531 inline functions, templates, or other code which must be generated in each
532 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
533 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000534 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000535
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000536 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
537
538 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
539 linkage, except that unreferenced <tt>common</tt> globals may not be
540 discarded. This is used for globals that may be emitted in multiple
541 translation units, but that are not guaranteed to be emitted into every
542 translation unit that uses them. One example of this is tentative
543 definitions in C, such as "<tt>int X;</tt>" at global scope.
544 </dd>
545
Chris Lattnerfa730212004-12-09 16:11:40 +0000546 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000547
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000548 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
549 that some targets may choose to emit different assembly sequences for them
550 for target-dependent reasons. This is used for globals that are declared
551 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000552 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000553
Chris Lattnerfa730212004-12-09 16:11:40 +0000554 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000555
556 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
557 pointer to array type. When two global variables with appending linkage are
558 linked together, the two global arrays are appended together. This is the
559 LLVM, typesafe, equivalent of having the system linker append together
560 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000561 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000562
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000563 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Duncan Sands667d4b82009-03-07 15:45:40 +0000564
Chris Lattnerd3eda892008-08-05 18:29:16 +0000565 <dd>The semantics of this linkage follow the ELF object file model: the
566 symbol is weak until linked, if not linked, the symbol becomes null instead
567 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000568 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000569
Duncan Sands667d4b82009-03-07 15:45:40 +0000570 <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt>
Duncan Sands667d4b82009-03-07 15:45:40 +0000571 <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt>
Chris Lattner266c7bb2009-04-13 05:44:34 +0000572 <dd>Some languages allow differing globals to be merged, such as two
Duncan Sands667d4b82009-03-07 15:45:40 +0000573 functions with different semantics. Other languages, such as <tt>C++</tt>,
574 ensure that only equivalent globals are ever merged (the "one definition
Chris Lattner266c7bb2009-04-13 05:44:34 +0000575 rule" - "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Duncan Sands4dc2b392009-03-11 20:14:15 +0000576 and <tt>weak_odr</tt> linkage types to indicate that the global will only
577 be merged with equivalent globals. These linkage types are otherwise the
578 same as their non-<tt>odr</tt> versions.
Duncan Sands667d4b82009-03-07 15:45:40 +0000579 </dd>
580
Chris Lattnerfa730212004-12-09 16:11:40 +0000581 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000582
583 <dd>If none of the above identifiers are used, the global is externally
584 visible, meaning that it participates in linkage and can be used to resolve
585 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000586 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000587</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000588
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000589 <p>
590 The next two types of linkage are targeted for Microsoft Windows platform
591 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000592 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000593 </p>
594
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000595 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000596 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
597
598 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
599 or variable via a global pointer to a pointer that is set up by the DLL
600 exporting the symbol. On Microsoft Windows targets, the pointer name is
Dan Gohman79564122009-01-12 21:35:55 +0000601 formed by combining <code>__imp_</code> and the function or variable name.
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000602 </dd>
603
604 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
605
606 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
607 pointer to a pointer in a DLL, so that it can be referenced with the
608 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
Dan Gohman79564122009-01-12 21:35:55 +0000609 name is formed by combining <code>__imp_</code> and the function or variable
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000610 name.
611 </dd>
612
Chris Lattnerfa730212004-12-09 16:11:40 +0000613</dl>
614
Dan Gohmanf0032762008-11-24 17:18:39 +0000615<p>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000616variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
617variable and was linked with this one, one of the two would be renamed,
618preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
619external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000620outside of the current module.</p>
621<p>It is illegal for a function <i>declaration</i>
Duncan Sands5f4ee1f2009-03-11 08:08:06 +0000622to have any linkage type other than "externally visible", <tt>dllimport</tt>
623or <tt>extern_weak</tt>.</p>
Duncan Sands667d4b82009-03-07 15:45:40 +0000624<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
625or <tt>weak_odr</tt> linkages.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000626</div>
627
628<!-- ======================================================================= -->
629<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000630 <a name="callingconv">Calling Conventions</a>
631</div>
632
633<div class="doc_text">
634
635<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
636and <a href="#i_invoke">invokes</a> can all have an optional calling convention
637specified for the call. The calling convention of any pair of dynamic
638caller/callee must match, or the behavior of the program is undefined. The
639following calling conventions are supported by LLVM, and more may be added in
640the future:</p>
641
642<dl>
643 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
644
645 <dd>This calling convention (the default if no other calling convention is
646 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000647 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000648 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000649 </dd>
650
651 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
652
653 <dd>This calling convention attempts to make calls as fast as possible
654 (e.g. by passing things in registers). This calling convention allows the
655 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000656 without having to conform to an externally specified ABI (Application Binary
657 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000658 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
659 supported. This calling convention does not support varargs and requires the
660 prototype of all callees to exactly match the prototype of the function
661 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000662 </dd>
663
664 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
665
666 <dd>This calling convention attempts to make code in the caller as efficient
667 as possible under the assumption that the call is not commonly executed. As
668 such, these calls often preserve all registers so that the call does not break
669 any live ranges in the caller side. This calling convention does not support
670 varargs and requires the prototype of all callees to exactly match the
671 prototype of the function definition.
672 </dd>
673
Chris Lattnercfe6b372005-05-07 01:46:40 +0000674 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000675
676 <dd>Any calling convention may be specified by number, allowing
677 target-specific calling conventions to be used. Target specific calling
678 conventions start at 64.
679 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000680</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000681
682<p>More calling conventions can be added/defined on an as-needed basis, to
683support pascal conventions or any other well-known target-independent
684convention.</p>
685
686</div>
687
688<!-- ======================================================================= -->
689<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000690 <a name="visibility">Visibility Styles</a>
691</div>
692
693<div class="doc_text">
694
695<p>
696All Global Variables and Functions have one of the following visibility styles:
697</p>
698
699<dl>
700 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
701
Chris Lattnerd3eda892008-08-05 18:29:16 +0000702 <dd>On targets that use the ELF object file format, default visibility means
703 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000704 modules and, in shared libraries, means that the declared entity may be
705 overridden. On Darwin, default visibility means that the declaration is
706 visible to other modules. Default visibility corresponds to "external
707 linkage" in the language.
708 </dd>
709
710 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
711
712 <dd>Two declarations of an object with hidden visibility refer to the same
713 object if they are in the same shared object. Usually, hidden visibility
714 indicates that the symbol will not be placed into the dynamic symbol table,
715 so no other module (executable or shared library) can reference it
716 directly.
717 </dd>
718
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000719 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
720
721 <dd>On ELF, protected visibility indicates that the symbol will be placed in
722 the dynamic symbol table, but that references within the defining module will
723 bind to the local symbol. That is, the symbol cannot be overridden by another
724 module.
725 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000726</dl>
727
728</div>
729
730<!-- ======================================================================= -->
731<div class="doc_subsection">
Chris Lattnere7886e42009-01-11 20:53:49 +0000732 <a name="namedtypes">Named Types</a>
733</div>
734
735<div class="doc_text">
736
737<p>LLVM IR allows you to specify name aliases for certain types. This can make
738it easier to read the IR and make the IR more condensed (particularly when
739recursive types are involved). An example of a name specification is:
740</p>
741
742<div class="doc_code">
743<pre>
744%mytype = type { %mytype*, i32 }
745</pre>
746</div>
747
748<p>You may give a name to any <a href="#typesystem">type</a> except "<a
749href="t_void">void</a>". Type name aliases may be used anywhere a type is
750expected with the syntax "%mytype".</p>
751
752<p>Note that type names are aliases for the structural type that they indicate,
753and that you can therefore specify multiple names for the same type. This often
754leads to confusing behavior when dumping out a .ll file. Since LLVM IR uses
755structural typing, the name is not part of the type. When printing out LLVM IR,
756the printer will pick <em>one name</em> to render all types of a particular
757shape. This means that if you have code where two different source types end up
758having the same LLVM type, that the dumper will sometimes print the "wrong" or
759unexpected type. This is an important design point and isn't going to
760change.</p>
761
762</div>
763
Chris Lattnere7886e42009-01-11 20:53:49 +0000764<!-- ======================================================================= -->
765<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000766 <a name="globalvars">Global Variables</a>
767</div>
768
769<div class="doc_text">
770
Chris Lattner3689a342005-02-12 19:30:21 +0000771<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000772instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000773an explicit section to be placed in, and may have an optional explicit alignment
774specified. A variable may be defined as "thread_local", which means that it
775will not be shared by threads (each thread will have a separated copy of the
776variable). A variable may be defined as a global "constant," which indicates
777that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000778optimization, allowing the global data to be placed in the read-only section of
779an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000780cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000781
782<p>
783LLVM explicitly allows <em>declarations</em> of global variables to be marked
784constant, even if the final definition of the global is not. This capability
785can be used to enable slightly better optimization of the program, but requires
786the language definition to guarantee that optimizations based on the
787'constantness' are valid for the translation units that do not include the
788definition.
789</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000790
791<p>As SSA values, global variables define pointer values that are in
792scope (i.e. they dominate) all basic blocks in the program. Global
793variables always define a pointer to their "content" type because they
794describe a region of memory, and all memory objects in LLVM are
795accessed through pointers.</p>
796
Christopher Lamb284d9922007-12-11 09:31:00 +0000797<p>A global variable may be declared to reside in a target-specifc numbered
798address space. For targets that support them, address spaces may affect how
799optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000800the variable. The default address space is zero. The address space qualifier
801must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000802
Chris Lattner88f6c462005-11-12 00:45:07 +0000803<p>LLVM allows an explicit section to be specified for globals. If the target
804supports it, it will emit globals to the section specified.</p>
805
Chris Lattner2cbdc452005-11-06 08:02:57 +0000806<p>An explicit alignment may be specified for a global. If not present, or if
807the alignment is set to zero, the alignment of the global is set by the target
808to whatever it feels convenient. If an explicit alignment is specified, the
809global is forced to have at least that much alignment. All alignments must be
810a power of 2.</p>
811
Christopher Lamb284d9922007-12-11 09:31:00 +0000812<p>For example, the following defines a global in a numbered address space with
813an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000814
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000815<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000816<pre>
Dan Gohman398873c2009-01-11 00:40:00 +0000817@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000818</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000819</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000820
Chris Lattnerfa730212004-12-09 16:11:40 +0000821</div>
822
823
824<!-- ======================================================================= -->
825<div class="doc_subsection">
826 <a name="functionstructure">Functions</a>
827</div>
828
829<div class="doc_text">
830
Reid Spencerca86e162006-12-31 07:07:53 +0000831<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
832an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000833<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000834<a href="#callingconv">calling convention</a>, a return type, an optional
835<a href="#paramattrs">parameter attribute</a> for the return type, a function
836name, a (possibly empty) argument list (each with optional
Devang Patelf642f472008-10-06 18:50:38 +0000837<a href="#paramattrs">parameter attributes</a>), optional
838<a href="#fnattrs">function attributes</a>, an optional section,
839an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000840an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000841
842LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
843optional <a href="#linkage">linkage type</a>, an optional
844<a href="#visibility">visibility style</a>, an optional
845<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000846<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000847name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000848<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000849
Chris Lattnerd3eda892008-08-05 18:29:16 +0000850<p>A function definition contains a list of basic blocks, forming the CFG
851(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000852the function. Each basic block may optionally start with a label (giving the
853basic block a symbol table entry), contains a list of instructions, and ends
854with a <a href="#terminators">terminator</a> instruction (such as a branch or
855function return).</p>
856
Chris Lattner4a3c9012007-06-08 16:52:14 +0000857<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000858executed on entrance to the function, and it is not allowed to have predecessor
859basic blocks (i.e. there can not be any branches to the entry block of a
860function). Because the block can have no predecessors, it also cannot have any
861<a href="#i_phi">PHI nodes</a>.</p>
862
Chris Lattner88f6c462005-11-12 00:45:07 +0000863<p>LLVM allows an explicit section to be specified for functions. If the target
864supports it, it will emit functions to the section specified.</p>
865
Chris Lattner2cbdc452005-11-06 08:02:57 +0000866<p>An explicit alignment may be specified for a function. If not present, or if
867the alignment is set to zero, the alignment of the function is set by the target
868to whatever it feels convenient. If an explicit alignment is specified, the
869function is forced to have at least that much alignment. All alignments must be
870a power of 2.</p>
871
Devang Patel307e8ab2008-10-07 17:48:33 +0000872 <h5>Syntax:</h5>
873
874<div class="doc_code">
Chris Lattner50ad45c2008-10-13 16:55:18 +0000875<tt>
876define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
877 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
878 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
879 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
880 [<a href="#gc">gc</a>] { ... }
881</tt>
Devang Patel307e8ab2008-10-07 17:48:33 +0000882</div>
883
Chris Lattnerfa730212004-12-09 16:11:40 +0000884</div>
885
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000886
887<!-- ======================================================================= -->
888<div class="doc_subsection">
889 <a name="aliasstructure">Aliases</a>
890</div>
891<div class="doc_text">
892 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000893 function, global variable, another alias or bitcast of global value). Aliases
894 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000895 optional <a href="#visibility">visibility style</a>.</p>
896
897 <h5>Syntax:</h5>
898
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000899<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000900<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000901@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000902</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000903</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000904
905</div>
906
907
908
Chris Lattner4e9aba72006-01-23 23:23:47 +0000909<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000910<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
911<div class="doc_text">
912 <p>The return type and each parameter of a function type may have a set of
913 <i>parameter attributes</i> associated with them. Parameter attributes are
914 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000915 a function. Parameter attributes are considered to be part of the function,
916 not of the function type, so functions with different parameter attributes
917 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000918
Reid Spencer950e9f82007-01-15 18:27:39 +0000919 <p>Parameter attributes are simple keywords that follow the type specified. If
920 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000921 example:</p>
922
923<div class="doc_code">
924<pre>
Nick Lewyckyb6a7d252009-02-15 23:06:14 +0000925declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000926declare i32 @atoi(i8 zeroext)
927declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000928</pre>
929</div>
930
Duncan Sandsdc024672007-11-27 13:23:08 +0000931 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
932 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000933
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000934 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000935 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000936 <dt><tt>zeroext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000937 <dd>This indicates to the code generator that the parameter or return value
938 should be zero-extended to a 32-bit value by the caller (for a parameter)
939 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000940
Reid Spencer9445e9a2007-07-19 23:13:04 +0000941 <dt><tt>signext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000942 <dd>This indicates to the code generator that the parameter or return value
943 should be sign-extended to a 32-bit value by the caller (for a parameter)
944 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000945
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000946 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000947 <dd>This indicates that this parameter or return value should be treated
948 in a special target-dependent fashion during while emitting code for a
949 function call or return (usually, by putting it in a register as opposed
Chris Lattner66d922c2008-10-04 18:33:34 +0000950 to memory, though some targets use it to distinguish between two different
951 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000952
Duncan Sandsedb05df2008-10-06 08:14:18 +0000953 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000954 <dd>This indicates that the pointer parameter should really be passed by
955 value to the function. The attribute implies that a hidden copy of the
956 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000957 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000958 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sandsedb05df2008-10-06 08:14:18 +0000959 value, but is also valid on pointers to scalars. The copy is considered to
960 belong to the caller not the callee (for example,
961 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patelf642f472008-10-06 18:50:38 +0000962 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnerce459b12009-02-05 05:42:28 +0000963 values. The byval attribute also supports specifying an alignment with the
964 align attribute. This has a target-specific effect on the code generator
965 that usually indicates a desired alignment for the synthesized stack
966 slot.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000967
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000968 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000969 <dd>This indicates that the pointer parameter specifies the address of a
970 structure that is the return value of the function in the source program.
Chris Lattner66d922c2008-10-04 18:33:34 +0000971 This pointer must be guaranteed by the caller to be valid: loads and stores
972 to the structure may be assumed by the callee to not to trap. This may only
Devang Patelf642f472008-10-06 18:50:38 +0000973 be applied to the first parameter. This is not a valid attribute for
974 return values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000975
Zhou Shengfebca342007-06-05 05:28:26 +0000976 <dt><tt>noalias</tt></dt>
Nick Lewycky02ff3082008-11-24 03:41:24 +0000977 <dd>This indicates that the pointer does not alias any global or any other
978 parameter. The caller is responsible for ensuring that this is the
Nick Lewyckyb2b32fd2008-11-24 05:00:44 +0000979 case. On a function return value, <tt>noalias</tt> additionally indicates
980 that the pointer does not alias any other pointers visible to the
Nick Lewyckyf23d0d32008-12-19 06:39:12 +0000981 caller. For further details, please see the discussion of the NoAlias
982 response in
983 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
984 analysis</a>.</dd>
985
986 <dt><tt>nocapture</tt></dt>
987 <dd>This indicates that the callee does not make any copies of the pointer
988 that outlive the callee itself. This is not a valid attribute for return
989 values.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000990
Duncan Sands50f19f52007-07-27 19:57:41 +0000991 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000992 <dd>This indicates that the pointer parameter can be excised using the
Devang Patelf642f472008-10-06 18:50:38 +0000993 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
994 attribute for return values.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000995 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000996
Reid Spencerca86e162006-12-31 07:07:53 +0000997</div>
998
999<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +00001000<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +00001001 <a name="gc">Garbage Collector Names</a>
1002</div>
1003
1004<div class="doc_text">
1005<p>Each function may specify a garbage collector name, which is simply a
1006string.</p>
1007
1008<div class="doc_code"><pre
1009>define void @f() gc "name" { ...</pre></div>
1010
1011<p>The compiler declares the supported values of <i>name</i>. Specifying a
1012collector which will cause the compiler to alter its output in order to support
1013the named garbage collection algorithm.</p>
1014</div>
1015
1016<!-- ======================================================================= -->
1017<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001018 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +00001019</div>
1020
1021<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001022
1023<p>Function attributes are set to communicate additional information about
1024 a function. Function attributes are considered to be part of the function,
1025 not of the function type, so functions with different parameter attributes
1026 can have the same function type.</p>
1027
1028 <p>Function attributes are simple keywords that follow the type specified. If
1029 multiple attributes are needed, they are space separated. For
1030 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +00001031
1032<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001033<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001034define void @f() noinline { ... }
1035define void @f() alwaysinline { ... }
1036define void @f() alwaysinline optsize { ... }
1037define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001038</pre>
Devang Patelf8b94812008-09-04 23:05:13 +00001039</div>
1040
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001041<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001042<dt><tt>alwaysinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001043<dd>This attribute indicates that the inliner should attempt to inline this
1044function into callers whenever possible, ignoring any active inlining size
1045threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001046
Devang Patel2c9c3e72008-09-26 23:51:19 +00001047<dt><tt>noinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001048<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner94b5f7d2008-10-05 17:14:59 +00001049in any situation. This attribute may not be used together with the
Chris Lattner88d4b592008-10-04 18:23:17 +00001050<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001051
Devang Patel2c9c3e72008-09-26 23:51:19 +00001052<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +00001053<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner88d4b592008-10-04 18:23:17 +00001054make choices that keep the code size of this function low, and otherwise do
1055optimizations specifically to reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001056
Devang Patel2c9c3e72008-09-26 23:51:19 +00001057<dt><tt>noreturn</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001058<dd>This function attribute indicates that the function never returns normally.
1059This produces undefined behavior at runtime if the function ever does
1060dynamically return.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001061
1062<dt><tt>nounwind</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001063<dd>This function attribute indicates that the function never returns with an
1064unwind or exceptional control flow. If the function does unwind, its runtime
1065behavior is undefined.</dd>
1066
1067<dt><tt>readnone</tt></dt>
Duncan Sands7af1c782009-05-06 06:49:50 +00001068<dd>This attribute indicates that the function computes its result (or decides to
1069unwind an exception) based strictly on its arguments, without dereferencing any
Duncan Sandsedb05df2008-10-06 08:14:18 +00001070pointer arguments or otherwise accessing any mutable state (e.g. memory, control
1071registers, etc) visible to caller functions. It does not write through any
1072pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
Duncan Sands7af1c782009-05-06 06:49:50 +00001073never changes any state visible to callers. This means that it cannot unwind
1074exceptions by calling the <tt>C++</tt> exception throwing methods, but could
1075use the <tt>unwind</tt> instruction.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001076
Duncan Sandsedb05df2008-10-06 08:14:18 +00001077<dt><tt><a name="readonly">readonly</a></tt></dt>
1078<dd>This attribute indicates that the function does not write through any
1079pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
1080or otherwise modify any state (e.g. memory, control registers, etc) visible to
1081caller functions. It may dereference pointer arguments and read state that may
Duncan Sands7af1c782009-05-06 06:49:50 +00001082be set in the caller. A readonly function always returns the same value (or
1083unwinds an exception identically) when called with the same set of arguments
1084and global state. It cannot unwind an exception by calling the <tt>C++</tt>
1085exception throwing methods, but may use the <tt>unwind</tt> instruction.</dd>
Bill Wendling31359ba2008-11-13 01:02:51 +00001086
1087<dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001088<dd>This attribute indicates that the function should emit a stack smashing
Bill Wendling31359ba2008-11-13 01:02:51 +00001089protector. It is in the form of a "canary"&mdash;a random value placed on the
1090stack before the local variables that's checked upon return from the function to
1091see if it has been overwritten. A heuristic is used to determine if a function
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001092needs stack protectors or not.
Bill Wendling31359ba2008-11-13 01:02:51 +00001093
Devang Patel5d96fda2009-06-12 19:45:19 +00001094<br><br>If a function that has an <tt>ssp</tt> attribute is inlined into a function
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001095that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
Devang Patel5d96fda2009-06-12 19:45:19 +00001096have an <tt>ssp</tt> attribute.</dd>
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001097
1098<dt><tt>sspreq</tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001099<dd>This attribute indicates that the function should <em>always</em> emit a
Bill Wendling31359ba2008-11-13 01:02:51 +00001100stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001101function attribute.
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001102
Devang Patel5d96fda2009-06-12 19:45:19 +00001103If a function that has an <tt>sspreq</tt> attribute is inlined into a
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001104function that doesn't have an <tt>sspreq</tt> attribute or which has
1105an <tt>ssp</tt> attribute, then the resulting function will have
Devang Patel5d96fda2009-06-12 19:45:19 +00001106an <tt>sspreq</tt> attribute.</dd>
1107
1108<dt><tt>noredzone</tt></dt>
Dan Gohman2185f9e2009-06-15 17:37:09 +00001109<dd>This attribute indicates that the code generator should not use a
Dan Gohman125473b2009-06-15 21:18:01 +00001110red zone, even if the target-specific ABI normally permits it.
Dan Gohman2185f9e2009-06-15 17:37:09 +00001111</dd>
Devang Patel5d96fda2009-06-12 19:45:19 +00001112
1113<dt><tt>noimplicitfloat</tt></dt>
1114<dd>This attributes disables implicit floating point instructions.</dd>
1115
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001116</dl>
1117
Devang Patelf8b94812008-09-04 23:05:13 +00001118</div>
1119
1120<!-- ======================================================================= -->
1121<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +00001122 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001123</div>
1124
1125<div class="doc_text">
1126<p>
1127Modules may contain "module-level inline asm" blocks, which corresponds to the
1128GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1129LLVM and treated as a single unit, but may be separated in the .ll file if
1130desired. The syntax is very simple:
1131</p>
1132
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001133<div class="doc_code">
1134<pre>
1135module asm "inline asm code goes here"
1136module asm "more can go here"
1137</pre>
1138</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001139
1140<p>The strings can contain any character by escaping non-printable characters.
