blob: 519fe2069ef8c7e53c8f7403ec5ff27d4d9b6d50 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Richard Smith32dbdf62014-07-31 04:25:36 +000078 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000165 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
351 arguments into registers but allows them to be dynamcially
352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
356 This calling convention attempts to make the code in the caller as little
357 intrusive as possible. This calling convention behaves identical to the `C`
358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
371 of code that doesn't many registers. The cold path might need to call out to
372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000497.. _namedtypes:
498
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000499Structure Types
500---------------
Sean Silvab084af42012-12-07 10:36:55 +0000501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
503types <t_struct>`. Literal types are uniqued structurally, but identified types
504are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000505to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000506
507An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000508
509.. code-block:: llvm
510
511 %mytype = type { %mytype*, i32 }
512
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000513Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
514literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000515
516.. _globalvars:
517
518Global Variables
519----------------
520
521Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000522instead of run-time.
523
Bob Wilson85b24f22014-06-12 20:40:33 +0000524Global variables definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525
526Global variables in other translation units can also be declared, in which
527case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000528
Bob Wilson85b24f22014-06-12 20:40:33 +0000529Either global variable definitions or declarations may have an explicit section
530to be placed in and may have an optional explicit alignment specified.
531
Michael Gottesman006039c2013-01-31 05:48:48 +0000532A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000536initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000567Additionally, the global can placed in a comdat if the target has the necessary
568support.
Sean Silvab084af42012-12-07 10:36:55 +0000569
Michael Gottesmane743a302013-02-04 03:22:00 +0000570By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000571variables defined within the module are not modified from their
572initial values before the start of the global initializer. This is
573true even for variables potentially accessible from outside the
574module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000575``@llvm.used`` or dllexported variables. This assumption may be suppressed
576by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000577
Sean Silvab084af42012-12-07 10:36:55 +0000578An explicit alignment may be specified for a global, which must be a
579power of 2. If not present, or if the alignment is set to zero, the
580alignment of the global is set by the target to whatever it feels
581convenient. If an explicit alignment is specified, the global is forced
582to have exactly that alignment. Targets and optimizers are not allowed
583to over-align the global if the global has an assigned section. In this
584case, the extra alignment could be observable: for example, code could
585assume that the globals are densely packed in their section and try to
586iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000587iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000588
Nico Rieck7157bb72014-01-14 15:22:47 +0000589Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
590
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000591Variables and aliasaes can have a
592:ref:`Thread Local Storage Model <tls_model>`.
593
Nico Rieck7157bb72014-01-14 15:22:47 +0000594Syntax::
595
596 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000597 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000598 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000599 [, section "name"] [, comdat [($name)]]
600 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000601
Sean Silvab084af42012-12-07 10:36:55 +0000602For example, the following defines a global in a numbered address space
603with an initializer, section, and alignment:
604
605.. code-block:: llvm
606
607 @G = addrspace(5) constant float 1.0, section "foo", align 4
608
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000609The following example just declares a global variable
610
611.. code-block:: llvm
612
613 @G = external global i32
614
Sean Silvab084af42012-12-07 10:36:55 +0000615The following example defines a thread-local global with the
616``initialexec`` TLS model:
617
618.. code-block:: llvm
619
620 @G = thread_local(initialexec) global i32 0, align 4
621
622.. _functionstructure:
623
624Functions
625---------
626
627LLVM function definitions consist of the "``define``" keyword, an
628optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000629style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
630an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000631an optional ``unnamed_addr`` attribute, a return type, an optional
632:ref:`parameter attribute <paramattrs>` for the return type, a function
633name, a (possibly empty) argument list (each with optional :ref:`parameter
634attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000635an optional section, an optional alignment,
636an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000637an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
638an optional :ref:`prologue <prologuedata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000639curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000640
641LLVM function declarations consist of the "``declare``" keyword, an
642optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000643style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
644an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000645an optional ``unnamed_addr`` attribute, a return type, an optional
646:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000647name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000648:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
649and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000650
Bill Wendling6822ecb2013-10-27 05:09:12 +0000651A function definition contains a list of basic blocks, forming the CFG (Control
652Flow Graph) for the function. Each basic block may optionally start with a label
653(giving the basic block a symbol table entry), contains a list of instructions,
654and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
655function return). If an explicit label is not provided, a block is assigned an
656implicit numbered label, using the next value from the same counter as used for
657unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
658entry block does not have an explicit label, it will be assigned label "%0",
659then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000660
661The first basic block in a function is special in two ways: it is
662immediately executed on entrance to the function, and it is not allowed
663to have predecessor basic blocks (i.e. there can not be any branches to
664the entry block of a function). Because the block can have no
665predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
666
667LLVM allows an explicit section to be specified for functions. If the
668target supports it, it will emit functions to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000669Additionally, the function can placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000670
671An explicit alignment may be specified for a function. If not present,
672or if the alignment is set to zero, the alignment of the function is set
673by the target to whatever it feels convenient. If an explicit alignment
674is specified, the function is forced to have at least that much
675alignment. All alignments must be a power of 2.
676
677If the ``unnamed_addr`` attribute is given, the address is know to not
678be significant and two identical functions can be merged.
679
680Syntax::
681
Nico Rieck7157bb72014-01-14 15:22:47 +0000682 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000683 [cconv] [ret attrs]
684 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000686 [align N] [gc] [prefix Constant] [prologue Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000687
Dan Liew2661dfc2014-08-20 15:06:30 +0000688The argument list is a comma seperated sequence of arguments where each
689argument is of the following form
690
691Syntax::
692
693 <type> [parameter Attrs] [name]
694
695
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000696.. _langref_aliases:
697
Sean Silvab084af42012-12-07 10:36:55 +0000698Aliases
699-------
700
Rafael Espindola64c1e182014-06-03 02:41:57 +0000701Aliases, unlike function or variables, don't create any new data. They
702are just a new symbol and metadata for an existing position.
703
704Aliases have a name and an aliasee that is either a global value or a
705constant expression.
706
Nico Rieck7157bb72014-01-14 15:22:47 +0000707Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000708:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
709<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000710
711Syntax::
712
Rafael Espindola464fe022014-07-30 22:51:54 +0000713 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000714
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000715The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000716``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000717might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000718
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000719Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000720the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
721to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000722
Rafael Espindola64c1e182014-06-03 02:41:57 +0000723Since aliases are only a second name, some restrictions apply, of which
724some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000725
Rafael Espindola64c1e182014-06-03 02:41:57 +0000726* The expression defining the aliasee must be computable at assembly
727 time. Since it is just a name, no relocations can be used.
728
729* No alias in the expression can be weak as the possibility of the
730 intermediate alias being overridden cannot be represented in an
731 object file.
732
733* No global value in the expression can be a declaration, since that
734 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000735
David Majnemerdad0a642014-06-27 18:19:56 +0000736.. _langref_comdats:
737
738Comdats
739-------
740
741Comdat IR provides access to COFF and ELF object file COMDAT functionality.
742
Richard Smith32dbdf62014-07-31 04:25:36 +0000743Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000744specify this key will only end up in the final object file if the linker chooses
745that key over some other key. Aliases are placed in the same COMDAT that their
746aliasee computes to, if any.
747
748Comdats have a selection kind to provide input on how the linker should
749choose between keys in two different object files.
750
751Syntax::
752
753 $<Name> = comdat SelectionKind
754
755The selection kind must be one of the following:
756
757``any``
758 The linker may choose any COMDAT key, the choice is arbitrary.
759``exactmatch``
760 The linker may choose any COMDAT key but the sections must contain the
761 same data.
762``largest``
763 The linker will choose the section containing the largest COMDAT key.
764``noduplicates``
765 The linker requires that only section with this COMDAT key exist.
766``samesize``
767 The linker may choose any COMDAT key but the sections must contain the
768 same amount of data.
769
770Note that the Mach-O platform doesn't support COMDATs and ELF only supports
771``any`` as a selection kind.
772
773Here is an example of a COMDAT group where a function will only be selected if
774the COMDAT key's section is the largest:
775
776.. code-block:: llvm
777
778 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000779 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000780
Rafael Espindola83a362c2015-01-06 22:55:16 +0000781 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000782 ret void
783 }
784
Rafael Espindola83a362c2015-01-06 22:55:16 +0000785As a syntactic sugar the ``$name`` can be omitted if the name is the same as
786the global name:
787
788.. code-block:: llvm
789
790 $foo = comdat any
791 @foo = global i32 2, comdat
792
793
David Majnemerdad0a642014-06-27 18:19:56 +0000794In a COFF object file, this will create a COMDAT section with selection kind
795``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
796and another COMDAT section with selection kind
797``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000798section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000799
800There are some restrictions on the properties of the global object.
801It, or an alias to it, must have the same name as the COMDAT group when
802targeting COFF.
803The contents and size of this object may be used during link-time to determine
804which COMDAT groups get selected depending on the selection kind.
805Because the name of the object must match the name of the COMDAT group, the
806linkage of the global object must not be local; local symbols can get renamed
807if a collision occurs in the symbol table.
808
809The combined use of COMDATS and section attributes may yield surprising results.
810For example:
811
812.. code-block:: llvm
813
814 $foo = comdat any
815 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000816 @g1 = global i32 42, section "sec", comdat($foo)
817 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000818
819From the object file perspective, this requires the creation of two sections
820with the same name. This is necessary because both globals belong to different
821COMDAT groups and COMDATs, at the object file level, are represented by
822sections.
