blob: d059fe0d4dd689b8bad8742e61aa54af224dc6e2 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Richard Smith32dbdf62014-07-31 04:25:36 +000078 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000165 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
351 arguments into registers but allows them to be dynamcially
352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
356 This calling convention attempts to make the code in the caller as little
357 intrusive as possible. This calling convention behaves identical to the `C`
358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
371 of code that doesn't many registers. The cold path might need to call out to
372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000497.. _namedtypes:
498
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000499Structure Types
500---------------
Sean Silvab084af42012-12-07 10:36:55 +0000501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
503types <t_struct>`. Literal types are uniqued structurally, but identified types
504are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000505to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000506
507An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000508
509.. code-block:: llvm
510
511 %mytype = type { %mytype*, i32 }
512
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000513Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
514literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000515
516.. _globalvars:
517
518Global Variables
519----------------
520
521Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000522instead of run-time.
523
Bob Wilson85b24f22014-06-12 20:40:33 +0000524Global variables definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525
526Global variables in other translation units can also be declared, in which
527case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000528
Bob Wilson85b24f22014-06-12 20:40:33 +0000529Either global variable definitions or declarations may have an explicit section
530to be placed in and may have an optional explicit alignment specified.
531
Michael Gottesman006039c2013-01-31 05:48:48 +0000532A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000536initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000567Additionally, the global can placed in a comdat if the target has the necessary
568support.
Sean Silvab084af42012-12-07 10:36:55 +0000569
Michael Gottesmane743a302013-02-04 03:22:00 +0000570By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000571variables defined within the module are not modified from their
572initial values before the start of the global initializer. This is
573true even for variables potentially accessible from outside the
574module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000575``@llvm.used`` or dllexported variables. This assumption may be suppressed
576by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000577
Sean Silvab084af42012-12-07 10:36:55 +0000578An explicit alignment may be specified for a global, which must be a
579power of 2. If not present, or if the alignment is set to zero, the
580alignment of the global is set by the target to whatever it feels
581convenient. If an explicit alignment is specified, the global is forced
582to have exactly that alignment. Targets and optimizers are not allowed
583to over-align the global if the global has an assigned section. In this
584case, the extra alignment could be observable: for example, code could
585assume that the globals are densely packed in their section and try to
586iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000587iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000588
Nico Rieck7157bb72014-01-14 15:22:47 +0000589Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
590
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000591Variables and aliasaes can have a
592:ref:`Thread Local Storage Model <tls_model>`.
593
Nico Rieck7157bb72014-01-14 15:22:47 +0000594Syntax::
595
596 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000597 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000598 <global | constant> <Type> [<InitializerConstant>]
599 [, section "name"] [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000600
Sean Silvab084af42012-12-07 10:36:55 +0000601For example, the following defines a global in a numbered address space
602with an initializer, section, and alignment:
603
604.. code-block:: llvm
605
606 @G = addrspace(5) constant float 1.0, section "foo", align 4
607
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000608The following example just declares a global variable
609
610.. code-block:: llvm
611
612 @G = external global i32
613
Sean Silvab084af42012-12-07 10:36:55 +0000614The following example defines a thread-local global with the
615``initialexec`` TLS model:
616
617.. code-block:: llvm
618
619 @G = thread_local(initialexec) global i32 0, align 4
620
621.. _functionstructure:
622
623Functions
624---------
625
626LLVM function definitions consist of the "``define``" keyword, an
627optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000628style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
629an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000630an optional ``unnamed_addr`` attribute, a return type, an optional
631:ref:`parameter attribute <paramattrs>` for the return type, a function
632name, a (possibly empty) argument list (each with optional :ref:`parameter
633attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000634an optional section, an optional alignment,
635an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000636an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
637an optional :ref:`prologue <prologuedata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000638curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000639
640LLVM function declarations consist of the "``declare``" keyword, an
641optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000642style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
643an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000644an optional ``unnamed_addr`` attribute, a return type, an optional
645:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000646name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000647:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
648and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000649
Bill Wendling6822ecb2013-10-27 05:09:12 +0000650A function definition contains a list of basic blocks, forming the CFG (Control
651Flow Graph) for the function. Each basic block may optionally start with a label
652(giving the basic block a symbol table entry), contains a list of instructions,
653and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
654function return). If an explicit label is not provided, a block is assigned an
655implicit numbered label, using the next value from the same counter as used for
656unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
657entry block does not have an explicit label, it will be assigned label "%0",
658then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000659
660The first basic block in a function is special in two ways: it is
661immediately executed on entrance to the function, and it is not allowed
662to have predecessor basic blocks (i.e. there can not be any branches to
663the entry block of a function). Because the block can have no
664predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
665
666LLVM allows an explicit section to be specified for functions. If the
667target supports it, it will emit functions to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000668Additionally, the function can placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000669
670An explicit alignment may be specified for a function. If not present,
671or if the alignment is set to zero, the alignment of the function is set
672by the target to whatever it feels convenient. If an explicit alignment
673is specified, the function is forced to have at least that much
674alignment. All alignments must be a power of 2.
675
676If the ``unnamed_addr`` attribute is given, the address is know to not
677be significant and two identical functions can be merged.
678
679Syntax::
680
Nico Rieck7157bb72014-01-14 15:22:47 +0000681 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000682 [cconv] [ret attrs]
683 <ResultType> @<FunctionName> ([argument list])
David Majnemerdad0a642014-06-27 18:19:56 +0000684 [unnamed_addr] [fn Attrs] [section "name"] [comdat $<ComdatName>]
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000685 [align N] [gc] [prefix Constant] [prologue Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000686
Dan Liew2661dfc2014-08-20 15:06:30 +0000687The argument list is a comma seperated sequence of arguments where each
688argument is of the following form
689
690Syntax::
691
692 <type> [parameter Attrs] [name]
693
694
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000695.. _langref_aliases:
696
Sean Silvab084af42012-12-07 10:36:55 +0000697Aliases
698-------
699
Rafael Espindola64c1e182014-06-03 02:41:57 +0000700Aliases, unlike function or variables, don't create any new data. They
701are just a new symbol and metadata for an existing position.
702
703Aliases have a name and an aliasee that is either a global value or a
704constant expression.
705
Nico Rieck7157bb72014-01-14 15:22:47 +0000706Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000707:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
708<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000709
710Syntax::
711
Rafael Espindola464fe022014-07-30 22:51:54 +0000712 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000713
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000714The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000715``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000716might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000717
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000718Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000719the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
720to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000721
Rafael Espindola64c1e182014-06-03 02:41:57 +0000722Since aliases are only a second name, some restrictions apply, of which
723some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000724
Rafael Espindola64c1e182014-06-03 02:41:57 +0000725* The expression defining the aliasee must be computable at assembly
726 time. Since it is just a name, no relocations can be used.
727
728* No alias in the expression can be weak as the possibility of the
729 intermediate alias being overridden cannot be represented in an
730 object file.
731
732* No global value in the expression can be a declaration, since that
733 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000734
David Majnemerdad0a642014-06-27 18:19:56 +0000735.. _langref_comdats:
736
737Comdats
738-------
739
740Comdat IR provides access to COFF and ELF object file COMDAT functionality.
741
Richard Smith32dbdf62014-07-31 04:25:36 +0000742Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000743specify this key will only end up in the final object file if the linker chooses
744that key over some other key. Aliases are placed in the same COMDAT that their
745aliasee computes to, if any.
746
747Comdats have a selection kind to provide input on how the linker should
748choose between keys in two different object files.
749
750Syntax::
751
752 $<Name> = comdat SelectionKind
753
754The selection kind must be one of the following:
755
756``any``
757 The linker may choose any COMDAT key, the choice is arbitrary.
758``exactmatch``
759 The linker may choose any COMDAT key but the sections must contain the
760 same data.
761``largest``
762 The linker will choose the section containing the largest COMDAT key.
763``noduplicates``
764 The linker requires that only section with this COMDAT key exist.
765``samesize``
766 The linker may choose any COMDAT key but the sections must contain the
767 same amount of data.
768
769Note that the Mach-O platform doesn't support COMDATs and ELF only supports
770``any`` as a selection kind.
771
772Here is an example of a COMDAT group where a function will only be selected if
773the COMDAT key's section is the largest:
774
775.. code-block:: llvm
776
777 $foo = comdat largest
778 @foo = global i32 2, comdat $foo
779
780 define void @bar() comdat $foo {
781 ret void
782 }
783
784In a COFF object file, this will create a COMDAT section with selection kind
785``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
786and another COMDAT section with selection kind
787``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000788section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000789
790There are some restrictions on the properties of the global object.
791It, or an alias to it, must have the same name as the COMDAT group when
792targeting COFF.
793The contents and size of this object may be used during link-time to determine
794which COMDAT groups get selected depending on the selection kind.
795Because the name of the object must match the name of the COMDAT group, the
796linkage of the global object must not be local; local symbols can get renamed
797if a collision occurs in the symbol table.
798
799The combined use of COMDATS and section attributes may yield surprising results.
800For example:
801
802.. code-block:: llvm
803
804 $foo = comdat any
805 $bar = comdat any
806 @g1 = global i32 42, section "sec", comdat $foo
807 @g2 = global i32 42, section "sec", comdat $bar
808
809From the object file perspective, this requires the creation of two sections
810with the same name. This is necessary because both globals belong to different
811COMDAT groups and COMDATs, at the object file level, are represented by
812sections.
813
814Note that certain IR constructs like global variables and functions may create
815COMDATs in the object file in addition to any which are specified using COMDAT
816IR. This arises, for example, when a global variable has linkonce_odr linkage.
817
Sean Silvab084af42012-12-07 10:36:55 +0000818.. _namedmetadatastructure:
819
820Named Metadata
821--------------
822
823Named metadata is a collection of metadata. :ref:`Metadata
824nodes <metadata>` (but not metadata strings) are the only valid
825operands for a named metadata.
826
827Syntax::
828
829 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000830 !0 = !{!"zero"}
831 !1 = !{!"one"}
832 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000833 ; A named metadata.
834 !name = !{!0, !1, !2}
835
836.. _paramattrs:
837
838Parameter Attributes
839--------------------
840
841The return type and each parameter of a function type may have a set of
842*parameter attributes* associated with them. Parameter attributes are
843used to communicate additional information about the result or
844parameters of a function. Parameter attributes are considered to be part
845of the function, not of the function type, so functions with different
846parameter attributes can have the same function type.
847
848Parameter attributes are simple keywords that follow the type specified.
849If multiple parameter attributes are needed, they are space separated.
850For example:
851
852.. code-block:: llvm
853
854 declare i32 @printf(i8* noalias nocapture, ...)
855 declare i32 @atoi(i8 zeroext)
856 declare signext i8 @returns_signed_char()
857
858Note that any attributes for the function result (``nounwind``,
859``readonly``) come immediately after the argument list.
860
861Currently, only the following parameter attributes are defined:
862
863``zeroext``
864 This indicates to the code generator that the parameter or return
865 value should be zero-extended to the extent required by the target's
866 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
867 the caller (for a parameter) or the callee (for a return value).
868``signext``
869 This indicates to the code generator that the parameter or return
870 value should be sign-extended to the extent required by the target's
871 ABI (which is usually 32-bits) by the caller (for a parameter) or
872 the callee (for a return value).
873``inreg``
874 This indicates that this parameter or return value should be treated
875 in a special target-dependent fashion during while emitting code for
876 a function call or return (usually, by putting it in a register as
877 opposed to memory, though some targets use it to distinguish between
878 two different kinds of registers). Use of this attribute is
879 target-specific.
880``byval``
881 This indicates that the pointer parameter should really be passed by
882 value to the function. The attribute implies that a hidden copy of
883 the pointee is made between the caller and the callee, so the callee
884 is unable to modify the value in the caller. This attribute is only
885 valid on LLVM pointer arguments. It is generally used to pass
886 structs and arrays by value, but is also valid on pointers to
887 scalars. The copy is considered to belong to the caller not the
888 callee (for example, ``readonly`` functions should not write to
889 ``byval`` parameters). This is not a valid attribute for return
890 values.
891
892 The byval attribute also supports specifying an alignment with the
893 align attribute. It indicates the alignment of the stack slot to
894 form and the known alignment of the pointer specified to the call
895 site. If the alignment is not specified, then the code generator
896 makes a target-specific assumption.
897
Reid Klecknera534a382013-12-19 02:14:12 +0000898.. _attr_inalloca:
899
900``inalloca``
901
Reid Kleckner60d3a832014-01-16 22:59:24 +0000902 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000903 address of outgoing stack arguments. An ``inalloca`` argument must
904 be a pointer to stack memory produced by an ``alloca`` instruction.
905 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000906 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000907 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000908
Reid Kleckner436c42e2014-01-17 23:58:17 +0000909 An argument allocation may be used by a call at most once because
910 the call may deallocate it. The ``inalloca`` attribute cannot be
911 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000912 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
913 ``inalloca`` attribute also disables LLVM's implicit lowering of
914 large aggregate return values, which means that frontend authors
915 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000916
Reid Kleckner60d3a832014-01-16 22:59:24 +0000917 When the call site is reached, the argument allocation must have
918 been the most recent stack allocation that is still live, or the
919 results are undefined. It is possible to allocate additional stack
920 space after an argument allocation and before its call site, but it
921 must be cleared off with :ref:`llvm.stackrestore
922 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000923
924 See :doc:`InAlloca` for more information on how to use this
925 attribute.
926
Sean Silvab084af42012-12-07 10:36:55 +0000927``sret``
928 This indicates that the pointer parameter specifies the address of a
929 structure that is the return value of the function in the source
930 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000931 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000932 not to trap and to be properly aligned. This may only be applied to
933 the first parameter. This is not a valid attribute for return
934 values.
Sean Silva1703e702014-04-08 21:06:22 +0000935
Hal Finkelccc70902014-07-22 16:58:55 +0000936``align <n>``
937 This indicates that the pointer value may be assumed by the optimizer to
938 have the specified alignment.
939
940 Note that this attribute has additional semantics when combined with the
941 ``byval`` attribute.
942
Sean Silva1703e702014-04-08 21:06:22 +0000943.. _noalias:
944
Sean Silvab084af42012-12-07 10:36:55 +0000945``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000946 This indicates that objects accessed via pointer values
947 :ref:`based <pointeraliasing>` on the argument or return value are not also
948 accessed, during the execution of the function, via pointer values not
949 *based* on the argument or return value. The attribute on a return value
950 also has additional semantics described below. The caller shares the
951 responsibility with the callee for ensuring that these requirements are met.
952 For further details, please see the discussion of the NoAlias response in
953 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000954
955 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000956 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000957
958 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000959 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
960 attribute on return values are stronger than the semantics of the attribute
961 when used on function arguments. On function return values, the ``noalias``
962 attribute indicates that the function acts like a system memory allocation
963 function, returning a pointer to allocated storage disjoint from the
964 storage for any other object accessible to the caller.
965
Sean Silvab084af42012-12-07 10:36:55 +0000966``nocapture``
967 This indicates that the callee does not make any copies of the
968 pointer that outlive the callee itself. This is not a valid
969 attribute for return values.
970
971.. _nest:
972
973``nest``
974 This indicates that the pointer parameter can be excised using the
975 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000976 attribute for return values and can only be applied to one parameter.
977
978``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000979 This indicates that the function always returns the argument as its return
980 value. This is an optimization hint to the code generator when generating
981 the caller, allowing tail call optimization and omission of register saves
982 and restores in some cases; it is not checked or enforced when generating
983 the callee. The parameter and the function return type must be valid
984 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
985 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000986
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000987``nonnull``
988 This indicates that the parameter or return pointer is not null. This
989 attribute may only be applied to pointer typed parameters. This is not
990 checked or enforced by LLVM, the caller must ensure that the pointer
991 passed in is non-null, or the callee must ensure that the returned pointer
992 is non-null.
993
Hal Finkelb0407ba2014-07-18 15:51:28 +0000994``dereferenceable(<n>)``
995 This indicates that the parameter or return pointer is dereferenceable. This
996 attribute may only be applied to pointer typed parameters. A pointer that
997 is dereferenceable can be loaded from speculatively without a risk of
998 trapping. The number of bytes known to be dereferenceable must be provided
999 in parentheses. It is legal for the number of bytes to be less than the
1000 size of the pointee type. The ``nonnull`` attribute does not imply
1001 dereferenceability (consider a pointer to one element past the end of an
1002 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1003 ``addrspace(0)`` (which is the default address space).
1004
Sean Silvab084af42012-12-07 10:36:55 +00001005.. _gc:
1006
1007Garbage Collector Names
1008-----------------------
1009
1010Each function may specify a garbage collector name, which is simply a
1011string:
1012
1013.. code-block:: llvm
1014
1015 define void @f() gc "name" { ... }
1016
1017The compiler declares the supported values of *name*. Specifying a
Richard Smith32dbdf62014-07-31 04:25:36 +00001018collector will cause the compiler to alter its output in order to
Sean Silvab084af42012-12-07 10:36:55 +00001019support the named garbage collection algorithm.
1020
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001021.. _prefixdata:
1022
1023Prefix Data
1024-----------
1025
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001026Prefix data is data associated with a function which the code
1027generator will emit immediately before the function's entrypoint.
1028The purpose of this feature is to allow frontends to associate
1029language-specific runtime metadata with specific functions and make it
1030available through the function pointer while still allowing the
1031function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001032
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001033To access the data for a given function, a program may bitcast the
1034function pointer to a pointer to the constant's type and dereference
1035index -1. This implies that the IR symbol points just past the end of
1036the prefix data. For instance, take the example of a function annotated
1037with a single ``i32``,
1038
1039.. code-block:: llvm
1040
1041 define void @f() prefix i32 123 { ... }
1042
1043The prefix data can be referenced as,
1044
1045.. code-block:: llvm
1046
1047 %0 = bitcast *void () @f to *i32
1048 %a = getelementptr inbounds *i32 %0, i32 -1
1049 %b = load i32* %a
1050
1051Prefix data is laid out as if it were an initializer for a global variable
1052of the prefix data's type. The function will be placed such that the
1053beginning of the prefix data is aligned. This means that if the size
1054of the prefix data is not a multiple of the alignment size, the
1055function's entrypoint will not be aligned. If alignment of the
1056function's entrypoint is desired, padding must be added to the prefix
1057data.
1058
1059A function may have prefix data but no body. This has similar semantics
1060to the ``available_externally`` linkage in that the data may be used by the
1061optimizers but will not be emitted in the object file.
1062
1063.. _prologuedata:
1064
1065Prologue Data
1066-------------
1067
1068The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1069be inserted prior to the function body. This can be used for enabling
1070function hot-patching and instrumentation.
1071
1072To maintain the semantics of ordinary function calls, the prologue data must
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001073have a particular format. Specifically, it must begin with a sequence of
1074bytes which decode to a sequence of machine instructions, valid for the
1075module's target, which transfer control to the point immediately succeeding
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001076the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001077the inliner and other passes to reason about the semantics of the function
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001078definition without needing to reason about the prologue data. Obviously this
1079makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001080
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001081A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001082which encodes the ``nop`` instruction:
1083
1084.. code-block:: llvm
1085
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001086 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001087
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001088Generally prologue data can be formed by encoding a relative branch instruction
1089which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001090x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1091
1092.. code-block:: llvm
1093
1094 %0 = type <{ i8, i8, i8* }>
1095
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001096 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001097
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001098A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001099to the ``available_externally`` linkage in that the data may be used by the
1100optimizers but will not be emitted in the object file.
1101
Bill Wendling63b88192013-02-06 06:52:58 +00001102.. _attrgrp:
1103
1104Attribute Groups
1105----------------
1106
1107Attribute groups are groups of attributes that are referenced by objects within
1108the IR. They are important for keeping ``.ll`` files readable, because a lot of
1109functions will use the same set of attributes. In the degenerative case of a
1110``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1111group will capture the important command line flags used to build that file.
1112
1113An attribute group is a module-level object. To use an attribute group, an
1114object references the attribute group's ID (e.g. ``#37``). An object may refer
1115to more than one attribute group. In that situation, the attributes from the
1116different groups are merged.
1117
1118Here is an example of attribute groups for a function that should always be
1119inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1120
1121.. code-block:: llvm
1122
1123 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001124 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001125
1126 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001127 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001128
1129 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1130 define void @f() #0 #1 { ... }
1131
Sean Silvab084af42012-12-07 10:36:55 +00001132.. _fnattrs:
1133
1134Function Attributes
1135-------------------
1136
1137Function attributes are set to communicate additional information about
1138a function. Function attributes are considered to be part of the
1139function, not of the function type, so functions with different function
1140attributes can have the same function type.
1141
1142Function attributes are simple keywords that follow the type specified.
1143If multiple attributes are needed, they are space separated. For
1144example:
1145
1146.. code-block:: llvm
1147
1148 define void @f() noinline { ... }
1149 define void @f() alwaysinline { ... }
1150 define void @f() alwaysinline optsize { ... }
1151 define void @f() optsize { ... }
1152
Sean Silvab084af42012-12-07 10:36:55 +00001153``alignstack(<n>)``
1154 This attribute indicates that, when emitting the prologue and
1155 epilogue, the backend should forcibly align the stack pointer.
1156 Specify the desired alignment, which must be a power of two, in
1157 parentheses.
1158``alwaysinline``
1159 This attribute indicates that the inliner should attempt to inline
1160 this function into callers whenever possible, ignoring any active
1161 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001162``builtin``
1163 This indicates that the callee function at a call site should be
1164 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001165 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001166 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001167 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001168``cold``
1169 This attribute indicates that this function is rarely called. When
1170 computing edge weights, basic blocks post-dominated by a cold
1171 function call are also considered to be cold; and, thus, given low
1172 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001173``inlinehint``
1174 This attribute indicates that the source code contained a hint that
1175 inlining this function is desirable (such as the "inline" keyword in
1176 C/C++). It is just a hint; it imposes no requirements on the
1177 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001178``jumptable``
1179 This attribute indicates that the function should be added to a
1180 jump-instruction table at code-generation time, and that all address-taken
1181 references to this function should be replaced with a reference to the
1182 appropriate jump-instruction-table function pointer. Note that this creates
1183 a new pointer for the original function, which means that code that depends
1184 on function-pointer identity can break. So, any function annotated with
1185 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001186``minsize``
1187 This attribute suggests that optimization passes and code generator
1188 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001189 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001190 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001191``naked``
1192 This attribute disables prologue / epilogue emission for the
1193 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001194``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001195 This indicates that the callee function at a call site is not recognized as
1196 a built-in function. LLVM will retain the original call and not replace it
1197 with equivalent code based on the semantics of the built-in function, unless
1198 the call site uses the ``builtin`` attribute. This is valid at call sites
1199 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001200``noduplicate``
1201 This attribute indicates that calls to the function cannot be
1202 duplicated. A call to a ``noduplicate`` function may be moved
1203 within its parent function, but may not be duplicated within
1204 its parent function.
1205
1206 A function containing a ``noduplicate`` call may still
1207 be an inlining candidate, provided that the call is not
1208 duplicated by inlining. That implies that the function has
1209 internal linkage and only has one call site, so the original
1210 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001211``noimplicitfloat``
1212 This attributes disables implicit floating point instructions.
1213``noinline``
1214 This attribute indicates that the inliner should never inline this
1215 function in any situation. This attribute may not be used together
1216 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001217``nonlazybind``
1218 This attribute suppresses lazy symbol binding for the function. This
1219 may make calls to the function faster, at the cost of extra program
1220 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001221``noredzone``
1222 This attribute indicates that the code generator should not use a
1223 red zone, even if the target-specific ABI normally permits it.
1224``noreturn``
1225 This function attribute indicates that the function never returns
1226 normally. This produces undefined behavior at runtime if the
1227 function ever does dynamically return.
1228``nounwind``
1229 This function attribute indicates that the function never returns
1230 with an unwind or exceptional control flow. If the function does
1231 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001232``optnone``
1233 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001234 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001235 exception of interprocedural optimization passes.
1236 This attribute cannot be used together with the ``alwaysinline``
1237 attribute; this attribute is also incompatible
1238 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001239
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001240 This attribute requires the ``noinline`` attribute to be specified on
1241 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001242 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001243 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001244``optsize``
1245 This attribute suggests that optimization passes and code generator
1246 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001247 and otherwise do optimizations specifically to reduce code size as
1248 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001249``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001250 On a function, this attribute indicates that the function computes its
1251 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001252 without dereferencing any pointer arguments or otherwise accessing
1253 any mutable state (e.g. memory, control registers, etc) visible to
1254 caller functions. It does not write through any pointer arguments
1255 (including ``byval`` arguments) and never changes any state visible
1256 to callers. This means that it cannot unwind exceptions by calling
1257 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001258
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001259 On an argument, this attribute indicates that the function does not
1260 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001261 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001262``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001263 On a function, this attribute indicates that the function does not write
1264 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001265 modify any state (e.g. memory, control registers, etc) visible to
1266 caller functions. It may dereference pointer arguments and read
1267 state that may be set in the caller. A readonly function always
1268 returns the same value (or unwinds an exception identically) when
1269 called with the same set of arguments and global state. It cannot
1270 unwind an exception by calling the ``C++`` exception throwing
1271 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001272
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001273 On an argument, this attribute indicates that the function does not write
1274 through this pointer argument, even though it may write to the memory that
1275 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001276``returns_twice``
1277 This attribute indicates that this function can return twice. The C
1278 ``setjmp`` is an example of such a function. The compiler disables
1279 some optimizations (like tail calls) in the caller of these
1280 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001281``sanitize_address``
1282 This attribute indicates that AddressSanitizer checks
1283 (dynamic address safety analysis) are enabled for this function.
1284``sanitize_memory``
1285 This attribute indicates that MemorySanitizer checks (dynamic detection
1286 of accesses to uninitialized memory) are enabled for this function.
1287``sanitize_thread``
1288 This attribute indicates that ThreadSanitizer checks
1289 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001290``ssp``
1291 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001292 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001293 placed on the stack before the local variables that's checked upon
1294 return from the function to see if it has been overwritten. A
1295 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001296 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001297
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001298 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1299 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1300 - Calls to alloca() with variable sizes or constant sizes greater than
1301 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001302
Josh Magee24c7f062014-02-01 01:36:16 +00001303 Variables that are identified as requiring a protector will be arranged
1304 on the stack such that they are adjacent to the stack protector guard.
1305
Sean Silvab084af42012-12-07 10:36:55 +00001306 If a function that has an ``ssp`` attribute is inlined into a
1307 function that doesn't have an ``ssp`` attribute, then the resulting
1308 function will have an ``ssp`` attribute.
1309``sspreq``
1310 This attribute indicates that the function should *always* emit a
1311 stack smashing protector. This overrides the ``ssp`` function
1312 attribute.
1313
Josh Magee24c7f062014-02-01 01:36:16 +00001314 Variables that are identified as requiring a protector will be arranged
1315 on the stack such that they are adjacent to the stack protector guard.
1316 The specific layout rules are:
1317
1318 #. Large arrays and structures containing large arrays
1319 (``>= ssp-buffer-size``) are closest to the stack protector.
1320 #. Small arrays and structures containing small arrays
1321 (``< ssp-buffer-size``) are 2nd closest to the protector.
1322 #. Variables that have had their address taken are 3rd closest to the
1323 protector.
1324
Sean Silvab084af42012-12-07 10:36:55 +00001325 If a function that has an ``sspreq`` attribute is inlined into a
1326 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001327 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1328 an ``sspreq`` attribute.
1329``sspstrong``
1330 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001331 protector. This attribute causes a strong heuristic to be used when
1332 determining if a function needs stack protectors. The strong heuristic
1333 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001334
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001335 - Arrays of any size and type
1336 - Aggregates containing an array of any size and type.
1337 - Calls to alloca().
1338 - Local variables that have had their address taken.
1339
Josh Magee24c7f062014-02-01 01:36:16 +00001340 Variables that are identified as requiring a protector will be arranged
1341 on the stack such that they are adjacent to the stack protector guard.
1342 The specific layout rules are:
1343
1344 #. Large arrays and structures containing large arrays
1345 (``>= ssp-buffer-size``) are closest to the stack protector.
1346 #. Small arrays and structures containing small arrays
1347 (``< ssp-buffer-size``) are 2nd closest to the protector.
1348 #. Variables that have had their address taken are 3rd closest to the
1349 protector.
1350
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001351 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001352
1353 If a function that has an ``sspstrong`` attribute is inlined into a
1354 function that doesn't have an ``sspstrong`` attribute, then the
1355 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001356``uwtable``
1357 This attribute indicates that the ABI being targeted requires that
1358 an unwind table entry be produce for this function even if we can
1359 show that no exceptions passes by it. This is normally the case for
1360 the ELF x86-64 abi, but it can be disabled for some compilation
1361 units.
Sean Silvab084af42012-12-07 10:36:55 +00001362
1363.. _moduleasm:
1364
1365Module-Level Inline Assembly
1366----------------------------
1367
1368Modules may contain "module-level inline asm" blocks, which corresponds
1369to the GCC "file scope inline asm" blocks. These blocks are internally
1370concatenated by LLVM and treated as a single unit, but may be separated
1371in the ``.ll`` file if desired. The syntax is very simple:
1372
1373.. code-block:: llvm
1374
1375 module asm "inline asm code goes here"
1376 module asm "more can go here"
1377
1378The strings can contain any character by escaping non-printable
1379characters. The escape sequence used is simply "\\xx" where "xx" is the
1380two digit hex code for the number.
1381
1382The inline asm code is simply printed to the machine code .s file when
1383assembly code is generated.
1384
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001385.. _langref_datalayout:
1386
Sean Silvab084af42012-12-07 10:36:55 +00001387Data Layout
1388-----------
1389
1390A module may specify a target specific data layout string that specifies
1391how data is to be laid out in memory. The syntax for the data layout is
1392simply:
1393
1394.. code-block:: llvm
1395
1396 target datalayout = "layout specification"
1397
1398The *layout specification* consists of a list of specifications
1399separated by the minus sign character ('-'). Each specification starts
1400with a letter and may include other information after the letter to
1401define some aspect of the data layout. The specifications accepted are
1402as follows:
1403
1404``E``
1405 Specifies that the target lays out data in big-endian form. That is,
1406 the bits with the most significance have the lowest address
1407 location.
1408``e``
1409 Specifies that the target lays out data in little-endian form. That
1410 is, the bits with the least significance have the lowest address
1411 location.
1412``S<size>``
1413 Specifies the natural alignment of the stack in bits. Alignment
1414 promotion of stack variables is limited to the natural stack
1415 alignment to avoid dynamic stack realignment. The stack alignment
1416 must be a multiple of 8-bits. If omitted, the natural stack
1417 alignment defaults to "unspecified", which does not prevent any
1418 alignment promotions.
1419``p[n]:<size>:<abi>:<pref>``
1420 This specifies the *size* of a pointer and its ``<abi>`` and
1421 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001422 bits. The address space, ``n`` is optional, and if not specified,
1423 denotes the default address space 0. The value of ``n`` must be
1424 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001425``i<size>:<abi>:<pref>``
1426 This specifies the alignment for an integer type of a given bit
1427 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1428``v<size>:<abi>:<pref>``
1429 This specifies the alignment for a vector type of a given bit
1430 ``<size>``.
1431``f<size>:<abi>:<pref>``
1432 This specifies the alignment for a floating point type of a given bit
1433 ``<size>``. Only values of ``<size>`` that are supported by the target
1434 will work. 32 (float) and 64 (double) are supported on all targets; 80
1435 or 128 (different flavors of long double) are also supported on some
1436 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001437``a:<abi>:<pref>``
1438 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001439``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001440 If present, specifies that llvm names are mangled in the output. The
1441 options are
1442
1443 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1444 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1445 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1446 symbols get a ``_`` prefix.
1447 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1448 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001449``n<size1>:<size2>:<size3>...``
1450 This specifies a set of native integer widths for the target CPU in
1451 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1452 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1453 this set are considered to support most general arithmetic operations
1454 efficiently.
1455
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001456On every specification that takes a ``<abi>:<pref>``, specifying the
1457``<pref>`` alignment is optional. If omitted, the preceding ``:``
1458should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1459
Sean Silvab084af42012-12-07 10:36:55 +00001460When constructing the data layout for a given target, LLVM starts with a
1461default set of specifications which are then (possibly) overridden by
1462the specifications in the ``datalayout`` keyword. The default
1463specifications are given in this list:
1464
1465- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001466- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1467- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1468 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001469- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001470- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1471- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1472- ``i16:16:16`` - i16 is 16-bit aligned
1473- ``i32:32:32`` - i32 is 32-bit aligned
1474- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1475 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001476- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001477- ``f32:32:32`` - float is 32-bit aligned
1478- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001479- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001480- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1481- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001482- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001483
1484When LLVM is determining the alignment for a given type, it uses the
1485following rules:
1486
1487#. If the type sought is an exact match for one of the specifications,
1488 that specification is used.
1489#. If no match is found, and the type sought is an integer type, then
1490 the smallest integer type that is larger than the bitwidth of the
1491 sought type is used. If none of the specifications are larger than
1492 the bitwidth then the largest integer type is used. For example,
1493 given the default specifications above, the i7 type will use the
1494 alignment of i8 (next largest) while both i65 and i256 will use the
1495 alignment of i64 (largest specified).
