blob: 258407328ec5ce75e5eac9186694408ba8d24471 [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnere7886e42009-01-11 20:53:49 +000025 <li><a href="#namedtypes">Named Types</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000026 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000027 <li><a href="#functionstructure">Functions</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000028 <li><a href="#aliasstructure">Aliases</a></li>
Reid Spencerca86e162006-12-31 07:07:53 +000029 <li><a href="#paramattrs">Parameter Attributes</a></li>
Devang Patel2c9c3e72008-09-26 23:51:19 +000030 <li><a href="#fnattrs">Function Attributes</a></li>
Gordon Henriksen80a75bf2007-12-10 03:18:06 +000031 <li><a href="#gc">Garbage Collector Names</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000032 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Reid Spencerde151942007-02-19 23:54:10 +000033 <li><a href="#datalayout">Data Layout</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000034 </ol>
35 </li>
Chris Lattner00950542001-06-06 20:29:01 +000036 <li><a href="#typesystem">Type System</a>
37 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000038 <li><a href="#t_classifications">Type Classifications</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +000039 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000040 <ol>
Chris Lattner4f69f462008-01-04 04:32:38 +000041 <li><a href="#t_floating">Floating Point Types</a></li>
42 <li><a href="#t_void">Void Type</a></li>
43 <li><a href="#t_label">Label Type</a></li>
Nick Lewycky7a0370f2009-05-30 05:06:04 +000044 <li><a href="#t_metadata">Metadata Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000045 </ol>
46 </li>
Chris Lattner00950542001-06-06 20:29:01 +000047 <li><a href="#t_derived">Derived Types</a>
48 <ol>
Chris Lattnerb9488a62007-12-18 06:18:21 +000049 <li><a href="#t_integer">Integer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000050 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000051 <li><a href="#t_function">Function Type</a></li>
52 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000053 <li><a href="#t_struct">Structure Type</a></li>
Andrew Lenharth75e10682006-12-08 17:13:00 +000054 <li><a href="#t_pstruct">Packed Structure Type</a></li>
Reid Spencer485bad12007-02-15 03:07:05 +000055 <li><a href="#t_vector">Vector Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000056 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000057 </ol>
58 </li>
Chris Lattner242d61d2009-02-02 07:32:36 +000059 <li><a href="#t_uprefs">Type Up-references</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000060 </ol>
61 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000062 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000063 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000064 <li><a href="#simpleconstants">Simple Constants</a></li>
Chris Lattner70882792009-02-28 18:32:25 +000065 <li><a href="#complexconstants">Complex Constants</a></li>
Dan Gohman0e451ce2008-10-14 16:51:45 +000066 <li><a href="#globalconstants">Global Variable and Function Addresses</a></li>
67 <li><a href="#undefvalues">Undefined Values</a></li>
68 <li><a href="#constantexprs">Constant Expressions</a></li>
Nick Lewycky21cc4462009-04-04 07:22:01 +000069 <li><a href="#metadata">Embedded Metadata</a></li>
Chris Lattnerc3f59762004-12-09 17:30:23 +000070 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000071 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000072 <li><a href="#othervalues">Other Values</a>
73 <ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +000074 <li><a href="#inlineasm">Inline Assembler Expressions</a></li>
Chris Lattnere87d6532006-01-25 23:47:57 +000075 </ol>
76 </li>
Chris Lattner00950542001-06-06 20:29:01 +000077 <li><a href="#instref">Instruction Reference</a>
78 <ol>
79 <li><a href="#terminators">Terminator Instructions</a>
80 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000081 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
82 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000083 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
84 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000085 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000086 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000087 </ol>
88 </li>
Chris Lattner00950542001-06-06 20:29:01 +000089 <li><a href="#binaryops">Binary Operations</a>
90 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000091 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +000092 <li><a href="#i_fadd">'<tt>fadd</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000093 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +000094 <li><a href="#i_fsub">'<tt>fsub</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000095 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Dan Gohmanae3a0be2009-06-04 22:49:04 +000096 <li><a href="#i_fmul">'<tt>fmul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000097 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
98 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
99 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +0000100 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
101 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
102 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000103 </ol>
104 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000105 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
106 <ol>
Reid Spencer8e11bf82007-02-02 13:57:07 +0000107 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
108 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
109 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000110 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000111 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000112 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000113 </ol>
114 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000115 <li><a href="#vectorops">Vector Operations</a>
116 <ol>
117 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
118 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
119 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000120 </ol>
121 </li>
Dan Gohmana334d5f2008-05-12 23:51:09 +0000122 <li><a href="#aggregateops">Aggregate Operations</a>
123 <ol>
124 <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li>
125 <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li>
126 </ol>
127 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000128 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000129 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000130 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
131 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
132 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000133 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
134 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
135 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000136 </ol>
137 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000138 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000139 <ol>
140 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
141 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
142 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
143 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
144 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000145 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
146 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
147 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
148 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000149 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
150 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000151 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000152 </ol>
Dan Gohman0e451ce2008-10-14 16:51:45 +0000153 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000154 <li><a href="#otherops">Other Operations</a>
155 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000156 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
157 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000158 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000159 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000160 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000161 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000162 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000163 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000164 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000165 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000166 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000167 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000168 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
169 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000170 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
171 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
172 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000173 </ol>
174 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000175 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
176 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000177 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
178 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
179 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000180 </ol>
181 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000182 <li><a href="#int_codegen">Code Generator Intrinsics</a>
183 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000184 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
185 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
186 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
187 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
188 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
189 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
190 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000191 </ol>
192 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000193 <li><a href="#int_libc">Standard C Library Intrinsics</a>
194 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000195 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
196 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
197 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
198 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
199 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman91c284c2007-10-15 20:30:11 +0000200 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
201 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
202 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000203 </ol>
204 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000205 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000206 <ol>
Reid Spencera3e435f2007-04-04 02:42:35 +0000207 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000208 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
209 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
210 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000211 </ol>
212 </li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000213 <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a>
214 <ol>
Bill Wendlingda01af72009-02-08 04:04:40 +0000215 <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li>
216 <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li>
217 <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li>
218 <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li>
219 <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendling41b485c2009-02-08 23:00:09 +0000220 <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li>
Bill Wendlingac1df8e2009-02-08 01:40:31 +0000221 </ol>
222 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000223 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +0000224 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sandsf7331b32007-09-11 14:10:23 +0000225 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +0000226 <ol>
227 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands36397f52007-07-27 12:58:54 +0000228 </ol>
229 </li>
Bill Wendling3c44f5b2008-11-18 22:10:53 +0000230 <li><a href="#int_atomics">Atomic intrinsics</a>
231 <ol>
232 <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li>
233 <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li>
234 <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li>
235 <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li>
236 <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li>
237 <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li>
238 <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li>
239 <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li>
240 <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li>
241 <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li>
242 <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li>
243 <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li>
244 <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li>
245 </ol>
246 </li>
Reid Spencer20677642007-07-20 19:59:11 +0000247 <li><a href="#int_general">General intrinsics</a>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000248 <ol>
Reid Spencer20677642007-07-20 19:59:11 +0000249 <li><a href="#int_var_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000250 '<tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000251 <li><a href="#int_annotation">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000252 '<tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +0000253 <li><a href="#int_trap">
Bill Wendling69e4adb2008-11-19 05:56:17 +0000254 '<tt>llvm.trap</tt>' Intrinsic</a></li>
255 <li><a href="#int_stackprotector">
256 '<tt>llvm.stackprotector</tt>' Intrinsic</a></li>
Tanya Lattnerb6367882007-09-21 22:59:12 +0000257 </ol>
Tanya Lattner6d806e92007-06-15 20:50:54 +0000258 </li>
Chris Lattner261efe92003-11-25 01:02:51 +0000259 </ol>
260 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000261</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000262
263<div class="doc_author">
264 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
265 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000266</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000267
Chris Lattner00950542001-06-06 20:29:01 +0000268<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000269<div class="doc_section"> <a name="abstract">Abstract </a></div>
270<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000271
Misha Brukman9d0919f2003-11-08 01:05:38 +0000272<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000273<p>This document is a reference manual for the LLVM assembly language.
Bill Wendling837f39b2008-08-05 22:29:16 +0000274LLVM is a Static Single Assignment (SSA) based representation that provides
Chris Lattnerd3eda892008-08-05 18:29:16 +0000275type safety, low-level operations, flexibility, and the capability of
276representing 'all' high-level languages cleanly. It is the common code
Chris Lattner261efe92003-11-25 01:02:51 +0000277representation used throughout all phases of the LLVM compilation
278strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000279</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000280
Chris Lattner00950542001-06-06 20:29:01 +0000281<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000282<div class="doc_section"> <a name="introduction">Introduction</a> </div>
283<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000284
Misha Brukman9d0919f2003-11-08 01:05:38 +0000285<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000286
Chris Lattner261efe92003-11-25 01:02:51 +0000287<p>The LLVM code representation is designed to be used in three
Gabor Greif04367bf2007-07-06 22:07:22 +0000288different forms: as an in-memory compiler IR, as an on-disk bitcode
Chris Lattner261efe92003-11-25 01:02:51 +0000289representation (suitable for fast loading by a Just-In-Time compiler),
290and as a human readable assembly language representation. This allows
291LLVM to provide a powerful intermediate representation for efficient
292compiler transformations and analysis, while providing a natural means
293to debug and visualize the transformations. The three different forms
294of LLVM are all equivalent. This document describes the human readable
295representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000296
John Criswellc1f786c2005-05-13 22:25:59 +0000297<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000298while being expressive, typed, and extensible at the same time. It
299aims to be a "universal IR" of sorts, by being at a low enough level
300that high-level ideas may be cleanly mapped to it (similar to how
301microprocessors are "universal IR's", allowing many source languages to
302be mapped to them). By providing type information, LLVM can be used as
303the target of optimizations: for example, through pointer analysis, it
304can be proven that a C automatic variable is never accessed outside of
305the current function... allowing it to be promoted to a simple SSA
306value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000307
Misha Brukman9d0919f2003-11-08 01:05:38 +0000308</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000309
Chris Lattner00950542001-06-06 20:29:01 +0000310<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000311<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000312
Misha Brukman9d0919f2003-11-08 01:05:38 +0000313<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000314
Chris Lattner261efe92003-11-25 01:02:51 +0000315<p>It is important to note that this document describes 'well formed'
316LLVM assembly language. There is a difference between what the parser
317accepts and what is considered 'well formed'. For example, the
318following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000319
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000320<div class="doc_code">
Chris Lattnerd7923912004-05-23 21:06:01 +0000321<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000322%x = <a href="#i_add">add</a> i32 1, %x
Chris Lattnerd7923912004-05-23 21:06:01 +0000323</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000324</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000325
Chris Lattner261efe92003-11-25 01:02:51 +0000326<p>...because the definition of <tt>%x</tt> does not dominate all of
327its uses. The LLVM infrastructure provides a verification pass that may
328be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000329automatically run by the parser after parsing input assembly and by
Gabor Greif04367bf2007-07-06 22:07:22 +0000330the optimizer before it outputs bitcode. The violations pointed out
Chris Lattner261efe92003-11-25 01:02:51 +0000331by the verifier pass indicate bugs in transformation passes or input to
332the parser.</p>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000333</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000334
Chris Lattnercc689392007-10-03 17:34:29 +0000335<!-- Describe the typesetting conventions here. -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000336
Chris Lattner00950542001-06-06 20:29:01 +0000337<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000338<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000339<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000340
Misha Brukman9d0919f2003-11-08 01:05:38 +0000341<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000342
Reid Spencer2c452282007-08-07 14:34:28 +0000343 <p>LLVM identifiers come in two basic types: global and local. Global
344 identifiers (functions, global variables) begin with the @ character. Local
345 identifiers (register names, types) begin with the % character. Additionally,
Dan Gohman0e451ce2008-10-14 16:51:45 +0000346 there are three different formats for identifiers, for different purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000347
Chris Lattner00950542001-06-06 20:29:01 +0000348<ol>
Reid Spencer2c452282007-08-07 14:34:28 +0000349 <li>Named values are represented as a string of characters with their prefix.
350 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
351 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000352 Identifiers which require other characters in their names can be surrounded
Daniel Dunbar76dea952008-10-14 23:51:43 +0000353 with quotes. Special characters may be escaped using "\xx" where xx is the
354 ASCII code for the character in hexadecimal. In this way, any character can
355 be used in a name value, even quotes themselves.
Chris Lattnere5d947b2004-12-09 16:36:40 +0000356
Reid Spencer2c452282007-08-07 14:34:28 +0000357 <li>Unnamed values are represented as an unsigned numeric value with their
358 prefix. For example, %12, @2, %44.</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000359
Reid Spencercc16dc32004-12-09 18:02:53 +0000360 <li>Constants, which are described in a <a href="#constants">section about
361 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000362</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000363
Reid Spencer2c452282007-08-07 14:34:28 +0000364<p>LLVM requires that values start with a prefix for two reasons: Compilers
Chris Lattnere5d947b2004-12-09 16:36:40 +0000365don't need to worry about name clashes with reserved words, and the set of
366reserved words may be expanded in the future without penalty. Additionally,
367unnamed identifiers allow a compiler to quickly come up with a temporary
368variable without having to avoid symbol table conflicts.</p>
369
Chris Lattner261efe92003-11-25 01:02:51 +0000370<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000371languages. There are keywords for different opcodes
372('<tt><a href="#i_add">add</a></tt>',
373 '<tt><a href="#i_bitcast">bitcast</a></tt>',
374 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Reid Spencerca86e162006-12-31 07:07:53 +0000375href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
Chris Lattnere5d947b2004-12-09 16:36:40 +0000376and others. These reserved words cannot conflict with variable names, because
Reid Spencer2c452282007-08-07 14:34:28 +0000377none of them start with a prefix character ('%' or '@').</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000378
379<p>Here is an example of LLVM code to multiply the integer variable
380'<tt>%X</tt>' by 8:</p>
381
Misha Brukman9d0919f2003-11-08 01:05:38 +0000382<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000383
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000384<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000385<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000386%result = <a href="#i_mul">mul</a> i32 %X, 8
Chris Lattnere5d947b2004-12-09 16:36:40 +0000387</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000388</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000389
Misha Brukman9d0919f2003-11-08 01:05:38 +0000390<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000391
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000392<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000393<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000394%result = <a href="#i_shl">shl</a> i32 %X, i8 3
Chris Lattnere5d947b2004-12-09 16:36:40 +0000395</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000396</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000397
Misha Brukman9d0919f2003-11-08 01:05:38 +0000398<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000399
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000400<div class="doc_code">
Chris Lattnere5d947b2004-12-09 16:36:40 +0000401<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000402<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
403<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
404%result = <a href="#i_add">add</a> i32 %1, %1
Chris Lattnere5d947b2004-12-09 16:36:40 +0000405</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000406</div>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000407
Chris Lattner261efe92003-11-25 01:02:51 +0000408<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
409important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000410
Chris Lattner00950542001-06-06 20:29:01 +0000411<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000412
413 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
414 line.</li>
415
416 <li>Unnamed temporaries are created when the result of a computation is not
417 assigned to a named value.</li>
418
Misha Brukman9d0919f2003-11-08 01:05:38 +0000419 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000420
Misha Brukman9d0919f2003-11-08 01:05:38 +0000421</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000422
John Criswelle4c57cc2005-05-12 16:52:32 +0000423<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000424demonstrating instructions, we will follow an instruction with a comment that
425defines the type and name of value produced. Comments are shown in italic
426text.</p>
427
Misha Brukman9d0919f2003-11-08 01:05:38 +0000428</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000429
430<!-- *********************************************************************** -->
431<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
432<!-- *********************************************************************** -->
433
434<!-- ======================================================================= -->
435<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
436</div>
437
438<div class="doc_text">
439
440<p>LLVM programs are composed of "Module"s, each of which is a
441translation unit of the input programs. Each module consists of
442functions, global variables, and symbol table entries. Modules may be
443combined together with the LLVM linker, which merges function (and
444global variable) definitions, resolves forward declarations, and merges
445symbol table entries. Here is an example of the "hello world" module:</p>
446
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000447<div class="doc_code">
Chris Lattnerfa730212004-12-09 16:11:40 +0000448<pre><i>; Declare the string constant as a global constant...</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000449<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
450 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000451
452<i>; External declaration of the puts function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000453<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000454
455<i>; Definition of main function</i>
Chris Lattnera89e5f12007-06-12 17:00:26 +0000456define i32 @main() { <i>; i32()* </i>
Dan Gohman2a08c532009-01-04 23:44:43 +0000457 <i>; Convert [13 x i8]* to i8 *...</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000458 %cast210 = <a
Dan Gohman2a08c532009-01-04 23:44:43 +0000459 href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000460
461 <i>; Call puts function to write out the string to stdout...</i>
462 <a
Chris Lattnera89e5f12007-06-12 17:00:26 +0000463 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
Chris Lattnerfa730212004-12-09 16:11:40 +0000464 <a
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000465 href="#i_ret">ret</a> i32 0<br>}<br>
466</pre>
467</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000468
469<p>This example is made up of a <a href="#globalvars">global variable</a>
470named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
471function, and a <a href="#functionstructure">function definition</a>
472for "<tt>main</tt>".</p>
473
Chris Lattnere5d947b2004-12-09 16:36:40 +0000474<p>In general, a module is made up of a list of global values,
475where both functions and global variables are global values. Global values are
476represented by a pointer to a memory location (in this case, a pointer to an
477array of char, and a pointer to a function), and have one of the following <a
478href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000479
Chris Lattnere5d947b2004-12-09 16:36:40 +0000480</div>
481
482<!-- ======================================================================= -->
483<div class="doc_subsection">
484 <a name="linkage">Linkage Types</a>
485</div>
486
487<div class="doc_text">
488
489<p>
490All Global Variables and Functions have one of the following types of linkage:
491</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000492
493<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000494
Rafael Espindolabb46f522009-01-15 20:18:42 +0000495 <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt>
496
497 <dd>Global values with private linkage are only directly accessible by
498 objects in the current module. In particular, linking code into a module with
499 an private global value may cause the private to be renamed as necessary to
500 avoid collisions. Because the symbol is private to the module, all
501 references can be updated. This doesn't show up in any symbol table in the
502 object file.
503 </dd>
504
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000505 <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000506
Duncan Sands81d05c22009-01-16 09:29:46 +0000507 <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in
Rafael Espindolabb46f522009-01-15 20:18:42 +0000508 the case of ELF) in the object file. This corresponds to the notion of the
Chris Lattner4887bd82007-01-14 06:51:48 +0000509 '<tt>static</tt>' keyword in C.
Chris Lattnerfa730212004-12-09 16:11:40 +0000510 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000511
Chris Lattner266c7bb2009-04-13 05:44:34 +0000512 <dt><tt><b><a name="available_externally">available_externally</a></b></tt>:
513 </dt>
514
515 <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted
516 into the object file corresponding to the LLVM module. They exist to
517 allow inlining and other optimizations to take place given knowledge of the
518 definition of the global, which is known to be somewhere outside the module.
519 Globals with <tt>available_externally</tt> linkage are allowed to be discarded
520 at will, and are otherwise the same as <tt>linkonce_odr</tt>. This linkage
521 type is only allowed on definitions, not declarations.</dd>
522
Chris Lattnerfa730212004-12-09 16:11:40 +0000523 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000524
Chris Lattner4887bd82007-01-14 06:51:48 +0000525 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
526 the same name when linkage occurs. This is typically used to implement
527 inline functions, templates, or other code which must be generated in each
528 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
529 allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000530 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000531
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000532 <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt>
533
534 <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt>
535 linkage, except that unreferenced <tt>common</tt> globals may not be
536 discarded. This is used for globals that may be emitted in multiple
537 translation units, but that are not guaranteed to be emitted into every
538 translation unit that uses them. One example of this is tentative
539 definitions in C, such as "<tt>int X;</tt>" at global scope.
540 </dd>
541
Chris Lattnerfa730212004-12-09 16:11:40 +0000542 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000543
Dale Johannesen2307a7f2008-05-23 23:13:41 +0000544 <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except
545 that some targets may choose to emit different assembly sequences for them
546 for target-dependent reasons. This is used for globals that are declared
547 "weak" in C source code.
Chris Lattnerfa730212004-12-09 16:11:40 +0000548 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000549
Chris Lattnerfa730212004-12-09 16:11:40 +0000550 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000551
552 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
553 pointer to array type. When two global variables with appending linkage are
554 linked together, the two global arrays are appended together. This is the
555 LLVM, typesafe, equivalent of having the system linker append together
556 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000557 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000558
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000559 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
Duncan Sands667d4b82009-03-07 15:45:40 +0000560
Chris Lattnerd3eda892008-08-05 18:29:16 +0000561 <dd>The semantics of this linkage follow the ELF object file model: the
562 symbol is weak until linked, if not linked, the symbol becomes null instead
563 of being an undefined reference.
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000564 </dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000565
Duncan Sands667d4b82009-03-07 15:45:40 +0000566 <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt>
Duncan Sands667d4b82009-03-07 15:45:40 +0000567 <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt>
Chris Lattner266c7bb2009-04-13 05:44:34 +0000568 <dd>Some languages allow differing globals to be merged, such as two
Duncan Sands667d4b82009-03-07 15:45:40 +0000569 functions with different semantics. Other languages, such as <tt>C++</tt>,
570 ensure that only equivalent globals are ever merged (the "one definition
Chris Lattner266c7bb2009-04-13 05:44:34 +0000571 rule" - "ODR"). Such languages can use the <tt>linkonce_odr</tt>
Duncan Sands4dc2b392009-03-11 20:14:15 +0000572 and <tt>weak_odr</tt> linkage types to indicate that the global will only
573 be merged with equivalent globals. These linkage types are otherwise the
574 same as their non-<tt>odr</tt> versions.
Duncan Sands667d4b82009-03-07 15:45:40 +0000575 </dd>
576
Chris Lattnerfa730212004-12-09 16:11:40 +0000577 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000578
579 <dd>If none of the above identifiers are used, the global is externally
580 visible, meaning that it participates in linkage and can be used to resolve
581 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000582 </dd>
Reid Spencerc8910842007-04-11 23:49:50 +0000583</dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000584
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000585 <p>
586 The next two types of linkage are targeted for Microsoft Windows platform
587 only. They are designed to support importing (exporting) symbols from (to)
Chris Lattnerd3eda892008-08-05 18:29:16 +0000588 DLLs (Dynamic Link Libraries).
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000589 </p>
590
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000591 <dl>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000592 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
593
594 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
595 or variable via a global pointer to a pointer that is set up by the DLL
596 exporting the symbol. On Microsoft Windows targets, the pointer name is
Dan Gohman79564122009-01-12 21:35:55 +0000597 formed by combining <code>__imp_</code> and the function or variable name.
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000598 </dd>
599
600 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
601
602 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
603 pointer to a pointer in a DLL, so that it can be referenced with the
604 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
Dan Gohman79564122009-01-12 21:35:55 +0000605 name is formed by combining <code>__imp_</code> and the function or variable
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000606 name.
607 </dd>
608
Chris Lattnerfa730212004-12-09 16:11:40 +0000609</dl>
610
Dan Gohmanf0032762008-11-24 17:18:39 +0000611<p>For example, since the "<tt>.LC0</tt>"
Chris Lattnerfa730212004-12-09 16:11:40 +0000612variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
613variable and was linked with this one, one of the two would be renamed,
614preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
615external (i.e., lacking any linkage declarations), they are accessible
Reid Spencerac8d2762007-01-05 00:59:10 +0000616outside of the current module.</p>
617<p>It is illegal for a function <i>declaration</i>
Duncan Sands5f4ee1f2009-03-11 08:08:06 +0000618to have any linkage type other than "externally visible", <tt>dllimport</tt>
619or <tt>extern_weak</tt>.</p>
Duncan Sands667d4b82009-03-07 15:45:40 +0000620<p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt>
621or <tt>weak_odr</tt> linkages.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000622</div>
623
624<!-- ======================================================================= -->
625<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000626 <a name="callingconv">Calling Conventions</a>
627</div>
628
629<div class="doc_text">
630
631<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
632and <a href="#i_invoke">invokes</a> can all have an optional calling convention
633specified for the call. The calling convention of any pair of dynamic
634caller/callee must match, or the behavior of the program is undefined. The
635following calling conventions are supported by LLVM, and more may be added in
636the future:</p>
637
638<dl>
639 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
640
641 <dd>This calling convention (the default if no other calling convention is
642 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000643 supports varargs function calls and tolerates some mismatch in the declared
Reid Spencerc28d2bc2006-12-31 21:30:18 +0000644 prototype and implemented declaration of the function (as does normal C).
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000645 </dd>
646
647 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
648
649 <dd>This calling convention attempts to make calls as fast as possible
650 (e.g. by passing things in registers). This calling convention allows the
651 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattnerd3eda892008-08-05 18:29:16 +0000652 without having to conform to an externally specified ABI (Application Binary
653 Interface). Implementations of this convention should allow arbitrary
Arnold Schwaighofer9097d142008-05-14 09:17:12 +0000654 <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be
655 supported. This calling convention does not support varargs and requires the
656 prototype of all callees to exactly match the prototype of the function
657 definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000658 </dd>
659
660 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
661
662 <dd>This calling convention attempts to make code in the caller as efficient
663 as possible under the assumption that the call is not commonly executed. As
664 such, these calls often preserve all registers so that the call does not break
665 any live ranges in the caller side. This calling convention does not support
666 varargs and requires the prototype of all callees to exactly match the
667 prototype of the function definition.
668 </dd>
669
Chris Lattnercfe6b372005-05-07 01:46:40 +0000670 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000671
672 <dd>Any calling convention may be specified by number, allowing
673 target-specific calling conventions to be used. Target specific calling
674 conventions start at 64.
675 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000676</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000677
678<p>More calling conventions can be added/defined on an as-needed basis, to
679support pascal conventions or any other well-known target-independent
680convention.</p>
681
682</div>
683
684<!-- ======================================================================= -->
685<div class="doc_subsection">
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000686 <a name="visibility">Visibility Styles</a>
687</div>
688
689<div class="doc_text">
690
691<p>
692All Global Variables and Functions have one of the following visibility styles:
693</p>
694
695<dl>
696 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
697
Chris Lattnerd3eda892008-08-05 18:29:16 +0000698 <dd>On targets that use the ELF object file format, default visibility means
699 that the declaration is visible to other
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000700 modules and, in shared libraries, means that the declared entity may be
701 overridden. On Darwin, default visibility means that the declaration is
702 visible to other modules. Default visibility corresponds to "external
703 linkage" in the language.
704 </dd>
705
706 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
707
708 <dd>Two declarations of an object with hidden visibility refer to the same
709 object if they are in the same shared object. Usually, hidden visibility
710 indicates that the symbol will not be placed into the dynamic symbol table,
711 so no other module (executable or shared library) can reference it
712 directly.
713 </dd>
714
Anton Korobeynikov6f9896f2007-04-29 18:35:00 +0000715 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
716
717 <dd>On ELF, protected visibility indicates that the symbol will be placed in
718 the dynamic symbol table, but that references within the defining module will
719 bind to the local symbol. That is, the symbol cannot be overridden by another
720 module.
721 </dd>
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000722</dl>
723
724</div>
725
726<!-- ======================================================================= -->
727<div class="doc_subsection">
Chris Lattnere7886e42009-01-11 20:53:49 +0000728 <a name="namedtypes">Named Types</a>
729</div>
730
731<div class="doc_text">
732
733<p>LLVM IR allows you to specify name aliases for certain types. This can make
734it easier to read the IR and make the IR more condensed (particularly when
735recursive types are involved). An example of a name specification is:
736</p>
737
738<div class="doc_code">
739<pre>
740%mytype = type { %mytype*, i32 }
741</pre>
742</div>
743
744<p>You may give a name to any <a href="#typesystem">type</a> except "<a
745href="t_void">void</a>". Type name aliases may be used anywhere a type is
746expected with the syntax "%mytype".</p>
747
748<p>Note that type names are aliases for the structural type that they indicate,
749and that you can therefore specify multiple names for the same type. This often
750leads to confusing behavior when dumping out a .ll file. Since LLVM IR uses
751structural typing, the name is not part of the type. When printing out LLVM IR,
752the printer will pick <em>one name</em> to render all types of a particular
753shape. This means that if you have code where two different source types end up
754having the same LLVM type, that the dumper will sometimes print the "wrong" or
755unexpected type. This is an important design point and isn't going to
756change.</p>
757
758</div>
759
Chris Lattnere7886e42009-01-11 20:53:49 +0000760<!-- ======================================================================= -->
761<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000762 <a name="globalvars">Global Variables</a>
763</div>
764
765<div class="doc_text">
766
Chris Lattner3689a342005-02-12 19:30:21 +0000767<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000768instead of run-time. Global variables may optionally be initialized, may have
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000769an explicit section to be placed in, and may have an optional explicit alignment
770specified. A variable may be defined as "thread_local", which means that it
771will not be shared by threads (each thread will have a separated copy of the
772variable). A variable may be defined as a global "constant," which indicates
773that the contents of the variable will <b>never</b> be modified (enabling better
Chris Lattner3689a342005-02-12 19:30:21 +0000774optimization, allowing the global data to be placed in the read-only section of
775an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000776cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000777
778<p>
779LLVM explicitly allows <em>declarations</em> of global variables to be marked
780constant, even if the final definition of the global is not. This capability
781can be used to enable slightly better optimization of the program, but requires
782the language definition to guarantee that optimizations based on the
783'constantness' are valid for the translation units that do not include the
784definition.
785</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000786
787<p>As SSA values, global variables define pointer values that are in
788scope (i.e. they dominate) all basic blocks in the program. Global
789variables always define a pointer to their "content" type because they
790describe a region of memory, and all memory objects in LLVM are
791accessed through pointers.</p>
792
Christopher Lamb284d9922007-12-11 09:31:00 +0000793<p>A global variable may be declared to reside in a target-specifc numbered
794address space. For targets that support them, address spaces may affect how
795optimizations are performed and/or what target instructions are used to access
Christopher Lambd49e18d2007-12-12 08:44:39 +0000796the variable. The default address space is zero. The address space qualifier
797must precede any other attributes.</p>
Christopher Lamb284d9922007-12-11 09:31:00 +0000798
Chris Lattner88f6c462005-11-12 00:45:07 +0000799<p>LLVM allows an explicit section to be specified for globals. If the target
800supports it, it will emit globals to the section specified.</p>
801
Chris Lattner2cbdc452005-11-06 08:02:57 +0000802<p>An explicit alignment may be specified for a global. If not present, or if
803the alignment is set to zero, the alignment of the global is set by the target
804to whatever it feels convenient. If an explicit alignment is specified, the
805global is forced to have at least that much alignment. All alignments must be
806a power of 2.</p>
807
Christopher Lamb284d9922007-12-11 09:31:00 +0000808<p>For example, the following defines a global in a numbered address space with
809an initializer, section, and alignment:</p>
Chris Lattner68027ea2007-01-14 00:27:09 +0000810
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000811<div class="doc_code">
Chris Lattner68027ea2007-01-14 00:27:09 +0000812<pre>
Dan Gohman398873c2009-01-11 00:40:00 +0000813@G = addrspace(5) constant float 1.0, section "foo", align 4
Chris Lattner68027ea2007-01-14 00:27:09 +0000814</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000815</div>
Chris Lattner68027ea2007-01-14 00:27:09 +0000816
Chris Lattnerfa730212004-12-09 16:11:40 +0000817</div>
818
819
820<!-- ======================================================================= -->
821<div class="doc_subsection">
822 <a name="functionstructure">Functions</a>
823</div>
824
825<div class="doc_text">
826
Reid Spencerca86e162006-12-31 07:07:53 +0000827<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
828an optional <a href="#linkage">linkage type</a>, an optional
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000829<a href="#visibility">visibility style</a>, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000830<a href="#callingconv">calling convention</a>, a return type, an optional
831<a href="#paramattrs">parameter attribute</a> for the return type, a function
832name, a (possibly empty) argument list (each with optional
Devang Patelf642f472008-10-06 18:50:38 +0000833<a href="#paramattrs">parameter attributes</a>), optional
834<a href="#fnattrs">function attributes</a>, an optional section,
835an optional alignment, an optional <a href="#gc">garbage collector name</a>,
Chris Lattner0c46a7d2008-10-04 18:10:21 +0000836an opening curly brace, a list of basic blocks, and a closing curly brace.