823
824Note that certain IR constructs like global variables and functions may create
825COMDATs in the object file in addition to any which are specified using COMDAT
826IR. This arises, for example, when a global variable has linkonce_odr linkage.
827
Sean Silvab084af42012-12-07 10:36:55 +0000828.. _namedmetadatastructure:
829
830Named Metadata
831--------------
832
833Named metadata is a collection of metadata. :ref:`Metadata
834nodes <metadata>` (but not metadata strings) are the only valid
835operands for a named metadata.
836
837Syntax::
838
839 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000840 !0 = !{!"zero"}
841 !1 = !{!"one"}
842 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000843 ; A named metadata.
844 !name = !{!0, !1, !2}
845
846.. _paramattrs:
847
848Parameter Attributes
849--------------------
850
851The return type and each parameter of a function type may have a set of
852*parameter attributes* associated with them. Parameter attributes are
853used to communicate additional information about the result or
854parameters of a function. Parameter attributes are considered to be part
855of the function, not of the function type, so functions with different
856parameter attributes can have the same function type.
857
858Parameter attributes are simple keywords that follow the type specified.
859If multiple parameter attributes are needed, they are space separated.
860For example:
861
862.. code-block:: llvm
863
864 declare i32 @printf(i8* noalias nocapture, ...)
865 declare i32 @atoi(i8 zeroext)
866 declare signext i8 @returns_signed_char()
867
868Note that any attributes for the function result (``nounwind``,
869``readonly``) come immediately after the argument list.
870
871Currently, only the following parameter attributes are defined:
872
873``zeroext``
874 This indicates to the code generator that the parameter or return
875 value should be zero-extended to the extent required by the target's
876 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
877 the caller (for a parameter) or the callee (for a return value).
878``signext``
879 This indicates to the code generator that the parameter or return
880 value should be sign-extended to the extent required by the target's
881 ABI (which is usually 32-bits) by the caller (for a parameter) or
882 the callee (for a return value).
883``inreg``
884 This indicates that this parameter or return value should be treated
885 in a special target-dependent fashion during while emitting code for
886 a function call or return (usually, by putting it in a register as
887 opposed to memory, though some targets use it to distinguish between
888 two different kinds of registers). Use of this attribute is
889 target-specific.
890``byval``
891 This indicates that the pointer parameter should really be passed by
892 value to the function. The attribute implies that a hidden copy of
893 the pointee is made between the caller and the callee, so the callee
894 is unable to modify the value in the caller. This attribute is only
895 valid on LLVM pointer arguments. It is generally used to pass
896 structs and arrays by value, but is also valid on pointers to
897 scalars. The copy is considered to belong to the caller not the
898 callee (for example, ``readonly`` functions should not write to
899 ``byval`` parameters). This is not a valid attribute for return
900 values.
901
902 The byval attribute also supports specifying an alignment with the
903 align attribute. It indicates the alignment of the stack slot to
904 form and the known alignment of the pointer specified to the call
905 site. If the alignment is not specified, then the code generator
906 makes a target-specific assumption.
907
Reid Klecknera534a382013-12-19 02:14:12 +0000908.. _attr_inalloca:
909
910``inalloca``
911
Reid Kleckner60d3a832014-01-16 22:59:24 +0000912 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000913 address of outgoing stack arguments. An ``inalloca`` argument must
914 be a pointer to stack memory produced by an ``alloca`` instruction.
915 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000916 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000917 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000918
Reid Kleckner436c42e2014-01-17 23:58:17 +0000919 An argument allocation may be used by a call at most once because
920 the call may deallocate it. The ``inalloca`` attribute cannot be
921 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000922 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
923 ``inalloca`` attribute also disables LLVM's implicit lowering of
924 large aggregate return values, which means that frontend authors
925 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000926
Reid Kleckner60d3a832014-01-16 22:59:24 +0000927 When the call site is reached, the argument allocation must have
928 been the most recent stack allocation that is still live, or the
929 results are undefined. It is possible to allocate additional stack
930 space after an argument allocation and before its call site, but it
931 must be cleared off with :ref:`llvm.stackrestore
932 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000933
934 See :doc:`InAlloca` for more information on how to use this
935 attribute.
936
Sean Silvab084af42012-12-07 10:36:55 +0000937``sret``
938 This indicates that the pointer parameter specifies the address of a
939 structure that is the return value of the function in the source
940 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000941 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000942 not to trap and to be properly aligned. This may only be applied to
943 the first parameter. This is not a valid attribute for return
944 values.
Sean Silva1703e702014-04-08 21:06:22 +0000945
Hal Finkelccc70902014-07-22 16:58:55 +0000946``align <n>``
947 This indicates that the pointer value may be assumed by the optimizer to
948 have the specified alignment.
949
950 Note that this attribute has additional semantics when combined with the
951 ``byval`` attribute.
952
Sean Silva1703e702014-04-08 21:06:22 +0000953.. _noalias:
954
Sean Silvab084af42012-12-07 10:36:55 +0000955``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000956 This indicates that objects accessed via pointer values
957 :ref:`based <pointeraliasing>` on the argument or return value are not also
958 accessed, during the execution of the function, via pointer values not
959 *based* on the argument or return value. The attribute on a return value
960 also has additional semantics described below. The caller shares the
961 responsibility with the callee for ensuring that these requirements are met.
962 For further details, please see the discussion of the NoAlias response in
963 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000964
965 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000966 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000967
968 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000969 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
970 attribute on return values are stronger than the semantics of the attribute
971 when used on function arguments. On function return values, the ``noalias``
972 attribute indicates that the function acts like a system memory allocation
973 function, returning a pointer to allocated storage disjoint from the
974 storage for any other object accessible to the caller.
975
Sean Silvab084af42012-12-07 10:36:55 +0000976``nocapture``
977 This indicates that the callee does not make any copies of the
978 pointer that outlive the callee itself. This is not a valid
979 attribute for return values.
980
981.. _nest:
982
983``nest``
984 This indicates that the pointer parameter can be excised using the
985 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000986 attribute for return values and can only be applied to one parameter.
987
988``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000989 This indicates that the function always returns the argument as its return
990 value. This is an optimization hint to the code generator when generating
991 the caller, allowing tail call optimization and omission of register saves
992 and restores in some cases; it is not checked or enforced when generating
993 the callee. The parameter and the function return type must be valid
994 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
995 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000996
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000997``nonnull``
998 This indicates that the parameter or return pointer is not null. This
999 attribute may only be applied to pointer typed parameters. This is not
1000 checked or enforced by LLVM, the caller must ensure that the pointer
1001 passed in is non-null, or the callee must ensure that the returned pointer
1002 is non-null.
1003
Hal Finkelb0407ba2014-07-18 15:51:28 +00001004``dereferenceable(<n>)``
1005 This indicates that the parameter or return pointer is dereferenceable. This
1006 attribute may only be applied to pointer typed parameters. A pointer that
1007 is dereferenceable can be loaded from speculatively without a risk of
1008 trapping. The number of bytes known to be dereferenceable must be provided
1009 in parentheses. It is legal for the number of bytes to be less than the
1010 size of the pointee type. The ``nonnull`` attribute does not imply
1011 dereferenceability (consider a pointer to one element past the end of an
1012 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1013 ``addrspace(0)`` (which is the default address space).
1014
Sean Silvab084af42012-12-07 10:36:55 +00001015.. _gc:
1016
1017Garbage Collector Names
1018-----------------------
1019
1020Each function may specify a garbage collector name, which is simply a
1021string:
1022
1023.. code-block:: llvm
1024
1025 define void @f() gc "name" { ... }
1026
1027The compiler declares the supported values of *name*. Specifying a
Richard Smith32dbdf62014-07-31 04:25:36 +00001028collector will cause the compiler to alter its output in order to
Sean Silvab084af42012-12-07 10:36:55 +00001029support the named garbage collection algorithm.
1030
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001031.. _prefixdata:
1032
1033Prefix Data
1034-----------
1035
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001036Prefix data is data associated with a function which the code
1037generator will emit immediately before the function's entrypoint.
1038The purpose of this feature is to allow frontends to associate
1039language-specific runtime metadata with specific functions and make it
1040available through the function pointer while still allowing the
1041function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001042
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001043To access the data for a given function, a program may bitcast the
1044function pointer to a pointer to the constant's type and dereference
1045index -1. This implies that the IR symbol points just past the end of
1046the prefix data. For instance, take the example of a function annotated
1047with a single ``i32``,
1048
1049.. code-block:: llvm
1050
1051 define void @f() prefix i32 123 { ... }
1052
1053The prefix data can be referenced as,
1054
1055.. code-block:: llvm
1056
1057 %0 = bitcast *void () @f to *i32
1058 %a = getelementptr inbounds *i32 %0, i32 -1
1059 %b = load i32* %a
1060
1061Prefix data is laid out as if it were an initializer for a global variable
1062of the prefix data's type. The function will be placed such that the
1063beginning of the prefix data is aligned. This means that if the size
1064of the prefix data is not a multiple of the alignment size, the
1065function's entrypoint will not be aligned. If alignment of the
1066function's entrypoint is desired, padding must be added to the prefix
1067data.
1068
1069A function may have prefix data but no body. This has similar semantics
1070to the ``available_externally`` linkage in that the data may be used by the
1071optimizers but will not be emitted in the object file.
1072
1073.. _prologuedata:
1074
1075Prologue Data
1076-------------
1077
1078The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1079be inserted prior to the function body. This can be used for enabling
1080function hot-patching and instrumentation.