1496#. If no match is found, and the type sought is a vector type, then the
1497 largest vector type that is smaller than the sought vector type will
1498 be used as a fall back. This happens because <128 x double> can be
1499 implemented in terms of 64 <2 x double>, for example.
1500
1501The function of the data layout string may not be what you expect.
1502Notably, this is not a specification from the frontend of what alignment
1503the code generator should use.
1504
1505Instead, if specified, the target data layout is required to match what
1506the ultimate *code generator* expects. This string is used by the
1507mid-level optimizers to improve code, and this only works if it matches
1508what the ultimate code generator uses. If you would like to generate IR
1509that does not embed this target-specific detail into the IR, then you
1510don't have to specify the string. This will disable some optimizations
1511that require precise layout information, but this also prevents those
1512optimizations from introducing target specificity into the IR.
1513
Bill Wendling5cc90842013-10-18 23:41:25 +00001514.. _langref_triple:
1515
1516Target Triple
1517-------------
1518
1519A module may specify a target triple string that describes the target
1520host. The syntax for the target triple is simply:
1521
1522.. code-block:: llvm
1523
1524 target triple = "x86_64-apple-macosx10.7.0"
1525
1526The *target triple* string consists of a series of identifiers delimited
1527by the minus sign character ('-'). The canonical forms are:
1528
1529::
1530
1531 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1532 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1533
1534This information is passed along to the backend so that it generates
1535code for the proper architecture. It's possible to override this on the
1536command line with the ``-mtriple`` command line option.
1537
Sean Silvab084af42012-12-07 10:36:55 +00001538.. _pointeraliasing:
1539
1540Pointer Aliasing Rules
1541----------------------
1542
1543Any memory access must be done through a pointer value associated with
1544an address range of the memory access, otherwise the behavior is
1545undefined. Pointer values are associated with address ranges according
1546to the following rules:
1547
1548- A pointer value is associated with the addresses associated with any
1549 value it is *based* on.
1550- An address of a global variable is associated with the address range
1551 of the variable's storage.
1552- The result value of an allocation instruction is associated with the
1553 address range of the allocated storage.
1554- A null pointer in the default address-space is associated with no
1555 address.
1556- An integer constant other than zero or a pointer value returned from
1557 a function not defined within LLVM may be associated with address
1558 ranges allocated through mechanisms other than those provided by
1559 LLVM. Such ranges shall not overlap with any ranges of addresses
1560 allocated by mechanisms provided by LLVM.
1561
1562A pointer value is *based* on another pointer value according to the
1563following rules:
1564
1565- A pointer value formed from a ``getelementptr`` operation is *based*
1566 on the first operand of the ``getelementptr``.
1567- The result value of a ``bitcast`` is *based* on the operand of the
1568 ``bitcast``.
1569- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1570 values that contribute (directly or indirectly) to the computation of
1571 the pointer's value.
1572- The "*based* on" relationship is transitive.
1573
1574Note that this definition of *"based"* is intentionally similar to the
1575definition of *"based"* in C99, though it is slightly weaker.
1576
1577LLVM IR does not associate types with memory. The result type of a
1578``load`` merely indicates the size and alignment of the memory from
1579which to load, as well as the interpretation of the value. The first
1580operand type of a ``store`` similarly only indicates the size and
1581alignment of the store.
1582
1583Consequently, type-based alias analysis, aka TBAA, aka
1584``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1585:ref:`Metadata <metadata>` may be used to encode additional information
1586which specialized optimization passes may use to implement type-based
1587alias analysis.
1588
1589.. _volatile:
1590
1591Volatile Memory Accesses
1592------------------------
1593
1594Certain memory accesses, such as :ref:`load <i_load>`'s,
1595:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1596marked ``volatile``. The optimizers must not change the number of
1597volatile operations or change their order of execution relative to other
1598volatile operations. The optimizers *may* change the order of volatile
1599operations relative to non-volatile operations. This is not Java's
1600"volatile" and has no cross-thread synchronization behavior.
1601
Andrew Trick89fc5a62013-01-30 21:19:35 +00001602IR-level volatile loads and stores cannot safely be optimized into
1603llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1604flagged volatile. Likewise, the backend should never split or merge
1605target-legal volatile load/store instructions.
1606
Andrew Trick7e6f9282013-01-31 00:49:39 +00001607.. admonition:: Rationale
1608
1609 Platforms may rely on volatile loads and stores of natively supported
1610 data width to be executed as single instruction. For example, in C
1611 this holds for an l-value of volatile primitive type with native
1612 hardware support, but not necessarily for aggregate types. The
1613 frontend upholds these expectations, which are intentionally
1614 unspecified in the IR. The rules above ensure that IR transformation
1615 do not violate the frontend's contract with the language.
1616
Sean Silvab084af42012-12-07 10:36:55 +00001617.. _memmodel:
1618
1619Memory Model for Concurrent Operations
1620--------------------------------------
1621
1622The LLVM IR does not define any way to start parallel threads of
1623execution or to register signal handlers. Nonetheless, there are
1624platform-specific ways to create them, and we define LLVM IR's behavior
1625in their presence. This model is inspired by the C++0x memory model.
1626
1627For a more informal introduction to this model, see the :doc:`Atomics`.
1628
1629We define a *happens-before* partial order as the least partial order
1630that
1631
1632- Is a superset of single-thread program order, and
1633- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1634 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1635 techniques, like pthread locks, thread creation, thread joining,
1636 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1637 Constraints <ordering>`).
1638
1639Note that program order does not introduce *happens-before* edges
1640between a thread and signals executing inside that thread.
1641
1642Every (defined) read operation (load instructions, memcpy, atomic
1643loads/read-modify-writes, etc.) R reads a series of bytes written by
1644(defined) write operations (store instructions, atomic
1645stores/read-modify-writes, memcpy, etc.). For the purposes of this
1646section, initialized globals are considered to have a write of the
1647initializer which is atomic and happens before any other read or write
1648of the memory in question. For each byte of a read R, R\ :sub:`byte`
1649may see any write to the same byte, except:
1650
1651- If write\ :sub:`1` happens before write\ :sub:`2`, and
1652 write\ :sub:`2` happens before R\ :sub:`byte`, then
1653 R\ :sub:`byte` does not see write\ :sub:`1`.
1654- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1655 R\ :sub:`byte` does not see write\ :sub:`3`.
1656
1657Given that definition, R\ :sub:`byte` is defined as follows:
1658
1659- If R is volatile, the result is target-dependent. (Volatile is
1660 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001661 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001662 like normal memory. It does not generally provide cross-thread
1663 synchronization.)
1664- Otherwise, if there is no write to the same byte that happens before
1665 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1666- Otherwise, if R\ :sub:`byte` may see exactly one write,
1667 R\ :sub:`byte` returns the value written by that write.
1668- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1669 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1670 Memory Ordering Constraints <ordering>` section for additional
1671 constraints on how the choice is made.
1672- Otherwise R\ :sub:`byte` returns ``undef``.
1673
1674R returns the value composed of the series of bytes it read. This
1675implies that some bytes within the value may be ``undef`` **without**
1676the entire value being ``undef``. Note that this only defines the
1677semantics of the operation; it doesn't mean that targets will emit more
1678than one instruction to read the series of bytes.
1679
1680Note that in cases where none of the atomic intrinsics are used, this
1681model places only one restriction on IR transformations on top of what
1682is required for single-threaded execution: introducing a store to a byte
1683which might not otherwise be stored is not allowed in general.
1684(Specifically, in the case where another thread might write to and read
1685from an address, introducing a store can change a load that may see
1686exactly one write into a load that may see multiple writes.)
1687
1688.. _ordering:
1689
1690Atomic Memory Ordering Constraints
1691----------------------------------
1692
1693Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1694:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1695:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001696ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001697the same address they *synchronize with*. These semantics are borrowed
1698from Java and C++0x, but are somewhat more colloquial. If these
1699descriptions aren't precise enough, check those specs (see spec
1700references in the :doc:`atomics guide <Atomics>`).
1701:ref:`fence <i_fence>` instructions treat these orderings somewhat
1702differently since they don't take an address. See that instruction's
1703documentation for details.
1704
1705For a simpler introduction to the ordering constraints, see the
1706:doc:`Atomics`.
1707
1708``unordered``
1709 The set of values that can be read is governed by the happens-before
1710 partial order. A value cannot be read unless some operation wrote
1711 it. This is intended to provide a guarantee strong enough to model
1712 Java's non-volatile shared variables. This ordering cannot be
1713 specified for read-modify-write operations; it is not strong enough
1714 to make them atomic in any interesting way.
1715``monotonic``
1716 In addition to the guarantees of ``unordered``, there is a single
1717 total order for modifications by ``monotonic`` operations on each
1718 address. All modification orders must be compatible with the
1719 happens-before order. There is no guarantee that the modification
1720 orders can be combined to a global total order for the whole program
1721 (and this often will not be possible). The read in an atomic
1722 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1723 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1724 order immediately before the value it writes. If one atomic read
1725 happens before another atomic read of the same address, the later
1726 read must see the same value or a later value in the address's
1727 modification order. This disallows reordering of ``monotonic`` (or
1728 stronger) operations on the same address. If an address is written
1729 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1730 read that address repeatedly, the other threads must eventually see
1731 the write. This corresponds to the C++0x/C1x
1732 ``memory_order_relaxed``.
1733``acquire``
1734 In addition to the guarantees of ``monotonic``, a
1735 *synchronizes-with* edge may be formed with a ``release`` operation.
1736 This is intended to model C++'s ``memory_order_acquire``.
1737``release``
1738 In addition to the guarantees of ``monotonic``, if this operation
1739 writes a value which is subsequently read by an ``acquire``
1740 operation, it *synchronizes-with* that operation. (This isn't a
1741 complete description; see the C++0x definition of a release
1742 sequence.) This corresponds to the C++0x/C1x
1743 ``memory_order_release``.
1744``acq_rel`` (acquire+release)
1745 Acts as both an ``acquire`` and ``release`` operation on its
1746 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1747``seq_cst`` (sequentially consistent)
1748 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001749 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001750 writes), there is a global total order on all
1751 sequentially-consistent operations on all addresses, which is
1752 consistent with the *happens-before* partial order and with the
1753 modification orders of all the affected addresses. Each
1754 sequentially-consistent read sees the last preceding write to the
1755 same address in this global order. This corresponds to the C++0x/C1x
1756 ``memory_order_seq_cst`` and Java volatile.
1757
1758.. _singlethread:
1759
1760If an atomic operation is marked ``singlethread``, it only *synchronizes
1761with* or participates in modification and seq\_cst total orderings with
1762other operations running in the same thread (for example, in signal
1763handlers).
1764
1765.. _fastmath:
1766
1767Fast-Math Flags
1768---------------
1769
1770LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1771:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1772:ref:`frem <i_frem>`) have the following flags that can set to enable
1773otherwise unsafe floating point operations
1774
1775``nnan``
1776 No NaNs - Allow optimizations to assume the arguments and result are not
1777 NaN. Such optimizations are required to retain defined behavior over
1778 NaNs, but the value of the result is undefined.
1779
1780``ninf``
1781 No Infs - Allow optimizations to assume the arguments and result are not
1782 +/-Inf. Such optimizations are required to retain defined behavior over
1783 +/-Inf, but the value of the result is undefined.
1784
1785``nsz``
1786 No Signed Zeros - Allow optimizations to treat the sign of a zero
1787 argument or result as insignificant.
1788
1789``arcp``
1790 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1791 argument rather than perform division.
1792
1793``fast``
1794 Fast - Allow algebraically equivalent transformations that may
1795 dramatically change results in floating point (e.g. reassociate). This
1796 flag implies all the others.
1797
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001798.. _uselistorder:
1799
1800Use-list Order Directives
1801-------------------------
1802
1803Use-list directives encode the in-memory order of each use-list, allowing the
1804order to be recreated. ``<order-indexes>`` is a comma-separated list of
1805indexes that are assigned to the referenced value's uses. The referenced
1806value's use-list is immediately sorted by these indexes.
1807
1808Use-list directives may appear at function scope or global scope. They are not
1809instructions, and have no effect on the semantics of the IR. When they're at
1810function scope, they must appear after the terminator of the final basic block.
1811
1812If basic blocks have their address taken via ``blockaddress()`` expressions,
1813``uselistorder_bb`` can be used to reorder their use-lists from outside their
1814function's scope.
1815
1816:Syntax:
1817
1818::
1819
1820 uselistorder <ty> <value>, { <order-indexes> }
1821 uselistorder_bb @function, %block { <order-indexes> }
1822
1823:Examples:
1824
1825::
1826
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001827 define void @foo(i32 %arg1, i32 %arg2) {
1828 entry:
1829 ; ... instructions ...
1830 bb:
1831 ; ... instructions ...
1832
1833 ; At function scope.
1834 uselistorder i32 %arg1, { 1, 0, 2 }
1835 uselistorder label %bb, { 1, 0 }
1836 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001837
1838 ; At global scope.
1839 uselistorder i32* @global, { 1, 2, 0 }
1840 uselistorder i32 7, { 1, 0 }
1841 uselistorder i32 (i32) @bar, { 1, 0 }
1842 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1843
Sean Silvab084af42012-12-07 10:36:55 +00001844.. _typesystem:
1845
1846Type System
1847===========
1848
1849The LLVM type system is one of the most important features of the
1850intermediate representation. Being typed enables a number of
1851optimizations to be performed on the intermediate representation
1852directly, without having to do extra analyses on the side before the
1853transformation. A strong type system makes it easier to read the
1854generated code and enables novel analyses and transformations that are
1855not feasible to perform on normal three address code representations.
1856
Rafael Espindola08013342013-12-07 19:34:20 +00001857.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001858
Rafael Espindola08013342013-12-07 19:34:20 +00001859Void Type
1860---------
Sean Silvab084af42012-12-07 10:36:55 +00001861
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001862:Overview:
1863
Rafael Espindola08013342013-12-07 19:34:20 +00001864
1865The void type does not represent any value and has no size.
1866
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001867:Syntax:
1868
Rafael Espindola08013342013-12-07 19:34:20 +00001869
1870::
1871
1872 void
Sean Silvab084af42012-12-07 10:36:55 +00001873
1874
Rafael Espindola08013342013-12-07 19:34:20 +00001875.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001876
Rafael Espindola08013342013-12-07 19:34:20 +00001877Function Type
1878-------------
Sean Silvab084af42012-12-07 10:36:55 +00001879
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001880:Overview:
1881
Sean Silvab084af42012-12-07 10:36:55 +00001882
Rafael Espindola08013342013-12-07 19:34:20 +00001883The function type can be thought of as a function signature. It consists of a
1884return type and a list of formal parameter types. The return type of a function
1885type is a void type or first class type --- except for :ref:`label <t_label>`
1886and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001887
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001888:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001889
Rafael Espindola08013342013-12-07 19:34:20 +00001890::
Sean Silvab084af42012-12-07 10:36:55 +00001891
Rafael Espindola08013342013-12-07 19:34:20 +00001892 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001893
Rafael Espindola08013342013-12-07 19:34:20 +00001894...where '``<parameter list>``' is a comma-separated list of type
1895specifiers. Optionally, the parameter list may include a type ``...``, which
1896indicates that the function takes a variable number of arguments. Variable
1897argument functions can access their arguments with the :ref:`variable argument
1898handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1899except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001900
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001901:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001902
Rafael Espindola08013342013-12-07 19:34:20 +00001903+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1904| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1905+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1906| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1907+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1908| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1909+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1910| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1911+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1912
1913.. _t_firstclass:
1914
1915First Class Types
1916-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001917
1918The :ref:`first class <t_firstclass>` types are perhaps the most important.
1919Values of these types are the only ones which can be produced by
1920instructions.
1921
Rafael Espindola08013342013-12-07 19:34:20 +00001922.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001923
Rafael Espindola08013342013-12-07 19:34:20 +00001924Single Value Types
1925^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001926
Rafael Espindola08013342013-12-07 19:34:20 +00001927These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001928
1929.. _t_integer:
1930
1931Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001932""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001933
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001934:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001935
1936The integer type is a very simple type that simply specifies an
1937arbitrary bit width for the integer type desired. Any bit width from 1
1938bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1939
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001940:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001941
1942::
1943
1944 iN
1945
1946The number of bits the integer will occupy is specified by the ``N``
1947value.
1948
1949Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001950*********
Sean Silvab084af42012-12-07 10:36:55 +00001951
1952+----------------+------------------------------------------------+
1953| ``i1`` | a single-bit integer. |
1954+----------------+------------------------------------------------+
1955| ``i32`` | a 32-bit integer. |
1956+----------------+------------------------------------------------+
1957| ``i1942652`` | a really big integer of over 1 million bits. |
1958+----------------+------------------------------------------------+
1959
1960.. _t_floating:
1961
1962Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001963""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001964
1965.. list-table::
1966 :header-rows: 1
1967
1968 * - Type
1969 - Description
1970
1971 * - ``half``
1972 - 16-bit floating point value
1973
1974 * - ``float``
1975 - 32-bit floating point value
1976
1977 * - ``double``
1978 - 64-bit floating point value
1979
1980 * - ``fp128``
1981 - 128-bit floating point value (112-bit mantissa)
1982
1983 * - ``x86_fp80``
1984 - 80-bit floating point value (X87)
1985
1986 * - ``ppc_fp128``
1987 - 128-bit floating point value (two 64-bits)
1988
Reid Kleckner9a16d082014-03-05 02:41:37 +00001989X86_mmx Type
1990""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001991
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001992:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001993
Reid Kleckner9a16d082014-03-05 02:41:37 +00001994The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00001995machine. The operations allowed on it are quite limited: parameters and
1996return values, load and store, and bitcast. User-specified MMX
1997instructions are represented as intrinsic or asm calls with arguments
1998and/or results of this type. There are no arrays, vectors or constants
1999of this type.
2000
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002001:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002002
2003::
2004
Reid Kleckner9a16d082014-03-05 02:41:37 +00002005 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002006
Sean Silvab084af42012-12-07 10:36:55 +00002007
Rafael Espindola08013342013-12-07 19:34:20 +00002008.. _t_pointer:
2009
2010Pointer Type
2011""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002012
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002013:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002014
Rafael Espindola08013342013-12-07 19:34:20 +00002015The pointer type is used to specify memory locations. Pointers are
2016commonly used to reference objects in memory.
2017
2018Pointer types may have an optional address space attribute defining the
2019numbered address space where the pointed-to object resides. The default
2020address space is number zero. The semantics of non-zero address spaces
2021are target-specific.
2022
2023Note that LLVM does not permit pointers to void (``void*``) nor does it
2024permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002025
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002026:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002027
2028::
2029
Rafael Espindola08013342013-12-07 19:34:20 +00002030 <type> *
2031
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002032:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002033
2034+-------------------------+--------------------------------------------------------------------------------------------------------------+
2035| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2036+-------------------------+--------------------------------------------------------------------------------------------------------------+
2037| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2038+-------------------------+--------------------------------------------------------------------------------------------------------------+
2039| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2040+-------------------------+--------------------------------------------------------------------------------------------------------------+
2041
2042.. _t_vector:
2043
2044Vector Type
2045"""""""""""
2046
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002047:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002048
2049A vector type is a simple derived type that represents a vector of
2050elements. Vector types are used when multiple primitive data are
2051operated in parallel using a single instruction (SIMD). A vector type
2052requires a size (number of elements) and an underlying primitive data
2053type. Vector types are considered :ref:`first class <t_firstclass>`.
2054
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002055:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002056
2057::
2058
2059 < <# elements> x <elementtype> >
2060
2061The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002062elementtype may be any integer, floating point or pointer type. Vectors
2063of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002064
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002065:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002066
2067+-------------------+--------------------------------------------------+
2068| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2069+-------------------+--------------------------------------------------+
2070| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2071+-------------------+--------------------------------------------------+
2072| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2073+-------------------+--------------------------------------------------+
2074| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2075+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002076
2077.. _t_label:
2078
2079Label Type
2080^^^^^^^^^^
2081
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002082:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002083
2084The label type represents code labels.
2085
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002086:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002087
2088::
2089
2090 label
2091
2092.. _t_metadata:
2093
2094Metadata Type
2095^^^^^^^^^^^^^
2096
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002097:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002098
2099The metadata type represents embedded metadata. No derived types may be
2100created from metadata except for :ref:`function <t_function>` arguments.
2101
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002102:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002103
2104::
2105
2106 metadata
2107
Sean Silvab084af42012-12-07 10:36:55 +00002108.. _t_aggregate:
2109
2110Aggregate Types
2111^^^^^^^^^^^^^^^
2112
2113Aggregate Types are a subset of derived types that can contain multiple
2114member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2115aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2116aggregate types.
2117
2118.. _t_array:
2119
2120Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002121""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002122
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002123:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002124
2125The array type is a very simple derived type that arranges elements
2126sequentially in memory. The array type requires a size (number of
2127elements) and an underlying data type.
2128
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002129:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002130
2131::
2132
2133 [<# elements> x <elementtype>]
2134
2135The number of elements is a constant integer value; ``elementtype`` may
2136be any type with a size.
2137
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002138:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002139
2140+------------------+--------------------------------------+
2141| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2142+------------------+--------------------------------------+
2143| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2144+------------------+--------------------------------------+
2145| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2146+------------------+--------------------------------------+
2147
2148Here are some examples of multidimensional arrays:
2149
2150+-----------------------------+----------------------------------------------------------+
2151| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2152+-----------------------------+----------------------------------------------------------+
2153| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2154+-----------------------------+----------------------------------------------------------+
2155| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2156+-----------------------------+----------------------------------------------------------+
2157
2158There is no restriction on indexing beyond the end of the array implied
2159by a static type (though there are restrictions on indexing beyond the
2160bounds of an allocated object in some cases). This means that
2161single-dimension 'variable sized array' addressing can be implemented in
2162LLVM with a zero length array type. An implementation of 'pascal style
2163arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2164example.
2165
Sean Silvab084af42012-12-07 10:36:55 +00002166.. _t_struct:
2167
2168Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002169""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002170
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002171:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002172
2173The structure type is used to represent a collection of data members
2174together in memory. The elements of a structure may be any type that has
2175a size.
2176
2177Structures in memory are accessed using '``load``' and '``store``' by
2178getting a pointer to a field with the '``getelementptr``' instruction.
2179Structures in registers are accessed using the '``extractvalue``' and
2180'``insertvalue``' instructions.
2181
2182Structures may optionally be "packed" structures, which indicate that
2183the alignment of the struct is one byte, and that there is no padding
2184between the elements. In non-packed structs, padding between field types
2185is inserted as defined by the DataLayout string in the module, which is
2186required to match what the underlying code generator expects.
2187
2188Structures can either be "literal" or "identified". A literal structure
2189is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2190identified types are always defined at the top level with a name.
2191Literal types are uniqued by their contents and can never be recursive
2192or opaque since there is no way to write one. Identified types can be
2193recursive, can be opaqued, and are never uniqued.
2194
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002195:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002196
2197::
2198
2199 %T1 = type { <type list> } ; Identified normal struct type
2200 %T2 = type <{ <type list> }> ; Identified packed struct type
2201
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002202:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002203
2204+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2205| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2206+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002207| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002208+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2209| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2210+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2211
2212.. _t_opaque:
2213
2214Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002215""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002216
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002217:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002218
2219Opaque structure types are used to represent named structure types that
2220do not have a body specified. This corresponds (for example) to the C
2221notion of a forward declared structure.
2222
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002223:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002224
2225::
2226
2227 %X = type opaque
2228 %52 = type opaque
2229
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002230:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002231
2232+--------------+-------------------+
2233| ``opaque`` | An opaque type. |
2234+--------------+-------------------+
2235
Sean Silva1703e702014-04-08 21:06:22 +00002236.. _constants:
2237
Sean Silvab084af42012-12-07 10:36:55 +00002238Constants
2239=========
2240
2241LLVM has several different basic types of constants. This section
2242describes them all and their syntax.
2243
2244Simple Constants
2245----------------
2246
2247**Boolean constants**
2248 The two strings '``true``' and '``false``' are both valid constants
2249 of the ``i1`` type.
2250**Integer constants**
2251 Standard integers (such as '4') are constants of the
2252 :ref:`integer <t_integer>` type. Negative numbers may be used with
2253 integer types.
2254**Floating point constants**
2255 Floating point constants use standard decimal notation (e.g.
2256 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2257 hexadecimal notation (see below). The assembler requires the exact
2258 decimal value of a floating-point constant. For example, the
2259 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2260 decimal in binary. Floating point constants must have a :ref:`floating
2261 point <t_floating>` type.
2262**Null pointer constants**
2263 The identifier '``null``' is recognized as a null pointer constant
2264 and must be of :ref:`pointer type <t_pointer>`.
2265
2266The one non-intuitive notation for constants is the hexadecimal form of
2267floating point constants. For example, the form
2268'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2269than) '``double 4.5e+15``'. The only time hexadecimal floating point
2270constants are required (and the only time that they are generated by the
2271disassembler) is when a floating point constant must be emitted but it
2272cannot be represented as a decimal floating point number in a reasonable
2273number of digits. For example, NaN's, infinities, and other special
2274values are represented in their IEEE hexadecimal format so that assembly
2275and disassembly do not cause any bits to change in the constants.
2276
2277When using the hexadecimal form, constants of types half, float, and
2278double are represented using the 16-digit form shown above (which
2279matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002280must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002281precision, respectively. Hexadecimal format is always used for long
2282double, and there are three forms of long double. The 80-bit format used
2283by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2284128-bit format used by PowerPC (two adjacent doubles) is represented by
2285``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002286represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2287will only work if they match the long double format on your target.
2288The IEEE 16-bit format (half precision) is represented by ``0xH``
2289followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2290(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002291
Reid Kleckner9a16d082014-03-05 02:41:37 +00002292There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002293
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002294.. _complexconstants:
2295
Sean Silvab084af42012-12-07 10:36:55 +00002296Complex Constants
2297-----------------
2298
2299Complex constants are a (potentially recursive) combination of simple
2300constants and smaller complex constants.
2301
2302**Structure constants**
2303 Structure constants are represented with notation similar to
2304 structure type definitions (a comma separated list of elements,
2305 surrounded by braces (``{}``)). For example:
2306 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2307 "``@G = external global i32``". Structure constants must have
2308 :ref:`structure type <t_struct>`, and the number and types of elements
2309 must match those specified by the type.
2310**Array constants**
2311 Array constants are represented with notation similar to array type
2312 definitions (a comma separated list of elements, surrounded by
2313 square brackets (``[]``)). For example:
2314 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2315 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002316 match those specified by the type. As a special case, character array
2317 constants may also be represented as a double-quoted string using the ``c``
2318 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002319**Vector constants**
2320 Vector constants are represented with notation similar to vector
2321 type definitions (a comma separated list of elements, surrounded by
2322 less-than/greater-than's (``<>``)). For example:
2323 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2324 must have :ref:`vector type <t_vector>`, and the number and types of
2325 elements must match those specified by the type.
2326**Zero initialization**
2327 The string '``zeroinitializer``' can be used to zero initialize a
2328 value to zero of *any* type, including scalar and
2329 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2330 having to print large zero initializers (e.g. for large arrays) and
2331 is always exactly equivalent to using explicit zero initializers.
2332**Metadata node**
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002333 A metadata node is a constant tuple without types. For example:
2334 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
2335 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2336 Unlike other typed constants that are meant to be interpreted as part of
2337 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002338 information such as debug info.
2339
2340Global Variable and Function Addresses
2341--------------------------------------
2342
2343The addresses of :ref:`global variables <globalvars>` and
2344:ref:`functions <functionstructure>` are always implicitly valid
2345(link-time) constants. These constants are explicitly referenced when
2346the :ref:`identifier for the global <identifiers>` is used and always have
2347:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2348file:
2349
2350.. code-block:: llvm
2351
2352 @X = global i32 17
2353 @Y = global i32 42
2354 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2355
2356.. _undefvalues:
2357
2358Undefined Values
2359----------------
2360
2361The string '``undef``' can be used anywhere a constant is expected, and
2362indicates that the user of the value may receive an unspecified
2363bit-pattern. Undefined values may be of any type (other than '``label``'
2364or '``void``') and be used anywhere a constant is permitted.
2365
2366Undefined values are useful because they indicate to the compiler that
2367the program is well defined no matter what value is used. This gives the
2368compiler more freedom to optimize. Here are some examples of
2369(potentially surprising) transformations that are valid (in pseudo IR):
2370
2371.. code-block:: llvm
2372
2373 %A = add %X, undef
2374 %B = sub %X, undef
2375 %C = xor %X, undef
2376 Safe:
2377 %A = undef
2378 %B = undef
2379 %C = undef
2380
2381This is safe because all of the output bits are affected by the undef
2382bits. Any output bit can have a zero or one depending on the input bits.
2383
2384.. code-block:: llvm
2385
2386 %A = or %X, undef
2387 %B = and %X, undef
2388 Safe:
2389 %A = -1
2390 %B = 0
2391 Unsafe:
2392 %A = undef
2393 %B = undef
2394
2395These logical operations have bits that are not always affected by the
2396input. For example, if ``%X`` has a zero bit, then the output of the
2397'``and``' operation will always be a zero for that bit, no matter what
2398the corresponding bit from the '``undef``' is. As such, it is unsafe to
2399optimize or assume that the result of the '``and``' is '``undef``'.
2400However, it is safe to assume that all bits of the '``undef``' could be
24010, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2402all the bits of the '``undef``' operand to the '``or``' could be set,
2403allowing the '``or``' to be folded to -1.
2404
2405.. code-block:: llvm
2406
2407 %A = select undef, %X, %Y
2408 %B = select undef, 42, %Y
2409 %C = select %X, %Y, undef
2410 Safe:
2411 %A = %X (or %Y)
2412 %B = 42 (or %Y)
2413 %C = %Y
2414 Unsafe:
2415 %A = undef
2416 %B = undef
2417 %C = undef
2418
2419This set of examples shows that undefined '``select``' (and conditional
2420branch) conditions can go *either way*, but they have to come from one
2421of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2422both known to have a clear low bit, then ``%A`` would have to have a
2423cleared low bit. However, in the ``%C`` example, the optimizer is
2424allowed to assume that the '``undef``' operand could be the same as
2425``%Y``, allowing the whole '``select``' to be eliminated.
2426
2427.. code-block:: llvm
2428
2429 %A = xor undef, undef
2430
2431 %B = undef
2432 %C = xor %B, %B
2433
2434 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002435 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002436 %F = icmp gte %D, 4
2437
2438 Safe:
2439 %A = undef
2440 %B = undef
2441 %C = undef
2442 %D = undef
2443 %E = undef
2444 %F = undef
2445
2446This example points out that two '``undef``' operands are not
2447necessarily the same. This can be surprising to people (and also matches
2448C semantics) where they assume that "``X^X``" is always zero, even if
2449``X`` is undefined. This isn't true for a number of reasons, but the
2450short answer is that an '``undef``' "variable" can arbitrarily change
2451its value over its "live range". This is true because the variable
2452doesn't actually *have a live range*. Instead, the value is logically
2453read from arbitrary registers that happen to be around when needed, so
2454the value is not necessarily consistent over time. In fact, ``%A`` and
2455``%C`` need to have the same semantics or the core LLVM "replace all
2456uses with" concept would not hold.
2457
2458.. code-block:: llvm
2459
2460 %A = fdiv undef, %X
2461 %B = fdiv %X, undef
2462 Safe:
2463 %A = undef
2464 b: unreachable
2465
2466These examples show the crucial difference between an *undefined value*
2467and *undefined behavior*. An undefined value (like '``undef``') is
2468allowed to have an arbitrary bit-pattern. This means that the ``%A``
2469operation can be constant folded to '``undef``', because the '``undef``'
2470could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2471However, in the second example, we can make a more aggressive
2472assumption: because the ``undef`` is allowed to be an arbitrary value,
2473we are allowed to assume that it could be zero. Since a divide by zero
2474has *undefined behavior*, we are allowed to assume that the operation
2475does not execute at all. This allows us to delete the divide and all
2476code after it. Because the undefined operation "can't happen", the
2477optimizer can assume that it occurs in dead code.
2478
2479.. code-block:: llvm
2480
2481 a: store undef -> %X
2482 b: store %X -> undef
2483 Safe:
2484 a: <deleted>
2485 b: unreachable
2486
2487These examples reiterate the ``fdiv`` example: a store *of* an undefined
2488value can be assumed to not have any effect; we can assume that the
2489value is overwritten with bits that happen to match what was already
2490there. However, a store *to* an undefined location could clobber
2491arbitrary memory, therefore, it has undefined behavior.
2492
2493.. _poisonvalues:
2494
2495Poison Values
2496-------------
2497
2498Poison values are similar to :ref:`undef values <undefvalues>`, however
2499they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002500that cannot evoke side effects has nevertheless detected a condition
2501that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002502
2503There is currently no way of representing a poison value in the IR; they
2504only exist when produced by operations such as :ref:`add <i_add>` with
2505the ``nsw`` flag.
2506
2507Poison value behavior is defined in terms of value *dependence*:
2508
2509- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2510- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2511 their dynamic predecessor basic block.
2512- Function arguments depend on the corresponding actual argument values
2513 in the dynamic callers of their functions.
2514- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2515 instructions that dynamically transfer control back to them.
2516- :ref:`Invoke <i_invoke>` instructions depend on the
2517 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2518 call instructions that dynamically transfer control back to them.