Anton Korobeynikov8cea37b2007-01-23 12:35:46 +0000837
838LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
839optional <a href="#linkage">linkage type</a>, an optional
840<a href="#visibility">visibility style</a>, an optional
841<a href="#callingconv">calling convention</a>, a return type, an optional
Reid Spencerca86e162006-12-31 07:07:53 +0000842<a href="#paramattrs">parameter attribute</a> for the return type, a function
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000843name, a possibly empty list of arguments, an optional alignment, and an optional
Gordon Henriksene754abe2007-12-10 03:30:21 +0000844<a href="#gc">garbage collector name</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000845
Chris Lattnerd3eda892008-08-05 18:29:16 +0000846<p>A function definition contains a list of basic blocks, forming the CFG
847(Control Flow Graph) for
Chris Lattnerfa730212004-12-09 16:11:40 +0000848the function. Each basic block may optionally start with a label (giving the
849basic block a symbol table entry), contains a list of instructions, and ends
850with a <a href="#terminators">terminator</a> instruction (such as a branch or
851function return).</p>
852
Chris Lattner4a3c9012007-06-08 16:52:14 +0000853<p>The first basic block in a function is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000854executed on entrance to the function, and it is not allowed to have predecessor
855basic blocks (i.e. there can not be any branches to the entry block of a
856function). Because the block can have no predecessors, it also cannot have any
857<a href="#i_phi">PHI nodes</a>.</p>
858
Chris Lattner88f6c462005-11-12 00:45:07 +0000859<p>LLVM allows an explicit section to be specified for functions. If the target
860supports it, it will emit functions to the section specified.</p>
861
Chris Lattner2cbdc452005-11-06 08:02:57 +0000862<p>An explicit alignment may be specified for a function. If not present, or if
863the alignment is set to zero, the alignment of the function is set by the target
864to whatever it feels convenient. If an explicit alignment is specified, the
865function is forced to have at least that much alignment. All alignments must be
866a power of 2.</p>
867
Devang Patel307e8ab2008-10-07 17:48:33 +0000868 <h5>Syntax:</h5>
869
870<div class="doc_code">
Chris Lattner50ad45c2008-10-13 16:55:18 +0000871<tt>
872define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
873 [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
874 &lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
875 [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
876 [<a href="#gc">gc</a>] { ... }
877</tt>
Devang Patel307e8ab2008-10-07 17:48:33 +0000878</div>
879
Chris Lattnerfa730212004-12-09 16:11:40 +0000880</div>
881
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000882
883<!-- ======================================================================= -->
884<div class="doc_subsection">
885 <a name="aliasstructure">Aliases</a>
886</div>
887<div class="doc_text">
888 <p>Aliases act as "second name" for the aliasee value (which can be either
Anton Korobeynikov726d45c2008-03-22 08:36:14 +0000889 function, global variable, another alias or bitcast of global value). Aliases
890 may have an optional <a href="#linkage">linkage type</a>, and an
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000891 optional <a href="#visibility">visibility style</a>.</p>
892
893 <h5>Syntax:</h5>
894
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000895<div class="doc_code">
Bill Wendlingaac388b2007-05-29 09:42:13 +0000896<pre>
Duncan Sands0b23ac12008-09-12 20:48:21 +0000897@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
Bill Wendlingaac388b2007-05-29 09:42:13 +0000898</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000899</div>
Anton Korobeynikov8b0a8c82007-04-25 14:27:10 +0000900
901</div>
902
903
904
Chris Lattner4e9aba72006-01-23 23:23:47 +0000905<!-- ======================================================================= -->
Reid Spencerca86e162006-12-31 07:07:53 +0000906<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
907<div class="doc_text">
908 <p>The return type and each parameter of a function type may have a set of
909 <i>parameter attributes</i> associated with them. Parameter attributes are
910 used to communicate additional information about the result or parameters of
Duncan Sandsdc024672007-11-27 13:23:08 +0000911 a function. Parameter attributes are considered to be part of the function,
912 not of the function type, so functions with different parameter attributes
913 can have the same function type.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000914
Reid Spencer950e9f82007-01-15 18:27:39 +0000915 <p>Parameter attributes are simple keywords that follow the type specified. If
916 multiple parameter attributes are needed, they are space separated. For
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000917 example:</p>
918
919<div class="doc_code">
920<pre>
Nick Lewyckyb6a7d252009-02-15 23:06:14 +0000921declare i32 @printf(i8* noalias nocapture, ...)
Chris Lattner66d922c2008-10-04 18:33:34 +0000922declare i32 @atoi(i8 zeroext)
923declare signext i8 @returns_signed_char()
Bill Wendling2f7a8b02007-05-29 09:04:49 +0000924</pre>
925</div>
926
Duncan Sandsdc024672007-11-27 13:23:08 +0000927 <p>Note that any attributes for the function result (<tt>nounwind</tt>,
928 <tt>readonly</tt>) come immediately after the argument list.</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000929
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000930 <p>Currently, only the following parameter attributes are defined:</p>
Reid Spencerca86e162006-12-31 07:07:53 +0000931 <dl>
Reid Spencer9445e9a2007-07-19 23:13:04 +0000932 <dt><tt>zeroext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000933 <dd>This indicates to the code generator that the parameter or return value
934 should be zero-extended to a 32-bit value by the caller (for a parameter)
935 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000936
Reid Spencer9445e9a2007-07-19 23:13:04 +0000937 <dt><tt>signext</tt></dt>
Chris Lattner66d922c2008-10-04 18:33:34 +0000938 <dd>This indicates to the code generator that the parameter or return value
939 should be sign-extended to a 32-bit value by the caller (for a parameter)
940 or the callee (for a return value).</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000941
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000942 <dt><tt>inreg</tt></dt>
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000943 <dd>This indicates that this parameter or return value should be treated
944 in a special target-dependent fashion during while emitting code for a
945 function call or return (usually, by putting it in a register as opposed
Chris Lattner66d922c2008-10-04 18:33:34 +0000946 to memory, though some targets use it to distinguish between two different
947 kinds of registers). Use of this attribute is target-specific.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000948
Duncan Sandsedb05df2008-10-06 08:14:18 +0000949 <dt><tt><a name="byval">byval</a></tt></dt>
Chris Lattner0747baa2008-01-15 04:34:22 +0000950 <dd>This indicates that the pointer parameter should really be passed by
951 value to the function. The attribute implies that a hidden copy of the
952 pointee is made between the caller and the callee, so the callee is unable
Chris Lattnerebec6782008-08-05 18:21:08 +0000953 to modify the value in the callee. This attribute is only valid on LLVM
Chris Lattner0747baa2008-01-15 04:34:22 +0000954 pointer arguments. It is generally used to pass structs and arrays by
Duncan Sandsedb05df2008-10-06 08:14:18 +0000955 value, but is also valid on pointers to scalars. The copy is considered to
956 belong to the caller not the callee (for example,
957 <tt><a href="#readonly">readonly</a></tt> functions should not write to
Devang Patelf642f472008-10-06 18:50:38 +0000958 <tt>byval</tt> parameters). This is not a valid attribute for return
Chris Lattnerce459b12009-02-05 05:42:28 +0000959 values. The byval attribute also supports specifying an alignment with the
960 align attribute. This has a target-specific effect on the code generator
961 that usually indicates a desired alignment for the synthesized stack
962 slot.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000963
Anton Korobeynikov34d6dea2007-01-28 14:30:45 +0000964 <dt><tt>sret</tt></dt>
Duncan Sandse26dec62008-02-18 04:19:38 +0000965 <dd>This indicates that the pointer parameter specifies the address of a
966 structure that is the return value of the function in the source program.
Chris Lattner66d922c2008-10-04 18:33:34 +0000967 This pointer must be guaranteed by the caller to be valid: loads and stores
968 to the structure may be assumed by the callee to not to trap. This may only
Devang Patelf642f472008-10-06 18:50:38 +0000969 be applied to the first parameter. This is not a valid attribute for
970 return values. </dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000971
Zhou Shengfebca342007-06-05 05:28:26 +0000972 <dt><tt>noalias</tt></dt>
Nick Lewycky02ff3082008-11-24 03:41:24 +0000973 <dd>This indicates that the pointer does not alias any global or any other
974 parameter. The caller is responsible for ensuring that this is the
Nick Lewyckyb2b32fd2008-11-24 05:00:44 +0000975 case. On a function return value, <tt>noalias</tt> additionally indicates
976 that the pointer does not alias any other pointers visible to the
Nick Lewyckyf23d0d32008-12-19 06:39:12 +0000977 caller. For further details, please see the discussion of the NoAlias
978 response in
979 <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias
980 analysis</a>.</dd>
981
982 <dt><tt>nocapture</tt></dt>
983 <dd>This indicates that the callee does not make any copies of the pointer
984 that outlive the callee itself. This is not a valid attribute for return
985 values.</dd>
Chris Lattner47507de2008-01-11 06:20:47 +0000986
Duncan Sands50f19f52007-07-27 19:57:41 +0000987 <dt><tt>nest</tt></dt>
Duncan Sands0789b8b2008-07-08 09:27:25 +0000988 <dd>This indicates that the pointer parameter can be excised using the
Devang Patelf642f472008-10-06 18:50:38 +0000989 <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid
990 attribute for return values.</dd>
Anton Korobeynikov7f705592007-01-12 19:20:47 +0000991 </dl>
Reid Spencerca86e162006-12-31 07:07:53 +0000992
Reid Spencerca86e162006-12-31 07:07:53 +0000993</div>
994
995<!-- ======================================================================= -->
Chris Lattner4e9aba72006-01-23 23:23:47 +0000996<div class="doc_subsection">
Gordon Henriksen80a75bf2007-12-10 03:18:06 +0000997 <a name="gc">Garbage Collector Names</a>
998</div>
999
1000<div class="doc_text">
1001<p>Each function may specify a garbage collector name, which is simply a
1002string.</p>
1003
1004<div class="doc_code"><pre
1005>define void @f() gc "name" { ...</pre></div>
1006
1007<p>The compiler declares the supported values of <i>name</i>. Specifying a
1008collector which will cause the compiler to alter its output in order to support
1009the named garbage collection algorithm.</p>
1010</div>
1011
1012<!-- ======================================================================= -->
1013<div class="doc_subsection">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001014 <a name="fnattrs">Function Attributes</a>
Devang Patelf8b94812008-09-04 23:05:13 +00001015</div>
1016
1017<div class="doc_text">
Devang Patel2c9c3e72008-09-26 23:51:19 +00001018
1019<p>Function attributes are set to communicate additional information about
1020 a function. Function attributes are considered to be part of the function,
1021 not of the function type, so functions with different parameter attributes
1022 can have the same function type.</p>
1023
1024 <p>Function attributes are simple keywords that follow the type specified. If
1025 multiple attributes are needed, they are space separated. For
1026 example:</p>
Devang Patelf8b94812008-09-04 23:05:13 +00001027
1028<div class="doc_code">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001029<pre>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001030define void @f() noinline { ... }
1031define void @f() alwaysinline { ... }
1032define void @f() alwaysinline optsize { ... }
1033define void @f() optsize
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001034</pre>
Devang Patelf8b94812008-09-04 23:05:13 +00001035</div>
1036
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001037<dl>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001038<dt><tt>alwaysinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001039<dd>This attribute indicates that the inliner should attempt to inline this
1040function into callers whenever possible, ignoring any active inlining size
1041threshold for this caller.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001042
Devang Patel2c9c3e72008-09-26 23:51:19 +00001043<dt><tt>noinline</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001044<dd>This attribute indicates that the inliner should never inline this function
Chris Lattner94b5f7d2008-10-05 17:14:59 +00001045in any situation. This attribute may not be used together with the
Chris Lattner88d4b592008-10-04 18:23:17 +00001046<tt>alwaysinline</tt> attribute.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001047
Devang Patel2c9c3e72008-09-26 23:51:19 +00001048<dt><tt>optsize</tt></dt>
Devang Patel66c6c652008-09-29 18:34:44 +00001049<dd>This attribute suggests that optimization passes and code generator passes
Chris Lattner88d4b592008-10-04 18:23:17 +00001050make choices that keep the code size of this function low, and otherwise do
1051optimizations specifically to reduce code size.</dd>
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001052
Devang Patel2c9c3e72008-09-26 23:51:19 +00001053<dt><tt>noreturn</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001054<dd>This function attribute indicates that the function never returns normally.
1055This produces undefined behavior at runtime if the function ever does
1056dynamically return.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001057
1058<dt><tt>nounwind</tt></dt>
Chris Lattner88d4b592008-10-04 18:23:17 +00001059<dd>This function attribute indicates that the function never returns with an
1060unwind or exceptional control flow. If the function does unwind, its runtime
1061behavior is undefined.</dd>
1062
1063<dt><tt>readnone</tt></dt>
Duncan Sands7af1c782009-05-06 06:49:50 +00001064<dd>This attribute indicates that the function computes its result (or decides to
1065unwind an exception) based strictly on its arguments, without dereferencing any
Duncan Sandsedb05df2008-10-06 08:14:18 +00001066pointer arguments or otherwise accessing any mutable state (e.g. memory, control
1067registers, etc) visible to caller functions. It does not write through any
1068pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and
Duncan Sands7af1c782009-05-06 06:49:50 +00001069never changes any state visible to callers. This means that it cannot unwind
1070exceptions by calling the <tt>C++</tt> exception throwing methods, but could
1071use the <tt>unwind</tt> instruction.</dd>
Devang Patel2c9c3e72008-09-26 23:51:19 +00001072
Duncan Sandsedb05df2008-10-06 08:14:18 +00001073<dt><tt><a name="readonly">readonly</a></tt></dt>
1074<dd>This attribute indicates that the function does not write through any
1075pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments)
1076or otherwise modify any state (e.g. memory, control registers, etc) visible to
1077caller functions. It may dereference pointer arguments and read state that may
Duncan Sands7af1c782009-05-06 06:49:50 +00001078be set in the caller. A readonly function always returns the same value (or
1079unwinds an exception identically) when called with the same set of arguments
1080and global state. It cannot unwind an exception by calling the <tt>C++</tt>
1081exception throwing methods, but may use the <tt>unwind</tt> instruction.</dd>
Bill Wendling31359ba2008-11-13 01:02:51 +00001082
1083<dt><tt><a name="ssp">ssp</a></tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001084<dd>This attribute indicates that the function should emit a stack smashing
Bill Wendling31359ba2008-11-13 01:02:51 +00001085protector. It is in the form of a "canary"&mdash;a random value placed on the
1086stack before the local variables that's checked upon return from the function to
1087see if it has been overwritten. A heuristic is used to determine if a function
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001088needs stack protectors or not.
Bill Wendling31359ba2008-11-13 01:02:51 +00001089
Devang Patel5d96fda2009-06-12 19:45:19 +00001090<br><br>If a function that has an <tt>ssp</tt> attribute is inlined into a function
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001091that doesn't have an <tt>ssp</tt> attribute, then the resulting function will
Devang Patel5d96fda2009-06-12 19:45:19 +00001092have an <tt>ssp</tt> attribute.</dd>
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001093
1094<dt><tt>sspreq</tt></dt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001095<dd>This attribute indicates that the function should <em>always</em> emit a
Bill Wendling31359ba2008-11-13 01:02:51 +00001096stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt>
Bill Wendlingbaa39d82008-11-26 19:19:05 +00001097function attribute.
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001098
Devang Patel5d96fda2009-06-12 19:45:19 +00001099If a function that has an <tt>sspreq</tt> attribute is inlined into a
Bill Wendlingfbaa7ed2008-11-26 19:07:40 +00001100function that doesn't have an <tt>sspreq</tt> attribute or which has
1101an <tt>ssp</tt> attribute, then the resulting function will have
Devang Patel5d96fda2009-06-12 19:45:19 +00001102an <tt>sspreq</tt> attribute.</dd>
1103
1104<dt><tt>noredzone</tt></dt>
Dan Gohman2185f9e2009-06-15 17:37:09 +00001105<dd>This attribute indicates that the code generator should not use a
Dan Gohman125473b2009-06-15 21:18:01 +00001106red zone, even if the target-specific ABI normally permits it.
Dan Gohman2185f9e2009-06-15 17:37:09 +00001107</dd>
Devang Patel5d96fda2009-06-12 19:45:19 +00001108
1109<dt><tt>noimplicitfloat</tt></dt>
1110<dd>This attributes disables implicit floating point instructions.</dd>
1111
Anton Korobeynikovc5ec8a72009-07-17 18:07:26 +00001112<dt><tt>naked</tt></dt>
Chris Lattner0c542ff2009-07-17 21:14:28 +00001113<dd>This attribute disables prologue / epilogue emission for the function.
1114This can have very system-specific consequences.</dd>
Anton Korobeynikovc5ec8a72009-07-17 18:07:26 +00001115
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001116</dl>
1117
Devang Patelf8b94812008-09-04 23:05:13 +00001118</div>
1119
1120<!-- ======================================================================= -->
1121<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +00001122 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001123</div>
1124
1125<div class="doc_text">
1126<p>
1127Modules may contain "module-level inline asm" blocks, which corresponds to the
1128GCC "file scope inline asm" blocks. These blocks are internally concatenated by
1129LLVM and treated as a single unit, but may be separated in the .ll file if
1130desired. The syntax is very simple:
1131</p>
1132
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001133<div class="doc_code">
1134<pre>
1135module asm "inline asm code goes here"
1136module asm "more can go here"
1137</pre>
1138</div>
Chris Lattner4e9aba72006-01-23 23:23:47 +00001139
1140<p>The strings can contain any character by escaping non-printable characters.
1141 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
1142 for the number.
1143</p>
1144
1145<p>
1146 The inline asm code is simply printed to the machine code .s file when
1147 assembly code is generated.
1148</p>
1149</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001150
Reid Spencerde151942007-02-19 23:54:10 +00001151<!-- ======================================================================= -->
1152<div class="doc_subsection">
1153 <a name="datalayout">Data Layout</a>
1154</div>
1155
1156<div class="doc_text">
1157<p>A module may specify a target specific data layout string that specifies how
Reid Spencerc8910842007-04-11 23:49:50 +00001158data is to be laid out in memory. The syntax for the data layout is simply:</p>
1159<pre> target datalayout = "<i>layout specification</i>"</pre>
1160<p>The <i>layout specification</i> consists of a list of specifications
1161separated by the minus sign character ('-'). Each specification starts with a
1162letter and may include other information after the letter to define some
1163aspect of the data layout. The specifications accepted are as follows: </p>
Reid Spencerde151942007-02-19 23:54:10 +00001164<dl>
1165 <dt><tt>E</tt></dt>
1166 <dd>Specifies that the target lays out data in big-endian form. That is, the
1167 bits with the most significance have the lowest address location.</dd>
1168 <dt><tt>e</tt></dt>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001169 <dd>Specifies that the target lays out data in little-endian form. That is,
Reid Spencerde151942007-02-19 23:54:10 +00001170 the bits with the least significance have the lowest address location.</dd>
1171 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1172 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
1173 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
1174 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
1175 too.</dd>
1176 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1177 <dd>This specifies the alignment for an integer type of a given bit
1178 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
1179 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1180 <dd>This specifies the alignment for a vector type of a given bit
1181 <i>size</i>.</dd>
1182 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1183 <dd>This specifies the alignment for a floating point type of a given bit
1184 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
1185 (double).</dd>
1186 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1187 <dd>This specifies the alignment for an aggregate type of a given bit
1188 <i>size</i>.</dd>
Daniel Dunbar87bde0b2009-06-08 22:17:53 +00001189 <dt><tt>s<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
1190 <dd>This specifies the alignment for a stack object of a given bit
1191 <i>size</i>.</dd>
Reid Spencerde151942007-02-19 23:54:10 +00001192</dl>
1193<p>When constructing the data layout for a given target, LLVM starts with a
1194default set of specifications which are then (possibly) overriden by the
1195specifications in the <tt>datalayout</tt> keyword. The default specifications
1196are given in this list:</p>
1197<ul>
1198 <li><tt>E</tt> - big endian</li>
1199 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
1200 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
1201 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
1202 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
1203 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
Chris Lattnerd3eda892008-08-05 18:29:16 +00001204 <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred
Reid Spencerde151942007-02-19 23:54:10 +00001205 alignment of 64-bits</li>
1206 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
1207 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
1208 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
1209 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
1210 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
Daniel Dunbar87bde0b2009-06-08 22:17:53 +00001211 <li><tt>s0:64:64</tt> - stack objects are 64-bit aligned</li>
Reid Spencerde151942007-02-19 23:54:10 +00001212</ul>
Chris Lattnerebec6782008-08-05 18:21:08 +00001213<p>When LLVM is determining the alignment for a given type, it uses the
Dan Gohman0e451ce2008-10-14 16:51:45 +00001214following rules:</p>
Reid Spencerde151942007-02-19 23:54:10 +00001215<ol>
1216 <li>If the type sought is an exact match for one of the specifications, that
1217 specification is used.</li>
1218 <li>If no match is found, and the type sought is an integer type, then the
1219 smallest integer type that is larger than the bitwidth of the sought type is
1220 used. If none of the specifications are larger than the bitwidth then the the
1221 largest integer type is used. For example, given the default specifications
1222 above, the i7 type will use the alignment of i8 (next largest) while both
1223 i65 and i256 will use the alignment of i64 (largest specified).</li>
1224 <li>If no match is found, and the type sought is a vector type, then the
1225 largest vector type that is smaller than the sought vector type will be used
Dan Gohman0e451ce2008-10-14 16:51:45 +00001226 as a fall back. This happens because &lt;128 x double&gt; can be implemented
1227 in terms of 64 &lt;2 x double&gt;, for example.</li>
Reid Spencerde151942007-02-19 23:54:10 +00001228</ol>
1229</div>
Chris Lattnerfa730212004-12-09 16:11:40 +00001230
Chris Lattner00950542001-06-06 20:29:01 +00001231<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001232<div class="doc_section"> <a name="typesystem">Type System</a> </div>
1233<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +00001234
Misha Brukman9d0919f2003-11-08 01:05:38 +00001235<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +00001236
Misha Brukman9d0919f2003-11-08 01:05:38 +00001237<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +00001238intermediate representation. Being typed enables a number of
Chris Lattnerd3eda892008-08-05 18:29:16 +00001239optimizations to be performed on the intermediate representation directly,
1240without having to do
Chris Lattner261efe92003-11-25 01:02:51 +00001241extra analyses on the side before the transformation. A strong type
1242system makes it easier to read the generated code and enables novel
1243analyses and transformations that are not feasible to perform on normal
1244three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +00001245
1246</div>
1247
Chris Lattner00950542001-06-06 20:29:01 +00001248<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001249<div class="doc_subsection"> <a name="t_classifications">Type
Chris Lattner261efe92003-11-25 01:02:51 +00001250Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001251<div class="doc_text">
Chris Lattner4f69f462008-01-04 04:32:38 +00001252<p>The types fall into a few useful
Chris Lattner261efe92003-11-25 01:02:51 +00001253classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001254
1255<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001256 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001257 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001258 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001259 <td><a href="#t_integer">integer</a></td>
Reid Spencer2b916312007-05-16 18:44:01 +00001260 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001261 </tr>
1262 <tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001263 <td><a href="#t_floating">floating point</a></td>
1264 <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +00001265 </tr>
1266 <tr>
1267 <td><a name="t_firstclass">first class</a></td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001268 <td><a href="#t_integer">integer</a>,
1269 <a href="#t_floating">floating point</a>,
1270 <a href="#t_pointer">pointer</a>,
Dan Gohman0066db62008-06-18 18:42:13 +00001271 <a href="#t_vector">vector</a>,
Dan Gohmana334d5f2008-05-12 23:51:09 +00001272 <a href="#t_struct">structure</a>,
1273 <a href="#t_array">array</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001274 <a href="#t_label">label</a>,
1275 <a href="#t_metadata">metadata</a>.
Reid Spencerca86e162006-12-31 07:07:53 +00001276 </td>
Chris Lattner261efe92003-11-25 01:02:51 +00001277 </tr>
Chris Lattner4f69f462008-01-04 04:32:38 +00001278 <tr>
1279 <td><a href="#t_primitive">primitive</a></td>
1280 <td><a href="#t_label">label</a>,
1281 <a href="#t_void">void</a>,
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001282 <a href="#t_floating">floating point</a>,
1283 <a href="#t_metadata">metadata</a>.</td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001284 </tr>
1285 <tr>
1286 <td><a href="#t_derived">derived</a></td>
1287 <td><a href="#t_integer">integer</a>,
1288 <a href="#t_array">array</a>,
1289 <a href="#t_function">function</a>,
1290 <a href="#t_pointer">pointer</a>,
1291 <a href="#t_struct">structure</a>,
1292 <a href="#t_pstruct">packed structure</a>,
1293 <a href="#t_vector">vector</a>,
1294 <a href="#t_opaque">opaque</a>.
Dan Gohman01ac1012008-10-14 16:32:04 +00001295 </td>
Chris Lattner4f69f462008-01-04 04:32:38 +00001296 </tr>
Chris Lattner261efe92003-11-25 01:02:51 +00001297 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001298</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001299
Chris Lattner261efe92003-11-25 01:02:51 +00001300<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1301most important. Values of these types are the only ones which can be
1302produced by instructions, passed as arguments, or used as operands to
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00001303instructions.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001304</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001305
Chris Lattner00950542001-06-06 20:29:01 +00001306<!-- ======================================================================= -->
Chris Lattner4f69f462008-01-04 04:32:38 +00001307<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001308
Chris Lattner4f69f462008-01-04 04:32:38 +00001309<div class="doc_text">
1310<p>The primitive types are the fundamental building blocks of the LLVM
1311system.</p>
1312
Chris Lattner8f8c7b72008-01-04 04:34:14 +00001313</div>
1314
Chris Lattner4f69f462008-01-04 04:32:38 +00001315<!-- _______________________________________________________________________ -->
1316<div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div>
1317
1318<div class="doc_text">
1319 <table>
1320 <tbody>
1321 <tr><th>Type</th><th>Description</th></tr>
1322 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
1323 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
1324 <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr>
1325 <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr>
1326 <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr>
1327 </tbody>
1328 </table>
1329</div>
1330
1331<!-- _______________________________________________________________________ -->
1332<div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div>
1333
1334<div class="doc_text">
1335<h5>Overview:</h5>
1336<p>The void type does not represent any value and has no size.</p>
1337
1338<h5>Syntax:</h5>
1339
1340<pre>
1341 void
1342</pre>
1343</div>
1344
1345<!-- _______________________________________________________________________ -->
1346<div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div>
1347
1348<div class="doc_text">
1349<h5>Overview:</h5>
1350<p>The label type represents code labels.</p>
1351
1352<h5>Syntax:</h5>
1353
1354<pre>
1355 label
1356</pre>
1357</div>
1358
Nick Lewycky7a0370f2009-05-30 05:06:04 +00001359<!-- _______________________________________________________________________ -->
1360<div class="doc_subsubsection"> <a name="t_metadata">Metadata Type</a> </div>
1361
1362<div class="doc_text">
1363<h5>Overview:</h5>
1364<p>The metadata type represents embedded metadata. The only derived type that
1365may contain metadata is <tt>metadata*</tt> or a function type that returns or
1366takes metadata typed parameters, but not pointer to metadata types.</p>
1367
1368<h5>Syntax:</h5>
1369
1370<pre>
1371 metadata
1372</pre>
1373</div>
1374
Chris Lattner4f69f462008-01-04 04:32:38 +00001375
1376<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001377<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001378
Misha Brukman9d0919f2003-11-08 01:05:38 +00001379<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001380
Chris Lattner261efe92003-11-25 01:02:51 +00001381<p>The real power in LLVM comes from the derived types in the system.
1382This is what allows a programmer to represent arrays, functions,
1383pointers, and other useful types. Note that these derived types may be
1384recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001385
Misha Brukman9d0919f2003-11-08 01:05:38 +00001386</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001387
Chris Lattner00950542001-06-06 20:29:01 +00001388<!-- _______________________________________________________________________ -->
Reid Spencer2b916312007-05-16 18:44:01 +00001389<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1390
1391<div class="doc_text">
1392
1393<h5>Overview:</h5>
1394<p>The integer type is a very simple derived type that simply specifies an
1395arbitrary bit width for the integer type desired. Any bit width from 1 bit to
13962^23-1 (about 8 million) can be specified.</p>
1397
1398<h5>Syntax:</h5>
1399
1400<pre>
1401 iN
1402</pre>
1403
1404<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1405value.</p>
1406
1407<h5>Examples:</h5>
1408<table class="layout">
Nick Lewycky86c48642009-05-24 02:46:06 +00001409 <tr class="layout">
1410 <td class="left"><tt>i1</tt></td>
1411 <td class="left">a single-bit integer.</td>
Reid Spencer2b916312007-05-16 18:44:01 +00001412 </tr>
Nick Lewycky86c48642009-05-24 02:46:06 +00001413 <tr class="layout">
1414 <td class="left"><tt>i32</tt></td>
1415 <td class="left">a 32-bit integer.</td>
1416 </tr>
1417 <tr class="layout">
1418 <td class="left"><tt>i1942652</tt></td>
1419 <td class="left">a really big integer of over 1 million bits.</td>
1420 </tr>
Reid Spencer2b916312007-05-16 18:44:01 +00001421</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001422
1423<p>Note that the code generator does not yet support large integer types
1424to be used as function return types. The specific limit on how large a
1425return type the code generator can currently handle is target-dependent;
1426currently it's often 64 bits for 32-bit targets and 128 bits for 64-bit
1427targets.</p>
1428
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001429</div>
Reid Spencer2b916312007-05-16 18:44:01 +00001430
1431<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001432<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001433
Misha Brukman9d0919f2003-11-08 01:05:38 +00001434<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001435
Chris Lattner00950542001-06-06 20:29:01 +00001436<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001437
Misha Brukman9d0919f2003-11-08 01:05:38 +00001438<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +00001439sequentially in memory. The array type requires a size (number of
1440elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001441
Chris Lattner7faa8832002-04-14 06:13:44 +00001442<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001443
1444<pre>
1445 [&lt;# elements&gt; x &lt;elementtype&gt;]
1446</pre>
1447
John Criswelle4c57cc2005-05-12 16:52:32 +00001448<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +00001449be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001450
Chris Lattner7faa8832002-04-14 06:13:44 +00001451<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001452<table class="layout">
1453 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001454 <td class="left"><tt>[40 x i32]</tt></td>
1455 <td class="left">Array of 40 32-bit integer values.</td>
1456 </tr>
1457 <tr class="layout">
1458 <td class="left"><tt>[41 x i32]</tt></td>
1459 <td class="left">Array of 41 32-bit integer values.</td>
1460 </tr>
1461 <tr class="layout">
1462 <td class="left"><tt>[4 x i8]</tt></td>
1463 <td class="left">Array of 4 8-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001464 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001465</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001466<p>Here are some examples of multidimensional arrays:</p>
1467<table class="layout">
1468 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001469 <td class="left"><tt>[3 x [4 x i32]]</tt></td>
1470 <td class="left">3x4 array of 32-bit integer values.</td>
1471 </tr>
1472 <tr class="layout">
1473 <td class="left"><tt>[12 x [10 x float]]</tt></td>
1474 <td class="left">12x10 array of single precision floating point values.</td>
1475 </tr>
1476 <tr class="layout">
1477 <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td>
1478 <td class="left">2x3x4 array of 16-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001479 </tr>
1480</table>
Chris Lattnere67a9512005-06-24 17:22:57 +00001481
John Criswell0ec250c2005-10-24 16:17:18 +00001482<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1483length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +00001484LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1485As a special case, however, zero length arrays are recognized to be variable
1486length. This allows implementation of 'pascal style arrays' with the LLVM
Reid Spencerca86e162006-12-31 07:07:53 +00001487type "{ i32, [0 x float]}", for example.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00001488
Dan Gohmand8791e52009-01-24 15:58:40 +00001489<p>Note that the code generator does not yet support large aggregate types
1490to be used as function return types. The specific limit on how large an
1491aggregate return type the code generator can currently handle is
1492target-dependent, and also dependent on the aggregate element types.</p>
1493
Misha Brukman9d0919f2003-11-08 01:05:38 +00001494</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001495
Chris Lattner00950542001-06-06 20:29:01 +00001496<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001497<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001498<div class="doc_text">
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001499
Chris Lattner00950542001-06-06 20:29:01 +00001500<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001501
Chris Lattner261efe92003-11-25 01:02:51 +00001502<p>The function type can be thought of as a function signature. It
Devang Patela582f402008-03-24 05:35:41 +00001503consists of a return type and a list of formal parameter types. The
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001504return type of a function type is a scalar type, a void type, or a struct type.