1081
1082To maintain the semantics of ordinary function calls, the prologue data must
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001083have a particular format. Specifically, it must begin with a sequence of
1084bytes which decode to a sequence of machine instructions, valid for the
1085module's target, which transfer control to the point immediately succeeding
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001086the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001087the inliner and other passes to reason about the semantics of the function
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001088definition without needing to reason about the prologue data. Obviously this
1089makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001090
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001091A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001092which encodes the ``nop`` instruction:
1093
1094.. code-block:: llvm
1095
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001096 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001097
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001098Generally prologue data can be formed by encoding a relative branch instruction
1099which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001100x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1101
1102.. code-block:: llvm
1103
1104 %0 = type <{ i8, i8, i8* }>
1105
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001106 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001107
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001108A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001109to the ``available_externally`` linkage in that the data may be used by the
1110optimizers but will not be emitted in the object file.
1111
Bill Wendling63b88192013-02-06 06:52:58 +00001112.. _attrgrp:
1113
1114Attribute Groups
1115----------------
1116
1117Attribute groups are groups of attributes that are referenced by objects within
1118the IR. They are important for keeping ``.ll`` files readable, because a lot of
1119functions will use the same set of attributes. In the degenerative case of a
1120``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1121group will capture the important command line flags used to build that file.
1122
1123An attribute group is a module-level object. To use an attribute group, an
1124object references the attribute group's ID (e.g. ``#37``). An object may refer
1125to more than one attribute group. In that situation, the attributes from the
1126different groups are merged.
1127
1128Here is an example of attribute groups for a function that should always be
1129inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1130
1131.. code-block:: llvm
1132
1133 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001134 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001135
1136 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001137 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001138
1139 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1140 define void @f() #0 #1 { ... }
1141
Sean Silvab084af42012-12-07 10:36:55 +00001142.. _fnattrs:
1143
1144Function Attributes
1145-------------------
1146
1147Function attributes are set to communicate additional information about
1148a function. Function attributes are considered to be part of the
1149function, not of the function type, so functions with different function
1150attributes can have the same function type.
1151
1152Function attributes are simple keywords that follow the type specified.
1153If multiple attributes are needed, they are space separated. For
1154example:
1155
1156.. code-block:: llvm
1157
1158 define void @f() noinline { ... }
1159 define void @f() alwaysinline { ... }
1160 define void @f() alwaysinline optsize { ... }
1161 define void @f() optsize { ... }
1162
Sean Silvab084af42012-12-07 10:36:55 +00001163``alignstack(<n>)``
1164 This attribute indicates that, when emitting the prologue and
1165 epilogue, the backend should forcibly align the stack pointer.
1166 Specify the desired alignment, which must be a power of two, in
1167 parentheses.
1168``alwaysinline``
1169 This attribute indicates that the inliner should attempt to inline
1170 this function into callers whenever possible, ignoring any active
1171 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001172``builtin``
1173 This indicates that the callee function at a call site should be
1174 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001175 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001176 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001177 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001178``cold``
1179 This attribute indicates that this function is rarely called. When
1180 computing edge weights, basic blocks post-dominated by a cold
1181 function call are also considered to be cold; and, thus, given low
1182 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001183``inlinehint``
1184 This attribute indicates that the source code contained a hint that
1185 inlining this function is desirable (such as the "inline" keyword in
1186 C/C++). It is just a hint; it imposes no requirements on the
1187 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001188``jumptable``
1189 This attribute indicates that the function should be added to a
1190 jump-instruction table at code-generation time, and that all address-taken
1191 references to this function should be replaced with a reference to the
1192 appropriate jump-instruction-table function pointer. Note that this creates
1193 a new pointer for the original function, which means that code that depends
1194 on function-pointer identity can break. So, any function annotated with
1195 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001196``minsize``
1197 This attribute suggests that optimization passes and code generator
1198 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001199 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001200 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001201``naked``
1202 This attribute disables prologue / epilogue emission for the
1203 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001204``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001205 This indicates that the callee function at a call site is not recognized as
1206 a built-in function. LLVM will retain the original call and not replace it
1207 with equivalent code based on the semantics of the built-in function, unless
1208 the call site uses the ``builtin`` attribute. This is valid at call sites
1209 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001210``noduplicate``
1211 This attribute indicates that calls to the function cannot be
1212 duplicated. A call to a ``noduplicate`` function may be moved
1213 within its parent function, but may not be duplicated within
1214 its parent function.
1215
1216 A function containing a ``noduplicate`` call may still
1217 be an inlining candidate, provided that the call is not
1218 duplicated by inlining. That implies that the function has
1219 internal linkage and only has one call site, so the original
1220 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001221``noimplicitfloat``
1222 This attributes disables implicit floating point instructions.
1223``noinline``
1224 This attribute indicates that the inliner should never inline this
1225 function in any situation. This attribute may not be used together
1226 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001227``nonlazybind``
1228 This attribute suppresses lazy symbol binding for the function. This
1229 may make calls to the function faster, at the cost of extra program
1230 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001231``noredzone``
1232 This attribute indicates that the code generator should not use a
1233 red zone, even if the target-specific ABI normally permits it.
1234``noreturn``
1235 This function attribute indicates that the function never returns
1236 normally. This produces undefined behavior at runtime if the
1237 function ever does dynamically return.
1238``nounwind``
1239 This function attribute indicates that the function never returns
1240 with an unwind or exceptional control flow. If the function does
1241 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001242``optnone``
1243 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001244 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001245 exception of interprocedural optimization passes.
1246 This attribute cannot be used together with the ``alwaysinline``
1247 attribute; this attribute is also incompatible
1248 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001249
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001250 This attribute requires the ``noinline`` attribute to be specified on
1251 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001252 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001253 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001254``optsize``
1255 This attribute suggests that optimization passes and code generator
1256 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001257 and otherwise do optimizations specifically to reduce code size as
1258 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001259``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001260 On a function, this attribute indicates that the function computes its
1261 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001262 without dereferencing any pointer arguments or otherwise accessing
1263 any mutable state (e.g. memory, control registers, etc) visible to
1264 caller functions. It does not write through any pointer arguments
1265 (including ``byval`` arguments) and never changes any state visible
1266 to callers. This means that it cannot unwind exceptions by calling
1267 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001268
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001269 On an argument, this attribute indicates that the function does not
1270 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001271 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001272``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001273 On a function, this attribute indicates that the function does not write
1274 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001275 modify any state (e.g. memory, control registers, etc) visible to
1276 caller functions. It may dereference pointer arguments and read
1277 state that may be set in the caller. A readonly function always
1278 returns the same value (or unwinds an exception identically) when
1279 called with the same set of arguments and global state. It cannot
1280 unwind an exception by calling the ``C++`` exception throwing
1281 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001282
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001283 On an argument, this attribute indicates that the function does not write
1284 through this pointer argument, even though it may write to the memory that
1285 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001286``returns_twice``
1287 This attribute indicates that this function can return twice. The C
1288 ``setjmp`` is an example of such a function. The compiler disables
1289 some optimizations (like tail calls) in the caller of these
1290 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001291``sanitize_address``
1292 This attribute indicates that AddressSanitizer checks
1293 (dynamic address safety analysis) are enabled for this function.
1294``sanitize_memory``
1295 This attribute indicates that MemorySanitizer checks (dynamic detection
1296 of accesses to uninitialized memory) are enabled for this function.
1297``sanitize_thread``
1298 This attribute indicates that ThreadSanitizer checks
1299 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001300``ssp``
1301 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001302 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001303 placed on the stack before the local variables that's checked upon
1304 return from the function to see if it has been overwritten. A
1305 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001306 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001307
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001308 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1309 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1310 - Calls to alloca() with variable sizes or constant sizes greater than
1311 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001312
Josh Magee24c7f062014-02-01 01:36:16 +00001313 Variables that are identified as requiring a protector will be arranged
1314 on the stack such that they are adjacent to the stack protector guard.
1315
Sean Silvab084af42012-12-07 10:36:55 +00001316 If a function that has an ``ssp`` attribute is inlined into a
1317 function that doesn't have an ``ssp`` attribute, then the resulting
1318 function will have an ``ssp`` attribute.
1319``sspreq``
1320 This attribute indicates that the function should *always* emit a
1321 stack smashing protector. This overrides the ``ssp`` function
1322 attribute.
1323
Josh Magee24c7f062014-02-01 01:36:16 +00001324 Variables that are identified as requiring a protector will be arranged
1325 on the stack such that they are adjacent to the stack protector guard.
1326 The specific layout rules are:
1327
1328 #. Large arrays and structures containing large arrays
1329 (``>= ssp-buffer-size``) are closest to the stack protector.
1330 #. Small arrays and structures containing small arrays
1331 (``< ssp-buffer-size``) are 2nd closest to the protector.
1332 #. Variables that have had their address taken are 3rd closest to the
1333 protector.
1334
Sean Silvab084af42012-12-07 10:36:55 +00001335 If a function that has an ``sspreq`` attribute is inlined into a
1336 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001337 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1338 an ``sspreq`` attribute.
1339``sspstrong``
1340 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001341 protector. This attribute causes a strong heuristic to be used when
1342 determining if a function needs stack protectors. The strong heuristic
1343 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001344
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001345 - Arrays of any size and type
1346 - Aggregates containing an array of any size and type.
1347 - Calls to alloca().
1348 - Local variables that have had their address taken.
1349
Josh Magee24c7f062014-02-01 01:36:16 +00001350 Variables that are identified as requiring a protector will be arranged
1351 on the stack such that they are adjacent to the stack protector guard.