2519- Non-volatile loads and stores depend on the most recent stores to all
2520 of the referenced memory addresses, following the order in the IR
2521 (including loads and stores implied by intrinsics such as
2522 :ref:`@llvm.memcpy <int_memcpy>`.)
2523- An instruction with externally visible side effects depends on the
2524 most recent preceding instruction with externally visible side
2525 effects, following the order in the IR. (This includes :ref:`volatile
2526 operations <volatile>`.)
2527- An instruction *control-depends* on a :ref:`terminator
2528 instruction <terminators>` if the terminator instruction has
2529 multiple successors and the instruction is always executed when
2530 control transfers to one of the successors, and may not be executed
2531 when control is transferred to another.
2532- Additionally, an instruction also *control-depends* on a terminator
2533 instruction if the set of instructions it otherwise depends on would
2534 be different if the terminator had transferred control to a different
2535 successor.
2536- Dependence is transitive.
2537
Richard Smith32dbdf62014-07-31 04:25:36 +00002538Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2539with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002540on a poison value has undefined behavior.
2541
2542Here are some examples:
2543
2544.. code-block:: llvm
2545
2546 entry:
2547 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2548 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2549 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2550 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2551
2552 store i32 %poison, i32* @g ; Poison value stored to memory.
2553 %poison2 = load i32* @g ; Poison value loaded back from memory.
2554
2555 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2556
2557 %narrowaddr = bitcast i32* @g to i16*
2558 %wideaddr = bitcast i32* @g to i64*
2559 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2560 %poison4 = load i64* %wideaddr ; Returns a poison value.
2561
2562 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2563 br i1 %cmp, label %true, label %end ; Branch to either destination.
2564
2565 true:
2566 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2567 ; it has undefined behavior.
2568 br label %end
2569
2570 end:
2571 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2572 ; Both edges into this PHI are
2573 ; control-dependent on %cmp, so this
2574 ; always results in a poison value.
2575
2576 store volatile i32 0, i32* @g ; This would depend on the store in %true
2577 ; if %cmp is true, or the store in %entry
2578 ; otherwise, so this is undefined behavior.
2579
2580 br i1 %cmp, label %second_true, label %second_end
2581 ; The same branch again, but this time the
2582 ; true block doesn't have side effects.
2583
2584 second_true:
2585 ; No side effects!
2586 ret void
2587
2588 second_end:
2589 store volatile i32 0, i32* @g ; This time, the instruction always depends
2590 ; on the store in %end. Also, it is
2591 ; control-equivalent to %end, so this is
2592 ; well-defined (ignoring earlier undefined
2593 ; behavior in this example).
2594
2595.. _blockaddress:
2596
2597Addresses of Basic Blocks
2598-------------------------
2599
2600``blockaddress(@function, %block)``
2601
2602The '``blockaddress``' constant computes the address of the specified
2603basic block in the specified function, and always has an ``i8*`` type.
2604Taking the address of the entry block is illegal.
2605
2606This value only has defined behavior when used as an operand to the
2607':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2608against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002609undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002610no label is equal to the null pointer. This may be passed around as an
2611opaque pointer sized value as long as the bits are not inspected. This
2612allows ``ptrtoint`` and arithmetic to be performed on these values so
2613long as the original value is reconstituted before the ``indirectbr``
2614instruction.
2615
2616Finally, some targets may provide defined semantics when using the value
2617as the operand to an inline assembly, but that is target specific.
2618
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002619.. _constantexprs:
2620
Sean Silvab084af42012-12-07 10:36:55 +00002621Constant Expressions
2622--------------------
2623
2624Constant expressions are used to allow expressions involving other
2625constants to be used as constants. Constant expressions may be of any
2626:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2627that does not have side effects (e.g. load and call are not supported).
2628The following is the syntax for constant expressions:
2629
2630``trunc (CST to TYPE)``
2631 Truncate a constant to another type. The bit size of CST must be
2632 larger than the bit size of TYPE. Both types must be integers.
2633``zext (CST to TYPE)``
2634 Zero extend a constant to another type. The bit size of CST must be
2635 smaller than the bit size of TYPE. Both types must be integers.
2636``sext (CST to TYPE)``
2637 Sign extend a constant to another type. The bit size of CST must be
2638 smaller than the bit size of TYPE. Both types must be integers.
2639``fptrunc (CST to TYPE)``
2640 Truncate a floating point constant to another floating point type.
2641 The size of CST must be larger than the size of TYPE. Both types
2642 must be floating point.
2643``fpext (CST to TYPE)``
2644 Floating point extend a constant to another type. The size of CST
2645 must be smaller or equal to the size of TYPE. Both types must be
2646 floating point.
2647``fptoui (CST to TYPE)``
2648 Convert a floating point constant to the corresponding unsigned
2649 integer constant. TYPE must be a scalar or vector integer type. CST
2650 must be of scalar or vector floating point type. Both CST and TYPE
2651 must be scalars, or vectors of the same number of elements. If the
2652 value won't fit in the integer type, the results are undefined.
2653``fptosi (CST to TYPE)``
2654 Convert a floating point constant to the corresponding signed
2655 integer constant. TYPE must be a scalar or vector integer type. CST
2656 must be of scalar or vector floating point type. Both CST and TYPE
2657 must be scalars, or vectors of the same number of elements. If the
2658 value won't fit in the integer type, the results are undefined.
2659``uitofp (CST to TYPE)``
2660 Convert an unsigned integer constant to the corresponding floating
2661 point constant. TYPE must be a scalar or vector floating point type.
2662 CST must be of scalar or vector integer type. Both CST and TYPE must
2663 be scalars, or vectors of the same number of elements. If the value
2664 won't fit in the floating point type, the results are undefined.
2665``sitofp (CST to TYPE)``
2666 Convert a signed integer constant to the corresponding floating
2667 point constant. TYPE must be a scalar or vector floating point type.
2668 CST must be of scalar or vector integer type. Both CST and TYPE must
2669 be scalars, or vectors of the same number of elements. If the value
2670 won't fit in the floating point type, the results are undefined.
2671``ptrtoint (CST to TYPE)``
2672 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002673 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002674 pointer type. The ``CST`` value is zero extended, truncated, or
2675 unchanged to make it fit in ``TYPE``.
2676``inttoptr (CST to TYPE)``
2677 Convert an integer constant to a pointer constant. TYPE must be a
2678 pointer type. CST must be of integer type. The CST value is zero
2679 extended, truncated, or unchanged to make it fit in a pointer size.
2680 This one is *really* dangerous!
2681``bitcast (CST to TYPE)``
2682 Convert a constant, CST, to another TYPE. The constraints of the
2683 operands are the same as those for the :ref:`bitcast
2684 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002685``addrspacecast (CST to TYPE)``
2686 Convert a constant pointer or constant vector of pointer, CST, to another
2687 TYPE in a different address space. The constraints of the operands are the
2688 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002689``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2690 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2691 constants. As with the :ref:`getelementptr <i_getelementptr>`
2692 instruction, the index list may have zero or more indexes, which are
2693 required to make sense for the type of "CSTPTR".
2694``select (COND, VAL1, VAL2)``
2695 Perform the :ref:`select operation <i_select>` on constants.
2696``icmp COND (VAL1, VAL2)``
2697 Performs the :ref:`icmp operation <i_icmp>` on constants.
2698``fcmp COND (VAL1, VAL2)``
2699 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2700``extractelement (VAL, IDX)``
2701 Perform the :ref:`extractelement operation <i_extractelement>` on
2702 constants.
2703``insertelement (VAL, ELT, IDX)``
2704 Perform the :ref:`insertelement operation <i_insertelement>` on
2705 constants.
2706``shufflevector (VEC1, VEC2, IDXMASK)``
2707 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2708 constants.
2709``extractvalue (VAL, IDX0, IDX1, ...)``
2710 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2711 constants. The index list is interpreted in a similar manner as
2712 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2713 least one index value must be specified.
2714``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2715 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2716 The index list is interpreted in a similar manner as indices in a
2717 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2718 value must be specified.
2719``OPCODE (LHS, RHS)``
2720 Perform the specified operation of the LHS and RHS constants. OPCODE
2721 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2722 binary <bitwiseops>` operations. The constraints on operands are
2723 the same as those for the corresponding instruction (e.g. no bitwise
2724 operations on floating point values are allowed).
2725
2726Other Values
2727============
2728
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002729.. _inlineasmexprs:
2730
Sean Silvab084af42012-12-07 10:36:55 +00002731Inline Assembler Expressions
2732----------------------------
2733
2734LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2735Inline Assembly <moduleasm>`) through the use of a special value. This
2736value represents the inline assembler as a string (containing the
2737instructions to emit), a list of operand constraints (stored as a
2738string), a flag that indicates whether or not the inline asm expression
2739has side effects, and a flag indicating whether the function containing
2740the asm needs to align its stack conservatively. An example inline
2741assembler expression is:
2742
2743.. code-block:: llvm
2744
2745 i32 (i32) asm "bswap $0", "=r,r"
2746
2747Inline assembler expressions may **only** be used as the callee operand
2748of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2749Thus, typically we have:
2750
2751.. code-block:: llvm
2752
2753 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2754
2755Inline asms with side effects not visible in the constraint list must be
2756marked as having side effects. This is done through the use of the
2757'``sideeffect``' keyword, like so:
2758
2759.. code-block:: llvm
2760
2761 call void asm sideeffect "eieio", ""()
2762
2763In some cases inline asms will contain code that will not work unless
2764the stack is aligned in some way, such as calls or SSE instructions on
2765x86, yet will not contain code that does that alignment within the asm.
2766The compiler should make conservative assumptions about what the asm
2767might contain and should generate its usual stack alignment code in the
2768prologue if the '``alignstack``' keyword is present:
2769
2770.. code-block:: llvm
2771
2772 call void asm alignstack "eieio", ""()
2773
2774Inline asms also support using non-standard assembly dialects. The
2775assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2776the inline asm is using the Intel dialect. Currently, ATT and Intel are
2777the only supported dialects. An example is:
2778
2779.. code-block:: llvm
2780
2781 call void asm inteldialect "eieio", ""()
2782
2783If multiple keywords appear the '``sideeffect``' keyword must come
2784first, the '``alignstack``' keyword second and the '``inteldialect``'
2785keyword last.
2786
2787Inline Asm Metadata
2788^^^^^^^^^^^^^^^^^^^
2789
2790The call instructions that wrap inline asm nodes may have a
2791"``!srcloc``" MDNode attached to it that contains a list of constant
2792integers. If present, the code generator will use the integer as the
2793location cookie value when report errors through the ``LLVMContext``
2794error reporting mechanisms. This allows a front-end to correlate backend
2795errors that occur with inline asm back to the source code that produced
2796it. For example:
2797
2798.. code-block:: llvm
2799
2800 call void asm sideeffect "something bad", ""(), !srcloc !42
2801 ...
2802 !42 = !{ i32 1234567 }
2803
2804It is up to the front-end to make sense of the magic numbers it places
2805in the IR. If the MDNode contains multiple constants, the code generator
2806will use the one that corresponds to the line of the asm that the error
2807occurs on.
2808
2809.. _metadata:
2810
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002811Metadata
2812========
Sean Silvab084af42012-12-07 10:36:55 +00002813
2814LLVM IR allows metadata to be attached to instructions in the program
2815that can convey extra information about the code to the optimizers and
2816code generator. One example application of metadata is source-level
2817debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002818
2819Metadata does not have a type, and is not a value. If referenced from a
2820``call`` instruction, it uses the ``metadata`` type.
2821
2822All metadata are identified in syntax by a exclamation point ('``!``').
2823
2824Metadata Nodes and Metadata Strings
2825-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00002826
2827A metadata string is a string surrounded by double quotes. It can
2828contain any character by escaping non-printable characters with
2829"``\xx``" where "``xx``" is the two digit hex code. For example:
2830"``!"test\00"``".
2831
2832Metadata nodes are represented with notation similar to structure
2833constants (a comma separated list of elements, surrounded by braces and
2834preceded by an exclamation point). Metadata nodes can have any values as
2835their operand. For example:
2836
2837.. code-block:: llvm
2838
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002839 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00002840
2841A :ref:`named metadata <namedmetadatastructure>` is a collection of
2842metadata nodes, which can be looked up in the module symbol table. For
2843example:
2844
2845.. code-block:: llvm
2846
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002847 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00002848
2849Metadata can be used as function arguments. Here ``llvm.dbg.value``
2850function is using two metadata arguments:
2851
2852.. code-block:: llvm
2853
2854 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2855
2856Metadata can be attached with an instruction. Here metadata ``!21`` is
2857attached to the ``add`` instruction using the ``!dbg`` identifier:
2858
2859.. code-block:: llvm
2860
2861 %indvar.next = add i64 %indvar, 1, !dbg !21
2862
2863More information about specific metadata nodes recognized by the
2864optimizers and code generator is found below.
2865
2866'``tbaa``' Metadata
2867^^^^^^^^^^^^^^^^^^^
2868
2869In LLVM IR, memory does not have types, so LLVM's own type system is not
2870suitable for doing TBAA. Instead, metadata is added to the IR to
2871describe a type system of a higher level language. This can be used to
2872implement typical C/C++ TBAA, but it can also be used to implement
2873custom alias analysis behavior for other languages.
2874
2875The current metadata format is very simple. TBAA metadata nodes have up
2876to three fields, e.g.:
2877
2878.. code-block:: llvm
2879
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002880 !0 = !{ !"an example type tree" }
2881 !1 = !{ !"int", !0 }
2882 !2 = !{ !"float", !0 }
2883 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00002884
2885The first field is an identity field. It can be any value, usually a
2886metadata string, which uniquely identifies the type. The most important
2887name in the tree is the name of the root node. Two trees with different
2888root node names are entirely disjoint, even if they have leaves with
2889common names.
2890
2891The second field identifies the type's parent node in the tree, or is
2892null or omitted for a root node. A type is considered to alias all of
2893its descendants and all of its ancestors in the tree. Also, a type is
2894considered to alias all types in other trees, so that bitcode produced
2895from multiple front-ends is handled conservatively.
2896
2897If the third field is present, it's an integer which if equal to 1
2898indicates that the type is "constant" (meaning
2899``pointsToConstantMemory`` should return true; see `other useful
2900AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2901
2902'``tbaa.struct``' Metadata
2903^^^^^^^^^^^^^^^^^^^^^^^^^^
2904
2905The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2906aggregate assignment operations in C and similar languages, however it
2907is defined to copy a contiguous region of memory, which is more than
2908strictly necessary for aggregate types which contain holes due to
2909padding. Also, it doesn't contain any TBAA information about the fields
2910of the aggregate.
2911
2912``!tbaa.struct`` metadata can describe which memory subregions in a
2913memcpy are padding and what the TBAA tags of the struct are.
2914
2915The current metadata format is very simple. ``!tbaa.struct`` metadata
2916nodes are a list of operands which are in conceptual groups of three.
2917For each group of three, the first operand gives the byte offset of a
2918field in bytes, the second gives its size in bytes, and the third gives
2919its tbaa tag. e.g.:
2920
2921.. code-block:: llvm
2922
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002923 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00002924
2925This describes a struct with two fields. The first is at offset 0 bytes
2926with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2927and has size 4 bytes and has tbaa tag !2.
2928
2929Note that the fields need not be contiguous. In this example, there is a
29304 byte gap between the two fields. This gap represents padding which
2931does not carry useful data and need not be preserved.
2932
Hal Finkel94146652014-07-24 14:25:39 +00002933'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00002934^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00002935
2936``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
2937noalias memory-access sets. This means that some collection of memory access
2938instructions (loads, stores, memory-accessing calls, etc.) that carry
2939``noalias`` metadata can specifically be specified not to alias with some other
2940collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00002941Each type of metadata specifies a list of scopes where each scope has an id and
2942a domain. When evaluating an aliasing query, if for some some domain, the set
2943of scopes with that domain in one instruction's ``alias.scope`` list is a
2944subset of (or qual to) the set of scopes for that domain in another
2945instruction's ``noalias`` list, then the two memory accesses are assumed not to
2946alias.
Hal Finkel94146652014-07-24 14:25:39 +00002947
Hal Finkel029cde62014-07-25 15:50:02 +00002948The metadata identifying each domain is itself a list containing one or two
2949entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00002950string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00002951self-reference can be used to create globally unique domain names. A
2952descriptive string may optionally be provided as a second list entry.
2953
2954The metadata identifying each scope is also itself a list containing two or
2955three entries. The first entry is the name of the scope. Note that if the name
2956is a string then it can be combined accross functions and translation units. A
2957self-reference can be used to create globally unique scope names. A metadata
2958reference to the scope's domain is the second entry. A descriptive string may
2959optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00002960
2961For example,
2962
2963.. code-block:: llvm
2964
Hal Finkel029cde62014-07-25 15:50:02 +00002965 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002966 !0 = !{!0}
2967 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00002968
Hal Finkel029cde62014-07-25 15:50:02 +00002969 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002970 !2 = !{!2, !0}
2971 !3 = !{!3, !0}
2972 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00002973
Hal Finkel029cde62014-07-25 15:50:02 +00002974 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002975 !5 = !{!4} ; A list containing only scope !4
2976 !6 = !{!4, !3, !2}
2977 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00002978
2979 ; These two instructions don't alias:
Hal Finkel029cde62014-07-25 15:50:02 +00002980 %0 = load float* %c, align 4, !alias.scope !5
2981 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00002982
Hal Finkel029cde62014-07-25 15:50:02 +00002983 ; These two instructions also don't alias (for domain !1, the set of scopes
2984 ; in the !alias.scope equals that in the !noalias list):
2985 %2 = load float* %c, align 4, !alias.scope !5
2986 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00002987
Hal Finkel029cde62014-07-25 15:50:02 +00002988 ; These two instructions don't alias (for domain !0, the set of scopes in
2989 ; the !noalias list is not a superset of, or equal to, the scopes in the
2990 ; !alias.scope list):
2991 %2 = load float* %c, align 4, !alias.scope !6
2992 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00002993
Sean Silvab084af42012-12-07 10:36:55 +00002994'``fpmath``' Metadata
2995^^^^^^^^^^^^^^^^^^^^^
2996
2997``fpmath`` metadata may be attached to any instruction of floating point
2998type. It can be used to express the maximum acceptable error in the
2999result of that instruction, in ULPs, thus potentially allowing the
3000compiler to use a more efficient but less accurate method of computing
3001it. ULP is defined as follows:
3002
3003 If ``x`` is a real number that lies between two finite consecutive
3004 floating-point numbers ``a`` and ``b``, without being equal to one
3005 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
3006 distance between the two non-equal finite floating-point numbers
3007 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
3008
3009The metadata node shall consist of a single positive floating point
3010number representing the maximum relative error, for example:
3011
3012.. code-block:: llvm
3013
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003014 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00003015
3016'``range``' Metadata
3017^^^^^^^^^^^^^^^^^^^^
3018
Jingyue Wu37fcb592014-06-19 16:50:16 +00003019``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
3020integer types. It expresses the possible ranges the loaded value or the value
3021returned by the called function at this call site is in. The ranges are
3022represented with a flattened list of integers. The loaded value or the value
3023returned is known to be in the union of the ranges defined by each consecutive
3024pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00003025
3026- The type must match the type loaded by the instruction.
3027- The pair ``a,b`` represents the range ``[a,b)``.
3028- Both ``a`` and ``b`` are constants.
3029- The range is allowed to wrap.
3030- The range should not represent the full or empty set. That is,
3031 ``a!=b``.
3032
3033In addition, the pairs must be in signed order of the lower bound and
3034they must be non-contiguous.
3035
3036Examples:
3037
3038.. code-block:: llvm
3039
3040 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
3041 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00003042 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
3043 %d = invoke i8 @bar() to label %cont
3044 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00003045 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003046 !0 = !{ i8 0, i8 2 }
3047 !1 = !{ i8 255, i8 2 }
3048 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
3049 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00003050
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003051'``llvm.loop``'
3052^^^^^^^^^^^^^^^
3053
3054It is sometimes useful to attach information to loop constructs. Currently,
3055loop metadata is implemented as metadata attached to the branch instruction
3056in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00003057guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00003058specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003059
3060The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00003061itself to avoid merging it with any other identifier metadata, e.g.,
3062during module linkage or function inlining. That is, each loop should refer
3063to their own identification metadata even if they reside in separate functions.
3064The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003065constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003066
3067.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00003068
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003069 !0 = !{!0}
3070 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003071
Mark Heffernan893752a2014-07-18 19:24:51 +00003072The loop identifier metadata can be used to specify additional
3073per-loop metadata. Any operands after the first operand can be treated
3074as user-defined metadata. For example the ``llvm.loop.unroll.count``
3075suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003076
Paul Redmond5fdf8362013-05-28 20:00:34 +00003077.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003078
Paul Redmond5fdf8362013-05-28 20:00:34 +00003079 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
3080 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003081 !0 = !{!0, !1}
3082 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003083
Mark Heffernan9d20e422014-07-21 23:11:03 +00003084'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
3085^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00003086
Mark Heffernan9d20e422014-07-21 23:11:03 +00003087Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
3088used to control per-loop vectorization and interleaving parameters such as
3089vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00003090conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00003091``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
3092optimization hints and the optimizer will only interleave and vectorize loops if
3093it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
3094which contains information about loop-carried memory dependencies can be helpful
3095in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00003096
Mark Heffernan9d20e422014-07-21 23:11:03 +00003097'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00003098^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3099
Mark Heffernan9d20e422014-07-21 23:11:03 +00003100This metadata suggests an interleave count to the loop interleaver.
3101The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00003102second operand is an integer specifying the interleave count. For
3103example:
3104
3105.. code-block:: llvm
3106
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003107 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003108
Mark Heffernan9d20e422014-07-21 23:11:03 +00003109Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3110multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
3111then the interleave count will be determined automatically.
3112
3113'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00003114^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00003115
3116This metadata selectively enables or disables vectorization for the loop. The
3117first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3118is a bit. If the bit operand value is 1 vectorization is enabled. A value of
31190 disables vectorization:
3120
3121.. code-block:: llvm
3122
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003123 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
3124 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00003125
3126'``llvm.loop.vectorize.width``' Metadata
3127^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3128
3129This metadata sets the target width of the vectorizer. The first
3130operand is the string ``llvm.loop.vectorize.width`` and the second
3131operand is an integer specifying the width. For example:
3132
3133.. code-block:: llvm
3134
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003135 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003136
3137Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3138vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
31390 or if the loop does not have this metadata the width will be
3140determined automatically.
3141
3142'``llvm.loop.unroll``'
3143^^^^^^^^^^^^^^^^^^^^^^
3144
3145Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3146optimization hints such as the unroll factor. ``llvm.loop.unroll``
3147metadata should be used in conjunction with ``llvm.loop`` loop
3148identification metadata. The ``llvm.loop.unroll`` metadata are only
3149optimization hints and the unrolling will only be performed if the
3150optimizer believes it is safe to do so.
3151
Mark Heffernan893752a2014-07-18 19:24:51 +00003152'``llvm.loop.unroll.count``' Metadata
3153^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3154
3155This metadata suggests an unroll factor to the loop unroller. The
3156first operand is the string ``llvm.loop.unroll.count`` and the second
3157operand is a positive integer specifying the unroll factor. For
3158example:
3159
3160.. code-block:: llvm
3161
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003162 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003163
3164If the trip count of the loop is less than the unroll count the loop
3165will be partially unrolled.
3166
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003167'``llvm.loop.unroll.disable``' Metadata
3168^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3169
3170This metadata either disables loop unrolling. The metadata has a single operand
3171which is the string ``llvm.loop.unroll.disable``. For example:
3172
3173.. code-block:: llvm
3174
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003175 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003176
3177'``llvm.loop.unroll.full``' Metadata
3178^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3179
3180This metadata either suggests that the loop should be unrolled fully. The
3181metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3182For example:
3183
3184.. code-block:: llvm
3185
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003186 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003187
3188'``llvm.mem``'
3189^^^^^^^^^^^^^^^
3190
3191Metadata types used to annotate memory accesses with information helpful
3192for optimizations are prefixed with ``llvm.mem``.
3193
3194'``llvm.mem.parallel_loop_access``' Metadata
3195^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3196
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003197The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3198or metadata containing a list of loop identifiers for nested loops.
3199The metadata is attached to memory accessing instructions and denotes that
3200no loop carried memory dependence exist between it and other instructions denoted
3201with the same loop identifier.
3202
3203Precisely, given two instructions ``m1`` and ``m2`` that both have the
3204``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3205set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00003206carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003207``L2``.
3208
3209As a special case, if all memory accessing instructions in a loop have
3210``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3211loop has no loop carried memory dependences and is considered to be a parallel
3212loop.
3213
3214Note that if not all memory access instructions have such metadata referring to
3215the loop, then the loop is considered not being trivially parallel. Additional
3216memory dependence analysis is required to make that determination. As a fail
3217safe mechanism, this causes loops that were originally parallel to be considered
3218sequential (if optimization passes that are unaware of the parallel semantics
3219insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003220
3221Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003222both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003223metadata types that refer to the same loop identifier metadata.
3224
3225.. code-block:: llvm
3226
3227 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003228 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003229 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003230 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003231 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003232 ...
3233 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003234
3235 for.end:
3236 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003237 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003238
3239It is also possible to have nested parallel loops. In that case the
3240memory accesses refer to a list of loop identifier metadata nodes instead of
3241the loop identifier metadata node directly:
3242
3243.. code-block:: llvm
3244
3245 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003246 ...
3247 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
3248 ...
3249 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003250
3251 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003252 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003253 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003254 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003255 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003256 ...
3257 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003258
3259 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003260 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003261 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003262 ...
3263 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003264
3265 outer.for.end: ; preds = %for.body
3266 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003267 !0 = !{!1, !2} ; a list of loop identifiers
3268 !1 = !{!1} ; an identifier for the inner loop
3269 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003270
Sean Silvab084af42012-12-07 10:36:55 +00003271Module Flags Metadata
3272=====================
3273
3274Information about the module as a whole is difficult to convey to LLVM's
3275subsystems. The LLVM IR isn't sufficient to transmit this information.
3276The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003277this. These flags are in the form of key / value pairs --- much like a
3278dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003279look it up.
3280
3281The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3282Each triplet has the following form:
3283
3284- The first element is a *behavior* flag, which specifies the behavior
3285 when two (or more) modules are merged together, and it encounters two
3286 (or more) metadata with the same ID. The supported behaviors are
3287 described below.
3288- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003289 metadata. Each module may only have one flag entry for each unique ID (not
3290 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003291- The third element is the value of the flag.
3292
3293When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003294``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3295each unique metadata ID string, there will be exactly one entry in the merged
3296modules ``llvm.module.flags`` metadata table, and the value for that entry will
3297be determined by the merge behavior flag, as described below. The only exception
3298is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003299
3300The following behaviors are supported:
3301
3302.. list-table::
3303 :header-rows: 1
3304 :widths: 10 90
3305
3306 * - Value
3307 - Behavior
3308
3309 * - 1
3310 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003311 Emits an error if two values disagree, otherwise the resulting value
3312 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003313
3314 * - 2
3315 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003316 Emits a warning if two values disagree. The result value will be the
3317 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003318
3319 * - 3
3320 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003321 Adds a requirement that another module flag be present and have a
3322 specified value after linking is performed. The value must be a
3323 metadata pair, where the first element of the pair is the ID of the
3324 module flag to be restricted, and the second element of the pair is
3325 the value the module flag should be restricted to. This behavior can
3326 be used to restrict the allowable results (via triggering of an
3327 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003328
3329 * - 4
3330 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003331 Uses the specified value, regardless of the behavior or value of the
3332 other module. If both modules specify **Override**, but the values
3333 differ, an error will be emitted.
3334
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003335 * - 5
3336 - **Append**
3337 Appends the two values, which are required to be metadata nodes.
3338
3339 * - 6
3340 - **AppendUnique**
3341 Appends the two values, which are required to be metadata
3342 nodes. However, duplicate entries in the second list are dropped
3343 during the append operation.
3344
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003345It is an error for a particular unique flag ID to have multiple behaviors,
3346except in the case of **Require** (which adds restrictions on another metadata
3347value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003348
3349An example of module flags:
3350
3351.. code-block:: llvm
3352
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003353 !0 = !{ i32 1, !"foo", i32 1 }
3354 !1 = !{ i32 4, !"bar", i32 37 }
3355 !2 = !{ i32 2, !"qux", i32 42 }
3356 !3 = !{ i32 3, !"qux",
3357 !{
3358 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00003359 }
3360 }
3361 !llvm.module.flags = !{ !0, !1, !2, !3 }
3362
3363- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3364 if two or more ``!"foo"`` flags are seen is to emit an error if their
3365 values are not equal.
3366
3367- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3368 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003369 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003370
3371- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3372 behavior if two or more ``!"qux"`` flags are seen is to emit a
3373 warning if their values are not equal.
3374
3375- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3376
3377 ::
3378
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003379 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003380
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003381 The behavior is to emit an error if the ``llvm.module.flags`` does not
3382 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3383 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003384
3385Objective-C Garbage Collection Module Flags Metadata
3386----------------------------------------------------
3387
3388On the Mach-O platform, Objective-C stores metadata about garbage
3389collection in a special section called "image info". The metadata
3390consists of a version number and a bitmask specifying what types of
3391garbage collection are supported (if any) by the file. If two or more
3392modules are linked together their garbage collection metadata needs to
3393be merged rather than appended together.
3394
3395The Objective-C garbage collection module flags metadata consists of the
3396following key-value pairs:
3397
3398.. list-table::
3399 :header-rows: 1
3400 :widths: 30 70
3401
3402 * - Key
3403 - Value
3404
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003405 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003406 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003407
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003408 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003409 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003410 always 0.
3411
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003412 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003413 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003414 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3415 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3416 Objective-C ABI version 2.
3417
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003418 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003419 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003420 not. Valid values are 0, for no garbage collection, and 2, for garbage
3421 collection supported.
3422
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003423 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003424 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003425 If present, its value must be 6. This flag requires that the
3426 ``Objective-C Garbage Collection`` flag have the value 2.
3427
3428Some important flag interactions:
3429
3430- If a module with ``Objective-C Garbage Collection`` set to 0 is
3431 merged with a module with ``Objective-C Garbage Collection`` set to
3432 2, then the resulting module has the
3433 ``Objective-C Garbage Collection`` flag set to 0.
3434- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3435 merged with a module with ``Objective-C GC Only`` set to 6.
3436
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003437Automatic Linker Flags Module Flags Metadata
3438--------------------------------------------
3439
3440Some targets support embedding flags to the linker inside individual object
3441files. Typically this is used in conjunction with language extensions which
3442allow source files to explicitly declare the libraries they depend on, and have
3443these automatically be transmitted to the linker via object files.
3444
3445These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003446using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003447to be ``AppendUnique``, and the value for the key is expected to be a metadata
3448node which should be a list of other metadata nodes, each of which should be a
3449list of metadata strings defining linker options.
3450
3451For example, the following metadata section specifies two separate sets of
3452linker options, presumably to link against ``libz`` and the ``Cocoa``
3453framework::
3454
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003455 !0 = !{ i32 6, !"Linker Options",
3456 !{
3457 !{ !"-lz" },
3458 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003459 !llvm.module.flags = !{ !0 }
3460
3461The metadata encoding as lists of lists of options, as opposed to a collapsed
3462list of options, is chosen so that the IR encoding can use multiple option
3463strings to specify e.g., a single library, while still having that specifier be
3464preserved as an atomic element that can be recognized by a target specific
3465assembly writer or object file emitter.
3466
3467Each individual option is required to be either a valid option for the target's
3468linker, or an option that is reserved by the target specific assembly writer or
3469object file emitter. No other aspect of these options is defined by the IR.
3470
Oliver Stannard5dc29342014-06-20 10:08:11 +00003471C type width Module Flags Metadata
3472----------------------------------
3473
3474The ARM backend emits a section into each generated object file describing the
3475options that it was compiled with (in a compiler-independent way) to prevent
3476linking incompatible objects, and to allow automatic library selection. Some
3477of these options are not visible at the IR level, namely wchar_t width and enum
3478width.
3479
3480To pass this information to the backend, these options are encoded in module
3481flags metadata, using the following key-value pairs:
3482
3483.. list-table::
3484 :header-rows: 1
3485 :widths: 30 70
3486
3487 * - Key
3488 - Value
3489
3490 * - short_wchar
3491 - * 0 --- sizeof(wchar_t) == 4
3492 * 1 --- sizeof(wchar_t) == 2
3493
3494 * - short_enum
3495 - * 0 --- Enums are at least as large as an ``int``.
3496 * 1 --- Enums are stored in the smallest integer type which can
3497 represent all of its values.
3498
3499For example, the following metadata section specifies that the module was
3500compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3501enum is the smallest type which can represent all of its values::
3502
3503 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003504 !0 = !{i32 1, !"short_wchar", i32 1}
3505 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00003506
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003507.. _intrinsicglobalvariables:
3508
Sean Silvab084af42012-12-07 10:36:55 +00003509Intrinsic Global Variables
3510==========================
3511
3512LLVM has a number of "magic" global variables that contain data that
3513affect code generation or other IR semantics. These are documented here.
3514All globals of this sort should have a section specified as
3515"``llvm.metadata``". This section and all globals that start with
3516"``llvm.``" are reserved for use by LLVM.