Devang Patel7a3ad1a2008-03-24 20:52:42 +00001505If the return type is a struct type then all struct elements must be of first
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001506class types, and the struct must have at least one element.</p>
Devang Patelc3fc6df2008-03-10 20:49:15 +00001507
Chris Lattner00950542001-06-06 20:29:01 +00001508<h5>Syntax:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001509
1510<pre>
1511 &lt;returntype list&gt; (&lt;parameter list&gt;)
1512</pre>
1513
John Criswell0ec250c2005-10-24 16:17:18 +00001514<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +00001515specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +00001516which indicates that the function takes a variable number of arguments.
1517Variable argument functions can access their arguments with the <a
Devang Patelc3fc6df2008-03-10 20:49:15 +00001518 href="#int_varargs">variable argument handling intrinsic</a> functions.
1519'<tt>&lt;returntype list&gt;</tt>' is a comma-separated list of
1520<a href="#t_firstclass">first class</a> type specifiers.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00001521
Chris Lattner00950542001-06-06 20:29:01 +00001522<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001523<table class="layout">
1524 <tr class="layout">
Reid Spencer92f82302006-12-31 07:18:34 +00001525 <td class="left"><tt>i32 (i32)</tt></td>
1526 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001527 </td>
Reid Spencer92f82302006-12-31 07:18:34 +00001528 </tr><tr class="layout">
Reid Spencer9445e9a2007-07-19 23:13:04 +00001529 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Reid Spencerf17a0b72006-12-31 07:20:23 +00001530 </tt></td>
Reid Spencer92f82302006-12-31 07:18:34 +00001531 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1532 an <tt>i16</tt> that should be sign extended and a
Reid Spencerca86e162006-12-31 07:07:53 +00001533 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
Reid Spencer92f82302006-12-31 07:18:34 +00001534 <tt>float</tt>.
1535 </td>
1536 </tr><tr class="layout">
1537 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1538 <td class="left">A vararg function that takes at least one
Reid Spencera5173382007-01-04 16:43:23 +00001539 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
Reid Spencer92f82302006-12-31 07:18:34 +00001540 which returns an integer. This is the signature for <tt>printf</tt> in
1541 LLVM.
Reid Spencerd3f876c2004-11-01 08:19:36 +00001542 </td>
Devang Patela582f402008-03-24 05:35:41 +00001543 </tr><tr class="layout">
1544 <td class="left"><tt>{i32, i32} (i32)</tt></td>
Misha Brukmanb0a57aa2008-11-27 06:41:20 +00001545 <td class="left">A function taking an <tt>i32</tt>, returning two
1546 <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt>
Devang Patela582f402008-03-24 05:35:41 +00001547 </td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001548 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001549</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001550
Misha Brukman9d0919f2003-11-08 01:05:38 +00001551</div>
Chris Lattner00950542001-06-06 20:29:01 +00001552<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001553<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001554<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001555<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001556<p>The structure type is used to represent a collection of data members
1557together in memory. The packing of the field types is defined to match
1558the ABI of the underlying processor. The elements of a structure may
1559be any type that has a size.</p>
1560<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1561and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1562field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1563instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001564<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001565<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +00001566<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001567<table class="layout">
1568 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001569 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1570 <td class="left">A triple of three <tt>i32</tt> values</td>
1571 </tr><tr class="layout">
1572 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1573 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1574 second element is a <a href="#t_pointer">pointer</a> to a
1575 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1576 an <tt>i32</tt>.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001577 </tr>
Chris Lattner00950542001-06-06 20:29:01 +00001578</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001579
1580<p>Note that the code generator does not yet support large aggregate types
1581to be used as function return types. The specific limit on how large an
1582aggregate return type the code generator can currently handle is
1583target-dependent, and also dependent on the aggregate element types.</p>
1584
Misha Brukman9d0919f2003-11-08 01:05:38 +00001585</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001586
Chris Lattner00950542001-06-06 20:29:01 +00001587<!-- _______________________________________________________________________ -->
Andrew Lenharth75e10682006-12-08 17:13:00 +00001588<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1589</div>
1590<div class="doc_text">
1591<h5>Overview:</h5>
1592<p>The packed structure type is used to represent a collection of data members
1593together in memory. There is no padding between fields. Further, the alignment
1594of a packed structure is 1 byte. The elements of a packed structure may
1595be any type that has a size.</p>
1596<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1597and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1598field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1599instruction.</p>
1600<h5>Syntax:</h5>
1601<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1602<h5>Examples:</h5>
1603<table class="layout">
1604 <tr class="layout">
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001605 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1606 <td class="left">A triple of three <tt>i32</tt> values</td>
1607 </tr><tr class="layout">
Bill Wendlinge36dccc2008-09-07 10:26:33 +00001608 <td class="left">
1609<tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)*&nbsp;}&nbsp;&gt;</tt></td>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001610 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1611 second element is a <a href="#t_pointer">pointer</a> to a
1612 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1613 an <tt>i32</tt>.</td>
Andrew Lenharth75e10682006-12-08 17:13:00 +00001614 </tr>
1615</table>
1616</div>
1617
1618<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001619<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001620<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00001621<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001622<p>As in many languages, the pointer type represents a pointer or
Christopher Lamb284d9922007-12-11 09:31:00 +00001623reference to another object, which must live in memory. Pointer types may have
1624an optional address space attribute defining the target-specific numbered
1625address space where the pointed-to object resides. The default address space is
1626zero.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001627
1628<p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does
Chris Lattnere220e8c2009-02-08 22:21:28 +00001629it permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p>
Chris Lattner0fd4a272009-02-08 19:53:29 +00001630
Chris Lattner7faa8832002-04-14 06:13:44 +00001631<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001632<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +00001633<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001634<table class="layout">
1635 <tr class="layout">
Dan Gohman2a08c532009-01-04 23:44:43 +00001636 <td class="left"><tt>[4 x i32]*</tt></td>
Chris Lattner23ff1f92007-12-19 05:04:11 +00001637 <td class="left">A <a href="#t_pointer">pointer</a> to <a
1638 href="#t_array">array</a> of four <tt>i32</tt> values.</td>
1639 </tr>
1640 <tr class="layout">
1641 <td class="left"><tt>i32 (i32 *) *</tt></td>
1642 <td class="left"> A <a href="#t_pointer">pointer</a> to a <a
Reid Spencerca86e162006-12-31 07:07:53 +00001643 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
Chris Lattner23ff1f92007-12-19 05:04:11 +00001644 <tt>i32</tt>.</td>
1645 </tr>
1646 <tr class="layout">
1647 <td class="left"><tt>i32 addrspace(5)*</tt></td>
1648 <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value
1649 that resides in address space #5.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001650 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001651</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001652</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001653
Chris Lattnera58561b2004-08-12 19:12:28 +00001654<!-- _______________________________________________________________________ -->
Reid Spencer485bad12007-02-15 03:07:05 +00001655<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001656<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +00001657
Chris Lattnera58561b2004-08-12 19:12:28 +00001658<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001659
Reid Spencer485bad12007-02-15 03:07:05 +00001660<p>A vector type is a simple derived type that represents a vector
1661of elements. Vector types are used when multiple primitive data
Chris Lattnera58561b2004-08-12 19:12:28 +00001662are operated in parallel using a single instruction (SIMD).
Reid Spencer485bad12007-02-15 03:07:05 +00001663A vector type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +00001664elements) and an underlying primitive data type. Vectors must have a power
Reid Spencer485bad12007-02-15 03:07:05 +00001665of two length (1, 2, 4, 8, 16 ...). Vector types are
Chris Lattnera58561b2004-08-12 19:12:28 +00001666considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001667
Chris Lattnera58561b2004-08-12 19:12:28 +00001668<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001669
1670<pre>
1671 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1672</pre>
1673
John Criswellc1f786c2005-05-13 22:25:59 +00001674<p>The number of elements is a constant integer value; elementtype may
Chris Lattner3b19d652007-01-15 01:54:13 +00001675be any integer or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001676
Chris Lattnera58561b2004-08-12 19:12:28 +00001677<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001678
Reid Spencerd3f876c2004-11-01 08:19:36 +00001679<table class="layout">
1680 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001681 <td class="left"><tt>&lt;4 x i32&gt;</tt></td>
1682 <td class="left">Vector of 4 32-bit integer values.</td>
1683 </tr>
1684 <tr class="layout">
1685 <td class="left"><tt>&lt;8 x float&gt;</tt></td>
1686 <td class="left">Vector of 8 32-bit floating-point values.</td>
1687 </tr>
1688 <tr class="layout">
1689 <td class="left"><tt>&lt;2 x i64&gt;</tt></td>
1690 <td class="left">Vector of 2 64-bit integer values.</td>
Reid Spencerd3f876c2004-11-01 08:19:36 +00001691 </tr>
1692</table>
Dan Gohmand8791e52009-01-24 15:58:40 +00001693
1694<p>Note that the code generator does not yet support large vector types
1695to be used as function return types. The specific limit on how large a
1696vector return type codegen can currently handle is target-dependent;
1697currently it's often a few times longer than a hardware vector register.</p>
1698
Misha Brukman9d0919f2003-11-08 01:05:38 +00001699</div>
1700
Chris Lattner69c11bb2005-04-25 17:34:15 +00001701<!-- _______________________________________________________________________ -->
1702<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1703<div class="doc_text">
1704
1705<h5>Overview:</h5>
1706
1707<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksen8ac04ff2007-10-14 00:34:53 +00001708corresponds (for example) to the C notion of a forward declared structure type.
Chris Lattner69c11bb2005-04-25 17:34:15 +00001709In LLVM, opaque types can eventually be resolved to any type (not just a
1710structure type).</p>
1711
1712<h5>Syntax:</h5>
1713
1714<pre>
1715 opaque
1716</pre>
1717
1718<h5>Examples:</h5>
1719
1720<table class="layout">
1721 <tr class="layout">
Chris Lattner23ff1f92007-12-19 05:04:11 +00001722 <td class="left"><tt>opaque</tt></td>
1723 <td class="left">An opaque type.</td>
Chris Lattner69c11bb2005-04-25 17:34:15 +00001724 </tr>
1725</table>
1726</div>
1727
Chris Lattner242d61d2009-02-02 07:32:36 +00001728<!-- ======================================================================= -->
1729<div class="doc_subsection">
1730 <a name="t_uprefs">Type Up-references</a>
1731</div>
1732
1733<div class="doc_text">
1734<h5>Overview:</h5>
1735<p>
1736An "up reference" allows you to refer to a lexically enclosing type without
1737requiring it to have a name. For instance, a structure declaration may contain a
1738pointer to any of the types it is lexically a member of. Example of up
1739references (with their equivalent as named type declarations) include:</p>
1740
1741<pre>
Chris Lattner3060f5b2009-02-09 10:00:56 +00001742 { \2 * } %x = type { %x* }
Chris Lattner242d61d2009-02-02 07:32:36 +00001743 { \2 }* %y = type { %y }*
1744 \1* %z = type %z*
1745</pre>
1746
1747<p>
1748An up reference is needed by the asmprinter for printing out cyclic types when
1749there is no declared name for a type in the cycle. Because the asmprinter does
1750not want to print out an infinite type string, it needs a syntax to handle
1751recursive types that have no names (all names are optional in llvm IR).
1752</p>
1753
1754<h5>Syntax:</h5>
1755<pre>
1756 \&lt;level&gt;
1757</pre>
1758
1759<p>
1760The level is the count of the lexical type that is being referred to.
1761</p>
1762
1763<h5>Examples:</h5>
1764
1765<table class="layout">
1766 <tr class="layout">
1767 <td class="left"><tt>\1*</tt></td>
1768 <td class="left">Self-referential pointer.</td>
1769 </tr>
1770 <tr class="layout">
1771 <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td>
1772 <td class="left">Recursive structure where the upref refers to the out-most
1773 structure.</td>
1774 </tr>
1775</table>
1776</div>
1777
Chris Lattner69c11bb2005-04-25 17:34:15 +00001778
Chris Lattnerc3f59762004-12-09 17:30:23 +00001779<!-- *********************************************************************** -->
1780<div class="doc_section"> <a name="constants">Constants</a> </div>
1781<!-- *********************************************************************** -->
1782
1783<div class="doc_text">
1784
1785<p>LLVM has several different basic types of constants. This section describes
1786them all and their syntax.</p>
1787
1788</div>
1789
1790<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001791<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001792
1793<div class="doc_text">
1794
1795<dl>
1796 <dt><b>Boolean constants</b></dt>
1797
1798 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
Reid Spencerc78f3372007-01-12 03:35:51 +00001799 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
Chris Lattnerc3f59762004-12-09 17:30:23 +00001800 </dd>
1801
1802 <dt><b>Integer constants</b></dt>
1803
Reid Spencercc16dc32004-12-09 18:02:53 +00001804 <dd>Standard integers (such as '4') are constants of the <a
Reid Spencera5173382007-01-04 16:43:23 +00001805 href="#t_integer">integer</a> type. Negative numbers may be used with
Chris Lattnerc3f59762004-12-09 17:30:23 +00001806 integer types.
1807 </dd>
1808
1809 <dt><b>Floating point constants</b></dt>
1810
1811 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1812 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnera73afe02008-04-01 18:45:27 +00001813 notation (see below). The assembler requires the exact decimal value of
1814 a floating-point constant. For example, the assembler accepts 1.25 but
1815 rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point
1816 constants must have a <a href="#t_floating">floating point</a> type. </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001817
1818 <dt><b>Null pointer constants</b></dt>
1819
John Criswell9e2485c2004-12-10 15:51:16 +00001820 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001821 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1822
1823</dl>
1824
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001825<p>The one non-intuitive notation for constants is the hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001826of floating point constants. For example, the form '<tt>double
18270x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
18284.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001829(and the only time that they are generated by the disassembler) is when a
1830floating point constant must be emitted but it cannot be represented as a
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001831decimal floating point number in a reasonable number of digits. For example,
1832NaN's, infinities, and other
Reid Spencercc16dc32004-12-09 18:02:53 +00001833special values are represented in their IEEE hexadecimal format so that
1834assembly and disassembly do not cause any bits to change in the constants.</p>
Dale Johannesenbd5e5a82009-02-11 22:14:51 +00001835<p>When using the hexadecimal form, constants of types float and double are
1836represented using the 16-digit form shown above (which matches the IEEE754
1837representation for double); float values must, however, be exactly representable
1838as IEE754 single precision.
1839Hexadecimal format is always used for long
1840double, and there are three forms of long double. The 80-bit
1841format used by x86 is represented as <tt>0xK</tt>
1842followed by 20 hexadecimal digits.
1843The 128-bit format used by PowerPC (two adjacent doubles) is represented
1844by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit
1845format is represented
1846by <tt>0xL</tt> followed by 32 hexadecimal digits; no currently supported
1847target uses this format. Long doubles will only work if they match
1848the long double format on your target. All hexadecimal formats are big-endian
1849(sign bit at the left).</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001850</div>
1851
1852<!-- ======================================================================= -->
Chris Lattner70882792009-02-28 18:32:25 +00001853<div class="doc_subsection">
1854<a name="aggregateconstants"> <!-- old anchor -->
1855<a name="complexconstants">Complex Constants</a></a>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001856</div>
1857
1858<div class="doc_text">
Chris Lattner70882792009-02-28 18:32:25 +00001859<p>Complex constants are a (potentially recursive) combination of simple
1860constants and smaller complex constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001861
1862<dl>
1863 <dt><b>Structure constants</b></dt>
1864
1865 <dd>Structure constants are represented with notation similar to structure
1866 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattner64910ee2007-12-25 20:34:52 +00001867 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>",
1868 where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001869 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001870 types of elements must match those specified by the type.
1871 </dd>
1872
1873 <dt><b>Array constants</b></dt>
1874
1875 <dd>Array constants are represented with notation similar to array type
1876 definitions (a comma separated list of elements, surrounded by square brackets
Reid Spencerca86e162006-12-31 07:07:53 +00001877 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001878 constants must have <a href="#t_array">array type</a>, and the number and
1879 types of elements must match those specified by the type.
1880 </dd>
1881
Reid Spencer485bad12007-02-15 03:07:05 +00001882 <dt><b>Vector constants</b></dt>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001883
Reid Spencer485bad12007-02-15 03:07:05 +00001884 <dd>Vector constants are represented with notation similar to vector type
Chris Lattnerc3f59762004-12-09 17:30:23 +00001885 definitions (a comma separated list of elements, surrounded by
Reid Spencerca86e162006-12-31 07:07:53 +00001886 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00001887 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
Reid Spencer485bad12007-02-15 03:07:05 +00001888 href="#t_vector">vector type</a>, and the number and types of elements must
Chris Lattnerc3f59762004-12-09 17:30:23 +00001889 match those specified by the type.
1890 </dd>
1891
1892 <dt><b>Zero initialization</b></dt>
1893
1894 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1895 value to zero of <em>any</em> type, including scalar and aggregate types.
1896 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001897 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001898 initializers.
1899 </dd>
Nick Lewycky21cc4462009-04-04 07:22:01 +00001900
1901 <dt><b>Metadata node</b></dt>
1902
Nick Lewycky1e8c7a62009-05-30 16:08:30 +00001903 <dd>A metadata node is a structure-like constant with
1904 <a href="#t_metadata">metadata type</a>. For example:
1905 "<tt>metadata !{ i32 0, metadata !"test" }</tt>". Unlike other constants
1906 that are meant to be interpreted as part of the instruction stream, metadata
1907 is a place to attach additional information such as debug info.
Nick Lewycky21cc4462009-04-04 07:22:01 +00001908 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001909</dl>
1910
1911</div>
1912
1913<!-- ======================================================================= -->
1914<div class="doc_subsection">
1915 <a name="globalconstants">Global Variable and Function Addresses</a>
1916</div>
1917
1918<div class="doc_text">
1919
1920<p>The addresses of <a href="#globalvars">global variables</a> and <a
1921href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001922constants. These constants are explicitly referenced when the <a
1923href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001924href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1925file:</p>
1926
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001927<div class="doc_code">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001928<pre>
Chris Lattnera18a4242007-06-06 18:28:13 +00001929@X = global i32 17
1930@Y = global i32 42
1931@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
Chris Lattnerc3f59762004-12-09 17:30:23 +00001932</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00001933</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001934
1935</div>
1936
1937<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001938<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001939<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001940 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001941 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001942 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001943
Reid Spencer2dc45b82004-12-09 18:13:12 +00001944 <p>Undefined values indicate to the compiler that the program is well defined
1945 no matter what value is used, giving the compiler more freedom to optimize.
1946 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001947</div>
1948
1949<!-- ======================================================================= -->
1950<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1951</div>
1952
1953<div class="doc_text">
1954
1955<p>Constant expressions are used to allow expressions involving other constants
1956to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001957href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001958that does not have side effects (e.g. load and call are not supported). The
1959following is the syntax for constant expressions:</p>
1960
1961<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001962 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1963 <dd>Truncate a constant to another type. The bit size of CST must be larger
Chris Lattner3b19d652007-01-15 01:54:13 +00001964 than the bit size of TYPE. Both types must be integers.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001965
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001966 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1967 <dd>Zero extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001968 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001969
1970 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1971 <dd>Sign extend a constant to another type. The bit size of CST must be
Chris Lattner3b19d652007-01-15 01:54:13 +00001972 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001973
1974 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1975 <dd>Truncate a floating point constant to another floating point type. The
1976 size of CST must be larger than the size of TYPE. Both types must be
1977 floating point.</dd>
1978
1979 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1980 <dd>Floating point extend a constant to another type. The size of CST must be
1981 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1982
Reid Spencer1539a1c2007-07-31 14:40:14 +00001983 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001984 <dd>Convert a floating point constant to the corresponding unsigned integer
Nate Begemanb348d182007-11-17 03:58:34 +00001985 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1986 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1987 of the same number of elements. If the value won't fit in the integer type,
1988 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001989
Reid Spencerd4448792006-11-09 23:03:26 +00001990 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001991 <dd>Convert a floating point constant to the corresponding signed integer
Nate Begemanb348d182007-11-17 03:58:34 +00001992 constant. TYPE must be a scalar or vector integer type. CST must be of scalar
1993 or vector floating point type. Both CST and TYPE must be scalars, or vectors
1994 of the same number of elements. If the value won't fit in the integer type,
1995 the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001996
Reid Spencerd4448792006-11-09 23:03:26 +00001997 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001998 <dd>Convert an unsigned integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00001999 constant. TYPE must be a scalar or vector floating point type. CST must be of
2000 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
2001 of the same number of elements. If the value won't fit in the floating point
2002 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002003
Reid Spencerd4448792006-11-09 23:03:26 +00002004 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002005 <dd>Convert a signed integer constant to the corresponding floating point
Nate Begemanb348d182007-11-17 03:58:34 +00002006 constant. TYPE must be a scalar or vector floating point type. CST must be of
2007 scalar or vector integer type. Both CST and TYPE must be scalars, or vectors
2008 of the same number of elements. If the value won't fit in the floating point
2009 type, the results are undefined.</dd>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002010
Reid Spencer5c0ef472006-11-11 23:08:07 +00002011 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
2012 <dd>Convert a pointer typed constant to the corresponding integer constant
2013 TYPE must be an integer type. CST must be of pointer type. The CST value is
2014 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
2015
2016 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
2017 <dd>Convert a integer constant to a pointer constant. TYPE must be a
2018 pointer type. CST must be of integer type. The CST value is zero extended,
2019 truncated, or unchanged to make it fit in a pointer size. This one is
2020 <i>really</i> dangerous!</dd>
2021
2022 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Chris Lattner03bbad62009-02-28 18:27:03 +00002023 <dd>Convert a constant, CST, to another TYPE. The constraints of the operands
2024 are the same as those for the <a href="#i_bitcast">bitcast
2025 instruction</a>.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002026
2027 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
2028
2029 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
2030 constants. As with the <a href="#i_getelementptr">getelementptr</a>
2031 instruction, the index list may have zero or more indexes, which are required
2032 to make sense for the type of "CSTPTR".</dd>
2033
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002034 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
2035
2036 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00002037 constants.</dd>
2038
2039 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
2040 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
2041
2042 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
2043 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002044
2045 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
2046
2047 <dd>Perform the <a href="#i_extractelement">extractelement
Dan Gohman0e451ce2008-10-14 16:51:45 +00002048 operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00002049
Robert Bocchino05ccd702006-01-15 20:48:27 +00002050 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
2051
2052 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00002053 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00002054
Chris Lattnerc1989542006-04-08 00:13:41 +00002055
2056 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
2057
2058 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00002059 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00002060
Chris Lattnerc3f59762004-12-09 17:30:23 +00002061 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
2062
Reid Spencer2dc45b82004-12-09 18:13:12 +00002063 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
2064 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00002065 binary</a> operations. The constraints on operands are the same as those for
2066 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00002067 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002068</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002069</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00002070
Nick Lewycky21cc4462009-04-04 07:22:01 +00002071<!-- ======================================================================= -->
2072<div class="doc_subsection"><a name="metadata">Embedded Metadata</a>
2073</div>
2074
2075<div class="doc_text">
2076
2077<p>Embedded metadata provides a way to attach arbitrary data to the
2078instruction stream without affecting the behaviour of the program. There are
Nick Lewycky7a0370f2009-05-30 05:06:04 +00002079two metadata primitives, strings and nodes. All metadata has the
2080<tt>metadata</tt> type and is identified in syntax by a preceding exclamation
2081point ('<tt>!</tt>').
Nick Lewycky21cc4462009-04-04 07:22:01 +00002082</p>
2083
2084<p>A metadata string is a string surrounded by double quotes. It can contain
2085any character by escaping non-printable characters with "\xx" where "xx" is
2086the two digit hex code. For example: "<tt>!"test\00"</tt>".
2087</p>
2088
2089<p>Metadata nodes are represented with notation similar to structure constants
2090(a comma separated list of elements, surrounded by braces and preceeded by an
Nick Lewycky7a0370f2009-05-30 05:06:04 +00002091exclamation point). For example: "<tt>!{ metadata !"test\00", i32 10}</tt>".
Nick Lewycky21cc4462009-04-04 07:22:01 +00002092</p>
2093
Nick Lewyckycb337992009-05-10 20:57:05 +00002094<p>A metadata node will attempt to track changes to the values it holds. In
2095the event that a value is deleted, it will be replaced with a typeless
Nick Lewycky7a0370f2009-05-30 05:06:04 +00002096"<tt>null</tt>", such as "<tt>metadata !{null, i32 10}</tt>".</p>
Nick Lewyckycb337992009-05-10 20:57:05 +00002097
Nick Lewycky21cc4462009-04-04 07:22:01 +00002098<p>Optimizations may rely on metadata to provide additional information about
2099the program that isn't available in the instructions, or that isn't easily
2100computable. Similarly, the code generator may expect a certain metadata format
2101to be used to express debugging information.</p>
2102</div>
2103
Chris Lattner00950542001-06-06 20:29:01 +00002104<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00002105<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
2106<!-- *********************************************************************** -->
2107
2108<!-- ======================================================================= -->
2109<div class="doc_subsection">
2110<a name="inlineasm">Inline Assembler Expressions</a>
2111</div>
2112
2113<div class="doc_text">
2114
2115<p>
2116LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
2117Module-Level Inline Assembly</a>) through the use of a special value. This
2118value represents the inline assembler as a string (containing the instructions
2119to emit), a list of operand constraints (stored as a string), and a flag that
2120indicates whether or not the inline asm expression has side effects. An example
2121inline assembler expression is:
2122</p>
2123
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002124<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002125<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002126i32 (i32) asm "bswap $0", "=r,r"
Chris Lattnere87d6532006-01-25 23:47:57 +00002127</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002128</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002129
2130<p>
2131Inline assembler expressions may <b>only</b> be used as the callee operand of
2132a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
2133</p>
2134
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002135<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002136<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002137%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
Chris Lattnere87d6532006-01-25 23:47:57 +00002138</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002139</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002140
2141<p>
2142Inline asms with side effects not visible in the constraint list must be marked
2143as having side effects. This is done through the use of the
2144'<tt>sideeffect</tt>' keyword, like so:
2145</p>
2146
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002147<div class="doc_code">
Chris Lattnere87d6532006-01-25 23:47:57 +00002148<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002149call void asm sideeffect "eieio", ""()
Chris Lattnere87d6532006-01-25 23:47:57 +00002150</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00002151</div>
Chris Lattnere87d6532006-01-25 23:47:57 +00002152
2153<p>TODO: The format of the asm and constraints string still need to be
2154documented here. Constraints on what can be done (e.g. duplication, moving, etc
Chris Lattner4f993352008-10-04 18:36:02 +00002155need to be documented). This is probably best done by reference to another
2156document that covers inline asm from a holistic perspective.
Chris Lattnere87d6532006-01-25 23:47:57 +00002157</p>
2158
2159</div>
2160
2161<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00002162<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
2163<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00002164
Misha Brukman9d0919f2003-11-08 01:05:38 +00002165<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002166
Chris Lattner261efe92003-11-25 01:02:51 +00002167<p>The LLVM instruction set consists of several different
2168classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00002169instructions</a>, <a href="#binaryops">binary instructions</a>,
2170<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00002171 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
2172instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002173
Misha Brukman9d0919f2003-11-08 01:05:38 +00002174</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002175
Chris Lattner00950542001-06-06 20:29:01 +00002176<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002177<div class="doc_subsection"> <a name="terminators">Terminator
2178Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002179
Misha Brukman9d0919f2003-11-08 01:05:38 +00002180<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00002181
Chris Lattner261efe92003-11-25 01:02:51 +00002182<p>As mentioned <a href="#functionstructure">previously</a>, every
2183basic block in a program ends with a "Terminator" instruction, which
2184indicates which block should be executed after the current block is
2185finished. These terminator instructions typically yield a '<tt>void</tt>'
2186value: they produce control flow, not values (the one exception being
2187the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00002188<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00002189 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
2190instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00002191the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
2192 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
2193 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002194
Misha Brukman9d0919f2003-11-08 01:05:38 +00002195</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00002196
Chris Lattner00950542001-06-06 20:29:01 +00002197<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002198<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
2199Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002200<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002201<h5>Syntax:</h5>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002202<pre>
2203 ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002204 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00002205</pre>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002206
Chris Lattner00950542001-06-06 20:29:01 +00002207<h5>Overview:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002208
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002209<p>The '<tt>ret</tt>' instruction is used to return control flow (and
2210optionally a value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00002211<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002212returns a value and then causes control flow, and one that just causes
Chris Lattner261efe92003-11-25 01:02:51 +00002213control flow to occur.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002214
Chris Lattner00950542001-06-06 20:29:01 +00002215<h5>Arguments:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002216
Dan Gohmanb1e6b962008-10-04 19:00:07 +00002217<p>The '<tt>ret</tt>' instruction optionally accepts a single argument,
2218the return value. The type of the return value must be a
2219'<a href="#t_firstclass">first class</a>' type.</p>
2220
2221<p>A function is not <a href="#wellformed">well formed</a> if
2222it it has a non-void return type and contains a '<tt>ret</tt>'
2223instruction with no return value or a return value with a type that
2224does not match its type, or if it has a void return type and contains
2225a '<tt>ret</tt>' instruction with a return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002226
Chris Lattner00950542001-06-06 20:29:01 +00002227<h5>Semantics:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002228
Chris Lattner261efe92003-11-25 01:02:51 +00002229<p>When the '<tt>ret</tt>' instruction is executed, control flow
2230returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00002231 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00002232the instruction after the call. If the caller was an "<a
2233 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00002234at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00002235returns a value, that value shall set the call or invoke instruction's
Dan Gohman0e451ce2008-10-14 16:51:45 +00002236return value.</p>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002237
Chris Lattner00950542001-06-06 20:29:01 +00002238<h5>Example:</h5>
Chris Lattnerf4cde4e2008-04-23 04:59:35 +00002239
2240<pre>
2241 ret i32 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002242 ret void <i>; Return from a void function</i>
Bill Wendling0a4bbbf2009-02-28 22:12:54 +00002243 ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i>
Chris Lattner00950542001-06-06 20:29:01 +00002244</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002245
Dan Gohmand8791e52009-01-24 15:58:40 +00002246<p>Note that the code generator does not yet fully support large
2247 return values. The specific sizes that are currently supported are
2248 dependent on the target. For integers, on 32-bit targets the limit
2249 is often 64 bits, and on 64-bit targets the limit is often 128 bits.