1352 The specific layout rules are:
1353
1354 #. Large arrays and structures containing large arrays
1355 (``>= ssp-buffer-size``) are closest to the stack protector.
1356 #. Small arrays and structures containing small arrays
1357 (``< ssp-buffer-size``) are 2nd closest to the protector.
1358 #. Variables that have had their address taken are 3rd closest to the
1359 protector.
1360
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001361 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001362
1363 If a function that has an ``sspstrong`` attribute is inlined into a
1364 function that doesn't have an ``sspstrong`` attribute, then the
1365 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001366``uwtable``
1367 This attribute indicates that the ABI being targeted requires that
1368 an unwind table entry be produce for this function even if we can
1369 show that no exceptions passes by it. This is normally the case for
1370 the ELF x86-64 abi, but it can be disabled for some compilation
1371 units.
Sean Silvab084af42012-12-07 10:36:55 +00001372
1373.. _moduleasm:
1374
1375Module-Level Inline Assembly
1376----------------------------
1377
1378Modules may contain "module-level inline asm" blocks, which corresponds
1379to the GCC "file scope inline asm" blocks. These blocks are internally
1380concatenated by LLVM and treated as a single unit, but may be separated
1381in the ``.ll`` file if desired. The syntax is very simple:
1382
1383.. code-block:: llvm
1384
1385 module asm "inline asm code goes here"
1386 module asm "more can go here"
1387
1388The strings can contain any character by escaping non-printable
1389characters. The escape sequence used is simply "\\xx" where "xx" is the
1390two digit hex code for the number.
1391
1392The inline asm code is simply printed to the machine code .s file when
1393assembly code is generated.
1394
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001395.. _langref_datalayout:
1396
Sean Silvab084af42012-12-07 10:36:55 +00001397Data Layout
1398-----------
1399
1400A module may specify a target specific data layout string that specifies
1401how data is to be laid out in memory. The syntax for the data layout is
1402simply:
1403
1404.. code-block:: llvm
1405
1406 target datalayout = "layout specification"
1407
1408The *layout specification* consists of a list of specifications
1409separated by the minus sign character ('-'). Each specification starts
1410with a letter and may include other information after the letter to
1411define some aspect of the data layout. The specifications accepted are
1412as follows:
1413
1414``E``
1415 Specifies that the target lays out data in big-endian form. That is,
1416 the bits with the most significance have the lowest address
1417 location.
1418``e``
1419 Specifies that the target lays out data in little-endian form. That
1420 is, the bits with the least significance have the lowest address
1421 location.
1422``S<size>``
1423 Specifies the natural alignment of the stack in bits. Alignment
1424 promotion of stack variables is limited to the natural stack
1425 alignment to avoid dynamic stack realignment. The stack alignment
1426 must be a multiple of 8-bits. If omitted, the natural stack
1427 alignment defaults to "unspecified", which does not prevent any
1428 alignment promotions.
1429``p[n]:<size>:<abi>:<pref>``
1430 This specifies the *size* of a pointer and its ``<abi>`` and
1431 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001432 bits. The address space, ``n`` is optional, and if not specified,
1433 denotes the default address space 0. The value of ``n`` must be
1434 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001435``i<size>:<abi>:<pref>``
1436 This specifies the alignment for an integer type of a given bit
1437 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1438``v<size>:<abi>:<pref>``
1439 This specifies the alignment for a vector type of a given bit
1440 ``<size>``.
1441``f<size>:<abi>:<pref>``
1442 This specifies the alignment for a floating point type of a given bit
1443 ``<size>``. Only values of ``<size>`` that are supported by the target
1444 will work. 32 (float) and 64 (double) are supported on all targets; 80
1445 or 128 (different flavors of long double) are also supported on some
1446 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001447``a:<abi>:<pref>``
1448 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001449``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001450 If present, specifies that llvm names are mangled in the output. The
1451 options are
1452
1453 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1454 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1455 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1456 symbols get a ``_`` prefix.
1457 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1458 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001459``n<size1>:<size2>:<size3>...``
1460 This specifies a set of native integer widths for the target CPU in
1461 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1462 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1463 this set are considered to support most general arithmetic operations
1464 efficiently.
1465
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001466On every specification that takes a ``<abi>:<pref>``, specifying the
1467``<pref>`` alignment is optional. If omitted, the preceding ``:``
1468should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1469
Sean Silvab084af42012-12-07 10:36:55 +00001470When constructing the data layout for a given target, LLVM starts with a
1471default set of specifications which are then (possibly) overridden by
1472the specifications in the ``datalayout`` keyword. The default
1473specifications are given in this list:
1474
1475- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001476- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1477- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1478 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001479- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001480- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1481- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1482- ``i16:16:16`` - i16 is 16-bit aligned
1483- ``i32:32:32`` - i32 is 32-bit aligned
1484- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1485 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001486- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001487- ``f32:32:32`` - float is 32-bit aligned
1488- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001489- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001490- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1491- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001492- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001493
1494When LLVM is determining the alignment for a given type, it uses the
1495following rules:
1496
1497#. If the type sought is an exact match for one of the specifications,
1498 that specification is used.
1499#. If no match is found, and the type sought is an integer type, then
1500 the smallest integer type that is larger than the bitwidth of the
1501 sought type is used. If none of the specifications are larger than
1502 the bitwidth then the largest integer type is used. For example,
1503 given the default specifications above, the i7 type will use the
1504 alignment of i8 (next largest) while both i65 and i256 will use the
1505 alignment of i64 (largest specified).
1506#. If no match is found, and the type sought is a vector type, then the
1507 largest vector type that is smaller than the sought vector type will
1508 be used as a fall back. This happens because <128 x double> can be
1509 implemented in terms of 64 <2 x double>, for example.
1510
1511The function of the data layout string may not be what you expect.
1512Notably, this is not a specification from the frontend of what alignment
1513the code generator should use.
1514
1515Instead, if specified, the target data layout is required to match what
1516the ultimate *code generator* expects. This string is used by the
1517mid-level optimizers to improve code, and this only works if it matches
1518what the ultimate code generator uses. If you would like to generate IR
1519that does not embed this target-specific detail into the IR, then you
1520don't have to specify the string. This will disable some optimizations
1521that require precise layout information, but this also prevents those
1522optimizations from introducing target specificity into the IR.
1523
Bill Wendling5cc90842013-10-18 23:41:25 +00001524.. _langref_triple:
1525
1526Target Triple
1527-------------
1528
1529A module may specify a target triple string that describes the target
1530host. The syntax for the target triple is simply:
1531
1532.. code-block:: llvm
1533
1534 target triple = "x86_64-apple-macosx10.7.0"
1535
1536The *target triple* string consists of a series of identifiers delimited
1537by the minus sign character ('-'). The canonical forms are:
1538
1539::
1540
1541 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1542 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1543
1544This information is passed along to the backend so that it generates
1545code for the proper architecture. It's possible to override this on the
1546command line with the ``-mtriple`` command line option.
1547
Sean Silvab084af42012-12-07 10:36:55 +00001548.. _pointeraliasing:
1549
1550Pointer Aliasing Rules
1551----------------------
1552
1553Any memory access must be done through a pointer value associated with
1554an address range of the memory access, otherwise the behavior is
1555undefined. Pointer values are associated with address ranges according
1556to the following rules:
1557
1558- A pointer value is associated with the addresses associated with any
1559 value it is *based* on.
1560- An address of a global variable is associated with the address range
1561 of the variable's storage.
1562- The result value of an allocation instruction is associated with the
1563 address range of the allocated storage.
1564- A null pointer in the default address-space is associated with no
1565 address.
1566- An integer constant other than zero or a pointer value returned from
1567 a function not defined within LLVM may be associated with address
1568 ranges allocated through mechanisms other than those provided by
1569 LLVM. Such ranges shall not overlap with any ranges of addresses
1570 allocated by mechanisms provided by LLVM.
1571
1572A pointer value is *based* on another pointer value according to the
1573following rules:
1574
1575- A pointer value formed from a ``getelementptr`` operation is *based*
1576 on the first operand of the ``getelementptr``.
1577- The result value of a ``bitcast`` is *based* on the operand of the
1578 ``bitcast``.
1579- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1580 values that contribute (directly or indirectly) to the computation of
1581 the pointer's value.
1582- The "*based* on" relationship is transitive.
1583
1584Note that this definition of *"based"* is intentionally similar to the
1585definition of *"based"* in C99, though it is slightly weaker.
1586
1587LLVM IR does not associate types with memory. The result type of a
1588``load`` merely indicates the size and alignment of the memory from
1589which to load, as well as the interpretation of the value. The first
1590operand type of a ``store`` similarly only indicates the size and
1591alignment of the store.
1592
1593Consequently, type-based alias analysis, aka TBAA, aka
1594``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1595:ref:`Metadata <metadata>` may be used to encode additional information
1596which specialized optimization passes may use to implement type-based
1597alias analysis.
1598
1599.. _volatile:
1600
1601Volatile Memory Accesses
1602------------------------
1603
1604Certain memory accesses, such as :ref:`load <i_load>`'s,
1605:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1606marked ``volatile``. The optimizers must not change the number of
1607volatile operations or change their order of execution relative to other
1608volatile operations. The optimizers *may* change the order of volatile
1609operations relative to non-volatile operations. This is not Java's
1610"volatile" and has no cross-thread synchronization behavior.
1611
Andrew Trick89fc5a62013-01-30 21:19:35 +00001612IR-level volatile loads and stores cannot safely be optimized into
1613llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1614flagged volatile. Likewise, the backend should never split or merge
1615target-legal volatile load/store instructions.