1141 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1142 for the number.
1143</p>
1144
1145<p>
1146 The inline asm code is simply printed to the machine code .s file when
1147 assembly code is generated.
1148</p>
1149</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001150
Reid Spencerde151942007-02-19 23:54:10 +00001151<!-- ======================================================================= -->
1152<div class="doc_subsection">
1153 <a name="datalayout">Data Layout</a>
1154</div>
1155
1156<div class="doc_text">
1157<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +00001158data is to be laid out in memory. The syntax for the data layout is simply:</p>
1159<pre> target datalayout = "<i>layout specification</i>"</pre>
1160<p>The <i>layout specification</i> consists of a list of specifications
1161separated by the minus sign character ('-'). Each specification starts with a
1162letter and may include other information after the letter to define some
1163aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001164<dl>
1165 <dt><tt>E</tt></dt>
1166 <dd>Specifies that the target lays out data in big-endian form. That is, the
1167 bits with the most significance have the lowest address location.</dd>
1168 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001169 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001170 the bits with the least significance have the lowest address location.</dd>
1171 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1172 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1173 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1174 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1175 too.</dd>
1176 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1177 <dd>This specifies the alignment for an integer type of a given bit
1178 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1179 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1180 <dd>This specifies the alignment for a vector type of a given bit
1181 <i>size</i>.</dd>
1182 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1183 <dd>This specifies the alignment for a floating point type of a given bit
1184 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1185 (double).</dd>
1186 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1187 <dd>This specifies the alignment for an aggregate type of a given bit
1188 <i>size</i>.</dd>
Daniel Dunbar87bde0b2009-06-08 22:17:53 +00001189 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1190 <dd>This specifies the alignment for a stack object of a given bit
1191 <i>size</i>.</dd>
Reid Spencerde151942007-02-19 23:54:10 +00001192</dl>
1193<p>When constructing the data layout for a given target, LLVM starts with a
1194default set of specifications which are then (possibly) overriden by the
1195specifications in the <tt>datalayout</tt> keyword. The default specifications
1196are given in this list:</p>
1197<ul>
1198 <li><tt>E</tt> - big endian</li>
1199 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1200 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1201 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1202 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1203 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001204 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001205 alignment of 64-bits</li>
1206 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1207 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1208 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1209 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1210 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar87bde0b2009-06-08 22:17:53 +00001211 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencerde151942007-02-19 23:54:10 +00001212</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001213<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohman0e451ce2008-10-14 16:51:45 +00001214following rules:</p>
Reid Spencerde151942007-02-19 23:54:10 +00001215<ol>
1216 <li>If the type sought is an exact match for one of the specifications, that
1217 specification is used.</li>
1218 <li>If no match is found, and the type sought is an integer type, then the
1219 smallest integer type that is larger than the bitwidth of the sought type is
1220 used. If none of the specifications are larger than the bitwidth then the the
1221 largest integer type is used. For example, given the default specifications
1222 above, the i7 type will use the alignment of i8 (next largest) while both
1223 i65 and i256 will use the alignment of i64 (largest specified).</li>
1224 <li>If no match is found, and the type sought is a vector type, then the
1225 largest vector type that is smaller than the sought vector type will be used
Dan Gohman0e451ce2008-10-14 16:51:45 +00001226 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1227 in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001228</ol>
1229</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001230
Chris Lattner00950542001-06-06 20:29:01 +00001231<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001232<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1233<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001234
Misha Brukman9d0919f2003-11-08 01:05:38 +00001235<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001236
Misha Brukman9d0919f2003-11-08 01:05:38 +00001237<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001238intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001239optimizations to be performed on the intermediate representation directly,
1240without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001241extra analyses on the side before the transformation. A strong type
1242system makes it easier to read the generated code and enables novel
1243analyses and transformations that are not feasible to perform on normal
1244three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001245
1246</div>
1247
Chris Lattner00950542001-06-06 20:29:01 +00001248<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001249<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001250Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001251<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001252<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001253classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001254
1255<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001256 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001257 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001258 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001259 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001260 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001261 </tr>
1262 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001263 <td><a href="#t_floating">floating point</a></td>
1264 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001265 </tr>
1266 <tr>
1267 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001268 <td><a href="#t_integer">integer</a>,
1269 <a href="#t_floating">floating point</a>,
1270 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001271 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001272 <a href="#t_struct">structure</a>,
1273 <a href="#t_array">array</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001274 <a href="#t_label">label</a>,
1275 <a href="#t_metadata">metadata</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001276 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001277 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001278 <tr>
1279 <td><a href="#t_primitive">primitive</a></td>
1280 <td><a href="#t_label">label</a>,
1281 <a href="#t_void">void</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001282 <a href="#t_floating">floating point</a>,
1283 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001284 </tr>
1285 <tr>
1286 <td><a href="#t_derived">derived</a></td>
1287 <td><a href="#t_integer">integer</a>,
1288 <a href="#t_array">array</a>,
1289 <a href="#t_function">function</a>,
1290 <a href="#t_pointer">pointer</a>,
1291 <a href="#t_struct">structure</a>,
1292 <a href="#t_pstruct">packed structure</a>,
1293 <a href="#t_vector">vector</a>,
1294 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001295 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001296 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001297 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001298</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001299
Chris Lattner261efe92003-11-25 01:02:51 +00001300<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1301most important. Values of these types are the only ones which can be
1302produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001303instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001304</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001305
Chris Lattner00950542001-06-06 20:29:01 +00001306<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001307<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001308
Chris Lattner4f69f462008-01-04 04:32:38 +00001309<div class="doc_text">
1310<p>The primitive types are the fundamental building blocks of the LLVM
1311system.</p>
1312
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001313</div>
1314
Chris Lattner4f69f462008-01-04 04:32:38 +00001315<!-- _______________________________________________________________________ -->
1316<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1317
1318<div class="doc_text">
1319 <table>
1320 <tbody>
1321 <tr><th>Type</th><th>Description</th></tr>
1322 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1323 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1324 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1325 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1326 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1327 </tbody>
1328 </table>
1329</div>
1330
1331<!-- _______________________________________________________________________ -->
1332<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1333
1334<div class="doc_text">
1335<h5>Overview:</h5>
1336<p>The void type does not represent any value and has no size.</p>
1337
1338<h5>Syntax:</h5>
1339
1340<pre>
1341 void
1342</pre>
1343</div>
1344
1345<!-- _______________________________________________________________________ -->
1346<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1347
1348<div class="doc_text">
1349<h5>Overview:</h5>
1350<p>The label type represents code labels.</p>
1351
1352<h5>Syntax:</h5>
1353
1354<pre>
1355 label
1356</pre>
1357</div>
1358
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001359<!-- _______________________________________________________________________ -->
1360<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1361
1362<div class="doc_text">
1363<h5>Overview:</h5>
1364<p>The metadata type represents embedded metadata. The only derived type that
1365may contain metadata is <tt>metadata*</tt> or a function type that returns or
1366takes metadata typed parameters, but not pointer to metadata types.</p>
1367
1368<h5>Syntax:</h5>
1369
1370<pre>
1371 metadata
1372</pre>
1373</div>
1374
Chris Lattner4f69f462008-01-04 04:32:38 +00001375
1376<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001377<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001378
Misha Brukman9d0919f2003-11-08 01:05:38 +00001379<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001380
Chris Lattner261efe92003-11-25 01:02:51 +00001381<p>The real power in LLVM comes from the derived types in the system.
1382This is what allows a programmer to represent arrays, functions,
1383pointers, and other useful types. Note that these derived types may be
1384recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001385
Misha Brukman9d0919f2003-11-08 01:05:38 +00001386</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001387
Chris Lattner00950542001-06-06 20:29:01 +00001388<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001389<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1390
1391<div class="doc_text">
1392
1393<h5>Overview:</h5>
1394<p>The integer type is a very simple derived type that simply specifies an
1395arbitrary bit width for the integer type desired. Any bit width from 1 bit to
13962^23-1 (about 8 million) can be specified.</p>
1397
1398<h5>Syntax:</h5>
1399
1400<pre>
1401 iN
1402</pre>
1403
1404<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1405value.</p>
1406
1407<h5>Examples:</h5>
1408<table class="layout">
Nick Lewycky86c48642009-05-24 02:46:06 +00001409 <tr class="layout">
1410 <td class="left"><tt>i1</tt></td>
1411 <td class="left">a single-bit integer.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001412 </tr>
Nick Lewycky86c48642009-05-24 02:46:06 +00001413 <tr class="layout">
1414 <td class="left"><tt>i32</tt></td>
1415 <td class="left">a 32-bit integer.</td>
1416 </tr>
1417 <tr class="layout">
1418 <td class="left"><tt>i1942652</tt></td>
1419 <td class="left">a really big integer of over 1 million bits.</td>
1420 </tr>
Reid Spencer2b916312007-05-16 18:44:01 +00001421</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001422
1423<p>Note that the code generator does not yet support large integer types
1424to be used as function return types. The specific limit on how large a
1425return type the code generator can currently handle is target-dependent;
1426currently it's often 64 bits for 32-bit targets and 128 bits for 64-bit
1427targets.</p>
1428
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001429</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001430
1431<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001432<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001433
Misha Brukman9d0919f2003-11-08 01:05:38 +00001434<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001435
Chris Lattner00950542001-06-06 20:29:01 +00001436<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001437
Misha Brukman9d0919f2003-11-08 01:05:38 +00001438<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001439sequentially in memory. The array type requires a size (number of
1440elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001441
Chris Lattner7faa8832002-04-14 06:13:44 +00001442<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001443
1444<pre>
1445 [&lt;# elements&gt; x &lt;elementtype&gt;]
1446</pre>
1447
John Criswelle4c57cc2005-05-12 16:52:32 +00001448<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001449be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001450
Chris Lattner7faa8832002-04-14 06:13:44 +00001451<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001452<table class="layout">
1453 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001454 <td class="left"><tt>[40 x i32]</tt></td>
1455 <td class="left">Array of 40 32-bit integer values.</td>
1456 </tr>
1457 <tr class="layout">
1458 <td class="left"><tt>[41 x i32]</tt></td>
1459 <td class="left">Array of 41 32-bit integer values.</td>
1460 </tr>
1461 <tr class="layout">
1462 <td class="left"><tt>[4 x i8]</tt></td>
1463 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001464 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001465</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001466<p>Here are some examples of multidimensional arrays:</p>
1467<table class="layout">
1468 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001469 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1470 <td class="left">3x4 array of 32-bit integer values.</td>
1471 </tr>
1472 <tr class="layout">
1473 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1474 <td class="left">12x10 array of single precision floating point values.</td>
1475 </tr>
1476 <tr class="layout">
1477 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1478 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001479 </tr>
1480</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001481
John Criswell0ec250c2005-10-24 16:17:18 +00001482<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1483length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001484LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1485As a special case, however, zero length arrays are recognized to be variable
1486length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001487type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001488
Dan Gohmand8791e52009-01-24 15:58:40 +00001489<p>Note that the code generator does not yet support large aggregate types
1490to be used as function return types. The specific limit on how large an
1491aggregate return type the code generator can currently handle is
1492target-dependent, and also dependent on the aggregate element types.</p>
1493
Misha Brukman9d0919f2003-11-08 01:05:38 +00001494</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001495
Chris Lattner00950542001-06-06 20:29:01 +00001496<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001497<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001498<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001499
Chris Lattner00950542001-06-06 20:29:01 +00001500<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001501
Chris Lattner261efe92003-11-25 01:02:51 +00001502<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001503consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001504return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001505If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001506class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001507
Chris Lattner00950542001-06-06 20:29:01 +00001508<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001509
1510<pre>
1511 &lt;returntype list&gt; (&lt;parameter list&gt;)
1512</pre>
1513
John Criswell0ec250c2005-10-24 16:17:18 +00001514<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001515specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001516which indicates that the function takes a variable number of arguments.
1517Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001518 href="#int_varargs">variable argument handling intrinsic</a> functions.
1519'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1520<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001521
Chris Lattner00950542001-06-06 20:29:01 +00001522<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001523<table class="layout">
1524 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001525 <td class="left"><tt>i32 (i32)</tt></td>
1526 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001527 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001528 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001529 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001530 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001531 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1532 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001533 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001534 <tt>float</tt>.
1535 </td>
1536 </tr><tr class="layout">
1537 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1538 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001539 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001540 which returns an integer. This is the signature for <tt>printf</tt> in
1541 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001542 </td>
Devang Patela582f402008-03-24 05:35:41 +00001543 </tr><tr class="layout">
1544 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanb0a57aa2008-11-27 06:41:20 +00001545 <td class="left">A function taking an <tt>i32</tt>, returning two
1546 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001547 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001548 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001549</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001550
Misha Brukman9d0919f2003-11-08 01:05:38 +00001551</div>
Chris Lattner00950542001-06-06 20:29:01 +00001552<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001553<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001554<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001555<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001556<p>The structure type is used to represent a collection of data members
1557together in memory. The packing of the field types is defined to match
1558the ABI of the underlying processor. The elements of a structure may
1559be any type that has a size.</p>
1560<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1561and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1562field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1563instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001564<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001565<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001566<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001567<table class="layout">
1568 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001569 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1570 <td class="left">A triple of three <tt>i32</tt> values</td>
1571 </tr><tr class="layout">
1572 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1573 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1574 second element is a <a href="#t_pointer">pointer</a> to a
1575 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1576 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001577 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001578</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001579
1580<p>Note that the code generator does not yet support large aggregate types
1581to be used as function return types. The specific limit on how large an
1582aggregate return type the code generator can currently handle is
1583target-dependent, and also dependent on the aggregate element types.</p>
1584
Misha Brukman9d0919f2003-11-08 01:05:38 +00001585</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001586
Chris Lattner00950542001-06-06 20:29:01 +00001587<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001588<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1589</div>
1590<div class="doc_text">
1591<h5>Overview:</h5>
1592<p>The packed structure type is used to represent a collection of data members
1593together in memory. There is no padding between fields. Further, the alignment
1594of a packed structure is 1 byte. The elements of a packed structure may
1595be any type that has a size.</p>
1596<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1597and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1598field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1599instruction.</p>
1600<h5>Syntax:</h5>
1601<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1602<h5>Examples:</h5>
1603<table class="layout">
1604 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001605 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1606 <td class="left">A triple of three <tt>i32</tt> values</td>
1607 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001608 <td class="left">
1609<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001610 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1611 second element is a <a href="#t_pointer">pointer</a> to a
1612 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1613 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001614 </tr>
1615</table>
1616</div>
1617
1618<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001619<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001620<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001621<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001622<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001623reference to another object, which must live in memory. Pointer types may have
1624an optional address space attribute defining the target-specific numbered
1625address space where the pointed-to object resides. The default address space is
1626zero.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001627
1628<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does
Chris Lattnere220e8c2009-02-08 22:21:28 +00001629it permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001630
Chris Lattner7faa8832002-04-14 06:13:44 +00001631<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001632<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001633<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001634<table class="layout">
1635 <tr class="layout">
Dan Gohman2a08c532009-01-04 23:44:43 +00001636 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner23ff1f92007-12-19 05:04:11 +00001637 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1638 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1639 </tr>
1640 <tr class="layout">
1641 <td class="left"><tt>i32 (i32 *) *</tt></td>
1642 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001643 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001644 <tt>i32</tt>.</td>
1645 </tr>
1646 <tr class="layout">
1647 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1648 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1649 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001650 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001651</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001652</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001653
Chris Lattnera58561b2004-08-12 19:12:28 +00001654<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001655<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001656<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001657
Chris Lattnera58561b2004-08-12 19:12:28 +00001658<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001659
Reid Spencer485bad12007-02-15 03:07:05 +00001660<p>A vector type is a simple derived type that represents a vector
1661of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001662are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001663A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001664elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001665of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001666considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001667
Chris Lattnera58561b2004-08-12 19:12:28 +00001668<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001669
1670<pre>
1671 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1672</pre>
1673
John Criswellc1f786c2005-05-13 22:25:59 +00001674<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001675be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001676
Chris Lattnera58561b2004-08-12 19:12:28 +00001677<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001678
Reid Spencerd3f876c2004-11-01 08:19:36 +00001679<table class="layout">
1680 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001681 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1682 <td class="left">Vector of 4 32-bit integer values.</td>
1683 </tr>
1684 <tr class="layout">
1685 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1686 <td class="left">Vector of 8 32-bit floating-point values.</td>
1687 </tr>
1688 <tr class="layout">
1689 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1690 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001691 </tr>
1692</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001693
1694<p>Note that the code generator does not yet support large vector types
1695to be used as function return types. The specific limit on how large a
1696vector return type codegen can currently handle is target-dependent;
1697currently it's often a few times longer than a hardware vector register.</p>
1698
Misha Brukman9d0919f2003-11-08 01:05:38 +00001699</div>
1700
Chris Lattner69c11bb2005-04-25 17:34:15 +00001701<!-- _______________________________________________________________________ -->
1702<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1703<div class="doc_text">
1704
1705<h5>Overview:</h5>
1706
1707<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001708corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001709In LLVM, opaque types can eventually be resolved to any type (not just a
1710structure type).</p>
1711
1712<h5>Syntax:</h5>
1713
1714<pre>
1715 opaque
1716</pre>
1717
1718<h5>Examples:</h5>
1719
1720<table class="layout">
1721 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001722 <td class="left"><tt>opaque</tt></td>
1723 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001724 </tr>
1725</table>
1726</div>
1727
Chris Lattner242d61d2009-02-02 07:32:36 +00001728<!-- ======================================================================= -->
1729<div class="doc_subsection">
1730 <a name="t_uprefs">Type Up-references</a>
1731</div>
1732
1733<div class="doc_text">
1734<h5>Overview:</h5>
1735<p>
1736An "up reference" allows you to refer to a lexically enclosing type without
1737requiring it to have a name. For instance, a structure declaration may contain a
1738pointer to any of the types it is lexically a member of. Example of up
1739references (with their equivalent as named type declarations) include:</p>
1740
1741<pre>
Chris Lattner3060f5b2009-02-09 10:00:56 +00001742 { \2 * } %x = type { %x* }
Chris Lattner242d61d2009-02-02 07:32:36 +00001743 { \2 }* %y = type { %y }*
1744 \1* %z = type %z*
1745</pre>
1746
1747<p>
1748An up reference is needed by the asmprinter for printing out cyclic types when
1749there is no declared name for a type in the cycle. Because the asmprinter does
1750not want to print out an infinite type string, it needs a syntax to handle
1751recursive types that have no names (all names are optional in llvm IR).
1752</p>
1753
1754<h5>Syntax:</h5>
1755<pre>
1756 \&lt;level&gt;
1757</pre>
1758
1759<p>
1760The level is the count of the lexical type that is being referred to.
1761</p>
1762
1763<h5>Examples:</h5>
1764
1765<table class="layout">
1766 <tr class="layout">
1767 <td class="left"><tt>\1*</tt></td>
1768 <td class="left">Self-referential pointer.</td>
1769 </tr>
1770 <tr class="layout">
1771 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1772 <td class="left">Recursive structure where the upref refers to the out-most
1773 structure.</td>
1774 </tr>
1775</table>
1776</div>
1777
Chris Lattner69c11bb2005-04-25 17:34:15 +00001778
Chris Lattnerc3f59762004-12-09 17:30:23 +00001779<!-- *********************************************************************** -->
1780<div class="doc_section"> <a name="constants">Constants</a> </div>
1781<!-- *********************************************************************** -->
1782
1783<div class="doc_text">
1784
1785<p>LLVM has several different basic types of constants. This section describes
1786them all and their syntax.</p>
1787
1788</div>
1789
1790<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001791<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001792
1793<div class="doc_text">
1794
1795<dl>
1796 <dt><b>Boolean constants</b></dt>
1797
1798 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001799 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001800 </dd>
1801
1802 <dt><b>Integer constants</b></dt>
1803
Reid Spencercc16dc32004-12-09 18:02:53 +00001804 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001805 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001806 integer types.
1807 </dd>
1808
1809 <dt><b>Floating point constants</b></dt>
1810
1811 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1812 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001813 notation (see below). The assembler requires the exact decimal value of
1814 a floating-point constant. For example, the assembler accepts 1.25 but
1815 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1816 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001817
1818 <dt><b>Null pointer constants</b></dt>
1819
John Criswell9e2485c2004-12-10 15:51:16 +00001820 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001821 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1822
1823</dl>
1824
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001825<p>The one non-intuitive notation for constants is the hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001826of floating point constants. For example, the form '<tt>double
18270x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
18284.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001829(and the only time that they are generated by the disassembler) is when a
1830floating point constant must be emitted but it cannot be represented as a
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001831decimal floating point number in a reasonable number of digits. For example,
1832NaN's, infinities, and other
Reid Spencercc16dc32004-12-09 18:02:53 +00001833special values are represented in their IEEE hexadecimal format so that
1834assembly and disassembly do not cause any bits to change in the constants.</p>
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001835<p>When using the hexadecimal form, constants of types float and double are
1836represented using the 16-digit form shown above (which matches the IEEE754
1837representation for double); float values must, however, be exactly representable
1838as IEE754 single precision.
1839Hexadecimal format is always used for long
1840double, and there are three forms of long double. The 80-bit
1841format used by x86 is represented as <tt>0xK</tt>
1842followed by 20 hexadecimal digits.
1843The 128-bit format used by PowerPC (two adjacent doubles) is represented
1844by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit
1845format is represented
1846by <tt>0xL</tt> followed by 32 hexadecimal digits; no currently supported
1847target uses this format. Long doubles will only work if they match
1848the long double format on your target. All hexadecimal formats are big-endian
1849(sign bit at the left).</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001850</div>
1851
1852<!-- ======================================================================= -->
Chris Lattner70882792009-02-28 18:32:25 +00001853<div class="doc_subsection">
1854<a name="aggregateconstants"> <!-- old anchor -->
1855<a name="complexconstants">Complex Constants</a></a>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001856</div>
1857
1858<div class="doc_text">
Chris Lattner70882792009-02-28 18:32:25 +00001859<p>Complex constants are a (potentially recursive) combination of simple
1860constants and smaller complex constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001861
1862<dl>
1863 <dt><b>Structure constants</b></dt>
1864
1865 <dd>Structure constants are represented with notation similar to structure
1866 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001867 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1868 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001869 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001870 types of elements must match those specified by the type.
1871 </dd>
1872
1873 <dt><b>Array constants</b></dt>
1874
1875 <dd>Array constants are represented with notation similar to array type
1876 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001877 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001878 constants must have <a href="#t_array">array type</a>, and the number and
1879 types of elements must match those specified by the type.
1880 </dd>
1881
Reid Spencer485bad12007-02-15 03:07:05 +00001882 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001883
Reid Spencer485bad12007-02-15 03:07:05 +00001884 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001885 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001886 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001887 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001888 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001889 match those specified by the type.
1890 </dd>
1891
1892 <dt><b>Zero initialization</b></dt>
1893
1894 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1895 value to zero of <em>any</em> type, including scalar and aggregate types.