2250 For aggregate types, the current limits are dependent on the element
2251 types; for example targets are often limited to 2 total integer
2252 elements and 2 total floating-point elements.</p>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00002253
Misha Brukman9d0919f2003-11-08 01:05:38 +00002254</div>
Chris Lattner00950542001-06-06 20:29:01 +00002255<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002256<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002257<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002258<h5>Syntax:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002259<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00002260</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002261<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002262<p>The '<tt>br</tt>' instruction is used to cause control flow to
2263transfer to a different basic block in the current function. There are
2264two forms of this instruction, corresponding to a conditional branch
2265and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002266<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002267<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
Reid Spencerc78f3372007-01-12 03:35:51 +00002268single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
Reid Spencerde151942007-02-19 23:54:10 +00002269unconditional form of the '<tt>br</tt>' instruction takes a single
2270'<tt>label</tt>' value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002271<h5>Semantics:</h5>
Reid Spencerc78f3372007-01-12 03:35:51 +00002272<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002273argument is evaluated. If the value is <tt>true</tt>, control flows
2274to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
2275control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002276<h5>Example:</h5>
Chris Lattner60150a32009-05-09 18:11:50 +00002277<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Reid Spencerca86e162006-12-31 07:07:53 +00002278 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002279</div>
Chris Lattner00950542001-06-06 20:29:01 +00002280<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002281<div class="doc_subsubsection">
2282 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
2283</div>
2284
Misha Brukman9d0919f2003-11-08 01:05:38 +00002285<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002286<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002287
2288<pre>
2289 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
2290</pre>
2291
Chris Lattner00950542001-06-06 20:29:01 +00002292<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002293
2294<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
2295several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00002296instruction, allowing a branch to occur to one of many possible
2297destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002298
2299
Chris Lattner00950542001-06-06 20:29:01 +00002300<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002301
2302<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
2303comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
2304an array of pairs of comparison value constants and '<tt>label</tt>'s. The
2305table is not allowed to contain duplicate constant entries.</p>
2306
Chris Lattner00950542001-06-06 20:29:01 +00002307<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002308
Chris Lattner261efe92003-11-25 01:02:51 +00002309<p>The <tt>switch</tt> instruction specifies a table of values and
2310destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00002311table is searched for the given value. If the value is found, control flow is
2312transfered to the corresponding destination; otherwise, control flow is
2313transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002314
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002315<h5>Implementation:</h5>
2316
2317<p>Depending on properties of the target machine and the particular
2318<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00002319ways. For example, it could be generated as a series of chained conditional
2320branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002321
2322<h5>Example:</h5>
2323
2324<pre>
2325 <i>; Emulate a conditional br instruction</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00002326 %Val = <a href="#i_zext">zext</a> i1 %value to i32
Dan Gohman2a08c532009-01-04 23:44:43 +00002327 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002328
2329 <i>; Emulate an unconditional br instruction</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002330 switch i32 0, label %dest [ ]
Chris Lattnerc88c17b2004-02-24 04:54:45 +00002331
2332 <i>; Implement a jump table:</i>
Dan Gohman2a08c532009-01-04 23:44:43 +00002333 switch i32 %val, label %otherwise [ i32 0, label %onzero
2334 i32 1, label %onone
2335 i32 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00002336</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002337</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002338
Chris Lattner00950542001-06-06 20:29:01 +00002339<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002340<div class="doc_subsubsection">
2341 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
2342</div>
2343
Misha Brukman9d0919f2003-11-08 01:05:38 +00002344<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002345
Chris Lattner00950542001-06-06 20:29:01 +00002346<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002347
2348<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00002349 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ptr to function ty&gt; &lt;function ptr val&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner76b8a332006-05-14 18:23:06 +00002350 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002351</pre>
2352
Chris Lattner6536cfe2002-05-06 22:08:29 +00002353<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002354
2355<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
2356function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00002357'<tt>normal</tt>' label or the
2358'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002359"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
2360"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00002361href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
Dan Gohman0e451ce2008-10-14 16:51:45 +00002362continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002363
Chris Lattner00950542001-06-06 20:29:01 +00002364<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002365
Misha Brukman9d0919f2003-11-08 01:05:38 +00002366<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002367
Chris Lattner00950542001-06-06 20:29:01 +00002368<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002369 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00002370 The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002371 convention</a> the call should use. If none is specified, the call defaults
2372 to using C calling conventions.
2373 </li>
Devang Patelf642f472008-10-06 18:50:38 +00002374
2375 <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for
2376 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
2377 and '<tt>inreg</tt>' attributes are valid here.</li>
2378
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002379 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
2380 function value being invoked. In most cases, this is a direct function
2381 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
2382 an arbitrary pointer to function value.
2383 </li>
2384
2385 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
2386 function to be invoked. </li>
2387
2388 <li>'<tt>function args</tt>': argument list whose types match the function
2389 signature argument types. If the function signature indicates the function
2390 accepts a variable number of arguments, the extra arguments can be
2391 specified. </li>
2392
2393 <li>'<tt>normal label</tt>': the label reached when the called function
2394 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
2395
2396 <li>'<tt>exception label</tt>': the label reached when a callee returns with
2397 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
2398
Devang Patel307e8ab2008-10-07 17:48:33 +00002399 <li>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00002400 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
2401 '<tt>readnone</tt>' attributes are valid here.</li>
Chris Lattner00950542001-06-06 20:29:01 +00002402</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002403
Chris Lattner00950542001-06-06 20:29:01 +00002404<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002405
Misha Brukman9d0919f2003-11-08 01:05:38 +00002406<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002407href="#i_call">call</a></tt>' instruction in most regards. The primary
2408difference is that it establishes an association with a label, which is used by
2409the runtime library to unwind the stack.</p>
2410
2411<p>This instruction is used in languages with destructors to ensure that proper
2412cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
2413exception. Additionally, this is important for implementation of
2414'<tt>catch</tt>' clauses in high-level languages that support them.</p>
2415
Jay Foadd2449092009-06-03 10:20:10 +00002416<p>For the purposes of the SSA form, the definition of the value
2417returned by the '<tt>invoke</tt>' instruction is deemed to occur on
2418the edge from the current block to the "normal" label. If the callee
2419unwinds then no return value is available.</p>
Dan Gohmanf96a4992009-05-22 21:47:08 +00002420
Chris Lattner00950542001-06-06 20:29:01 +00002421<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00002422<pre>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002423 %retval = invoke i32 @Test(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002424 unwind label %TestCleanup <i>; {i32}:retval set</i>
Nick Lewyckyd703f652008-03-16 07:18:12 +00002425 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002426 unwind label %TestCleanup <i>; {i32}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00002427</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002428</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002429
2430
Chris Lattner27f71f22003-09-03 00:41:47 +00002431<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00002432
Chris Lattner261efe92003-11-25 01:02:51 +00002433<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
2434Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00002435
Misha Brukman9d0919f2003-11-08 01:05:38 +00002436<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00002437
Chris Lattner27f71f22003-09-03 00:41:47 +00002438<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002439<pre>
2440 unwind
2441</pre>
2442
Chris Lattner27f71f22003-09-03 00:41:47 +00002443<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002444
2445<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
2446at the first callee in the dynamic call stack which used an <a
2447href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
2448primarily used to implement exception handling.</p>
2449
Chris Lattner27f71f22003-09-03 00:41:47 +00002450<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00002451
Chris Lattner72ed2002008-04-19 21:01:16 +00002452<p>The '<tt>unwind</tt>' instruction causes execution of the current function to
Chris Lattner35eca582004-10-16 18:04:13 +00002453immediately halt. The dynamic call stack is then searched for the first <a
2454href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
2455execution continues at the "exceptional" destination block specified by the
2456<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
2457dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002458</div>
Chris Lattner35eca582004-10-16 18:04:13 +00002459
2460<!-- _______________________________________________________________________ -->
2461
2462<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
2463Instruction</a> </div>
2464
2465<div class="doc_text">
2466
2467<h5>Syntax:</h5>
2468<pre>
2469 unreachable
2470</pre>
2471
2472<h5>Overview:</h5>
2473
2474<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
2475instruction is used to inform the optimizer that a particular portion of the
2476code is not reachable. This can be used to indicate that the code after a
2477no-return function cannot be reached, and other facts.</p>
2478
2479<h5>Semantics:</h5>
2480
2481<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
2482</div>
2483
2484
2485
Chris Lattner00950542001-06-06 20:29:01 +00002486<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00002487<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002488<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00002489<p>Binary operators are used to do most of the computation in a
Chris Lattner5a158142008-04-01 18:47:32 +00002490program. They require two operands of the same type, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00002491produce a single value. The operands might represent
Reid Spencer485bad12007-02-15 03:07:05 +00002492multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
Chris Lattner5a158142008-04-01 18:47:32 +00002493The result value has the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002494<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002495</div>
Chris Lattner00950542001-06-06 20:29:01 +00002496<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002497<div class="doc_subsubsection">
2498 <a name="i_add">'<tt>add</tt>' Instruction</a>
2499</div>
2500
Misha Brukman9d0919f2003-11-08 01:05:38 +00002501<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002502
Chris Lattner00950542001-06-06 20:29:01 +00002503<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002504
2505<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002506 &lt;result&gt; = add &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002507</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002508
Chris Lattner00950542001-06-06 20:29:01 +00002509<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002510
Misha Brukman9d0919f2003-11-08 01:05:38 +00002511<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002512
Chris Lattner00950542001-06-06 20:29:01 +00002513<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002514
2515<p>The two arguments to the '<tt>add</tt>' instruction must be <a
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002516 href="#t_integer">integer</a> or
2517 <a href="#t_vector">vector</a> of integer values. Both arguments must
2518 have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002519
Chris Lattner00950542001-06-06 20:29:01 +00002520<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002521
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002522<p>The value produced is the integer sum of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002523
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002524<p>If the sum has unsigned overflow, the result returned is the
Chris Lattner5ec89832008-01-28 00:36:27 +00002525mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2526the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002527
Chris Lattner5ec89832008-01-28 00:36:27 +00002528<p>Because LLVM integers use a two's complement representation, this
2529instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002530
Chris Lattner00950542001-06-06 20:29:01 +00002531<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002532
2533<pre>
2534 &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002535</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002536</div>
Chris Lattner00950542001-06-06 20:29:01 +00002537<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002538<div class="doc_subsubsection">
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002539 <a name="i_fadd">'<tt>fadd</tt>' Instruction</a>
2540</div>
2541
2542<div class="doc_text">
2543
2544<h5>Syntax:</h5>
2545
2546<pre>
2547 &lt;result&gt; = fadd &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2548</pre>
2549
2550<h5>Overview:</h5>
2551
2552<p>The '<tt>fadd</tt>' instruction returns the sum of its two operands.</p>
2553
2554<h5>Arguments:</h5>
2555
2556<p>The two arguments to the '<tt>fadd</tt>' instruction must be
2557<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> of
2558floating point values. Both arguments must have identical types.</p>
2559
2560<h5>Semantics:</h5>
2561
2562<p>The value produced is the floating point sum of the two operands.</p>
2563
2564<h5>Example:</h5>
2565
2566<pre>
2567 &lt;result&gt; = fadd float 4.0, %var <i>; yields {float}:result = 4.0 + %var</i>
2568</pre>
2569</div>
2570<!-- _______________________________________________________________________ -->
2571<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00002572 <a name="i_sub">'<tt>sub</tt>' Instruction</a>
2573</div>
2574
Misha Brukman9d0919f2003-11-08 01:05:38 +00002575<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002576
Chris Lattner00950542001-06-06 20:29:01 +00002577<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002578
2579<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002580 &lt;result&gt; = sub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002581</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002582
Chris Lattner00950542001-06-06 20:29:01 +00002583<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002584
Misha Brukman9d0919f2003-11-08 01:05:38 +00002585<p>The '<tt>sub</tt>' instruction returns the difference of its two
2586operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002587
2588<p>Note that the '<tt>sub</tt>' instruction is used to represent the
2589'<tt>neg</tt>' instruction present in most other intermediate
2590representations.</p>
2591
Chris Lattner00950542001-06-06 20:29:01 +00002592<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002593
2594<p>The two arguments to the '<tt>sub</tt>' instruction must be <a
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002595 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of
2596 integer values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002597
Chris Lattner00950542001-06-06 20:29:01 +00002598<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002599
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002600<p>The value produced is the integer difference of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002601
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002602<p>If the difference has unsigned overflow, the result returned is the
Chris Lattner5ec89832008-01-28 00:36:27 +00002603mathematical result modulo 2<sup>n</sup>, where n is the bit width of
2604the result.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002605
Chris Lattner5ec89832008-01-28 00:36:27 +00002606<p>Because LLVM integers use a two's complement representation, this
2607instruction is appropriate for both signed and unsigned integers.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002608
Chris Lattner00950542001-06-06 20:29:01 +00002609<h5>Example:</h5>
Bill Wendlingaac388b2007-05-29 09:42:13 +00002610<pre>
2611 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00002612 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002613</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002614</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002615
Chris Lattner00950542001-06-06 20:29:01 +00002616<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002617<div class="doc_subsubsection">
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002618 <a name="i_fsub">'<tt>fsub</tt>' Instruction</a>
2619</div>
2620
2621<div class="doc_text">
2622
2623<h5>Syntax:</h5>
2624
2625<pre>
2626 &lt;result&gt; = fsub &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2627</pre>
2628
2629<h5>Overview:</h5>
2630
2631<p>The '<tt>fsub</tt>' instruction returns the difference of its two
2632operands.</p>
2633
2634<p>Note that the '<tt>fsub</tt>' instruction is used to represent the
2635'<tt>fneg</tt>' instruction present in most other intermediate
2636representations.</p>
2637
2638<h5>Arguments:</h5>
2639
2640<p>The two arguments to the '<tt>fsub</tt>' instruction must be <a
2641 <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2642 of floating point values. Both arguments must have identical types.</p>
2643
2644<h5>Semantics:</h5>
2645
2646<p>The value produced is the floating point difference of the two operands.</p>
2647
2648<h5>Example:</h5>
2649<pre>
2650 &lt;result&gt; = fsub float 4.0, %var <i>; yields {float}:result = 4.0 - %var</i>
2651 &lt;result&gt; = fsub float -0.0, %val <i>; yields {float}:result = -%var</i>
2652</pre>
2653</div>
2654
2655<!-- _______________________________________________________________________ -->
2656<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00002657 <a name="i_mul">'<tt>mul</tt>' Instruction</a>
2658</div>
2659
Misha Brukman9d0919f2003-11-08 01:05:38 +00002660<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002661
Chris Lattner00950542001-06-06 20:29:01 +00002662<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002663<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002664</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002665<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002666<p>The '<tt>mul</tt>' instruction returns the product of its two
2667operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002668
Chris Lattner00950542001-06-06 20:29:01 +00002669<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002670
2671<p>The two arguments to the '<tt>mul</tt>' instruction must be <a
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002672href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2673values. Both arguments must have identical types.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002674
Chris Lattner00950542001-06-06 20:29:01 +00002675<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002676
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002677<p>The value produced is the integer product of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002678
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002679<p>If the result of the multiplication has unsigned overflow,
Chris Lattner5ec89832008-01-28 00:36:27 +00002680the result returned is the mathematical result modulo
26812<sup>n</sup>, where n is the bit width of the result.</p>
2682<p>Because LLVM integers use a two's complement representation, and the
2683result is the same width as the operands, this instruction returns the
2684correct result for both signed and unsigned integers. If a full product
2685(e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands
2686should be sign-extended or zero-extended as appropriate to the
2687width of the full product.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002688<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002689<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002690</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002691</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002692
Chris Lattner00950542001-06-06 20:29:01 +00002693<!-- _______________________________________________________________________ -->
Dan Gohmanae3a0be2009-06-04 22:49:04 +00002694<div class="doc_subsubsection">
2695 <a name="i_fmul">'<tt>fmul</tt>' Instruction</a>
2696</div>
2697
2698<div class="doc_text">
2699
2700<h5>Syntax:</h5>
2701<pre> &lt;result&gt; = fmul &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
2702</pre>
2703<h5>Overview:</h5>
2704<p>The '<tt>fmul</tt>' instruction returns the product of its two
2705operands.</p>
2706
2707<h5>Arguments:</h5>
2708
2709<p>The two arguments to the '<tt>fmul</tt>' instruction must be
2710<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2711of floating point values. Both arguments must have identical types.</p>
2712
2713<h5>Semantics:</h5>
2714
2715<p>The value produced is the floating point product of the two operands.</p>
2716
2717<h5>Example:</h5>
2718<pre> &lt;result&gt; = fmul float 4.0, %var <i>; yields {float}:result = 4.0 * %var</i>
2719</pre>
2720</div>
2721
2722<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00002723<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2724</a></div>
2725<div class="doc_text">
2726<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002727<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002728</pre>
2729<h5>Overview:</h5>
2730<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2731operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002732
Reid Spencer1628cec2006-10-26 06:15:43 +00002733<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002734
Reid Spencer1628cec2006-10-26 06:15:43 +00002735<p>The two arguments to the '<tt>udiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002736<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2737values. Both arguments must have identical types.</p>
2738
Reid Spencer1628cec2006-10-26 06:15:43 +00002739<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002740
Chris Lattner5ec89832008-01-28 00:36:27 +00002741<p>The value produced is the unsigned integer quotient of the two operands.</p>
2742<p>Note that unsigned integer division and signed integer division are distinct
2743operations; for signed integer division, use '<tt>sdiv</tt>'.</p>
2744<p>Division by zero leads to undefined behavior.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002745<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002746<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002747</pre>
2748</div>
2749<!-- _______________________________________________________________________ -->
2750<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2751</a> </div>
2752<div class="doc_text">
2753<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002754<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002755 &lt;result&gt; = sdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002756</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002757
Reid Spencer1628cec2006-10-26 06:15:43 +00002758<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002759
Reid Spencer1628cec2006-10-26 06:15:43 +00002760<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2761operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002762
Reid Spencer1628cec2006-10-26 06:15:43 +00002763<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002764
2765<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2766<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2767values. Both arguments must have identical types.</p>
2768
Reid Spencer1628cec2006-10-26 06:15:43 +00002769<h5>Semantics:</h5>
Chris Lattnera73afe02008-04-01 18:45:27 +00002770<p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002771<p>Note that signed integer division and unsigned integer division are distinct
2772operations; for unsigned integer division, use '<tt>udiv</tt>'.</p>
2773<p>Division by zero leads to undefined behavior. Overflow also leads to
2774undefined behavior; this is a rare case, but can occur, for example,
2775by doing a 32-bit division of -2147483648 by -1.</p>
Reid Spencer1628cec2006-10-26 06:15:43 +00002776<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002777<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
Reid Spencer1628cec2006-10-26 06:15:43 +00002778</pre>
2779</div>
2780<!-- _______________________________________________________________________ -->
2781<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002782Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002783<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002784<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002785<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002786 &lt;result&gt; = fdiv &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002787</pre>
2788<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002789
Reid Spencer1628cec2006-10-26 06:15:43 +00002790<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00002791operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002792
Chris Lattner261efe92003-11-25 01:02:51 +00002793<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002794
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002795<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002796<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2797of floating point values. Both arguments must have identical types.</p>
2798
Chris Lattner261efe92003-11-25 01:02:51 +00002799<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002800
Reid Spencer1628cec2006-10-26 06:15:43 +00002801<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002802
Chris Lattner261efe92003-11-25 01:02:51 +00002803<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002804
2805<pre>
2806 &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002807</pre>
2808</div>
Chris Lattner5568e942008-05-20 20:48:21 +00002809
Chris Lattner261efe92003-11-25 01:02:51 +00002810<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00002811<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2812</div>
2813<div class="doc_text">
2814<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002815<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002816</pre>
2817<h5>Overview:</h5>
2818<p>The '<tt>urem</tt>' instruction returns the remainder from the
2819unsigned division of its two arguments.</p>
2820<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002821<p>The two arguments to the '<tt>urem</tt>' instruction must be
2822<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2823values. Both arguments must have identical types.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002824<h5>Semantics:</h5>
2825<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
Chris Lattnera73afe02008-04-01 18:45:27 +00002826This instruction always performs an unsigned division to get the remainder.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002827<p>Note that unsigned integer remainder and signed integer remainder are
2828distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p>
2829<p>Taking the remainder of a division by zero leads to undefined behavior.</p>
Reid Spencer0a783f72006-11-02 01:53:59 +00002830<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002831<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002832</pre>
2833
2834</div>
2835<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002836<div class="doc_subsubsection">
2837 <a name="i_srem">'<tt>srem</tt>' Instruction</a>
2838</div>
2839
Chris Lattner261efe92003-11-25 01:02:51 +00002840<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002841
Chris Lattner261efe92003-11-25 01:02:51 +00002842<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002843
2844<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00002845 &lt;result&gt; = srem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002846</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00002847
Chris Lattner261efe92003-11-25 01:02:51 +00002848<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002849
Reid Spencer0a783f72006-11-02 01:53:59 +00002850<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman80176312007-11-05 23:35:22 +00002851signed division of its two operands. This instruction can also take
2852<a href="#t_vector">vector</a> versions of the values in which case
2853the elements must be integers.</p>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00002854
Chris Lattner261efe92003-11-25 01:02:51 +00002855<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002856
Reid Spencer0a783f72006-11-02 01:53:59 +00002857<p>The two arguments to the '<tt>srem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002858<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
2859values. Both arguments must have identical types.</p>
2860
Chris Lattner261efe92003-11-25 01:02:51 +00002861<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002862
Reid Spencer0a783f72006-11-02 01:53:59 +00002863<p>This instruction returns the <i>remainder</i> of a division (where the result
Gabor Greiffb224a22008-08-07 21:46:00 +00002864has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i>
2865operator (where the result has the same sign as the divisor, <tt>op2</tt>) of
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002866a value. For more information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00002867 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002868Math Forum</a>. For a table of how this is implemented in various languages,
Reid Spencer64f5c6c2007-03-24 22:40:44 +00002869please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
Reid Spencerc9fdfc82007-03-24 22:23:39 +00002870Wikipedia: modulo operation</a>.</p>
Chris Lattner5ec89832008-01-28 00:36:27 +00002871<p>Note that signed integer remainder and unsigned integer remainder are
2872distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p>
2873<p>Taking the remainder of a division by zero leads to undefined behavior.
2874Overflow also leads to undefined behavior; this is a rare case, but can occur,
2875for example, by taking the remainder of a 32-bit division of -2147483648 by -1.
2876(The remainder doesn't actually overflow, but this rule lets srem be
2877implemented using instructions that return both the result of the division
2878and the remainder.)</p>
Chris Lattner261efe92003-11-25 01:02:51 +00002879<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00002880<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002881</pre>
2882
2883</div>
2884<!-- _______________________________________________________________________ -->
Chris Lattner5568e942008-05-20 20:48:21 +00002885<div class="doc_subsubsection">
2886 <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div>
2887
Reid Spencer0a783f72006-11-02 01:53:59 +00002888<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00002889
Reid Spencer0a783f72006-11-02 01:53:59 +00002890<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002891<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer0a783f72006-11-02 01:53:59 +00002892</pre>
2893<h5>Overview:</h5>
2894<p>The '<tt>frem</tt>' instruction returns the remainder from the
2895division of its two operands.</p>
2896<h5>Arguments:</h5>
2897<p>The two arguments to the '<tt>frem</tt>' instruction must be
Chris Lattner5568e942008-05-20 20:48:21 +00002898<a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a>
2899of floating point values. Both arguments must have identical types.</p>
2900
Reid Spencer0a783f72006-11-02 01:53:59 +00002901<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002902
Chris Lattnera73afe02008-04-01 18:45:27 +00002903<p>This instruction returns the <i>remainder</i> of a division.
2904The remainder has the same sign as the dividend.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00002905
Reid Spencer0a783f72006-11-02 01:53:59 +00002906<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00002907
2908<pre>
2909 &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00002910</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002911</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00002912
Reid Spencer8e11bf82007-02-02 13:57:07 +00002913<!-- ======================================================================= -->
2914<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2915Operations</a> </div>
2916<div class="doc_text">
2917<p>Bitwise binary operators are used to do various forms of
2918bit-twiddling in a program. They are generally very efficient
2919instructions and can commonly be strength reduced from other
Chris Lattnera73afe02008-04-01 18:45:27 +00002920instructions. They require two operands of the same type, execute an operation on them,
2921and produce a single value. The resulting value is the same type as its operands.</p>
Reid Spencer8e11bf82007-02-02 13:57:07 +00002922</div>
2923
Reid Spencer569f2fa2007-01-31 21:39:12 +00002924<!-- _______________________________________________________________________ -->
2925<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2926Instruction</a> </div>
2927<div class="doc_text">
2928<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002929<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002930</pre>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002931
Reid Spencer569f2fa2007-01-31 21:39:12 +00002932<h5>Overview:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002933
Reid Spencer569f2fa2007-01-31 21:39:12 +00002934<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2935the left a specified number of bits.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002936
Reid Spencer569f2fa2007-01-31 21:39:12 +00002937<h5>Arguments:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002938
Reid Spencer569f2fa2007-01-31 21:39:12 +00002939<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002940 href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002941type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002942
Reid Spencer569f2fa2007-01-31 21:39:12 +00002943<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002944
Gabor Greiffb224a22008-08-07 21:46:00 +00002945<p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>,
2946where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or
Mon P Wang01f8d092008-12-10 08:55:09 +00002947equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined.
2948If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
2949corresponding shift amount in <tt>op2</tt>.</p>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002950
Reid Spencer569f2fa2007-01-31 21:39:12 +00002951<h5>Example:</h5><pre>
2952 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2953 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2954 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002955 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002956 &lt;result&gt; = shl &lt;2 x i32&gt; &lt; i32 1, i32 1&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 2, i32 4&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002957</pre>
2958</div>
2959<!-- _______________________________________________________________________ -->
2960<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2961Instruction</a> </div>
2962<div class="doc_text">
2963<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00002964<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002965</pre>
2966
2967<h5>Overview:</h5>
2968<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00002969operand shifted to the right a specified number of bits with zero fill.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002970
2971<h5>Arguments:</h5>
2972<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00002973<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00002974type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002975
2976<h5>Semantics:</h5>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002977
Reid Spencer569f2fa2007-01-31 21:39:12 +00002978<p>This instruction always performs a logical shift right operation. The most
2979significant bits of the result will be filled with zero bits after the
Gabor Greiffb224a22008-08-07 21:46:00 +00002980shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than
Mon P Wang01f8d092008-12-10 08:55:09 +00002981the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are
2982vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift
2983amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002984
2985<h5>Example:</h5>
2986<pre>
2987 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2988 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2989 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2990 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00002991 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00002992 &lt;result&gt; = lshr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 2&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 0x7FFFFFFF, i32 1&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00002993</pre>
2994</div>
2995
Reid Spencer8e11bf82007-02-02 13:57:07 +00002996<!-- _______________________________________________________________________ -->
Reid Spencer569f2fa2007-01-31 21:39:12 +00002997<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2998Instruction</a> </div>
2999<div class="doc_text">
3000
3001<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003002<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003003</pre>
3004
3005<h5>Overview:</h5>
3006<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003007operand shifted to the right a specified number of bits with sign extension.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003008
3009<h5>Arguments:</h5>
3010<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
Nate Begeman5bc1ea02008-07-29 15:49:41 +00003011<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
Gabor Greiffb224a22008-08-07 21:46:00 +00003012type. '<tt>op2</tt>' is treated as an unsigned value.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003013
3014<h5>Semantics:</h5>
3015<p>This instruction always performs an arithmetic shift right operation,
3016The most significant bits of the result will be filled with the sign bit
Gabor Greiffb224a22008-08-07 21:46:00 +00003017of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or
Mon P Wang01f8d092008-12-10 08:55:09 +00003018larger than the number of bits in <tt>op1</tt>, the result is undefined. If the
3019arguments are vectors, each vector element of <tt>op1</tt> is shifted by the
3020corresponding shift amount in <tt>op2</tt>.</p>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003021
3022<h5>Example:</h5>
3023<pre>
3024 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
3025 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
3026 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
3027 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattner6ccc2d52007-10-03 21:01:14 +00003028 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Mon P Wange9f10152008-12-09 05:46:39 +00003029 &lt;result&gt; = ashr &lt;2 x i32&gt; &lt; i32 -2, i32 4&gt;, &lt; i32 1, i32 3&gt; <i>; yields: result=&lt;2 x i32&gt; &lt; i32 -1, i32 0&gt;</i>
Reid Spencer569f2fa2007-01-31 21:39:12 +00003030</pre>
3031</div>
3032
Chris Lattner00950542001-06-06 20:29:01 +00003033<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003034<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
3035Instruction</a> </div>
Chris Lattner5568e942008-05-20 20:48:21 +00003036
Misha Brukman9d0919f2003-11-08 01:05:38 +00003037<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00003038
Chris Lattner00950542001-06-06 20:29:01 +00003039<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003040
3041<pre>
Gabor Greiffb224a22008-08-07 21:46:00 +00003042 &lt;result&gt; = and &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003043</pre>
Chris Lattner5568e942008-05-20 20:48:21 +00003044
Chris Lattner00950542001-06-06 20:29:01 +00003045<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003046
Chris Lattner261efe92003-11-25 01:02:51 +00003047<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
3048its two operands.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00003049
Chris Lattner00950542001-06-06 20:29:01 +00003050<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003051
3052<p>The two arguments to the '<tt>and</tt>' instruction must be
3053<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3054values. Both arguments must have identical types.</p>
3055
Chris Lattner00950542001-06-06 20:29:01 +00003056<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003057<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003058<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00003059<div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003060<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00003061 <tbody>
3062 <tr>
3063 <td>In0</td>
3064 <td>In1</td>
3065 <td>Out</td>
3066 </tr>
3067 <tr>
3068 <td>0</td>
3069 <td>0</td>
3070 <td>0</td>
3071 </tr>
3072 <tr>
3073 <td>0</td>
3074 <td>1</td>
3075 <td>0</td>
3076 </tr>
3077 <tr>
3078 <td>1</td>
3079 <td>0</td>
3080 <td>0</td>
3081 </tr>
3082 <tr>
3083 <td>1</td>
3084 <td>1</td>
3085 <td>1</td>
3086 </tr>
3087 </tbody>
3088</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003089</div>
Chris Lattner00950542001-06-06 20:29:01 +00003090<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003091<pre>
3092 &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003093 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
3094 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
Chris Lattner00950542001-06-06 20:29:01 +00003095</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003096</div>
Chris Lattner00950542001-06-06 20:29:01 +00003097<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003098<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003099<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00003100<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003101<pre> &lt;result&gt; = or &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003102</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00003103<h5>Overview:</h5>
3104<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
3105or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003106<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003107
3108<p>The two arguments to the '<tt>or</tt>' instruction must be
3109<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3110values. Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003111<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003112<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003113<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00003114<div>
Chris Lattner261efe92003-11-25 01:02:51 +00003115<table border="1" cellspacing="0" cellpadding="4">
3116 <tbody>
3117 <tr>
3118 <td>In0</td>
3119 <td>In1</td>
3120 <td>Out</td>
3121 </tr>
3122 <tr>
3123 <td>0</td>
3124 <td>0</td>
3125 <td>0</td>
3126 </tr>
3127 <tr>
3128 <td>0</td>
3129 <td>1</td>
3130 <td>1</td>
3131 </tr>
3132 <tr>
3133 <td>1</td>
3134 <td>0</td>
3135 <td>1</td>
3136 </tr>
3137 <tr>
3138 <td>1</td>
3139 <td>1</td>
3140 <td>1</td>
3141 </tr>
3142 </tbody>
3143</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003144</div>
Chris Lattner00950542001-06-06 20:29:01 +00003145<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003146<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
3147 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
3148 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
Chris Lattner00950542001-06-06 20:29:01 +00003149</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003150</div>
Chris Lattner00950542001-06-06 20:29:01 +00003151<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003152<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
3153Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003154<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00003155<h5>Syntax:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00003156<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003157</pre>
Chris Lattner00950542001-06-06 20:29:01 +00003158<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003159<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
3160or of its two operands. The <tt>xor</tt> is used to implement the
3161"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00003162<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003163<p>The two arguments to the '<tt>xor</tt>' instruction must be
3164<a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer
3165values. Both arguments must have identical types.</p>
3166
Chris Lattner00950542001-06-06 20:29:01 +00003167<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00003168
Misha Brukman9d0919f2003-11-08 01:05:38 +00003169<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003170<p> </p>
Bill Wendlingc7e4c4d2008-09-07 10:29:20 +00003171<div>
Chris Lattner261efe92003-11-25 01:02:51 +00003172<table border="1" cellspacing="0" cellpadding="4">
3173 <tbody>
3174 <tr>
3175 <td>In0</td>
3176 <td>In1</td>
3177 <td>Out</td>
3178 </tr>
3179 <tr>
3180 <td>0</td>
3181 <td>0</td>
3182 <td>0</td>
3183 </tr>
3184 <tr>
3185 <td>0</td>
3186 <td>1</td>
3187 <td>1</td>
3188 </tr>
3189 <tr>
3190 <td>1</td>
3191 <td>0</td>
3192 <td>1</td>
3193 </tr>
3194 <tr>
3195 <td>1</td>
3196 <td>1</td>
3197 <td>0</td>
3198 </tr>
3199 </tbody>
3200</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00003201</div>
Chris Lattner261efe92003-11-25 01:02:51 +00003202<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00003203<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003204<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
3205 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
3206 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
3207 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00003208</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003209</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003210
Chris Lattner00950542001-06-06 20:29:01 +00003211<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003212<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00003213 <a name="vectorops">Vector Operations</a>
3214</div>
3215
3216<div class="doc_text">
3217
3218<p>LLVM supports several instructions to represent vector operations in a
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003219target-independent manner. These instructions cover the element-access and
Chris Lattner3df241e2006-04-08 23:07:04 +00003220vector-specific operations needed to process vectors effectively. While LLVM
3221does directly support these vector operations, many sophisticated algorithms
3222will want to use target-specific intrinsics to take full advantage of a specific
3223target.</p>
3224
3225</div>
3226
3227<!-- _______________________________________________________________________ -->
3228<div class="doc_subsubsection">
3229 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
3230</div>
3231
3232<div class="doc_text">
3233
3234<h5>Syntax:</h5>
3235
3236<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003237 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003238</pre>
3239
3240<h5>Overview:</h5>
3241
3242<p>
3243The '<tt>extractelement</tt>' instruction extracts a single scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003244element from a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003245</p>
3246
3247
3248<h5>Arguments:</h5>
3249
3250<p>
3251The first operand of an '<tt>extractelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003252value of <a href="#t_vector">vector</a> type. The second operand is
Chris Lattner3df241e2006-04-08 23:07:04 +00003253an index indicating the position from which to extract the element.