1616
Andrew Trick7e6f9282013-01-31 00:49:39 +00001617.. admonition:: Rationale
1618
1619 Platforms may rely on volatile loads and stores of natively supported
1620 data width to be executed as single instruction. For example, in C
1621 this holds for an l-value of volatile primitive type with native
1622 hardware support, but not necessarily for aggregate types. The
1623 frontend upholds these expectations, which are intentionally
1624 unspecified in the IR. The rules above ensure that IR transformation
1625 do not violate the frontend's contract with the language.
1626
Sean Silvab084af42012-12-07 10:36:55 +00001627.. _memmodel:
1628
1629Memory Model for Concurrent Operations
1630--------------------------------------
1631
1632The LLVM IR does not define any way to start parallel threads of
1633execution or to register signal handlers. Nonetheless, there are
1634platform-specific ways to create them, and we define LLVM IR's behavior
1635in their presence. This model is inspired by the C++0x memory model.
1636
1637For a more informal introduction to this model, see the :doc:`Atomics`.
1638
1639We define a *happens-before* partial order as the least partial order
1640that
1641
1642- Is a superset of single-thread program order, and
1643- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1644 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1645 techniques, like pthread locks, thread creation, thread joining,
1646 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1647 Constraints <ordering>`).
1648
1649Note that program order does not introduce *happens-before* edges
1650between a thread and signals executing inside that thread.
1651
1652Every (defined) read operation (load instructions, memcpy, atomic
1653loads/read-modify-writes, etc.) R reads a series of bytes written by
1654(defined) write operations (store instructions, atomic
1655stores/read-modify-writes, memcpy, etc.). For the purposes of this
1656section, initialized globals are considered to have a write of the
1657initializer which is atomic and happens before any other read or write
1658of the memory in question. For each byte of a read R, R\ :sub:`byte`
1659may see any write to the same byte, except:
1660
1661- If write\ :sub:`1` happens before write\ :sub:`2`, and
1662 write\ :sub:`2` happens before R\ :sub:`byte`, then
1663 R\ :sub:`byte` does not see write\ :sub:`1`.
1664- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1665 R\ :sub:`byte` does not see write\ :sub:`3`.
1666
1667Given that definition, R\ :sub:`byte` is defined as follows:
1668
1669- If R is volatile, the result is target-dependent. (Volatile is
1670 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001671 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001672 like normal memory. It does not generally provide cross-thread
1673 synchronization.)
1674- Otherwise, if there is no write to the same byte that happens before
1675 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1676- Otherwise, if R\ :sub:`byte` may see exactly one write,
1677 R\ :sub:`byte` returns the value written by that write.
1678- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1679 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1680 Memory Ordering Constraints <ordering>` section for additional
1681 constraints on how the choice is made.
1682- Otherwise R\ :sub:`byte` returns ``undef``.
1683
1684R returns the value composed of the series of bytes it read. This
1685implies that some bytes within the value may be ``undef`` **without**
1686the entire value being ``undef``. Note that this only defines the
1687semantics of the operation; it doesn't mean that targets will emit more
1688than one instruction to read the series of bytes.
1689
1690Note that in cases where none of the atomic intrinsics are used, this
1691model places only one restriction on IR transformations on top of what
1692is required for single-threaded execution: introducing a store to a byte
1693which might not otherwise be stored is not allowed in general.
1694(Specifically, in the case where another thread might write to and read
1695from an address, introducing a store can change a load that may see
1696exactly one write into a load that may see multiple writes.)
1697
1698.. _ordering:
1699
1700Atomic Memory Ordering Constraints
1701----------------------------------
1702
1703Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1704:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1705:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001706ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001707the same address they *synchronize with*. These semantics are borrowed
1708from Java and C++0x, but are somewhat more colloquial. If these
1709descriptions aren't precise enough, check those specs (see spec
1710references in the :doc:`atomics guide <Atomics>`).
1711:ref:`fence <i_fence>` instructions treat these orderings somewhat
1712differently since they don't take an address. See that instruction's
1713documentation for details.
1714
1715For a simpler introduction to the ordering constraints, see the
1716:doc:`Atomics`.
1717
1718``unordered``
1719 The set of values that can be read is governed by the happens-before
1720 partial order. A value cannot be read unless some operation wrote
1721 it. This is intended to provide a guarantee strong enough to model
1722 Java's non-volatile shared variables. This ordering cannot be
1723 specified for read-modify-write operations; it is not strong enough
1724 to make them atomic in any interesting way.
1725``monotonic``
1726 In addition to the guarantees of ``unordered``, there is a single
1727 total order for modifications by ``monotonic`` operations on each
1728 address. All modification orders must be compatible with the
1729 happens-before order. There is no guarantee that the modification
1730 orders can be combined to a global total order for the whole program
1731 (and this often will not be possible). The read in an atomic
1732 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1733 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1734 order immediately before the value it writes. If one atomic read
1735 happens before another atomic read of the same address, the later
1736 read must see the same value or a later value in the address's
1737 modification order. This disallows reordering of ``monotonic`` (or
1738 stronger) operations on the same address. If an address is written
1739 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1740 read that address repeatedly, the other threads must eventually see
1741 the write. This corresponds to the C++0x/C1x
1742 ``memory_order_relaxed``.
1743``acquire``
1744 In addition to the guarantees of ``monotonic``, a
1745 *synchronizes-with* edge may be formed with a ``release`` operation.
1746 This is intended to model C++'s ``memory_order_acquire``.
1747``release``
1748 In addition to the guarantees of ``monotonic``, if this operation
1749 writes a value which is subsequently read by an ``acquire``
1750 operation, it *synchronizes-with* that operation. (This isn't a
1751 complete description; see the C++0x definition of a release
1752 sequence.) This corresponds to the C++0x/C1x
1753 ``memory_order_release``.
1754``acq_rel`` (acquire+release)
1755 Acts as both an ``acquire`` and ``release`` operation on its
1756 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1757``seq_cst`` (sequentially consistent)
1758 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001759 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001760 writes), there is a global total order on all
1761 sequentially-consistent operations on all addresses, which is
1762 consistent with the *happens-before* partial order and with the
1763 modification orders of all the affected addresses. Each
1764 sequentially-consistent read sees the last preceding write to the
1765 same address in this global order. This corresponds to the C++0x/C1x
1766 ``memory_order_seq_cst`` and Java volatile.
1767
1768.. _singlethread:
1769
1770If an atomic operation is marked ``singlethread``, it only *synchronizes
1771with* or participates in modification and seq\_cst total orderings with
1772other operations running in the same thread (for example, in signal
1773handlers).
1774
1775.. _fastmath:
1776
1777Fast-Math Flags
1778---------------
1779
1780LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1781:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1782:ref:`frem <i_frem>`) have the following flags that can set to enable
1783otherwise unsafe floating point operations
1784
1785``nnan``
1786 No NaNs - Allow optimizations to assume the arguments and result are not
1787 NaN. Such optimizations are required to retain defined behavior over
1788 NaNs, but the value of the result is undefined.
1789
1790``ninf``
1791 No Infs - Allow optimizations to assume the arguments and result are not
1792 +/-Inf. Such optimizations are required to retain defined behavior over
1793 +/-Inf, but the value of the result is undefined.
1794
1795``nsz``
1796 No Signed Zeros - Allow optimizations to treat the sign of a zero
1797 argument or result as insignificant.
1798
1799``arcp``
1800 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1801 argument rather than perform division.
1802
1803``fast``
1804 Fast - Allow algebraically equivalent transformations that may
1805 dramatically change results in floating point (e.g. reassociate). This
1806 flag implies all the others.
1807
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001808.. _uselistorder:
1809
1810Use-list Order Directives
1811-------------------------
1812
1813Use-list directives encode the in-memory order of each use-list, allowing the
1814order to be recreated. ``<order-indexes>`` is a comma-separated list of
1815indexes that are assigned to the referenced value's uses. The referenced
1816value's use-list is immediately sorted by these indexes.
1817
1818Use-list directives may appear at function scope or global scope. They are not
1819instructions, and have no effect on the semantics of the IR. When they're at
1820function scope, they must appear after the terminator of the final basic block.
1821
1822If basic blocks have their address taken via ``blockaddress()`` expressions,
1823``uselistorder_bb`` can be used to reorder their use-lists from outside their
1824function's scope.
1825
1826:Syntax:
1827
1828::
1829
1830 uselistorder <ty> <value>, { <order-indexes> }
1831 uselistorder_bb @function, %block { <order-indexes> }
1832
1833:Examples:
1834
1835::
1836
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001837 define void @foo(i32 %arg1, i32 %arg2) {
1838 entry:
1839 ; ... instructions ...
1840 bb:
1841 ; ... instructions ...
1842
1843 ; At function scope.
1844 uselistorder i32 %arg1, { 1, 0, 2 }
1845 uselistorder label %bb, { 1, 0 }
1846 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001847
1848 ; At global scope.
1849 uselistorder i32* @global, { 1, 2, 0 }
1850 uselistorder i32 7, { 1, 0 }
1851 uselistorder i32 (i32) @bar, { 1, 0 }
1852 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1853
Sean Silvab084af42012-12-07 10:36:55 +00001854.. _typesystem:
1855
1856Type System
1857===========
1858
1859The LLVM type system is one of the most important features of the
1860intermediate representation. Being typed enables a number of
1861optimizations to be performed on the intermediate representation
1862directly, without having to do extra analyses on the side before the
1863transformation. A strong type system makes it easier to read the
1864generated code and enables novel analyses and transformations that are
1865not feasible to perform on normal three address code representations.