1896 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001897 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001898 initializers.
1899 </dd>
Nick Lewycky21cc4462009-04-04 07:22:01 +00001900
1901 <dt><b>Metadata node</b></dt>
1902
Nick Lewycky1e8c7a62009-05-30 16:08:30 +00001903 <dd>A metadata node is a structure-like constant with
1904 <a href="#t_metadata">metadata type</a>. For example:
1905 "<tt>metadata !{ i32 0, metadata !"test" }</tt>". Unlike other constants
1906 that are meant to be interpreted as part of the instruction stream, metadata
1907 is a place to attach additional information such as debug info.
Nick Lewycky21cc4462009-04-04 07:22:01 +00001908 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001909</dl>
1910
1911</div>
1912
1913<!-- ======================================================================= -->
1914<div class="doc_subsection">
1915 <a name="globalconstants">Global Variable and Function Addresses</a>
1916</div>
1917
1918<div class="doc_text">
1919
1920<p>The addresses of <a href="#globalvars">global variables</a> and <a
1921href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001922constants. These constants are explicitly referenced when the <a
1923href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001924href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1925file:</p>
1926
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001927<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001928<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001929@X = global i32 17
1930@Y = global i32 42
1931@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001932</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001933</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001934
1935</div>
1936
1937<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001938<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001939<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001940 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001941 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001942 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001943
Reid Spencer2dc45b82004-12-09 18:13:12 +00001944 <p>Undefined values indicate to the compiler that the program is well defined
1945 no matter what value is used, giving the compiler more freedom to optimize.
1946 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001947</div>
1948
1949<!-- ======================================================================= -->
1950<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1951</div>
1952
1953<div class="doc_text">
1954
1955<p>Constant expressions are used to allow expressions involving other constants
1956to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001957href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001958that does not have side effects (e.g. load and call are not supported). The
1959following is the syntax for constant expressions:</p>
1960
1961<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001962 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1963 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001964 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001965
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001966 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1967 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001968 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001969
1970 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1971 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001972 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001973
1974 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1975 <dd>Truncate a floating point constant to another floating point type. The
1976 size of CST must be larger than the size of TYPE. Both types must be
1977 floating point.</dd>
1978
1979 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1980 <dd>Floating point extend a constant to another type. The size of CST must be
1981 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1982
Reid Spencer1539a1c2007-07-31 14:40:14 +00001983 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001984 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001985 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1986 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1987 of the same number of elements. If the value won't fit in the integer type,
1988 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001989
Reid Spencerd4448792006-11-09 23:03:26 +00001990 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001991 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001992 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1993 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1994 of the same number of elements. If the value won't fit in the integer type,
1995 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001996
Reid Spencerd4448792006-11-09 23:03:26 +00001997 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001998 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001999 constant. TYPE must be a scalar or vector floating point type. CST must be of
2000 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
2001 of the same number of elements. If the value won't fit in the floating point
2002 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002003
Reid Spencerd4448792006-11-09 23:03:26 +00002004 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002005 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00002006 constant. TYPE must be a scalar or vector floating point type. CST must be of
2007 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
2008 of the same number of elements. If the value won't fit in the floating point
2009 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002010
Reid Spencer5c0ef472006-11-11 23:08:07 +00002011 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
2012 <dd>Convert a pointer typed constant to the corresponding integer constant
2013 TYPE must be an integer type. CST must be of pointer type. The CST value is
2014 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
2015
2016 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
2017 <dd>Convert a integer constant to a pointer constant. TYPE must be a
2018 pointer type. CST must be of integer type. The CST value is zero extended,
2019 truncated, or unchanged to make it fit in a pointer size. This one is
2020 <i>really</i> dangerous!</dd>
2021
2022 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner03bbad62009-02-28 18:27:03 +00002023 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2024 are the same as those for the <a href="#i_bitcast">bitcast
2025 instruction</a>.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002026
2027 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
2028
2029 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
2030 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2031 instruction, the index list may have zero or more indexes, which are required
2032 to make sense for the type of "CSTPTR".</dd>
2033
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002034 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
2035
2036 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00002037 constants.</dd>
2038
2039 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2040 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2041
2042 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2043 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002044
Nate Begemanac80ade2008-05-12 19:01:56 +00002045 <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt>
2046 <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd>
2047
2048 <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt>
2049 <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd>
2050
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002051 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
2052
2053 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohman0e451ce2008-10-14 16:51:45 +00002054 operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002055
Robert Bocchino05ccd702006-01-15 20:48:27 +00002056 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
2057
2058 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00002059 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00002060
Chris Lattnerc1989542006-04-08 00:13:41 +00002061
2062 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
2063
2064 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00002065 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00002066
Chris Lattnerc3f59762004-12-09 17:30:23 +00002067 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
2068
Reid Spencer2dc45b82004-12-09 18:13:12 +00002069 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2070 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00002071 binary</a> operations. The constraints on operands are the same as those for
2072 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00002073 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002074</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002075</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00002076
Nick Lewycky21cc4462009-04-04 07:22:01 +00002077<!-- ======================================================================= -->
2078<div class="doc_subsection"><a name="metadata">Embedded Metadata</a>
2079</div>
2080
2081<div class="doc_text">
2082
2083<p>Embedded metadata provides a way to attach arbitrary data to the
2084instruction stream without affecting the behaviour of the program. There are
Nick Lewycky7a0370f2009-05-30 05:06:04 +00002085two metadata primitives, strings and nodes. All metadata has the
2086<tt>metadata</tt> type and is identified in syntax by a preceding exclamation
2087point ('<tt>!</tt>').
Nick Lewycky21cc4462009-04-04 07:22:01 +00002088</p>
2089
2090<p>A metadata string is a string surrounded by double quotes. It can contain
2091any character by escaping non-printable characters with "\xx" where "xx" is
2092the two digit hex code. For example: "<tt>!"test\00"</tt>".
2093</p>
2094
2095<p>Metadata nodes are represented with notation similar to structure constants
2096(a comma separated list of elements, surrounded by braces and preceeded by an
Nick Lewycky7a0370f2009-05-30 05:06:04 +00002097exclamation point). For example: "<tt>!{ metadata !"test\00", i32 10}</tt>".
Nick Lewycky21cc4462009-04-04 07:22:01 +00002098</p>
2099
Nick Lewyckycb337992009-05-10 20:57:05 +00002100<p>A metadata node will attempt to track changes to the values it holds. In
2101the event that a value is deleted, it will be replaced with a typeless
Nick Lewycky7a0370f2009-05-30 05:06:04 +00002102"<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p>
Nick Lewyckycb337992009-05-10 20:57:05 +00002103
Nick Lewycky21cc4462009-04-04 07:22:01 +00002104<p>Optimizations may rely on metadata to provide additional information about
2105the program that isn't available in the instructions, or that isn't easily
2106computable. Similarly, the code generator may expect a certain metadata format
2107to be used to express debugging information.</p>
2108</div>
2109
Chris Lattner00950542001-06-06 20:29:01 +00002110<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00002111<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2112<!-- *********************************************************************** -->
2113
2114<!-- ======================================================================= -->
2115<div class="doc_subsection">
2116<a name="inlineasm">Inline Assembler Expressions</a>
2117</div>
2118
2119<div class="doc_text">
2120
2121<p>
2122LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
2123Module-Level Inline Assembly</a>) through the use of a special value. This
2124value represents the inline assembler as a string (containing the instructions
2125to emit), a list of operand constraints (stored as a string), and a flag that
2126indicates whether or not the inline asm expression has side effects. An example
2127inline assembler expression is:
2128</p>
2129
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002130<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002131<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002132i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00002133</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002134</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002135
2136<p>
2137Inline assembler expressions may <b>only</b> be used as the callee operand of
2138a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
2139</p>
2140
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002141<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002142<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002143%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00002144</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002145</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002146
2147<p>
2148Inline asms with side effects not visible in the constraint list must be marked
2149as having side effects. This is done through the use of the
2150'<tt>sideeffect</tt>' keyword, like so:
2151</p>
2152
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002153<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002154<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002155call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00002156</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002157</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002158
2159<p>TODO: The format of the asm and constraints string still need to be
2160documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattner4f993352008-10-04 18:36:02 +00002161need to be documented). This is probably best done by reference to another
2162document that covers inline asm from a holistic perspective.
Chris Lattnere87d6532006-01-25 23:47:57 +00002163</p>
2164
2165</div>
2166
2167<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00002168<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2169<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00002170
Misha Brukman9d0919f2003-11-08 01:05:38 +00002171<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002172
Chris Lattner261efe92003-11-25 01:02:51 +00002173<p>The LLVM instruction set consists of several different
2174classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00002175instructions</a>, <a href="#binaryops">binary instructions</a>,
2176<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00002177 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
2178instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002179
Misha Brukman9d0919f2003-11-08 01:05:38 +00002180</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002181
Chris Lattner00950542001-06-06 20:29:01 +00002182<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002183<div class="doc_subsection"> <a name="terminators">Terminator
2184Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002185
Misha Brukman9d0919f2003-11-08 01:05:38 +00002186<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002187
Chris Lattner261efe92003-11-25 01:02:51 +00002188<p>As mentioned <a href="#functionstructure">previously</a>, every
2189basic block in a program ends with a "Terminator" instruction, which
2190indicates which block should be executed after the current block is
2191finished. These terminator instructions typically yield a '<tt>void</tt>'
2192value: they produce control flow, not values (the one exception being
2193the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00002194<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00002195 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
2196instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00002197the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
2198 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
2199 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002200
Misha Brukman9d0919f2003-11-08 01:05:38 +00002201</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002202
Chris Lattner00950542001-06-06 20:29:01 +00002203<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002204<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2205Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002206<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002207<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002208<pre>
2209 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002210 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00002211</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002212
Chris Lattner00950542001-06-06 20:29:01 +00002213<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002214
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002215<p>The '<tt>ret</tt>' instruction is used to return control flow (and
2216optionally a value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00002217<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002218returns a value and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00002219control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002220
Chris Lattner00950542001-06-06 20:29:01 +00002221<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002222
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002223<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
2224the return value. The type of the return value must be a
2225'<a href="#t_firstclass">first class</a>' type.</p>
2226
2227<p>A function is not <a href="#wellformed">well formed</a> if
2228it it has a non-void return type and contains a '<tt>ret</tt>'
2229instruction with no return value or a return value with a type that
2230does not match its type, or if it has a void return type and contains
2231a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002232
Chris Lattner00950542001-06-06 20:29:01 +00002233<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002234
Chris Lattner261efe92003-11-25 01:02:51 +00002235<p>When the '<tt>ret</tt>' instruction is executed, control flow
2236returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00002237 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00002238the instruction after the call. If the caller was an "<a
2239 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00002240at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00002241returns a value, that value shall set the call or invoke instruction's
Dan Gohman0e451ce2008-10-14 16:51:45 +00002242return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002243
Chris Lattner00950542001-06-06 20:29:01 +00002244<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002245
2246<pre>
2247 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002248 ret void <i>; Return from a void function</i>
Bill Wendling0a4bbbf2009-02-28 22:12:54 +00002249 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00002250</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002251
Dan Gohmand8791e52009-01-24 15:58:40 +00002252<p>Note that the code generator does not yet fully support large
2253 return values. The specific sizes that are currently supported are
2254 dependent on the target. For integers, on 32-bit targets the limit
2255 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2256 For aggregate types, the current limits are dependent on the element
2257 types; for example targets are often limited to 2 total integer
2258 elements and 2 total floating-point elements.</p>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002259
Misha Brukman9d0919f2003-11-08 01:05:38 +00002260</div>
Chris Lattner00950542001-06-06 20:29:01 +00002261<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002262<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002263<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002264<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002265<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00002266</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002267<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002268<p>The '<tt>br</tt>' instruction is used to cause control flow to
2269transfer to a different basic block in the current function. There are
2270two forms of this instruction, corresponding to a conditional branch
2271and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002272<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002273<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00002274single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00002275unconditional form of the '<tt>br</tt>' instruction takes a single
2276'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002277<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002278<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002279argument is evaluated. If the value is <tt>true</tt>, control flows
2280to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2281control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002282<h5>Example:</h5>
Chris Lattner60150a32009-05-09 18:11:50 +00002283<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00002284 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002285</div>
Chris Lattner00950542001-06-06 20:29:01 +00002286<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002287<div class="doc_subsubsection">
2288 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2289</div>
2290
Misha Brukman9d0919f2003-11-08 01:05:38 +00002291<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002292<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002293
2294<pre>
2295 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2296</pre>
2297
Chris Lattner00950542001-06-06 20:29:01 +00002298<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002299
2300<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2301several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00002302instruction, allowing a branch to occur to one of many possible
2303destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002304
2305
Chris Lattner00950542001-06-06 20:29:01 +00002306<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002307
2308<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2309comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2310an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2311table is not allowed to contain duplicate constant entries.</p>
2312
Chris Lattner00950542001-06-06 20:29:01 +00002313<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002314
Chris Lattner261efe92003-11-25 01:02:51 +00002315<p>The <tt>switch</tt> instruction specifies a table of values and
2316destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00002317table is searched for the given value. If the value is found, control flow is
2318transfered to the corresponding destination; otherwise, control flow is
2319transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002320
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002321<h5>Implementation:</h5>
2322
2323<p>Depending on properties of the target machine and the particular
2324<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00002325ways. For example, it could be generated as a series of chained conditional
2326branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002327
2328<h5>Example:</h5>
2329
2330<pre>
2331 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002332 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman2a08c532009-01-04 23:44:43 +00002333 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002334
2335 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002336 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002337
2338 <i>; Implement a jump table:</i>
Dan Gohman2a08c532009-01-04 23:44:43 +00002339 switch i32 %val, label %otherwise [ i32 0, label %onzero
2340 i32 1, label %onone
2341 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002342</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002343</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002344
Chris Lattner00950542001-06-06 20:29:01 +00002345<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002346<div class="doc_subsubsection">
2347 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2348</div>
2349
Misha Brukman9d0919f2003-11-08 01:05:38 +00002350<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002351
Chris Lattner00950542001-06-06 20:29:01 +00002352<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002353
2354<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00002355 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00002356 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002357</pre>
2358
Chris Lattner6536cfe2002-05-06 22:08:29 +00002359<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002360
2361<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2362function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002363'<tt>normal</tt>' label or the
2364'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002365"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2366"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002367href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohman0e451ce2008-10-14 16:51:45 +00002368continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002369
Chris Lattner00950542001-06-06 20:29:01 +00002370<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002371
Misha Brukman9d0919f2003-11-08 01:05:38 +00002372<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002373
Chris Lattner00950542001-06-06 20:29:01 +00002374<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002375 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002376 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002377 convention</a> the call should use. If none is specified, the call defaults
2378 to using C calling conventions.
2379 </li>
Devang Patelf642f472008-10-06 18:50:38 +00002380
2381 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2382 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2383 and '<tt>inreg</tt>' attributes are valid here.</li>
2384
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002385 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2386 function value being invoked. In most cases, this is a direct function
2387 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2388 an arbitrary pointer to function value.
2389 </li>
2390
2391 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2392 function to be invoked. </li>
2393
2394 <li>'<tt>function args</tt>': argument list whose types match the function
2395 signature argument types. If the function signature indicates the function
2396 accepts a variable number of arguments, the extra arguments can be
2397 specified. </li>
2398
2399 <li>'<tt>normal label</tt>': the label reached when the called function
2400 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2401
2402 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2403 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2404
Devang Patel307e8ab2008-10-07 17:48:33 +00002405 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00002406 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2407 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00002408</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002409
Chris Lattner00950542001-06-06 20:29:01 +00002410<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002411
Misha Brukman9d0919f2003-11-08 01:05:38 +00002412<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002413href="#i_call">call</a></tt>' instruction in most regards. The primary
2414difference is that it establishes an association with a label, which is used by
2415the runtime library to unwind the stack.</p>
2416
2417<p>This instruction is used in languages with destructors to ensure that proper
2418cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2419exception. Additionally, this is important for implementation of
2420'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2421
Jay Foadd2449092009-06-03 10:20:10 +00002422<p>For the purposes of the SSA form, the definition of the value
2423returned by the '<tt>invoke</tt>' instruction is deemed to occur on
2424the edge from the current block to the "normal" label. If the callee
2425unwinds then no return value is available.</p>
Dan Gohmanf96a4992009-05-22 21:47:08 +00002426
Chris Lattner00950542001-06-06 20:29:01 +00002427<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002428<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002429 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002430 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002431 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002432 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002433</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002434</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002435
2436
Chris Lattner27f71f22003-09-03 00:41:47 +00002437<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002438
Chris Lattner261efe92003-11-25 01:02:51 +00002439<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2440Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002441
Misha Brukman9d0919f2003-11-08 01:05:38 +00002442<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002443
Chris Lattner27f71f22003-09-03 00:41:47 +00002444<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002445<pre>
2446 unwind
2447</pre>
2448
Chris Lattner27f71f22003-09-03 00:41:47 +00002449<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002450
2451<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2452at the first callee in the dynamic call stack which used an <a
2453href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2454primarily used to implement exception handling.</p>
2455
Chris Lattner27f71f22003-09-03 00:41:47 +00002456<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002457
Chris Lattner72ed2002008-04-19 21:01:16 +00002458<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002459immediately halt. The dynamic call stack is then searched for the first <a
2460href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2461execution continues at the "exceptional" destination block specified by the
2462<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2463dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002464</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002465
2466<!-- _______________________________________________________________________ -->
2467
2468<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2469Instruction</a> </div>
2470
2471<div class="doc_text">
2472
2473<h5>Syntax:</h5>
2474<pre>
2475 unreachable
2476</pre>
2477
2478<h5>Overview:</h5>
2479
2480<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2481instruction is used to inform the optimizer that a particular portion of the
2482code is not reachable. This can be used to indicate that the code after a
2483no-return function cannot be reached, and other facts.</p>
2484
2485<h5>Semantics:</h5>
2486
2487<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2488</div>
2489
2490
2491
Chris Lattner00950542001-06-06 20:29:01 +00002492<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002493<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002494<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002495<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002496program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002497produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002498multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002499The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002500<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002501</div>
Chris Lattner00950542001-06-06 20:29:01 +00002502<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002503<div class="doc_subsubsection">
2504 <a name="i_add">'<tt>add</tt>' Instruction</a>
2505</div>
2506
Misha Brukman9d0919f2003-11-08 01:05:38 +00002507<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002508
Chris Lattner00950542001-06-06 20:29:01 +00002509<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002510
2511<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002512 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002513</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002514
Chris Lattner00950542001-06-06 20:29:01 +00002515<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002516
Misha Brukman9d0919f2003-11-08 01:05:38 +00002517<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002518
Chris Lattner00950542001-06-06 20:29:01 +00002519<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002520
2521<p>The two arguments to the '<tt>add</tt>' instruction must be <a
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002522 href="#t_integer">integer</a> or
2523 <a href="#t_vector">vector</a> of integer values. Both arguments must
2524 have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002525
Chris Lattner00950542001-06-06 20:29:01 +00002526<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002527
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002528<p>The value produced is the integer sum of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002529
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002530<p>If the sum has unsigned overflow, the result returned is the
Chris Lattner5ec89832008-01-28 00:36:27 +00002531mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2532the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002533
Chris Lattner5ec89832008-01-28 00:36:27 +00002534<p>Because LLVM integers use a two's complement representation, this
2535instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002536
Chris Lattner00950542001-06-06 20:29:01 +00002537<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002538
2539<pre>
2540 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002541</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002542</div>
Chris Lattner00950542001-06-06 20:29:01 +00002543<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002544<div class="doc_subsubsection">
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002545 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
2546</div>
2547
2548<div class="doc_text">
2549
2550<h5>Syntax:</h5>
2551
2552<pre>
2553 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2554</pre>
2555
2556<h5>Overview:</h5>
2557
2558<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
2559
2560<h5>Arguments:</h5>
2561
2562<p>The two arguments to the '<tt>fadd</tt>' instruction must be
2563<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2564floating point values. Both arguments must have identical types.</p>
2565
2566<h5>Semantics:</h5>
2567
2568<p>The value produced is the floating point sum of the two operands.</p>
2569
2570<h5>Example:</h5>
2571
2572<pre>
2573 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
2574</pre>
2575</div>
2576<!-- _______________________________________________________________________ -->
2577<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00002578 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2579</div>
2580
Misha Brukman9d0919f2003-11-08 01:05:38 +00002581<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002582
Chris Lattner00950542001-06-06 20:29:01 +00002583<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002584
2585<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002586 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002587</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002588
Chris Lattner00950542001-06-06 20:29:01 +00002589<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002590
Misha Brukman9d0919f2003-11-08 01:05:38 +00002591<p>The '<tt>sub</tt>' instruction returns the difference of its two
2592operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002593
2594<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2595'<tt>neg</tt>' instruction present in most other intermediate
2596representations.</p>
2597
Chris Lattner00950542001-06-06 20:29:01 +00002598<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002599
2600<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002601 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2602 integer values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002603
Chris Lattner00950542001-06-06 20:29:01 +00002604<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002605
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002606<p>The value produced is the integer difference of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002607
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002608<p>If the difference has unsigned overflow, the result returned is the
Chris Lattner5ec89832008-01-28 00:36:27 +00002609mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2610the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002611
Chris Lattner5ec89832008-01-28 00:36:27 +00002612<p>Because LLVM integers use a two's complement representation, this
2613instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002614
Chris Lattner00950542001-06-06 20:29:01 +00002615<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002616<pre>
2617 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002618 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002619</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002620</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002621
Chris Lattner00950542001-06-06 20:29:01 +00002622<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002623<div class="doc_subsubsection">
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002624 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
2625</div>
2626
2627<div class="doc_text">
2628
2629<h5>Syntax:</h5>
2630
2631<pre>
2632 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2633</pre>
2634
2635<h5>Overview:</h5>
2636
2637<p>The '<tt>fsub</tt>' instruction returns the difference of its two
2638operands.</p>
2639
2640<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
2641'<tt>fneg</tt>' instruction present in most other intermediate
2642representations.</p>
2643
2644<h5>Arguments:</h5>
2645
2646<p>The two arguments to the '<tt>fsub</tt>' instruction must be <a
2647 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2648 of floating point values. Both arguments must have identical types.</p>
2649
2650<h5>Semantics:</h5>
2651
2652<p>The value produced is the floating point difference of the two operands.</p>
2653
2654<h5>Example:</h5>
2655<pre>
2656 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
2657 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
2658</pre>
2659</div>
2660
2661<!-- _______________________________________________________________________ -->
2662<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00002663 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2664</div>
2665
Misha Brukman9d0919f2003-11-08 01:05:38 +00002666<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002667
Chris Lattner00950542001-06-06 20:29:01 +00002668<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002669<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002670</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002671<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002672<p>The '<tt>mul</tt>' instruction returns the product of its two
2673operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002674
Chris Lattner00950542001-06-06 20:29:01 +00002675<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002676
2677<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002678href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2679values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002680
Chris Lattner00950542001-06-06 20:29:01 +00002681<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002682
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002683<p>The value produced is the integer product of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002684
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002685<p>If the result of the multiplication has unsigned overflow,
Chris Lattner5ec89832008-01-28 00:36:27 +00002686the result returned is the mathematical result modulo
26872<sup>n</sup>, where n is the bit width of the result.</p>
2688<p>Because LLVM integers use a two's complement representation, and the
2689result is the same width as the operands, this instruction returns the
2690correct result for both signed and unsigned integers. If a full product
2691(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2692should be sign-extended or zero-extended as appropriate to the
2693width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002694<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002695<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002696</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002697</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002698
Chris Lattner00950542001-06-06 20:29:01 +00002699<!-- _______________________________________________________________________ -->
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002700<div class="doc_subsubsection">
2701 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
2702</div>
2703
2704<div class="doc_text">
2705
2706<h5>Syntax:</h5>
2707<pre> &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2708</pre>
2709<h5>Overview:</h5>
2710<p>The '<tt>fmul</tt>' instruction returns the product of its two
2711operands.</p>
2712
2713<h5>Arguments:</h5>
2714
2715<p>The two arguments to the '<tt>fmul</tt>' instruction must be
2716<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2717of floating point values. Both arguments must have identical types.</p>
2718
2719<h5>Semantics:</h5>
2720
2721<p>The value produced is the floating point product of the two operands.</p>
2722
2723<h5>Example:</h5>
2724<pre> &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
2725</pre>
2726</div>
2727
2728<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002729<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2730</a></div>
2731<div class="doc_text">
2732<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002733<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002734</pre>
2735<h5>Overview:</h5>
2736<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2737operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002738
Reid Spencer1628cec2006-10-26 06:15:43 +00002739<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002740
Reid Spencer1628cec2006-10-26 06:15:43 +00002741<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002742<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2743values. Both arguments must have identical types.</p>
2744
Reid Spencer1628cec2006-10-26 06:15:43 +00002745<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002746
Chris Lattner5ec89832008-01-28 00:36:27 +00002747<p>The value produced is the unsigned integer quotient of the two operands.</p>
2748<p>Note that unsigned integer division and signed integer division are distinct
2749operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2750<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002751<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002752<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002753</pre>
2754</div>
2755<!-- _______________________________________________________________________ -->
2756<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2757</a> </div>
2758<div class="doc_text">
2759<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002760<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002761 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002762</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002763
Reid Spencer1628cec2006-10-26 06:15:43 +00002764<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002765
Reid Spencer1628cec2006-10-26 06:15:43 +00002766<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2767operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002768
Reid Spencer1628cec2006-10-26 06:15:43 +00002769<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002770
2771<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2772<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2773values. Both arguments must have identical types.</p>
2774
Reid Spencer1628cec2006-10-26 06:15:43 +00002775<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002776<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002777<p>Note that signed integer division and unsigned integer division are distinct
2778operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2779<p>Division by zero leads to undefined behavior. Overflow also leads to
2780undefined behavior; this is a rare case, but can occur, for example,
2781by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002782<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002783<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002784</pre>
2785</div>
2786<!-- _______________________________________________________________________ -->
2787<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002788Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002789<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002790<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002791<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002792 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002793</pre>
2794<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002795
Reid Spencer1628cec2006-10-26 06:15:43 +00002796<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002797operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002798
Chris Lattner261efe92003-11-25 01:02:51 +00002799<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002800
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002801<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002802<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2803of floating point values. Both arguments must have identical types.</p>
2804
Chris Lattner261efe92003-11-25 01:02:51 +00002805<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002806
Reid Spencer1628cec2006-10-26 06:15:43 +00002807<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002808
Chris Lattner261efe92003-11-25 01:02:51 +00002809<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002810
2811<pre>
2812 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002813</pre>
2814</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002815
Chris Lattner261efe92003-11-25 01:02:51 +00002816<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002817<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2818</div>
2819<div class="doc_text">
2820<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002821<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002822</pre>
2823<h5>Overview:</h5>
2824<p>The '<tt>urem</tt>' instruction returns the remainder from the
2825unsigned division of its two arguments.</p>
2826<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002827<p>The two arguments to the '<tt>urem</tt>' instruction must be
2828<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2829values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002830<h5>Semantics:</h5>
2831<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002832This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002833<p>Note that unsigned integer remainder and signed integer remainder are
2834distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2835<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002836<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002837<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002838</pre>
2839
2840</div>
2841<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002842<div class="doc_subsubsection">
2843 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2844</div>
2845
Chris Lattner261efe92003-11-25 01:02:51 +00002846<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002847
Chris Lattner261efe92003-11-25 01:02:51 +00002848<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002849
2850<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002851 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002852</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002853
Chris Lattner261efe92003-11-25 01:02:51 +00002854<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002855
Reid Spencer0a783f72006-11-02 01:53:59 +00002856<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002857signed division of its two operands. This instruction can also take
2858<a href="#t_vector">vector</a> versions of the values in which case
2859the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002860
Chris Lattner261efe92003-11-25 01:02:51 +00002861<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002862
Reid Spencer0a783f72006-11-02 01:53:59 +00002863<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002864<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2865values. Both arguments must have identical types.</p>
2866
Chris Lattner261efe92003-11-25 01:02:51 +00002867<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002868
Reid Spencer0a783f72006-11-02 01:53:59 +00002869<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002870has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2871operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002872a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002873 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002874Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002875please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002876Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002877<p>Note that signed integer remainder and unsigned integer remainder are
2878distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2879<p>Taking the remainder of a division by zero leads to undefined behavior.