3254The index may be a variable.</p>
3255
3256<h5>Semantics:</h5>
3257
3258<p>
3259The result is a scalar of the same type as the element type of
3260<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
3261<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
3262results are undefined.
3263</p>
3264
3265<h5>Example:</h5>
3266
3267<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003268 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003269</pre>
3270</div>
3271
3272
3273<!-- _______________________________________________________________________ -->
3274<div class="doc_subsubsection">
3275 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
3276</div>
3277
3278<div class="doc_text">
3279
3280<h5>Syntax:</h5>
3281
3282<pre>
Dan Gohmanf3480b92008-05-12 23:38:42 +00003283 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt;, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003284</pre>
3285
3286<h5>Overview:</h5>
3287
3288<p>
3289The '<tt>insertelement</tt>' instruction inserts a scalar
Reid Spencer485bad12007-02-15 03:07:05 +00003290element into a vector at a specified index.
Chris Lattner3df241e2006-04-08 23:07:04 +00003291</p>
3292
3293
3294<h5>Arguments:</h5>
3295
3296<p>
3297The first operand of an '<tt>insertelement</tt>' instruction is a
Reid Spencer485bad12007-02-15 03:07:05 +00003298value of <a href="#t_vector">vector</a> type. The second operand is a
Chris Lattner3df241e2006-04-08 23:07:04 +00003299scalar value whose type must equal the element type of the first
3300operand. The third operand is an index indicating the position at
3301which to insert the value. The index may be a variable.</p>
3302
3303<h5>Semantics:</h5>
3304
3305<p>
Reid Spencer485bad12007-02-15 03:07:05 +00003306The result is a vector of the same type as <tt>val</tt>. Its
Chris Lattner3df241e2006-04-08 23:07:04 +00003307element values are those of <tt>val</tt> except at position
3308<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
3309exceeds the length of <tt>val</tt>, the results are undefined.
3310</p>
3311
3312<h5>Example:</h5>
3313
3314<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003315 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003316</pre>
3317</div>
3318
3319<!-- _______________________________________________________________________ -->
3320<div class="doc_subsubsection">
3321 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
3322</div>
3323
3324<div class="doc_text">
3325
3326<h5>Syntax:</h5>
3327
3328<pre>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003329 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;m x i32&gt; &lt;mask&gt; <i>; yields &lt;m x &lt;ty&gt;&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003330</pre>
3331
3332<h5>Overview:</h5>
3333
3334<p>
3335The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
Mon P Wangaeb06d22008-11-10 04:46:22 +00003336from two input vectors, returning a vector with the same element type as
3337the input and length that is the same as the shuffle mask.
Chris Lattner3df241e2006-04-08 23:07:04 +00003338</p>
3339
3340<h5>Arguments:</h5>
3341
3342<p>
Mon P Wangaeb06d22008-11-10 04:46:22 +00003343The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
3344with types that match each other. The third argument is a shuffle mask whose
3345element type is always 'i32'. The result of the instruction is a vector whose
3346length is the same as the shuffle mask and whose element type is the same as
3347the element type of the first two operands.
Chris Lattner3df241e2006-04-08 23:07:04 +00003348</p>
3349
3350<p>
3351The shuffle mask operand is required to be a constant vector with either
3352constant integer or undef values.
3353</p>
3354
3355<h5>Semantics:</h5>
3356
3357<p>
3358The elements of the two input vectors are numbered from left to right across
3359both of the vectors. The shuffle mask operand specifies, for each element of
Mon P Wangaeb06d22008-11-10 04:46:22 +00003360the result vector, which element of the two input vectors the result element
Chris Lattner3df241e2006-04-08 23:07:04 +00003361gets. The element selector may be undef (meaning "don't care") and the second
3362operand may be undef if performing a shuffle from only one vector.
3363</p>
3364
3365<h5>Example:</h5>
3366
3367<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003368 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003369 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003370 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
3371 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
Mon P Wangaeb06d22008-11-10 04:46:22 +00003372 %result = shufflevector &lt;8 x i32&gt; %v1, &lt;8 x i32&gt; undef,
3373 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i>
3374 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
3375 &lt;8 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 &gt; <i>; yields &lt;8 x i32&gt;</i>
Chris Lattner3df241e2006-04-08 23:07:04 +00003376</pre>
3377</div>
3378
Tanya Lattner09474292006-04-14 19:24:33 +00003379
Chris Lattner3df241e2006-04-08 23:07:04 +00003380<!-- ======================================================================= -->
3381<div class="doc_subsection">
Dan Gohmana334d5f2008-05-12 23:51:09 +00003382 <a name="aggregateops">Aggregate Operations</a>
3383</div>
3384
3385<div class="doc_text">
3386
3387<p>LLVM supports several instructions for working with aggregate values.
3388</p>
3389
3390</div>
3391
3392<!-- _______________________________________________________________________ -->
3393<div class="doc_subsubsection">
3394 <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a>
3395</div>
3396
3397<div class="doc_text">
3398
3399<h5>Syntax:</h5>
3400
3401<pre>
3402 &lt;result&gt; = extractvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;idx&gt;{, &lt;idx&gt;}*
3403</pre>
3404
3405<h5>Overview:</h5>
3406
3407<p>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003408The '<tt>extractvalue</tt>' instruction extracts the value of a struct field
3409or array element from an aggregate value.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003410</p>
3411
3412
3413<h5>Arguments:</h5>
3414
3415<p>
3416The first operand of an '<tt>extractvalue</tt>' instruction is a
3417value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a>
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003418type. The operands are constant indices to specify which value to extract
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003419in a similar manner as indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003420'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3421</p>
3422
3423<h5>Semantics:</h5>
3424
3425<p>
3426The result is the value at the position in the aggregate specified by
3427the index operands.
3428</p>
3429
3430<h5>Example:</h5>
3431
3432<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003433 %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003434</pre>
3435</div>
3436
3437
3438<!-- _______________________________________________________________________ -->
3439<div class="doc_subsubsection">
3440 <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a>
3441</div>
3442
3443<div class="doc_text">
3444
3445<h5>Syntax:</h5>
3446
3447<pre>
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003448 &lt;result&gt; = insertvalue &lt;aggregate type&gt; &lt;val&gt;, &lt;ty&gt; &lt;val&gt;, &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003449</pre>
3450
3451<h5>Overview:</h5>
3452
3453<p>
3454The '<tt>insertvalue</tt>' instruction inserts a value
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003455into a struct field or array element in an aggregate.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003456</p>
3457
3458
3459<h5>Arguments:</h5>
3460
3461<p>
3462The first operand of an '<tt>insertvalue</tt>' instruction is a
3463value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type.
3464The second operand is a first-class value to insert.
Dan Gohmanc4b49eb2008-05-23 21:53:15 +00003465The following operands are constant indices
Dan Gohman81a0c0b2008-05-31 00:58:22 +00003466indicating the position at which to insert the value in a similar manner as
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003467indices in a
Dan Gohmana334d5f2008-05-12 23:51:09 +00003468'<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction.
3469The value to insert must have the same type as the value identified
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003470by the indices.
Dan Gohman0e451ce2008-10-14 16:51:45 +00003471</p>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003472
3473<h5>Semantics:</h5>
3474
3475<p>
3476The result is an aggregate of the same type as <tt>val</tt>. Its
3477value is that of <tt>val</tt> except that the value at the position
Dan Gohmanc3dac5c2008-05-13 18:16:06 +00003478specified by the indices is that of <tt>elt</tt>.
Dan Gohmana334d5f2008-05-12 23:51:09 +00003479</p>
3480
3481<h5>Example:</h5>
3482
3483<pre>
Dan Gohman52bb2db2008-06-23 15:26:37 +00003484 %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i>
Dan Gohmana334d5f2008-05-12 23:51:09 +00003485</pre>
3486</div>
3487
3488
3489<!-- ======================================================================= -->
3490<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00003491 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003492</div>
3493
Misha Brukman9d0919f2003-11-08 01:05:38 +00003494<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003495
Chris Lattner261efe92003-11-25 01:02:51 +00003496<p>A key design point of an SSA-based representation is how it
3497represents memory. In LLVM, no memory locations are in SSA form, which
3498makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00003499allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003500
Misha Brukman9d0919f2003-11-08 01:05:38 +00003501</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003502
Chris Lattner00950542001-06-06 20:29:01 +00003503<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003504<div class="doc_subsubsection">
3505 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
3506</div>
3507
Misha Brukman9d0919f2003-11-08 01:05:38 +00003508<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003509
Chris Lattner00950542001-06-06 20:29:01 +00003510<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003511
3512<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003513 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003514</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003515
Chris Lattner00950542001-06-06 20:29:01 +00003516<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003517
Chris Lattner261efe92003-11-25 01:02:51 +00003518<p>The '<tt>malloc</tt>' instruction allocates memory from the system
Christopher Lamb303dae92007-12-17 01:00:21 +00003519heap and returns a pointer to it. The object is always allocated in the generic
3520address space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003521
Chris Lattner00950542001-06-06 20:29:01 +00003522<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003523
3524<p>The '<tt>malloc</tt>' instruction allocates
3525<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00003526bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00003527appropriate type to the program. If "NumElements" is specified, it is the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003528number of elements allocated, otherwise "NumElements" is defaulted to be one.
Duncan Sands434ca802009-06-20 13:26:06 +00003529If a constant alignment is specified, the value result of the allocation is
3530guaranteed to be aligned to at least that boundary. If not specified, or if
3531zero, the target can choose to align the allocation on any convenient boundary
3532compatible with the type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003533
Misha Brukman9d0919f2003-11-08 01:05:38 +00003534<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003535
Chris Lattner00950542001-06-06 20:29:01 +00003536<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003537
Chris Lattner261efe92003-11-25 01:02:51 +00003538<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
Nick Lewycky02ff3082008-11-24 03:41:24 +00003539a pointer is returned. The result of a zero byte allocation is undefined. The
Chris Lattner72ed2002008-04-19 21:01:16 +00003540result is null if there is insufficient memory available.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003541
Chris Lattner2cbdc452005-11-06 08:02:57 +00003542<h5>Example:</h5>
3543
3544<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003545 %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003546
Bill Wendlingaac388b2007-05-29 09:42:13 +00003547 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
3548 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
3549 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
3550 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
3551 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00003552</pre>
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00003553
3554<p>Note that the code generator does not yet respect the
3555 alignment value.</p>
3556
Misha Brukman9d0919f2003-11-08 01:05:38 +00003557</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003558
Chris Lattner00950542001-06-06 20:29:01 +00003559<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003560<div class="doc_subsubsection">
3561 <a name="i_free">'<tt>free</tt>' Instruction</a>
3562</div>
3563
Misha Brukman9d0919f2003-11-08 01:05:38 +00003564<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003565
Chris Lattner00950542001-06-06 20:29:01 +00003566<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003567
3568<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003569 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00003570</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003571
Chris Lattner00950542001-06-06 20:29:01 +00003572<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003573
Chris Lattner261efe92003-11-25 01:02:51 +00003574<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00003575memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003576
Chris Lattner00950542001-06-06 20:29:01 +00003577<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003578
Chris Lattner261efe92003-11-25 01:02:51 +00003579<p>'<tt>value</tt>' shall be a pointer value that points to a value
3580that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
3581instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003582
Chris Lattner00950542001-06-06 20:29:01 +00003583<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003584
John Criswell9e2485c2004-12-10 15:51:16 +00003585<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattnere0db56d2008-04-19 22:41:32 +00003586after this instruction executes. If the pointer is null, the operation
3587is a noop.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003588
Chris Lattner00950542001-06-06 20:29:01 +00003589<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003590
3591<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003592 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003593 free [4 x i8]* %array
Chris Lattner00950542001-06-06 20:29:01 +00003594</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003595</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003596
Chris Lattner00950542001-06-06 20:29:01 +00003597<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00003598<div class="doc_subsubsection">
3599 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
3600</div>
3601
Misha Brukman9d0919f2003-11-08 01:05:38 +00003602<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00003603
Chris Lattner00950542001-06-06 20:29:01 +00003604<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003605
3606<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003607 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00003608</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003609
Chris Lattner00950542001-06-06 20:29:01 +00003610<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003611
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003612<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
3613currently executing function, to be automatically released when this function
Christopher Lamb303dae92007-12-17 01:00:21 +00003614returns to its caller. The object is always allocated in the generic address
3615space (address space zero).</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003616
Chris Lattner00950542001-06-06 20:29:01 +00003617<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003618
John Criswell9e2485c2004-12-10 15:51:16 +00003619<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003620bytes of memory on the runtime stack, returning a pointer of the
Gabor Greif1acd2ee2008-02-09 22:24:34 +00003621appropriate type to the program. If "NumElements" is specified, it is the
3622number of elements allocated, otherwise "NumElements" is defaulted to be one.
Duncan Sands434ca802009-06-20 13:26:06 +00003623If a constant alignment is specified, the value result of the allocation is
3624guaranteed to be aligned to at least that boundary. If not specified, or if
3625zero, the target can choose to align the allocation on any convenient boundary
3626compatible with the type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003627
Misha Brukman9d0919f2003-11-08 01:05:38 +00003628<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003629
Chris Lattner00950542001-06-06 20:29:01 +00003630<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003631
Bill Wendling871eb0a2009-05-08 20:49:29 +00003632<p>Memory is allocated; a pointer is returned. The operation is undefined if
Chris Lattner72ed2002008-04-19 21:01:16 +00003633there is insufficient stack space for the allocation. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00003634memory is automatically released when the function returns. The '<tt>alloca</tt>'
3635instruction is commonly used to represent automatic variables that must
3636have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00003637 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Chris Lattner4316dec2008-04-02 00:38:26 +00003638instructions), the memory is reclaimed. Allocating zero bytes
3639is legal, but the result is undefined.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003640
Chris Lattner00950542001-06-06 20:29:01 +00003641<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003642
3643<pre>
Dan Gohman81e21672009-01-04 23:49:44 +00003644 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
3645 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
3646 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
3647 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00003648</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003649</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00003650
Chris Lattner00950542001-06-06 20:29:01 +00003651<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003652<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
3653Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003654<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003655<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003656<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003657<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003658<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003659<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003660<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00003661address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00003662 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00003663marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00003664the number or order of execution of this <tt>load</tt> with other
3665volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
3666instructions. </p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003667<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003668The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003669(that is, the alignment of the memory address). A value of 0 or an
3670omitted "align" argument means that the operation has the preferential
3671alignment for the target. It is the responsibility of the code emitter
3672to ensure that the alignment information is correct. Overestimating
3673the alignment results in an undefined behavior. Underestimating the
3674alignment may produce less efficient code. An alignment of 1 is always
3675safe.
3676</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003677<h5>Semantics:</h5>
Duncan Sands19527c62009-03-22 11:33:16 +00003678<p>The location of memory pointed to is loaded. If the value being loaded
3679is of scalar type then the number of bytes read does not exceed the minimum
3680number of bytes needed to hold all bits of the type. For example, loading an
3681<tt>i24</tt> reads at most three bytes. When loading a value of a type like
3682<tt>i20</tt> with a size that is not an integral number of bytes, the result
3683is undefined if the value was not originally written using a store of the
3684same type.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003685<h5>Examples:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003686<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Chris Lattner261efe92003-11-25 01:02:51 +00003687 <a
Reid Spencerca86e162006-12-31 07:07:53 +00003688 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
3689 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003690</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003691</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003692<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00003693<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
3694Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00003695<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00003696<h5>Syntax:</h5>
Christopher Lamb2330e4d2007-04-21 08:16:25 +00003697<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
3698 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003699</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003700<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003701<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003702<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003703<p>There are two arguments to the '<tt>store</tt>' instruction: a value
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003704to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner4316dec2008-04-02 00:38:26 +00003705operand must be a pointer to the <a href="#t_firstclass">first class</a> type
3706of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00003707operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00003708optimizer is not allowed to modify the number or order of execution of
3709this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
3710 href="#i_store">store</a></tt> instructions.</p>
Chris Lattnera31d1d72008-01-06 21:04:43 +00003711<p>
Chris Lattner4316dec2008-04-02 00:38:26 +00003712The optional constant "align" argument specifies the alignment of the operation
Chris Lattnera31d1d72008-01-06 21:04:43 +00003713(that is, the alignment of the memory address). A value of 0 or an
3714omitted "align" argument means that the operation has the preferential
3715alignment for the target. It is the responsibility of the code emitter
3716to ensure that the alignment information is correct. Overestimating
3717the alignment results in an undefined behavior. Underestimating the
3718alignment may produce less efficient code. An alignment of 1 is always
3719safe.
3720</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003721<h5>Semantics:</h5>
3722<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
Duncan Sands19527c62009-03-22 11:33:16 +00003723at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.
3724If '<tt>&lt;value&gt;</tt>' is of scalar type then the number of bytes
3725written does not exceed the minimum number of bytes needed to hold all
3726bits of the type. For example, storing an <tt>i24</tt> writes at most
3727three bytes. When writing a value of a type like <tt>i20</tt> with a
3728size that is not an integral number of bytes, it is unspecified what
3729happens to the extra bits that do not belong to the type, but they will
3730typically be overwritten.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003731<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00003732<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling8c6c72d2007-10-22 05:10:05 +00003733 store i32 3, i32* %ptr <i>; yields {void}</i>
3734 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00003735</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00003736</div>
3737
Chris Lattner2b7d3202002-05-06 03:03:22 +00003738<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003739<div class="doc_subsubsection">
3740 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
3741</div>
3742
Misha Brukman9d0919f2003-11-08 01:05:38 +00003743<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00003744<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003745<pre>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003746 &lt;result&gt; = getelementptr &lt;pty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003747</pre>
3748
Chris Lattner7faa8832002-04-14 06:13:44 +00003749<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003750
3751<p>
3752The '<tt>getelementptr</tt>' instruction is used to get the address of a
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003753subelement of an aggregate data structure. It performs address calculation only
3754and does not access memory.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003755
Chris Lattner7faa8832002-04-14 06:13:44 +00003756<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003757
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003758<p>The first argument is always a pointer, and forms the basis of the
3759calculation. The remaining arguments are indices, that indicate which of the
3760elements of the aggregate object are indexed. The interpretation of each index
3761is dependent on the type being indexed into. The first index always indexes the
3762pointer value given as the first argument, the second index indexes a value of
3763the type pointed to (not necessarily the value directly pointed to, since the
3764first index can be non-zero), etc. The first type indexed into must be a pointer
3765value, subsequent types can be arrays, vectors and structs. Note that subsequent
3766types being indexed into can never be pointers, since that would require loading
3767the pointer before continuing calculation.</p>
3768
3769<p>The type of each index argument depends on the type it is indexing into.
3770When indexing into a (packed) structure, only <tt>i32</tt> integer
3771<b>constants</b> are allowed. When indexing into an array, pointer or vector,
Sanjiv Gupta23c70f42009-04-27 03:21:00 +00003772integers of any width are allowed (also non-constants).</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003773
Chris Lattner261efe92003-11-25 01:02:51 +00003774<p>For example, let's consider a C code fragment and how it gets
3775compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003776
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003777<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003778<pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003779struct RT {
3780 char A;
Chris Lattnercabc8462007-05-29 15:43:56 +00003781 int B[10][20];
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003782 char C;
3783};
3784struct ST {
Chris Lattnercabc8462007-05-29 15:43:56 +00003785 int X;
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003786 double Y;
3787 struct RT Z;
3788};
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003789
Chris Lattnercabc8462007-05-29 15:43:56 +00003790int *foo(struct ST *s) {
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003791 return &amp;s[1].Z.B[5][13];
3792}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003793</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003794</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003795
Misha Brukman9d0919f2003-11-08 01:05:38 +00003796<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003797
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003798<div class="doc_code">
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003799<pre>
Chris Lattnere7886e42009-01-11 20:53:49 +00003800%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
3801%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003802
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003803define i32* %foo(%ST* %s) {
3804entry:
3805 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
3806 ret i32* %reg
3807}
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003808</pre>
Bill Wendling2f7a8b02007-05-29 09:04:49 +00003809</div>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003810
Chris Lattner7faa8832002-04-14 06:13:44 +00003811<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003812
Misha Brukman9d0919f2003-11-08 01:05:38 +00003813<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Reid Spencerca86e162006-12-31 07:07:53 +00003814type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003815}</tt>' type, a structure. The second index indexes into the third element of
Reid Spencerca86e162006-12-31 07:07:53 +00003816the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
3817i8 }</tt>' type, another structure. The third index indexes into the second
3818element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003819array. The two dimensions of the array are subscripted into, yielding an
Reid Spencerca86e162006-12-31 07:07:53 +00003820'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
3821to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003822
Chris Lattner261efe92003-11-25 01:02:51 +00003823<p>Note that it is perfectly legal to index partially through a
3824structure, returning a pointer to an inner element. Because of this,
3825the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003826
3827<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003828 define i32* %foo(%ST* %s) {
3829 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
Jeff Cohen6f1cc772007-04-22 01:17:39 +00003830 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
3831 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
Reid Spencerca86e162006-12-31 07:07:53 +00003832 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
3833 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
3834 ret i32* %t5
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003835 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00003836</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00003837
Chris Lattner8c0e62c2009-03-09 20:55:18 +00003838<p>Note that it is undefined to access an array out of bounds: array
3839and pointer indexes must always be within the defined bounds of the
3840array type when accessed with an instruction that dereferences the
3841pointer (e.g. a load or store instruction). The one exception for
3842this rule is zero length arrays. These arrays are defined to be
3843accessible as variable length arrays, which requires access beyond the
3844zero'th element.</p>
Chris Lattnere67a9512005-06-24 17:22:57 +00003845
Chris Lattner884a9702006-08-15 00:45:58 +00003846<p>The getelementptr instruction is often confusing. For some more insight
3847into how it works, see <a href="GetElementPtr.html">the getelementptr
3848FAQ</a>.</p>
3849
Chris Lattner7faa8832002-04-14 06:13:44 +00003850<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00003851
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003852<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003853 <i>; yields [12 x i8]*:aptr</i>
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003854 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
3855 <i>; yields i8*:vptr</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00003856 %vptr = getelementptr {i32, &lt;2 x i8&gt;}* %svptr, i64 0, i32 1, i32 1
Matthijs Kooijmane49d0bc2008-10-13 13:44:15 +00003857 <i>; yields i8*:eptr</i>
3858 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
Sanjiv Gupta9f805c22009-04-25 07:27:44 +00003859 <i>; yields i32*:iptr</i>
Sanjiv Gupta16ffa802009-04-24 16:38:13 +00003860 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003861</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00003862</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00003863
Chris Lattner00950542001-06-06 20:29:01 +00003864<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00003865<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003866</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003867<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00003868<p>The instructions in this category are the conversion instructions (casting)
3869which all take a single operand and a type. They perform various bit conversions
3870on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003871</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003872
Chris Lattner6536cfe2002-05-06 22:08:29 +00003873<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00003874<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003875 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
3876</div>
3877<div class="doc_text">
3878
3879<h5>Syntax:</h5>
3880<pre>
3881 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3882</pre>
3883
3884<h5>Overview:</h5>
3885<p>
3886The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
3887</p>
3888
3889<h5>Arguments:</h5>
3890<p>
3891The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
3892be an <a href="#t_integer">integer</a> type, and a type that specifies the size
Chris Lattner3b19d652007-01-15 01:54:13 +00003893and type of the result, which must be an <a href="#t_integer">integer</a>
Reid Spencerd4448792006-11-09 23:03:26 +00003894type. The bit size of <tt>value</tt> must be larger than the bit size of
3895<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003896
3897<h5>Semantics:</h5>
3898<p>
3899The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00003900and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
3901larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
3902It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003903
3904<h5>Example:</h5>
3905<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003906 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003907 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
3908 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003909</pre>
3910</div>
3911
3912<!-- _______________________________________________________________________ -->
3913<div class="doc_subsubsection">
3914 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
3915</div>
3916<div class="doc_text">
3917
3918<h5>Syntax:</h5>
3919<pre>
3920 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3921</pre>
3922
3923<h5>Overview:</h5>
3924<p>The '<tt>zext</tt>' instruction zero extends its operand to type
3925<tt>ty2</tt>.</p>
3926
3927
3928<h5>Arguments:</h5>
3929<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003930<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3931also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003932<tt>value</tt> must be smaller than the bit size of the destination type,
3933<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003934
3935<h5>Semantics:</h5>
3936<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
Chris Lattnerd1d25172007-05-24 19:13:27 +00003937bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003938
Reid Spencerb5929522007-01-12 15:46:11 +00003939<p>When zero extending from i1, the result will always be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003940
3941<h5>Example:</h5>
3942<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003943 %X = zext i32 257 to i64 <i>; yields i64:257</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003944 %Y = zext i1 true to i32 <i>; yields i32:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003945</pre>
3946</div>
3947
3948<!-- _______________________________________________________________________ -->
3949<div class="doc_subsubsection">
3950 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3951</div>
3952<div class="doc_text">
3953
3954<h5>Syntax:</h5>
3955<pre>
3956 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3957</pre>
3958
3959<h5>Overview:</h5>
3960<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3961
3962<h5>Arguments:</h5>
3963<p>
3964The '<tt>sext</tt>' instruction takes a value to cast, which must be of
Chris Lattner3b19d652007-01-15 01:54:13 +00003965<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3966also be of <a href="#t_integer">integer</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00003967<tt>value</tt> must be smaller than the bit size of the destination type,
3968<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003969
3970<h5>Semantics:</h5>
3971<p>
3972The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3973bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
Chris Lattnerd1d25172007-05-24 19:13:27 +00003974the type <tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003975
Reid Spencerc78f3372007-01-12 03:35:51 +00003976<p>When sign extending from i1, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003977
3978<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003979<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00003980 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
Reid Spencerc78f3372007-01-12 03:35:51 +00003981 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003982</pre>
3983</div>
3984
3985<!-- _______________________________________________________________________ -->
3986<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00003987 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3988</div>
3989
3990<div class="doc_text">
3991
3992<h5>Syntax:</h5>
3993
3994<pre>
3995 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3996</pre>
3997
3998<h5>Overview:</h5>
3999<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
4000<tt>ty2</tt>.</p>
4001
4002
4003<h5>Arguments:</h5>
4004<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
4005 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
4006cast it to. The size of <tt>value</tt> must be larger than the size of
4007<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
4008<i>no-op cast</i>.</p>
4009
4010<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004011<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
4012<a href="#t_floating">floating point</a> type to a smaller
4013<a href="#t_floating">floating point</a> type. If the value cannot fit within
4014the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00004015
4016<h5>Example:</h5>
4017<pre>
4018 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
4019 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
4020</pre>
4021</div>
4022
4023<!-- _______________________________________________________________________ -->
4024<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004025 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
4026</div>
4027<div class="doc_text">
4028
4029<h5>Syntax:</h5>
4030<pre>
4031 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4032</pre>
4033
4034<h5>Overview:</h5>
4035<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
4036floating point value.</p>
4037
4038<h5>Arguments:</h5>
4039<p>The '<tt>fpext</tt>' instruction takes a
4040<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00004041and a <a href="#t_floating">floating point</a> type to cast it to. The source
4042type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004043
4044<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004045<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
Duncan Sands8036ca42007-03-30 12:22:09 +00004046<a href="#t_floating">floating point</a> type to a larger
4047<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
Reid Spencerd4448792006-11-09 23:03:26 +00004048used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00004049<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004050
4051<h5>Example:</h5>
4052<pre>
4053 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
4054 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
4055</pre>
4056</div>
4057
4058<!-- _______________________________________________________________________ -->
4059<div class="doc_subsubsection">
Reid Spencer24d6da52007-01-21 00:29:26 +00004060 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004061</div>
4062<div class="doc_text">
4063
4064<h5>Syntax:</h5>
4065<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004066 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004067</pre>
4068
4069<h5>Overview:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004070<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004071unsigned integer equivalent of type <tt>ty2</tt>.