1866
Rafael Espindola08013342013-12-07 19:34:20 +00001867.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001868
Rafael Espindola08013342013-12-07 19:34:20 +00001869Void Type
1870---------
Sean Silvab084af42012-12-07 10:36:55 +00001871
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001872:Overview:
1873
Rafael Espindola08013342013-12-07 19:34:20 +00001874
1875The void type does not represent any value and has no size.
1876
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001877:Syntax:
1878
Rafael Espindola08013342013-12-07 19:34:20 +00001879
1880::
1881
1882 void
Sean Silvab084af42012-12-07 10:36:55 +00001883
1884
Rafael Espindola08013342013-12-07 19:34:20 +00001885.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001886
Rafael Espindola08013342013-12-07 19:34:20 +00001887Function Type
1888-------------
Sean Silvab084af42012-12-07 10:36:55 +00001889
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001890:Overview:
1891
Sean Silvab084af42012-12-07 10:36:55 +00001892
Rafael Espindola08013342013-12-07 19:34:20 +00001893The function type can be thought of as a function signature. It consists of a
1894return type and a list of formal parameter types. The return type of a function
1895type is a void type or first class type --- except for :ref:`label <t_label>`
1896and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001897
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001898:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001899
Rafael Espindola08013342013-12-07 19:34:20 +00001900::
Sean Silvab084af42012-12-07 10:36:55 +00001901
Rafael Espindola08013342013-12-07 19:34:20 +00001902 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001903
Rafael Espindola08013342013-12-07 19:34:20 +00001904...where '``<parameter list>``' is a comma-separated list of type
1905specifiers. Optionally, the parameter list may include a type ``...``, which
1906indicates that the function takes a variable number of arguments. Variable
1907argument functions can access their arguments with the :ref:`variable argument
1908handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1909except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001910
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001911:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001912
Rafael Espindola08013342013-12-07 19:34:20 +00001913+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1914| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1915+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1916| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1917+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1918| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1919+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1920| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1921+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1922
1923.. _t_firstclass:
1924
1925First Class Types
1926-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001927
1928The :ref:`first class <t_firstclass>` types are perhaps the most important.
1929Values of these types are the only ones which can be produced by
1930instructions.
1931
Rafael Espindola08013342013-12-07 19:34:20 +00001932.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001933
Rafael Espindola08013342013-12-07 19:34:20 +00001934Single Value Types
1935^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001936
Rafael Espindola08013342013-12-07 19:34:20 +00001937These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001938
1939.. _t_integer:
1940
1941Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001942""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001943
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001944:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001945
1946The integer type is a very simple type that simply specifies an
1947arbitrary bit width for the integer type desired. Any bit width from 1
1948bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1949
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001950:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001951
1952::
1953
1954 iN
1955
1956The number of bits the integer will occupy is specified by the ``N``
1957value.
1958
1959Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001960*********
Sean Silvab084af42012-12-07 10:36:55 +00001961
1962+----------------+------------------------------------------------+
1963| ``i1`` | a single-bit integer. |
1964+----------------+------------------------------------------------+
1965| ``i32`` | a 32-bit integer. |
1966+----------------+------------------------------------------------+
1967| ``i1942652`` | a really big integer of over 1 million bits. |
1968+----------------+------------------------------------------------+
1969
1970.. _t_floating:
1971
1972Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001973""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001974
1975.. list-table::
1976 :header-rows: 1
1977
1978 * - Type
1979 - Description
1980
1981 * - ``half``
1982 - 16-bit floating point value
1983
1984 * - ``float``
1985 - 32-bit floating point value
1986
1987 * - ``double``
1988 - 64-bit floating point value
1989
1990 * - ``fp128``
1991 - 128-bit floating point value (112-bit mantissa)
1992
1993 * - ``x86_fp80``
1994 - 80-bit floating point value (X87)
1995
1996 * - ``ppc_fp128``
1997 - 128-bit floating point value (two 64-bits)
1998
Reid Kleckner9a16d082014-03-05 02:41:37 +00001999X86_mmx Type
2000""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002001
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002002:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002003
Reid Kleckner9a16d082014-03-05 02:41:37 +00002004The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002005machine. The operations allowed on it are quite limited: parameters and
2006return values, load and store, and bitcast. User-specified MMX
2007instructions are represented as intrinsic or asm calls with arguments
2008and/or results of this type. There are no arrays, vectors or constants
2009of this type.
2010
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002011:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002012
2013::
2014
Reid Kleckner9a16d082014-03-05 02:41:37 +00002015 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002016
Sean Silvab084af42012-12-07 10:36:55 +00002017
Rafael Espindola08013342013-12-07 19:34:20 +00002018.. _t_pointer:
2019
2020Pointer Type
2021""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002022
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002023:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002024
Rafael Espindola08013342013-12-07 19:34:20 +00002025The pointer type is used to specify memory locations. Pointers are
2026commonly used to reference objects in memory.
2027
2028Pointer types may have an optional address space attribute defining the
2029numbered address space where the pointed-to object resides. The default
2030address space is number zero. The semantics of non-zero address spaces
2031are target-specific.
2032
2033Note that LLVM does not permit pointers to void (``void*``) nor does it
2034permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002035
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002036:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002037
2038::
2039
Rafael Espindola08013342013-12-07 19:34:20 +00002040 <type> *
2041
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002042:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002043
2044+-------------------------+--------------------------------------------------------------------------------------------------------------+
2045| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2046+-------------------------+--------------------------------------------------------------------------------------------------------------+
2047| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2048+-------------------------+--------------------------------------------------------------------------------------------------------------+
2049| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2050+-------------------------+--------------------------------------------------------------------------------------------------------------+
2051
2052.. _t_vector:
2053
2054Vector Type
2055"""""""""""
2056
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002057:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002058
2059A vector type is a simple derived type that represents a vector of
2060elements. Vector types are used when multiple primitive data are
2061operated in parallel using a single instruction (SIMD). A vector type
2062requires a size (number of elements) and an underlying primitive data
2063type. Vector types are considered :ref:`first class <t_firstclass>`.
2064
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002065:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002066
2067::
2068
2069 < <# elements> x <elementtype> >
2070
2071The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002072elementtype may be any integer, floating point or pointer type. Vectors
2073of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002074
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002075:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002076
2077+-------------------+--------------------------------------------------+
2078| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2079+-------------------+--------------------------------------------------+
2080| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2081+-------------------+--------------------------------------------------+
2082| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2083+-------------------+--------------------------------------------------+
2084| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2085+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002086
2087.. _t_label:
2088
2089Label Type
2090^^^^^^^^^^
2091
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002092:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002093
2094The label type represents code labels.
2095
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002096:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002097
2098::
2099
2100 label
2101
2102.. _t_metadata:
2103
2104Metadata Type
2105^^^^^^^^^^^^^
2106
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002107:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002108
2109The metadata type represents embedded metadata. No derived types may be
2110created from metadata except for :ref:`function <t_function>` arguments.
2111
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002112:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002113
2114::
2115
2116 metadata
2117
Sean Silvab084af42012-12-07 10:36:55 +00002118.. _t_aggregate:
2119
2120Aggregate Types
2121^^^^^^^^^^^^^^^
2122
2123Aggregate Types are a subset of derived types that can contain multiple
2124member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2125aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2126aggregate types.
2127
2128.. _t_array:
2129
2130Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002131""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002132
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002133:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002134
2135The array type is a very simple derived type that arranges elements
2136sequentially in memory. The array type requires a size (number of
2137elements) and an underlying data type.
2138
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002139:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002140
2141::
2142
2143 [<# elements> x <elementtype>]
2144
2145The number of elements is a constant integer value; ``elementtype`` may
2146be any type with a size.
2147
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002148:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002149
2150+------------------+--------------------------------------+
2151| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2152+------------------+--------------------------------------+
2153| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2154+------------------+--------------------------------------+
2155| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2156+------------------+--------------------------------------+
2157
2158Here are some examples of multidimensional arrays:
2159
2160+-----------------------------+----------------------------------------------------------+
2161| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2162+-----------------------------+----------------------------------------------------------+
2163| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2164+-----------------------------+----------------------------------------------------------+
2165| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2166+-----------------------------+----------------------------------------------------------+
2167
2168There is no restriction on indexing beyond the end of the array implied
2169by a static type (though there are restrictions on indexing beyond the
2170bounds of an allocated object in some cases). This means that
2171single-dimension 'variable sized array' addressing can be implemented in
2172LLVM with a zero length array type. An implementation of 'pascal style
2173arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2174example.
2175
Sean Silvab084af42012-12-07 10:36:55 +00002176.. _t_struct:
2177
2178Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002179""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002180
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002181:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002182
2183The structure type is used to represent a collection of data members
2184together in memory. The elements of a structure may be any type that has
2185a size.
2186
2187Structures in memory are accessed using '``load``' and '``store``' by
2188getting a pointer to a field with the '``getelementptr``' instruction.
2189Structures in registers are accessed using the '``extractvalue``' and
2190'``insertvalue``' instructions.
2191
2192Structures may optionally be "packed" structures, which indicate that
2193the alignment of the struct is one byte, and that there is no padding
2194between the elements. In non-packed structs, padding between field types
2195is inserted as defined by the DataLayout string in the module, which is
2196required to match what the underlying code generator expects.
2197
2198Structures can either be "literal" or "identified". A literal structure
2199is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2200identified types are always defined at the top level with a name.
2201Literal types are uniqued by their contents and can never be recursive
2202or opaque since there is no way to write one. Identified types can be
2203recursive, can be opaqued, and are never uniqued.