2880Overflow also leads to undefined behavior; this is a rare case, but can occur,
2881for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2882(The remainder doesn't actually overflow, but this rule lets srem be
2883implemented using instructions that return both the result of the division
2884and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002885<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002886<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002887</pre>
2888
2889</div>
2890<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002891<div class="doc_subsubsection">
2892 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2893
Reid Spencer0a783f72006-11-02 01:53:59 +00002894<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002895
Reid Spencer0a783f72006-11-02 01:53:59 +00002896<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002897<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002898</pre>
2899<h5>Overview:</h5>
2900<p>The '<tt>frem</tt>' instruction returns the remainder from the
2901division of its two operands.</p>
2902<h5>Arguments:</h5>
2903<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002904<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2905of floating point values. Both arguments must have identical types.</p>
2906
Reid Spencer0a783f72006-11-02 01:53:59 +00002907<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002908
Chris Lattnera73afe02008-04-01 18:45:27 +00002909<p>This instruction returns the <i>remainder</i> of a division.
2910The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002911
Reid Spencer0a783f72006-11-02 01:53:59 +00002912<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002913
2914<pre>
2915 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002916</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002917</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002918
Reid Spencer8e11bf82007-02-02 13:57:07 +00002919<!-- ======================================================================= -->
2920<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2921Operations</a> </div>
2922<div class="doc_text">
2923<p>Bitwise binary operators are used to do various forms of
2924bit-twiddling in a program. They are generally very efficient
2925instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002926instructions. They require two operands of the same type, execute an operation on them,
2927and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002928</div>
2929
Reid Spencer569f2fa2007-01-31 21:39:12 +00002930<!-- _______________________________________________________________________ -->
2931<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2932Instruction</a> </div>
2933<div class="doc_text">
2934<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002935<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002936</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002937
Reid Spencer569f2fa2007-01-31 21:39:12 +00002938<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002939
Reid Spencer569f2fa2007-01-31 21:39:12 +00002940<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2941the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002942
Reid Spencer569f2fa2007-01-31 21:39:12 +00002943<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002944
Reid Spencer569f2fa2007-01-31 21:39:12 +00002945<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002946 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002947type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002948
Reid Spencer569f2fa2007-01-31 21:39:12 +00002949<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002950
Gabor Greiffb224a22008-08-07 21:46:00 +00002951<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2952where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
Mon P Wang01f8d092008-12-10 08:55:09 +00002953equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
2954If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2955corresponding shift amount in <tt>op2</tt>.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002956
Reid Spencer569f2fa2007-01-31 21:39:12 +00002957<h5>Example:</h5><pre>
2958 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2959 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2960 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002961 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002962 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002963</pre>
2964</div>
2965<!-- _______________________________________________________________________ -->
2966<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2967Instruction</a> </div>
2968<div class="doc_text">
2969<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002970<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002971</pre>
2972
2973<h5>Overview:</h5>
2974<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002975operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002976
2977<h5>Arguments:</h5>
2978<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002979<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002980type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002981
2982<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002983
Reid Spencer569f2fa2007-01-31 21:39:12 +00002984<p>This instruction always performs a logical shift right operation. The most
2985significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002986shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
Mon P Wang01f8d092008-12-10 08:55:09 +00002987the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
2988vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
2989amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002990
2991<h5>Example:</h5>
2992<pre>
2993 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2994 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2995 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2996 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002997 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002998 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002999</pre>
3000</div>
3001
Reid Spencer8e11bf82007-02-02 13:57:07 +00003002<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00003003<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
3004Instruction</a> </div>
3005<div class="doc_text">
3006
3007<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003008<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003009</pre>
3010
3011<h5>Overview:</h5>
3012<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003013operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003014
3015<h5>Arguments:</h5>
3016<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00003017<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00003018type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003019
3020<h5>Semantics:</h5>
3021<p>This instruction always performs an arithmetic shift right operation,
3022The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00003023of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
Mon P Wang01f8d092008-12-10 08:55:09 +00003024larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
3025arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
3026corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003027
3028<h5>Example:</h5>
3029<pre>
3030 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3031 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3032 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3033 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003034 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00003035 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003036</pre>
3037</div>
3038
Chris Lattner00950542001-06-06 20:29:01 +00003039<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003040<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3041Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00003042
Misha Brukman9d0919f2003-11-08 01:05:38 +00003043<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00003044
Chris Lattner00950542001-06-06 20:29:01 +00003045<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003046
3047<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00003048 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003049</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003050
Chris Lattner00950542001-06-06 20:29:01 +00003051<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003052
Chris Lattner261efe92003-11-25 01:02:51 +00003053<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
3054its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003055
Chris Lattner00950542001-06-06 20:29:01 +00003056<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003057
3058<p>The two arguments to the '<tt>and</tt>' instruction must be
3059<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3060values. Both arguments must have identical types.</p>
3061
Chris Lattner00950542001-06-06 20:29:01 +00003062<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003063<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003064<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00003065<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003066<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00003067 <tbody>
3068 <tr>
3069 <td>In0</td>
3070 <td>In1</td>
3071 <td>Out</td>
3072 </tr>
3073 <tr>
3074 <td>0</td>
3075 <td>0</td>
3076 <td>0</td>
3077 </tr>
3078 <tr>
3079 <td>0</td>
3080 <td>1</td>
3081 <td>0</td>
3082 </tr>
3083 <tr>
3084 <td>1</td>
3085 <td>0</td>
3086 <td>0</td>
3087 </tr>
3088 <tr>
3089 <td>1</td>
3090 <td>1</td>
3091 <td>1</td>
3092 </tr>
3093 </tbody>
3094</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003095</div>
Chris Lattner00950542001-06-06 20:29:01 +00003096<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003097<pre>
3098 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003099 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3100 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00003101</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003102</div>
Chris Lattner00950542001-06-06 20:29:01 +00003103<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003104<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003105<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00003106<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003107<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003108</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00003109<h5>Overview:</h5>
3110<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
3111or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003112<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003113
3114<p>The two arguments to the '<tt>or</tt>' instruction must be
3115<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3116values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003117<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003118<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003119<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00003120<div>
Chris Lattner261efe92003-11-25 01:02:51 +00003121<table border="1" cellspacing="0" cellpadding="4">
3122 <tbody>
3123 <tr>
3124 <td>In0</td>
3125 <td>In1</td>
3126 <td>Out</td>
3127 </tr>
3128 <tr>
3129 <td>0</td>
3130 <td>0</td>
3131 <td>0</td>
3132 </tr>
3133 <tr>
3134 <td>0</td>
3135 <td>1</td>
3136 <td>1</td>
3137 </tr>
3138 <tr>
3139 <td>1</td>
3140 <td>0</td>
3141 <td>1</td>
3142 </tr>
3143 <tr>
3144 <td>1</td>
3145 <td>1</td>
3146 <td>1</td>
3147 </tr>
3148 </tbody>
3149</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003150</div>
Chris Lattner00950542001-06-06 20:29:01 +00003151<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003152<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
3153 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3154 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00003155</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003156</div>
Chris Lattner00950542001-06-06 20:29:01 +00003157<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003158<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3159Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003160<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00003161<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003162<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003163</pre>
Chris Lattner00950542001-06-06 20:29:01 +00003164<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003165<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
3166or of its two operands. The <tt>xor</tt> is used to implement the
3167"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003168<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003169<p>The two arguments to the '<tt>xor</tt>' instruction must be
3170<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3171values. Both arguments must have identical types.</p>
3172
Chris Lattner00950542001-06-06 20:29:01 +00003173<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003174
Misha Brukman9d0919f2003-11-08 01:05:38 +00003175<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003176<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00003177<div>
Chris Lattner261efe92003-11-25 01:02:51 +00003178<table border="1" cellspacing="0" cellpadding="4">
3179 <tbody>
3180 <tr>
3181 <td>In0</td>
3182 <td>In1</td>
3183 <td>Out</td>
3184 </tr>
3185 <tr>
3186 <td>0</td>
3187 <td>0</td>
3188 <td>0</td>
3189 </tr>
3190 <tr>
3191 <td>0</td>
3192 <td>1</td>
3193 <td>1</td>
3194 </tr>
3195 <tr>
3196 <td>1</td>
3197 <td>0</td>
3198 <td>1</td>
3199 </tr>
3200 <tr>
3201 <td>1</td>
3202 <td>1</td>
3203 <td>0</td>
3204 </tr>
3205 </tbody>
3206</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003207</div>
Chris Lattner261efe92003-11-25 01:02:51 +00003208<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00003209<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003210<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
3211 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3212 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3213 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00003214</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003215</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003216
Chris Lattner00950542001-06-06 20:29:01 +00003217<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003218<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00003219 <a name="vectorops">Vector Operations</a>
3220</div>
3221
3222<div class="doc_text">
3223
3224<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003225target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00003226vector-specific operations needed to process vectors effectively. While LLVM
3227does directly support these vector operations, many sophisticated algorithms
3228will want to use target-specific intrinsics to take full advantage of a specific
3229target.</p>
3230
3231</div>
3232
3233<!-- _______________________________________________________________________ -->
3234<div class="doc_subsubsection">
3235 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3236</div>
3237
3238<div class="doc_text">
3239
3240<h5>Syntax:</h5>
3241
3242<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003243 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003244</pre>
3245
3246<h5>Overview:</h5>
3247
3248<p>
3249The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003250element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003251</p>
3252
3253
3254<h5>Arguments:</h5>
3255
3256<p>
3257The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003258value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00003259an index indicating the position from which to extract the element.
3260The index may be a variable.</p>
3261
3262<h5>Semantics:</h5>
3263
3264<p>
3265The result is a scalar of the same type as the element type of
3266<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3267<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3268results are undefined.
3269</p>
3270
3271<h5>Example:</h5>
3272
3273<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003274 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003275</pre>
3276</div>
3277
3278
3279<!-- _______________________________________________________________________ -->
3280<div class="doc_subsubsection">
3281 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3282</div>
3283
3284<div class="doc_text">
3285
3286<h5>Syntax:</h5>
3287
3288<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00003289 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003290</pre>
3291
3292<h5>Overview:</h5>
3293
3294<p>
3295The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003296element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003297</p>
3298
3299
3300<h5>Arguments:</h5>
3301
3302<p>
3303The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003304value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00003305scalar value whose type must equal the element type of the first
3306operand. The third operand is an index indicating the position at
3307which to insert the value. The index may be a variable.</p>
3308
3309<h5>Semantics:</h5>
3310
3311<p>
Reid Spencer485bad12007-02-15 03:07:05 +00003312The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00003313element values are those of <tt>val</tt> except at position
3314<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
3315exceeds the length of <tt>val</tt>, the results are undefined.
3316</p>
3317
3318<h5>Example:</h5>
3319
3320<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003321 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003322</pre>
3323</div>
3324
3325<!-- _______________________________________________________________________ -->
3326<div class="doc_subsubsection">
3327 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3328</div>
3329
3330<div class="doc_text">
3331
3332<h5>Syntax:</h5>
3333
3334<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003335 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003336</pre>
3337
3338<h5>Overview:</h5>
3339
3340<p>
3341The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wangaeb06d22008-11-10 04:46:22 +00003342from two input vectors, returning a vector with the same element type as
3343the input and length that is the same as the shuffle mask.
Chris Lattner3df241e2006-04-08 23:07:04 +00003344</p>
3345
3346<h5>Arguments:</h5>
3347
3348<p>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003349The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3350with types that match each other. The third argument is a shuffle mask whose
3351element type is always 'i32'. The result of the instruction is a vector whose
3352length is the same as the shuffle mask and whose element type is the same as
3353the element type of the first two operands.
Chris Lattner3df241e2006-04-08 23:07:04 +00003354</p>
3355
3356<p>
3357The shuffle mask operand is required to be a constant vector with either
3358constant integer or undef values.
3359</p>
3360
3361<h5>Semantics:</h5>
3362
3363<p>
3364The elements of the two input vectors are numbered from left to right across
3365both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wangaeb06d22008-11-10 04:46:22 +00003366the result vector, which element of the two input vectors the result element
Chris Lattner3df241e2006-04-08 23:07:04 +00003367gets. The element selector may be undef (meaning "don't care") and the second
3368operand may be undef if performing a shuffle from only one vector.
3369</p>
3370
3371<h5>Example:</h5>
3372
3373<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003374 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003375 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003376 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3377 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wangaeb06d22008-11-10 04:46:22 +00003378 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3379 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3380 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3381 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003382</pre>
3383</div>
3384
Tanya Lattner09474292006-04-14 19:24:33 +00003385
Chris Lattner3df241e2006-04-08 23:07:04 +00003386<!-- ======================================================================= -->
3387<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00003388 <a name="aggregateops">Aggregate Operations</a>
3389</div>
3390
3391<div class="doc_text">
3392
3393<p>LLVM supports several instructions for working with aggregate values.
3394</p>
3395
3396</div>
3397
3398<!-- _______________________________________________________________________ -->
3399<div class="doc_subsubsection">
3400 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3401</div>
3402
3403<div class="doc_text">
3404
3405<h5>Syntax:</h5>
3406
3407<pre>
3408 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3409</pre>
3410
3411<h5>Overview:</h5>
3412
3413<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003414The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3415or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003416</p>
3417
3418
3419<h5>Arguments:</h5>
3420
3421<p>
3422The first operand of an '<tt>extractvalue</tt>' instruction is a
3423value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003424type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003425in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003426'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3427</p>
3428
3429<h5>Semantics:</h5>
3430
3431<p>
3432The result is the value at the position in the aggregate specified by
3433the index operands.
3434</p>
3435
3436<h5>Example:</h5>
3437
3438<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003439 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003440</pre>
3441</div>
3442
3443
3444<!-- _______________________________________________________________________ -->
3445<div class="doc_subsubsection">
3446 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3447</div>
3448
3449<div class="doc_text">
3450
3451<h5>Syntax:</h5>
3452
3453<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003454 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003455</pre>
3456
3457<h5>Overview:</h5>
3458
3459<p>
3460The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003461into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003462</p>
3463
3464
3465<h5>Arguments:</h5>
3466
3467<p>
3468The first operand of an '<tt>insertvalue</tt>' instruction is a
3469value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3470The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003471The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003472indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003473indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003474'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3475The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003476by the indices.
Dan Gohman0e451ce2008-10-14 16:51:45 +00003477</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003478
3479<h5>Semantics:</h5>
3480
3481<p>
3482The result is an aggregate of the same type as <tt>val</tt>. Its
3483value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003484specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003485</p>
3486
3487<h5>Example:</h5>
3488
3489<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003490 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003491</pre>
3492</div>
3493
3494
3495<!-- ======================================================================= -->
3496<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003497 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003498</div>
3499
Misha Brukman9d0919f2003-11-08 01:05:38 +00003500<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003501
Chris Lattner261efe92003-11-25 01:02:51 +00003502<p>A key design point of an SSA-based representation is how it
3503represents memory. In LLVM, no memory locations are in SSA form, which
3504makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003505allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003506
Misha Brukman9d0919f2003-11-08 01:05:38 +00003507</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003508
Chris Lattner00950542001-06-06 20:29:01 +00003509<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003510<div class="doc_subsubsection">
3511 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3512</div>
3513
Misha Brukman9d0919f2003-11-08 01:05:38 +00003514<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003515
Chris Lattner00950542001-06-06 20:29:01 +00003516<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003517
3518<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003519 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003520</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003521
Chris Lattner00950542001-06-06 20:29:01 +00003522<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003523
Chris Lattner261efe92003-11-25 01:02:51 +00003524<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003525heap and returns a pointer to it. The object is always allocated in the generic
3526address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003527
Chris Lattner00950542001-06-06 20:29:01 +00003528<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003529
3530<p>The '<tt>malloc</tt>' instruction allocates
3531<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003532bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003533appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003534number of elements allocated, otherwise "NumElements" is defaulted to be one.
Duncan Sands434ca802009-06-20 13:26:06 +00003535If a constant alignment is specified, the value result of the allocation is
3536guaranteed to be aligned to at least that boundary. If not specified, or if
3537zero, the target can choose to align the allocation on any convenient boundary
3538compatible with the type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003539
Misha Brukman9d0919f2003-11-08 01:05:38 +00003540<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003541
Chris Lattner00950542001-06-06 20:29:01 +00003542<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003543
Chris Lattner261efe92003-11-25 01:02:51 +00003544<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Nick Lewycky02ff3082008-11-24 03:41:24 +00003545a pointer is returned. The result of a zero byte allocation is undefined. The
Chris Lattner72ed2002008-04-19 21:01:16 +00003546result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003547
Chris Lattner2cbdc452005-11-06 08:02:57 +00003548<h5>Example:</h5>
3549
3550<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003551 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003552
Bill Wendlingaac388b2007-05-29 09:42:13 +00003553 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3554 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3555 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3556 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3557 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003558</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00003559
3560<p>Note that the code generator does not yet respect the
3561 alignment value.</p>
3562
Misha Brukman9d0919f2003-11-08 01:05:38 +00003563</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003564
Chris Lattner00950542001-06-06 20:29:01 +00003565<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003566<div class="doc_subsubsection">
3567 <a name="i_free">'<tt>free</tt>' Instruction</a>
3568</div>
3569
Misha Brukman9d0919f2003-11-08 01:05:38 +00003570<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003571
Chris Lattner00950542001-06-06 20:29:01 +00003572<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003573
3574<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003575 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003576</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003577
Chris Lattner00950542001-06-06 20:29:01 +00003578<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003579
Chris Lattner261efe92003-11-25 01:02:51 +00003580<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003581memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003582
Chris Lattner00950542001-06-06 20:29:01 +00003583<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003584
Chris Lattner261efe92003-11-25 01:02:51 +00003585<p>'<tt>value</tt>' shall be a pointer value that points to a value
3586that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3587instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003588
Chris Lattner00950542001-06-06 20:29:01 +00003589<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003590
John Criswell9e2485c2004-12-10 15:51:16 +00003591<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003592after this instruction executes. If the pointer is null, the operation
3593is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003594
Chris Lattner00950542001-06-06 20:29:01 +00003595<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003596
3597<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003598 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003599 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003600</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003601</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003602
Chris Lattner00950542001-06-06 20:29:01 +00003603<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003604<div class="doc_subsubsection">
3605 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3606</div>
3607
Misha Brukman9d0919f2003-11-08 01:05:38 +00003608<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003609
Chris Lattner00950542001-06-06 20:29:01 +00003610<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003611
3612<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003613 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003614</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003615
Chris Lattner00950542001-06-06 20:29:01 +00003616<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003617
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003618<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3619currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003620returns to its caller. The object is always allocated in the generic address
3621space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003622
Chris Lattner00950542001-06-06 20:29:01 +00003623<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003624
John Criswell9e2485c2004-12-10 15:51:16 +00003625<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003626bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003627appropriate type to the program. If "NumElements" is specified, it is the
3628number of elements allocated, otherwise "NumElements" is defaulted to be one.