4072</p>
4073
4074<h5>Arguments:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004075<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00004076scalar or vector <a href="#t_floating">floating point</a> value, and a type
4077to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4078type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4079vector integer type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004080
4081<h5>Semantics:</h5>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004082<p> The '<tt>fptoui</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004083<a href="#t_floating">floating point</a> operand into the nearest (rounding
4084towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
4085the results are undefined.</p>
4086
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004087<h5>Example:</h5>
4088<pre>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004089 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner88519042007-09-22 03:17:52 +00004090 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencer1539a1c2007-07-31 14:40:14 +00004091 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004092</pre>
4093</div>
4094
4095<!-- _______________________________________________________________________ -->
4096<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004097 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004098</div>
4099<div class="doc_text">
4100
4101<h5>Syntax:</h5>
4102<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004103 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004104</pre>
4105
4106<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004107<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004108<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004109</p>
4110
Chris Lattner6536cfe2002-05-06 22:08:29 +00004111<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004112<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Nate Begemanb348d182007-11-17 03:58:34 +00004113scalar or vector <a href="#t_floating">floating point</a> value, and a type
4114to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a>
4115type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a
4116vector integer type with the same number of elements as <tt>ty</tt></p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004117
Chris Lattner6536cfe2002-05-06 22:08:29 +00004118<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004119<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004120<a href="#t_floating">floating point</a> operand into the nearest (rounding
4121towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
4122the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004123
Chris Lattner33ba0d92001-07-09 00:26:23 +00004124<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004125<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004126 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner88519042007-09-22 03:17:52 +00004127 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004128 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004129</pre>
4130</div>
4131
4132<!-- _______________________________________________________________________ -->
4133<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004134 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004135</div>
4136<div class="doc_text">
4137
4138<h5>Syntax:</h5>
4139<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004140 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004141</pre>
4142
4143<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004144<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004145integer and converts that value to the <tt>ty2</tt> type.</p>
4146
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004147<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004148<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a
4149scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4150to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4151type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4152floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004153
4154<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004155<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004156integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00004157the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004158
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004159<h5>Example:</h5>
4160<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004161 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004162 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004163</pre>
4164</div>
4165
4166<!-- _______________________________________________________________________ -->
4167<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00004168 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004169</div>
4170<div class="doc_text">
4171
4172<h5>Syntax:</h5>
4173<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00004174 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004175</pre>
4176
4177<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004178<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004179integer and converts that value to the <tt>ty2</tt> type.</p>
4180
4181<h5>Arguments:</h5>
Nate Begemanb348d182007-11-17 03:58:34 +00004182<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a
4183scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it
4184to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a>
4185type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector
4186floating point type with the same number of elements as <tt>ty</tt></p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004187
4188<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00004189<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004190integer quantity and converts it to the corresponding floating point value. If
Jeff Cohencb757312007-04-22 14:56:37 +00004191the value cannot fit in the floating point value, the results are undefined.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004192
4193<h5>Example:</h5>
4194<pre>
Reid Spencerca86e162006-12-31 07:07:53 +00004195 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004196 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004197</pre>
4198</div>
4199
4200<!-- _______________________________________________________________________ -->
4201<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00004202 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
4203</div>
4204<div class="doc_text">
4205
4206<h5>Syntax:</h5>
4207<pre>
4208 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4209</pre>
4210
4211<h5>Overview:</h5>
4212<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
4213the integer type <tt>ty2</tt>.</p>
4214
4215<h5>Arguments:</h5>
4216<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
Duncan Sands8036ca42007-03-30 12:22:09 +00004217must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
Dan Gohman0e451ce2008-10-14 16:51:45 +00004218<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004219
4220<h5>Semantics:</h5>
4221<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
4222<tt>ty2</tt> by interpreting the pointer value as an integer and either
4223truncating or zero extending that value to the size of the integer type. If
4224<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
4225<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
Jeff Cohenb627eab2007-04-29 01:07:00 +00004226are the same size, then nothing is done (<i>no-op cast</i>) other than a type
4227change.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004228
4229<h5>Example:</h5>
4230<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004231 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
4232 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004233</pre>
4234</div>
4235
4236<!-- _______________________________________________________________________ -->
4237<div class="doc_subsubsection">
4238 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
4239</div>
4240<div class="doc_text">
4241
4242<h5>Syntax:</h5>
4243<pre>
4244 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
4245</pre>
4246
4247<h5>Overview:</h5>
4248<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
4249a pointer type, <tt>ty2</tt>.</p>
4250
4251<h5>Arguments:</h5>
Duncan Sands8036ca42007-03-30 12:22:09 +00004252<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
Reid Spencer72679252006-11-11 21:00:47 +00004253value to cast, and a type to cast it to, which must be a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004254<a href="#t_pointer">pointer</a> type.</p>
Reid Spencer72679252006-11-11 21:00:47 +00004255
4256<h5>Semantics:</h5>
4257<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
4258<tt>ty2</tt> by applying either a zero extension or a truncation depending on
4259the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
4260size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
4261the size of a pointer then a zero extension is done. If they are the same size,
4262nothing is done (<i>no-op cast</i>).</p>
4263
4264<h5>Example:</h5>
4265<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004266 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
4267 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
4268 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
Reid Spencer72679252006-11-11 21:00:47 +00004269</pre>
4270</div>
4271
4272<!-- _______________________________________________________________________ -->
4273<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00004274 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004275</div>
4276<div class="doc_text">
4277
4278<h5>Syntax:</h5>
4279<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004280 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004281</pre>
4282
4283<h5>Overview:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004284
Reid Spencer5c0ef472006-11-11 23:08:07 +00004285<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004286<tt>ty2</tt> without changing any bits.</p>
4287
4288<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004289
Reid Spencer5c0ef472006-11-11 23:08:07 +00004290<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Dan Gohman500233a2008-09-08 16:45:59 +00004291a non-aggregate first class value, and a type to cast it to, which must also be
4292a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of
4293<tt>value</tt>
Reid Spencer19b569f2007-01-09 20:08:58 +00004294and the destination type, <tt>ty2</tt>, must be identical. If the source
Chris Lattner5568e942008-05-20 20:48:21 +00004295type is a pointer, the destination type must also be a pointer. This
4296instruction supports bitwise conversion of vectors to integers and to vectors
4297of other types (as long as they have the same size).</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004298
4299<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00004300<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00004301<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
4302this conversion. The conversion is done as if the <tt>value</tt> had been
4303stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
4304converted to other pointer types with this instruction. To convert pointers to
4305other types, use the <a href="#i_inttoptr">inttoptr</a> or
4306<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00004307
4308<h5>Example:</h5>
4309<pre>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004310 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
Reid Spencerca86e162006-12-31 07:07:53 +00004311 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004312 %Z = bitcast &lt;2 x int&gt; %V to i64; <i>; yields i64: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00004313</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004314</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004315
Reid Spencer2fd21e62006-11-08 01:18:52 +00004316<!-- ======================================================================= -->
4317<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
4318<div class="doc_text">
4319<p>The instructions in this category are the "miscellaneous"
4320instructions, which defy better classification.</p>
4321</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004322
4323<!-- _______________________________________________________________________ -->
4324<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
4325</div>
4326<div class="doc_text">
4327<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004328<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004329</pre>
4330<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004331<p>The '<tt>icmp</tt>' instruction returns a boolean value or
4332a vector of boolean values based on comparison
4333of its two integer, integer vector, or pointer operands.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004334<h5>Arguments:</h5>
4335<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004336the condition code indicating the kind of comparison to perform. It is not
4337a value, just a keyword. The possible condition code are:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004338</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004339<ol>
4340 <li><tt>eq</tt>: equal</li>
4341 <li><tt>ne</tt>: not equal </li>
4342 <li><tt>ugt</tt>: unsigned greater than</li>
4343 <li><tt>uge</tt>: unsigned greater or equal</li>
4344 <li><tt>ult</tt>: unsigned less than</li>
4345 <li><tt>ule</tt>: unsigned less or equal</li>
4346 <li><tt>sgt</tt>: signed greater than</li>
4347 <li><tt>sge</tt>: signed greater or equal</li>
4348 <li><tt>slt</tt>: signed less than</li>
4349 <li><tt>sle</tt>: signed less or equal</li>
4350</ol>
Chris Lattner3b19d652007-01-15 01:54:13 +00004351<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
Dan Gohmanf72fb672008-09-09 01:02:47 +00004352<a href="#t_pointer">pointer</a>
4353or integer <a href="#t_vector">vector</a> typed.
4354They must also be identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004355<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004356<p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to
Reid Spencerf3a70a62006-11-18 21:50:54 +00004357the condition code given as <tt>cond</tt>. The comparison performed always
Dan Gohmanf72fb672008-09-09 01:02:47 +00004358yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows:
Dan Gohman0e451ce2008-10-14 16:51:45 +00004359</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004360<ol>
4361 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
4362 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
4363 </li>
4364 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
Dan Gohman0e451ce2008-10-14 16:51:45 +00004365 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004366 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004367 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004368 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004369 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004370 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004371 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004372 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004373 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004374 <li><tt>sgt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004375 <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004376 <li><tt>sge</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004377 <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004378 <li><tt>slt</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004379 <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004380 <li><tt>sle</tt>: interprets the operands as signed values and yields
Gabor Greiffb224a22008-08-07 21:46:00 +00004381 <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004382</ol>
4383<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
Jeff Cohenb627eab2007-04-29 01:07:00 +00004384values are compared as if they were integers.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004385<p>If the operands are integer vectors, then they are compared
4386element by element. The result is an <tt>i1</tt> vector with
4387the same number of elements as the values being compared.
4388Otherwise, the result is an <tt>i1</tt>.
4389</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004390
4391<h5>Example:</h5>
Reid Spencerca86e162006-12-31 07:07:53 +00004392<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
4393 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
4394 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
4395 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
4396 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
4397 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004398</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004399
4400<p>Note that the code generator does not yet support vector types with
4401 the <tt>icmp</tt> instruction.</p>
4402
Reid Spencerf3a70a62006-11-18 21:50:54 +00004403</div>
4404
4405<!-- _______________________________________________________________________ -->
4406<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
4407</div>
4408<div class="doc_text">
4409<h5>Syntax:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004410<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;op1&gt;, &lt;op2&gt; <i>; yields {i1} or {&lt;N x i1&gt;}:result</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004411</pre>
4412<h5>Overview:</h5>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004413<p>The '<tt>fcmp</tt>' instruction returns a boolean value
4414or vector of boolean values based on comparison
Dan Gohman0e451ce2008-10-14 16:51:45 +00004415of its operands.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004416<p>
4417If the operands are floating point scalars, then the result
4418type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>).
4419</p>
4420<p>If the operands are floating point vectors, then the result type
4421is a vector of boolean with the same number of elements as the
4422operands being compared.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004423<h5>Arguments:</h5>
4424<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
Jeff Cohenb627eab2007-04-29 01:07:00 +00004425the condition code indicating the kind of comparison to perform. It is not
Dan Gohman0e451ce2008-10-14 16:51:45 +00004426a value, just a keyword. The possible condition code are:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004427<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00004428 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004429 <li><tt>oeq</tt>: ordered and equal</li>
4430 <li><tt>ogt</tt>: ordered and greater than </li>
4431 <li><tt>oge</tt>: ordered and greater than or equal</li>
4432 <li><tt>olt</tt>: ordered and less than </li>
4433 <li><tt>ole</tt>: ordered and less than or equal</li>
4434 <li><tt>one</tt>: ordered and not equal</li>
4435 <li><tt>ord</tt>: ordered (no nans)</li>
4436 <li><tt>ueq</tt>: unordered or equal</li>
4437 <li><tt>ugt</tt>: unordered or greater than </li>
4438 <li><tt>uge</tt>: unordered or greater than or equal</li>
4439 <li><tt>ult</tt>: unordered or less than </li>
4440 <li><tt>ule</tt>: unordered or less than or equal</li>
4441 <li><tt>une</tt>: unordered or not equal</li>
4442 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004443 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004444</ol>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004445<p><i>Ordered</i> means that neither operand is a QNAN while
Reid Spencer93a49852006-12-06 07:08:07 +00004446<i>unordered</i> means that either operand may be a QNAN.</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004447<p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be
4448either a <a href="#t_floating">floating point</a> type
4449or a <a href="#t_vector">vector</a> of floating point type.
4450They must have identical types.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004451<h5>Semantics:</h5>
Gabor Greiffb224a22008-08-07 21:46:00 +00004452<p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004453according to the condition code given as <tt>cond</tt>.
4454If the operands are vectors, then the vectors are compared
4455element by element.
4456Each comparison performed
Dan Gohman0e451ce2008-10-14 16:51:45 +00004457always yields an <a href="#t_primitive">i1</a> result, as follows:</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004458<ol>
4459 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004460 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004461 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004462 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004463 <tt>op1</tt> is greather than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004464 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004465 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004466 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004467 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004468 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004469 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004470 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Gabor Greiffb224a22008-08-07 21:46:00 +00004471 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004472 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
4473 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004474 <tt>op1</tt> is equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004475 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004476 <tt>op1</tt> is greater than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004477 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004478 <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004479 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004480 <tt>op1</tt> is less than <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004481 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004482 <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004483 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Gabor Greiffb224a22008-08-07 21:46:00 +00004484 <tt>op1</tt> is not equal to <tt>op2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00004485 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004486 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
4487</ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004488
4489<h5>Example:</h5>
4490<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004491 &lt;result&gt; = fcmp one float 4.0, 5.0 <i>; yields: result=true</i>
4492 &lt;result&gt; = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i>
4493 &lt;result&gt; = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
Reid Spencerf3a70a62006-11-18 21:50:54 +00004494</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004495
4496<p>Note that the code generator does not yet support vector types with
4497 the <tt>fcmp</tt> instruction.</p>
4498
Reid Spencerf3a70a62006-11-18 21:50:54 +00004499</div>
4500
Reid Spencer2fd21e62006-11-08 01:18:52 +00004501<!-- _______________________________________________________________________ -->
Nate Begemanac80ade2008-05-12 19:01:56 +00004502<div class="doc_subsubsection">
Chris Lattner5568e942008-05-20 20:48:21 +00004503 <a name="i_phi">'<tt>phi</tt>' Instruction</a>
4504</div>
4505
Reid Spencer2fd21e62006-11-08 01:18:52 +00004506<div class="doc_text">
Chris Lattner5568e942008-05-20 20:48:21 +00004507
Reid Spencer2fd21e62006-11-08 01:18:52 +00004508<h5>Syntax:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004509
Reid Spencer2fd21e62006-11-08 01:18:52 +00004510<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
4511<h5>Overview:</h5>
4512<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
4513the SSA graph representing the function.</p>
4514<h5>Arguments:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004515
Jeff Cohenb627eab2007-04-29 01:07:00 +00004516<p>The type of the incoming values is specified with the first type
Reid Spencer2fd21e62006-11-08 01:18:52 +00004517field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
4518as arguments, with one pair for each predecessor basic block of the
4519current block. Only values of <a href="#t_firstclass">first class</a>
4520type may be used as the value arguments to the PHI node. Only labels
4521may be used as the label arguments.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004522
Reid Spencer2fd21e62006-11-08 01:18:52 +00004523<p>There must be no non-phi instructions between the start of a basic
4524block and the PHI instructions: i.e. PHI instructions must be first in
4525a basic block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004526
Jay Foadd2449092009-06-03 10:20:10 +00004527<p>For the purposes of the SSA form, the use of each incoming value is
4528deemed to occur on the edge from the corresponding predecessor block
4529to the current block (but after any definition of an '<tt>invoke</tt>'
4530instruction's return value on the same edge).</p>
4531
Reid Spencer2fd21e62006-11-08 01:18:52 +00004532<h5>Semantics:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004533
Jeff Cohenb627eab2007-04-29 01:07:00 +00004534<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
4535specified by the pair corresponding to the predecessor basic block that executed
4536just prior to the current block.</p>
Chris Lattner5568e942008-05-20 20:48:21 +00004537
Reid Spencer2fd21e62006-11-08 01:18:52 +00004538<h5>Example:</h5>
Chris Lattner5568e942008-05-20 20:48:21 +00004539<pre>
4540Loop: ; Infinite loop that counts from 0 on up...
4541 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
4542 %nextindvar = add i32 %indvar, 1
4543 br label %Loop
4544</pre>
Reid Spencer2fd21e62006-11-08 01:18:52 +00004545</div>
4546
Chris Lattnercc37aae2004-03-12 05:50:16 +00004547<!-- _______________________________________________________________________ -->
4548<div class="doc_subsubsection">
4549 <a name="i_select">'<tt>select</tt>' Instruction</a>
4550</div>
4551
4552<div class="doc_text">
4553
4554<h5>Syntax:</h5>
4555
4556<pre>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004557 &lt;result&gt; = select <i>selty</i> &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
4558
Dan Gohman0e451ce2008-10-14 16:51:45 +00004559 <i>selty</i> is either i1 or {&lt;N x i1&gt;}
Chris Lattnercc37aae2004-03-12 05:50:16 +00004560</pre>
4561
4562<h5>Overview:</h5>
4563
4564<p>
4565The '<tt>select</tt>' instruction is used to choose one value based on a
4566condition, without branching.
4567</p>
4568
4569
4570<h5>Arguments:</h5>
4571
4572<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004573The '<tt>select</tt>' instruction requires an 'i1' value or
4574a vector of 'i1' values indicating the
Chris Lattner5568e942008-05-20 20:48:21 +00004575condition, and two values of the same <a href="#t_firstclass">first class</a>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004576type. If the val1/val2 are vectors and
4577the condition is a scalar, then entire vectors are selected, not
Chris Lattner5568e942008-05-20 20:48:21 +00004578individual elements.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004579</p>
4580
4581<h5>Semantics:</h5>
4582
4583<p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004584If the condition is an i1 and it evaluates to 1, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00004585value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00004586</p>
Dan Gohmanf72fb672008-09-09 01:02:47 +00004587<p>
4588If the condition is a vector of i1, then the value arguments must
4589be vectors of the same size, and the selection is done element
4590by element.
4591</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004592
4593<h5>Example:</h5>
4594
4595<pre>
Reid Spencerc78f3372007-01-12 03:35:51 +00004596 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
Chris Lattnercc37aae2004-03-12 05:50:16 +00004597</pre>
Dan Gohmanc766f722009-01-22 01:39:38 +00004598
4599<p>Note that the code generator does not yet support conditions
4600 with vector type.</p>
4601
Chris Lattnercc37aae2004-03-12 05:50:16 +00004602</div>
4603
Robert Bocchino05ccd702006-01-15 20:48:27 +00004604
4605<!-- _______________________________________________________________________ -->
4606<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00004607 <a name="i_call">'<tt>call</tt>' Instruction</a>
4608</div>
4609
Misha Brukman9d0919f2003-11-08 01:05:38 +00004610<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00004611
Chris Lattner00950542001-06-06 20:29:01 +00004612<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004613<pre>
Devang Patel307e8ab2008-10-07 17:48:33 +00004614 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;function args&gt;) [<a href="#fnattrs">fn attrs</a>]
Chris Lattner2bff5242005-05-06 05:47:36 +00004615</pre>
4616
Chris Lattner00950542001-06-06 20:29:01 +00004617<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004618
Misha Brukman9d0919f2003-11-08 01:05:38 +00004619<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004620
Chris Lattner00950542001-06-06 20:29:01 +00004621<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004622
Misha Brukman9d0919f2003-11-08 01:05:38 +00004623<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004624
Chris Lattner6536cfe2002-05-06 22:08:29 +00004625<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00004626 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004627 <p>The optional "tail" marker indicates whether the callee function accesses
4628 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00004629 function call is eligible for tail call optimization. Note that calls may
4630 be marked "tail" even if they do not occur before a <a
Dan Gohman0e451ce2008-10-14 16:51:45 +00004631 href="#i_ret"><tt>ret</tt></a> instruction.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004632 </li>
4633 <li>
Duncan Sands8036ca42007-03-30 12:22:09 +00004634 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004635 convention</a> the call should use. If none is specified, the call defaults
Dan Gohman0e451ce2008-10-14 16:51:45 +00004636 to using C calling conventions.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004637 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004638
4639 <li>
4640 <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for
4641 return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>',
4642 and '<tt>inreg</tt>' attributes are valid here.</p>
4643 </li>
4644
Chris Lattnerbad10ee2005-05-06 22:57:40 +00004645 <li>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004646 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
4647 the type of the return value. Functions that return no value are marked
4648 <tt><a href="#t_void">void</a></tt>.</p>
4649 </li>
4650 <li>
4651 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
4652 value being invoked. The argument types must match the types implied by
4653 this signature. This type can be omitted if the function is not varargs
4654 and if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004655 </li>
4656 <li>
4657 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
4658 be invoked. In most cases, this is a direct function invocation, but
4659 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00004660 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004661 </li>
4662 <li>
4663 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00004664 function signature argument types. All arguments must be of
4665 <a href="#t_firstclass">first class</a> type. If the function signature
4666 indicates the function accepts a variable number of arguments, the extra
4667 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00004668 </li>
Devang Patelf642f472008-10-06 18:50:38 +00004669 <li>
Devang Patel307e8ab2008-10-07 17:48:33 +00004670 <p>The optional <a href="#fnattrs">function attributes</a> list. Only
Devang Patelf642f472008-10-06 18:50:38 +00004671 '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and
4672 '<tt>readnone</tt>' attributes are valid here.</p>
4673 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00004674</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00004675
Chris Lattner00950542001-06-06 20:29:01 +00004676<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004677
Chris Lattner261efe92003-11-25 01:02:51 +00004678<p>The '<tt>call</tt>' instruction is used to cause control flow to
4679transfer to a specified function, with its incoming arguments bound to
4680the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
4681instruction in the called function, control flow continues with the
4682instruction after the function call, and the return value of the
Dan Gohman0e451ce2008-10-14 16:51:45 +00004683function is bound to the result argument.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00004684
Chris Lattner00950542001-06-06 20:29:01 +00004685<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00004686
4687<pre>
Nick Lewyckydb7e3c92007-09-08 13:57:50 +00004688 %retval = call i32 @test(i32 %argc)
Chris Lattner772fccf2008-03-21 17:24:17 +00004689 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i>
4690 %X = tail call i32 @foo() <i>; yields i32</i>
4691 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i>
4692 call void %foo(i8 97 signext)
Devang Patelc3fc6df2008-03-10 20:49:15 +00004693
4694 %struct.A = type { i32, i8 }
Devang Patelf642f472008-10-06 18:50:38 +00004695 %r = call %struct.A @foo() <i>; yields { 32, i8 }</i>
Dan Gohmanb1e6b962008-10-04 19:00:07 +00004696 %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i>
4697 %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i>
Chris Lattner85a350f2008-10-08 06:26:11 +00004698 %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i>
Matthijs Kooijmancb73d192008-10-07 10:03:45 +00004699 %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i>
Chris Lattner2bff5242005-05-06 05:47:36 +00004700</pre>
4701
Misha Brukman9d0919f2003-11-08 01:05:38 +00004702</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004703
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004704<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00004705<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004706 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004707</div>
4708
Misha Brukman9d0919f2003-11-08 01:05:38 +00004709<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00004710
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004711<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004712
4713<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004714 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00004715</pre>
4716
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004717<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004718
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004719<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00004720the "variable argument" area of a function call. It is used to implement the
4721<tt>va_arg</tt> macro in C.</p>
4722
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004723<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004724
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004725<p>This instruction takes a <tt>va_list*</tt> value and the type of
4726the argument. It returns a value of the specified argument type and
Jeff Cohenb627eab2007-04-29 01:07:00 +00004727increments the <tt>va_list</tt> to point to the next argument. The
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004728actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004729
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004730<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004731
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004732<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
4733type from the specified <tt>va_list</tt> and causes the
4734<tt>va_list</tt> to point to the next argument. For more information,
4735see the variable argument handling <a href="#int_varargs">Intrinsic
4736Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004737
4738<p>It is legal for this instruction to be called in a function which does not
4739take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004740function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004741
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004742<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00004743href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00004744argument.</p>
4745
Chris Lattner8d1a81d2003-10-18 05:51:36 +00004746<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00004747
4748<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
4749
Dan Gohmanf3e60bd2009-01-12 23:12:39 +00004750<p>Note that the code generator does not yet fully support va_arg
4751 on many targets. Also, it does not currently support va_arg with
4752 aggregate types on any target.</p>
4753
Misha Brukman9d0919f2003-11-08 01:05:38 +00004754</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004755
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004756<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00004757<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
4758<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004759
Misha Brukman9d0919f2003-11-08 01:05:38 +00004760<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004761
4762<p>LLVM supports the notion of an "intrinsic function". These functions have
Reid Spencer409e28f2007-04-01 08:04:23 +00004763well known names and semantics and are required to follow certain restrictions.
4764Overall, these intrinsics represent an extension mechanism for the LLVM
Jeff Cohenb627eab2007-04-29 01:07:00 +00004765language that does not require changing all of the transformations in LLVM when
Gabor Greif04367bf2007-07-06 22:07:22 +00004766adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004767
John Criswellfc6b8952005-05-16 16:17:45 +00004768<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
Jeff Cohenb627eab2007-04-29 01:07:00 +00004769prefix is reserved in LLVM for intrinsic names; thus, function names may not
4770begin with this prefix. Intrinsic functions must always be external functions:
4771you cannot define the body of intrinsic functions. Intrinsic functions may
4772only be used in call or invoke instructions: it is illegal to take the address
4773of an intrinsic function. Additionally, because intrinsic functions are part
4774of the LLVM language, it is required if any are added that they be documented
4775here.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004776
Chandler Carruth69940402007-08-04 01:51:18 +00004777<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
4778a family of functions that perform the same operation but on different data
4779types. Because LLVM can represent over 8 million different integer types,
4780overloading is used commonly to allow an intrinsic function to operate on any
4781integer type. One or more of the argument types or the result type can be
4782overloaded to accept any integer type. Argument types may also be defined as
4783exactly matching a previous argument's type or the result type. This allows an
4784intrinsic function which accepts multiple arguments, but needs all of them to
4785be of the same type, to only be overloaded with respect to a single argument or
4786the result.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00004787
Chandler Carruth69940402007-08-04 01:51:18 +00004788<p>Overloaded intrinsics will have the names of its overloaded argument types
4789encoded into its function name, each preceded by a period. Only those types
4790which are overloaded result in a name suffix. Arguments whose type is matched
4791against another type do not. For example, the <tt>llvm.ctpop</tt> function can
4792take an integer of any width and returns an integer of exactly the same integer
4793width. This leads to a family of functions such as
4794<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
4795Only one type, the return type, is overloaded, and only one type suffix is
4796required. Because the argument's type is matched against the return type, it
4797does not require its own name suffix.</p>
Reid Spencer409e28f2007-04-01 08:04:23 +00004798
4799<p>To learn how to add an intrinsic function, please see the
4800<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004801</p>
4802
Misha Brukman9d0919f2003-11-08 01:05:38 +00004803</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004804
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004805<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004806<div class="doc_subsection">
4807 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
4808</div>
4809
Misha Brukman9d0919f2003-11-08 01:05:38 +00004810<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004811
Misha Brukman9d0919f2003-11-08 01:05:38 +00004812<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00004813 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00004814intrinsic functions. These functions are related to the similarly
4815named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004816
Chris Lattner261efe92003-11-25 01:02:51 +00004817<p>All of these functions operate on arguments that use a
4818target-specific value type "<tt>va_list</tt>". The LLVM assembly
4819language reference manual does not define what this type is, so all
Jeff Cohenb627eab2007-04-29 01:07:00 +00004820transformations should be prepared to handle these functions regardless of
4821the type used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004822
Chris Lattner374ab302006-05-15 17:26:46 +00004823<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00004824instruction and the variable argument handling intrinsic functions are
4825used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004826
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004827<div class="doc_code">
Chris Lattner33aec9e2004-02-12 17:01:32 +00004828<pre>
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004829define i32 @test(i32 %X, ...) {
Chris Lattner33aec9e2004-02-12 17:01:32 +00004830 ; Initialize variable argument processing
Jeff Cohenb627eab2007-04-29 01:07:00 +00004831 %ap = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004832 %ap2 = bitcast i8** %ap to i8*
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004833 call void @llvm.va_start(i8* %ap2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004834
4835 ; Read a single integer argument
Jeff Cohenb627eab2007-04-29 01:07:00 +00004836 %tmp = va_arg i8** %ap, i32
Chris Lattner33aec9e2004-02-12 17:01:32 +00004837
4838 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Jeff Cohenb627eab2007-04-29 01:07:00 +00004839 %aq = alloca i8*
Chris Lattnerb75137d2007-01-08 07:55:15 +00004840 %aq2 = bitcast i8** %aq to i8*
Jeff Cohenb627eab2007-04-29 01:07:00 +00004841 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004842 call void @llvm.va_end(i8* %aq2)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004843
4844 ; Stop processing of arguments.
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004845 call void @llvm.va_end(i8* %ap2)
Reid Spencerca86e162006-12-31 07:07:53 +00004846 ret i32 %tmp
Chris Lattner33aec9e2004-02-12 17:01:32 +00004847}
Anton Korobeynikov5d522f32007-03-21 23:58:04 +00004848
4849declare void @llvm.va_start(i8*)
4850declare void @llvm.va_copy(i8*, i8*)
4851declare void @llvm.va_end(i8*)
Chris Lattner33aec9e2004-02-12 17:01:32 +00004852</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004853</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004854
Bill Wendling2f7a8b02007-05-29 09:04:49 +00004855</div>
4856
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004857<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004858<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004859 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004860</div>
4861
4862
Misha Brukman9d0919f2003-11-08 01:05:38 +00004863<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004864<h5>Syntax:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004865<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004866<h5>Overview:</h5>
Dan Gohman0e451ce2008-10-14 16:51:45 +00004867<p>The '<tt>llvm.va_start</tt>' intrinsic initializes
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004868<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
4869href="#i_va_arg">va_arg</a></tt>.</p>
4870
4871<h5>Arguments:</h5>
4872
Dan Gohman0e451ce2008-10-14 16:51:45 +00004873<p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004874
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004875<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004876
Dan Gohman0e451ce2008-10-14 16:51:45 +00004877<p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004878macro available in C. In a target-dependent way, it initializes the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004879<tt>va_list</tt> element to which the argument points, so that the next call to
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004880<tt>va_arg</tt> will produce the first variable argument passed to the function.