3517
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003518.. _gv_llvmused:
3519
Sean Silvab084af42012-12-07 10:36:55 +00003520The '``llvm.used``' Global Variable
3521-----------------------------------
3522
Rafael Espindola74f2e462013-04-22 14:58:02 +00003523The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003524:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003525pointers to named global variables, functions and aliases which may optionally
3526have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003527use of it is:
3528
3529.. code-block:: llvm
3530
3531 @X = global i8 4
3532 @Y = global i32 123
3533
3534 @llvm.used = appending global [2 x i8*] [
3535 i8* @X,
3536 i8* bitcast (i32* @Y to i8*)
3537 ], section "llvm.metadata"
3538
Rafael Espindola74f2e462013-04-22 14:58:02 +00003539If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3540and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003541symbol that it cannot see (which is why they have to be named). For example, if
3542a variable has internal linkage and no references other than that from the
3543``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3544references from inline asms and other things the compiler cannot "see", and
3545corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003546
3547On some targets, the code generator must emit a directive to the
3548assembler or object file to prevent the assembler and linker from
3549molesting the symbol.
3550
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003551.. _gv_llvmcompilerused:
3552
Sean Silvab084af42012-12-07 10:36:55 +00003553The '``llvm.compiler.used``' Global Variable
3554--------------------------------------------
3555
3556The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3557directive, except that it only prevents the compiler from touching the
3558symbol. On targets that support it, this allows an intelligent linker to
3559optimize references to the symbol without being impeded as it would be
3560by ``@llvm.used``.
3561
3562This is a rare construct that should only be used in rare circumstances,
3563and should not be exposed to source languages.
3564
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003565.. _gv_llvmglobalctors:
3566
Sean Silvab084af42012-12-07 10:36:55 +00003567The '``llvm.global_ctors``' Global Variable
3568-------------------------------------------
3569
3570.. code-block:: llvm
3571
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003572 %0 = type { i32, void ()*, i8* }
3573 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003574
3575The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003576functions, priorities, and an optional associated global or function.
3577The functions referenced by this array will be called in ascending order
3578of priority (i.e. lowest first) when the module is loaded. The order of
3579functions with the same priority is not defined.
3580
3581If the third field is present, non-null, and points to a global variable
3582or function, the initializer function will only run if the associated
3583data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003584
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003585.. _llvmglobaldtors:
3586
Sean Silvab084af42012-12-07 10:36:55 +00003587The '``llvm.global_dtors``' Global Variable
3588-------------------------------------------
3589
3590.. code-block:: llvm
3591
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003592 %0 = type { i32, void ()*, i8* }
3593 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003594
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003595The ``@llvm.global_dtors`` array contains a list of destructor
3596functions, priorities, and an optional associated global or function.
3597The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003598order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003599order of functions with the same priority is not defined.
3600
3601If the third field is present, non-null, and points to a global variable
3602or function, the destructor function will only run if the associated
3603data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003604
3605Instruction Reference
3606=====================
3607
3608The LLVM instruction set consists of several different classifications
3609of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3610instructions <binaryops>`, :ref:`bitwise binary
3611instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3612:ref:`other instructions <otherops>`.
3613
3614.. _terminators:
3615
3616Terminator Instructions
3617-----------------------
3618
3619As mentioned :ref:`previously <functionstructure>`, every basic block in a
3620program ends with a "Terminator" instruction, which indicates which
3621block should be executed after the current block is finished. These
3622terminator instructions typically yield a '``void``' value: they produce
3623control flow, not values (the one exception being the
3624':ref:`invoke <i_invoke>`' instruction).
3625
3626The terminator instructions are: ':ref:`ret <i_ret>`',
3627':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3628':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3629':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3630
3631.. _i_ret:
3632
3633'``ret``' Instruction
3634^^^^^^^^^^^^^^^^^^^^^
3635
3636Syntax:
3637"""""""
3638
3639::
3640
3641 ret <type> <value> ; Return a value from a non-void function
3642 ret void ; Return from void function
3643
3644Overview:
3645"""""""""
3646
3647The '``ret``' instruction is used to return control flow (and optionally
3648a value) from a function back to the caller.
3649
3650There are two forms of the '``ret``' instruction: one that returns a
3651value and then causes control flow, and one that just causes control
3652flow to occur.
3653
3654Arguments:
3655""""""""""
3656
3657The '``ret``' instruction optionally accepts a single argument, the
3658return value. The type of the return value must be a ':ref:`first
3659class <t_firstclass>`' type.
3660
3661A function is not :ref:`well formed <wellformed>` if it it has a non-void
3662return type and contains a '``ret``' instruction with no return value or
3663a return value with a type that does not match its type, or if it has a
3664void return type and contains a '``ret``' instruction with a return
3665value.
3666
3667Semantics:
3668""""""""""
3669
3670When the '``ret``' instruction is executed, control flow returns back to
3671the calling function's context. If the caller is a
3672":ref:`call <i_call>`" instruction, execution continues at the
3673instruction after the call. If the caller was an
3674":ref:`invoke <i_invoke>`" instruction, execution continues at the
3675beginning of the "normal" destination block. If the instruction returns
3676a value, that value shall set the call or invoke instruction's return
3677value.
3678
3679Example:
3680""""""""
3681
3682.. code-block:: llvm
3683
3684 ret i32 5 ; Return an integer value of 5
3685 ret void ; Return from a void function
3686 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3687
3688.. _i_br:
3689
3690'``br``' Instruction
3691^^^^^^^^^^^^^^^^^^^^
3692
3693Syntax:
3694"""""""
3695
3696::
3697
3698 br i1 <cond>, label <iftrue>, label <iffalse>
3699 br label <dest> ; Unconditional branch
3700
3701Overview:
3702"""""""""
3703
3704The '``br``' instruction is used to cause control flow to transfer to a
3705different basic block in the current function. There are two forms of
3706this instruction, corresponding to a conditional branch and an
3707unconditional branch.
3708
3709Arguments:
3710""""""""""
3711
3712The conditional branch form of the '``br``' instruction takes a single
3713'``i1``' value and two '``label``' values. The unconditional form of the
3714'``br``' instruction takes a single '``label``' value as a target.
3715
3716Semantics:
3717""""""""""
3718
3719Upon execution of a conditional '``br``' instruction, the '``i1``'
3720argument is evaluated. If the value is ``true``, control flows to the
3721'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3722to the '``iffalse``' ``label`` argument.
3723
3724Example:
3725""""""""
3726
3727.. code-block:: llvm
3728
3729 Test:
3730 %cond = icmp eq i32 %a, %b
3731 br i1 %cond, label %IfEqual, label %IfUnequal
3732 IfEqual:
3733 ret i32 1
3734 IfUnequal:
3735 ret i32 0
3736
3737.. _i_switch:
3738
3739'``switch``' Instruction
3740^^^^^^^^^^^^^^^^^^^^^^^^
3741
3742Syntax:
3743"""""""
3744
3745::
3746
3747 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3748
3749Overview:
3750"""""""""
3751
3752The '``switch``' instruction is used to transfer control flow to one of
3753several different places. It is a generalization of the '``br``'
3754instruction, allowing a branch to occur to one of many possible
3755destinations.
3756
3757Arguments:
3758""""""""""
3759
3760The '``switch``' instruction uses three parameters: an integer
3761comparison value '``value``', a default '``label``' destination, and an
3762array of pairs of comparison value constants and '``label``'s. The table
3763is not allowed to contain duplicate constant entries.
3764
3765Semantics:
3766""""""""""
3767
3768The ``switch`` instruction specifies a table of values and destinations.
3769When the '``switch``' instruction is executed, this table is searched
3770for the given value. If the value is found, control flow is transferred
3771to the corresponding destination; otherwise, control flow is transferred
3772to the default destination.
3773
3774Implementation:
3775"""""""""""""""
3776
3777Depending on properties of the target machine and the particular
3778``switch`` instruction, this instruction may be code generated in
3779different ways. For example, it could be generated as a series of
3780chained conditional branches or with a lookup table.
3781
3782Example:
3783""""""""
3784
3785.. code-block:: llvm
3786
3787 ; Emulate a conditional br instruction
3788 %Val = zext i1 %value to i32
3789 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3790
3791 ; Emulate an unconditional br instruction
3792 switch i32 0, label %dest [ ]
3793
3794 ; Implement a jump table:
3795 switch i32 %val, label %otherwise [ i32 0, label %onzero
3796 i32 1, label %onone
3797 i32 2, label %ontwo ]
3798
3799.. _i_indirectbr:
3800
3801'``indirectbr``' Instruction
3802^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3803
3804Syntax:
3805"""""""
3806
3807::
3808
3809 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3810
3811Overview:
3812"""""""""
3813
3814The '``indirectbr``' instruction implements an indirect branch to a
3815label within the current function, whose address is specified by
3816"``address``". Address must be derived from a
3817:ref:`blockaddress <blockaddress>` constant.
3818
3819Arguments:
3820""""""""""
3821
3822The '``address``' argument is the address of the label to jump to. The
3823rest of the arguments indicate the full set of possible destinations
3824that the address may point to. Blocks are allowed to occur multiple
3825times in the destination list, though this isn't particularly useful.
3826
3827This destination list is required so that dataflow analysis has an
3828accurate understanding of the CFG.
3829
3830Semantics:
3831""""""""""
3832
3833Control transfers to the block specified in the address argument. All
3834possible destination blocks must be listed in the label list, otherwise
3835this instruction has undefined behavior. This implies that jumps to
3836labels defined in other functions have undefined behavior as well.
3837
3838Implementation:
3839"""""""""""""""
3840
3841This is typically implemented with a jump through a register.
3842
3843Example:
3844""""""""
3845
3846.. code-block:: llvm
3847
3848 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3849
3850.. _i_invoke:
3851
3852'``invoke``' Instruction
3853^^^^^^^^^^^^^^^^^^^^^^^^
3854
3855Syntax:
3856"""""""
3857
3858::
3859
3860 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3861 to label <normal label> unwind label <exception label>
3862
3863Overview:
3864"""""""""
3865
3866The '``invoke``' instruction causes control to transfer to a specified
3867function, with the possibility of control flow transfer to either the
3868'``normal``' label or the '``exception``' label. If the callee function
3869returns with the "``ret``" instruction, control flow will return to the
3870"normal" label. If the callee (or any indirect callees) returns via the
3871":ref:`resume <i_resume>`" instruction or other exception handling
3872mechanism, control is interrupted and continued at the dynamically
3873nearest "exception" label.
3874
3875The '``exception``' label is a `landing
3876pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3877'``exception``' label is required to have the
3878":ref:`landingpad <i_landingpad>`" instruction, which contains the
3879information about the behavior of the program after unwinding happens,
3880as its first non-PHI instruction. The restrictions on the
3881"``landingpad``" instruction's tightly couples it to the "``invoke``"
3882instruction, so that the important information contained within the
3883"``landingpad``" instruction can't be lost through normal code motion.
3884
3885Arguments:
3886""""""""""
3887
3888This instruction requires several arguments:
3889
3890#. The optional "cconv" marker indicates which :ref:`calling
3891 convention <callingconv>` the call should use. If none is
3892 specified, the call defaults to using C calling conventions.
3893#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3894 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3895 are valid here.
3896#. '``ptr to function ty``': shall be the signature of the pointer to
3897 function value being invoked. In most cases, this is a direct
3898 function invocation, but indirect ``invoke``'s are just as possible,
3899 branching off an arbitrary pointer to function value.
3900#. '``function ptr val``': An LLVM value containing a pointer to a
3901 function to be invoked.
3902#. '``function args``': argument list whose types match the function
3903 signature argument types and parameter attributes. All arguments must
3904 be of :ref:`first class <t_firstclass>` type. If the function signature
3905 indicates the function accepts a variable number of arguments, the
3906 extra arguments can be specified.
3907#. '``normal label``': the label reached when the called function
3908 executes a '``ret``' instruction.
3909#. '``exception label``': the label reached when a callee returns via
3910 the :ref:`resume <i_resume>` instruction or other exception handling
3911 mechanism.
3912#. The optional :ref:`function attributes <fnattrs>` list. Only
3913 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3914 attributes are valid here.
3915
3916Semantics:
3917""""""""""
3918
3919This instruction is designed to operate as a standard '``call``'
3920instruction in most regards. The primary difference is that it
3921establishes an association with a label, which is used by the runtime
3922library to unwind the stack.
3923
3924This instruction is used in languages with destructors to ensure that
3925proper cleanup is performed in the case of either a ``longjmp`` or a
3926thrown exception. Additionally, this is important for implementation of
3927'``catch``' clauses in high-level languages that support them.
3928
3929For the purposes of the SSA form, the definition of the value returned
3930by the '``invoke``' instruction is deemed to occur on the edge from the
3931current block to the "normal" label. If the callee unwinds then no
3932return value is available.
3933
3934Example:
3935""""""""
3936
3937.. code-block:: llvm
3938
3939 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003940 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003941 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003942 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003943
3944.. _i_resume:
3945
3946'``resume``' Instruction
3947^^^^^^^^^^^^^^^^^^^^^^^^
3948
3949Syntax:
3950"""""""
3951
3952::
3953
3954 resume <type> <value>
3955
3956Overview:
3957"""""""""
3958
3959The '``resume``' instruction is a terminator instruction that has no
3960successors.
3961
3962Arguments:
3963""""""""""
3964
3965The '``resume``' instruction requires one argument, which must have the
3966same type as the result of any '``landingpad``' instruction in the same
3967function.
3968
3969Semantics:
3970""""""""""
3971
3972The '``resume``' instruction resumes propagation of an existing
3973(in-flight) exception whose unwinding was interrupted with a
3974:ref:`landingpad <i_landingpad>` instruction.
3975
3976Example:
3977""""""""
3978
3979.. code-block:: llvm
3980
3981 resume { i8*, i32 } %exn
3982
3983.. _i_unreachable:
3984
3985'``unreachable``' Instruction
3986^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3987
3988Syntax:
3989"""""""
3990
3991::
3992
3993 unreachable
3994
3995Overview:
3996"""""""""
3997
3998The '``unreachable``' instruction has no defined semantics. This
3999instruction is used to inform the optimizer that a particular portion of
4000the code is not reachable. This can be used to indicate that the code
4001after a no-return function cannot be reached, and other facts.
4002
4003Semantics:
4004""""""""""
4005
4006The '``unreachable``' instruction has no defined semantics.
4007
4008.. _binaryops:
4009
4010Binary Operations
4011-----------------
4012
4013Binary operators are used to do most of the computation in a program.
4014They require two operands of the same type, execute an operation on
4015them, and produce a single value. The operands might represent multiple
4016data, as is the case with the :ref:`vector <t_vector>` data type. The
4017result value has the same type as its operands.
4018
4019There are several different binary operators:
4020
4021.. _i_add:
4022
4023'``add``' Instruction
4024^^^^^^^^^^^^^^^^^^^^^
4025
4026Syntax:
4027"""""""
4028
4029::
4030
Tim Northover675a0962014-06-13 14:24:23 +00004031 <result> = add <ty> <op1>, <op2> ; yields ty:result
4032 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
4033 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
4034 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004035
4036Overview:
4037"""""""""
4038
4039The '``add``' instruction returns the sum of its two operands.
4040
4041Arguments:
4042""""""""""
4043
4044The two arguments to the '``add``' instruction must be
4045:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4046arguments must have identical types.
4047
4048Semantics:
4049""""""""""
4050
4051The value produced is the integer sum of the two operands.
4052
4053If the sum has unsigned overflow, the result returned is the
4054mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4055the result.
4056
4057Because LLVM integers use a two's complement representation, this
4058instruction is appropriate for both signed and unsigned integers.
4059
4060``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4061respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4062result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
4063unsigned and/or signed overflow, respectively, occurs.
4064
4065Example:
4066""""""""
4067
4068.. code-block:: llvm
4069
Tim Northover675a0962014-06-13 14:24:23 +00004070 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004071
4072.. _i_fadd:
4073
4074'``fadd``' Instruction
4075^^^^^^^^^^^^^^^^^^^^^^
4076
4077Syntax:
4078"""""""
4079
4080::
4081
Tim Northover675a0962014-06-13 14:24:23 +00004082 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004083
4084Overview:
4085"""""""""
4086
4087The '``fadd``' instruction returns the sum of its two operands.
4088
4089Arguments:
4090""""""""""
4091
4092The two arguments to the '``fadd``' instruction must be :ref:`floating
4093point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4094Both arguments must have identical types.
4095
4096Semantics:
4097""""""""""
4098
4099The value produced is the floating point sum of the two operands. This
4100instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4101which are optimization hints to enable otherwise unsafe floating point
4102optimizations:
4103
4104Example:
4105""""""""
4106
4107.. code-block:: llvm
4108
Tim Northover675a0962014-06-13 14:24:23 +00004109 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004110
4111'``sub``' Instruction
4112^^^^^^^^^^^^^^^^^^^^^
4113
4114Syntax:
4115"""""""
4116
4117::
4118
Tim Northover675a0962014-06-13 14:24:23 +00004119 <result> = sub <ty> <op1>, <op2> ; yields ty:result
4120 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
4121 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
4122 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004123
4124Overview:
4125"""""""""
4126
4127The '``sub``' instruction returns the difference of its two operands.
4128
4129Note that the '``sub``' instruction is used to represent the '``neg``'
4130instruction present in most other intermediate representations.
4131
4132Arguments:
4133""""""""""
4134
4135The two arguments to the '``sub``' instruction must be
4136:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4137arguments must have identical types.
4138
4139Semantics:
4140""""""""""
4141
4142The value produced is the integer difference of the two operands.
4143
4144If the difference has unsigned overflow, the result returned is the
4145mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4146the result.
4147
4148Because LLVM integers use a two's complement representation, this
4149instruction is appropriate for both signed and unsigned integers.
4150
4151``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4152respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4153result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4154unsigned and/or signed overflow, respectively, occurs.
4155
4156Example:
4157""""""""
4158
4159.. code-block:: llvm
4160
Tim Northover675a0962014-06-13 14:24:23 +00004161 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
4162 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004163
4164.. _i_fsub:
4165
4166'``fsub``' Instruction
4167^^^^^^^^^^^^^^^^^^^^^^
4168
4169Syntax:
4170"""""""
4171
4172::
4173
Tim Northover675a0962014-06-13 14:24:23 +00004174 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004175
4176Overview:
4177"""""""""
4178
4179The '``fsub``' instruction returns the difference of its two operands.
4180
4181Note that the '``fsub``' instruction is used to represent the '``fneg``'
4182instruction present in most other intermediate representations.
4183
4184Arguments:
4185""""""""""
4186
4187The two arguments to the '``fsub``' instruction must be :ref:`floating
4188point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4189Both arguments must have identical types.
4190
4191Semantics:
4192""""""""""
4193
4194The value produced is the floating point difference of the two operands.
4195This instruction can also take any number of :ref:`fast-math
4196flags <fastmath>`, which are optimization hints to enable otherwise
4197unsafe floating point optimizations:
4198
4199Example:
4200""""""""
4201
4202.. code-block:: llvm
4203
Tim Northover675a0962014-06-13 14:24:23 +00004204 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4205 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004206
4207'``mul``' Instruction
4208^^^^^^^^^^^^^^^^^^^^^
4209
4210Syntax:
4211"""""""
4212
4213::
4214
Tim Northover675a0962014-06-13 14:24:23 +00004215 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4216 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4217 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4218 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004219
4220Overview:
4221"""""""""
4222
4223The '``mul``' instruction returns the product of its two operands.
4224
4225Arguments:
4226""""""""""
4227
4228The two arguments to the '``mul``' instruction must be
4229:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4230arguments must have identical types.
4231
4232Semantics:
4233""""""""""
4234
4235The value produced is the integer product of the two operands.
4236
4237If the result of the multiplication has unsigned overflow, the result
4238returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4239bit width of the result.
4240
4241Because LLVM integers use a two's complement representation, and the
4242result is the same width as the operands, this instruction returns the
4243correct result for both signed and unsigned integers. If a full product
4244(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4245sign-extended or zero-extended as appropriate to the width of the full
4246product.
4247
4248``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4249respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4250result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4251unsigned and/or signed overflow, respectively, occurs.
4252
4253Example:
4254""""""""
4255
4256.. code-block:: llvm
4257
Tim Northover675a0962014-06-13 14:24:23 +00004258 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004259
4260.. _i_fmul:
4261
4262'``fmul``' Instruction
4263^^^^^^^^^^^^^^^^^^^^^^
4264
4265Syntax:
4266"""""""
4267
4268::
4269
Tim Northover675a0962014-06-13 14:24:23 +00004270 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004271
4272Overview:
4273"""""""""
4274
4275The '``fmul``' instruction returns the product of its two operands.
4276
4277Arguments:
4278""""""""""
4279
4280The two arguments to the '``fmul``' instruction must be :ref:`floating
4281point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4282Both arguments must have identical types.
4283
4284Semantics:
4285""""""""""
4286
4287The value produced is the floating point product of the two operands.
4288This instruction can also take any number of :ref:`fast-math
4289flags <fastmath>`, which are optimization hints to enable otherwise
4290unsafe floating point optimizations:
4291
4292Example:
4293""""""""
4294
4295.. code-block:: llvm
4296
Tim Northover675a0962014-06-13 14:24:23 +00004297 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004298
4299'``udiv``' Instruction
4300^^^^^^^^^^^^^^^^^^^^^^
4301
4302Syntax:
4303"""""""
4304
4305::
4306
Tim Northover675a0962014-06-13 14:24:23 +00004307 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4308 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004309
4310Overview:
4311"""""""""
4312
4313The '``udiv``' instruction returns the quotient of its two operands.
4314
4315Arguments:
4316""""""""""
4317
4318The two arguments to the '``udiv``' instruction must be
4319:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4320arguments must have identical types.
4321
4322Semantics:
4323""""""""""
4324
4325The value produced is the unsigned integer quotient of the two operands.
4326
4327Note that unsigned integer division and signed integer division are
4328distinct operations; for signed integer division, use '``sdiv``'.
4329
4330Division by zero leads to undefined behavior.
4331
4332If the ``exact`` keyword is present, the result value of the ``udiv`` is
4333a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4334such, "((a udiv exact b) mul b) == a").
4335
4336Example:
4337""""""""
4338
4339.. code-block:: llvm
4340
Tim Northover675a0962014-06-13 14:24:23 +00004341 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004342
4343'``sdiv``' Instruction
4344^^^^^^^^^^^^^^^^^^^^^^
4345
4346Syntax:
4347"""""""
4348
4349::
4350
Tim Northover675a0962014-06-13 14:24:23 +00004351 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4352 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004353
4354Overview:
4355"""""""""
4356
4357The '``sdiv``' instruction returns the quotient of its two operands.
4358
4359Arguments:
4360""""""""""
4361
4362The two arguments to the '``sdiv``' instruction must be
4363:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4364arguments must have identical types.
4365
4366Semantics:
4367""""""""""
4368
4369The value produced is the signed integer quotient of the two operands
4370rounded towards zero.
4371
4372Note that signed integer division and unsigned integer division are
4373distinct operations; for unsigned integer division, use '``udiv``'.
4374
4375Division by zero leads to undefined behavior. Overflow also leads to
4376undefined behavior; this is a rare case, but can occur, for example, by
4377doing a 32-bit division of -2147483648 by -1.
4378
4379If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4380a :ref:`poison value <poisonvalues>` if the result would be rounded.
4381
4382Example:
4383""""""""
4384
4385.. code-block:: llvm
4386
Tim Northover675a0962014-06-13 14:24:23 +00004387 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004388
4389.. _i_fdiv:
4390
4391'``fdiv``' Instruction
4392^^^^^^^^^^^^^^^^^^^^^^
4393
4394Syntax:
4395"""""""
4396
4397::
4398
Tim Northover675a0962014-06-13 14:24:23 +00004399 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004400
4401Overview:
4402"""""""""
4403
4404The '``fdiv``' instruction returns the quotient of its two operands.
4405
4406Arguments:
4407""""""""""
4408
4409The two arguments to the '``fdiv``' instruction must be :ref:`floating
4410point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4411Both arguments must have identical types.
4412
4413Semantics:
4414""""""""""
4415
4416The value produced is the floating point quotient of the two operands.
4417This instruction can also take any number of :ref:`fast-math
4418flags <fastmath>`, which are optimization hints to enable otherwise
4419unsafe floating point optimizations:
4420
4421Example:
4422""""""""
4423
4424.. code-block:: llvm
4425
Tim Northover675a0962014-06-13 14:24:23 +00004426 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004427
4428'``urem``' Instruction
4429^^^^^^^^^^^^^^^^^^^^^^
4430
4431Syntax:
4432"""""""
4433
4434::
4435
Tim Northover675a0962014-06-13 14:24:23 +00004436 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004437
4438Overview:
4439"""""""""
4440
4441The '``urem``' instruction returns the remainder from the unsigned
4442division of its two arguments.
4443
4444Arguments:
4445""""""""""
4446
4447The two arguments to the '``urem``' instruction must be
4448:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4449arguments must have identical types.
4450
4451Semantics:
4452""""""""""
4453
4454This instruction returns the unsigned integer *remainder* of a division.
4455This instruction always performs an unsigned division to get the
4456remainder.
4457
4458Note that unsigned integer remainder and signed integer remainder are
4459distinct operations; for signed integer remainder, use '``srem``'.
4460
4461Taking the remainder of a division by zero leads to undefined behavior.
4462
4463Example:
4464""""""""
4465
4466.. code-block:: llvm
4467
Tim Northover675a0962014-06-13 14:24:23 +00004468 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004469
4470'``srem``' Instruction
4471^^^^^^^^^^^^^^^^^^^^^^
4472
4473Syntax:
4474"""""""
4475
4476::
4477
Tim Northover675a0962014-06-13 14:24:23 +00004478 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004479
4480Overview:
4481"""""""""
4482
4483The '``srem``' instruction returns the remainder from the signed
4484division of its two operands. This instruction can also take
4485:ref:`vector <t_vector>` versions of the values in which case the elements
4486must be integers.
4487
4488Arguments:
4489""""""""""
4490
4491The two arguments to the '``srem``' instruction must be
4492:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4493arguments must have identical types.
4494
4495Semantics:
4496""""""""""
4497
4498This instruction returns the *remainder* of a division (where the result
4499is either zero or has the same sign as the dividend, ``op1``), not the
4500*modulo* operator (where the result is either zero or has the same sign
4501as the divisor, ``op2``) of a value. For more information about the
4502difference, see `The Math
4503Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4504table of how this is implemented in various languages, please see
4505`Wikipedia: modulo
4506operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4507
4508Note that signed integer remainder and unsigned integer remainder are
4509distinct operations; for unsigned integer remainder, use '``urem``'.
4510
4511Taking the remainder of a division by zero leads to undefined behavior.
4512Overflow also leads to undefined behavior; this is a rare case, but can
4513occur, for example, by taking the remainder of a 32-bit division of
4514-2147483648 by -1. (The remainder doesn't actually overflow, but this
4515rule lets srem be implemented using instructions that return both the
4516result of the division and the remainder.)
4517
4518Example:
4519""""""""
4520
4521.. code-block:: llvm
4522
Tim Northover675a0962014-06-13 14:24:23 +00004523 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004524
4525.. _i_frem:
4526
4527'``frem``' Instruction
4528^^^^^^^^^^^^^^^^^^^^^^
4529
4530Syntax:
4531"""""""
4532
4533::
4534
Tim Northover675a0962014-06-13 14:24:23 +00004535 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004536
4537Overview:
4538"""""""""
4539
4540The '``frem``' instruction returns the remainder from the division of
4541its two operands.
4542
4543Arguments:
4544""""""""""
4545
4546The two arguments to the '``frem``' instruction must be :ref:`floating
4547point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4548Both arguments must have identical types.
4549
4550Semantics:
4551""""""""""
4552
4553This instruction returns the *remainder* of a division. The remainder
4554has the same sign as the dividend. This instruction can also take any
4555number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4556to enable otherwise unsafe floating point optimizations:
4557
4558Example:
4559""""""""
4560
4561.. code-block:: llvm
4562
Tim Northover675a0962014-06-13 14:24:23 +00004563 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004564
4565.. _bitwiseops:
4566
4567Bitwise Binary Operations
4568-------------------------
4569
4570Bitwise binary operators are used to do various forms of bit-twiddling
4571in a program. They are generally very efficient instructions and can
4572commonly be strength reduced from other instructions. They require two
4573operands of the same type, execute an operation on them, and produce a
4574single value. The resulting value is the same type as its operands.
4575
4576'``shl``' Instruction
4577^^^^^^^^^^^^^^^^^^^^^
4578
4579Syntax:
4580"""""""
4581
4582::
4583
Tim Northover675a0962014-06-13 14:24:23 +00004584 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4585 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4586 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4587 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004588
4589Overview:
4590"""""""""
4591
4592The '``shl``' instruction returns the first operand shifted to the left
4593a specified number of bits.
4594
4595Arguments:
4596""""""""""
4597
4598Both arguments to the '``shl``' instruction must be the same
4599:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4600'``op2``' is treated as an unsigned value.
4601
4602Semantics:
4603""""""""""
4604
4605The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4606where ``n`` is the width of the result. If ``op2`` is (statically or
4607dynamically) negative or equal to or larger than the number of bits in
4608``op1``, the result is undefined. If the arguments are vectors, each
4609vector element of ``op1`` is shifted by the corresponding shift amount
4610in ``op2``.
4611
4612If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4613value <poisonvalues>` if it shifts out any non-zero bits. If the
4614``nsw`` keyword is present, then the shift produces a :ref:`poison
4615value <poisonvalues>` if it shifts out any bits that disagree with the
4616resultant sign bit. As such, NUW/NSW have the same semantics as they
4617would if the shift were expressed as a mul instruction with the same
4618nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4619
4620Example:
4621""""""""
4622
4623.. code-block:: llvm
4624
Tim Northover675a0962014-06-13 14:24:23 +00004625 <result> = shl i32 4, %var ; yields i32: 4 << %var
4626 <result> = shl i32 4, 2 ; yields i32: 16
4627 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004628 <result> = shl i32 1, 32 ; undefined
4629 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4630
4631'``lshr``' Instruction
4632^^^^^^^^^^^^^^^^^^^^^^
4633
4634Syntax:
4635"""""""
4636
4637::
4638
Tim Northover675a0962014-06-13 14:24:23 +00004639 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4640 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004641
4642Overview:
4643"""""""""
4644
4645The '``lshr``' instruction (logical shift right) returns the first
4646operand shifted to the right a specified number of bits with zero fill.
4647
4648Arguments:
4649""""""""""
4650
4651Both arguments to the '``lshr``' instruction must be the same
4652:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4653'``op2``' is treated as an unsigned value.
4654
4655Semantics:
4656""""""""""
4657
4658This instruction always performs a logical shift right operation. The
4659most significant bits of the result will be filled with zero bits after
4660the shift. If ``op2`` is (statically or dynamically) equal to or larger
4661than the number of bits in ``op1``, the result is undefined. If the
4662arguments are vectors, each vector element of ``op1`` is shifted by the
4663corresponding shift amount in ``op2``.
4664
4665If the ``exact`` keyword is present, the result value of the ``lshr`` is
4666a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4667non-zero.
4668
4669Example:
4670""""""""
4671
4672.. code-block:: llvm
4673
Tim Northover675a0962014-06-13 14:24:23 +00004674 <result> = lshr i32 4, 1 ; yields i32:result = 2
4675 <result> = lshr i32 4, 2 ; yields i32:result = 1
4676 <result> = lshr i8 4, 3 ; yields i8:result = 0
4677 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004678 <result> = lshr i32 1, 32 ; undefined
4679 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4680
4681'``ashr``' Instruction
4682^^^^^^^^^^^^^^^^^^^^^^
4683
4684Syntax:
4685"""""""
4686
4687::
4688
Tim Northover675a0962014-06-13 14:24:23 +00004689 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
4690 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004691
4692Overview:
4693"""""""""
4694
4695The '``ashr``' instruction (arithmetic shift right) returns the first
4696operand shifted to the right a specified number of bits with sign
4697extension.
4698
4699Arguments:
4700""""""""""
4701
4702Both arguments to the '``ashr``' instruction must be the same
4703:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4704'``op2``' is treated as an unsigned value.
4705
4706Semantics:
4707""""""""""
4708
4709This instruction always performs an arithmetic shift right operation,
4710The most significant bits of the result will be filled with the sign bit
4711of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4712than the number of bits in ``op1``, the result is undefined. If the
4713arguments are vectors, each vector element of ``op1`` is shifted by the
4714corresponding shift amount in ``op2``.
4715
4716If the ``exact`` keyword is present, the result value of the ``ashr`` is
4717a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4718non-zero.
4719
4720Example:
4721""""""""
4722
4723.. code-block:: llvm
4724
Tim Northover675a0962014-06-13 14:24:23 +00004725 <result> = ashr i32 4, 1 ; yields i32:result = 2
4726 <result> = ashr i32 4, 2 ; yields i32:result = 1
4727 <result> = ashr i8 4, 3 ; yields i8:result = 0
4728 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00004729 <result> = ashr i32 1, 32 ; undefined
4730 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4731
4732'``and``' Instruction
4733^^^^^^^^^^^^^^^^^^^^^
4734
4735Syntax:
4736"""""""
4737
4738::
4739
Tim Northover675a0962014-06-13 14:24:23 +00004740 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004741
4742Overview:
4743"""""""""
4744
4745The '``and``' instruction returns the bitwise logical and of its two
4746operands.