Duncan Sands434ca802009-06-20 13:26:06 +00003629If a constant alignment is specified, the value result of the allocation is
3630guaranteed to be aligned to at least that boundary. If not specified, or if
3631zero, the target can choose to align the allocation on any convenient boundary
3632compatible with the type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003633
Misha Brukman9d0919f2003-11-08 01:05:38 +00003634<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003635
Chris Lattner00950542001-06-06 20:29:01 +00003636<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003637
Bill Wendling871eb0a2009-05-08 20:49:29 +00003638<p>Memory is allocated; a pointer is returned. The operation is undefined if
Chris Lattner72ed2002008-04-19 21:01:16 +00003639there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003640memory is automatically released when the function returns. The '<tt>alloca</tt>'
3641instruction is commonly used to represent automatic variables that must
3642have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003643 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003644instructions), the memory is reclaimed. Allocating zero bytes
3645is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003646
Chris Lattner00950542001-06-06 20:29:01 +00003647<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003648
3649<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003650 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3651 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3652 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3653 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003654</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003655</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003656
Chris Lattner00950542001-06-06 20:29:01 +00003657<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003658<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3659Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003660<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003661<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003662<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003663<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003664<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003665<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003666<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003667address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003668 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003669marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003670the number or order of execution of this <tt>load</tt> with other
3671volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3672instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003673<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003674The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003675(that is, the alignment of the memory address). A value of 0 or an
3676omitted "align" argument means that the operation has the preferential
3677alignment for the target. It is the responsibility of the code emitter
3678to ensure that the alignment information is correct. Overestimating
3679the alignment results in an undefined behavior. Underestimating the
3680alignment may produce less efficient code. An alignment of 1 is always
3681safe.
3682</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003683<h5>Semantics:</h5>
Duncan Sands19527c62009-03-22 11:33:16 +00003684<p>The location of memory pointed to is loaded. If the value being loaded
3685is of scalar type then the number of bytes read does not exceed the minimum
3686number of bytes needed to hold all bits of the type. For example, loading an
3687<tt>i24</tt> reads at most three bytes. When loading a value of a type like
3688<tt>i20</tt> with a size that is not an integral number of bytes, the result
3689is undefined if the value was not originally written using a store of the
3690same type.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003691<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003692<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003693 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003694 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3695 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003696</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003697</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003698<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003699<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3700Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003701<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003702<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003703<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3704 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003705</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003706<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003707<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003708<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003709<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003710to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003711operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3712of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003713operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003714optimizer is not allowed to modify the number or order of execution of
3715this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3716 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003717<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003718The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003719(that is, the alignment of the memory address). A value of 0 or an
3720omitted "align" argument means that the operation has the preferential
3721alignment for the target. It is the responsibility of the code emitter
3722to ensure that the alignment information is correct. Overestimating
3723the alignment results in an undefined behavior. Underestimating the
3724alignment may produce less efficient code. An alignment of 1 is always
3725safe.
3726</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003727<h5>Semantics:</h5>
3728<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
Duncan Sands19527c62009-03-22 11:33:16 +00003729at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.
3730If '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes
3731written does not exceed the minimum number of bytes needed to hold all
3732bits of the type. For example, storing an <tt>i24</tt> writes at most
3733three bytes. When writing a value of a type like <tt>i20</tt> with a
3734size that is not an integral number of bytes, it is unspecified what
3735happens to the extra bits that do not belong to the type, but they will
3736typically be overwritten.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003737<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003738<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003739 store i32 3, i32* %ptr <i>; yields {void}</i>
3740 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003741</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003742</div>
3743
Chris Lattner2b7d3202002-05-06 03:03:22 +00003744<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003745<div class="doc_subsubsection">
3746 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3747</div>
3748
Misha Brukman9d0919f2003-11-08 01:05:38 +00003749<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003750<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003751<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003752 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003753</pre>
3754
Chris Lattner7faa8832002-04-14 06:13:44 +00003755<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003756
3757<p>
3758The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003759subelement of an aggregate data structure. It performs address calculation only
3760and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003761
Chris Lattner7faa8832002-04-14 06:13:44 +00003762<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003763
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003764<p>The first argument is always a pointer, and forms the basis of the
3765calculation. The remaining arguments are indices, that indicate which of the
3766elements of the aggregate object are indexed. The interpretation of each index
3767is dependent on the type being indexed into. The first index always indexes the
3768pointer value given as the first argument, the second index indexes a value of
3769the type pointed to (not necessarily the value directly pointed to, since the
3770first index can be non-zero), etc. The first type indexed into must be a pointer
3771value, subsequent types can be arrays, vectors and structs. Note that subsequent
3772types being indexed into can never be pointers, since that would require loading
3773the pointer before continuing calculation.</p>
3774
3775<p>The type of each index argument depends on the type it is indexing into.
3776When indexing into a (packed) structure, only <tt>i32</tt> integer
3777<b>constants</b> are allowed. When indexing into an array, pointer or vector,
Sanjiv Gupta23c70f42009-04-27 03:21:00 +00003778integers of any width are allowed (also non-constants).</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003779
Chris Lattner261efe92003-11-25 01:02:51 +00003780<p>For example, let's consider a C code fragment and how it gets
3781compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003782
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003783<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003784<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003785struct RT {
3786 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003787 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003788 char C;
3789};
3790struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003791 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003792 double Y;
3793 struct RT Z;
3794};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003795
Chris Lattnercabc8462007-05-29 15:43:56 +00003796int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003797 return &amp;s[1].Z.B[5][13];
3798}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003799</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003800</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003801
Misha Brukman9d0919f2003-11-08 01:05:38 +00003802<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003803
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003804<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003805<pre>
Chris Lattnere7886e42009-01-11 20:53:49 +00003806%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3807%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003808
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003809define i32* %foo(%ST* %s) {
3810entry:
3811 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3812 ret i32* %reg
3813}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003814</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003815</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003816
Chris Lattner7faa8832002-04-14 06:13:44 +00003817<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003818
Misha Brukman9d0919f2003-11-08 01:05:38 +00003819<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003820type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003821}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003822the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3823i8 }</tt>' type, another structure. The third index indexes into the second
3824element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003825array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003826'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3827to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003828
Chris Lattner261efe92003-11-25 01:02:51 +00003829<p>Note that it is perfectly legal to index partially through a
3830structure, returning a pointer to an inner element. Because of this,
3831the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003832
3833<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003834 define i32* %foo(%ST* %s) {
3835 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003836 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3837 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003838 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3839 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3840 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003841 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003842</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003843
Chris Lattner8c0e62c2009-03-09 20:55:18 +00003844<p>Note that it is undefined to access an array out of bounds: array
3845and pointer indexes must always be within the defined bounds of the
3846array type when accessed with an instruction that dereferences the
3847pointer (e.g. a load or store instruction). The one exception for
3848this rule is zero length arrays. These arrays are defined to be
3849accessible as variable length arrays, which requires access beyond the
3850zero'th element.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00003851
Chris Lattner884a9702006-08-15 00:45:58 +00003852<p>The getelementptr instruction is often confusing. For some more insight
3853into how it works, see <a href="GetElementPtr.html">the getelementptr
3854FAQ</a>.</p>
3855
Chris Lattner7faa8832002-04-14 06:13:44 +00003856<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003857
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003858<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003859 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003860 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3861 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003862 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003863 <i>; yields i8*:eptr</i>
3864 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta9f805c22009-04-25 07:27:44 +00003865 <i>; yields i32*:iptr</i>
Sanjiv Gupta16ffa802009-04-24 16:38:13 +00003866 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003867</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003868</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003869
Chris Lattner00950542001-06-06 20:29:01 +00003870<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003871<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003872</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003873<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003874<p>The instructions in this category are the conversion instructions (casting)
3875which all take a single operand and a type. They perform various bit conversions
3876on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003877</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003878
Chris Lattner6536cfe2002-05-06 22:08:29 +00003879<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003880<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003881 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3882</div>
3883<div class="doc_text">
3884
3885<h5>Syntax:</h5>
3886<pre>
3887 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3888</pre>
3889
3890<h5>Overview:</h5>
3891<p>
3892The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3893</p>
3894
3895<h5>Arguments:</h5>
3896<p>
3897The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3898be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003899and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003900type. The bit size of <tt>value</tt> must be larger than the bit size of
3901<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003902
3903<h5>Semantics:</h5>
3904<p>
3905The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003906and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3907larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3908It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003909
3910<h5>Example:</h5>
3911<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003912 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003913 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3914 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003915</pre>
3916</div>
3917
3918<!-- _______________________________________________________________________ -->
3919<div class="doc_subsubsection">
3920 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3921</div>
3922<div class="doc_text">
3923
3924<h5>Syntax:</h5>
3925<pre>
3926 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3927</pre>
3928
3929<h5>Overview:</h5>
3930<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3931<tt>ty2</tt>.</p>
3932
3933
3934<h5>Arguments:</h5>
3935<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003936<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3937also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003938<tt>value</tt> must be smaller than the bit size of the destination type,
3939<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003940
3941<h5>Semantics:</h5>
3942<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003943bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003944
Reid Spencerb5929522007-01-12 15:46:11 +00003945<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003946
3947<h5>Example:</h5>
3948<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003949 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003950 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003951</pre>
3952</div>
3953
3954<!-- _______________________________________________________________________ -->
3955<div class="doc_subsubsection">
3956 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3957</div>
3958<div class="doc_text">
3959
3960<h5>Syntax:</h5>
3961<pre>
3962 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3963</pre>
3964
3965<h5>Overview:</h5>
3966<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3967
3968<h5>Arguments:</h5>
3969<p>
3970The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003971<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3972also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003973<tt>value</tt> must be smaller than the bit size of the destination type,
3974<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003975
3976<h5>Semantics:</h5>
3977<p>
3978The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3979bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003980the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003981
Reid Spencerc78f3372007-01-12 03:35:51 +00003982<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003983
3984<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003985<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003986 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003987 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003988</pre>
3989</div>
3990
3991<!-- _______________________________________________________________________ -->
3992<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003993 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3994</div>
3995
3996<div class="doc_text">
3997
3998<h5>Syntax:</h5>
3999
4000<pre>
4001 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4002</pre>
4003
4004<h5>Overview:</h5>
4005<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
4006<tt>ty2</tt>.</p>
4007
4008
4009<h5>Arguments:</h5>
4010<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
4011 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
4012cast it to. The size of <tt>value</tt> must be larger than the size of
4013<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
4014<i>no-op cast</i>.</p>
4015
4016<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004017<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
4018<a href="#t_floating">floating point</a> type to a smaller
4019<a href="#t_floating">floating point</a> type. If the value cannot fit within
4020the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004021
4022<h5>Example:</h5>
4023<pre>
4024 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4025 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4026</pre>
4027</div>
4028
4029<!-- _______________________________________________________________________ -->
4030<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004031 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4032</div>
4033<div class="doc_text">
4034
4035<h5>Syntax:</h5>
4036<pre>
4037 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4038</pre>
4039
4040<h5>Overview:</h5>
4041<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
4042floating point value.</p>
4043
4044<h5>Arguments:</h5>
4045<p>The '<tt>fpext</tt>' instruction takes a
4046<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00004047and a <a href="#t_floating">floating point</a> type to cast it to. The source
4048type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004049
4050<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004051<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00004052<a href="#t_floating">floating point</a> type to a larger
4053<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00004054used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00004055<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004056
4057<h5>Example:</h5>
4058<pre>
4059 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4060 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4061</pre>
4062</div>
4063
4064<!-- _______________________________________________________________________ -->
4065<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00004066 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004067</div>
4068<div class="doc_text">
4069
4070<h5>Syntax:</h5>
4071<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004072 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004073</pre>
4074
4075<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004076<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004077unsigned integer equivalent of type <tt>ty2</tt>.
4078</p>
4079
4080<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004081<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00004082scalar or vector <a href="#t_floating">floating point</a> value, and a type
4083to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4084type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4085vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004086
4087<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004088<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004089<a href="#t_floating">floating point</a> operand into the nearest (rounding
4090towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
4091the results are undefined.</p>
4092
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004093<h5>Example:</h5>
4094<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004095 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00004096 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004097 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004098</pre>
4099</div>
4100
4101<!-- _______________________________________________________________________ -->
4102<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004103 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004104</div>
4105<div class="doc_text">
4106
4107<h5>Syntax:</h5>
4108<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004109 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004110</pre>
4111
4112<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004113<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004114<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004115</p>
4116
Chris Lattner6536cfe2002-05-06 22:08:29 +00004117<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004118<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00004119scalar or vector <a href="#t_floating">floating point</a> value, and a type
4120to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4121type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4122vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004123
Chris Lattner6536cfe2002-05-06 22:08:29 +00004124<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004125<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004126<a href="#t_floating">floating point</a> operand into the nearest (rounding
4127towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4128the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004129
Chris Lattner33ba0d92001-07-09 00:26:23 +00004130<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004131<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004132 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00004133 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004134 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004135</pre>
4136</div>
4137
4138<!-- _______________________________________________________________________ -->
4139<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004140 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004141</div>
4142<div class="doc_text">
4143
4144<h5>Syntax:</h5>
4145<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004146 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004147</pre>
4148
4149<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004150<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004151integer and converts that value to the <tt>ty2</tt> type.</p>
4152
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004153<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004154<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
4155scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4156to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4157type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4158floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004159
4160<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004161<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004162integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00004163the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004164
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004165<h5>Example:</h5>
4166<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004167 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004168 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004169</pre>
4170</div>
4171
4172<!-- _______________________________________________________________________ -->
4173<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004174 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004175</div>
4176<div class="doc_text">
4177
4178<h5>Syntax:</h5>
4179<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004180 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004181</pre>
4182
4183<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004184<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004185integer and converts that value to the <tt>ty2</tt> type.</p>
4186
4187<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004188<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
4189scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4190to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4191type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4192floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004193
4194<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004195<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004196integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00004197the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004198
4199<h5>Example:</h5>
4200<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004201 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004202 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004203</pre>
4204</div>
4205
4206<!-- _______________________________________________________________________ -->
4207<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00004208 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4209</div>
4210<div class="doc_text">
4211
4212<h5>Syntax:</h5>
4213<pre>
4214 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4215</pre>
4216
4217<h5>Overview:</h5>
4218<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4219the integer type <tt>ty2</tt>.</p>
4220
4221<h5>Arguments:</h5>
4222<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00004223must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohman0e451ce2008-10-14 16:51:45 +00004224<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004225
4226<h5>Semantics:</h5>
4227<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
4228<tt>ty2</tt> by interpreting the pointer value as an integer and either
4229truncating or zero extending that value to the size of the integer type. If
4230<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4231<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00004232are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4233change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004234
4235<h5>Example:</h5>
4236<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004237 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4238 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004239</pre>
4240</div>
4241
4242<!-- _______________________________________________________________________ -->
4243<div class="doc_subsubsection">
4244 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4245</div>
4246<div class="doc_text">
4247
4248<h5>Syntax:</h5>
4249<pre>
4250 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4251</pre>
4252
4253<h5>Overview:</h5>
4254<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
4255a pointer type, <tt>ty2</tt>.</p>
4256
4257<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00004258<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00004259value to cast, and a type to cast it to, which must be a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004260<a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004261
4262<h5>Semantics:</h5>
4263<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
4264<tt>ty2</tt> by applying either a zero extension or a truncation depending on
4265the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4266size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
4267the size of a pointer then a zero extension is done. If they are the same size,
4268nothing is done (<i>no-op cast</i>).</p>
4269
4270<h5>Example:</h5>
4271<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004272 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4273 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4274 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004275</pre>
4276</div>
4277
4278<!-- _______________________________________________________________________ -->
4279<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00004280 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004281</div>
4282<div class="doc_text">
4283
4284<h5>Syntax:</h5>
4285<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004286 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004287</pre>
4288
4289<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004290
Reid Spencer5c0ef472006-11-11 23:08:07 +00004291<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004292<tt>ty2</tt> without changing any bits.</p>
4293
4294<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004295
Reid Spencer5c0ef472006-11-11 23:08:07 +00004296<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00004297a non-aggregate first class value, and a type to cast it to, which must also be
4298a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
4299<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00004300and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00004301type is a pointer, the destination type must also be a pointer. This
4302instruction supports bitwise conversion of vectors to integers and to vectors
4303of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004304
4305<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004306<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00004307<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4308this conversion. The conversion is done as if the <tt>value</tt> had been
4309stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
4310converted to other pointer types with this instruction. To convert pointers to
4311other types, use the <a href="#i_inttoptr">inttoptr</a> or
4312<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004313
4314<h5>Example:</h5>
4315<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004316 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004317 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004318 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00004319</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004320</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004321
Reid Spencer2fd21e62006-11-08 01:18:52 +00004322<!-- ======================================================================= -->
4323<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
4324<div class="doc_text">
4325<p>The instructions in this category are the "miscellaneous"
4326instructions, which defy better classification.</p>
4327</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004328
4329<!-- _______________________________________________________________________ -->
4330<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4331</div>
4332<div class="doc_text">
4333<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004334<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004335</pre>
4336<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004337<p>The '<tt>icmp</tt>' instruction returns a boolean value or
4338a vector of boolean values based on comparison
4339of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004340<h5>Arguments:</h5>
4341<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004342the condition code indicating the kind of comparison to perform. It is not
4343a value, just a keyword. The possible condition code are:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004344</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004345<ol>
4346 <li><tt>eq</tt>: equal</li>
4347 <li><tt>ne</tt>: not equal </li>
4348 <li><tt>ugt</tt>: unsigned greater than</li>
4349 <li><tt>uge</tt>: unsigned greater or equal</li>
4350 <li><tt>ult</tt>: unsigned less than</li>
4351 <li><tt>ule</tt>: unsigned less or equal</li>
4352 <li><tt>sgt</tt>: signed greater than</li>
4353 <li><tt>sge</tt>: signed greater or equal</li>
4354 <li><tt>slt</tt>: signed less than</li>
4355 <li><tt>sle</tt>: signed less or equal</li>
4356</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00004357<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00004358<a href="#t_pointer">pointer</a>
4359or integer <a href="#t_vector">vector</a> typed.
4360They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004361<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004362<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00004363the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00004364yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004365</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004366<ol>
4367 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
4368 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
4369 </li>
4370 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohman0e451ce2008-10-14 16:51:45 +00004371 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004372 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004373 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004374 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004375 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004376 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004377 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004378 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004379 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004380 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004381 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004382 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004383 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004384 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004385 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004386 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004387 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004388</ol>
4389<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00004390values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004391<p>If the operands are integer vectors, then they are compared
4392element by element. The result is an <tt>i1</tt> vector with
4393the same number of elements as the values being compared.
4394Otherwise, the result is an <tt>i1</tt>.
4395</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004396
4397<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00004398<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
4399 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4400 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4401 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4402 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4403 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004404</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004405
4406<p>Note that the code generator does not yet support vector types with
4407 the <tt>icmp</tt> instruction.</p>
4408
Reid Spencerf3a70a62006-11-18 21:50:54 +00004409</div>
4410
4411<!-- _______________________________________________________________________ -->
4412<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4413</div>
4414<div class="doc_text">
4415<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004416<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004417</pre>
4418<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004419<p>The '<tt>fcmp</tt>' instruction returns a boolean value
4420or vector of boolean values based on comparison
Dan Gohman0e451ce2008-10-14 16:51:45 +00004421of its operands.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004422<p>
4423If the operands are floating point scalars, then the result
4424type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4425</p>
4426<p>If the operands are floating point vectors, then the result type
4427is a vector of boolean with the same number of elements as the
4428operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004429<h5>Arguments:</h5>
4430<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004431the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004432a value, just a keyword. The possible condition code are:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004433<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00004434 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004435 <li><tt>oeq</tt>: ordered and equal</li>
4436 <li><tt>ogt</tt>: ordered and greater than </li>
4437 <li><tt>oge</tt>: ordered and greater than or equal</li>
4438 <li><tt>olt</tt>: ordered and less than </li>
4439 <li><tt>ole</tt>: ordered and less than or equal</li>
4440 <li><tt>one</tt>: ordered and not equal</li>
4441 <li><tt>ord</tt>: ordered (no nans)</li>
4442 <li><tt>ueq</tt>: unordered or equal</li>
4443 <li><tt>ugt</tt>: unordered or greater than </li>
4444 <li><tt>uge</tt>: unordered or greater than or equal</li>
4445 <li><tt>ult</tt>: unordered or less than </li>
4446 <li><tt>ule</tt>: unordered or less than or equal</li>
4447 <li><tt>une</tt>: unordered or not equal</li>
4448 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004449 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004450</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004451<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00004452<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004453<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4454either a <a href="#t_floating">floating point</a> type
4455or a <a href="#t_vector">vector</a> of floating point type.
4456They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004457<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004458<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004459according to the condition code given as <tt>cond</tt>.
4460If the operands are vectors, then the vectors are compared
4461element by element.