4881Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
Jeff Cohenb627eab2007-04-29 01:07:00 +00004882last argument of the function as the compiler can figure that out.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004883
Misha Brukman9d0919f2003-11-08 01:05:38 +00004884</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004885
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004886<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004887<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004888 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004889</div>
4890
Misha Brukman9d0919f2003-11-08 01:05:38 +00004891<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004892<h5>Syntax:</h5>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004893<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004894<h5>Overview:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004895
Jeff Cohenb627eab2007-04-29 01:07:00 +00004896<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
Reid Spencera3e435f2007-04-04 02:42:35 +00004897which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
Chris Lattner261efe92003-11-25 01:02:51 +00004898or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004899
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004900<h5>Arguments:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004901
Jeff Cohenb627eab2007-04-29 01:07:00 +00004902<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004903
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004904<h5>Semantics:</h5>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004905
Misha Brukman9d0919f2003-11-08 01:05:38 +00004906<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Jeff Cohenb627eab2007-04-29 01:07:00 +00004907macro available in C. In a target-dependent way, it destroys the
4908<tt>va_list</tt> element to which the argument points. Calls to <a
4909href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
4910<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
4911<tt>llvm.va_end</tt>.</p>
Chris Lattnerb75137d2007-01-08 07:55:15 +00004912
Misha Brukman9d0919f2003-11-08 01:05:38 +00004913</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004914
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004915<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00004916<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004917 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
Chris Lattner8ff75902004-01-06 05:31:32 +00004918</div>
4919
Misha Brukman9d0919f2003-11-08 01:05:38 +00004920<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00004921
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004922<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004923
4924<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00004925 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00004926</pre>
4927
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004928<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004929
Jeff Cohenb627eab2007-04-29 01:07:00 +00004930<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
4931from the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004932
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004933<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004934
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004935<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00004936The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00004937
Chris Lattnerd7923912004-05-23 21:06:01 +00004938
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00004939<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00004940
Jeff Cohenb627eab2007-04-29 01:07:00 +00004941<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
4942macro available in C. In a target-dependent way, it copies the source
4943<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
4944intrinsic is necessary because the <tt><a href="#int_va_start">
4945llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
4946example, memory allocation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00004947
Misha Brukman9d0919f2003-11-08 01:05:38 +00004948</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00004949
Chris Lattner33aec9e2004-02-12 17:01:32 +00004950<!-- ======================================================================= -->
4951<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00004952 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
4953</div>
4954
4955<div class="doc_text">
4956
4957<p>
4958LLVM support for <a href="GarbageCollection.html">Accurate Garbage
Chris Lattnerd3eda892008-08-05 18:29:16 +00004959Collection</a> (GC) requires the implementation and generation of these
4960intrinsics.
Reid Spencera3e435f2007-04-04 02:42:35 +00004961These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
Chris Lattnerd7923912004-05-23 21:06:01 +00004962stack</a>, as well as garbage collector implementations that require <a
Reid Spencera3e435f2007-04-04 02:42:35 +00004963href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
Chris Lattnerd7923912004-05-23 21:06:01 +00004964Front-ends for type-safe garbage collected languages should generate these
4965intrinsics to make use of the LLVM garbage collectors. For more details, see <a
4966href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
4967</p>
Christopher Lamb303dae92007-12-17 01:00:21 +00004968
4969<p>The garbage collection intrinsics only operate on objects in the generic
4970 address space (address space zero).</p>
4971
Chris Lattnerd7923912004-05-23 21:06:01 +00004972</div>
4973
4974<!-- _______________________________________________________________________ -->
4975<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00004976 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00004977</div>
4978
4979<div class="doc_text">
4980
4981<h5>Syntax:</h5>
4982
4983<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00004984 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00004985</pre>
4986
4987<h5>Overview:</h5>
4988
John Criswell9e2485c2004-12-10 15:51:16 +00004989<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00004990the code generator, and allows some metadata to be associated with it.</p>
4991
4992<h5>Arguments:</h5>
4993
4994<p>The first argument specifies the address of a stack object that contains the
4995root pointer. The second pointer (which must be either a constant or a global
4996value address) contains the meta-data to be associated with the root.</p>
4997
4998<h5>Semantics:</h5>
4999
Chris Lattner05d67092008-04-24 05:59:56 +00005000<p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc"
Chris Lattnerd7923912004-05-23 21:06:01 +00005001location. At compile-time, the code generator generates information to allow
Gordon Henriksene1433f22007-12-25 02:31:26 +00005002the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>'
5003intrinsic may only be used in a function which <a href="#gc">specifies a GC
5004algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005005
5006</div>
5007
5008
5009<!-- _______________________________________________________________________ -->
5010<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005011 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005012</div>
5013
5014<div class="doc_text">
5015
5016<h5>Syntax:</h5>
5017
5018<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005019 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00005020</pre>
5021
5022<h5>Overview:</h5>
5023
5024<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
5025locations, allowing garbage collector implementations that require read
5026barriers.</p>
5027
5028<h5>Arguments:</h5>
5029
Chris Lattner80626e92006-03-14 20:02:51 +00005030<p>The second argument is the address to read from, which should be an address
5031allocated from the garbage collector. The first object is a pointer to the
5032start of the referenced object, if needed by the language runtime (otherwise
5033null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005034
5035<h5>Semantics:</h5>
5036
5037<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
5038instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00005039garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic
5040may only be used in a function which <a href="#gc">specifies a GC
5041algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005042
5043</div>
5044
5045
5046<!-- _______________________________________________________________________ -->
5047<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005048 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
Chris Lattnerd7923912004-05-23 21:06:01 +00005049</div>
5050
5051<div class="doc_text">
5052
5053<h5>Syntax:</h5>
5054
5055<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005056 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00005057</pre>
5058
5059<h5>Overview:</h5>
5060
5061<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
5062locations, allowing garbage collector implementations that require write
5063barriers (such as generational or reference counting collectors).</p>
5064
5065<h5>Arguments:</h5>
5066
Chris Lattner80626e92006-03-14 20:02:51 +00005067<p>The first argument is the reference to store, the second is the start of the
5068object to store it to, and the third is the address of the field of Obj to
5069store to. If the runtime does not require a pointer to the object, Obj may be
5070null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005071
5072<h5>Semantics:</h5>
5073
5074<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
5075instruction, but may be replaced with substantially more complex code by the
Gordon Henriksene1433f22007-12-25 02:31:26 +00005076garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic
5077may only be used in a function which <a href="#gc">specifies a GC
5078algorithm</a>.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00005079
5080</div>
5081
5082
5083
5084<!-- ======================================================================= -->
5085<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00005086 <a name="int_codegen">Code Generator Intrinsics</a>
5087</div>
5088
5089<div class="doc_text">
5090<p>
5091These intrinsics are provided by LLVM to expose special features that may only
5092be implemented with code generator support.
5093</p>
5094
5095</div>
5096
5097<!-- _______________________________________________________________________ -->
5098<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005099 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005100</div>
5101
5102<div class="doc_text">
5103
5104<h5>Syntax:</h5>
5105<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005106 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005107</pre>
5108
5109<h5>Overview:</h5>
5110
5111<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00005112The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
5113target-specific value indicating the return address of the current function
5114or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00005115</p>
5116
5117<h5>Arguments:</h5>
5118
5119<p>
5120The argument to this intrinsic indicates which function to return the address
5121for. Zero indicates the calling function, one indicates its caller, etc. The
5122argument is <b>required</b> to be a constant integer value.
5123</p>
5124
5125<h5>Semantics:</h5>
5126
5127<p>
5128The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
5129the return address of the specified call frame, or zero if it cannot be
5130identified. The value returned by this intrinsic is likely to be incorrect or 0
5131for arguments other than zero, so it should only be used for debugging purposes.
5132</p>
5133
5134<p>
5135Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005136aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005137source-language caller.
5138</p>
5139</div>
5140
5141
5142<!-- _______________________________________________________________________ -->
5143<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005144 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
Chris Lattner10610642004-02-14 04:08:35 +00005145</div>
5146
5147<div class="doc_text">
5148
5149<h5>Syntax:</h5>
5150<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005151 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005152</pre>
5153
5154<h5>Overview:</h5>
5155
5156<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00005157The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
5158target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00005159</p>
5160
5161<h5>Arguments:</h5>
5162
5163<p>
5164The argument to this intrinsic indicates which function to return the frame
5165pointer for. Zero indicates the calling function, one indicates its caller,
5166etc. The argument is <b>required</b> to be a constant integer value.
5167</p>
5168
5169<h5>Semantics:</h5>
5170
5171<p>
5172The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
5173the frame address of the specified call frame, or zero if it cannot be
5174identified. The value returned by this intrinsic is likely to be incorrect or 0
5175for arguments other than zero, so it should only be used for debugging purposes.
5176</p>
5177
5178<p>
5179Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00005180aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00005181source-language caller.
5182</p>
5183</div>
5184
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005185<!-- _______________________________________________________________________ -->
5186<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005187 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005188</div>
5189
5190<div class="doc_text">
5191
5192<h5>Syntax:</h5>
5193<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005194 declare i8 *@llvm.stacksave()
Chris Lattner57e1f392006-01-13 02:03:13 +00005195</pre>
5196
5197<h5>Overview:</h5>
5198
5199<p>
5200The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
Reid Spencera3e435f2007-04-04 02:42:35 +00005201the function stack, for use with <a href="#int_stackrestore">
Chris Lattner57e1f392006-01-13 02:03:13 +00005202<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
5203features like scoped automatic variable sized arrays in C99.
5204</p>
5205
5206<h5>Semantics:</h5>
5207
5208<p>
5209This intrinsic returns a opaque pointer value that can be passed to <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005210href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
Chris Lattner57e1f392006-01-13 02:03:13 +00005211<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
5212<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
5213state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
5214practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
5215that were allocated after the <tt>llvm.stacksave</tt> was executed.
5216</p>
5217
5218</div>
5219
5220<!-- _______________________________________________________________________ -->
5221<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005222 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
Chris Lattner57e1f392006-01-13 02:03:13 +00005223</div>
5224
5225<div class="doc_text">
5226
5227<h5>Syntax:</h5>
5228<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005229 declare void @llvm.stackrestore(i8 * %ptr)
Chris Lattner57e1f392006-01-13 02:03:13 +00005230</pre>
5231
5232<h5>Overview:</h5>
5233
5234<p>
5235The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
5236the function stack to the state it was in when the corresponding <a
Reid Spencera3e435f2007-04-04 02:42:35 +00005237href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
Chris Lattner57e1f392006-01-13 02:03:13 +00005238useful for implementing language features like scoped automatic variable sized
5239arrays in C99.
5240</p>
5241
5242<h5>Semantics:</h5>
5243
5244<p>
Reid Spencera3e435f2007-04-04 02:42:35 +00005245See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
Chris Lattner57e1f392006-01-13 02:03:13 +00005246</p>
5247
5248</div>
5249
5250
5251<!-- _______________________________________________________________________ -->
5252<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005253 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005254</div>
5255
5256<div class="doc_text">
5257
5258<h5>Syntax:</h5>
5259<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005260 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005261</pre>
5262
5263<h5>Overview:</h5>
5264
5265
5266<p>
5267The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00005268a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
5269no
5270effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00005271characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005272</p>
5273
5274<h5>Arguments:</h5>
5275
5276<p>
5277<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
5278determining if the fetch should be for a read (0) or write (1), and
5279<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00005280locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00005281<tt>locality</tt> arguments must be constant integers.
5282</p>
5283
5284<h5>Semantics:</h5>
5285
5286<p>
5287This intrinsic does not modify the behavior of the program. In particular,
5288prefetches cannot trap and do not produce a value. On targets that support this
5289intrinsic, the prefetch can provide hints to the processor cache for better
5290performance.
5291</p>
5292
5293</div>
5294
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005295<!-- _______________________________________________________________________ -->
5296<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005297 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005298</div>
5299
5300<div class="doc_text">
5301
5302<h5>Syntax:</h5>
5303<pre>
Chris Lattner1df4f752007-09-21 17:30:40 +00005304 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005305</pre>
5306
5307<h5>Overview:</h5>
5308
5309
5310<p>
John Criswellfc6b8952005-05-16 16:17:45 +00005311The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
Chris Lattnerd3eda892008-08-05 18:29:16 +00005312(PC) in a region of
5313code to simulators and other tools. The method is target specific, but it is
5314expected that the marker will use exported symbols to transmit the PC of the
5315marker.
5316The marker makes no guarantees that it will remain with any specific instruction
5317after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00005318optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00005319correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00005320</p>
5321
5322<h5>Arguments:</h5>
5323
5324<p>
5325<tt>id</tt> is a numerical id identifying the marker.
5326</p>
5327
5328<h5>Semantics:</h5>
5329
5330<p>
5331This intrinsic does not modify the behavior of the program. Backends that do not
5332support this intrinisic may ignore it.
5333</p>
5334
5335</div>
5336
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005337<!-- _______________________________________________________________________ -->
5338<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005339 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005340</div>
5341
5342<div class="doc_text">
5343
5344<h5>Syntax:</h5>
5345<pre>
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005346 declare i64 @llvm.readcyclecounter( )
Andrew Lenharth51b8d542005-11-11 16:47:30 +00005347</pre>
5348
5349<h5>Overview:</h5>
5350
5351
5352<p>
5353The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
5354counter register (or similar low latency, high accuracy clocks) on those targets
5355that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
5356As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
5357should only be used for small timings.
5358</p>
5359
5360<h5>Semantics:</h5>
5361
5362<p>
5363When directly supported, reading the cycle counter should not modify any memory.
5364Implementations are allowed to either return a application specific value or a
5365system wide value. On backends without support, this is lowered to a constant 0.
5366</p>
5367
5368</div>
5369
Chris Lattner10610642004-02-14 04:08:35 +00005370<!-- ======================================================================= -->
5371<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00005372 <a name="int_libc">Standard C Library Intrinsics</a>
5373</div>
5374
5375<div class="doc_text">
5376<p>
Chris Lattner10610642004-02-14 04:08:35 +00005377LLVM provides intrinsics for a few important standard C library functions.
5378These intrinsics allow source-language front-ends to pass information about the
5379alignment of the pointer arguments to the code generator, providing opportunity
5380for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005381</p>
5382
5383</div>
5384
5385<!-- _______________________________________________________________________ -->
5386<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005387 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005388</div>
5389
5390<div class="doc_text">
5391
5392<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005393<p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit
5394width. Not all targets support all bit widths however.</p>
Chris Lattner33aec9e2004-02-12 17:01:32 +00005395<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005396 declare void @llvm.memcpy.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5397 i8 &lt;len&gt;, i32 &lt;align&gt;)
5398 declare void @llvm.memcpy.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5399 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005400 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005401 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005402 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005403 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00005404</pre>
5405
5406<h5>Overview:</h5>
5407
5408<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005409The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005410location to the destination location.
5411</p>
5412
5413<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005414Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
5415intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00005416</p>
5417
5418<h5>Arguments:</h5>
5419
5420<p>
5421The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005422the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00005423specifying the number of bytes to copy, and the fourth argument is the alignment
5424of the source and destination locations.
5425</p>
5426
Chris Lattner3301ced2004-02-12 21:18:15 +00005427<p>
5428If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005429the caller guarantees that both the source and destination pointers are aligned
5430to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005431</p>
5432
Chris Lattner33aec9e2004-02-12 17:01:32 +00005433<h5>Semantics:</h5>
5434
5435<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005436The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00005437location to the destination location, which are not allowed to overlap. It
5438copies "len" bytes of memory over. If the argument is known to be aligned to
5439some boundary, this can be specified as the fourth argument, otherwise it should
5440be set to 0 or 1.
5441</p>
5442</div>
5443
5444
Chris Lattner0eb51b42004-02-12 18:10:10 +00005445<!-- _______________________________________________________________________ -->
5446<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005447 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005448</div>
5449
5450<div class="doc_text">
5451
5452<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005453<p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit
5454width. Not all targets support all bit widths however.</p>
Chris Lattner0eb51b42004-02-12 18:10:10 +00005455<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005456 declare void @llvm.memmove.i8(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5457 i8 &lt;len&gt;, i32 &lt;align&gt;)
5458 declare void @llvm.memmove.i16(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
5459 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005460 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005461 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005462 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005463 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00005464</pre>
5465
5466<h5>Overview:</h5>
5467
5468<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005469The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
5470location to the destination location. It is similar to the
Chris Lattner4b2cbcf2008-01-06 19:51:52 +00005471'<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005472</p>
5473
5474<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005475Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
5476intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00005477</p>
5478
5479<h5>Arguments:</h5>
5480
5481<p>
5482The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00005483the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00005484specifying the number of bytes to copy, and the fourth argument is the alignment
5485of the source and destination locations.
5486</p>
5487
Chris Lattner3301ced2004-02-12 21:18:15 +00005488<p>
5489If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005490the caller guarantees that the source and destination pointers are aligned to
5491that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00005492</p>
5493
Chris Lattner0eb51b42004-02-12 18:10:10 +00005494<h5>Semantics:</h5>
5495
5496<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005497The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00005498location to the destination location, which may overlap. It
5499copies "len" bytes of memory over. If the argument is known to be aligned to
5500some boundary, this can be specified as the fourth argument, otherwise it should
5501be set to 0 or 1.
5502</p>
5503</div>
5504
Chris Lattner8ff75902004-01-06 05:31:32 +00005505
Chris Lattner10610642004-02-14 04:08:35 +00005506<!-- _______________________________________________________________________ -->
5507<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005508 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00005509</div>
5510
5511<div class="doc_text">
5512
5513<h5>Syntax:</h5>
Chris Lattner824b9582008-11-21 16:42:48 +00005514<p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit
5515width. Not all targets support all bit widths however.</p>
Chris Lattner10610642004-02-14 04:08:35 +00005516<pre>
Chris Lattner824b9582008-11-21 16:42:48 +00005517 declare void @llvm.memset.i8(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5518 i8 &lt;len&gt;, i32 &lt;align&gt;)
5519 declare void @llvm.memset.i16(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
5520 i16 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005521 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005522 i32 &lt;len&gt;, i32 &lt;align&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005523 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
Reid Spencerca86e162006-12-31 07:07:53 +00005524 i64 &lt;len&gt;, i32 &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00005525</pre>
5526
5527<h5>Overview:</h5>
5528
5529<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005530The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00005531byte value.
5532</p>
5533
5534<p>
5535Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
5536does not return a value, and takes an extra alignment argument.
5537</p>
5538
5539<h5>Arguments:</h5>
5540
5541<p>
5542The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00005543byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00005544argument specifying the number of bytes to fill, and the fourth argument is the
5545known alignment of destination location.
5546</p>
5547
5548<p>
5549If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00005550the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00005551</p>
5552
5553<h5>Semantics:</h5>
5554
5555<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00005556The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
5557the
Chris Lattner10610642004-02-14 04:08:35 +00005558destination location. If the argument is known to be aligned to some boundary,
5559this can be specified as the fourth argument, otherwise it should be set to 0 or
55601.
5561</p>
5562</div>
5563
5564
Chris Lattner32006282004-06-11 02:28:03 +00005565<!-- _______________________________________________________________________ -->
5566<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005567 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00005568</div>
5569
5570<div class="doc_text">
5571
5572<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005573<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005574floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005575types however.</p>
Chris Lattnera4d74142005-07-21 01:29:16 +00005576<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005577 declare float @llvm.sqrt.f32(float %Val)
5578 declare double @llvm.sqrt.f64(double %Val)
5579 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
5580 declare fp128 @llvm.sqrt.f128(fp128 %Val)
5581 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00005582</pre>
5583
5584<h5>Overview:</h5>
5585
5586<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005587The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman91c284c2007-10-15 20:30:11 +00005588returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Chris Lattnera4d74142005-07-21 01:29:16 +00005589<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
Chris Lattner103e2d72008-01-29 07:00:44 +00005590negative numbers other than -0.0 (which allows for better optimization, because
5591there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is
5592defined to return -0.0 like IEEE sqrt.
Chris Lattnera4d74142005-07-21 01:29:16 +00005593</p>
5594
5595<h5>Arguments:</h5>
5596
5597<p>
5598The argument and return value are floating point numbers of the same type.
5599</p>
5600
5601<h5>Semantics:</h5>
5602
5603<p>
Dan Gohmand6257fe2007-07-16 14:37:41 +00005604This function returns the sqrt of the specified operand if it is a nonnegative
Chris Lattnera4d74142005-07-21 01:29:16 +00005605floating point number.
5606</p>
5607</div>
5608
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005609<!-- _______________________________________________________________________ -->
5610<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005611 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005612</div>
5613
5614<div class="doc_text">
5615
5616<h5>Syntax:</h5>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005617<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman91c284c2007-10-15 20:30:11 +00005618floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005619types however.</p>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005620<pre>
Dale Johannesen408f9c12007-10-02 17:47:38 +00005621 declare float @llvm.powi.f32(float %Val, i32 %power)
5622 declare double @llvm.powi.f64(double %Val, i32 %power)
5623 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
5624 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
5625 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005626</pre>
5627
5628<h5>Overview:</h5>
5629
5630<p>
5631The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
5632specified (positive or negative) power. The order of evaluation of
Dan Gohman91c284c2007-10-15 20:30:11 +00005633multiplications is not defined. When a vector of floating point type is
5634used, the second argument remains a scalar integer value.
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005635</p>
5636
5637<h5>Arguments:</h5>
5638
5639<p>
5640The second argument is an integer power, and the first is a value to raise to
5641that power.
5642</p>
5643
5644<h5>Semantics:</h5>
5645
5646<p>
5647This function returns the first value raised to the second power with an
5648unspecified sequence of rounding operations.</p>
5649</div>
5650
Dan Gohman91c284c2007-10-15 20:30:11 +00005651<!-- _______________________________________________________________________ -->
5652<div class="doc_subsubsection">
5653 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
5654</div>
5655
5656<div class="doc_text">
5657
5658<h5>Syntax:</h5>
5659<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
5660floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005661types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005662<pre>
5663 declare float @llvm.sin.f32(float %Val)
5664 declare double @llvm.sin.f64(double %Val)
5665 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
5666 declare fp128 @llvm.sin.f128(fp128 %Val)
5667 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
5668</pre>
5669
5670<h5>Overview:</h5>
5671
5672<p>
5673The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
5674</p>
5675
5676<h5>Arguments:</h5>
5677
5678<p>
5679The argument and return value are floating point numbers of the same type.
5680</p>
5681
5682<h5>Semantics:</h5>
5683
5684<p>
5685This function returns the sine of the specified operand, returning the
5686same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005687conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005688</div>
5689
5690<!-- _______________________________________________________________________ -->
5691<div class="doc_subsubsection">
5692 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
5693</div>
5694
5695<div class="doc_text">
5696
5697<h5>Syntax:</h5>
5698<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
5699floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005700types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005701<pre>
5702 declare float @llvm.cos.f32(float %Val)
5703 declare double @llvm.cos.f64(double %Val)
5704 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
5705 declare fp128 @llvm.cos.f128(fp128 %Val)
5706 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
5707</pre>
5708
5709<h5>Overview:</h5>
5710
5711<p>
5712The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
5713</p>
5714
5715<h5>Arguments:</h5>
5716
5717<p>
5718The argument and return value are floating point numbers of the same type.
5719</p>
5720
5721<h5>Semantics:</h5>
5722
5723<p>
5724This function returns the cosine of the specified operand, returning the
5725same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005726conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005727</div>
5728
5729<!-- _______________________________________________________________________ -->
5730<div class="doc_subsubsection">
5731 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
5732</div>
5733
5734<div class="doc_text">
5735
5736<h5>Syntax:</h5>
5737<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
5738floating point or vector of floating point type. Not all targets support all
Dan Gohman0e451ce2008-10-14 16:51:45 +00005739types however.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005740<pre>
5741 declare float @llvm.pow.f32(float %Val, float %Power)
5742 declare double @llvm.pow.f64(double %Val, double %Power)
5743 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
5744 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
5745 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
5746</pre>
5747
5748<h5>Overview:</h5>
5749
5750<p>
5751The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
5752specified (positive or negative) power.
5753</p>
5754
5755<h5>Arguments:</h5>
5756
5757<p>
5758The second argument is a floating point power, and the first is a value to
5759raise to that power.
5760</p>
5761
5762<h5>Semantics:</h5>
5763
5764<p>
5765This function returns the first value raised to the second power,
5766returning the
5767same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmanba83b7e2007-10-17 18:05:13 +00005768conditions in the same way.</p>
Dan Gohman91c284c2007-10-15 20:30:11 +00005769</div>
5770
Chris Lattnerf4d252d2006-09-08 06:34:02 +00005771
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005772<!-- ======================================================================= -->
5773<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00005774 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005775</div>
5776
5777<div class="doc_text">
5778<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005779LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005780These allow efficient code generation for some algorithms.
5781</p>
5782
5783</div>
5784
5785<!-- _______________________________________________________________________ -->
5786<div class="doc_subsubsection">
Reid Spencera3e435f2007-04-04 02:42:35 +00005787 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
Nate Begeman7e36c472006-01-13 23:26:38 +00005788</div>
5789
5790<div class="doc_text">
5791
5792<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005793<p>This is an overloaded intrinsic function. You can use bswap on any integer
Dan Gohman0e451ce2008-10-14 16:51:45 +00005794type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p>
Nate Begeman7e36c472006-01-13 23:26:38 +00005795<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005796 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
5797 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
5798 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00005799</pre>
5800
5801<h5>Overview:</h5>
5802
5803<p>
Reid Spencer338ea092007-04-02 02:25:19 +00005804The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
Reid Spencer409e28f2007-04-01 08:04:23 +00005805values with an even number of bytes (positive multiple of 16 bits). These are
5806useful for performing operations on data that is not in the target's native
5807byte order.
Nate Begeman7e36c472006-01-13 23:26:38 +00005808</p>
5809
5810<h5>Semantics:</h5>
5811
5812<p>
Chandler Carruth69940402007-08-04 01:51:18 +00005813The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Reid Spencerca86e162006-12-31 07:07:53 +00005814and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
5815intrinsic returns an i32 value that has the four bytes of the input i32
5816swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carruth69940402007-08-04 01:51:18 +00005817i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
5818<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Reid Spencer409e28f2007-04-01 08:04:23 +00005819additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
Nate Begeman7e36c472006-01-13 23:26:38 +00005820</p>
5821
5822</div>
5823
5824<!-- _______________________________________________________________________ -->
5825<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00005826 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005827</div>
5828
5829<div class="doc_text">
5830
5831<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005832<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
Dan Gohman0e451ce2008-10-14 16:51:45 +00005833width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005834<pre>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005835 declare i8 @llvm.ctpop.i8(i8 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005836 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005837 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005838 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
5839 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005840</pre>
5841
5842<h5>Overview:</h5>
5843
5844<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00005845The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
5846value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005847</p>
5848
5849<h5>Arguments:</h5>
5850
5851<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005852The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005853integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005854</p>
5855
5856<h5>Semantics:</h5>
5857
5858<p>
5859The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
5860</p>
5861</div>
5862
5863<!-- _______________________________________________________________________ -->
5864<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005865 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005866</div>
5867
5868<div class="doc_text">
5869
5870<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005871<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005872integer bit width. Not all targets support all bit widths however.</p>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005873<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005874 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
5875 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005876 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005877 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
5878 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005879</pre>
5880
5881<h5>Overview:</h5>
5882
5883<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005884The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
5885leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005886</p>
5887
5888<h5>Arguments:</h5>
5889
5890<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00005891The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005892integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005893</p>
5894
5895<h5>Semantics:</h5>
5896
5897<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005898The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
5899in a variable. If the src == 0 then the result is the size in bits of the type
Reid Spencerca86e162006-12-31 07:07:53 +00005900of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00005901</p>
5902</div>
Chris Lattner32006282004-06-11 02:28:03 +00005903
5904
Chris Lattnereff29ab2005-05-15 19:39:26 +00005905
5906<!-- _______________________________________________________________________ -->
5907<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00005908 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005909</div>
5910
5911<div class="doc_text">
5912
5913<h5>Syntax:</h5>
Reid Spencer409e28f2007-04-01 08:04:23 +00005914<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
Dan Gohman0e451ce2008-10-14 16:51:45 +00005915integer bit width. Not all targets support all bit widths however.</p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00005916<pre>
Chandler Carruth69940402007-08-04 01:51:18 +00005917 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
5918 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Anton Korobeynikovec43a062007-03-22 00:02:17 +00005919 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carruth69940402007-08-04 01:51:18 +00005920 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
5921 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00005922</pre>
5923
5924<h5>Overview:</h5>
5925
5926<p>
Reid Spencer0b118202006-01-16 21:12:35 +00005927The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
5928trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005929</p>
5930
5931<h5>Arguments:</h5>
5932
5933<p>
5934The only argument is the value to be counted. The argument may be of any
Reid Spencera5173382007-01-04 16:43:23 +00005935integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00005936</p>
5937
5938<h5>Semantics:</h5>
5939
5940<p>
5941The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
5942in a variable. If the src == 0 then the result is the size in bits of the type
5943of src. For example, <tt>llvm.cttz(2) = 1</tt>.
5944</p>
5945</div>
5946
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005947
Bill Wendlingda01af72009-02-08 04:04:40 +00005948<!-- ======================================================================= -->
5949<div class="doc_subsection">
5950 <a name="int_overflow">Arithmetic with Overflow Intrinsics</a>
5951</div>
5952
5953<div class="doc_text">
5954<p>
5955LLVM provides intrinsics for some arithmetic with overflow operations.