4747
4748Arguments:
4749""""""""""
4750
4751The two arguments to the '``and``' instruction must be
4752:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4753arguments must have identical types.
4754
4755Semantics:
4756""""""""""
4757
4758The truth table used for the '``and``' instruction is:
4759
4760+-----+-----+-----+
4761| In0 | In1 | Out |
4762+-----+-----+-----+
4763| 0 | 0 | 0 |
4764+-----+-----+-----+
4765| 0 | 1 | 0 |
4766+-----+-----+-----+
4767| 1 | 0 | 0 |
4768+-----+-----+-----+
4769| 1 | 1 | 1 |
4770+-----+-----+-----+
4771
4772Example:
4773""""""""
4774
4775.. code-block:: llvm
4776
Tim Northover675a0962014-06-13 14:24:23 +00004777 <result> = and i32 4, %var ; yields i32:result = 4 & %var
4778 <result> = and i32 15, 40 ; yields i32:result = 8
4779 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00004780
4781'``or``' Instruction
4782^^^^^^^^^^^^^^^^^^^^
4783
4784Syntax:
4785"""""""
4786
4787::
4788
Tim Northover675a0962014-06-13 14:24:23 +00004789 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004790
4791Overview:
4792"""""""""
4793
4794The '``or``' instruction returns the bitwise logical inclusive or of its
4795two operands.
4796
4797Arguments:
4798""""""""""
4799
4800The two arguments to the '``or``' instruction must be
4801:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4802arguments must have identical types.
4803
4804Semantics:
4805""""""""""
4806
4807The truth table used for the '``or``' instruction is:
4808
4809+-----+-----+-----+
4810| In0 | In1 | Out |
4811+-----+-----+-----+
4812| 0 | 0 | 0 |
4813+-----+-----+-----+
4814| 0 | 1 | 1 |
4815+-----+-----+-----+
4816| 1 | 0 | 1 |
4817+-----+-----+-----+
4818| 1 | 1 | 1 |
4819+-----+-----+-----+
4820
4821Example:
4822""""""""
4823
4824::
4825
Tim Northover675a0962014-06-13 14:24:23 +00004826 <result> = or i32 4, %var ; yields i32:result = 4 | %var
4827 <result> = or i32 15, 40 ; yields i32:result = 47
4828 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00004829
4830'``xor``' Instruction
4831^^^^^^^^^^^^^^^^^^^^^
4832
4833Syntax:
4834"""""""
4835
4836::
4837
Tim Northover675a0962014-06-13 14:24:23 +00004838 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004839
4840Overview:
4841"""""""""
4842
4843The '``xor``' instruction returns the bitwise logical exclusive or of
4844its two operands. The ``xor`` is used to implement the "one's
4845complement" operation, which is the "~" operator in C.
4846
4847Arguments:
4848""""""""""
4849
4850The two arguments to the '``xor``' instruction must be
4851:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4852arguments must have identical types.
4853
4854Semantics:
4855""""""""""
4856
4857The truth table used for the '``xor``' instruction is:
4858
4859+-----+-----+-----+
4860| In0 | In1 | Out |
4861+-----+-----+-----+
4862| 0 | 0 | 0 |
4863+-----+-----+-----+
4864| 0 | 1 | 1 |
4865+-----+-----+-----+
4866| 1 | 0 | 1 |
4867+-----+-----+-----+
4868| 1 | 1 | 0 |
4869+-----+-----+-----+
4870
4871Example:
4872""""""""
4873
4874.. code-block:: llvm
4875
Tim Northover675a0962014-06-13 14:24:23 +00004876 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
4877 <result> = xor i32 15, 40 ; yields i32:result = 39
4878 <result> = xor i32 4, 8 ; yields i32:result = 12
4879 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00004880
4881Vector Operations
4882-----------------
4883
4884LLVM supports several instructions to represent vector operations in a
4885target-independent manner. These instructions cover the element-access
4886and vector-specific operations needed to process vectors effectively.
4887While LLVM does directly support these vector operations, many
4888sophisticated algorithms will want to use target-specific intrinsics to
4889take full advantage of a specific target.
4890
4891.. _i_extractelement:
4892
4893'``extractelement``' Instruction
4894^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4895
4896Syntax:
4897"""""""
4898
4899::
4900
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004901 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004902
4903Overview:
4904"""""""""
4905
4906The '``extractelement``' instruction extracts a single scalar element
4907from a vector at a specified index.
4908
4909Arguments:
4910""""""""""
4911
4912The first operand of an '``extractelement``' instruction is a value of
4913:ref:`vector <t_vector>` type. The second operand is an index indicating
4914the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004915variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004916
4917Semantics:
4918""""""""""
4919
4920The result is a scalar of the same type as the element type of ``val``.
4921Its value is the value at position ``idx`` of ``val``. If ``idx``
4922exceeds the length of ``val``, the results are undefined.
4923
4924Example:
4925""""""""
4926
4927.. code-block:: llvm
4928
4929 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4930
4931.. _i_insertelement:
4932
4933'``insertelement``' Instruction
4934^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4935
4936Syntax:
4937"""""""
4938
4939::
4940
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004941 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004942
4943Overview:
4944"""""""""
4945
4946The '``insertelement``' instruction inserts a scalar element into a
4947vector at a specified index.
4948
4949Arguments:
4950""""""""""
4951
4952The first operand of an '``insertelement``' instruction is a value of
4953:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4954type must equal the element type of the first operand. The third operand
4955is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004956index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004957
4958Semantics:
4959""""""""""
4960
4961The result is a vector of the same type as ``val``. Its element values
4962are those of ``val`` except at position ``idx``, where it gets the value
4963``elt``. If ``idx`` exceeds the length of ``val``, the results are
4964undefined.
4965
4966Example:
4967""""""""
4968
4969.. code-block:: llvm
4970
4971 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4972
4973.. _i_shufflevector:
4974
4975'``shufflevector``' Instruction
4976^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4977
4978Syntax:
4979"""""""
4980
4981::
4982
4983 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4984
4985Overview:
4986"""""""""
4987
4988The '``shufflevector``' instruction constructs a permutation of elements
4989from two input vectors, returning a vector with the same element type as
4990the input and length that is the same as the shuffle mask.
4991
4992Arguments:
4993""""""""""
4994
4995The first two operands of a '``shufflevector``' instruction are vectors
4996with the same type. The third argument is a shuffle mask whose element
4997type is always 'i32'. The result of the instruction is a vector whose
4998length is the same as the shuffle mask and whose element type is the
4999same as the element type of the first two operands.
5000
5001The shuffle mask operand is required to be a constant vector with either
5002constant integer or undef values.
5003
5004Semantics:
5005""""""""""
5006
5007The elements of the two input vectors are numbered from left to right
5008across both of the vectors. The shuffle mask operand specifies, for each
5009element of the result vector, which element of the two input vectors the
5010result element gets. The element selector may be undef (meaning "don't
5011care") and the second operand may be undef if performing a shuffle from
5012only one vector.
5013
5014Example:
5015""""""""
5016
5017.. code-block:: llvm
5018
5019 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5020 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
5021 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
5022 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
5023 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
5024 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
5025 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5026 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
5027
5028Aggregate Operations
5029--------------------
5030
5031LLVM supports several instructions for working with
5032:ref:`aggregate <t_aggregate>` values.
5033
5034.. _i_extractvalue:
5035
5036'``extractvalue``' Instruction
5037^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5038
5039Syntax:
5040"""""""
5041
5042::
5043
5044 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
5045
5046Overview:
5047"""""""""
5048
5049The '``extractvalue``' instruction extracts the value of a member field
5050from an :ref:`aggregate <t_aggregate>` value.
5051
5052Arguments:
5053""""""""""
5054
5055The first operand of an '``extractvalue``' instruction is a value of
5056:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
5057constant indices to specify which value to extract in a similar manner
5058as indices in a '``getelementptr``' instruction.
5059
5060The major differences to ``getelementptr`` indexing are:
5061
5062- Since the value being indexed is not a pointer, the first index is
5063 omitted and assumed to be zero.
5064- At least one index must be specified.
5065- Not only struct indices but also array indices must be in bounds.
5066
5067Semantics:
5068""""""""""
5069
5070The result is the value at the position in the aggregate specified by
5071the index operands.
5072
5073Example:
5074""""""""
5075
5076.. code-block:: llvm
5077
5078 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
5079
5080.. _i_insertvalue:
5081
5082'``insertvalue``' Instruction
5083^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5084
5085Syntax:
5086"""""""
5087
5088::
5089
5090 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
5091
5092Overview:
5093"""""""""
5094
5095The '``insertvalue``' instruction inserts a value into a member field in
5096an :ref:`aggregate <t_aggregate>` value.
5097
5098Arguments:
5099""""""""""
5100
5101The first operand of an '``insertvalue``' instruction is a value of
5102:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5103a first-class value to insert. The following operands are constant
5104indices indicating the position at which to insert the value in a
5105similar manner as indices in a '``extractvalue``' instruction. The value
5106to insert must have the same type as the value identified by the
5107indices.
5108
5109Semantics:
5110""""""""""
5111
5112The result is an aggregate of the same type as ``val``. Its value is
5113that of ``val`` except that the value at the position specified by the
5114indices is that of ``elt``.
5115
5116Example:
5117""""""""
5118
5119.. code-block:: llvm
5120
5121 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
5122 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00005123 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00005124
5125.. _memoryops:
5126
5127Memory Access and Addressing Operations
5128---------------------------------------
5129
5130A key design point of an SSA-based representation is how it represents
5131memory. In LLVM, no memory locations are in SSA form, which makes things
5132very simple. This section describes how to read, write, and allocate
5133memory in LLVM.
5134
5135.. _i_alloca:
5136
5137'``alloca``' Instruction
5138^^^^^^^^^^^^^^^^^^^^^^^^
5139
5140Syntax:
5141"""""""
5142
5143::
5144
Tim Northover675a0962014-06-13 14:24:23 +00005145 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00005146
5147Overview:
5148"""""""""
5149
5150The '``alloca``' instruction allocates memory on the stack frame of the
5151currently executing function, to be automatically released when this
5152function returns to its caller. The object is always allocated in the
5153generic address space (address space zero).
5154
5155Arguments:
5156""""""""""
5157
5158The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5159bytes of memory on the runtime stack, returning a pointer of the
5160appropriate type to the program. If "NumElements" is specified, it is
5161the number of elements allocated, otherwise "NumElements" is defaulted
5162to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005163allocation is guaranteed to be aligned to at least that boundary. The
5164alignment may not be greater than ``1 << 29``. If not specified, or if
5165zero, the target can choose to align the allocation on any convenient
5166boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00005167
5168'``type``' may be any sized type.
5169
5170Semantics:
5171""""""""""
5172
5173Memory is allocated; a pointer is returned. The operation is undefined
5174if there is insufficient stack space for the allocation. '``alloca``'d
5175memory is automatically released when the function returns. The
5176'``alloca``' instruction is commonly used to represent automatic
5177variables that must have an address available. When the function returns
5178(either with the ``ret`` or ``resume`` instructions), the memory is
5179reclaimed. Allocating zero bytes is legal, but the result is undefined.
5180The order in which memory is allocated (ie., which way the stack grows)
5181is not specified.
5182
5183Example:
5184""""""""
5185
5186.. code-block:: llvm
5187
Tim Northover675a0962014-06-13 14:24:23 +00005188 %ptr = alloca i32 ; yields i32*:ptr
5189 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5190 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5191 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005192
5193.. _i_load:
5194
5195'``load``' Instruction
5196^^^^^^^^^^^^^^^^^^^^^^
5197
5198Syntax:
5199"""""""
5200
5201::
5202
Philip Reamescdb72f32014-10-20 22:40:55 +00005203 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00005204 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5205 !<index> = !{ i32 1 }
5206
5207Overview:
5208"""""""""
5209
5210The '``load``' instruction is used to read from memory.
5211
5212Arguments:
5213""""""""""
5214
Eli Bendersky239a78b2013-04-17 20:17:08 +00005215The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00005216from which to load. The pointer must point to a :ref:`first
5217class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5218then the optimizer is not allowed to modify the number or order of
5219execution of this ``load`` with other :ref:`volatile
5220operations <volatile>`.
5221
5222If the ``load`` is marked as ``atomic``, it takes an extra
5223:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5224``release`` and ``acq_rel`` orderings are not valid on ``load``
5225instructions. Atomic loads produce :ref:`defined <memmodel>` results
5226when they may see multiple atomic stores. The type of the pointee must
5227be an integer type whose bit width is a power of two greater than or
5228equal to eight and less than or equal to a target-specific size limit.
5229``align`` must be explicitly specified on atomic loads, and the load has
5230undefined behavior if the alignment is not set to a value which is at
5231least the size in bytes of the pointee. ``!nontemporal`` does not have
5232any defined semantics for atomic loads.
5233
5234The optional constant ``align`` argument specifies the alignment of the
5235operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005236or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005237alignment for the target. It is the responsibility of the code emitter
5238to ensure that the alignment information is correct. Overestimating the
5239alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005240may produce less efficient code. An alignment of 1 is always safe. The
5241maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005242
5243The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005244metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005245``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005246metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005247that this load is not expected to be reused in the cache. The code
5248generator may select special instructions to save cache bandwidth, such
5249as the ``MOVNT`` instruction on x86.
5250
5251The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005252metadata name ``<index>`` corresponding to a metadata node with no
5253entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00005254instruction tells the optimizer and code generator that the address
5255operand to this load points to memory which can be assumed unchanged.
5256Being invariant does not imply that a location is dereferenceable,
5257but it does imply that once the location is known dereferenceable
5258its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00005259
Philip Reamescdb72f32014-10-20 22:40:55 +00005260The optional ``!nonnull`` metadata must reference a single
5261metadata name ``<index>`` corresponding to a metadata node with no
5262entries. The existence of the ``!nonnull`` metadata on the
5263instruction tells the optimizer that the value loaded is known to
5264never be null. This is analogous to the ''nonnull'' attribute
5265on parameters and return values. This metadata can only be applied
5266to loads of a pointer type.
5267
Sean Silvab084af42012-12-07 10:36:55 +00005268Semantics:
5269""""""""""
5270
5271The location of memory pointed to is loaded. If the value being loaded
5272is of scalar type then the number of bytes read does not exceed the
5273minimum number of bytes needed to hold all bits of the type. For
5274example, loading an ``i24`` reads at most three bytes. When loading a
5275value of a type like ``i20`` with a size that is not an integral number
5276of bytes, the result is undefined if the value was not originally
5277written using a store of the same type.
5278
5279Examples:
5280"""""""""
5281
5282.. code-block:: llvm
5283
Tim Northover675a0962014-06-13 14:24:23 +00005284 %ptr = alloca i32 ; yields i32*:ptr
5285 store i32 3, i32* %ptr ; yields void
5286 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005287
5288.. _i_store:
5289
5290'``store``' Instruction
5291^^^^^^^^^^^^^^^^^^^^^^^
5292
5293Syntax:
5294"""""""
5295
5296::
5297
Tim Northover675a0962014-06-13 14:24:23 +00005298 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5299 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005300
5301Overview:
5302"""""""""
5303
5304The '``store``' instruction is used to write to memory.
5305
5306Arguments:
5307""""""""""
5308
Eli Benderskyca380842013-04-17 17:17:20 +00005309There are two arguments to the ``store`` instruction: a value to store
5310and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005311operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005312the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005313then the optimizer is not allowed to modify the number or order of
5314execution of this ``store`` with other :ref:`volatile
5315operations <volatile>`.
5316
5317If the ``store`` is marked as ``atomic``, it takes an extra
5318:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5319``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5320instructions. Atomic loads produce :ref:`defined <memmodel>` results
5321when they may see multiple atomic stores. The type of the pointee must
5322be an integer type whose bit width is a power of two greater than or
5323equal to eight and less than or equal to a target-specific size limit.
5324``align`` must be explicitly specified on atomic stores, and the store
5325has undefined behavior if the alignment is not set to a value which is
5326at least the size in bytes of the pointee. ``!nontemporal`` does not
5327have any defined semantics for atomic stores.
5328
Eli Benderskyca380842013-04-17 17:17:20 +00005329The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005330operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005331or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005332alignment for the target. It is the responsibility of the code emitter
5333to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005334alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005335alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005336safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005337
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005338The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005339name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005340value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005341tells the optimizer and code generator that this load is not expected to
5342be reused in the cache. The code generator may select special
5343instructions to save cache bandwidth, such as the MOVNT instruction on
5344x86.
5345
5346Semantics:
5347""""""""""
5348
Eli Benderskyca380842013-04-17 17:17:20 +00005349The contents of memory are updated to contain ``<value>`` at the
5350location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005351of scalar type then the number of bytes written does not exceed the
5352minimum number of bytes needed to hold all bits of the type. For
5353example, storing an ``i24`` writes at most three bytes. When writing a
5354value of a type like ``i20`` with a size that is not an integral number
5355of bytes, it is unspecified what happens to the extra bits that do not
5356belong to the type, but they will typically be overwritten.
5357
5358Example:
5359""""""""
5360
5361.. code-block:: llvm
5362
Tim Northover675a0962014-06-13 14:24:23 +00005363 %ptr = alloca i32 ; yields i32*:ptr
5364 store i32 3, i32* %ptr ; yields void
5365 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005366
5367.. _i_fence:
5368
5369'``fence``' Instruction
5370^^^^^^^^^^^^^^^^^^^^^^^
5371
5372Syntax:
5373"""""""
5374
5375::
5376
Tim Northover675a0962014-06-13 14:24:23 +00005377 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005378
5379Overview:
5380"""""""""
5381
5382The '``fence``' instruction is used to introduce happens-before edges
5383between operations.
5384
5385Arguments:
5386""""""""""
5387
5388'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5389defines what *synchronizes-with* edges they add. They can only be given
5390``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5391
5392Semantics:
5393""""""""""
5394
5395A fence A which has (at least) ``release`` ordering semantics
5396*synchronizes with* a fence B with (at least) ``acquire`` ordering
5397semantics if and only if there exist atomic operations X and Y, both
5398operating on some atomic object M, such that A is sequenced before X, X
5399modifies M (either directly or through some side effect of a sequence
5400headed by X), Y is sequenced before B, and Y observes M. This provides a
5401*happens-before* dependency between A and B. Rather than an explicit
5402``fence``, one (but not both) of the atomic operations X or Y might
5403provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5404still *synchronize-with* the explicit ``fence`` and establish the
5405*happens-before* edge.
5406
5407A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5408``acquire`` and ``release`` semantics specified above, participates in
5409the global program order of other ``seq_cst`` operations and/or fences.
5410
5411The optional ":ref:`singlethread <singlethread>`" argument specifies
5412that the fence only synchronizes with other fences in the same thread.
5413(This is useful for interacting with signal handlers.)
5414
5415Example:
5416""""""""
5417
5418.. code-block:: llvm
5419
Tim Northover675a0962014-06-13 14:24:23 +00005420 fence acquire ; yields void
5421 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005422
5423.. _i_cmpxchg:
5424
5425'``cmpxchg``' Instruction
5426^^^^^^^^^^^^^^^^^^^^^^^^^
5427
5428Syntax:
5429"""""""
5430
5431::
5432
Tim Northover675a0962014-06-13 14:24:23 +00005433 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005434
5435Overview:
5436"""""""""
5437
5438The '``cmpxchg``' instruction is used to atomically modify memory. It
5439loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005440equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005441
5442Arguments:
5443""""""""""
5444
5445There are three arguments to the '``cmpxchg``' instruction: an address
5446to operate on, a value to compare to the value currently be at that
5447address, and a new value to place at that address if the compared values
5448are equal. The type of '<cmp>' must be an integer type whose bit width
5449is a power of two greater than or equal to eight and less than or equal
5450to a target-specific size limit. '<cmp>' and '<new>' must have the same
5451type, and the type of '<pointer>' must be a pointer to that type. If the
5452``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5453to modify the number or order of execution of this ``cmpxchg`` with
5454other :ref:`volatile operations <volatile>`.
5455
Tim Northovere94a5182014-03-11 10:48:52 +00005456The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005457``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5458must be at least ``monotonic``, the ordering constraint on failure must be no
5459stronger than that on success, and the failure ordering cannot be either
5460``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005461
5462The optional "``singlethread``" argument declares that the ``cmpxchg``
5463is only atomic with respect to code (usually signal handlers) running in
5464the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5465respect to all other code in the system.
5466
5467The pointer passed into cmpxchg must have alignment greater than or
5468equal to the size in memory of the operand.
5469
5470Semantics:
5471""""""""""
5472
Tim Northover420a2162014-06-13 14:24:07 +00005473The contents of memory at the location specified by the '``<pointer>``' operand
5474is read and compared to '``<cmp>``'; if the read value is the equal, the
5475'``<new>``' is written. The original value at the location is returned, together
5476with a flag indicating success (true) or failure (false).
5477
5478If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5479permitted: the operation may not write ``<new>`` even if the comparison
5480matched.
5481
5482If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5483if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005484
Tim Northovere94a5182014-03-11 10:48:52 +00005485A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5486identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5487load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005488
5489Example:
5490""""""""
5491
5492.. code-block:: llvm
5493
5494 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005495 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005496 br label %loop
5497
5498 loop:
5499 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5500 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005501 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005502 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5503 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005504 br i1 %success, label %done, label %loop
5505
5506 done:
5507 ...
5508
5509.. _i_atomicrmw:
5510
5511'``atomicrmw``' Instruction
5512^^^^^^^^^^^^^^^^^^^^^^^^^^^
5513
5514Syntax:
5515"""""""
5516
5517::
5518
Tim Northover675a0962014-06-13 14:24:23 +00005519 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005520
5521Overview:
5522"""""""""
5523
5524The '``atomicrmw``' instruction is used to atomically modify memory.
5525
5526Arguments:
5527""""""""""
5528
5529There are three arguments to the '``atomicrmw``' instruction: an
5530operation to apply, an address whose value to modify, an argument to the
5531operation. The operation must be one of the following keywords:
5532
5533- xchg
5534- add
5535- sub
5536- and
5537- nand
5538- or
5539- xor
5540- max
5541- min
5542- umax
5543- umin
5544
5545The type of '<value>' must be an integer type whose bit width is a power
5546of two greater than or equal to eight and less than or equal to a
5547target-specific size limit. The type of the '``<pointer>``' operand must
5548be a pointer to that type. If the ``atomicrmw`` is marked as
5549``volatile``, then the optimizer is not allowed to modify the number or
5550order of execution of this ``atomicrmw`` with other :ref:`volatile
5551operations <volatile>`.
5552
5553Semantics:
5554""""""""""
5555
5556The contents of memory at the location specified by the '``<pointer>``'
5557operand are atomically read, modified, and written back. The original
5558value at the location is returned. The modification is specified by the
5559operation argument:
5560
5561- xchg: ``*ptr = val``
5562- add: ``*ptr = *ptr + val``
5563- sub: ``*ptr = *ptr - val``
5564- and: ``*ptr = *ptr & val``
5565- nand: ``*ptr = ~(*ptr & val)``
5566- or: ``*ptr = *ptr | val``
5567- xor: ``*ptr = *ptr ^ val``
5568- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5569- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5570- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5571 comparison)
5572- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5573 comparison)
5574
5575Example:
5576""""""""
5577
5578.. code-block:: llvm
5579
Tim Northover675a0962014-06-13 14:24:23 +00005580 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005581
5582.. _i_getelementptr:
5583
5584'``getelementptr``' Instruction
5585^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5586
5587Syntax:
5588"""""""
5589
5590::
5591
5592 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5593 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5594 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5595
5596Overview:
5597"""""""""
5598
5599The '``getelementptr``' instruction is used to get the address of a
5600subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5601address calculation only and does not access memory.
5602
5603Arguments:
5604""""""""""
5605
5606The first argument is always a pointer or a vector of pointers, and
5607forms the basis of the calculation. The remaining arguments are indices
5608that indicate which of the elements of the aggregate object are indexed.
5609The interpretation of each index is dependent on the type being indexed
5610into. The first index always indexes the pointer value given as the
5611first argument, the second index indexes a value of the type pointed to
5612(not necessarily the value directly pointed to, since the first index
5613can be non-zero), etc. The first type indexed into must be a pointer
5614value, subsequent types can be arrays, vectors, and structs. Note that
5615subsequent types being indexed into can never be pointers, since that
5616would require loading the pointer before continuing calculation.
5617
5618The type of each index argument depends on the type it is indexing into.
5619When indexing into a (optionally packed) structure, only ``i32`` integer
5620**constants** are allowed (when using a vector of indices they must all
5621be the **same** ``i32`` integer constant). When indexing into an array,
5622pointer or vector, integers of any width are allowed, and they are not
5623required to be constant. These integers are treated as signed values
5624where relevant.
5625
5626For example, let's consider a C code fragment and how it gets compiled
5627to LLVM:
5628
5629.. code-block:: c
5630
5631 struct RT {
5632 char A;
5633 int B[10][20];
5634 char C;
5635 };
5636 struct ST {
5637 int X;
5638 double Y;
5639 struct RT Z;
5640 };
5641
5642 int *foo(struct ST *s) {
5643 return &s[1].Z.B[5][13];
5644 }
5645
5646The LLVM code generated by Clang is:
5647
5648.. code-block:: llvm
5649
5650 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5651 %struct.ST = type { i32, double, %struct.RT }
5652
5653 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5654 entry:
5655 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5656 ret i32* %arrayidx
5657 }
5658
5659Semantics:
5660""""""""""
5661
5662In the example above, the first index is indexing into the
5663'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5664= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5665indexes into the third element of the structure, yielding a
5666'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5667structure. The third index indexes into the second element of the
5668structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5669dimensions of the array are subscripted into, yielding an '``i32``'
5670type. The '``getelementptr``' instruction returns a pointer to this
5671element, thus computing a value of '``i32*``' type.
5672
5673Note that it is perfectly legal to index partially through a structure,
5674returning a pointer to an inner element. Because of this, the LLVM code
5675for the given testcase is equivalent to:
5676
5677.. code-block:: llvm
5678
5679 define i32* @foo(%struct.ST* %s) {
5680 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5681 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5682 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5683 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5684 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5685 ret i32* %t5
5686 }
5687
5688If the ``inbounds`` keyword is present, the result value of the
5689``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5690pointer is not an *in bounds* address of an allocated object, or if any
5691of the addresses that would be formed by successive addition of the
5692offsets implied by the indices to the base address with infinitely
5693precise signed arithmetic are not an *in bounds* address of that
5694allocated object. The *in bounds* addresses for an allocated object are
5695all the addresses that point into the object, plus the address one byte
5696past the end. In cases where the base is a vector of pointers the
5697``inbounds`` keyword applies to each of the computations element-wise.
5698
5699If the ``inbounds`` keyword is not present, the offsets are added to the
5700base address with silently-wrapping two's complement arithmetic. If the
5701offsets have a different width from the pointer, they are sign-extended
5702or truncated to the width of the pointer. The result value of the
5703``getelementptr`` may be outside the object pointed to by the base
5704pointer. The result value may not necessarily be used to access memory
5705though, even if it happens to point into allocated storage. See the
5706:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5707information.
5708
5709The getelementptr instruction is often confusing. For some more insight
5710into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5711
5712Example:
5713""""""""
5714
5715.. code-block:: llvm
5716
5717 ; yields [12 x i8]*:aptr
5718 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5719 ; yields i8*:vptr
5720 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5721 ; yields i8*:eptr
5722 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5723 ; yields i32*:iptr
5724 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5725
5726In cases where the pointer argument is a vector of pointers, each index
5727must be a vector with the same number of elements. For example:
5728
5729.. code-block:: llvm
5730
5731 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5732
5733Conversion Operations
5734---------------------
5735
5736The instructions in this category are the conversion instructions
5737(casting) which all take a single operand and a type. They perform
5738various bit conversions on the operand.
5739
5740'``trunc .. to``' Instruction
5741^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5742
5743Syntax:
5744"""""""
5745
5746::
5747
5748 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5749
5750Overview:
5751"""""""""
5752
5753The '``trunc``' instruction truncates its operand to the type ``ty2``.
5754
5755Arguments:
5756""""""""""
5757
5758The '``trunc``' instruction takes a value to trunc, and a type to trunc
5759it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5760of the same number of integers. The bit size of the ``value`` must be
5761larger than the bit size of the destination type, ``ty2``. Equal sized
5762types are not allowed.
5763
5764Semantics:
5765""""""""""
5766
5767The '``trunc``' instruction truncates the high order bits in ``value``
5768and converts the remaining bits to ``ty2``. Since the source size must
5769be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5770It will always truncate bits.
5771
5772Example:
5773""""""""
5774
5775.. code-block:: llvm
5776
5777 %X = trunc i32 257 to i8 ; yields i8:1
5778 %Y = trunc i32 123 to i1 ; yields i1:true
5779 %Z = trunc i32 122 to i1 ; yields i1:false
5780 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5781
5782'``zext .. to``' Instruction
5783^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5784
5785Syntax:
5786"""""""
5787
5788::
5789
5790 <result> = zext <ty> <value> to <ty2> ; yields ty2
5791
5792Overview:
5793"""""""""
5794
5795The '``zext``' instruction zero extends its operand to type ``ty2``.
5796
5797Arguments:
5798""""""""""
5799
5800The '``zext``' instruction takes a value to cast, and a type to cast it
5801to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5802the same number of integers. The bit size of the ``value`` must be
5803smaller than the bit size of the destination type, ``ty2``.
5804
5805Semantics:
5806""""""""""
5807
5808The ``zext`` fills the high order bits of the ``value`` with zero bits
5809until it reaches the size of the destination type, ``ty2``.
5810
5811When zero extending from i1, the result will always be either 0 or 1.
5812
5813Example:
5814""""""""
5815
5816.. code-block:: llvm
5817
5818 %X = zext i32 257 to i64 ; yields i64:257
5819 %Y = zext i1 true to i32 ; yields i32:1
5820 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5821
5822'``sext .. to``' Instruction
5823^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5824
5825Syntax:
5826"""""""
5827
5828::
5829
5830 <result> = sext <ty> <value> to <ty2> ; yields ty2
5831
5832Overview:
5833"""""""""
5834
5835The '``sext``' sign extends ``value`` to the type ``ty2``.
5836
5837Arguments:
5838""""""""""
5839
5840The '``sext``' instruction takes a value to cast, and a type to cast it
5841to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5842the same number of integers. The bit size of the ``value`` must be
5843smaller than the bit size of the destination type, ``ty2``.
5844
5845Semantics:
5846""""""""""
5847
5848The '``sext``' instruction performs a sign extension by copying the sign
5849bit (highest order bit) of the ``value`` until it reaches the bit size
5850of the type ``ty2``.
5851
5852When sign extending from i1, the extension always results in -1 or 0.
5853
5854Example:
5855""""""""
5856
5857.. code-block:: llvm
5858
5859 %X = sext i8 -1 to i16 ; yields i16 :65535
5860 %Y = sext i1 true to i32 ; yields i32:-1
5861 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5862
5863'``fptrunc .. to``' Instruction
5864^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5865
5866Syntax:
5867"""""""
5868
5869::
5870
5871 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5872
5873Overview:
5874"""""""""
5875
5876The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5877
5878Arguments:
5879""""""""""
5880
5881The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5882value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5883The size of ``value`` must be larger than the size of ``ty2``. This
5884implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5885
5886Semantics:
5887""""""""""
5888
5889The '``fptrunc``' instruction truncates a ``value`` from a larger
5890:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5891point <t_floating>` type. If the value cannot fit within the
5892destination type, ``ty2``, then the results are undefined.
5893
5894Example:
5895""""""""
5896
5897.. code-block:: llvm
5898
5899 %X = fptrunc double 123.0 to float ; yields float:123.0
5900 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5901
5902'``fpext .. to``' Instruction
5903^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5904
5905Syntax:
5906"""""""
5907
5908::
5909
5910 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5911
5912Overview:
5913"""""""""
5914
5915The '``fpext``' extends a floating point ``value`` to a larger floating
5916point value.
5917
5918Arguments:
5919""""""""""
5920
5921The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5922``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5923to. The source type must be smaller than the destination type.
5924
5925Semantics:
5926""""""""""
5927
5928The '``fpext``' instruction extends the ``value`` from a smaller
5929:ref:`floating point <t_floating>` type to a larger :ref:`floating
5930point <t_floating>` type. The ``fpext`` cannot be used to make a
5931*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5932*no-op cast* for a floating point cast.
5933
5934Example:
5935""""""""
5936
5937.. code-block:: llvm
5938
5939 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5940 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5941
5942'``fptoui .. to``' Instruction
5943^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5944
5945Syntax:
5946"""""""
5947
5948::
5949
5950 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5951
5952Overview:
5953"""""""""
5954
5955The '``fptoui``' converts a floating point ``value`` to its unsigned
5956integer equivalent of type ``ty2``.
5957
5958Arguments:
5959""""""""""
5960
5961The '``fptoui``' instruction takes a value to cast, which must be a
5962scalar or vector :ref:`floating point <t_floating>` value, and a type to
5963cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5964``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5965type with the same number of elements as ``ty``
5966
5967Semantics:
5968""""""""""
5969
5970The '``fptoui``' instruction converts its :ref:`floating
5971point <t_floating>` operand into the nearest (rounding towards zero)
5972unsigned integer value. If the value cannot fit in ``ty2``, the results
5973are undefined.