4462Each comparison performed
Dan Gohman0e451ce2008-10-14 16:51:45 +00004463always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004464<ol>
4465 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004466 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004467 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004468 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004469 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004470 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004471 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004472 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004473 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004474 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004475 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004476 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004477 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004478 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4479 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004480 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004481 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004482 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004483 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004484 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004485 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004486 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004487 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004488 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004489 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004490 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004491 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004492 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4493</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004494
4495<h5>Example:</h5>
4496<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004497 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4498 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4499 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004500</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004501
4502<p>Note that the code generator does not yet support vector types with
4503 the <tt>fcmp</tt> instruction.</p>
4504
Reid Spencerf3a70a62006-11-18 21:50:54 +00004505</div>
4506
Reid Spencer2fd21e62006-11-08 01:18:52 +00004507<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004508<div class="doc_subsubsection">
4509 <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a>
4510</div>
4511<div class="doc_text">
4512<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004513<pre> &lt;result&gt; = vicmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004514</pre>
4515<h5>Overview:</h5>
4516<p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on
4517element-wise comparison of its two integer vector operands.</p>
4518<h5>Arguments:</h5>
4519<p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is
4520the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004521a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004522<ol>
4523 <li><tt>eq</tt>: equal</li>
4524 <li><tt>ne</tt>: not equal </li>
4525 <li><tt>ugt</tt>: unsigned greater than</li>
4526 <li><tt>uge</tt>: unsigned greater or equal</li>
4527 <li><tt>ult</tt>: unsigned less than</li>
4528 <li><tt>ule</tt>: unsigned less or equal</li>
4529 <li><tt>sgt</tt>: signed greater than</li>
4530 <li><tt>sge</tt>: signed greater or equal</li>
4531 <li><tt>slt</tt>: signed less than</li>
4532 <li><tt>sle</tt>: signed less or equal</li>
4533</ol>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004534<p>The remaining two arguments must be <a href="#t_vector">vector</a> or
Nate Begemanac80ade2008-05-12 19:01:56 +00004535<a href="#t_integer">integer</a> typed. They must also be identical types.</p>
4536<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004537<p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004538according to the condition code given as <tt>cond</tt>. The comparison yields a
4539<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of
4540identical type as the values being compared. The most significant bit in each
4541element is 1 if the element-wise comparison evaluates to true, and is 0
4542otherwise. All other bits of the result are undefined. The condition codes
4543are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>'
Dan Gohman0e451ce2008-10-14 16:51:45 +00004544instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004545
4546<h5>Example:</h5>
4547<pre>
Chris Lattner5568e942008-05-20 20:48:21 +00004548 &lt;result&gt; = vicmp eq &lt;2 x i32&gt; &lt; i32 4, i32 0&gt;, &lt; i32 5, i32 0&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4549 &lt;result&gt; = vicmp ult &lt;2 x i8 &gt; &lt; i8 1, i8 2&gt;, &lt; i8 2, i8 2 &gt; <i>; yields: result=&lt;2 x i8&gt; &lt; i8 -1, i8 0 &gt;</i>
Nate Begemanac80ade2008-05-12 19:01:56 +00004550</pre>
4551</div>
4552
4553<!-- _______________________________________________________________________ -->
4554<div class="doc_subsubsection">
4555 <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a>
4556</div>
4557<div class="doc_text">
4558<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004559<pre> &lt;result&gt; = vfcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt;</pre>
Nate Begemanac80ade2008-05-12 19:01:56 +00004560<h5>Overview:</h5>
4561<p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on
4562element-wise comparison of its two floating point vector operands. The output
4563elements have the same width as the input elements.</p>
4564<h5>Arguments:</h5>
4565<p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is
4566the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004567a value, just a keyword. The possible condition code are:</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004568<ol>
4569 <li><tt>false</tt>: no comparison, always returns false</li>
4570 <li><tt>oeq</tt>: ordered and equal</li>
4571 <li><tt>ogt</tt>: ordered and greater than </li>
4572 <li><tt>oge</tt>: ordered and greater than or equal</li>
4573 <li><tt>olt</tt>: ordered and less than </li>
4574 <li><tt>ole</tt>: ordered and less than or equal</li>
4575 <li><tt>one</tt>: ordered and not equal</li>
4576 <li><tt>ord</tt>: ordered (no nans)</li>
4577 <li><tt>ueq</tt>: unordered or equal</li>
4578 <li><tt>ugt</tt>: unordered or greater than </li>
4579 <li><tt>uge</tt>: unordered or greater than or equal</li>
4580 <li><tt>ult</tt>: unordered or less than </li>
4581 <li><tt>ule</tt>: unordered or less than or equal</li>
4582 <li><tt>une</tt>: unordered or not equal</li>
4583 <li><tt>uno</tt>: unordered (either nans)</li>
4584 <li><tt>true</tt>: no comparison, always returns true</li>
4585</ol>
4586<p>The remaining two arguments must be <a href="#t_vector">vector</a> of
4587<a href="#t_floating">floating point</a> typed. They must also be identical
4588types.</p>
4589<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004590<p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Nate Begemanac80ade2008-05-12 19:01:56 +00004591according to the condition code given as <tt>cond</tt>. The comparison yields a
4592<a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with
4593an identical number of elements as the values being compared, and each element
4594having identical with to the width of the floating point elements. The most
4595significant bit in each element is 1 if the element-wise comparison evaluates to
4596true, and is 0 otherwise. All other bits of the result are undefined. The
4597condition codes are evaluated identically to the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004598<a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p>
Nate Begemanac80ade2008-05-12 19:01:56 +00004599
4600<h5>Example:</h5>
4601<pre>
Chris Lattner50ad45c2008-10-13 16:55:18 +00004602 <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0, i32 -1 &gt;</i>
4603 &lt;result&gt; = vfcmp oeq &lt;2 x float&gt; &lt; float 4, float 0 &gt;, &lt; float 5, float 0 &gt;
4604
4605 <i>; yields: result=&lt;2 x i64&gt; &lt; i64 -1, i64 0 &gt;</i>
4606 &lt;result&gt; = vfcmp ult &lt;2 x double&gt; &lt; double 1, double 2 &gt;, &lt; double 2, double 2&gt;
Nate Begemanac80ade2008-05-12 19:01:56 +00004607</pre>
4608</div>
4609
4610<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00004611<div class="doc_subsubsection">
4612 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4613</div>
4614
Reid Spencer2fd21e62006-11-08 01:18:52 +00004615<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004616
Reid Spencer2fd21e62006-11-08 01:18:52 +00004617<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004618
Reid Spencer2fd21e62006-11-08 01:18:52 +00004619<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4620<h5>Overview:</h5>
4621<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4622the SSA graph representing the function.</p>
4623<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004624
Jeff Cohenb627eab2007-04-29 01:07:00 +00004625<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004626field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4627as arguments, with one pair for each predecessor basic block of the
4628current block. Only values of <a href="#t_firstclass">first class</a>
4629type may be used as the value arguments to the PHI node. Only labels
4630may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004631
Reid Spencer2fd21e62006-11-08 01:18:52 +00004632<p>There must be no non-phi instructions between the start of a basic
4633block and the PHI instructions: i.e. PHI instructions must be first in
4634a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004635
Jay Foadd2449092009-06-03 10:20:10 +00004636<p>For the purposes of the SSA form, the use of each incoming value is
4637deemed to occur on the edge from the corresponding predecessor block
4638to the current block (but after any definition of an '<tt>invoke</tt>'
4639instruction's return value on the same edge).</p>
4640
Reid Spencer2fd21e62006-11-08 01:18:52 +00004641<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004642
Jeff Cohenb627eab2007-04-29 01:07:00 +00004643<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4644specified by the pair corresponding to the predecessor basic block that executed
4645just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004646
Reid Spencer2fd21e62006-11-08 01:18:52 +00004647<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004648<pre>
4649Loop: ; Infinite loop that counts from 0 on up...
4650 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4651 %nextindvar = add i32 %indvar, 1
4652 br label %Loop
4653</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004654</div>
4655
Chris Lattnercc37aae2004-03-12 05:50:16 +00004656<!-- _______________________________________________________________________ -->
4657<div class="doc_subsubsection">
4658 <a name="i_select">'<tt>select</tt>' Instruction</a>
4659</div>
4660
4661<div class="doc_text">
4662
4663<h5>Syntax:</h5>
4664
4665<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004666 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4667
Dan Gohman0e451ce2008-10-14 16:51:45 +00004668 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004669</pre>
4670
4671<h5>Overview:</h5>
4672
4673<p>
4674The '<tt>select</tt>' instruction is used to choose one value based on a
4675condition, without branching.
4676</p>
4677
4678
4679<h5>Arguments:</h5>
4680
4681<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004682The '<tt>select</tt>' instruction requires an 'i1' value or
4683a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004684condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004685type. If the val1/val2 are vectors and
4686the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004687individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004688</p>
4689
4690<h5>Semantics:</h5>
4691
4692<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004693If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004694value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004695</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004696<p>
4697If the condition is a vector of i1, then the value arguments must
4698be vectors of the same size, and the selection is done element
4699by element.
4700</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004701
4702<h5>Example:</h5>
4703
4704<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004705 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004706</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004707
4708<p>Note that the code generator does not yet support conditions
4709 with vector type.</p>
4710
Chris Lattnercc37aae2004-03-12 05:50:16 +00004711</div>
4712
Robert Bocchino05ccd702006-01-15 20:48:27 +00004713
4714<!-- _______________________________________________________________________ -->
4715<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004716 <a name="i_call">'<tt>call</tt>' Instruction</a>
4717</div>
4718
Misha Brukman9d0919f2003-11-08 01:05:38 +00004719<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004720
Chris Lattner00950542001-06-06 20:29:01 +00004721<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004722<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00004723 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00004724</pre>
4725
Chris Lattner00950542001-06-06 20:29:01 +00004726<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004727
Misha Brukman9d0919f2003-11-08 01:05:38 +00004728<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004729
Chris Lattner00950542001-06-06 20:29:01 +00004730<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004731
Misha Brukman9d0919f2003-11-08 01:05:38 +00004732<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004733
Chris Lattner6536cfe2002-05-06 22:08:29 +00004734<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004735 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004736 <p>The optional "tail" marker indicates whether the callee function accesses
4737 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004738 function call is eligible for tail call optimization. Note that calls may
4739 be marked "tail" even if they do not occur before a <a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004740 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004741 </li>
4742 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004743 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004744 convention</a> the call should use. If none is specified, the call defaults
Dan Gohman0e451ce2008-10-14 16:51:45 +00004745 to using C calling conventions.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004746 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004747
4748 <li>
4749 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4750 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4751 and '<tt>inreg</tt>' attributes are valid here.</p>
4752 </li>
4753
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004754 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004755 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4756 the type of the return value. Functions that return no value are marked
4757 <tt><a href="#t_void">void</a></tt>.</p>
4758 </li>
4759 <li>
4760 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4761 value being invoked. The argument types must match the types implied by
4762 this signature. This type can be omitted if the function is not varargs
4763 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004764 </li>
4765 <li>
4766 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4767 be invoked. In most cases, this is a direct function invocation, but
4768 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004769 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004770 </li>
4771 <li>
4772 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004773 function signature argument types. All arguments must be of
4774 <a href="#t_firstclass">first class</a> type. If the function signature
4775 indicates the function accepts a variable number of arguments, the extra
4776 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004777 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004778 <li>
Devang Patel307e8ab2008-10-07 17:48:33 +00004779 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00004780 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4781 '<tt>readnone</tt>' attributes are valid here.</p>
4782 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004783</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004784
Chris Lattner00950542001-06-06 20:29:01 +00004785<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004786
Chris Lattner261efe92003-11-25 01:02:51 +00004787<p>The '<tt>call</tt>' instruction is used to cause control flow to
4788transfer to a specified function, with its incoming arguments bound to
4789the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4790instruction in the called function, control flow continues with the
4791instruction after the function call, and the return value of the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004792function is bound to the result argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004793
Chris Lattner00950542001-06-06 20:29:01 +00004794<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004795
4796<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004797 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004798 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4799 %X = tail call i32 @foo() <i>; yields i32</i>
4800 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4801 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004802
4803 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00004804 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004805 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4806 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00004807 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00004808 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004809</pre>
4810
Misha Brukman9d0919f2003-11-08 01:05:38 +00004811</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004812
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004813<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004814<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004815 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004816</div>
4817
Misha Brukman9d0919f2003-11-08 01:05:38 +00004818<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004819
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004820<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004821
4822<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004823 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004824</pre>
4825
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004826<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004827
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004828<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004829the "variable argument" area of a function call. It is used to implement the
4830<tt>va_arg</tt> macro in C.</p>
4831
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004832<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004833
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004834<p>This instruction takes a <tt>va_list*</tt> value and the type of
4835the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004836increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004837actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004838
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004839<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004840
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004841<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4842type from the specified <tt>va_list</tt> and causes the
4843<tt>va_list</tt> to point to the next argument. For more information,
4844see the variable argument handling <a href="#int_varargs">Intrinsic
4845Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004846
4847<p>It is legal for this instruction to be called in a function which does not
4848take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004849function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004850
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004851<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004852href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004853argument.</p>
4854
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004855<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004856
4857<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4858
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00004859<p>Note that the code generator does not yet fully support va_arg
4860 on many targets. Also, it does not currently support va_arg with
4861 aggregate types on any target.</p>
4862
Misha Brukman9d0919f2003-11-08 01:05:38 +00004863</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004864
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004865<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004866<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4867<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004868
Misha Brukman9d0919f2003-11-08 01:05:38 +00004869<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004870
4871<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004872well known names and semantics and are required to follow certain restrictions.
4873Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004874language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004875adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004876
John Criswellfc6b8952005-05-16 16:17:45 +00004877<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004878prefix is reserved in LLVM for intrinsic names; thus, function names may not
4879begin with this prefix. Intrinsic functions must always be external functions:
4880you cannot define the body of intrinsic functions. Intrinsic functions may
4881only be used in call or invoke instructions: it is illegal to take the address
4882of an intrinsic function. Additionally, because intrinsic functions are part
4883of the LLVM language, it is required if any are added that they be documented
4884here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004885
Chandler Carruth69940402007-08-04 01:51:18 +00004886<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4887a family of functions that perform the same operation but on different data
4888types. Because LLVM can represent over 8 million different integer types,
4889overloading is used commonly to allow an intrinsic function to operate on any
4890integer type. One or more of the argument types or the result type can be
4891overloaded to accept any integer type. Argument types may also be defined as
4892exactly matching a previous argument's type or the result type. This allows an
4893intrinsic function which accepts multiple arguments, but needs all of them to
4894be of the same type, to only be overloaded with respect to a single argument or
4895the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004896
Chandler Carruth69940402007-08-04 01:51:18 +00004897<p>Overloaded intrinsics will have the names of its overloaded argument types
4898encoded into its function name, each preceded by a period. Only those types
4899which are overloaded result in a name suffix. Arguments whose type is matched
4900against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4901take an integer of any width and returns an integer of exactly the same integer
4902width. This leads to a family of functions such as
4903<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4904Only one type, the return type, is overloaded, and only one type suffix is
4905required. Because the argument's type is matched against the return type, it
4906does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004907
4908<p>To learn how to add an intrinsic function, please see the
4909<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004910</p>
4911
Misha Brukman9d0919f2003-11-08 01:05:38 +00004912</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004913
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004914<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004915<div class="doc_subsection">
4916 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4917</div>
4918
Misha Brukman9d0919f2003-11-08 01:05:38 +00004919<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004920
Misha Brukman9d0919f2003-11-08 01:05:38 +00004921<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004922 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004923intrinsic functions. These functions are related to the similarly
4924named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004925
Chris Lattner261efe92003-11-25 01:02:51 +00004926<p>All of these functions operate on arguments that use a
4927target-specific value type "<tt>va_list</tt>". The LLVM assembly
4928language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004929transformations should be prepared to handle these functions regardless of
4930the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004931
Chris Lattner374ab302006-05-15 17:26:46 +00004932<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004933instruction and the variable argument handling intrinsic functions are
4934used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004935
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004936<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004937<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004938define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004939 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004940 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004941 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004942 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004943
4944 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004945 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004946
4947 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004948 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004949 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004950 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004951 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004952
4953 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004954 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004955 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004956}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004957
4958declare void @llvm.va_start(i8*)
4959declare void @llvm.va_copy(i8*, i8*)
4960declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004961</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004962</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004963
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004964</div>
4965
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004966<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004967<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004968 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004969</div>
4970
4971
Misha Brukman9d0919f2003-11-08 01:05:38 +00004972<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004973<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004974<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004975<h5>Overview:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004976<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004977<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4978href="#i_va_arg">va_arg</a></tt>.</p>
4979
4980<h5>Arguments:</h5>
4981
Dan Gohman0e451ce2008-10-14 16:51:45 +00004982<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004983
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004984<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004985
Dan Gohman0e451ce2008-10-14 16:51:45 +00004986<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004987macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004988<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004989<tt>va_arg</tt> will produce the first variable argument passed to the function.
4990Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004991last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004992
Misha Brukman9d0919f2003-11-08 01:05:38 +00004993</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004994
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004995<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004996<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004997 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004998</div>
4999
Misha Brukman9d0919f2003-11-08 01:05:38 +00005000<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005001<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005002<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005003<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005004
Jeff Cohenb627eab2007-04-29 01:07:00 +00005005<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00005006which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00005007or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005008
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005009<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005010
Jeff Cohenb627eab2007-04-29 01:07:00 +00005011<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005012
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005013<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005014
Misha Brukman9d0919f2003-11-08 01:05:38 +00005015<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00005016macro available in C. In a target-dependent way, it destroys the
5017<tt>va_list</tt> element to which the argument points. Calls to <a
5018href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
5019<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
5020<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00005021
Misha Brukman9d0919f2003-11-08 01:05:38 +00005022</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005023
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005024<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00005025<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005026 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00005027</div>
5028
Misha Brukman9d0919f2003-11-08 01:05:38 +00005029<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00005030
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005031<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005032
5033<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005034 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00005035</pre>
5036
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005037<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005038
Jeff Cohenb627eab2007-04-29 01:07:00 +00005039<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
5040from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005041
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005042<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005043
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005044<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00005045The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00005046
Chris Lattnerd7923912004-05-23 21:06:01 +00005047
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00005048<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00005049
Jeff Cohenb627eab2007-04-29 01:07:00 +00005050<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
5051macro available in C. In a target-dependent way, it copies the source
5052<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
5053intrinsic is necessary because the <tt><a href="#int_va_start">
5054llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
5055example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005056
Misha Brukman9d0919f2003-11-08 01:05:38 +00005057</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00005058
Chris Lattner33aec9e2004-02-12 17:01:32 +00005059<!-- ======================================================================= -->
5060<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00005061 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
5062</div>
5063
5064<div class="doc_text">
5065
5066<p>
5067LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00005068Collection</a> (GC) requires the implementation and generation of these
5069intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00005070These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00005071stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005072href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00005073Front-ends for type-safe garbage collected languages should generate these
5074intrinsics to make use of the LLVM garbage collectors. For more details, see <a
5075href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
5076</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00005077
5078<p>The garbage collection intrinsics only operate on objects in the generic
5079 address space (address space zero).</p>
5080
Chris Lattnerd7923912004-05-23 21:06:01 +00005081</div>
5082
5083<!-- _______________________________________________________________________ -->
5084<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005085 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005086</div>
5087
5088<div class="doc_text">
5089
5090<h5>Syntax:</h5>
5091
5092<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005093 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00005094</pre>
5095
5096<h5>Overview:</h5>
5097
John Criswell9e2485c2004-12-10 15:51:16 +00005098<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00005099the code generator, and allows some metadata to be associated with it.</p>
5100
5101<h5>Arguments:</h5>
5102
5103<p>The first argument specifies the address of a stack object that contains the
5104root pointer. The second pointer (which must be either a constant or a global
5105value address) contains the meta-data to be associated with the root.</p>
5106
5107<h5>Semantics:</h5>
5108
Chris Lattner05d67092008-04-24 05:59:56 +00005109<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00005110location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00005111the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5112intrinsic may only be used in a function which <a href="#gc">specifies a GC
5113algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005114
5115</div>
5116
5117
5118<!-- _______________________________________________________________________ -->
5119<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005120 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005121</div>
5122
5123<div class="doc_text">
5124
5125<h5>Syntax:</h5>
5126
5127<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005128 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00005129</pre>
5130
5131<h5>Overview:</h5>
5132
5133<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
5134locations, allowing garbage collector implementations that require read
5135barriers.</p>
5136
5137<h5>Arguments:</h5>
5138
Chris Lattner80626e92006-03-14 20:02:51 +00005139<p>The second argument is the address to read from, which should be an address
5140allocated from the garbage collector. The first object is a pointer to the
5141start of the referenced object, if needed by the language runtime (otherwise
5142null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005143
5144<h5>Semantics:</h5>
5145
5146<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
5147instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00005148garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5149may only be used in a function which <a href="#gc">specifies a GC
5150algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005151
5152</div>
5153
5154
5155<!-- _______________________________________________________________________ -->
5156<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005157 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005158</div>
5159
5160<div class="doc_text">
5161
5162<h5>Syntax:</h5>
5163
5164<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005165 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00005166</pre>
5167
5168<h5>Overview:</h5>
5169
5170<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
5171locations, allowing garbage collector implementations that require write
5172barriers (such as generational or reference counting collectors).</p>
5173
5174<h5>Arguments:</h5>
5175
Chris Lattner80626e92006-03-14 20:02:51 +00005176<p>The first argument is the reference to store, the second is the start of the
5177object to store it to, and the third is the address of the field of Obj to
5178store to. If the runtime does not require a pointer to the object, Obj may be
5179null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005180
5181<h5>Semantics:</h5>
5182
5183<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
5184instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00005185garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5186may only be used in a function which <a href="#gc">specifies a GC
5187algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005188
5189</div>
5190
5191
5192
5193<!-- ======================================================================= -->
5194<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00005195 <a name="int_codegen">Code Generator Intrinsics</a>
5196</div>
5197
5198<div class="doc_text">
5199<p>
5200These intrinsics are provided by LLVM to expose special features that may only
5201be implemented with code generator support.
5202</p>
5203
5204</div>
5205
5206<!-- _______________________________________________________________________ -->
5207<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005208 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005209</div>
5210
5211<div class="doc_text">
5212
5213<h5>Syntax:</h5>
5214<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005215 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005216</pre>
5217
5218<h5>Overview:</h5>
5219
5220<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00005221The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5222target-specific value indicating the return address of the current function
5223or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00005224</p>
5225
5226<h5>Arguments:</h5>
5227
5228<p>
5229The argument to this intrinsic indicates which function to return the address
5230for. Zero indicates the calling function, one indicates its caller, etc. The
5231argument is <b>required</b> to be a constant integer value.
5232</p>
5233
5234<h5>Semantics:</h5>
5235
5236<p>
5237The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
5238the return address of the specified call frame, or zero if it cannot be
5239identified. The value returned by this intrinsic is likely to be incorrect or 0
5240for arguments other than zero, so it should only be used for debugging purposes.
5241</p>
5242
5243<p>
5244Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005245aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005246source-language caller.
5247</p>
5248</div>
5249
5250
5251<!-- _______________________________________________________________________ -->
5252<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005253 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005254</div>
5255
5256<div class="doc_text">
5257
5258<h5>Syntax:</h5>
5259<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005260 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005261</pre>
5262
5263<h5>Overview:</h5>
5264
5265<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00005266The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5267target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00005268</p>
5269
5270<h5>Arguments:</h5>
5271
5272<p>
5273The argument to this intrinsic indicates which function to return the frame
5274pointer for. Zero indicates the calling function, one indicates its caller,
5275etc. The argument is <b>required</b> to be a constant integer value.
5276</p>
5277
5278<h5>Semantics:</h5>
5279
5280<p>
5281The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
5282the frame address of the specified call frame, or zero if it cannot be
5283identified. The value returned by this intrinsic is likely to be incorrect or 0
5284for arguments other than zero, so it should only be used for debugging purposes.
5285</p>
5286
5287<p>
5288Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005289aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005290source-language caller.
5291</p>
5292</div>
5293
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005294<!-- _______________________________________________________________________ -->
5295<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005296 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005297</div>
5298
5299<div class="doc_text">
5300
5301<h5>Syntax:</h5>
5302<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005303 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00005304</pre>
5305
5306<h5>Overview:</h5>
5307
5308<p>
5309The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00005310the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00005311<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
5312features like scoped automatic variable sized arrays in C99.
5313</p>
5314
5315<h5>Semantics:</h5>
5316
5317<p>
5318This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005319href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00005320<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
5321<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
5322state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
5323practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
5324that were allocated after the <tt>llvm.stacksave</tt> was executed.