5956</p>
5957
5958</div>
5959
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005960<!-- _______________________________________________________________________ -->
5961<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00005962 <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005963</div>
5964
5965<div class="doc_text">
5966
5967<h5>Syntax:</h5>
5968
5969<p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00005970on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00005971
5972<pre>
5973 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
5974 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
5975 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
5976</pre>
5977
5978<h5>Overview:</h5>
5979
5980<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
5981a signed addition of the two arguments, and indicate whether an overflow
5982occurred during the signed summation.</p>
5983
5984<h5>Arguments:</h5>
5985
5986<p>The arguments (%a and %b) and the first element of the result structure may
5987be of integer types of any bit width, but they must have the same bit width. The
5988second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
5989and <tt>%b</tt> are the two values that will undergo signed addition.</p>
5990
5991<h5>Semantics:</h5>
5992
5993<p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform
5994a signed addition of the two variables. They return a structure &mdash; the
5995first element of which is the signed summation, and the second element of which
5996is a bit specifying if the signed summation resulted in an overflow.</p>
5997
5998<h5>Examples:</h5>
5999<pre>
6000 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
6001 %sum = extractvalue {i32, i1} %res, 0
6002 %obit = extractvalue {i32, i1} %res, 1
6003 br i1 %obit, label %overflow, label %normal
6004</pre>
6005
6006</div>
6007
6008<!-- _______________________________________________________________________ -->
6009<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006010 <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006011</div>
6012
6013<div class="doc_text">
6014
6015<h5>Syntax:</h5>
6016
6017<p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006018on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006019
6020<pre>
6021 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
6022 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6023 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
6024</pre>
6025
6026<h5>Overview:</h5>
6027
6028<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6029an unsigned addition of the two arguments, and indicate whether a carry occurred
6030during the unsigned summation.</p>
6031
6032<h5>Arguments:</h5>
6033
6034<p>The arguments (%a and %b) and the first element of the result structure may
6035be of integer types of any bit width, but they must have the same bit width. The
6036second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6037and <tt>%b</tt> are the two values that will undergo unsigned addition.</p>
6038
6039<h5>Semantics:</h5>
6040
6041<p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform
6042an unsigned addition of the two arguments. They return a structure &mdash; the
6043first element of which is the sum, and the second element of which is a bit
6044specifying if the unsigned summation resulted in a carry.</p>
6045
6046<h5>Examples:</h5>
6047<pre>
6048 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
6049 %sum = extractvalue {i32, i1} %res, 0
6050 %obit = extractvalue {i32, i1} %res, 1
6051 br i1 %obit, label %carry, label %normal
6052</pre>
6053
6054</div>
6055
6056<!-- _______________________________________________________________________ -->
6057<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006058 <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006059</div>
6060
6061<div class="doc_text">
6062
6063<h5>Syntax:</h5>
6064
6065<p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006066on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006067
6068<pre>
6069 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
6070 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6071 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
6072</pre>
6073
6074<h5>Overview:</h5>
6075
6076<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6077a signed subtraction of the two arguments, and indicate whether an overflow
6078occurred during the signed subtraction.</p>
6079
6080<h5>Arguments:</h5>
6081
6082<p>The arguments (%a and %b) and the first element of the result structure may
6083be of integer types of any bit width, but they must have the same bit width. The
6084second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6085and <tt>%b</tt> are the two values that will undergo signed subtraction.</p>
6086
6087<h5>Semantics:</h5>
6088
6089<p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform
6090a signed subtraction of the two arguments. They return a structure &mdash; the
6091first element of which is the subtraction, and the second element of which is a bit
6092specifying if the signed subtraction resulted in an overflow.</p>
6093
6094<h5>Examples:</h5>
6095<pre>
6096 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
6097 %sum = extractvalue {i32, i1} %res, 0
6098 %obit = extractvalue {i32, i1} %res, 1
6099 br i1 %obit, label %overflow, label %normal
6100</pre>
6101
6102</div>
6103
6104<!-- _______________________________________________________________________ -->
6105<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006106 <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006107</div>
6108
6109<div class="doc_text">
6110
6111<h5>Syntax:</h5>
6112
6113<p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006114on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006115
6116<pre>
6117 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
6118 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6119 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
6120</pre>
6121
6122<h5>Overview:</h5>
6123
6124<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6125an unsigned subtraction of the two arguments, and indicate whether an overflow
6126occurred during the unsigned subtraction.</p>
6127
6128<h5>Arguments:</h5>
6129
6130<p>The arguments (%a and %b) and the first element of the result structure may
6131be of integer types of any bit width, but they must have the same bit width. The
6132second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6133and <tt>%b</tt> are the two values that will undergo unsigned subtraction.</p>
6134
6135<h5>Semantics:</h5>
6136
6137<p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform
6138an unsigned subtraction of the two arguments. They return a structure &mdash; the
6139first element of which is the subtraction, and the second element of which is a bit
6140specifying if the unsigned subtraction resulted in an overflow.</p>
6141
6142<h5>Examples:</h5>
6143<pre>
6144 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
6145 %sum = extractvalue {i32, i1} %res, 0
6146 %obit = extractvalue {i32, i1} %res, 1
6147 br i1 %obit, label %overflow, label %normal
6148</pre>
6149
6150</div>
6151
6152<!-- _______________________________________________________________________ -->
6153<div class="doc_subsubsection">
Bill Wendlingda01af72009-02-08 04:04:40 +00006154 <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006155</div>
6156
6157<div class="doc_text">
6158
6159<h5>Syntax:</h5>
6160
6161<p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt>
Bill Wendlingda01af72009-02-08 04:04:40 +00006162on any integer bit width.</p>
Bill Wendlingac1df8e2009-02-08 01:40:31 +00006163
6164<pre>
6165 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
6166 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6167 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
6168</pre>
6169
6170<h5>Overview:</h5>
6171
6172<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6173a signed multiplication of the two arguments, and indicate whether an overflow
6174occurred during the signed multiplication.</p>
6175
6176<h5>Arguments:</h5>
6177
6178<p>The arguments (%a and %b) and the first element of the result structure may
6179be of integer types of any bit width, but they must have the same bit width. The
6180second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6181and <tt>%b</tt> are the two values that will undergo signed multiplication.</p>
6182
6183<h5>Semantics:</h5>
6184
6185<p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform
6186a signed multiplication of the two arguments. They return a structure &mdash;
6187the first element of which is the multiplication, and the second element of
6188which is a bit specifying if the signed multiplication resulted in an
6189overflow.</p>
6190
6191<h5>Examples:</h5>
6192<pre>
6193 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
6194 %sum = extractvalue {i32, i1} %res, 0
6195 %obit = extractvalue {i32, i1} %res, 1
6196 br i1 %obit, label %overflow, label %normal
6197</pre>
6198
Reid Spencerf86037f2007-04-11 23:23:49 +00006199</div>
6200
Bill Wendling41b485c2009-02-08 23:00:09 +00006201<!-- _______________________________________________________________________ -->
6202<div class="doc_subsubsection">
6203 <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a>
6204</div>
6205
6206<div class="doc_text">
6207
6208<h5>Syntax:</h5>
6209
6210<p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt>
6211on any integer bit width.</p>
6212
6213<pre>
6214 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
6215 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6216 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
6217</pre>
6218
6219<h5>Overview:</h5>
6220
Bill Wendling41b485c2009-02-08 23:00:09 +00006221<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6222a unsigned multiplication of the two arguments, and indicate whether an overflow
6223occurred during the unsigned multiplication.</p>
6224
6225<h5>Arguments:</h5>
6226
6227<p>The arguments (%a and %b) and the first element of the result structure may
6228be of integer types of any bit width, but they must have the same bit width. The
6229second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt>
6230and <tt>%b</tt> are the two values that will undergo unsigned
6231multiplication.</p>
6232
6233<h5>Semantics:</h5>
6234
6235<p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform
6236an unsigned multiplication of the two arguments. They return a structure &mdash;
6237the first element of which is the multiplication, and the second element of
6238which is a bit specifying if the unsigned multiplication resulted in an
6239overflow.</p>
6240
6241<h5>Examples:</h5>
6242<pre>
6243 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
6244 %sum = extractvalue {i32, i1} %res, 0
6245 %obit = extractvalue {i32, i1} %res, 1
6246 br i1 %obit, label %overflow, label %normal
6247</pre>
6248
6249</div>
6250
Chris Lattner8ff75902004-01-06 05:31:32 +00006251<!-- ======================================================================= -->
6252<div class="doc_subsection">
6253 <a name="int_debugger">Debugger Intrinsics</a>
6254</div>
6255
6256<div class="doc_text">
6257<p>
6258The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
6259are described in the <a
6260href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
6261Debugging</a> document.
6262</p>
6263</div>
6264
6265
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006266<!-- ======================================================================= -->
6267<div class="doc_subsection">
6268 <a name="int_eh">Exception Handling Intrinsics</a>
6269</div>
6270
6271<div class="doc_text">
6272<p> The LLVM exception handling intrinsics (which all start with
6273<tt>llvm.eh.</tt> prefix), are described in the <a
6274href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
6275Handling</a> document. </p>
6276</div>
6277
Tanya Lattner6d806e92007-06-15 20:50:54 +00006278<!-- ======================================================================= -->
6279<div class="doc_subsection">
Duncan Sandsf7331b32007-09-11 14:10:23 +00006280 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands36397f52007-07-27 12:58:54 +00006281</div>
6282
6283<div class="doc_text">
6284<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006285 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands36397f52007-07-27 12:58:54 +00006286 the <tt>nest</tt> attribute, from a function. The result is a callable
6287 function pointer lacking the nest parameter - the caller does not need
6288 to provide a value for it. Instead, the value to use is stored in
6289 advance in a "trampoline", a block of memory usually allocated
6290 on the stack, which also contains code to splice the nest value into the
6291 argument list. This is used to implement the GCC nested function address
6292 extension.
6293</p>
6294<p>
6295 For example, if the function is
6296 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendling03295ca2007-09-22 09:23:55 +00006297 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006298<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006299 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
6300 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
6301 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
6302 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands36397f52007-07-27 12:58:54 +00006303</pre>
Bill Wendling03295ca2007-09-22 09:23:55 +00006304 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
6305 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands36397f52007-07-27 12:58:54 +00006306</div>
6307
6308<!-- _______________________________________________________________________ -->
6309<div class="doc_subsubsection">
6310 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
6311</div>
6312<div class="doc_text">
6313<h5>Syntax:</h5>
6314<pre>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006315declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands36397f52007-07-27 12:58:54 +00006316</pre>
6317<h5>Overview:</h5>
6318<p>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006319 This fills the memory pointed to by <tt>tramp</tt> with code
6320 and returns a function pointer suitable for executing it.
Duncan Sands36397f52007-07-27 12:58:54 +00006321</p>
6322<h5>Arguments:</h5>
6323<p>
6324 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
6325 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
6326 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sandsc00c2ba2007-08-22 23:39:54 +00006327 intrinsic. Note that the size and the alignment are target-specific - LLVM
6328 currently provides no portable way of determining them, so a front-end that
6329 generates this intrinsic needs to have some target-specific knowledge.
6330 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands36397f52007-07-27 12:58:54 +00006331</p>
6332<h5>Semantics:</h5>
6333<p>
6334 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sandsf7331b32007-09-11 14:10:23 +00006335 dependent code, turning it into a function. A pointer to this function is
6336 returned, but needs to be bitcast to an
Duncan Sands36397f52007-07-27 12:58:54 +00006337 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sandsf7331b32007-09-11 14:10:23 +00006338 before being called. The new function's signature is the same as that of
6339 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
6340 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
6341 of pointer type. Calling the new function is equivalent to calling
6342 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
6343 missing <tt>nest</tt> argument. If, after calling
6344 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
6345 modified, then the effect of any later call to the returned function pointer is
6346 undefined.
Duncan Sands36397f52007-07-27 12:58:54 +00006347</p>
6348</div>
6349
6350<!-- ======================================================================= -->
6351<div class="doc_subsection">
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006352 <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a>
6353</div>
6354
6355<div class="doc_text">
6356<p>
6357 These intrinsic functions expand the "universal IR" of LLVM to represent
6358 hardware constructs for atomic operations and memory synchronization. This
6359 provides an interface to the hardware, not an interface to the programmer. It
Chris Lattnerd3eda892008-08-05 18:29:16 +00006360 is aimed at a low enough level to allow any programming models or APIs
6361 (Application Programming Interfaces) which
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006362 need atomic behaviors to map cleanly onto it. It is also modeled primarily on
6363 hardware behavior. Just as hardware provides a "universal IR" for source
6364 languages, it also provides a starting point for developing a "universal"
6365 atomic operation and synchronization IR.
6366</p>
6367<p>
6368 These do <em>not</em> form an API such as high-level threading libraries,
6369 software transaction memory systems, atomic primitives, and intrinsic
6370 functions as found in BSD, GNU libc, atomic_ops, APR, and other system and
6371 application libraries. The hardware interface provided by LLVM should allow
6372 a clean implementation of all of these APIs and parallel programming models.
6373 No one model or paradigm should be selected above others unless the hardware
6374 itself ubiquitously does so.
6375
6376</p>
6377</div>
6378
6379<!-- _______________________________________________________________________ -->
6380<div class="doc_subsubsection">
6381 <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a>
6382</div>
6383<div class="doc_text">
6384<h5>Syntax:</h5>
6385<pre>
6386declare void @llvm.memory.barrier( i1 &lt;ll&gt;, i1 &lt;ls&gt;, i1 &lt;sl&gt;, i1 &lt;ss&gt;,
6387i1 &lt;device&gt; )
6388
6389</pre>
6390<h5>Overview:</h5>
6391<p>
6392 The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between
6393 specific pairs of memory access types.
6394</p>
6395<h5>Arguments:</h5>
6396<p>
6397 The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments.
6398 The first four arguments enables a specific barrier as listed below. The fith
6399 argument specifies that the barrier applies to io or device or uncached memory.
6400
6401</p>
6402 <ul>
6403 <li><tt>ll</tt>: load-load barrier</li>
6404 <li><tt>ls</tt>: load-store barrier</li>
6405 <li><tt>sl</tt>: store-load barrier</li>
6406 <li><tt>ss</tt>: store-store barrier</li>
Dan Gohman0e451ce2008-10-14 16:51:45 +00006407 <li><tt>device</tt>: barrier applies to device and uncached memory also.</li>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006408 </ul>
6409<h5>Semantics:</h5>
6410<p>
6411 This intrinsic causes the system to enforce some ordering constraints upon
6412 the loads and stores of the program. This barrier does not indicate
6413 <em>when</em> any events will occur, it only enforces an <em>order</em> in
6414 which they occur. For any of the specified pairs of load and store operations
6415 (f.ex. load-load, or store-load), all of the first operations preceding the
6416 barrier will complete before any of the second operations succeeding the
6417 barrier begin. Specifically the semantics for each pairing is as follows:
6418</p>
6419 <ul>
6420 <li><tt>ll</tt>: All loads before the barrier must complete before any load
6421 after the barrier begins.</li>
6422
6423 <li><tt>ls</tt>: All loads before the barrier must complete before any
6424 store after the barrier begins.</li>
6425 <li><tt>ss</tt>: All stores before the barrier must complete before any
6426 store after the barrier begins.</li>
6427 <li><tt>sl</tt>: All stores before the barrier must complete before any
6428 load after the barrier begins.</li>
6429 </ul>
6430<p>
6431 These semantics are applied with a logical "and" behavior when more than one
6432 is enabled in a single memory barrier intrinsic.
6433</p>
6434<p>
6435 Backends may implement stronger barriers than those requested when they do not
6436 support as fine grained a barrier as requested. Some architectures do not
6437 need all types of barriers and on such architectures, these become noops.
6438</p>
6439<h5>Example:</h5>
6440<pre>
6441%ptr = malloc i32
6442 store i32 4, %ptr
6443
6444%result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i>
6445 call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false )
6446 <i>; guarantee the above finishes</i>
6447 store i32 8, %ptr <i>; before this begins</i>
6448</pre>
6449</div>
6450
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006451<!-- _______________________________________________________________________ -->
6452<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006453 <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006454</div>
6455<div class="doc_text">
6456<h5>Syntax:</h5>
6457<p>
Mon P Wange3b3a722008-07-30 04:36:53 +00006458 This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on
6459 any integer bit width and for different address spaces. Not all targets
6460 support all bit widths however.</p>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006461
6462<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006463declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;cmp&gt;, i8 &lt;val&gt; )
6464declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;cmp&gt;, i16 &lt;val&gt; )
6465declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;cmp&gt;, i32 &lt;val&gt; )
6466declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;cmp&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006467
6468</pre>
6469<h5>Overview:</h5>
6470<p>
6471 This loads a value in memory and compares it to a given value. If they are
6472 equal, it stores a new value into the memory.
6473</p>
6474<h5>Arguments:</h5>
6475<p>
Mon P Wang28873102008-06-25 08:15:39 +00006476 The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006477 well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the
6478 same bit width. The <tt>ptr</tt> argument must be a pointer to a value of
6479 this integer type. While any bit width integer may be used, targets may only
6480 lower representations they support in hardware.
6481
6482</p>
6483<h5>Semantics:</h5>
6484<p>
6485 This entire intrinsic must be executed atomically. It first loads the value
6486 in memory pointed to by <tt>ptr</tt> and compares it with the value
6487 <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The
6488 loaded value is yielded in all cases. This provides the equivalent of an
6489 atomic compare-and-swap operation within the SSA framework.
6490</p>
6491<h5>Examples:</h5>
6492
6493<pre>
6494%ptr = malloc i32
6495 store i32 4, %ptr
6496
6497%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006498%result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006499 <i>; yields {i32}:result1 = 4</i>
6500%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6501%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6502
6503%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006504%result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006505 <i>; yields {i32}:result2 = 8</i>
6506%stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i>
6507
6508%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i>
6509</pre>
6510</div>
6511
6512<!-- _______________________________________________________________________ -->
6513<div class="doc_subsubsection">
6514 <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a>
6515</div>
6516<div class="doc_text">
6517<h5>Syntax:</h5>
6518
6519<p>
6520 This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any
6521 integer bit width. Not all targets support all bit widths however.</p>
6522<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006523declare i8 @llvm.atomic.swap.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;val&gt; )
6524declare i16 @llvm.atomic.swap.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;val&gt; )
6525declare i32 @llvm.atomic.swap.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;val&gt; )
6526declare i64 @llvm.atomic.swap.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;val&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006527
6528</pre>
6529<h5>Overview:</h5>
6530<p>
6531 This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields
6532 the value from memory. It then stores the value in <tt>val</tt> in the memory
6533 at <tt>ptr</tt>.
6534</p>
6535<h5>Arguments:</h5>
6536
6537<p>
Mon P Wang28873102008-06-25 08:15:39 +00006538 The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006539 <tt>val</tt> argument and the result must be integers of the same bit width.
6540 The first argument, <tt>ptr</tt>, must be a pointer to a value of this
6541 integer type. The targets may only lower integer representations they
6542 support.
6543</p>
6544<h5>Semantics:</h5>
6545<p>
6546 This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and
6547 stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the
6548 equivalent of an atomic swap operation within the SSA framework.
6549
6550</p>
6551<h5>Examples:</h5>
6552<pre>
6553%ptr = malloc i32
6554 store i32 4, %ptr
6555
6556%val1 = add i32 4, 4
Mon P Wange3b3a722008-07-30 04:36:53 +00006557%result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006558 <i>; yields {i32}:result1 = 4</i>
6559%stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i>
6560%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i>
6561
6562%val2 = add i32 1, 1
Mon P Wange3b3a722008-07-30 04:36:53 +00006563%result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006564 <i>; yields {i32}:result2 = 8</i>
6565
6566%stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i>
6567%memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i>
6568</pre>
6569</div>
6570
6571<!-- _______________________________________________________________________ -->
6572<div class="doc_subsubsection">
Mon P Wang28873102008-06-25 08:15:39 +00006573 <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006574
6575</div>
6576<div class="doc_text">
6577<h5>Syntax:</h5>
6578<p>
Mon P Wang28873102008-06-25 08:15:39 +00006579 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006580 integer bit width. Not all targets support all bit widths however.</p>
6581<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006582declare i8 @llvm.atomic.load.add.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6583declare i16 @llvm.atomic.load.add.i16..p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6584declare i32 @llvm.atomic.load.add.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6585declare i64 @llvm.atomic.load.add.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006586
6587</pre>
6588<h5>Overview:</h5>
6589<p>
6590 This intrinsic adds <tt>delta</tt> to the value stored in memory at
6591 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6592</p>
6593<h5>Arguments:</h5>
6594<p>
6595
6596 The intrinsic takes two arguments, the first a pointer to an integer value
6597 and the second an integer value. The result is also an integer value. These
6598 integer types can have any bit width, but they must all have the same bit
6599 width. The targets may only lower integer representations they support.
6600</p>
6601<h5>Semantics:</h5>
6602<p>
6603 This intrinsic does a series of operations atomically. It first loads the
6604 value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result
6605 to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6606</p>
6607
6608<h5>Examples:</h5>
6609<pre>
6610%ptr = malloc i32
6611 store i32 4, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006612%result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006613 <i>; yields {i32}:result1 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006614%result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006615 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006616%result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 )
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006617 <i>; yields {i32}:result3 = 10</i>
Mon P Wang28873102008-06-25 08:15:39 +00006618%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i>
Andrew Lenharthab0b9492008-02-21 06:45:13 +00006619</pre>
6620</div>
6621
Mon P Wang28873102008-06-25 08:15:39 +00006622<!-- _______________________________________________________________________ -->
6623<div class="doc_subsubsection">
6624 <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a>
6625
6626</div>
6627<div class="doc_text">
6628<h5>Syntax:</h5>
6629<p>
6630 This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on
Mon P Wange3b3a722008-07-30 04:36:53 +00006631 any integer bit width and for different address spaces. Not all targets
6632 support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006633<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006634declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6635declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6636declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6637declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006638
6639</pre>
6640<h5>Overview:</h5>
6641<p>
6642 This intrinsic subtracts <tt>delta</tt> to the value stored in memory at
6643 <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>.
6644</p>
6645<h5>Arguments:</h5>
6646<p>
6647
6648 The intrinsic takes two arguments, the first a pointer to an integer value
6649 and the second an integer value. The result is also an integer value. These
6650 integer types can have any bit width, but they must all have the same bit
6651 width. The targets may only lower integer representations they support.
6652</p>
6653<h5>Semantics:</h5>
6654<p>
6655 This intrinsic does a series of operations atomically. It first loads the
6656 value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the
6657 result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>.
6658</p>
6659
6660<h5>Examples:</h5>
6661<pre>
6662%ptr = malloc i32
6663 store i32 8, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006664%result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 )
Mon P Wang28873102008-06-25 08:15:39 +00006665 <i>; yields {i32}:result1 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006666%result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 )
Mon P Wang28873102008-06-25 08:15:39 +00006667 <i>; yields {i32}:result2 = 4</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006668%result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 )
Mon P Wang28873102008-06-25 08:15:39 +00006669 <i>; yields {i32}:result3 = 2</i>
6670%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i>
6671</pre>
6672</div>
6673
6674<!-- _______________________________________________________________________ -->
6675<div class="doc_subsubsection">
6676 <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br>
6677 <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br>
6678 <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br>
6679 <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br>
6680
6681</div>
6682<div class="doc_text">
6683<h5>Syntax:</h5>
6684<p>
6685 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>,
6686 <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006687 <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different
6688 address spaces. Not all targets support all bit widths however.</p>
Mon P Wang28873102008-06-25 08:15:39 +00006689<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006690declare i8 @llvm.atomic.load.and.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6691declare i16 @llvm.atomic.load.and.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6692declare i32 @llvm.atomic.load.and.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6693declare i64 @llvm.atomic.load.and.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006694
6695</pre>
6696
6697<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006698declare i8 @llvm.atomic.load.or.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6699declare i16 @llvm.atomic.load.or.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6700declare i32 @llvm.atomic.load.or.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6701declare i64 @llvm.atomic.load.or.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006702
6703</pre>
6704
6705<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006706declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6707declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6708declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6709declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006710
6711</pre>
6712
6713<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006714declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6715declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6716declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6717declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006718
6719</pre>
6720<h5>Overview:</h5>
6721<p>
6722 These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to
6723 the value stored in memory at <tt>ptr</tt>. It yields the original value
6724 at <tt>ptr</tt>.
6725</p>
6726<h5>Arguments:</h5>
6727<p>
6728
6729 These intrinsics take two arguments, the first a pointer to an integer value
6730 and the second an integer value. The result is also an integer value. These
6731 integer types can have any bit width, but they must all have the same bit
6732 width. The targets may only lower integer representations they support.
6733</p>
6734<h5>Semantics:</h5>
6735<p>
6736 These intrinsics does a series of operations atomically. They first load the
6737 value stored at <tt>ptr</tt>. They then do the bitwise operation
6738 <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original
6739 value stored at <tt>ptr</tt>.
6740</p>
6741
6742<h5>Examples:</h5>
6743<pre>
6744%ptr = malloc i32
6745 store i32 0x0F0F, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006746%result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006747 <i>; yields {i32}:result0 = 0x0F0F</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006748%result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF )
Mon P Wang28873102008-06-25 08:15:39 +00006749 <i>; yields {i32}:result1 = 0xFFFFFFF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006750%result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006751 <i>; yields {i32}:result2 = 0xF0</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006752%result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F )
Mon P Wang28873102008-06-25 08:15:39 +00006753 <i>; yields {i32}:result3 = FF</i>
6754%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i>
6755</pre>
6756</div>
6757
6758
6759<!-- _______________________________________________________________________ -->
6760<div class="doc_subsubsection">
6761 <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br>
6762 <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br>
6763 <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br>
6764 <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br>
6765
6766</div>
6767<div class="doc_text">
6768<h5>Syntax:</h5>
6769<p>
6770 These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>,
6771 <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and
Mon P Wange3b3a722008-07-30 04:36:53 +00006772 <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different
6773 address spaces. Not all targets
Mon P Wang28873102008-06-25 08:15:39 +00006774 support all bit widths however.</p>
6775<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006776declare i8 @llvm.atomic.load.max.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6777declare i16 @llvm.atomic.load.max.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6778declare i32 @llvm.atomic.load.max.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6779declare i64 @llvm.atomic.load.max.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006780
6781</pre>
6782
6783<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006784declare i8 @llvm.atomic.load.min.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6785declare i16 @llvm.atomic.load.min.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6786declare i32 @llvm.atomic.load.min.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6787declare i64 @llvm.atomic.load.min.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006788
6789</pre>
6790
6791<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006792declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6793declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6794declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6795declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006796
6797</pre>
6798
6799<pre>
Mon P Wange3b3a722008-07-30 04:36:53 +00006800declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* &lt;ptr&gt;, i8 &lt;delta&gt; )
6801declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* &lt;ptr&gt;, i16 &lt;delta&gt; )
6802declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* &lt;ptr&gt;, i32 &lt;delta&gt; )
6803declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* &lt;ptr&gt;, i64 &lt;delta&gt; )
Mon P Wang28873102008-06-25 08:15:39 +00006804
6805</pre>
6806<h5>Overview:</h5>
6807<p>
6808 These intrinsics takes the signed or unsigned minimum or maximum of
6809 <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the
6810 original value at <tt>ptr</tt>.
6811</p>
6812<h5>Arguments:</h5>
6813<p>
6814
6815 These intrinsics take two arguments, the first a pointer to an integer value
6816 and the second an integer value. The result is also an integer value. These
6817 integer types can have any bit width, but they must all have the same bit
6818 width. The targets may only lower integer representations they support.
6819</p>
6820<h5>Semantics:</h5>
6821<p>
6822 These intrinsics does a series of operations atomically. They first load the
6823 value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max
6824 <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield
6825 the original value stored at <tt>ptr</tt>.
6826</p>
6827
6828<h5>Examples:</h5>
6829<pre>
6830%ptr = malloc i32
6831 store i32 7, %ptr
Mon P Wange3b3a722008-07-30 04:36:53 +00006832%result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 )
Mon P Wang28873102008-06-25 08:15:39 +00006833 <i>; yields {i32}:result0 = 7</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006834%result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 )
Mon P Wang28873102008-06-25 08:15:39 +00006835 <i>; yields {i32}:result1 = -2</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006836%result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 )
Mon P Wang28873102008-06-25 08:15:39 +00006837 <i>; yields {i32}:result2 = 8</i>
Mon P Wange3b3a722008-07-30 04:36:53 +00006838%result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 )
Mon P Wang28873102008-06-25 08:15:39 +00006839 <i>; yields {i32}:result3 = 8</i>
6840%memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i>
6841</pre>
6842</div>
Andrew Lenharth22c5c1b2008-02-16 01:24:58 +00006843
6844<!-- ======================================================================= -->
6845<div class="doc_subsection">
Tanya Lattner6d806e92007-06-15 20:50:54 +00006846 <a name="int_general">General Intrinsics</a>
6847</div>
6848
6849<div class="doc_text">
6850<p> This class of intrinsics is designed to be generic and has
6851no specific purpose. </p>
6852</div>
6853
6854<!-- _______________________________________________________________________ -->
6855<div class="doc_subsubsection">
6856 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
6857</div>
6858
6859<div class="doc_text">
6860
6861<h5>Syntax:</h5>
6862<pre>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006863 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattner6d806e92007-06-15 20:50:54 +00006864</pre>
6865
6866<h5>Overview:</h5>
6867
6868<p>
6869The '<tt>llvm.var.annotation</tt>' intrinsic
6870</p>
6871
6872<h5>Arguments:</h5>
6873
6874<p>
Tanya Lattnerd2e84422007-06-18 23:42:37 +00006875The first argument is a pointer to a value, the second is a pointer to a
6876global string, the third is a pointer to a global string which is the source
6877file name, and the last argument is the line number.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006878</p>
6879
6880<h5>Semantics:</h5>
6881
6882<p>
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006883This intrinsic allows annotation of local variables with arbitrary strings.
Tanya Lattner6d806e92007-06-15 20:50:54 +00006884This can be useful for special purpose optimizations that want to look for these
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006885annotations. These have no other defined use, they are ignored by code
6886generation and optimization.
6887</p>
Tanya Lattner6d806e92007-06-15 20:50:54 +00006888</div>
6889
Tanya Lattnerb6367882007-09-21 22:59:12 +00006890<!-- _______________________________________________________________________ -->
6891<div class="doc_subsubsection">
Tanya Lattnere1a8da02007-09-21 23:57:59 +00006892 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006893</div>
6894
6895<div class="doc_text">
6896
6897<h5>Syntax:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006898<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
6899any integer bit width.
6900</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006901<pre>
Tanya Lattnerd3989a82007-09-22 00:03:01 +00006902 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6903 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6904 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6905 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
6906 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb6367882007-09-21 22:59:12 +00006907</pre>
6908
6909<h5>Overview:</h5>
Tanya Lattner39cfba62007-09-21 23:56:27 +00006910
6911<p>
6912The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006913</p>
6914
6915<h5>Arguments:</h5>
6916
6917<p>
6918The first argument is an integer value (result of some expression),
6919the second is a pointer to a global string, the third is a pointer to a global
6920string which is the source file name, and the last argument is the line number.
Tanya Lattner39cfba62007-09-21 23:56:27 +00006921It returns the value of the first argument.
Tanya Lattnerb6367882007-09-21 22:59:12 +00006922</p>
6923
6924<h5>Semantics:</h5>
6925
6926<p>
6927This intrinsic allows annotations to be put on arbitrary expressions
6928with arbitrary strings. This can be useful for special purpose optimizations
6929that want to look for these annotations. These have no other defined use, they
6930are ignored by code generation and optimization.
Dan Gohman0e451ce2008-10-14 16:51:45 +00006931</p>
Tanya Lattnerb6367882007-09-21 22:59:12 +00006932</div>
Jim Laskeydd4ef1b2007-03-14 19:31:19 +00006933
Anton Korobeynikov4cb86182008-01-15 22:31:34 +00006934<!-- _______________________________________________________________________ -->
6935<div class="doc_subsubsection">
6936 <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a>
6937</div>
6938
6939<div class="doc_text">
6940
6941<h5>Syntax:</h5>
6942<pre>
6943 declare void @llvm.trap()
6944</pre>
6945
6946<h5>Overview:</h5>
6947
6948<p>
6949The '<tt>llvm.trap</tt>' intrinsic
6950</p>
6951
6952<h5>Arguments:</h5>
6953
6954<p>
6955None
6956</p>
6957
6958<h5>Semantics:</h5>
6959
6960<p>
6961This intrinsics is lowered to the target dependent trap instruction. If the
6962target does not have a trap instruction, this intrinsic will be lowered to the
6963call of the abort() function.
6964</p>
6965</div>
6966
Bill Wendling69e4adb2008-11-19 05:56:17 +00006967<!-- _______________________________________________________________________ -->
6968<div class="doc_subsubsection">
Misha Brukmandccb0252008-11-22 23:55:29 +00006969 <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a>
Bill Wendling69e4adb2008-11-19 05:56:17 +00006970</div>
6971<div class="doc_text">
6972<h5>Syntax:</h5>
6973<pre>
6974declare void @llvm.stackprotector( i8* &lt;guard&gt;, i8** &lt;slot&gt; )
6975
6976</pre>
6977<h5>Overview:</h5>
6978<p>
6979 The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores
6980 it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that
6981 it is placed on the stack before local variables.
6982</p>
6983<h5>Arguments:</h5>
6984<p>
6985 The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The
6986 first argument is the value loaded from the stack guard
6987 <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that
6988 has enough space to hold the value of the guard.
6989</p>
6990<h5>Semantics:</h5>
6991<p>
6992 This intrinsic causes the prologue/epilogue inserter to force the position of
6993 the <tt>AllocaInst</tt> stack slot to be before local variables on the
6994 stack. This is to ensure that if a local variable on the stack is overwritten,
6995 it will destroy the value of the guard. When the function exits, the guard on
6996 the stack is checked against the original guard. If they're different, then
6997 the program aborts by calling the <tt>__stack_chk_fail()</tt> function.
6998</p>
6999</div>
7000
Chris Lattner00950542001-06-06 20:29:01 +00007001<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00007002<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007003<address>
7004 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007005 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007006 <a href="http://validator.w3.org/check/referer"><img
Misha Brukman44408702008-12-11 17:34:48 +00007007 src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007008
7009 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00007010 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00007011 Last modified: $Date$
7012</address>
Chris Lattnerc7d3ab32008-01-04 04:33:49 +00007013
Misha Brukman9d0919f2003-11-08 01:05:38 +00007014</body>
7015</html>