2204
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002205:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002206
2207::
2208
2209 %T1 = type { <type list> } ; Identified normal struct type
2210 %T2 = type <{ <type list> }> ; Identified packed struct type
2211
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002212:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002213
2214+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2215| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2216+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002217| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002218+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2219| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2220+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2221
2222.. _t_opaque:
2223
2224Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002225""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002226
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002227:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002228
2229Opaque structure types are used to represent named structure types that
2230do not have a body specified. This corresponds (for example) to the C
2231notion of a forward declared structure.
2232
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002233:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002234
2235::
2236
2237 %X = type opaque
2238 %52 = type opaque
2239
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002240:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002241
2242+--------------+-------------------+
2243| ``opaque`` | An opaque type. |
2244+--------------+-------------------+
2245
Sean Silva1703e702014-04-08 21:06:22 +00002246.. _constants:
2247
Sean Silvab084af42012-12-07 10:36:55 +00002248Constants
2249=========
2250
2251LLVM has several different basic types of constants. This section
2252describes them all and their syntax.
2253
2254Simple Constants
2255----------------
2256
2257**Boolean constants**
2258 The two strings '``true``' and '``false``' are both valid constants
2259 of the ``i1`` type.
2260**Integer constants**
2261 Standard integers (such as '4') are constants of the
2262 :ref:`integer <t_integer>` type. Negative numbers may be used with
2263 integer types.
2264**Floating point constants**
2265 Floating point constants use standard decimal notation (e.g.
2266 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2267 hexadecimal notation (see below). The assembler requires the exact
2268 decimal value of a floating-point constant. For example, the
2269 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2270 decimal in binary. Floating point constants must have a :ref:`floating
2271 point <t_floating>` type.
2272**Null pointer constants**
2273 The identifier '``null``' is recognized as a null pointer constant
2274 and must be of :ref:`pointer type <t_pointer>`.
2275
2276The one non-intuitive notation for constants is the hexadecimal form of
2277floating point constants. For example, the form
2278'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2279than) '``double 4.5e+15``'. The only time hexadecimal floating point
2280constants are required (and the only time that they are generated by the
2281disassembler) is when a floating point constant must be emitted but it
2282cannot be represented as a decimal floating point number in a reasonable
2283number of digits. For example, NaN's, infinities, and other special
2284values are represented in their IEEE hexadecimal format so that assembly
2285and disassembly do not cause any bits to change in the constants.
2286
2287When using the hexadecimal form, constants of types half, float, and
2288double are represented using the 16-digit form shown above (which
2289matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002290must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002291precision, respectively. Hexadecimal format is always used for long
2292double, and there are three forms of long double. The 80-bit format used
2293by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2294128-bit format used by PowerPC (two adjacent doubles) is represented by
2295``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002296represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2297will only work if they match the long double format on your target.
2298The IEEE 16-bit format (half precision) is represented by ``0xH``
2299followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2300(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002301
Reid Kleckner9a16d082014-03-05 02:41:37 +00002302There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002303
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002304.. _complexconstants:
2305
Sean Silvab084af42012-12-07 10:36:55 +00002306Complex Constants
2307-----------------
2308
2309Complex constants are a (potentially recursive) combination of simple
2310constants and smaller complex constants.
2311
2312**Structure constants**
2313 Structure constants are represented with notation similar to
2314 structure type definitions (a comma separated list of elements,
2315 surrounded by braces (``{}``)). For example:
2316 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2317 "``@G = external global i32``". Structure constants must have
2318 :ref:`structure type <t_struct>`, and the number and types of elements
2319 must match those specified by the type.
2320**Array constants**
2321 Array constants are represented with notation similar to array type
2322 definitions (a comma separated list of elements, surrounded by
2323 square brackets (``[]``)). For example:
2324 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2325 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002326 match those specified by the type. As a special case, character array
2327 constants may also be represented as a double-quoted string using the ``c``
2328 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002329**Vector constants**
2330 Vector constants are represented with notation similar to vector
2331 type definitions (a comma separated list of elements, surrounded by
2332 less-than/greater-than's (``<>``)). For example:
2333 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2334 must have :ref:`vector type <t_vector>`, and the number and types of
2335 elements must match those specified by the type.
2336**Zero initialization**
2337 The string '``zeroinitializer``' can be used to zero initialize a
2338 value to zero of *any* type, including scalar and
2339 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2340 having to print large zero initializers (e.g. for large arrays) and
2341 is always exactly equivalent to using explicit zero initializers.
2342**Metadata node**
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002343 A metadata node is a constant tuple without types. For example:
2344 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
2345 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2346 Unlike other typed constants that are meant to be interpreted as part of
2347 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002348 information such as debug info.
2349
2350Global Variable and Function Addresses
2351--------------------------------------
2352
2353The addresses of :ref:`global variables <globalvars>` and
2354:ref:`functions <functionstructure>` are always implicitly valid
2355(link-time) constants. These constants are explicitly referenced when
2356the :ref:`identifier for the global <identifiers>` is used and always have
2357:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2358file:
2359
2360.. code-block:: llvm
2361
2362 @X = global i32 17
2363 @Y = global i32 42
2364 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2365
2366.. _undefvalues:
2367
2368Undefined Values
2369----------------
2370
2371The string '``undef``' can be used anywhere a constant is expected, and
2372indicates that the user of the value may receive an unspecified
2373bit-pattern. Undefined values may be of any type (other than '``label``'
2374or '``void``') and be used anywhere a constant is permitted.
2375
2376Undefined values are useful because they indicate to the compiler that
2377the program is well defined no matter what value is used. This gives the
2378compiler more freedom to optimize. Here are some examples of
2379(potentially surprising) transformations that are valid (in pseudo IR):
2380
2381.. code-block:: llvm
2382
2383 %A = add %X, undef
2384 %B = sub %X, undef
2385 %C = xor %X, undef
2386 Safe:
2387 %A = undef
2388 %B = undef
2389 %C = undef
2390
2391This is safe because all of the output bits are affected by the undef
2392bits. Any output bit can have a zero or one depending on the input bits.
2393
2394.. code-block:: llvm
2395
2396 %A = or %X, undef
2397 %B = and %X, undef
2398 Safe:
2399 %A = -1
2400 %B = 0
2401 Unsafe:
2402 %A = undef
2403 %B = undef
2404
2405These logical operations have bits that are not always affected by the
2406input. For example, if ``%X`` has a zero bit, then the output of the
2407'``and``' operation will always be a zero for that bit, no matter what
2408the corresponding bit from the '``undef``' is. As such, it is unsafe to
2409optimize or assume that the result of the '``and``' is '``undef``'.
2410However, it is safe to assume that all bits of the '``undef``' could be
24110, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2412all the bits of the '``undef``' operand to the '``or``' could be set,
2413allowing the '``or``' to be folded to -1.
2414
2415.. code-block:: llvm
2416
2417 %A = select undef, %X, %Y
2418 %B = select undef, 42, %Y
2419 %C = select %X, %Y, undef
2420 Safe:
2421 %A = %X (or %Y)
2422 %B = 42 (or %Y)
2423 %C = %Y
2424 Unsafe:
2425 %A = undef
2426 %B = undef
2427 %C = undef
2428
2429This set of examples shows that undefined '``select``' (and conditional
2430branch) conditions can go *either way*, but they have to come from one
2431of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2432both known to have a clear low bit, then ``%A`` would have to have a
2433cleared low bit. However, in the ``%C`` example, the optimizer is
2434allowed to assume that the '``undef``' operand could be the same as
2435``%Y``, allowing the whole '``select``' to be eliminated.
2436
2437.. code-block:: llvm
2438
2439 %A = xor undef, undef
2440
2441 %B = undef
2442 %C = xor %B, %B
2443
2444 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002445 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002446 %F = icmp gte %D, 4
2447
2448 Safe:
2449 %A = undef
2450 %B = undef
2451 %C = undef
2452 %D = undef
2453 %E = undef
2454 %F = undef
2455
2456This example points out that two '``undef``' operands are not
2457necessarily the same. This can be surprising to people (and also matches
2458C semantics) where they assume that "``X^X``" is always zero, even if
2459``X`` is undefined. This isn't true for a number of reasons, but the
2460short answer is that an '``undef``' "variable" can arbitrarily change
2461its value over its "live range". This is true because the variable
2462doesn't actually *have a live range*. Instead, the value is logically
2463read from arbitrary registers that happen to be around when needed, so
2464the value is not necessarily consistent over time. In fact, ``%A`` and
2465``%C`` need to have the same semantics or the core LLVM "replace all
2466uses with" concept would not hold.
2467
2468.. code-block:: llvm
2469
2470 %A = fdiv undef, %X
2471 %B = fdiv %X, undef
2472 Safe:
2473 %A = undef
2474 b: unreachable
2475
2476These examples show the crucial difference between an *undefined value*
2477and *undefined behavior*. An undefined value (like '``undef``') is
2478allowed to have an arbitrary bit-pattern. This means that the ``%A``
2479operation can be constant folded to '``undef``', because the '``undef``'
2480could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2481However, in the second example, we can make a more aggressive
2482assumption: because the ``undef`` is allowed to be an arbitrary value,
2483we are allowed to assume that it could be zero. Since a divide by zero
2484has *undefined behavior*, we are allowed to assume that the operation
2485does not execute at all. This allows us to delete the divide and all
2486code after it. Because the undefined operation "can't happen", the
2487optimizer can assume that it occurs in dead code.