5325</p>
5326
5327</div>
5328
5329<!-- _______________________________________________________________________ -->
5330<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005331 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005332</div>
5333
5334<div class="doc_text">
5335
5336<h5>Syntax:</h5>
5337<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005338 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00005339</pre>
5340
5341<h5>Overview:</h5>
5342
5343<p>
5344The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5345the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005346href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00005347useful for implementing language features like scoped automatic variable sized
5348arrays in C99.
5349</p>
5350
5351<h5>Semantics:</h5>
5352
5353<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00005354See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00005355</p>
5356
5357</div>
5358
5359
5360<!-- _______________________________________________________________________ -->
5361<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005362 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005363</div>
5364
5365<div class="doc_text">
5366
5367<h5>Syntax:</h5>
5368<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005369 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005370</pre>
5371
5372<h5>Overview:</h5>
5373
5374
5375<p>
5376The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00005377a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
5378no
5379effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00005380characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005381</p>
5382
5383<h5>Arguments:</h5>
5384
5385<p>
5386<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
5387determining if the fetch should be for a read (0) or write (1), and
5388<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00005389locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005390<tt>locality</tt> arguments must be constant integers.
5391</p>
5392
5393<h5>Semantics:</h5>
5394
5395<p>
5396This intrinsic does not modify the behavior of the program. In particular,
5397prefetches cannot trap and do not produce a value. On targets that support this
5398intrinsic, the prefetch can provide hints to the processor cache for better
5399performance.
5400</p>
5401
5402</div>
5403
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005404<!-- _______________________________________________________________________ -->
5405<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005406 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005407</div>
5408
5409<div class="doc_text">
5410
5411<h5>Syntax:</h5>
5412<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005413 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005414</pre>
5415
5416<h5>Overview:</h5>
5417
5418
5419<p>
John Criswellfc6b8952005-05-16 16:17:45 +00005420The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00005421(PC) in a region of
5422code to simulators and other tools. The method is target specific, but it is
5423expected that the marker will use exported symbols to transmit the PC of the
5424marker.
5425The marker makes no guarantees that it will remain with any specific instruction
5426after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00005427optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00005428correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005429</p>
5430
5431<h5>Arguments:</h5>
5432
5433<p>
5434<tt>id</tt> is a numerical id identifying the marker.
5435</p>
5436
5437<h5>Semantics:</h5>
5438
5439<p>
5440This intrinsic does not modify the behavior of the program. Backends that do not
5441support this intrinisic may ignore it.
5442</p>
5443
5444</div>
5445
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005446<!-- _______________________________________________________________________ -->
5447<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005448 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005449</div>
5450
5451<div class="doc_text">
5452
5453<h5>Syntax:</h5>
5454<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005455 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005456</pre>
5457
5458<h5>Overview:</h5>
5459
5460
5461<p>
5462The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5463counter register (or similar low latency, high accuracy clocks) on those targets
5464that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5465As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5466should only be used for small timings.
5467</p>
5468
5469<h5>Semantics:</h5>
5470
5471<p>
5472When directly supported, reading the cycle counter should not modify any memory.
5473Implementations are allowed to either return a application specific value or a
5474system wide value. On backends without support, this is lowered to a constant 0.
5475</p>
5476
5477</div>
5478
Chris Lattner10610642004-02-14 04:08:35 +00005479<!-- ======================================================================= -->
5480<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005481 <a name="int_libc">Standard C Library Intrinsics</a>
5482</div>
5483
5484<div class="doc_text">
5485<p>
Chris Lattner10610642004-02-14 04:08:35 +00005486LLVM provides intrinsics for a few important standard C library functions.
5487These intrinsics allow source-language front-ends to pass information about the
5488alignment of the pointer arguments to the code generator, providing opportunity
5489for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005490</p>
5491
5492</div>
5493
5494<!-- _______________________________________________________________________ -->
5495<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005496 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005497</div>
5498
5499<div class="doc_text">
5500
5501<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005502<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
5503width. Not all targets support all bit widths however.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005504<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005505 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5506 i8 &lt;len&gt;, i32 &lt;align&gt;)
5507 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5508 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005509 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005510 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005511 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005512 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005513</pre>
5514
5515<h5>Overview:</h5>
5516
5517<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005518The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005519location to the destination location.
5520</p>
5521
5522<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005523Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5524intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005525</p>
5526
5527<h5>Arguments:</h5>
5528
5529<p>
5530The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005531the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005532specifying the number of bytes to copy, and the fourth argument is the alignment
5533of the source and destination locations.
5534</p>
5535
Chris Lattner3301ced2004-02-12 21:18:15 +00005536<p>
5537If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005538the caller guarantees that both the source and destination pointers are aligned
5539to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005540</p>
5541
Chris Lattner33aec9e2004-02-12 17:01:32 +00005542<h5>Semantics:</h5>
5543
5544<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005545The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005546location to the destination location, which are not allowed to overlap. It
5547copies "len" bytes of memory over. If the argument is known to be aligned to
5548some boundary, this can be specified as the fourth argument, otherwise it should
5549be set to 0 or 1.
5550</p>
5551</div>
5552
5553
Chris Lattner0eb51b42004-02-12 18:10:10 +00005554<!-- _______________________________________________________________________ -->
5555<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005556 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005557</div>
5558
5559<div class="doc_text">
5560
5561<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005562<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5563width. Not all targets support all bit widths however.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005564<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005565 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5566 i8 &lt;len&gt;, i32 &lt;align&gt;)
5567 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5568 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005569 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005570 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005571 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005572 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005573</pre>
5574
5575<h5>Overview:</h5>
5576
5577<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005578The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5579location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005580'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005581</p>
5582
5583<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005584Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5585intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005586</p>
5587
5588<h5>Arguments:</h5>
5589
5590<p>
5591The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005592the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005593specifying the number of bytes to copy, and the fourth argument is the alignment
5594of the source and destination locations.
5595</p>
5596
Chris Lattner3301ced2004-02-12 21:18:15 +00005597<p>
5598If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005599the caller guarantees that the source and destination pointers are aligned to
5600that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005601</p>
5602
Chris Lattner0eb51b42004-02-12 18:10:10 +00005603<h5>Semantics:</h5>
5604
5605<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005606The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005607location to the destination location, which may overlap. It
5608copies "len" bytes of memory over. If the argument is known to be aligned to
5609some boundary, this can be specified as the fourth argument, otherwise it should
5610be set to 0 or 1.
5611</p>
5612</div>
5613
Chris Lattner8ff75902004-01-06 05:31:32 +00005614
Chris Lattner10610642004-02-14 04:08:35 +00005615<!-- _______________________________________________________________________ -->
5616<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005617 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005618</div>
5619
5620<div class="doc_text">
5621
5622<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005623<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5624width. Not all targets support all bit widths however.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005625<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005626 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5627 i8 &lt;len&gt;, i32 &lt;align&gt;)
5628 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5629 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005630 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005631 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005632 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005633 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005634</pre>
5635
5636<h5>Overview:</h5>
5637
5638<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005639The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005640byte value.
5641</p>
5642
5643<p>
5644Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5645does not return a value, and takes an extra alignment argument.
5646</p>
5647
5648<h5>Arguments:</h5>
5649
5650<p>
5651The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005652byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005653argument specifying the number of bytes to fill, and the fourth argument is the
5654known alignment of destination location.
5655</p>
5656
5657<p>
5658If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005659the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005660</p>
5661
5662<h5>Semantics:</h5>
5663
5664<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005665The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5666the
Chris Lattner10610642004-02-14 04:08:35 +00005667destination location. If the argument is known to be aligned to some boundary,
5668this can be specified as the fourth argument, otherwise it should be set to 0 or
56691.
5670</p>
5671</div>
5672
5673
Chris Lattner32006282004-06-11 02:28:03 +00005674<!-- _______________________________________________________________________ -->
5675<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005676 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005677</div>
5678
5679<div class="doc_text">
5680
5681<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005682<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005683floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005684types however.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005685<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005686 declare float @llvm.sqrt.f32(float %Val)
5687 declare double @llvm.sqrt.f64(double %Val)
5688 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5689 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5690 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005691</pre>
5692
5693<h5>Overview:</h5>
5694
5695<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005696The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005697returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005698<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005699negative numbers other than -0.0 (which allows for better optimization, because
5700there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5701defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005702</p>
5703
5704<h5>Arguments:</h5>
5705
5706<p>
5707The argument and return value are floating point numbers of the same type.
5708</p>
5709
5710<h5>Semantics:</h5>
5711
5712<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005713This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005714floating point number.
5715</p>
5716</div>
5717
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005718<!-- _______________________________________________________________________ -->
5719<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005720 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005721</div>
5722
5723<div class="doc_text">
5724
5725<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005726<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005727floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005728types however.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005729<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005730 declare float @llvm.powi.f32(float %Val, i32 %power)
5731 declare double @llvm.powi.f64(double %Val, i32 %power)
5732 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5733 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5734 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005735</pre>
5736
5737<h5>Overview:</h5>
5738
5739<p>
5740The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5741specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005742multiplications is not defined. When a vector of floating point type is
5743used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005744</p>
5745
5746<h5>Arguments:</h5>
5747
5748<p>
5749The second argument is an integer power, and the first is a value to raise to
5750that power.
5751</p>
5752
5753<h5>Semantics:</h5>
5754
5755<p>
5756This function returns the first value raised to the second power with an
5757unspecified sequence of rounding operations.</p>
5758</div>
5759
Dan Gohman91c284c2007-10-15 20:30:11 +00005760<!-- _______________________________________________________________________ -->
5761<div class="doc_subsubsection">
5762 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5763</div>
5764
5765<div class="doc_text">
5766
5767<h5>Syntax:</h5>
5768<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5769floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005770types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005771<pre>
5772 declare float @llvm.sin.f32(float %Val)
5773 declare double @llvm.sin.f64(double %Val)
5774 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5775 declare fp128 @llvm.sin.f128(fp128 %Val)
5776 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5777</pre>
5778
5779<h5>Overview:</h5>
5780
5781<p>
5782The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5783</p>
5784
5785<h5>Arguments:</h5>
5786
5787<p>
5788The argument and return value are floating point numbers of the same type.
5789</p>
5790
5791<h5>Semantics:</h5>
5792
5793<p>
5794This function returns the sine of the specified operand, returning the
5795same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005796conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005797</div>
5798
5799<!-- _______________________________________________________________________ -->
5800<div class="doc_subsubsection">
5801 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5802</div>
5803
5804<div class="doc_text">
5805
5806<h5>Syntax:</h5>
5807<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5808floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005809types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005810<pre>
5811 declare float @llvm.cos.f32(float %Val)
5812 declare double @llvm.cos.f64(double %Val)
5813 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5814 declare fp128 @llvm.cos.f128(fp128 %Val)
5815 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5816</pre>
5817
5818<h5>Overview:</h5>
5819
5820<p>
5821The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5822</p>
5823
5824<h5>Arguments:</h5>
5825
5826<p>
5827The argument and return value are floating point numbers of the same type.
5828</p>
5829
5830<h5>Semantics:</h5>
5831
5832<p>
5833This function returns the cosine of the specified operand, returning the
5834same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005835conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005836</div>
5837
5838<!-- _______________________________________________________________________ -->
5839<div class="doc_subsubsection">
5840 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5841</div>
5842
5843<div class="doc_text">
5844
5845<h5>Syntax:</h5>
5846<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5847floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005848types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005849<pre>
5850 declare float @llvm.pow.f32(float %Val, float %Power)
5851 declare double @llvm.pow.f64(double %Val, double %Power)
5852 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5853 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5854 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5855</pre>
5856
5857<h5>Overview:</h5>
5858
5859<p>
5860The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5861specified (positive or negative) power.
5862</p>
5863
5864<h5>Arguments:</h5>
5865
5866<p>
5867The second argument is a floating point power, and the first is a value to
5868raise to that power.
5869</p>
5870
5871<h5>Semantics:</h5>
5872
5873<p>
5874This function returns the first value raised to the second power,
5875returning the
5876same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005877conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005878</div>
5879
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005880
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005881<!-- ======================================================================= -->
5882<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005883 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005884</div>
5885
5886<div class="doc_text">
5887<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005888LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005889These allow efficient code generation for some algorithms.
5890</p>
5891
5892</div>
5893
5894<!-- _______________________________________________________________________ -->
5895<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005896 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005897</div>
5898
5899<div class="doc_text">
5900
5901<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005902<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohman0e451ce2008-10-14 16:51:45 +00005903type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005904<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005905 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5906 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5907 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005908</pre>
5909
5910<h5>Overview:</h5>
5911
5912<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005913The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005914values with an even number of bytes (positive multiple of 16 bits). These are
5915useful for performing operations on data that is not in the target's native
5916byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005917</p>
5918
5919<h5>Semantics:</h5>
5920
5921<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005922The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005923and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5924intrinsic returns an i32 value that has the four bytes of the input i32
5925swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005926i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5927<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005928additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005929</p>
5930
5931</div>
5932
5933<!-- _______________________________________________________________________ -->
5934<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005935 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005936</div>
5937
5938<div class="doc_text">
5939
5940<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005941<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohman0e451ce2008-10-14 16:51:45 +00005942width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005943<pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005944 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005945 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005946 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005947 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5948 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005949</pre>
5950
5951<h5>Overview:</h5>
5952
5953<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005954The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5955value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005956</p>
5957
5958<h5>Arguments:</h5>
5959
5960<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005961The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005962integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005963</p>
5964
5965<h5>Semantics:</h5>
5966
5967<p>
5968The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5969</p>
5970</div>
5971
5972<!-- _______________________________________________________________________ -->
5973<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005974 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005975</div>
5976
5977<div class="doc_text">
5978
5979<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005980<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005981integer bit width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005982<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005983 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5984 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005985 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005986 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5987 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005988</pre>
5989
5990<h5>Overview:</h5>
5991
5992<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005993The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5994leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005995</p>
5996
5997<h5>Arguments:</h5>
5998
5999<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00006000The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00006001integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006002</p>
6003
6004<h5>Semantics:</h5>
6005
6006<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006007The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
6008in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00006009of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00006010</p>
6011</div>
Chris Lattner32006282004-06-11 02:28:03 +00006012
6013
Chris Lattnereff29ab2005-05-15 19:39:26 +00006014
6015<!-- _______________________________________________________________________ -->
6016<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00006017 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006018</div>
6019
6020<div class="doc_text">
6021
6022<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00006023<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00006024integer bit width. Not all targets support all bit widths however.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00006025<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006026 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
6027 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00006028 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00006029 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
6030 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00006031</pre>
6032
6033<h5>Overview:</h5>
6034
6035<p>
Reid Spencer0b118202006-01-16 21:12:35 +00006036The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
6037trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00006038</p>
6039
6040<h5>Arguments:</h5>
6041
6042<p>
6043The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00006044integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00006045</p>
6046
6047<h5>Semantics:</h5>
6048
6049<p>
6050The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
6051in a variable. If the src == 0 then the result is the size in bits of the type
6052of src. For example, <tt>llvm.cttz(2) = 1</tt>.
6053</p>
6054</div>
6055
Reid Spencer497d93e2007-04-01 08:27:01 +00006056<!-- _______________________________________________________________________ -->
6057<div class="doc_subsubsection">
Reid Spencerbeacf662007-04-10 02:51:31 +00006058 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
Reid Spencera13ba7d2007-04-01 19:00:37 +00006059</div>
6060
6061<div class="doc_text">
6062
6063<h5>Syntax:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00006064<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006065on any integer bit width.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00006066<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006067 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
6068 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Reid Spencera13ba7d2007-04-01 19:00:37 +00006069</pre>
6070
6071<h5>Overview:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00006072<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
Reid Spencera13ba7d2007-04-01 19:00:37 +00006073range of bits from an integer value and returns them in the same bit width as
6074the original value.</p>
6075
6076<h5>Arguments:</h5>
6077<p>The first argument, <tt>%val</tt> and the result may be integer types of
6078any bit width but they must have the same bit width. The second and third
Reid Spencera3e435f2007-04-04 02:42:35 +00006079arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00006080
6081<h5>Semantics:</h5>
Reid Spencerbeacf662007-04-10 02:51:31 +00006082<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
Reid Spencera3e435f2007-04-04 02:42:35 +00006083of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
6084<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
6085operates in forward mode.</p>
6086<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
6087right by <tt>%loBit</tt> bits and then ANDing it with a mask with
Reid Spencera13ba7d2007-04-01 19:00:37 +00006088only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
6089<ol>
6090 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
6091 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
6092 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
6093 to determine the number of bits to retain.</li>
6094 <li>A mask of the retained bits is created by shifting a -1 value.</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006095 <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li>
Reid Spencera13ba7d2007-04-01 19:00:37 +00006096</ol>
Reid Spencerd6a85b52007-05-14 16:14:57 +00006097<p>In reverse mode, a similar computation is made except that the bits are
6098returned in the reverse order. So, for example, if <tt>X</tt> has the value
6099<tt>i16 0x0ACF (101011001111)</tt> and we apply
6100<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
6101<tt>i16 0x0026 (000000100110)</tt>.</p>
Reid Spencera13ba7d2007-04-01 19:00:37 +00006102</div>
6103
Reid Spencerf86037f2007-04-11 23:23:49 +00006104<div class="doc_subsubsection">
6105 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
6106</div>
6107
6108<div class="doc_text">
6109
6110<h5>Syntax:</h5>
6111<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006112on any integer bit width.</p>
Reid Spencerf86037f2007-04-11 23:23:49 +00006113<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00006114 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
6115 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Reid Spencerf86037f2007-04-11 23:23:49 +00006116</pre>
6117
6118<h5>Overview:</h5>
6119<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
6120of bits in an integer value with another integer value. It returns the integer
6121with the replaced bits.</p>
6122
6123<h5>Arguments:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006124<p>The first argument, <tt>%val</tt>, and the result may be integer types of
6125any bit width, but they must have the same bit width. <tt>%val</tt> is the value
Reid Spencerf86037f2007-04-11 23:23:49 +00006126whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
6127integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
6128type since they specify only a bit index.</p>
6129
6130<h5>Semantics:</h5>
6131<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
6132of operation: forwards and reverse. If <tt>%lo</tt> is greater than
6133<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
6134operates in forward mode.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006135
Reid Spencerf86037f2007-04-11 23:23:49 +00006136<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
6137truncating it down to the size of the replacement area or zero extending it
6138up to that size.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006139
Reid Spencerf86037f2007-04-11 23:23:49 +00006140<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
6141are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
6142in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
Dan Gohman0e451ce2008-10-14 16:51:45 +00006143to the <tt>%hi</tt>th bit.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006144
Reid Spencerc6749c42007-05-14 16:50:20 +00006145<p>In reverse mode, a similar computation is made except that the bits are
6146reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
Dan Gohman0e451ce2008-10-14 16:51:45 +00006147<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006148
Reid Spencerf86037f2007-04-11 23:23:49 +00006149<h5>Examples:</h5>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006150
Reid Spencerf86037f2007-04-11 23:23:49 +00006151<pre>
Reid Spencerf0dbf642007-04-12 01:03:03 +00006152 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
Reid Spencerc6749c42007-05-14 16:50:20 +00006153 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
6154 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
6155 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
Reid Spencerf0dbf642007-04-12 01:03:03 +00006156 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
Reid Spencerc8910842007-04-11 23:49:50 +00006157</pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006158
6159</div>
6160
Bill Wendlingda01af72009-02-08 04:04:40 +00006161<!-- ======================================================================= -->
6162<div class="doc_subsection">
6163 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
6164</div>
6165
6166<div class="doc_text">
6167<p>
6168LLVM provides intrinsics for some arithmetic with overflow operations.