5974
5975Example:
5976""""""""
5977
5978.. code-block:: llvm
5979
5980 %X = fptoui double 123.0 to i32 ; yields i32:123
5981 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5982 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5983
5984'``fptosi .. to``' Instruction
5985^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5986
5987Syntax:
5988"""""""
5989
5990::
5991
5992 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5993
5994Overview:
5995"""""""""
5996
5997The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5998``value`` to type ``ty2``.
5999
6000Arguments:
6001""""""""""
6002
6003The '``fptosi``' instruction takes a value to cast, which must be a
6004scalar or vector :ref:`floating point <t_floating>` value, and a type to
6005cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6006``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6007type with the same number of elements as ``ty``
6008
6009Semantics:
6010""""""""""
6011
6012The '``fptosi``' instruction converts its :ref:`floating
6013point <t_floating>` operand into the nearest (rounding towards zero)
6014signed integer value. If the value cannot fit in ``ty2``, the results
6015are undefined.
6016
6017Example:
6018""""""""
6019
6020.. code-block:: llvm
6021
6022 %X = fptosi double -123.0 to i32 ; yields i32:-123
6023 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
6024 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
6025
6026'``uitofp .. to``' Instruction
6027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6028
6029Syntax:
6030"""""""
6031
6032::
6033
6034 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
6035
6036Overview:
6037"""""""""
6038
6039The '``uitofp``' instruction regards ``value`` as an unsigned integer
6040and converts that value to the ``ty2`` type.
6041
6042Arguments:
6043""""""""""
6044
6045The '``uitofp``' instruction takes a value to cast, which must be a
6046scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6047``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6048``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6049type with the same number of elements as ``ty``
6050
6051Semantics:
6052""""""""""
6053
6054The '``uitofp``' instruction interprets its operand as an unsigned
6055integer quantity and converts it to the corresponding floating point
6056value. If the value cannot fit in the floating point value, the results
6057are undefined.
6058
6059Example:
6060""""""""
6061
6062.. code-block:: llvm
6063
6064 %X = uitofp i32 257 to float ; yields float:257.0
6065 %Y = uitofp i8 -1 to double ; yields double:255.0
6066
6067'``sitofp .. to``' Instruction
6068^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6069
6070Syntax:
6071"""""""
6072
6073::
6074
6075 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
6076
6077Overview:
6078"""""""""
6079
6080The '``sitofp``' instruction regards ``value`` as a signed integer and
6081converts that value to the ``ty2`` type.
6082
6083Arguments:
6084""""""""""
6085
6086The '``sitofp``' instruction takes a value to cast, which must be a
6087scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6088``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6089``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6090type with the same number of elements as ``ty``
6091
6092Semantics:
6093""""""""""
6094
6095The '``sitofp``' instruction interprets its operand as a signed integer
6096quantity and converts it to the corresponding floating point value. If
6097the value cannot fit in the floating point value, the results are
6098undefined.
6099
6100Example:
6101""""""""
6102
6103.. code-block:: llvm
6104
6105 %X = sitofp i32 257 to float ; yields float:257.0
6106 %Y = sitofp i8 -1 to double ; yields double:-1.0
6107
6108.. _i_ptrtoint:
6109
6110'``ptrtoint .. to``' Instruction
6111^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6112
6113Syntax:
6114"""""""
6115
6116::
6117
6118 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
6119
6120Overview:
6121"""""""""
6122
6123The '``ptrtoint``' instruction converts the pointer or a vector of
6124pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6125
6126Arguments:
6127""""""""""
6128
6129The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
6130a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
6131type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6132a vector of integers type.
6133
6134Semantics:
6135""""""""""
6136
6137The '``ptrtoint``' instruction converts ``value`` to integer type
6138``ty2`` by interpreting the pointer value as an integer and either
6139truncating or zero extending that value to the size of the integer type.
6140If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6141``value`` is larger than ``ty2`` then a truncation is done. If they are
6142the same size, then nothing is done (*no-op cast*) other than a type
6143change.
6144
6145Example:
6146""""""""
6147
6148.. code-block:: llvm
6149
6150 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
6151 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
6152 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6153
6154.. _i_inttoptr:
6155
6156'``inttoptr .. to``' Instruction
6157^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6158
6159Syntax:
6160"""""""
6161
6162::
6163
6164 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
6165
6166Overview:
6167"""""""""
6168
6169The '``inttoptr``' instruction converts an integer ``value`` to a
6170pointer type, ``ty2``.
6171
6172Arguments:
6173""""""""""
6174
6175The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6176cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6177type.
6178
6179Semantics:
6180""""""""""
6181
6182The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6183applying either a zero extension or a truncation depending on the size
6184of the integer ``value``. If ``value`` is larger than the size of a
6185pointer then a truncation is done. If ``value`` is smaller than the size
6186of a pointer then a zero extension is done. If they are the same size,
6187nothing is done (*no-op cast*).
6188
6189Example:
6190""""""""
6191
6192.. code-block:: llvm
6193
6194 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6195 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6196 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6197 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6198
6199.. _i_bitcast:
6200
6201'``bitcast .. to``' Instruction
6202^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6203
6204Syntax:
6205"""""""
6206
6207::
6208
6209 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6210
6211Overview:
6212"""""""""
6213
6214The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6215changing any bits.
6216
6217Arguments:
6218""""""""""
6219
6220The '``bitcast``' instruction takes a value to cast, which must be a
6221non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006222also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6223bit sizes of ``value`` and the destination type, ``ty2``, must be
6224identical. If the source type is a pointer, the destination type must
6225also be a pointer of the same size. This instruction supports bitwise
6226conversion of vectors to integers and to vectors of other types (as
6227long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006228
6229Semantics:
6230""""""""""
6231
Matt Arsenault24b49c42013-07-31 17:49:08 +00006232The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6233is always a *no-op cast* because no bits change with this
6234conversion. The conversion is done as if the ``value`` had been stored
6235to memory and read back as type ``ty2``. Pointer (or vector of
6236pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006237pointers) types with the same address space through this instruction.
6238To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6239or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006240
6241Example:
6242""""""""
6243
6244.. code-block:: llvm
6245
6246 %X = bitcast i8 255 to i8 ; yields i8 :-1
6247 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6248 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6249 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6250
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006251.. _i_addrspacecast:
6252
6253'``addrspacecast .. to``' Instruction
6254^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6255
6256Syntax:
6257"""""""
6258
6259::
6260
6261 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6262
6263Overview:
6264"""""""""
6265
6266The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6267address space ``n`` to type ``pty2`` in address space ``m``.
6268
6269Arguments:
6270""""""""""
6271
6272The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6273to cast and a pointer type to cast it to, which must have a different
6274address space.
6275
6276Semantics:
6277""""""""""
6278
6279The '``addrspacecast``' instruction converts the pointer value
6280``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006281value modification, depending on the target and the address space
6282pair. Pointer conversions within the same address space must be
6283performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006284conversion is legal then both result and operand refer to the same memory
6285location.
6286
6287Example:
6288""""""""
6289
6290.. code-block:: llvm
6291
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006292 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6293 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6294 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006295
Sean Silvab084af42012-12-07 10:36:55 +00006296.. _otherops:
6297
6298Other Operations
6299----------------
6300
6301The instructions in this category are the "miscellaneous" instructions,
6302which defy better classification.
6303
6304.. _i_icmp:
6305
6306'``icmp``' Instruction
6307^^^^^^^^^^^^^^^^^^^^^^
6308
6309Syntax:
6310"""""""
6311
6312::
6313
Tim Northover675a0962014-06-13 14:24:23 +00006314 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006315
6316Overview:
6317"""""""""
6318
6319The '``icmp``' instruction returns a boolean value or a vector of
6320boolean values based on comparison of its two integer, integer vector,
6321pointer, or pointer vector operands.
6322
6323Arguments:
6324""""""""""
6325
6326The '``icmp``' instruction takes three operands. The first operand is
6327the condition code indicating the kind of comparison to perform. It is
6328not a value, just a keyword. The possible condition code are:
6329
6330#. ``eq``: equal
6331#. ``ne``: not equal
6332#. ``ugt``: unsigned greater than
6333#. ``uge``: unsigned greater or equal
6334#. ``ult``: unsigned less than
6335#. ``ule``: unsigned less or equal
6336#. ``sgt``: signed greater than
6337#. ``sge``: signed greater or equal
6338#. ``slt``: signed less than
6339#. ``sle``: signed less or equal
6340
6341The remaining two arguments must be :ref:`integer <t_integer>` or
6342:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6343must also be identical types.
6344
6345Semantics:
6346""""""""""
6347
6348The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6349code given as ``cond``. The comparison performed always yields either an
6350:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6351
6352#. ``eq``: yields ``true`` if the operands are equal, ``false``
6353 otherwise. No sign interpretation is necessary or performed.
6354#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6355 otherwise. No sign interpretation is necessary or performed.
6356#. ``ugt``: interprets the operands as unsigned values and yields
6357 ``true`` if ``op1`` is greater than ``op2``.
6358#. ``uge``: interprets the operands as unsigned values and yields
6359 ``true`` if ``op1`` is greater than or equal to ``op2``.
6360#. ``ult``: interprets the operands as unsigned values and yields
6361 ``true`` if ``op1`` is less than ``op2``.
6362#. ``ule``: interprets the operands as unsigned values and yields
6363 ``true`` if ``op1`` is less than or equal to ``op2``.
6364#. ``sgt``: interprets the operands as signed values and yields ``true``
6365 if ``op1`` is greater than ``op2``.
6366#. ``sge``: interprets the operands as signed values and yields ``true``
6367 if ``op1`` is greater than or equal to ``op2``.
6368#. ``slt``: interprets the operands as signed values and yields ``true``
6369 if ``op1`` is less than ``op2``.
6370#. ``sle``: interprets the operands as signed values and yields ``true``
6371 if ``op1`` is less than or equal to ``op2``.
6372
6373If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6374are compared as if they were integers.
6375
6376If the operands are integer vectors, then they are compared element by
6377element. The result is an ``i1`` vector with the same number of elements
6378as the values being compared. Otherwise, the result is an ``i1``.
6379
6380Example:
6381""""""""
6382
6383.. code-block:: llvm
6384
6385 <result> = icmp eq i32 4, 5 ; yields: result=false
6386 <result> = icmp ne float* %X, %X ; yields: result=false
6387 <result> = icmp ult i16 4, 5 ; yields: result=true
6388 <result> = icmp sgt i16 4, 5 ; yields: result=false
6389 <result> = icmp ule i16 -4, 5 ; yields: result=false
6390 <result> = icmp sge i16 4, 5 ; yields: result=false
6391
6392Note that the code generator does not yet support vector types with the
6393``icmp`` instruction.
6394
6395.. _i_fcmp:
6396
6397'``fcmp``' Instruction
6398^^^^^^^^^^^^^^^^^^^^^^
6399
6400Syntax:
6401"""""""
6402
6403::
6404
Tim Northover675a0962014-06-13 14:24:23 +00006405 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006406
6407Overview:
6408"""""""""
6409
6410The '``fcmp``' instruction returns a boolean value or vector of boolean
6411values based on comparison of its operands.
6412
6413If the operands are floating point scalars, then the result type is a
6414boolean (:ref:`i1 <t_integer>`).
6415
6416If the operands are floating point vectors, then the result type is a
6417vector of boolean with the same number of elements as the operands being
6418compared.
6419
6420Arguments:
6421""""""""""
6422
6423The '``fcmp``' instruction takes three operands. The first operand is
6424the condition code indicating the kind of comparison to perform. It is
6425not a value, just a keyword. The possible condition code are:
6426
6427#. ``false``: no comparison, always returns false
6428#. ``oeq``: ordered and equal
6429#. ``ogt``: ordered and greater than
6430#. ``oge``: ordered and greater than or equal
6431#. ``olt``: ordered and less than
6432#. ``ole``: ordered and less than or equal
6433#. ``one``: ordered and not equal
6434#. ``ord``: ordered (no nans)
6435#. ``ueq``: unordered or equal
6436#. ``ugt``: unordered or greater than
6437#. ``uge``: unordered or greater than or equal
6438#. ``ult``: unordered or less than
6439#. ``ule``: unordered or less than or equal
6440#. ``une``: unordered or not equal
6441#. ``uno``: unordered (either nans)
6442#. ``true``: no comparison, always returns true
6443
6444*Ordered* means that neither operand is a QNAN while *unordered* means
6445that either operand may be a QNAN.
6446
6447Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6448point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6449type. They must have identical types.
6450
6451Semantics:
6452""""""""""
6453
6454The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6455condition code given as ``cond``. If the operands are vectors, then the
6456vectors are compared element by element. Each comparison performed
6457always yields an :ref:`i1 <t_integer>` result, as follows:
6458
6459#. ``false``: always yields ``false``, regardless of operands.
6460#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6461 is equal to ``op2``.
6462#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6463 is greater than ``op2``.
6464#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6465 is greater than or equal to ``op2``.
6466#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6467 is less than ``op2``.
6468#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6469 is less than or equal to ``op2``.
6470#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6471 is not equal to ``op2``.
6472#. ``ord``: yields ``true`` if both operands are not a QNAN.
6473#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6474 equal to ``op2``.
6475#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6476 greater than ``op2``.
6477#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6478 greater than or equal to ``op2``.
6479#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6480 less than ``op2``.
6481#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6482 less than or equal to ``op2``.
6483#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6484 not equal to ``op2``.
6485#. ``uno``: yields ``true`` if either operand is a QNAN.
6486#. ``true``: always yields ``true``, regardless of operands.
6487
6488Example:
6489""""""""
6490
6491.. code-block:: llvm
6492
6493 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6494 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6495 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6496 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6497
6498Note that the code generator does not yet support vector types with the
6499``fcmp`` instruction.
6500
6501.. _i_phi:
6502
6503'``phi``' Instruction
6504^^^^^^^^^^^^^^^^^^^^^
6505
6506Syntax:
6507"""""""
6508
6509::
6510
6511 <result> = phi <ty> [ <val0>, <label0>], ...
6512
6513Overview:
6514"""""""""
6515
6516The '``phi``' instruction is used to implement the φ node in the SSA
6517graph representing the function.
6518
6519Arguments:
6520""""""""""
6521
6522The type of the incoming values is specified with the first type field.
6523After this, the '``phi``' instruction takes a list of pairs as
6524arguments, with one pair for each predecessor basic block of the current
6525block. Only values of :ref:`first class <t_firstclass>` type may be used as
6526the value arguments to the PHI node. Only labels may be used as the
6527label arguments.
6528
6529There must be no non-phi instructions between the start of a basic block
6530and the PHI instructions: i.e. PHI instructions must be first in a basic
6531block.
6532
6533For the purposes of the SSA form, the use of each incoming value is
6534deemed to occur on the edge from the corresponding predecessor block to
6535the current block (but after any definition of an '``invoke``'
6536instruction's return value on the same edge).
6537
6538Semantics:
6539""""""""""
6540
6541At runtime, the '``phi``' instruction logically takes on the value
6542specified by the pair corresponding to the predecessor basic block that
6543executed just prior to the current block.
6544
6545Example:
6546""""""""
6547
6548.. code-block:: llvm
6549
6550 Loop: ; Infinite loop that counts from 0 on up...
6551 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6552 %nextindvar = add i32 %indvar, 1
6553 br label %Loop
6554
6555.. _i_select:
6556
6557'``select``' Instruction
6558^^^^^^^^^^^^^^^^^^^^^^^^
6559
6560Syntax:
6561"""""""
6562
6563::
6564
6565 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6566
6567 selty is either i1 or {<N x i1>}
6568
6569Overview:
6570"""""""""
6571
6572The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006573condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006574
6575Arguments:
6576""""""""""
6577
6578The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6579values indicating the condition, and two values of the same :ref:`first
6580class <t_firstclass>` type. If the val1/val2 are vectors and the
6581condition is a scalar, then entire vectors are selected, not individual
6582elements.
6583
6584Semantics:
6585""""""""""
6586
6587If the condition is an i1 and it evaluates to 1, the instruction returns
6588the first value argument; otherwise, it returns the second value
6589argument.
6590
6591If the condition is a vector of i1, then the value arguments must be
6592vectors of the same size, and the selection is done element by element.
6593
6594Example:
6595""""""""
6596
6597.. code-block:: llvm
6598
6599 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6600
6601.. _i_call:
6602
6603'``call``' Instruction
6604^^^^^^^^^^^^^^^^^^^^^^
6605
6606Syntax:
6607"""""""
6608
6609::
6610
Reid Kleckner5772b772014-04-24 20:14:34 +00006611 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006612
6613Overview:
6614"""""""""
6615
6616The '``call``' instruction represents a simple function call.
6617
6618Arguments:
6619""""""""""
6620
6621This instruction requires several arguments:
6622
Reid Kleckner5772b772014-04-24 20:14:34 +00006623#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6624 should perform tail call optimization. The ``tail`` marker is a hint that
6625 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6626 means that the call must be tail call optimized in order for the program to
6627 be correct. The ``musttail`` marker provides these guarantees:
6628
6629 #. The call will not cause unbounded stack growth if it is part of a
6630 recursive cycle in the call graph.
6631 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6632 forwarded in place.
6633
6634 Both markers imply that the callee does not access allocas or varargs from
6635 the caller. Calls marked ``musttail`` must obey the following additional
6636 rules:
6637
6638 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6639 or a pointer bitcast followed by a ret instruction.
6640 - The ret instruction must return the (possibly bitcasted) value
6641 produced by the call or void.
6642 - The caller and callee prototypes must match. Pointer types of
6643 parameters or return types may differ in pointee type, but not
6644 in address space.
6645 - The calling conventions of the caller and callee must match.
6646 - All ABI-impacting function attributes, such as sret, byval, inreg,
6647 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00006648 - The callee must be varargs iff the caller is varargs. Bitcasting a
6649 non-varargs function to the appropriate varargs type is legal so
6650 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00006651
6652 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6653 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006654
6655 - Caller and callee both have the calling convention ``fastcc``.
6656 - The call is in tail position (ret immediately follows call and ret
6657 uses value of call or is void).
6658 - Option ``-tailcallopt`` is enabled, or
6659 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00006660 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00006661 met. <CodeGenerator.html#tailcallopt>`_
6662
6663#. The optional "cconv" marker indicates which :ref:`calling
6664 convention <callingconv>` the call should use. If none is
6665 specified, the call defaults to using C calling conventions. The
6666 calling convention of the call must match the calling convention of
6667 the target function, or else the behavior is undefined.
6668#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6669 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6670 are valid here.
6671#. '``ty``': the type of the call instruction itself which is also the
6672 type of the return value. Functions that return no value are marked
6673 ``void``.
6674#. '``fnty``': shall be the signature of the pointer to function value
6675 being invoked. The argument types must match the types implied by
6676 this signature. This type can be omitted if the function is not
6677 varargs and if the function type does not return a pointer to a
6678 function.
6679#. '``fnptrval``': An LLVM value containing a pointer to a function to
6680 be invoked. In most cases, this is a direct function invocation, but
6681 indirect ``call``'s are just as possible, calling an arbitrary pointer
6682 to function value.
6683#. '``function args``': argument list whose types match the function
6684 signature argument types and parameter attributes. All arguments must
6685 be of :ref:`first class <t_firstclass>` type. If the function signature
6686 indicates the function accepts a variable number of arguments, the
6687 extra arguments can be specified.
6688#. The optional :ref:`function attributes <fnattrs>` list. Only
6689 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6690 attributes are valid here.
6691
6692Semantics:
6693""""""""""
6694
6695The '``call``' instruction is used to cause control flow to transfer to
6696a specified function, with its incoming arguments bound to the specified
6697values. Upon a '``ret``' instruction in the called function, control
6698flow continues with the instruction after the function call, and the
6699return value of the function is bound to the result argument.
6700
6701Example:
6702""""""""
6703
6704.. code-block:: llvm
6705
6706 %retval = call i32 @test(i32 %argc)
6707 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6708 %X = tail call i32 @foo() ; yields i32
6709 %Y = tail call fastcc i32 @foo() ; yields i32
6710 call void %foo(i8 97 signext)
6711
6712 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00006713 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00006714 %gr = extractvalue %struct.A %r, 0 ; yields i32
6715 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6716 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6717 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6718
6719llvm treats calls to some functions with names and arguments that match
6720the standard C99 library as being the C99 library functions, and may
6721perform optimizations or generate code for them under that assumption.
6722This is something we'd like to change in the future to provide better
6723support for freestanding environments and non-C-based languages.
6724
6725.. _i_va_arg:
6726
6727'``va_arg``' Instruction
6728^^^^^^^^^^^^^^^^^^^^^^^^
6729
6730Syntax:
6731"""""""
6732
6733::
6734
6735 <resultval> = va_arg <va_list*> <arglist>, <argty>
6736
6737Overview:
6738"""""""""
6739
6740The '``va_arg``' instruction is used to access arguments passed through
6741the "variable argument" area of a function call. It is used to implement
6742the ``va_arg`` macro in C.
6743
6744Arguments:
6745""""""""""
6746
6747This instruction takes a ``va_list*`` value and the type of the
6748argument. It returns a value of the specified argument type and
6749increments the ``va_list`` to point to the next argument. The actual
6750type of ``va_list`` is target specific.
6751
6752Semantics:
6753""""""""""
6754
6755The '``va_arg``' instruction loads an argument of the specified type
6756from the specified ``va_list`` and causes the ``va_list`` to point to
6757the next argument. For more information, see the variable argument
6758handling :ref:`Intrinsic Functions <int_varargs>`.
6759
6760It is legal for this instruction to be called in a function which does
6761not take a variable number of arguments, for example, the ``vfprintf``
6762function.
6763
6764``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6765function <intrinsics>` because it takes a type as an argument.
6766
6767Example:
6768""""""""
6769
6770See the :ref:`variable argument processing <int_varargs>` section.
6771
6772Note that the code generator does not yet fully support va\_arg on many
6773targets. Also, it does not currently support va\_arg with aggregate
6774types on any target.
6775
6776.. _i_landingpad:
6777
6778'``landingpad``' Instruction
6779^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6780
6781Syntax:
6782"""""""
6783
6784::
6785
6786 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6787 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6788
6789 <clause> := catch <type> <value>
6790 <clause> := filter <array constant type> <array constant>
6791
6792Overview:
6793"""""""""
6794
6795The '``landingpad``' instruction is used by `LLVM's exception handling
6796system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006797is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006798code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6799defines values supplied by the personality function (``pers_fn``) upon
6800re-entry to the function. The ``resultval`` has the type ``resultty``.
6801
6802Arguments:
6803""""""""""
6804
6805This instruction takes a ``pers_fn`` value. This is the personality
6806function associated with the unwinding mechanism. The optional
6807``cleanup`` flag indicates that the landing pad block is a cleanup.
6808
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006809A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006810contains the global variable representing the "type" that may be caught
6811or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6812clause takes an array constant as its argument. Use
6813"``[0 x i8**] undef``" for a filter which cannot throw. The
6814'``landingpad``' instruction must contain *at least* one ``clause`` or
6815the ``cleanup`` flag.
6816
6817Semantics:
6818""""""""""
6819
6820The '``landingpad``' instruction defines the values which are set by the
6821personality function (``pers_fn``) upon re-entry to the function, and
6822therefore the "result type" of the ``landingpad`` instruction. As with
6823calling conventions, how the personality function results are
6824represented in LLVM IR is target specific.
6825
6826The clauses are applied in order from top to bottom. If two
6827``landingpad`` instructions are merged together through inlining, the
6828clauses from the calling function are appended to the list of clauses.
6829When the call stack is being unwound due to an exception being thrown,
6830the exception is compared against each ``clause`` in turn. If it doesn't
6831match any of the clauses, and the ``cleanup`` flag is not set, then
6832unwinding continues further up the call stack.
6833
6834The ``landingpad`` instruction has several restrictions:
6835
6836- A landing pad block is a basic block which is the unwind destination
6837 of an '``invoke``' instruction.
6838- A landing pad block must have a '``landingpad``' instruction as its
6839 first non-PHI instruction.
6840- There can be only one '``landingpad``' instruction within the landing
6841 pad block.
6842- A basic block that is not a landing pad block may not include a
6843 '``landingpad``' instruction.
6844- All '``landingpad``' instructions in a function must have the same
6845 personality function.
6846
6847Example:
6848""""""""
6849
6850.. code-block:: llvm
6851
6852 ;; A landing pad which can catch an integer.
6853 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6854 catch i8** @_ZTIi
6855 ;; A landing pad that is a cleanup.
6856 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6857 cleanup
6858 ;; A landing pad which can catch an integer and can only throw a double.
6859 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6860 catch i8** @_ZTIi
6861 filter [1 x i8**] [@_ZTId]
6862
6863.. _intrinsics:
6864
6865Intrinsic Functions
6866===================
6867
6868LLVM supports the notion of an "intrinsic function". These functions
6869have well known names and semantics and are required to follow certain
6870restrictions. Overall, these intrinsics represent an extension mechanism
6871for the LLVM language that does not require changing all of the
6872transformations in LLVM when adding to the language (or the bitcode
6873reader/writer, the parser, etc...).
6874
6875Intrinsic function names must all start with an "``llvm.``" prefix. This
6876prefix is reserved in LLVM for intrinsic names; thus, function names may
6877not begin with this prefix. Intrinsic functions must always be external
6878functions: you cannot define the body of intrinsic functions. Intrinsic
6879functions may only be used in call or invoke instructions: it is illegal
6880to take the address of an intrinsic function. Additionally, because
6881intrinsic functions are part of the LLVM language, it is required if any
6882are added that they be documented here.
6883
6884Some intrinsic functions can be overloaded, i.e., the intrinsic
6885represents a family of functions that perform the same operation but on
6886different data types. Because LLVM can represent over 8 million
6887different integer types, overloading is used commonly to allow an
6888intrinsic function to operate on any integer type. One or more of the
6889argument types or the result type can be overloaded to accept any
6890integer type. Argument types may also be defined as exactly matching a
6891previous argument's type or the result type. This allows an intrinsic
6892function which accepts multiple arguments, but needs all of them to be
6893of the same type, to only be overloaded with respect to a single
6894argument or the result.
6895
6896Overloaded intrinsics will have the names of its overloaded argument
6897types encoded into its function name, each preceded by a period. Only
6898those types which are overloaded result in a name suffix. Arguments
6899whose type is matched against another type do not. For example, the
6900``llvm.ctpop`` function can take an integer of any width and returns an
6901integer of exactly the same integer width. This leads to a family of
6902functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6903``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6904overloaded, and only one type suffix is required. Because the argument's
6905type is matched against the return type, it does not require its own
6906name suffix.
6907
6908To learn how to add an intrinsic function, please see the `Extending
6909LLVM Guide <ExtendingLLVM.html>`_.
6910
6911.. _int_varargs:
6912
6913Variable Argument Handling Intrinsics
6914-------------------------------------
6915
6916Variable argument support is defined in LLVM with the
6917:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6918functions. These functions are related to the similarly named macros
6919defined in the ``<stdarg.h>`` header file.
6920
6921All of these functions operate on arguments that use a target-specific
6922value type "``va_list``". The LLVM assembly language reference manual
6923does not define what this type is, so all transformations should be
6924prepared to handle these functions regardless of the type used.
6925
6926This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6927variable argument handling intrinsic functions are used.
6928
6929.. code-block:: llvm
6930
Tim Northoverab60bb92014-11-02 01:21:51 +00006931 ; This struct is different for every platform. For most platforms,
6932 ; it is merely an i8*.
6933 %struct.va_list = type { i8* }
6934
6935 ; For Unix x86_64 platforms, va_list is the following struct:
6936 ; %struct.va_list = type { i32, i32, i8*, i8* }
6937
Sean Silvab084af42012-12-07 10:36:55 +00006938 define i32 @test(i32 %X, ...) {
6939 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00006940 %ap = alloca %struct.va_list
6941 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00006942 call void @llvm.va_start(i8* %ap2)
6943
6944 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00006945 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00006946
6947 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6948 %aq = alloca i8*
6949 %aq2 = bitcast i8** %aq to i8*
6950 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6951 call void @llvm.va_end(i8* %aq2)
6952
6953 ; Stop processing of arguments.
6954 call void @llvm.va_end(i8* %ap2)
6955 ret i32 %tmp
6956 }
6957
6958 declare void @llvm.va_start(i8*)
6959 declare void @llvm.va_copy(i8*, i8*)
6960 declare void @llvm.va_end(i8*)
6961
6962.. _int_va_start:
6963
6964'``llvm.va_start``' Intrinsic
6965^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6966
6967Syntax:
6968"""""""
6969
6970::
6971
Nick Lewycky04f6de02013-09-11 22:04:52 +00006972 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006973
6974Overview:
6975"""""""""
6976
6977The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6978subsequent use by ``va_arg``.
6979
6980Arguments:
6981""""""""""
6982
6983The argument is a pointer to a ``va_list`` element to initialize.
6984
6985Semantics:
6986""""""""""
6987
6988The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6989available in C. In a target-dependent way, it initializes the
6990``va_list`` element to which the argument points, so that the next call
6991to ``va_arg`` will produce the first variable argument passed to the
6992function. Unlike the C ``va_start`` macro, this intrinsic does not need
6993to know the last argument of the function as the compiler can figure
6994that out.
6995
6996'``llvm.va_end``' Intrinsic
6997^^^^^^^^^^^^^^^^^^^^^^^^^^^
6998
6999Syntax:
7000"""""""
7001
7002::
7003
7004 declare void @llvm.va_end(i8* <arglist>)
7005
7006Overview:
7007"""""""""
7008
7009The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
7010initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
7011
7012Arguments:
7013""""""""""
7014
7015The argument is a pointer to a ``va_list`` to destroy.
7016
7017Semantics:
7018""""""""""
7019
7020The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
7021available in C. In a target-dependent way, it destroys the ``va_list``
7022element to which the argument points. Calls to
7023:ref:`llvm.va_start <int_va_start>` and
7024:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
7025``llvm.va_end``.
7026
7027.. _int_va_copy:
7028
7029'``llvm.va_copy``' Intrinsic
7030^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7031
7032Syntax:
7033"""""""
7034
7035::
7036
7037 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
7038
7039Overview:
7040"""""""""
7041
7042The '``llvm.va_copy``' intrinsic copies the current argument position
7043from the source argument list to the destination argument list.
7044
7045Arguments:
7046""""""""""
7047
7048The first argument is a pointer to a ``va_list`` element to initialize.
7049The second argument is a pointer to a ``va_list`` element to copy from.
7050
7051Semantics:
7052""""""""""
7053
7054The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
7055available in C. In a target-dependent way, it copies the source
7056``va_list`` element into the destination ``va_list`` element. This
7057intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
7058arbitrarily complex and require, for example, memory allocation.
7059
7060Accurate Garbage Collection Intrinsics
7061--------------------------------------
7062
7063LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
7064(GC) requires the implementation and generation of these intrinsics.
7065These intrinsics allow identification of :ref:`GC roots on the
7066stack <int_gcroot>`, as well as garbage collector implementations that
7067require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
7068Front-ends for type-safe garbage collected languages should generate
7069these intrinsics to make use of the LLVM garbage collectors. For more
7070details, see `Accurate Garbage Collection with
7071LLVM <GarbageCollection.html>`_.
7072
7073The garbage collection intrinsics only operate on objects in the generic
7074address space (address space zero).
7075
7076.. _int_gcroot:
7077
7078'``llvm.gcroot``' Intrinsic
7079^^^^^^^^^^^^^^^^^^^^^^^^^^^
7080
7081Syntax:
7082"""""""
7083
7084::
7085
7086 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
7087
7088Overview:
7089"""""""""
7090
7091The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
7092the code generator, and allows some metadata to be associated with it.
7093
7094Arguments:
7095""""""""""
7096
7097The first argument specifies the address of a stack object that contains
7098the root pointer. The second pointer (which must be either a constant or
7099a global value address) contains the meta-data to be associated with the
7100root.
7101
7102Semantics:
7103""""""""""
7104
7105At runtime, a call to this intrinsic stores a null pointer into the
7106"ptrloc" location. At compile-time, the code generator generates
7107information to allow the runtime to find the pointer at GC safe points.
7108The '``llvm.gcroot``' intrinsic may only be used in a function which
7109:ref:`specifies a GC algorithm <gc>`.
7110
7111.. _int_gcread:
7112
7113'``llvm.gcread``' Intrinsic
7114^^^^^^^^^^^^^^^^^^^^^^^^^^^
7115
7116Syntax:
7117"""""""
7118
7119::
7120
7121 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7122
7123Overview:
7124"""""""""
7125
7126The '``llvm.gcread``' intrinsic identifies reads of references from heap
7127locations, allowing garbage collector implementations that require read
7128barriers.
7129
7130Arguments:
7131""""""""""
7132
7133The second argument is the address to read from, which should be an
7134address allocated from the garbage collector. The first object is a
7135pointer to the start of the referenced object, if needed by the language
7136runtime (otherwise null).
7137
7138Semantics:
7139""""""""""
7140
7141The '``llvm.gcread``' intrinsic has the same semantics as a load
7142instruction, but may be replaced with substantially more complex code by
7143the garbage collector runtime, as needed. The '``llvm.gcread``'
7144intrinsic may only be used in a function which :ref:`specifies a GC
7145algorithm <gc>`.
7146
7147.. _int_gcwrite:
7148
7149'``llvm.gcwrite``' Intrinsic
7150^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7151
7152Syntax:
7153"""""""
7154
7155::
7156
7157 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7158
7159Overview:
7160"""""""""
7161
7162The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7163locations, allowing garbage collector implementations that require write
7164barriers (such as generational or reference counting collectors).
7165
7166Arguments:
7167""""""""""
7168
7169The first argument is the reference to store, the second is the start of
7170the object to store it to, and the third is the address of the field of
7171Obj to store to. If the runtime does not require a pointer to the
7172object, Obj may be null.
7173
7174Semantics:
7175""""""""""
7176
7177The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7178instruction, but may be replaced with substantially more complex code by
7179the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7180intrinsic may only be used in a function which :ref:`specifies a GC
7181algorithm <gc>`.
7182
7183Code Generator Intrinsics
7184-------------------------
7185
7186These intrinsics are provided by LLVM to expose special features that
7187may only be implemented with code generator support.
7188
7189'``llvm.returnaddress``' Intrinsic
7190^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7191
7192Syntax:
7193"""""""
7194
7195::
7196
7197 declare i8 *@llvm.returnaddress(i32 <level>)
7198
7199Overview:
7200"""""""""
7201
7202The '``llvm.returnaddress``' intrinsic attempts to compute a
7203target-specific value indicating the return address of the current
7204function or one of its callers.
7205
7206Arguments:
7207""""""""""
7208
7209The argument to this intrinsic indicates which function to return the
7210address for. Zero indicates the calling function, one indicates its
7211caller, etc. The argument is **required** to be a constant integer
7212value.
7213
7214Semantics:
7215""""""""""
7216
7217The '``llvm.returnaddress``' intrinsic either returns a pointer
7218indicating the return address of the specified call frame, or zero if it
7219cannot be identified. The value returned by this intrinsic is likely to
7220be incorrect or 0 for arguments other than zero, so it should only be
7221used for debugging purposes.
7222
7223Note that calling this intrinsic does not prevent function inlining or
7224other aggressive transformations, so the value returned may not be that
7225of the obvious source-language caller.
7226
7227'``llvm.frameaddress``' Intrinsic
7228^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7229
7230Syntax:
7231"""""""
7232
7233::
7234
7235 declare i8* @llvm.frameaddress(i32 <level>)
7236
7237Overview:
7238"""""""""
7239
7240The '``llvm.frameaddress``' intrinsic attempts to return the
7241target-specific frame pointer value for the specified stack frame.
7242
7243Arguments:
7244""""""""""
7245
7246The argument to this intrinsic indicates which function to return the
7247frame pointer for. Zero indicates the calling function, one indicates
7248its caller, etc. The argument is **required** to be a constant integer
7249value.
7250
7251Semantics:
7252""""""""""
7253
7254The '``llvm.frameaddress``' intrinsic either returns a pointer
7255indicating the frame address of the specified call frame, or zero if it
7256cannot be identified. The value returned by this intrinsic is likely to
7257be incorrect or 0 for arguments other than zero, so it should only be
7258used for debugging purposes.
7259
7260Note that calling this intrinsic does not prevent function inlining or
7261other aggressive transformations, so the value returned may not be that
7262of the obvious source-language caller.
7263
Renato Golinc7aea402014-05-06 16:51:25 +00007264.. _int_read_register:
7265.. _int_write_register:
7266
7267'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7269
7270Syntax:
7271"""""""
7272
7273::
7274
7275 declare i32 @llvm.read_register.i32(metadata)
7276 declare i64 @llvm.read_register.i64(metadata)
7277 declare void @llvm.write_register.i32(metadata, i32 @value)
7278 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00007279 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00007280
7281Overview:
7282"""""""""
7283
7284The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7285provides access to the named register. The register must be valid on
7286the architecture being compiled to. The type needs to be compatible
7287with the register being read.
7288
7289Semantics:
7290""""""""""
7291
7292The '``llvm.read_register``' intrinsic returns the current value of the
7293register, where possible. The '``llvm.write_register``' intrinsic sets
7294the current value of the register, where possible.
7295
7296This is useful to implement named register global variables that need
7297to always be mapped to a specific register, as is common practice on
7298bare-metal programs including OS kernels.
7299
7300The compiler doesn't check for register availability or use of the used
7301register in surrounding code, including inline assembly. Because of that,
7302allocatable registers are not supported.
7303
7304Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007305architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007306work is needed to support other registers and even more so, allocatable
7307registers.
7308
Sean Silvab084af42012-12-07 10:36:55 +00007309.. _int_stacksave:
7310
7311'``llvm.stacksave``' Intrinsic
7312^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7313
7314Syntax:
7315"""""""
7316
7317::
7318
7319 declare i8* @llvm.stacksave()
7320
7321Overview:
7322"""""""""
7323
7324The '``llvm.stacksave``' intrinsic is used to remember the current state
7325of the function stack, for use with
7326:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7327implementing language features like scoped automatic variable sized
7328arrays in C99.
7329
7330Semantics:
7331""""""""""
7332
7333This intrinsic returns a opaque pointer value that can be passed to
7334:ref:`llvm.stackrestore <int_stackrestore>`. When an
7335``llvm.stackrestore`` intrinsic is executed with a value saved from
7336``llvm.stacksave``, it effectively restores the state of the stack to
7337the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7338practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7339were allocated after the ``llvm.stacksave`` was executed.
7340
7341.. _int_stackrestore:
7342
7343'``llvm.stackrestore``' Intrinsic
7344^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7345
7346Syntax:
7347"""""""
7348
7349::
7350
7351 declare void @llvm.stackrestore(i8* %ptr)
7352
7353Overview:
7354"""""""""
7355
7356The '``llvm.stackrestore``' intrinsic is used to restore the state of
7357the function stack to the state it was in when the corresponding
7358:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7359useful for implementing language features like scoped automatic variable
7360sized arrays in C99.
7361
7362Semantics:
7363""""""""""
7364
7365See the description for :ref:`llvm.stacksave <int_stacksave>`.
7366
7367'``llvm.prefetch``' Intrinsic
7368^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7369
7370Syntax:
7371"""""""
7372
7373::
7374
7375 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7376
7377Overview:
7378"""""""""
7379
7380The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7381insert a prefetch instruction if supported; otherwise, it is a noop.
7382Prefetches have no effect on the behavior of the program but can change
7383its performance characteristics.
7384
7385Arguments:
7386""""""""""
7387
7388``address`` is the address to be prefetched, ``rw`` is the specifier
7389determining if the fetch should be for a read (0) or write (1), and
7390``locality`` is a temporal locality specifier ranging from (0) - no
7391locality, to (3) - extremely local keep in cache. The ``cache type``
7392specifies whether the prefetch is performed on the data (1) or
7393instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7394arguments must be constant integers.
7395
7396Semantics:
7397""""""""""
7398
7399This intrinsic does not modify the behavior of the program. In
7400particular, prefetches cannot trap and do not produce a value. On
7401targets that support this intrinsic, the prefetch can provide hints to
7402the processor cache for better performance.
7403
7404'``llvm.pcmarker``' Intrinsic
7405^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7406
7407Syntax:
7408"""""""
7409
7410::
7411
7412 declare void @llvm.pcmarker(i32 <id>)
7413
7414Overview:
7415"""""""""
7416
7417The '``llvm.pcmarker``' intrinsic is a method to export a Program
7418Counter (PC) in a region of code to simulators and other tools. The
7419method is target specific, but it is expected that the marker will use
7420exported symbols to transmit the PC of the marker. The marker makes no
7421guarantees that it will remain with any specific instruction after
7422optimizations. It is possible that the presence of a marker will inhibit
7423optimizations. The intended use is to be inserted after optimizations to
7424allow correlations of simulation runs.
7425
7426Arguments:
7427""""""""""
7428
7429``id`` is a numerical id identifying the marker.
7430
7431Semantics:
7432""""""""""
7433
7434This intrinsic does not modify the behavior of the program. Backends
7435that do not support this intrinsic may ignore it.
7436
7437'``llvm.readcyclecounter``' Intrinsic
7438^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7439
7440Syntax:
7441"""""""
7442
7443::
7444
7445 declare i64 @llvm.readcyclecounter()
7446
7447Overview:
7448"""""""""
7449
7450The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7451counter register (or similar low latency, high accuracy clocks) on those
7452targets that support it. On X86, it should map to RDTSC. On Alpha, it
7453should map to RPCC. As the backing counters overflow quickly (on the
7454order of 9 seconds on alpha), this should only be used for small
7455timings.
7456
7457Semantics:
7458""""""""""
7459
7460When directly supported, reading the cycle counter should not modify any
7461memory. Implementations are allowed to either return a application
7462specific value or a system wide value. On backends without support, this
7463is lowered to a constant 0.
7464
Tim Northoverbc933082013-05-23 19:11:20 +00007465Note that runtime support may be conditional on the privilege-level code is
7466running at and the host platform.
7467
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007468'``llvm.clear_cache``' Intrinsic
7469^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7470
7471Syntax:
7472"""""""
7473
7474::
7475
7476 declare void @llvm.clear_cache(i8*, i8*)
7477
7478Overview:
7479"""""""""
7480
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007481The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7482in the specified range to the execution unit of the processor. On
7483targets with non-unified instruction and data cache, the implementation
7484flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007485
7486Semantics:
7487""""""""""
7488
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007489On platforms with coherent instruction and data caches (e.g. x86), this
7490intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007491cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007492instructions or a system call, if cache flushing requires special
7493privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007494
Sean Silvad02bf3e2014-04-07 22:29:53 +00007495The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007496time library.
Renato Golin93010e62014-03-26 14:01:32 +00007497
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007498This instrinsic does *not* empty the instruction pipeline. Modifications
7499of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007500
Justin Bogner61ba2e32014-12-08 18:02:35 +00007501'``llvm.instrprof_increment``' Intrinsic
7502^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7503
7504Syntax:
7505"""""""
7506
7507::
7508
7509 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
7510 i32 <num-counters>, i32 <index>)
7511
7512Overview:
7513"""""""""
7514
7515The '``llvm.instrprof_increment``' intrinsic can be emitted by a
7516frontend for use with instrumentation based profiling. These will be
7517lowered by the ``-instrprof`` pass to generate execution counts of a
7518program at runtime.
7519
7520Arguments:
7521""""""""""
7522
7523The first argument is a pointer to a global variable containing the
7524name of the entity being instrumented. This should generally be the
7525(mangled) function name for a set of counters.
7526
7527The second argument is a hash value that can be used by the consumer
7528of the profile data to detect changes to the instrumented source, and
7529the third is the number of counters associated with ``name``. It is an
7530error if ``hash`` or ``num-counters`` differ between two instances of
7531``instrprof_increment`` that refer to the same name.
7532
7533The last argument refers to which of the counters for ``name`` should
7534be incremented. It should be a value between 0 and ``num-counters``.
7535
7536Semantics:
7537""""""""""
7538
7539This intrinsic represents an increment of a profiling counter. It will
7540cause the ``-instrprof`` pass to generate the appropriate data
7541structures and the code to increment the appropriate value, in a
7542format that can be written out by a compiler runtime and consumed via
7543the ``llvm-profdata`` tool.
7544
Sean Silvab084af42012-12-07 10:36:55 +00007545Standard C Library Intrinsics
7546-----------------------------
7547
7548LLVM provides intrinsics for a few important standard C library
7549functions. These intrinsics allow source-language front-ends to pass
7550information about the alignment of the pointer arguments to the code
7551generator, providing opportunity for more efficient code generation.
7552
7553.. _int_memcpy:
7554
7555'``llvm.memcpy``' Intrinsic
7556^^^^^^^^^^^^^^^^^^^^^^^^^^^
7557
7558Syntax:
7559"""""""
7560
7561This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7562integer bit width and for different address spaces. Not all targets
7563support all bit widths however.
7564
7565::
7566
7567 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7568 i32 <len>, i32 <align>, i1 <isvolatile>)
7569 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7570 i64 <len>, i32 <align>, i1 <isvolatile>)
7571
7572Overview:
7573"""""""""
7574
7575The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7576source location to the destination location.
7577
7578Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7579intrinsics do not return a value, takes extra alignment/isvolatile
7580arguments and the pointers can be in specified address spaces.
7581
7582Arguments:
7583""""""""""
7584
7585The first argument is a pointer to the destination, the second is a
7586pointer to the source. The third argument is an integer argument
7587specifying the number of bytes to copy, the fourth argument is the
7588alignment of the source and destination locations, and the fifth is a
7589boolean indicating a volatile access.
7590
7591If the call to this intrinsic has an alignment value that is not 0 or 1,
7592then the caller guarantees that both the source and destination pointers
7593are aligned to that boundary.
7594
7595If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7596a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7597very cleanly specified and it is unwise to depend on it.
7598
7599Semantics:
7600""""""""""
7601
7602The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7603source location to the destination location, which are not allowed to
7604overlap. It copies "len" bytes of memory over. If the argument is known
7605to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007606argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007607
7608'``llvm.memmove``' Intrinsic
7609^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7610
7611Syntax:
7612"""""""
7613
7614This is an overloaded intrinsic. You can use llvm.memmove on any integer
7615bit width and for different address space. Not all targets support all
7616bit widths however.
7617
7618::
7619
7620 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7621 i32 <len>, i32 <align>, i1 <isvolatile>)
7622 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7623 i64 <len>, i32 <align>, i1 <isvolatile>)
7624
7625Overview:
7626"""""""""
7627
7628The '``llvm.memmove.*``' intrinsics move a block of memory from the
7629source location to the destination location. It is similar to the
7630'``llvm.memcpy``' intrinsic but allows the two memory locations to
7631overlap.
7632
7633Note that, unlike the standard libc function, the ``llvm.memmove.*``
7634intrinsics do not return a value, takes extra alignment/isvolatile
7635arguments and the pointers can be in specified address spaces.
7636
7637Arguments:
7638""""""""""
7639
7640The first argument is a pointer to the destination, the second is a
7641pointer to the source. The third argument is an integer argument
7642specifying the number of bytes to copy, the fourth argument is the
7643alignment of the source and destination locations, and the fifth is a
7644boolean indicating a volatile access.
7645
7646If the call to this intrinsic has an alignment value that is not 0 or 1,
7647then the caller guarantees that the source and destination pointers are
7648aligned to that boundary.
7649
7650If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7651is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7652not very cleanly specified and it is unwise to depend on it.
7653
7654Semantics:
7655""""""""""
7656
7657The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7658source location to the destination location, which may overlap. It
7659copies "len" bytes of memory over. If the argument is known to be
7660aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007661otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007662
7663'``llvm.memset.*``' Intrinsics
7664^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7665
7666Syntax:
7667"""""""
7668
7669This is an overloaded intrinsic. You can use llvm.memset on any integer
7670bit width and for different address spaces. However, not all targets
7671support all bit widths.
7672
7673::
7674
7675 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7676 i32 <len>, i32 <align>, i1 <isvolatile>)
7677 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7678 i64 <len>, i32 <align>, i1 <isvolatile>)
7679
7680Overview:
7681"""""""""
7682
7683The '``llvm.memset.*``' intrinsics fill a block of memory with a
7684particular byte value.
7685
7686Note that, unlike the standard libc function, the ``llvm.memset``
7687intrinsic does not return a value and takes extra alignment/volatile
7688arguments. Also, the destination can be in an arbitrary address space.
7689
7690Arguments:
7691""""""""""
7692
7693The first argument is a pointer to the destination to fill, the second
7694is the byte value with which to fill it, the third argument is an
7695integer argument specifying the number of bytes to fill, and the fourth
7696argument is the known alignment of the destination location.
7697
7698If the call to this intrinsic has an alignment value that is not 0 or 1,
7699then the caller guarantees that the destination pointer is aligned to
7700that boundary.
7701
7702If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7703a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7704very cleanly specified and it is unwise to depend on it.
7705
7706Semantics:
7707""""""""""
7708
7709The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7710at the destination location. If the argument is known to be aligned to
7711some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007712it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007713
7714'``llvm.sqrt.*``' Intrinsic
7715^^^^^^^^^^^^^^^^^^^^^^^^^^^
7716
7717Syntax:
7718"""""""
7719
7720This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7721floating point or vector of floating point type. Not all targets support
7722all types however.
7723
7724::
7725
7726 declare float @llvm.sqrt.f32(float %Val)
7727 declare double @llvm.sqrt.f64(double %Val)
7728 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7729 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7730 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7731
7732Overview:
7733"""""""""
7734
7735The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7736returning the same value as the libm '``sqrt``' functions would. Unlike
7737``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7738negative numbers other than -0.0 (which allows for better optimization,
7739because there is no need to worry about errno being set).
7740``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7741
7742Arguments:
7743""""""""""
7744
7745The argument and return value are floating point numbers of the same
7746type.
7747
7748Semantics:
7749""""""""""
7750
7751This function returns the sqrt of the specified operand if it is a
7752nonnegative floating point number.
7753
7754'``llvm.powi.*``' Intrinsic
7755^^^^^^^^^^^^^^^^^^^^^^^^^^^
7756
7757Syntax:
7758"""""""
7759
7760This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7761floating point or vector of floating point type. Not all targets support
7762all types however.
7763
7764::
7765
7766 declare float @llvm.powi.f32(float %Val, i32 %power)
7767 declare double @llvm.powi.f64(double %Val, i32 %power)
7768 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7769 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7770 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7771
7772Overview:
7773"""""""""
7774
7775The '``llvm.powi.*``' intrinsics return the first operand raised to the
7776specified (positive or negative) power. The order of evaluation of
7777multiplications is not defined. When a vector of floating point type is
7778used, the second argument remains a scalar integer value.
7779
7780Arguments:
7781""""""""""
7782
7783The second argument is an integer power, and the first is a value to
7784raise to that power.
7785
7786Semantics:
7787""""""""""
7788
7789This function returns the first value raised to the second power with an
7790unspecified sequence of rounding operations.
7791
7792'``llvm.sin.*``' Intrinsic
7793^^^^^^^^^^^^^^^^^^^^^^^^^^
7794
7795Syntax:
7796"""""""
7797
7798This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7799floating point or vector of floating point type. Not all targets support
7800all types however.
7801
7802::
7803
7804 declare float @llvm.sin.f32(float %Val)
7805 declare double @llvm.sin.f64(double %Val)
7806 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7807 declare fp128 @llvm.sin.f128(fp128 %Val)
7808 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7809
7810Overview:
7811"""""""""
7812
7813The '``llvm.sin.*``' intrinsics return the sine of the operand.
7814
7815Arguments:
7816""""""""""
7817
7818The argument and return value are floating point numbers of the same
7819type.
7820
7821Semantics:
7822""""""""""
7823
7824This function returns the sine of the specified operand, returning the
7825same values as the libm ``sin`` functions would, and handles error
7826conditions in the same way.
7827
7828'``llvm.cos.*``' Intrinsic
7829^^^^^^^^^^^^^^^^^^^^^^^^^^
7830
7831Syntax:
7832"""""""
7833
7834This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7835floating point or vector of floating point type. Not all targets support
7836all types however.
7837
7838::
7839
7840 declare float @llvm.cos.f32(float %Val)
7841 declare double @llvm.cos.f64(double %Val)
7842 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7843 declare fp128 @llvm.cos.f128(fp128 %Val)
7844 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7845
7846Overview:
7847"""""""""
7848
7849The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7850
7851Arguments:
7852""""""""""
7853
7854The argument and return value are floating point numbers of the same
7855type.
7856
7857Semantics:
7858""""""""""
7859
7860This function returns the cosine of the specified operand, returning the
7861same values as the libm ``cos`` functions would, and handles error
7862conditions in the same way.
7863
7864'``llvm.pow.*``' Intrinsic
7865^^^^^^^^^^^^^^^^^^^^^^^^^^
7866
7867Syntax:
7868"""""""
7869
7870This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7871floating point or vector of floating point type. Not all targets support
7872all types however.
7873
7874::
7875
7876 declare float @llvm.pow.f32(float %Val, float %Power)
7877 declare double @llvm.pow.f64(double %Val, double %Power)
7878 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7879 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7880 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7881
7882Overview:
7883"""""""""
7884
7885The '``llvm.pow.*``' intrinsics return the first operand raised to the
7886specified (positive or negative) power.
7887
7888Arguments:
7889""""""""""
7890
7891The second argument is a floating point power, and the first is a value
7892to raise to that power.
7893
7894Semantics:
7895""""""""""
7896
7897This function returns the first value raised to the second power,
7898returning the same values as the libm ``pow`` functions would, and
7899handles error conditions in the same way.
7900
7901'``llvm.exp.*``' Intrinsic
7902^^^^^^^^^^^^^^^^^^^^^^^^^^
7903
7904Syntax:
7905"""""""
7906
7907This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7908floating point or vector of floating point type. Not all targets support
7909all types however.
7910
7911::
7912
7913 declare float @llvm.exp.f32(float %Val)
7914 declare double @llvm.exp.f64(double %Val)
7915 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7916 declare fp128 @llvm.exp.f128(fp128 %Val)
7917 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7918
7919Overview:
7920"""""""""
7921
7922The '``llvm.exp.*``' intrinsics perform the exp function.
7923
7924Arguments:
7925""""""""""
7926
7927The argument and return value are floating point numbers of the same
7928type.
7929
7930Semantics:
7931""""""""""
7932
7933This function returns the same values as the libm ``exp`` functions
7934would, and handles error conditions in the same way.
7935
7936'``llvm.exp2.*``' Intrinsic
7937^^^^^^^^^^^^^^^^^^^^^^^^^^^
7938
7939Syntax:
7940"""""""
7941
7942This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7943floating point or vector of floating point type. Not all targets support
7944all types however.
7945
7946::
7947
7948 declare float @llvm.exp2.f32(float %Val)
7949 declare double @llvm.exp2.f64(double %Val)
7950 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7951 declare fp128 @llvm.exp2.f128(fp128 %Val)
7952 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7953
7954Overview:
7955"""""""""
7956
7957The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7958
7959Arguments:
7960""""""""""
7961
7962The argument and return value are floating point numbers of the same
7963type.
7964
7965Semantics:
7966""""""""""
7967
7968This function returns the same values as the libm ``exp2`` functions
7969would, and handles error conditions in the same way.
7970
7971'``llvm.log.*``' Intrinsic
7972^^^^^^^^^^^^^^^^^^^^^^^^^^
7973
7974Syntax:
7975"""""""
7976
7977This is an overloaded intrinsic. You can use ``llvm.log`` on any
7978floating point or vector of floating point type. Not all targets support
7979all types however.
7980
7981::
7982
7983 declare float @llvm.log.f32(float %Val)
7984 declare double @llvm.log.f64(double %Val)
7985 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7986 declare fp128 @llvm.log.f128(fp128 %Val)
7987 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7988
7989Overview:
7990"""""""""
7991
7992The '``llvm.log.*``' intrinsics perform the log function.
7993
7994Arguments:
7995""""""""""
7996
7997The argument and return value are floating point numbers of the same
7998type.
7999
8000Semantics:
8001""""""""""
8002
8003This function returns the same values as the libm ``log`` functions
8004would, and handles error conditions in the same way.
8005
8006'``llvm.log10.*``' Intrinsic
8007^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8008
8009Syntax:
8010"""""""
8011
8012This is an overloaded intrinsic. You can use ``llvm.log10`` on any
8013floating point or vector of floating point type. Not all targets support
8014all types however.
8015
8016::
8017
8018 declare float @llvm.log10.f32(float %Val)
8019 declare double @llvm.log10.f64(double %Val)
8020 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
8021 declare fp128 @llvm.log10.f128(fp128 %Val)
8022 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
8023
8024Overview:
8025"""""""""
8026
8027The '``llvm.log10.*``' intrinsics perform the log10 function.
8028
8029Arguments:
8030""""""""""
8031
8032The argument and return value are floating point numbers of the same
8033type.
8034
8035Semantics:
8036""""""""""
8037
8038This function returns the same values as the libm ``log10`` functions
8039would, and handles error conditions in the same way.
8040
8041'``llvm.log2.*``' Intrinsic
8042^^^^^^^^^^^^^^^^^^^^^^^^^^^
8043
8044Syntax:
8045"""""""
8046
8047This is an overloaded intrinsic. You can use ``llvm.log2`` on any
8048floating point or vector of floating point type. Not all targets support
8049all types however.
8050
8051::
8052
8053 declare float @llvm.log2.f32(float %Val)
8054 declare double @llvm.log2.f64(double %Val)
8055 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
8056 declare fp128 @llvm.log2.f128(fp128 %Val)
8057 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
8058
8059Overview:
8060"""""""""
8061
8062The '``llvm.log2.*``' intrinsics perform the log2 function.
8063
8064Arguments:
8065""""""""""
8066
8067The argument and return value are floating point numbers of the same
8068type.
8069
8070Semantics:
8071""""""""""
8072
8073This function returns the same values as the libm ``log2`` functions
8074would, and handles error conditions in the same way.
8075
8076'``llvm.fma.*``' Intrinsic
8077^^^^^^^^^^^^^^^^^^^^^^^^^^
8078
8079Syntax:
8080"""""""
8081
8082This is an overloaded intrinsic. You can use ``llvm.fma`` on any
8083floating point or vector of floating point type. Not all targets support
8084all types however.
8085
8086::
8087
8088 declare float @llvm.fma.f32(float %a, float %b, float %c)
8089 declare double @llvm.fma.f64(double %a, double %b, double %c)
8090 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
8091 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
8092 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
8093
8094Overview:
8095"""""""""
8096
8097The '``llvm.fma.*``' intrinsics perform the fused multiply-add
8098operation.
8099
8100Arguments:
8101""""""""""
8102
8103The argument and return value are floating point numbers of the same
8104type.
8105
8106Semantics:
8107""""""""""
8108
8109This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008110would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00008111
8112'``llvm.fabs.*``' Intrinsic
8113^^^^^^^^^^^^^^^^^^^^^^^^^^^
8114
8115Syntax:
8116"""""""
8117
8118This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
8119floating point or vector of floating point type. Not all targets support
8120all types however.
8121
8122::
8123
8124 declare float @llvm.fabs.f32(float %Val)
8125 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008126 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008127 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008128 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008129
8130Overview:
8131"""""""""
8132
8133The '``llvm.fabs.*``' intrinsics return the absolute value of the
8134operand.
8135
8136Arguments:
8137""""""""""
8138
8139The argument and return value are floating point numbers of the same
8140type.
8141
8142Semantics:
8143""""""""""
8144
8145This function returns the same values as the libm ``fabs`` functions
8146would, and handles error conditions in the same way.
8147
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008148'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008149^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008150
8151Syntax:
8152"""""""
8153
8154This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
8155floating point or vector of floating point type. Not all targets support
8156all types however.
8157
8158::
8159
Matt Arsenault64313c92014-10-22 18:25:02 +00008160 declare float @llvm.minnum.f32(float %Val0, float %Val1)
8161 declare double @llvm.minnum.f64(double %Val0, double %Val1)
8162 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8163 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
8164 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008165
8166Overview:
8167"""""""""
8168
8169The '``llvm.minnum.*``' intrinsics return the minimum of the two
8170arguments.
8171
8172
8173Arguments:
8174""""""""""
8175
8176The arguments and return value are floating point numbers of the same
8177type.
8178
8179Semantics:
8180""""""""""
8181
8182Follows the IEEE-754 semantics for minNum, which also match for libm's
8183fmin.
8184
8185If either operand is a NaN, returns the other non-NaN operand. Returns
8186NaN only if both operands are NaN. If the operands compare equal,
8187returns a value that compares equal to both operands. This means that
8188fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8189
8190'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008191^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008192
8193Syntax:
8194"""""""
8195
8196This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
8197floating point or vector of floating point type. Not all targets support
8198all types however.
8199
8200::
8201
Matt Arsenault64313c92014-10-22 18:25:02 +00008202 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
8203 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
8204 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8205 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
8206 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008207
8208Overview:
8209"""""""""
8210
8211The '``llvm.maxnum.*``' intrinsics return the maximum of the two
8212arguments.
8213
8214
8215Arguments:
8216""""""""""
8217
8218The arguments and return value are floating point numbers of the same
8219type.
8220
8221Semantics:
8222""""""""""
8223Follows the IEEE-754 semantics for maxNum, which also match for libm's
8224fmax.
8225
8226If either operand is a NaN, returns the other non-NaN operand. Returns
8227NaN only if both operands are NaN. If the operands compare equal,
8228returns a value that compares equal to both operands. This means that
8229fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8230
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00008231'``llvm.copysign.*``' Intrinsic
8232^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8233
8234Syntax:
8235"""""""
8236
8237This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
8238floating point or vector of floating point type. Not all targets support
8239all types however.
8240
8241::
8242
8243 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
8244 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
8245 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
8246 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8247 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
8248
8249Overview:
8250"""""""""
8251
8252The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8253first operand and the sign of the second operand.
8254
8255Arguments:
8256""""""""""
8257
8258The arguments and return value are floating point numbers of the same
8259type.
8260
8261Semantics:
8262""""""""""
8263
8264This function returns the same values as the libm ``copysign``
8265functions would, and handles error conditions in the same way.
8266
Sean Silvab084af42012-12-07 10:36:55 +00008267'``llvm.floor.*``' Intrinsic
8268^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8269
8270Syntax:
8271"""""""
8272
8273This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8274floating point or vector of floating point type. Not all targets support
8275all types however.
8276
8277::
8278
8279 declare float @llvm.floor.f32(float %Val)
8280 declare double @llvm.floor.f64(double %Val)
8281 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
8282 declare fp128 @llvm.floor.f128(fp128 %Val)
8283 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
8284
8285Overview:
8286"""""""""
8287
8288The '``llvm.floor.*``' intrinsics return the floor of the operand.
8289
8290Arguments:
8291""""""""""
8292
8293The argument and return value are floating point numbers of the same
8294type.
8295
8296Semantics:
8297""""""""""
8298
8299This function returns the same values as the libm ``floor`` functions
8300would, and handles error conditions in the same way.
8301
8302'``llvm.ceil.*``' Intrinsic
8303^^^^^^^^^^^^^^^^^^^^^^^^^^^
8304
8305Syntax:
8306"""""""
8307
8308This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8309floating point or vector of floating point type. Not all targets support
8310all types however.
8311
8312::
8313
8314 declare float @llvm.ceil.f32(float %Val)
8315 declare double @llvm.ceil.f64(double %Val)
8316 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8317 declare fp128 @llvm.ceil.f128(fp128 %Val)
8318 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8319
8320Overview:
8321"""""""""
8322
8323The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8324
8325Arguments:
8326""""""""""
8327
8328The argument and return value are floating point numbers of the same
8329type.
8330
8331Semantics:
8332""""""""""
8333
8334This function returns the same values as the libm ``ceil`` functions
8335would, and handles error conditions in the same way.
8336
8337'``llvm.trunc.*``' Intrinsic
8338^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8339
8340Syntax:
8341"""""""
8342
8343This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8344floating point or vector of floating point type. Not all targets support
8345all types however.
8346
8347::
8348
8349 declare float @llvm.trunc.f32(float %Val)
8350 declare double @llvm.trunc.f64(double %Val)
8351 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8352 declare fp128 @llvm.trunc.f128(fp128 %Val)
8353 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8354
8355Overview:
8356"""""""""
8357
8358The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8359nearest integer not larger in magnitude than the operand.
8360
8361Arguments:
8362""""""""""
8363
8364The argument and return value are floating point numbers of the same
8365type.
8366
8367Semantics:
8368""""""""""
8369
8370This function returns the same values as the libm ``trunc`` functions
8371would, and handles error conditions in the same way.
8372
8373'``llvm.rint.*``' Intrinsic
8374^^^^^^^^^^^^^^^^^^^^^^^^^^^
8375
8376Syntax:
8377"""""""
8378
8379This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8380floating point or vector of floating point type. Not all targets support
8381all types however.
8382
8383::
8384
8385 declare float @llvm.rint.f32(float %Val)
8386 declare double @llvm.rint.f64(double %Val)
8387 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8388 declare fp128 @llvm.rint.f128(fp128 %Val)
8389 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8390
8391Overview:
8392"""""""""
8393
8394The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8395nearest integer. It may raise an inexact floating-point exception if the
8396operand isn't an integer.
8397
8398Arguments:
8399""""""""""
8400
8401The argument and return value are floating point numbers of the same
8402type.
8403
8404Semantics:
8405""""""""""
8406
8407This function returns the same values as the libm ``rint`` functions
8408would, and handles error conditions in the same way.
8409
8410'``llvm.nearbyint.*``' Intrinsic
8411^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8412
8413Syntax:
8414"""""""
8415
8416This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8417floating point or vector of floating point type. Not all targets support
8418all types however.
8419
8420::
8421
8422 declare float @llvm.nearbyint.f32(float %Val)
8423 declare double @llvm.nearbyint.f64(double %Val)
8424 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8425 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8426 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8427
8428Overview:
8429"""""""""
8430
8431The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8432nearest integer.
8433
8434Arguments:
8435""""""""""
8436
8437The argument and return value are floating point numbers of the same
8438type.
8439
8440Semantics:
8441""""""""""
8442
8443This function returns the same values as the libm ``nearbyint``
8444functions would, and handles error conditions in the same way.