6169</p>
6170
6171</div>
6172
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006173<!-- _______________________________________________________________________ -->
6174<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006175 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006176</div>
6177
6178<div class="doc_text">
6179
6180<h5>Syntax:</h5>
6181
6182<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006183on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006184
6185<pre>
6186 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
6187 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6188 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
6189</pre>
6190
6191<h5>Overview:</h5>
6192
6193<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6194a signed addition of the two arguments, and indicate whether an overflow
6195occurred during the signed summation.</p>
6196
6197<h5>Arguments:</h5>
6198
6199<p>The arguments (%a and %b) and the first element of the result structure may
6200be of integer types of any bit width, but they must have the same bit width. The
6201second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6202and <tt>%b</tt> are the two values that will undergo signed addition.</p>
6203
6204<h5>Semantics:</h5>
6205
6206<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
6207a signed addition of the two variables. They return a structure &mdash; the
6208first element of which is the signed summation, and the second element of which
6209is a bit specifying if the signed summation resulted in an overflow.</p>
6210
6211<h5>Examples:</h5>
6212<pre>
6213 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6214 %sum = extractvalue {i32, i1} %res, 0
6215 %obit = extractvalue {i32, i1} %res, 1
6216 br i1 %obit, label %overflow, label %normal
6217</pre>
6218
6219</div>
6220
6221<!-- _______________________________________________________________________ -->
6222<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006223 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006224</div>
6225
6226<div class="doc_text">
6227
6228<h5>Syntax:</h5>
6229
6230<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006231on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006232
6233<pre>
6234 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6235 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6236 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6237</pre>
6238
6239<h5>Overview:</h5>
6240
6241<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6242an unsigned addition of the two arguments, and indicate whether a carry occurred
6243during the unsigned summation.</p>
6244
6245<h5>Arguments:</h5>
6246
6247<p>The arguments (%a and %b) and the first element of the result structure may
6248be of integer types of any bit width, but they must have the same bit width. The
6249second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6250and <tt>%b</tt> are the two values that will undergo unsigned addition.</p>
6251
6252<h5>Semantics:</h5>
6253
6254<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6255an unsigned addition of the two arguments. They return a structure &mdash; the
6256first element of which is the sum, and the second element of which is a bit
6257specifying if the unsigned summation resulted in a carry.</p>
6258
6259<h5>Examples:</h5>
6260<pre>
6261 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6262 %sum = extractvalue {i32, i1} %res, 0
6263 %obit = extractvalue {i32, i1} %res, 1
6264 br i1 %obit, label %carry, label %normal
6265</pre>
6266
6267</div>
6268
6269<!-- _______________________________________________________________________ -->
6270<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006271 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006272</div>
6273
6274<div class="doc_text">
6275
6276<h5>Syntax:</h5>
6277
6278<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006279on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006280
6281<pre>
6282 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6283 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6284 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6285</pre>
6286
6287<h5>Overview:</h5>
6288
6289<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6290a signed subtraction of the two arguments, and indicate whether an overflow
6291occurred during the signed subtraction.</p>
6292
6293<h5>Arguments:</h5>
6294
6295<p>The arguments (%a and %b) and the first element of the result structure may
6296be of integer types of any bit width, but they must have the same bit width. The
6297second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6298and <tt>%b</tt> are the two values that will undergo signed subtraction.</p>
6299
6300<h5>Semantics:</h5>
6301
6302<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6303a signed subtraction of the two arguments. They return a structure &mdash; the
6304first element of which is the subtraction, and the second element of which is a bit
6305specifying if the signed subtraction resulted in an overflow.</p>
6306
6307<h5>Examples:</h5>
6308<pre>
6309 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6310 %sum = extractvalue {i32, i1} %res, 0
6311 %obit = extractvalue {i32, i1} %res, 1
6312 br i1 %obit, label %overflow, label %normal
6313</pre>
6314
6315</div>
6316
6317<!-- _______________________________________________________________________ -->
6318<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006319 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006320</div>
6321
6322<div class="doc_text">
6323
6324<h5>Syntax:</h5>
6325
6326<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006327on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006328
6329<pre>
6330 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6331 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6332 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6333</pre>
6334
6335<h5>Overview:</h5>
6336
6337<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6338an unsigned subtraction of the two arguments, and indicate whether an overflow
6339occurred during the unsigned subtraction.</p>
6340
6341<h5>Arguments:</h5>
6342
6343<p>The arguments (%a and %b) and the first element of the result structure may
6344be of integer types of any bit width, but they must have the same bit width. The
6345second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6346and <tt>%b</tt> are the two values that will undergo unsigned subtraction.</p>
6347
6348<h5>Semantics:</h5>
6349
6350<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6351an unsigned subtraction of the two arguments. They return a structure &mdash; the
6352first element of which is the subtraction, and the second element of which is a bit
6353specifying if the unsigned subtraction resulted in an overflow.</p>
6354
6355<h5>Examples:</h5>
6356<pre>
6357 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6358 %sum = extractvalue {i32, i1} %res, 0
6359 %obit = extractvalue {i32, i1} %res, 1
6360 br i1 %obit, label %overflow, label %normal
6361</pre>
6362
6363</div>
6364
6365<!-- _______________________________________________________________________ -->
6366<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006367 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006368</div>
6369
6370<div class="doc_text">
6371
6372<h5>Syntax:</h5>
6373
6374<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006375on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006376
6377<pre>
6378 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6379 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6380 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6381</pre>
6382
6383<h5>Overview:</h5>
6384
6385<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6386a signed multiplication of the two arguments, and indicate whether an overflow
6387occurred during the signed multiplication.</p>
6388
6389<h5>Arguments:</h5>
6390
6391<p>The arguments (%a and %b) and the first element of the result structure may
6392be of integer types of any bit width, but they must have the same bit width. The
6393second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6394and <tt>%b</tt> are the two values that will undergo signed multiplication.</p>
6395
6396<h5>Semantics:</h5>
6397
6398<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6399a signed multiplication of the two arguments. They return a structure &mdash;
6400the first element of which is the multiplication, and the second element of
6401which is a bit specifying if the signed multiplication resulted in an
6402overflow.</p>
6403
6404<h5>Examples:</h5>
6405<pre>
6406 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6407 %sum = extractvalue {i32, i1} %res, 0
6408 %obit = extractvalue {i32, i1} %res, 1
6409 br i1 %obit, label %overflow, label %normal
6410</pre>
6411
Reid Spencerf86037f2007-04-11 23:23:49 +00006412</div>
6413
Bill Wendling41b485c2009-02-08 23:00:09 +00006414<!-- _______________________________________________________________________ -->
6415<div class="doc_subsubsection">
6416 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6417</div>
6418
6419<div class="doc_text">
6420
6421<h5>Syntax:</h5>
6422
6423<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
6424on any integer bit width.</p>
6425
6426<pre>
6427 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6428 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6429 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6430</pre>
6431
6432<h5>Overview:</h5>
6433
Bill Wendling41b485c2009-02-08 23:00:09 +00006434<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6435a unsigned multiplication of the two arguments, and indicate whether an overflow
6436occurred during the unsigned multiplication.</p>
6437
6438<h5>Arguments:</h5>
6439
6440<p>The arguments (%a and %b) and the first element of the result structure may
6441be of integer types of any bit width, but they must have the same bit width. The
6442second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6443and <tt>%b</tt> are the two values that will undergo unsigned
6444multiplication.</p>
6445
6446<h5>Semantics:</h5>
6447
6448<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6449an unsigned multiplication of the two arguments. They return a structure &mdash;
6450the first element of which is the multiplication, and the second element of
6451which is a bit specifying if the unsigned multiplication resulted in an
6452overflow.</p>
6453
6454<h5>Examples:</h5>
6455<pre>
6456 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6457 %sum = extractvalue {i32, i1} %res, 0
6458 %obit = extractvalue {i32, i1} %res, 1
6459 br i1 %obit, label %overflow, label %normal
6460</pre>
6461
6462</div>
6463
Chris Lattner8ff75902004-01-06 05:31:32 +00006464<!-- ======================================================================= -->
6465<div class="doc_subsection">
6466 <a name="int_debugger">Debugger Intrinsics</a>
6467</div>
6468
6469<div class="doc_text">
6470<p>
6471The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
6472are described in the <a
6473href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
6474Debugging</a> document.
6475</p>
6476</div>
6477
6478
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006479<!-- ======================================================================= -->
6480<div class="doc_subsection">
6481 <a name="int_eh">Exception Handling Intrinsics</a>
6482</div>
6483
6484<div class="doc_text">
6485<p> The LLVM exception handling intrinsics (which all start with
6486<tt>llvm.eh.</tt> prefix), are described in the <a
6487href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6488Handling</a> document. </p>
6489</div>
6490
Tanya Lattner6d806e92007-06-15 20:50:54 +00006491<!-- ======================================================================= -->
6492<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00006493 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00006494</div>
6495
6496<div class="doc_text">
6497<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006498 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00006499 the <tt>nest</tt> attribute, from a function. The result is a callable
6500 function pointer lacking the nest parameter - the caller does not need
6501 to provide a value for it. Instead, the value to use is stored in
6502 advance in a "trampoline", a block of memory usually allocated
6503 on the stack, which also contains code to splice the nest value into the
6504 argument list. This is used to implement the GCC nested function address
6505 extension.
6506</p>
6507<p>
6508 For example, if the function is
6509 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00006510 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006511<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006512 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6513 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6514 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6515 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00006516</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00006517 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6518 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006519</div>
6520
6521<!-- _______________________________________________________________________ -->
6522<div class="doc_subsubsection">
6523 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6524</div>
6525<div class="doc_text">
6526<h5>Syntax:</h5>
6527<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006528declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00006529</pre>
6530<h5>Overview:</h5>
6531<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006532 This fills the memory pointed to by <tt>tramp</tt> with code
6533 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00006534</p>
6535<h5>Arguments:</h5>
6536<p>
6537 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6538 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
6539 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00006540 intrinsic. Note that the size and the alignment are target-specific - LLVM
6541 currently provides no portable way of determining them, so a front-end that
6542 generates this intrinsic needs to have some target-specific knowledge.
6543 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00006544</p>
6545<h5>Semantics:</h5>
6546<p>
6547 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00006548 dependent code, turning it into a function. A pointer to this function is
6549 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00006550 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006551 before being called. The new function's signature is the same as that of
6552 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
6553 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
6554 of pointer type. Calling the new function is equivalent to calling
6555 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
6556 missing <tt>nest</tt> argument. If, after calling
6557 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
6558 modified, then the effect of any later call to the returned function pointer is
6559 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00006560</p>
6561</div>
6562
6563<!-- ======================================================================= -->
6564<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006565 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6566</div>
6567
6568<div class="doc_text">
6569<p>
6570 These intrinsic functions expand the "universal IR" of LLVM to represent
6571 hardware constructs for atomic operations and memory synchronization. This
6572 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00006573 is aimed at a low enough level to allow any programming models or APIs
6574 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006575 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
6576 hardware behavior. Just as hardware provides a "universal IR" for source
6577 languages, it also provides a starting point for developing a "universal"
6578 atomic operation and synchronization IR.
6579</p>
6580<p>
6581 These do <em>not</em> form an API such as high-level threading libraries,
6582 software transaction memory systems, atomic primitives, and intrinsic
6583 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6584 application libraries. The hardware interface provided by LLVM should allow
6585 a clean implementation of all of these APIs and parallel programming models.
6586 No one model or paradigm should be selected above others unless the hardware
6587 itself ubiquitously does so.
6588
6589</p>
6590</div>
6591
6592<!-- _______________________________________________________________________ -->
6593<div class="doc_subsubsection">
6594 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6595</div>
6596<div class="doc_text">
6597<h5>Syntax:</h5>
6598<pre>
6599declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
6600i1 &lt;device&gt; )
6601
6602</pre>
6603<h5>Overview:</h5>
6604<p>
6605 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6606 specific pairs of memory access types.
6607</p>
6608<h5>Arguments:</h5>
6609<p>
6610 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6611 The first four arguments enables a specific barrier as listed below. The fith
6612 argument specifies that the barrier applies to io or device or uncached memory.
6613
6614</p>
6615 <ul>
6616 <li><tt>ll</tt>: load-load barrier</li>
6617 <li><tt>ls</tt>: load-store barrier</li>
6618 <li><tt>sl</tt>: store-load barrier</li>
6619 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006620 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006621 </ul>
6622<h5>Semantics:</h5>
6623<p>
6624 This intrinsic causes the system to enforce some ordering constraints upon
6625 the loads and stores of the program. This barrier does not indicate
6626 <em>when</em> any events will occur, it only enforces an <em>order</em> in
6627 which they occur. For any of the specified pairs of load and store operations
6628 (f.ex. load-load, or store-load), all of the first operations preceding the
6629 barrier will complete before any of the second operations succeeding the
6630 barrier begin. Specifically the semantics for each pairing is as follows:
6631</p>
6632 <ul>
6633 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6634 after the barrier begins.</li>
6635
6636 <li><tt>ls</tt>: All loads before the barrier must complete before any
6637 store after the barrier begins.</li>
6638 <li><tt>ss</tt>: All stores before the barrier must complete before any
6639 store after the barrier begins.</li>
6640 <li><tt>sl</tt>: All stores before the barrier must complete before any
6641 load after the barrier begins.</li>
6642 </ul>
6643<p>
6644 These semantics are applied with a logical "and" behavior when more than one
6645 is enabled in a single memory barrier intrinsic.
6646</p>
6647<p>
6648 Backends may implement stronger barriers than those requested when they do not
6649 support as fine grained a barrier as requested. Some architectures do not
6650 need all types of barriers and on such architectures, these become noops.
6651</p>
6652<h5>Example:</h5>
6653<pre>
6654%ptr = malloc i32
6655 store i32 4, %ptr
6656
6657%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6658 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6659 <i>; guarantee the above finishes</i>
6660 store i32 8, %ptr <i>; before this begins</i>
6661</pre>
6662</div>
6663
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006664<!-- _______________________________________________________________________ -->
6665<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006666 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006667</div>
6668<div class="doc_text">
6669<h5>Syntax:</h5>
6670<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00006671 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6672 any integer bit width and for different address spaces. Not all targets
6673 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006674
6675<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006676declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6677declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6678declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6679declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006680
6681</pre>
6682<h5>Overview:</h5>
6683<p>
6684 This loads a value in memory and compares it to a given value. If they are
6685 equal, it stores a new value into the memory.
6686</p>
6687<h5>Arguments:</h5>
6688<p>
Mon P Wang28873102008-06-25 08:15:39 +00006689 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006690 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6691 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6692 this integer type. While any bit width integer may be used, targets may only
6693 lower representations they support in hardware.
6694
6695</p>
6696<h5>Semantics:</h5>
6697<p>
6698 This entire intrinsic must be executed atomically. It first loads the value
6699 in memory pointed to by <tt>ptr</tt> and compares it with the value
6700 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
6701 loaded value is yielded in all cases. This provides the equivalent of an
6702 atomic compare-and-swap operation within the SSA framework.
6703</p>
6704<h5>Examples:</h5>
6705
6706<pre>
6707%ptr = malloc i32
6708 store i32 4, %ptr
6709
6710%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006711%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006712 <i>; yields {i32}:result1 = 4</i>
6713%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6714%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6715
6716%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006717%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006718 <i>; yields {i32}:result2 = 8</i>
6719%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6720
6721%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6722</pre>
6723</div>
6724
6725<!-- _______________________________________________________________________ -->
6726<div class="doc_subsubsection">
6727 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6728</div>
6729<div class="doc_text">
6730<h5>Syntax:</h5>
6731
6732<p>
6733 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6734 integer bit width. Not all targets support all bit widths however.</p>
6735<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006736declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6737declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6738declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6739declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006740
6741</pre>
6742<h5>Overview:</h5>
6743<p>
6744 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6745 the value from memory. It then stores the value in <tt>val</tt> in the memory
6746 at <tt>ptr</tt>.
6747</p>
6748<h5>Arguments:</h5>
6749
6750<p>
Mon P Wang28873102008-06-25 08:15:39 +00006751 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006752 <tt>val</tt> argument and the result must be integers of the same bit width.
6753 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6754 integer type. The targets may only lower integer representations they
6755 support.
6756</p>
6757<h5>Semantics:</h5>
6758<p>
6759 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6760 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6761 equivalent of an atomic swap operation within the SSA framework.
6762
6763</p>
6764<h5>Examples:</h5>
6765<pre>
6766%ptr = malloc i32
6767 store i32 4, %ptr
6768
6769%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006770%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006771 <i>; yields {i32}:result1 = 4</i>
6772%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6773%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6774
6775%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006776%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006777 <i>; yields {i32}:result2 = 8</i>
6778
6779%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6780%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6781</pre>
6782</div>
6783
6784<!-- _______________________________________________________________________ -->
6785<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006786 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006787
6788</div>
6789<div class="doc_text">
6790<h5>Syntax:</h5>
6791<p>
Mon P Wang28873102008-06-25 08:15:39 +00006792 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006793 integer bit width. Not all targets support all bit widths however.</p>
6794<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006795declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6796declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6797declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6798declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006799
6800</pre>
6801<h5>Overview:</h5>
6802<p>
6803 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6804 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6805</p>
6806<h5>Arguments:</h5>
6807<p>
6808
6809 The intrinsic takes two arguments, the first a pointer to an integer value
6810 and the second an integer value. The result is also an integer value. These
6811 integer types can have any bit width, but they must all have the same bit
6812 width. The targets may only lower integer representations they support.
6813</p>
6814<h5>Semantics:</h5>
6815<p>
6816 This intrinsic does a series of operations atomically. It first loads the
6817 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6818 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6819</p>
6820
6821<h5>Examples:</h5>
6822<pre>
6823%ptr = malloc i32
6824 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006825%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006826 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006827%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006828 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006829%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006830 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006831%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006832</pre>
6833</div>
6834
Mon P Wang28873102008-06-25 08:15:39 +00006835<!-- _______________________________________________________________________ -->
6836<div class="doc_subsubsection">
6837 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6838
6839</div>
6840<div class="doc_text">
6841<h5>Syntax:</h5>
6842<p>
6843 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006844 any integer bit width and for different address spaces. Not all targets
6845 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006846<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006847declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6848declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6849declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6850declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006851
6852</pre>
6853<h5>Overview:</h5>
6854<p>
6855 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6856 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6857</p>
6858<h5>Arguments:</h5>
6859<p>
6860
6861 The intrinsic takes two arguments, the first a pointer to an integer value
6862 and the second an integer value. The result is also an integer value. These
6863 integer types can have any bit width, but they must all have the same bit
6864 width. The targets may only lower integer representations they support.
6865</p>
6866<h5>Semantics:</h5>
6867<p>
6868 This intrinsic does a series of operations atomically. It first loads the
6869 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6870 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6871</p>
6872
6873<h5>Examples:</h5>
6874<pre>
6875%ptr = malloc i32
6876 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006877%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006878 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006879%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006880 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006881%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006882 <i>; yields {i32}:result3 = 2</i>
6883%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6884</pre>
6885</div>
6886
6887<!-- _______________________________________________________________________ -->
6888<div class="doc_subsubsection">
6889 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6890 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6891 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6892 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6893
6894</div>
6895<div class="doc_text">
6896<h5>Syntax:</h5>
6897<p>
6898 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6899 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006900 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6901 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006902<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006903declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6904declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6905declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6906declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006907
6908</pre>
6909
6910<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006911declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6912declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6913declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6914declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006915
6916</pre>
6917
6918<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006919declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6920declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6921declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6922declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006923
6924</pre>
6925
6926<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006927declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6928declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6929declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6930declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006931
6932</pre>
6933<h5>Overview:</h5>
6934<p>
6935 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6936 the value stored in memory at <tt>ptr</tt>. It yields the original value
6937 at <tt>ptr</tt>.
6938</p>
6939<h5>Arguments:</h5>
6940<p>
6941
6942 These intrinsics take two arguments, the first a pointer to an integer value
6943 and the second an integer value. The result is also an integer value. These
6944 integer types can have any bit width, but they must all have the same bit
6945 width. The targets may only lower integer representations they support.
6946</p>
6947<h5>Semantics:</h5>
6948<p>
6949 These intrinsics does a series of operations atomically. They first load the
6950 value stored at <tt>ptr</tt>. They then do the bitwise operation
6951 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6952 value stored at <tt>ptr</tt>.
6953</p>
6954
6955<h5>Examples:</h5>
6956<pre>
6957%ptr = malloc i32
6958 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006959%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006960 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006961%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006962 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006963%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006964 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006965%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006966 <i>; yields {i32}:result3 = FF</i>
6967%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6968</pre>
6969</div>
6970
6971
6972<!-- _______________________________________________________________________ -->
6973<div class="doc_subsubsection">
6974 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6975 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6976 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6977 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6978
6979</div>
6980<div class="doc_text">
6981<h5>Syntax:</h5>
6982<p>
6983 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6984 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006985 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6986 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006987 support all bit widths however.</p>
6988<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006989declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6990declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6991declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6992declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006993
6994</pre>
6995
6996<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006997declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6998declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6999declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7000declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00007001
7002</pre>
7003
7004<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00007005declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7006declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7007declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7008declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00007009
7010</pre>
7011
7012<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00007013declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
7014declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
7015declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
7016declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00007017
7018</pre>
7019<h5>Overview:</h5>
7020<p>
7021 These intrinsics takes the signed or unsigned minimum or maximum of
7022 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
7023 original value at <tt>ptr</tt>.
7024</p>
7025<h5>Arguments:</h5>
7026<p>
7027
7028 These intrinsics take two arguments, the first a pointer to an integer value
7029 and the second an integer value. The result is also an integer value. These
7030 integer types can have any bit width, but they must all have the same bit
7031 width. The targets may only lower integer representations they support.
7032</p>
7033<h5>Semantics:</h5>
7034<p>
7035 These intrinsics does a series of operations atomically. They first load the
7036 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
7037 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
7038 the original value stored at <tt>ptr</tt>.
7039</p>
7040
7041<h5>Examples:</h5>
7042<pre>
7043%ptr = malloc i32
7044 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00007045%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00007046 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00007047%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00007048 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00007049%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00007050 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00007051%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00007052 <i>; yields {i32}:result3 = 8</i>
7053%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
7054</pre>
7055</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00007056
7057<!-- ======================================================================= -->
7058<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00007059 <a name="int_general">General Intrinsics</a>
7060</div>
7061
7062<div class="doc_text">
7063<p> This class of intrinsics is designed to be generic and has
7064no specific purpose. </p>
7065</div>
7066
7067<!-- _______________________________________________________________________ -->
7068<div class="doc_subsubsection">
7069 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
7070</div>
7071
7072<div class="doc_text">
7073
7074<h5>Syntax:</h5>
7075<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00007076 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00007077</pre>
7078
7079<h5>Overview:</h5>
7080
7081<p>
7082The '<tt>llvm.var.annotation</tt>' intrinsic
7083</p>
7084
7085<h5>Arguments:</h5>
7086
7087<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00007088The first argument is a pointer to a value, the second is a pointer to a
7089global string, the third is a pointer to a global string which is the source
7090file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00007091</p>
7092
7093<h5>Semantics:</h5>
7094
7095<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007096This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00007097This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007098annotations. These have no other defined use, they are ignored by code
7099generation and optimization.
7100</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00007101</div>
7102
Tanya Lattnerb6367882007-09-21 22:59:12 +00007103<!-- _______________________________________________________________________ -->
7104<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00007105 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007106</div>
7107
7108<div class="doc_text">
7109
7110<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00007111<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
7112any integer bit width.
7113</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007114<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00007115 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7116 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7117 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7118 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
7119 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00007120</pre>
7121
7122<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00007123
7124<p>
7125The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00007126</p>
7127
7128<h5>Arguments:</h5>
7129
7130<p>
7131The first argument is an integer value (result of some expression),
7132the second is a pointer to a global string, the third is a pointer to a global
7133string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00007134It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00007135</p>
7136
7137<h5>Semantics:</h5>
7138
7139<p>
7140This intrinsic allows annotations to be put on arbitrary expressions
7141with arbitrary strings. This can be useful for special purpose optimizations
7142that want to look for these annotations. These have no other defined use, they
7143are ignored by code generation and optimization.
Dan Gohman0e451ce2008-10-14 16:51:45 +00007144</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00007145</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00007146
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00007147<!-- _______________________________________________________________________ -->
7148<div class="doc_subsubsection">
7149 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
7150</div>
7151
7152<div class="doc_text">
7153
7154<h5>Syntax:</h5>
7155<pre>
7156 declare void @llvm.trap()
7157</pre>
7158
7159<h5>Overview:</h5>
7160
7161<p>
7162The '<tt>llvm.trap</tt>' intrinsic
7163</p>
7164
7165<h5>Arguments:</h5>
7166
7167<p>
7168None
7169</p>
7170
7171<h5>Semantics:</h5>
7172
7173<p>
7174This intrinsics is lowered to the target dependent trap instruction. If the
7175target does not have a trap instruction, this intrinsic will be lowered to the
7176call of the abort() function.
7177</p>
7178</div>
7179
Bill Wendling69e4adb2008-11-19 05:56:17 +00007180<!-- _______________________________________________________________________ -->
7181<div class="doc_subsubsection">
Misha Brukmandccb0252008-11-22 23:55:29 +00007182 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling69e4adb2008-11-19 05:56:17 +00007183</div>
7184<div class="doc_text">
7185<h5>Syntax:</h5>
7186<pre>
7187declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
7188
7189</pre>
7190<h5>Overview:</h5>
7191<p>
7192 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
7193 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
7194 it is placed on the stack before local variables.
7195</p>
7196<h5>Arguments:</h5>
7197<p>
7198 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
7199 first argument is the value loaded from the stack guard
7200 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
7201 has enough space to hold the value of the guard.
7202</p>
7203<h5>Semantics:</h5>
7204<p>
7205 This intrinsic causes the prologue/epilogue inserter to force the position of
7206 the <tt>AllocaInst</tt> stack slot to be before local variables on the
7207 stack. This is to ensure that if a local variable on the stack is overwritten,
7208 it will destroy the value of the guard. When the function exits, the guard on
7209 the stack is checked against the original guard. If they're different, then
7210 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
7211</p>
7212</div>
7213
Chris Lattner00950542001-06-06 20:29:01 +00007214<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00007215<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007216<address>
7217 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007218 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007219 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007220 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007221
7222 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00007223 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007224 Last modified: $Date$
7225</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00007226
Misha Brukman9d0919f2003-11-08 01:05:38 +00007227</body>
7228</html>