8445
Hal Finkel171817e2013-08-07 22:49:12 +00008446'``llvm.round.*``' Intrinsic
8447^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8448
8449Syntax:
8450"""""""
8451
8452This is an overloaded intrinsic. You can use ``llvm.round`` on any
8453floating point or vector of floating point type. Not all targets support
8454all types however.
8455
8456::
8457
8458 declare float @llvm.round.f32(float %Val)
8459 declare double @llvm.round.f64(double %Val)
8460 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8461 declare fp128 @llvm.round.f128(fp128 %Val)
8462 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8463
8464Overview:
8465"""""""""
8466
8467The '``llvm.round.*``' intrinsics returns the operand rounded to the
8468nearest integer.
8469
8470Arguments:
8471""""""""""
8472
8473The argument and return value are floating point numbers of the same
8474type.
8475
8476Semantics:
8477""""""""""
8478
8479This function returns the same values as the libm ``round``
8480functions would, and handles error conditions in the same way.
8481
Sean Silvab084af42012-12-07 10:36:55 +00008482Bit Manipulation Intrinsics
8483---------------------------
8484
8485LLVM provides intrinsics for a few important bit manipulation
8486operations. These allow efficient code generation for some algorithms.
8487
8488'``llvm.bswap.*``' Intrinsics
8489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8490
8491Syntax:
8492"""""""
8493
8494This is an overloaded intrinsic function. You can use bswap on any
8495integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8496
8497::
8498
8499 declare i16 @llvm.bswap.i16(i16 <id>)
8500 declare i32 @llvm.bswap.i32(i32 <id>)
8501 declare i64 @llvm.bswap.i64(i64 <id>)
8502
8503Overview:
8504"""""""""
8505
8506The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8507values with an even number of bytes (positive multiple of 16 bits).
8508These are useful for performing operations on data that is not in the
8509target's native byte order.
8510
8511Semantics:
8512""""""""""
8513
8514The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8515and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8516intrinsic returns an i32 value that has the four bytes of the input i32
8517swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8518returned i32 will have its bytes in 3, 2, 1, 0 order. The
8519``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8520concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8521respectively).
8522
8523'``llvm.ctpop.*``' Intrinsic
8524^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8525
8526Syntax:
8527"""""""
8528
8529This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8530bit width, or on any vector with integer elements. Not all targets
8531support all bit widths or vector types, however.
8532
8533::
8534
8535 declare i8 @llvm.ctpop.i8(i8 <src>)
8536 declare i16 @llvm.ctpop.i16(i16 <src>)
8537 declare i32 @llvm.ctpop.i32(i32 <src>)
8538 declare i64 @llvm.ctpop.i64(i64 <src>)
8539 declare i256 @llvm.ctpop.i256(i256 <src>)
8540 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8541
8542Overview:
8543"""""""""
8544
8545The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8546in a value.
8547
8548Arguments:
8549""""""""""
8550
8551The only argument is the value to be counted. The argument may be of any
8552integer type, or a vector with integer elements. The return type must
8553match the argument type.
8554
8555Semantics:
8556""""""""""
8557
8558The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8559each element of a vector.
8560
8561'``llvm.ctlz.*``' Intrinsic
8562^^^^^^^^^^^^^^^^^^^^^^^^^^^
8563
8564Syntax:
8565"""""""
8566
8567This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8568integer bit width, or any vector whose elements are integers. Not all
8569targets support all bit widths or vector types, however.
8570
8571::
8572
8573 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8574 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8575 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8576 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8577 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8578 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8579
8580Overview:
8581"""""""""
8582
8583The '``llvm.ctlz``' family of intrinsic functions counts the number of
8584leading zeros in a variable.
8585
8586Arguments:
8587""""""""""
8588
8589The first argument is the value to be counted. This argument may be of
8590any integer type, or a vectory with integer element type. The return
8591type must match the first argument type.
8592
8593The second argument must be a constant and is a flag to indicate whether
8594the intrinsic should ensure that a zero as the first argument produces a
8595defined result. Historically some architectures did not provide a
8596defined result for zero values as efficiently, and many algorithms are
8597now predicated on avoiding zero-value inputs.
8598
8599Semantics:
8600""""""""""
8601
8602The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8603zeros in a variable, or within each element of the vector. If
8604``src == 0`` then the result is the size in bits of the type of ``src``
8605if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8606``llvm.ctlz(i32 2) = 30``.
8607
8608'``llvm.cttz.*``' Intrinsic
8609^^^^^^^^^^^^^^^^^^^^^^^^^^^
8610
8611Syntax:
8612"""""""
8613
8614This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8615integer bit width, or any vector of integer elements. Not all targets
8616support all bit widths or vector types, however.
8617
8618::
8619
8620 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8621 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8622 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8623 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8624 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8625 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8626
8627Overview:
8628"""""""""
8629
8630The '``llvm.cttz``' family of intrinsic functions counts the number of
8631trailing zeros.
8632
8633Arguments:
8634""""""""""
8635
8636The first argument is the value to be counted. This argument may be of
8637any integer type, or a vectory with integer element type. The return
8638type must match the first argument type.
8639
8640The second argument must be a constant and is a flag to indicate whether
8641the intrinsic should ensure that a zero as the first argument produces a
8642defined result. Historically some architectures did not provide a
8643defined result for zero values as efficiently, and many algorithms are
8644now predicated on avoiding zero-value inputs.
8645
8646Semantics:
8647""""""""""
8648
8649The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8650zeros in a variable, or within each element of a vector. If ``src == 0``
8651then the result is the size in bits of the type of ``src`` if
8652``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8653``llvm.cttz(2) = 1``.
8654
8655Arithmetic with Overflow Intrinsics
8656-----------------------------------
8657
8658LLVM provides intrinsics for some arithmetic with overflow operations.
8659
8660'``llvm.sadd.with.overflow.*``' Intrinsics
8661^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8662
8663Syntax:
8664"""""""
8665
8666This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8667on any integer bit width.
8668
8669::
8670
8671 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8672 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8673 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8674
8675Overview:
8676"""""""""
8677
8678The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8679a signed addition of the two arguments, and indicate whether an overflow
8680occurred during the signed summation.
8681
8682Arguments:
8683""""""""""
8684
8685The arguments (%a and %b) and the first element of the result structure
8686may be of integer types of any bit width, but they must have the same
8687bit width. The second element of the result structure must be of type
8688``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8689addition.
8690
8691Semantics:
8692""""""""""
8693
8694The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008695a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008696first element of which is the signed summation, and the second element
8697of which is a bit specifying if the signed summation resulted in an
8698overflow.
8699
8700Examples:
8701"""""""""
8702
8703.. code-block:: llvm
8704
8705 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8706 %sum = extractvalue {i32, i1} %res, 0
8707 %obit = extractvalue {i32, i1} %res, 1
8708 br i1 %obit, label %overflow, label %normal
8709
8710'``llvm.uadd.with.overflow.*``' Intrinsics
8711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8712
8713Syntax:
8714"""""""
8715
8716This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8717on any integer bit width.
8718
8719::
8720
8721 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8722 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8723 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8724
8725Overview:
8726"""""""""
8727
8728The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8729an unsigned addition of the two arguments, and indicate whether a carry
8730occurred during the unsigned summation.
8731
8732Arguments:
8733""""""""""
8734
8735The arguments (%a and %b) and the first element of the result structure
8736may be of integer types of any bit width, but they must have the same
8737bit width. The second element of the result structure must be of type
8738``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8739addition.
8740
8741Semantics:
8742""""""""""
8743
8744The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008745an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008746first element of which is the sum, and the second element of which is a
8747bit specifying if the unsigned summation resulted in a carry.
8748
8749Examples:
8750"""""""""
8751
8752.. code-block:: llvm
8753
8754 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8755 %sum = extractvalue {i32, i1} %res, 0
8756 %obit = extractvalue {i32, i1} %res, 1
8757 br i1 %obit, label %carry, label %normal
8758
8759'``llvm.ssub.with.overflow.*``' Intrinsics
8760^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8761
8762Syntax:
8763"""""""
8764
8765This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8766on any integer bit width.
8767
8768::
8769
8770 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8771 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8772 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8773
8774Overview:
8775"""""""""
8776
8777The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8778a signed subtraction of the two arguments, and indicate whether an
8779overflow occurred during the signed subtraction.
8780
8781Arguments:
8782""""""""""
8783
8784The arguments (%a and %b) and the first element of the result structure
8785may be of integer types of any bit width, but they must have the same
8786bit width. The second element of the result structure must be of type
8787``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8788subtraction.
8789
8790Semantics:
8791""""""""""
8792
8793The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008794a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008795first element of which is the subtraction, and the second element of
8796which is a bit specifying if the signed subtraction resulted in an
8797overflow.
8798
8799Examples:
8800"""""""""
8801
8802.. code-block:: llvm
8803
8804 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8805 %sum = extractvalue {i32, i1} %res, 0
8806 %obit = extractvalue {i32, i1} %res, 1
8807 br i1 %obit, label %overflow, label %normal
8808
8809'``llvm.usub.with.overflow.*``' Intrinsics
8810^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8811
8812Syntax:
8813"""""""
8814
8815This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8816on any integer bit width.
8817
8818::
8819
8820 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8821 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8822 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8823
8824Overview:
8825"""""""""
8826
8827The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8828an unsigned subtraction of the two arguments, and indicate whether an
8829overflow occurred during the unsigned subtraction.
8830
8831Arguments:
8832""""""""""
8833
8834The arguments (%a and %b) and the first element of the result structure
8835may be of integer types of any bit width, but they must have the same
8836bit width. The second element of the result structure must be of type
8837``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8838subtraction.
8839
8840Semantics:
8841""""""""""
8842
8843The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008844an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008845the first element of which is the subtraction, and the second element of
8846which is a bit specifying if the unsigned subtraction resulted in an
8847overflow.
8848
8849Examples:
8850"""""""""
8851
8852.. code-block:: llvm
8853
8854 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8855 %sum = extractvalue {i32, i1} %res, 0
8856 %obit = extractvalue {i32, i1} %res, 1
8857 br i1 %obit, label %overflow, label %normal
8858
8859'``llvm.smul.with.overflow.*``' Intrinsics
8860^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8861
8862Syntax:
8863"""""""
8864
8865This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8866on any integer bit width.
8867
8868::
8869
8870 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8871 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8872 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8873
8874Overview:
8875"""""""""
8876
8877The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8878a signed multiplication of the two arguments, and indicate whether an
8879overflow occurred during the signed multiplication.
8880
8881Arguments:
8882""""""""""
8883
8884The arguments (%a and %b) and the first element of the result structure
8885may be of integer types of any bit width, but they must have the same
8886bit width. The second element of the result structure must be of type
8887``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8888multiplication.
8889
8890Semantics:
8891""""""""""
8892
8893The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008894a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008895the first element of which is the multiplication, and the second element
8896of which is a bit specifying if the signed multiplication resulted in an
8897overflow.
8898
8899Examples:
8900"""""""""
8901
8902.. code-block:: llvm
8903
8904 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8905 %sum = extractvalue {i32, i1} %res, 0
8906 %obit = extractvalue {i32, i1} %res, 1
8907 br i1 %obit, label %overflow, label %normal
8908
8909'``llvm.umul.with.overflow.*``' Intrinsics
8910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8911
8912Syntax:
8913"""""""
8914
8915This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8916on any integer bit width.
8917
8918::
8919
8920 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8921 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8922 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8923
8924Overview:
8925"""""""""
8926
8927The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8928a unsigned multiplication of the two arguments, and indicate whether an
8929overflow occurred during the unsigned multiplication.
8930
8931Arguments:
8932""""""""""
8933
8934The arguments (%a and %b) and the first element of the result structure
8935may be of integer types of any bit width, but they must have the same
8936bit width. The second element of the result structure must be of type
8937``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8938multiplication.
8939
8940Semantics:
8941""""""""""
8942
8943The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008944an unsigned multiplication of the two arguments. They return a structure ---
8945the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008946element of which is a bit specifying if the unsigned multiplication
8947resulted in an overflow.
8948
8949Examples:
8950"""""""""
8951
8952.. code-block:: llvm
8953
8954 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8955 %sum = extractvalue {i32, i1} %res, 0
8956 %obit = extractvalue {i32, i1} %res, 1
8957 br i1 %obit, label %overflow, label %normal
8958
8959Specialised Arithmetic Intrinsics
8960---------------------------------
8961
8962'``llvm.fmuladd.*``' Intrinsic
8963^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8964
8965Syntax:
8966"""""""
8967
8968::
8969
8970 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8971 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8972
8973Overview:
8974"""""""""
8975
8976The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008977expressions that can be fused if the code generator determines that (a) the
8978target instruction set has support for a fused operation, and (b) that the
8979fused operation is more efficient than the equivalent, separate pair of mul
8980and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008981
8982Arguments:
8983""""""""""
8984
8985The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8986multiplicands, a and b, and an addend c.
8987
8988Semantics:
8989""""""""""
8990
8991The expression:
8992
8993::
8994
8995 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
8996
8997is equivalent to the expression a \* b + c, except that rounding will
8998not be performed between the multiplication and addition steps if the
8999code generator fuses the operations. Fusion is not guaranteed, even if
9000the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009001corresponding llvm.fma.\* intrinsic function should be used
9002instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00009003
9004Examples:
9005"""""""""
9006
9007.. code-block:: llvm
9008
Tim Northover675a0962014-06-13 14:24:23 +00009009 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00009010
9011Half Precision Floating Point Intrinsics
9012----------------------------------------
9013
9014For most target platforms, half precision floating point is a
9015storage-only format. This means that it is a dense encoding (in memory)
9016but does not support computation in the format.
9017
9018This means that code must first load the half-precision floating point
9019value as an i16, then convert it to float with
9020:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
9021then be performed on the float value (including extending to double
9022etc). To store the value back to memory, it is first converted to float
9023if needed, then converted to i16 with
9024:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
9025i16 value.
9026
9027.. _int_convert_to_fp16:
9028
9029'``llvm.convert.to.fp16``' Intrinsic
9030^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9031
9032Syntax:
9033"""""""
9034
9035::
9036
Tim Northoverfd7e4242014-07-17 10:51:23 +00009037 declare i16 @llvm.convert.to.fp16.f32(float %a)
9038 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00009039
9040Overview:
9041"""""""""
9042
Tim Northoverfd7e4242014-07-17 10:51:23 +00009043The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9044conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00009045
9046Arguments:
9047""""""""""
9048
9049The intrinsic function contains single argument - the value to be
9050converted.
9051
9052Semantics:
9053""""""""""
9054
Tim Northoverfd7e4242014-07-17 10:51:23 +00009055The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9056conventional floating point format to half precision floating point format. The
9057return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00009058
9059Examples:
9060"""""""""
9061
9062.. code-block:: llvm
9063
Tim Northoverfd7e4242014-07-17 10:51:23 +00009064 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00009065 store i16 %res, i16* @x, align 2
9066
9067.. _int_convert_from_fp16:
9068
9069'``llvm.convert.from.fp16``' Intrinsic
9070^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9071
9072Syntax:
9073"""""""
9074
9075::
9076
Tim Northoverfd7e4242014-07-17 10:51:23 +00009077 declare float @llvm.convert.from.fp16.f32(i16 %a)
9078 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009079
9080Overview:
9081"""""""""
9082
9083The '``llvm.convert.from.fp16``' intrinsic function performs a
9084conversion from half precision floating point format to single precision
9085floating point format.
9086
9087Arguments:
9088""""""""""
9089
9090The intrinsic function contains single argument - the value to be
9091converted.
9092
9093Semantics:
9094""""""""""
9095
9096The '``llvm.convert.from.fp16``' intrinsic function performs a
9097conversion from half single precision floating point format to single
9098precision floating point format. The input half-float value is
9099represented by an ``i16`` value.
9100
9101Examples:
9102"""""""""
9103
9104.. code-block:: llvm
9105
9106 %a = load i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00009107 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009108
9109Debugger Intrinsics
9110-------------------
9111
9112The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
9113prefix), are described in the `LLVM Source Level
9114Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
9115document.
9116
9117Exception Handling Intrinsics
9118-----------------------------
9119
9120The LLVM exception handling intrinsics (which all start with
9121``llvm.eh.`` prefix), are described in the `LLVM Exception
9122Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
9123
9124.. _int_trampoline:
9125
9126Trampoline Intrinsics
9127---------------------
9128
9129These intrinsics make it possible to excise one parameter, marked with
9130the :ref:`nest <nest>` attribute, from a function. The result is a
9131callable function pointer lacking the nest parameter - the caller does
9132not need to provide a value for it. Instead, the value to use is stored
9133in advance in a "trampoline", a block of memory usually allocated on the
9134stack, which also contains code to splice the nest value into the
9135argument list. This is used to implement the GCC nested function address
9136extension.
9137
9138For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
9139then the resulting function pointer has signature ``i32 (i32, i32)*``.
9140It can be created as follows:
9141
9142.. code-block:: llvm
9143
9144 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
9145 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
9146 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
9147 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
9148 %fp = bitcast i8* %p to i32 (i32, i32)*
9149
9150The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
9151``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
9152
9153.. _int_it:
9154
9155'``llvm.init.trampoline``' Intrinsic
9156^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9157
9158Syntax:
9159"""""""
9160
9161::
9162
9163 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
9164
9165Overview:
9166"""""""""
9167
9168This fills the memory pointed to by ``tramp`` with executable code,
9169turning it into a trampoline.
9170
9171Arguments:
9172""""""""""
9173
9174The ``llvm.init.trampoline`` intrinsic takes three arguments, all
9175pointers. The ``tramp`` argument must point to a sufficiently large and
9176sufficiently aligned block of memory; this memory is written to by the
9177intrinsic. Note that the size and the alignment are target-specific -
9178LLVM currently provides no portable way of determining them, so a
9179front-end that generates this intrinsic needs to have some
9180target-specific knowledge. The ``func`` argument must hold a function
9181bitcast to an ``i8*``.
9182
9183Semantics:
9184""""""""""
9185
9186The block of memory pointed to by ``tramp`` is filled with target
9187dependent code, turning it into a function. Then ``tramp`` needs to be
9188passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
9189be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
9190function's signature is the same as that of ``func`` with any arguments
9191marked with the ``nest`` attribute removed. At most one such ``nest``
9192argument is allowed, and it must be of pointer type. Calling the new
9193function is equivalent to calling ``func`` with the same argument list,
9194but with ``nval`` used for the missing ``nest`` argument. If, after
9195calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
9196modified, then the effect of any later call to the returned function
9197pointer is undefined.
9198
9199.. _int_at:
9200
9201'``llvm.adjust.trampoline``' Intrinsic
9202^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9203
9204Syntax:
9205"""""""
9206
9207::
9208
9209 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
9210
9211Overview:
9212"""""""""
9213
9214This performs any required machine-specific adjustment to the address of
9215a trampoline (passed as ``tramp``).
9216
9217Arguments:
9218""""""""""
9219
9220``tramp`` must point to a block of memory which already has trampoline
9221code filled in by a previous call to
9222:ref:`llvm.init.trampoline <int_it>`.
9223
9224Semantics:
9225""""""""""
9226
9227On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009228different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00009229intrinsic returns the executable address corresponding to ``tramp``
9230after performing the required machine specific adjustments. The pointer
9231returned can then be :ref:`bitcast and executed <int_trampoline>`.
9232
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009233Masked Vector Load and Store Intrinsics
9234---------------------------------------
9235
9236LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
9237
9238.. _int_mload:
9239
9240'``llvm.masked.load.*``' Intrinsics
9241^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9242
9243Syntax:
9244"""""""
9245This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
9246
9247::
9248
9249 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
9250 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
9251
9252Overview:
9253"""""""""
9254
9255Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes in the passthru operand.
9256
9257
9258Arguments:
9259""""""""""
9260
9261The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean 'i1' values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of passthru operand are the same vector types.
9262
9263
9264Semantics:
9265""""""""""
9266
9267The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
9268The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
9269
9270
9271::
9272
9273 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
9274
9275 ;; The result of the two following instructions is identical aside from potential memory access exception
9276 %loadlal = load <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009277 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009278
9279.. _int_mstore:
9280
9281'``llvm.masked.store.*``' Intrinsics
9282^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9283
9284Syntax:
9285"""""""
9286This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
9287
9288::
9289
9290 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
9291 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
9292
9293Overview:
9294"""""""""
9295
9296Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
9297
9298Arguments:
9299""""""""""
9300
9301The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
9302
9303
9304Semantics:
9305""""""""""
9306
9307The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
9308The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
9309
9310::
9311
9312 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
9313
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009314 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009315 %oldval = load <16 x float>* %ptr, align 4
9316 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
9317 store <16 x float> %res, <16 x float>* %ptr, align 4
9318
9319
Sean Silvab084af42012-12-07 10:36:55 +00009320Memory Use Markers
9321------------------
9322
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009323This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00009324memory objects and ranges where variables are immutable.
9325
Reid Klecknera534a382013-12-19 02:14:12 +00009326.. _int_lifestart:
9327
Sean Silvab084af42012-12-07 10:36:55 +00009328'``llvm.lifetime.start``' Intrinsic
9329^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9330
9331Syntax:
9332"""""""
9333
9334::
9335
9336 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
9337
9338Overview:
9339"""""""""
9340
9341The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
9342object's lifetime.
9343
9344Arguments:
9345""""""""""
9346
9347The first argument is a constant integer representing the size of the
9348object, or -1 if it is variable sized. The second argument is a pointer
9349to the object.
9350
9351Semantics:
9352""""""""""
9353
9354This intrinsic indicates that before this point in the code, the value
9355of the memory pointed to by ``ptr`` is dead. This means that it is known
9356to never be used and has an undefined value. A load from the pointer
9357that precedes this intrinsic can be replaced with ``'undef'``.
9358
Reid Klecknera534a382013-12-19 02:14:12 +00009359.. _int_lifeend:
9360
Sean Silvab084af42012-12-07 10:36:55 +00009361'``llvm.lifetime.end``' Intrinsic
9362^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9363
9364Syntax:
9365"""""""
9366
9367::
9368
9369 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
9370
9371Overview:
9372"""""""""
9373
9374The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
9375object's lifetime.
9376
9377Arguments:
9378""""""""""
9379
9380The first argument is a constant integer representing the size of the
9381object, or -1 if it is variable sized. The second argument is a pointer
9382to the object.
9383
9384Semantics:
9385""""""""""
9386
9387This intrinsic indicates that after this point in the code, the value of
9388the memory pointed to by ``ptr`` is dead. This means that it is known to
9389never be used and has an undefined value. Any stores into the memory
9390object following this intrinsic may be removed as dead.
9391
9392'``llvm.invariant.start``' Intrinsic
9393^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9394
9395Syntax:
9396"""""""
9397
9398::
9399
9400 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9401
9402Overview:
9403"""""""""
9404
9405The '``llvm.invariant.start``' intrinsic specifies that the contents of
9406a memory object will not change.
9407
9408Arguments:
9409""""""""""
9410
9411The first argument is a constant integer representing the size of the
9412object, or -1 if it is variable sized. The second argument is a pointer
9413to the object.
9414
9415Semantics:
9416""""""""""
9417
9418This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9419the return value, the referenced memory location is constant and
9420unchanging.
9421
9422'``llvm.invariant.end``' Intrinsic
9423^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9424
9425Syntax:
9426"""""""
9427
9428::
9429
9430 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9431
9432Overview:
9433"""""""""
9434
9435The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9436memory object are mutable.
9437
9438Arguments:
9439""""""""""
9440
9441The first argument is the matching ``llvm.invariant.start`` intrinsic.
9442The second argument is a constant integer representing the size of the
9443object, or -1 if it is variable sized and the third argument is a
9444pointer to the object.
9445
9446Semantics:
9447""""""""""
9448
9449This intrinsic indicates that the memory is mutable again.
9450
9451General Intrinsics
9452------------------
9453
9454This class of intrinsics is designed to be generic and has no specific
9455purpose.
9456
9457'``llvm.var.annotation``' Intrinsic
9458^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9459
9460Syntax:
9461"""""""
9462
9463::
9464
9465 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9466
9467Overview:
9468"""""""""
9469
9470The '``llvm.var.annotation``' intrinsic.
9471
9472Arguments:
9473""""""""""
9474
9475The first argument is a pointer to a value, the second is a pointer to a
9476global string, the third is a pointer to a global string which is the
9477source file name, and the last argument is the line number.
9478
9479Semantics:
9480""""""""""
9481
9482This intrinsic allows annotation of local variables with arbitrary
9483strings. This can be useful for special purpose optimizations that want
9484to look for these annotations. These have no other defined use; they are
9485ignored by code generation and optimization.
9486
Michael Gottesman88d18832013-03-26 00:34:27 +00009487'``llvm.ptr.annotation.*``' Intrinsic
9488^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9489
9490Syntax:
9491"""""""
9492
9493This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9494pointer to an integer of any width. *NOTE* you must specify an address space for
9495the pointer. The identifier for the default address space is the integer
9496'``0``'.
9497
9498::
9499
9500 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9501 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9502 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9503 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9504 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9505
9506Overview:
9507"""""""""
9508
9509The '``llvm.ptr.annotation``' intrinsic.
9510
9511Arguments:
9512""""""""""
9513
9514The first argument is a pointer to an integer value of arbitrary bitwidth
9515(result of some expression), the second is a pointer to a global string, the
9516third is a pointer to a global string which is the source file name, and the
9517last argument is the line number. It returns the value of the first argument.
9518
9519Semantics:
9520""""""""""
9521
9522This intrinsic allows annotation of a pointer to an integer with arbitrary
9523strings. This can be useful for special purpose optimizations that want to look
9524for these annotations. These have no other defined use; they are ignored by code
9525generation and optimization.
9526
Sean Silvab084af42012-12-07 10:36:55 +00009527'``llvm.annotation.*``' Intrinsic
9528^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9529
9530Syntax:
9531"""""""
9532
9533This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9534any integer bit width.
9535
9536::
9537
9538 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9539 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9540 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9541 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9542 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9543
9544Overview:
9545"""""""""
9546
9547The '``llvm.annotation``' intrinsic.
9548
9549Arguments:
9550""""""""""
9551
9552The first argument is an integer value (result of some expression), the
9553second is a pointer to a global string, the third is a pointer to a
9554global string which is the source file name, and the last argument is
9555the line number. It returns the value of the first argument.
9556
9557Semantics:
9558""""""""""
9559
9560This intrinsic allows annotations to be put on arbitrary expressions
9561with arbitrary strings. This can be useful for special purpose
9562optimizations that want to look for these annotations. These have no
9563other defined use; they are ignored by code generation and optimization.
9564
9565'``llvm.trap``' Intrinsic
9566^^^^^^^^^^^^^^^^^^^^^^^^^
9567
9568Syntax:
9569"""""""
9570
9571::
9572
9573 declare void @llvm.trap() noreturn nounwind
9574
9575Overview:
9576"""""""""
9577
9578The '``llvm.trap``' intrinsic.
9579
9580Arguments:
9581""""""""""
9582
9583None.
9584
9585Semantics:
9586""""""""""
9587
9588This intrinsic is lowered to the target dependent trap instruction. If
9589the target does not have a trap instruction, this intrinsic will be
9590lowered to a call of the ``abort()`` function.
9591
9592'``llvm.debugtrap``' Intrinsic
9593^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9594
9595Syntax:
9596"""""""
9597
9598::
9599
9600 declare void @llvm.debugtrap() nounwind
9601
9602Overview:
9603"""""""""
9604
9605The '``llvm.debugtrap``' intrinsic.
9606
9607Arguments:
9608""""""""""
9609
9610None.
9611
9612Semantics:
9613""""""""""
9614
9615This intrinsic is lowered to code which is intended to cause an
9616execution trap with the intention of requesting the attention of a
9617debugger.
9618
9619'``llvm.stackprotector``' Intrinsic
9620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9621
9622Syntax:
9623"""""""
9624
9625::
9626
9627 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9628
9629Overview:
9630"""""""""
9631
9632The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9633onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9634is placed on the stack before local variables.
9635
9636Arguments:
9637""""""""""
9638
9639The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9640The first argument is the value loaded from the stack guard
9641``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9642enough space to hold the value of the guard.
9643
9644Semantics:
9645""""""""""
9646
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009647This intrinsic causes the prologue/epilogue inserter to force the position of
9648the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9649to ensure that if a local variable on the stack is overwritten, it will destroy
9650the value of the guard. When the function exits, the guard on the stack is
9651checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9652different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9653calling the ``__stack_chk_fail()`` function.
9654
9655'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009656^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009657
9658Syntax:
9659"""""""
9660
9661::
9662
9663 declare void @llvm.stackprotectorcheck(i8** <guard>)
9664
9665Overview:
9666"""""""""
9667
9668The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009669created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009670``__stack_chk_fail()`` function.
9671
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009672Arguments:
9673""""""""""
9674
9675The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9676the variable ``@__stack_chk_guard``.
9677
9678Semantics:
9679""""""""""
9680
9681This intrinsic is provided to perform the stack protector check by comparing
9682``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9683values do not match call the ``__stack_chk_fail()`` function.
9684
9685The reason to provide this as an IR level intrinsic instead of implementing it
9686via other IR operations is that in order to perform this operation at the IR
9687level without an intrinsic, one would need to create additional basic blocks to
9688handle the success/failure cases. This makes it difficult to stop the stack
9689protector check from disrupting sibling tail calls in Codegen. With this
9690intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009691codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009692
Sean Silvab084af42012-12-07 10:36:55 +00009693'``llvm.objectsize``' Intrinsic
9694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9695
9696Syntax:
9697"""""""
9698
9699::
9700
9701 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9702 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9703
9704Overview:
9705"""""""""
9706
9707The ``llvm.objectsize`` intrinsic is designed to provide information to
9708the optimizers to determine at compile time whether a) an operation
9709(like memcpy) will overflow a buffer that corresponds to an object, or
9710b) that a runtime check for overflow isn't necessary. An object in this
9711context means an allocation of a specific class, structure, array, or
9712other object.
9713
9714Arguments:
9715""""""""""
9716
9717The ``llvm.objectsize`` intrinsic takes two arguments. The first
9718argument is a pointer to or into the ``object``. The second argument is
9719a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9720or -1 (if false) when the object size is unknown. The second argument
9721only accepts constants.
9722
9723Semantics:
9724""""""""""
9725
9726The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9727the size of the object concerned. If the size cannot be determined at
9728compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9729on the ``min`` argument).
9730
9731'``llvm.expect``' Intrinsic
9732^^^^^^^^^^^^^^^^^^^^^^^^^^^
9733
9734Syntax:
9735"""""""
9736
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009737This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9738integer bit width.
9739
Sean Silvab084af42012-12-07 10:36:55 +00009740::
9741
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009742 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009743 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9744 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9745
9746Overview:
9747"""""""""
9748
9749The ``llvm.expect`` intrinsic provides information about expected (the
9750most probable) value of ``val``, which can be used by optimizers.
9751
9752Arguments:
9753""""""""""
9754
9755The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9756a value. The second argument is an expected value, this needs to be a
9757constant value, variables are not allowed.
9758
9759Semantics:
9760""""""""""
9761
9762This intrinsic is lowered to the ``val``.
9763
Hal Finkel93046912014-07-25 21:13:35 +00009764'``llvm.assume``' Intrinsic
9765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9766
9767Syntax:
9768"""""""
9769
9770::
9771
9772 declare void @llvm.assume(i1 %cond)
9773
9774Overview:
9775"""""""""
9776
9777The ``llvm.assume`` allows the optimizer to assume that the provided
9778condition is true. This information can then be used in simplifying other parts
9779of the code.
9780
9781Arguments:
9782""""""""""
9783
9784The condition which the optimizer may assume is always true.
9785
9786Semantics:
9787""""""""""
9788
9789The intrinsic allows the optimizer to assume that the provided condition is
9790always true whenever the control flow reaches the intrinsic call. No code is
9791generated for this intrinsic, and instructions that contribute only to the
9792provided condition are not used for code generation. If the condition is
9793violated during execution, the behavior is undefined.
9794
9795Please note that optimizer might limit the transformations performed on values
9796used by the ``llvm.assume`` intrinsic in order to preserve the instructions
9797only used to form the intrinsic's input argument. This might prove undesirable
9798if the extra information provided by the ``llvm.assume`` intrinsic does cause
9799sufficient overall improvement in code quality. For this reason,
9800``llvm.assume`` should not be used to document basic mathematical invariants
9801that the optimizer can otherwise deduce or facts that are of little use to the
9802optimizer.
9803
Sean Silvab084af42012-12-07 10:36:55 +00009804'``llvm.donothing``' Intrinsic
9805^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9806
9807Syntax:
9808"""""""
9809
9810::
9811
9812 declare void @llvm.donothing() nounwind readnone
9813
9814Overview:
9815"""""""""
9816
Juergen Ributzkac9161192014-10-23 22:36:13 +00009817The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
9818two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
9819with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009820
9821Arguments:
9822""""""""""
9823
9824None.
9825
9826Semantics:
9827""""""""""
9828
9829This intrinsic does nothing, and it's removed by optimizers and ignored
9830by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009831
9832Stack Map Intrinsics
9833--------------------
9834
9835LLVM provides experimental intrinsics to support runtime patching
9836mechanisms commonly desired in dynamic language JITs. These intrinsics
9837are described in :doc:`StackMaps`.