2488
2489.. code-block:: llvm
2490
2491 a: store undef -> %X
2492 b: store %X -> undef
2493 Safe:
2494 a: <deleted>
2495 b: unreachable
2496
2497These examples reiterate the ``fdiv`` example: a store *of* an undefined
2498value can be assumed to not have any effect; we can assume that the
2499value is overwritten with bits that happen to match what was already
2500there. However, a store *to* an undefined location could clobber
2501arbitrary memory, therefore, it has undefined behavior.
2502
2503.. _poisonvalues:
2504
2505Poison Values
2506-------------
2507
2508Poison values are similar to :ref:`undef values <undefvalues>`, however
2509they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002510that cannot evoke side effects has nevertheless detected a condition
2511that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002512
2513There is currently no way of representing a poison value in the IR; they
2514only exist when produced by operations such as :ref:`add <i_add>` with
2515the ``nsw`` flag.
2516
2517Poison value behavior is defined in terms of value *dependence*:
2518
2519- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2520- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2521 their dynamic predecessor basic block.
2522- Function arguments depend on the corresponding actual argument values
2523 in the dynamic callers of their functions.
2524- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2525 instructions that dynamically transfer control back to them.
2526- :ref:`Invoke <i_invoke>` instructions depend on the
2527 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2528 call instructions that dynamically transfer control back to them.
2529- Non-volatile loads and stores depend on the most recent stores to all
2530 of the referenced memory addresses, following the order in the IR
2531 (including loads and stores implied by intrinsics such as
2532 :ref:`@llvm.memcpy <int_memcpy>`.)
2533- An instruction with externally visible side effects depends on the
2534 most recent preceding instruction with externally visible side
2535 effects, following the order in the IR. (This includes :ref:`volatile
2536 operations <volatile>`.)
2537- An instruction *control-depends* on a :ref:`terminator
2538 instruction <terminators>` if the terminator instruction has
2539 multiple successors and the instruction is always executed when
2540 control transfers to one of the successors, and may not be executed
2541 when control is transferred to another.
2542- Additionally, an instruction also *control-depends* on a terminator
2543 instruction if the set of instructions it otherwise depends on would
2544 be different if the terminator had transferred control to a different
2545 successor.
2546- Dependence is transitive.
2547
Richard Smith32dbdf62014-07-31 04:25:36 +00002548Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2549with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002550on a poison value has undefined behavior.
2551
2552Here are some examples:
2553
2554.. code-block:: llvm
2555
2556 entry:
2557 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2558 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2559 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2560 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2561
2562 store i32 %poison, i32* @g ; Poison value stored to memory.
2563 %poison2 = load i32* @g ; Poison value loaded back from memory.
2564
2565 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2566
2567 %narrowaddr = bitcast i32* @g to i16*
2568 %wideaddr = bitcast i32* @g to i64*
2569 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2570 %poison4 = load i64* %wideaddr ; Returns a poison value.
2571
2572 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2573 br i1 %cmp, label %true, label %end ; Branch to either destination.
2574
2575 true:
2576 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2577 ; it has undefined behavior.
2578 br label %end
2579
2580 end:
2581 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2582 ; Both edges into this PHI are
2583 ; control-dependent on %cmp, so this
2584 ; always results in a poison value.
2585
2586 store volatile i32 0, i32* @g ; This would depend on the store in %true
2587 ; if %cmp is true, or the store in %entry
2588 ; otherwise, so this is undefined behavior.
2589
2590 br i1 %cmp, label %second_true, label %second_end
2591 ; The same branch again, but this time the
2592 ; true block doesn't have side effects.
2593
2594 second_true:
2595 ; No side effects!
2596 ret void
2597
2598 second_end:
2599 store volatile i32 0, i32* @g ; This time, the instruction always depends
2600 ; on the store in %end. Also, it is
2601 ; control-equivalent to %end, so this is
2602 ; well-defined (ignoring earlier undefined
2603 ; behavior in this example).
2604
2605.. _blockaddress:
2606
2607Addresses of Basic Blocks
2608-------------------------
2609
2610``blockaddress(@function, %block)``
2611
2612The '``blockaddress``' constant computes the address of the specified
2613basic block in the specified function, and always has an ``i8*`` type.
2614Taking the address of the entry block is illegal.
2615
2616This value only has defined behavior when used as an operand to the
2617':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2618against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002619undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002620no label is equal to the null pointer. This may be passed around as an
2621opaque pointer sized value as long as the bits are not inspected. This
2622allows ``ptrtoint`` and arithmetic to be performed on these values so
2623long as the original value is reconstituted before the ``indirectbr``
2624instruction.
2625
2626Finally, some targets may provide defined semantics when using the value
2627as the operand to an inline assembly, but that is target specific.
2628
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002629.. _constantexprs:
2630
Sean Silvab084af42012-12-07 10:36:55 +00002631Constant Expressions
2632--------------------
2633
2634Constant expressions are used to allow expressions involving other
2635constants to be used as constants. Constant expressions may be of any
2636:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2637that does not have side effects (e.g. load and call are not supported).
2638The following is the syntax for constant expressions:
2639
2640``trunc (CST to TYPE)``
2641 Truncate a constant to another type. The bit size of CST must be
2642 larger than the bit size of TYPE. Both types must be integers.
2643``zext (CST to TYPE)``
2644 Zero extend a constant to another type. The bit size of CST must be
2645 smaller than the bit size of TYPE. Both types must be integers.
2646``sext (CST to TYPE)``
2647 Sign extend a constant to another type. The bit size of CST must be
2648 smaller than the bit size of TYPE. Both types must be integers.
2649``fptrunc (CST to TYPE)``
2650 Truncate a floating point constant to another floating point type.
2651 The size of CST must be larger than the size of TYPE. Both types
2652 must be floating point.
2653``fpext (CST to TYPE)``
2654 Floating point extend a constant to another type. The size of CST
2655 must be smaller or equal to the size of TYPE. Both types must be
2656 floating point.
2657``fptoui (CST to TYPE)``
2658 Convert a floating point constant to the corresponding unsigned
2659 integer constant. TYPE must be a scalar or vector integer type. CST
2660 must be of scalar or vector floating point type. Both CST and TYPE
2661 must be scalars, or vectors of the same number of elements. If the
2662 value won't fit in the integer type, the results are undefined.
2663``fptosi (CST to TYPE)``
2664 Convert a floating point constant to the corresponding signed
2665 integer constant. TYPE must be a scalar or vector integer type. CST
2666 must be of scalar or vector floating point type. Both CST and TYPE
2667 must be scalars, or vectors of the same number of elements. If the
2668 value won't fit in the integer type, the results are undefined.
2669``uitofp (CST to TYPE)``
2670 Convert an unsigned integer constant to the corresponding floating
2671 point constant. TYPE must be a scalar or vector floating point type.
2672 CST must be of scalar or vector integer type. Both CST and TYPE must
2673 be scalars, or vectors of the same number of elements. If the value
2674 won't fit in the floating point type, the results are undefined.
2675``sitofp (CST to TYPE)``
2676 Convert a signed integer constant to the corresponding floating
2677 point constant. TYPE must be a scalar or vector floating point type.
2678 CST must be of scalar or vector integer type. Both CST and TYPE must
2679 be scalars, or vectors of the same number of elements. If the value
2680 won't fit in the floating point type, the results are undefined.
2681``ptrtoint (CST to TYPE)``
2682 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002683 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002684 pointer type. The ``CST`` value is zero extended, truncated, or
2685 unchanged to make it fit in ``TYPE``.
2686``inttoptr (CST to TYPE)``
2687 Convert an integer constant to a pointer constant. TYPE must be a
2688 pointer type. CST must be of integer type. The CST value is zero
2689 extended, truncated, or unchanged to make it fit in a pointer size.
2690 This one is *really* dangerous!
2691``bitcast (CST to TYPE)``
2692 Convert a constant, CST, to another TYPE. The constraints of the
2693 operands are the same as those for the :ref:`bitcast
2694 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002695``addrspacecast (CST to TYPE)``
2696 Convert a constant pointer or constant vector of pointer, CST, to another
2697 TYPE in a different address space. The constraints of the operands are the
2698 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002699``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2700 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2701 constants. As with the :ref:`getelementptr <i_getelementptr>`
2702 instruction, the index list may have zero or more indexes, which are
2703 required to make sense for the type of "CSTPTR".
2704``select (COND, VAL1, VAL2)``
2705 Perform the :ref:`select operation <i_select>` on constants.
2706``icmp COND (VAL1, VAL2)``
2707 Performs the :ref:`icmp operation <i_icmp>` on constants.
2708``fcmp COND (VAL1, VAL2)``
2709 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2710``extractelement (VAL, IDX)``
2711 Perform the :ref:`extractelement operation <i_extractelement>` on
2712 constants.
2713``insertelement (VAL, ELT, IDX)``
2714 Perform the :ref:`insertelement operation <i_insertelement>` on
2715 constants.
2716``shufflevector (VEC1, VEC2, IDXMASK)``
2717 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2718 constants.
2719``extractvalue (VAL, IDX0, IDX1, ...)``
2720 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2721 constants. The index list is interpreted in a similar manner as
2722 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2723 least one index value must be specified.
2724``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2725 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2726 The index list is interpreted in a similar manner as indices in a
2727 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2728 value must be specified.
2729``OPCODE (LHS, RHS)``
2730 Perform the specified operation of the LHS and RHS constants. OPCODE
2731 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2732 binary <bitwiseops>` operations. The constraints on operands are
2733 the same as those for the corresponding instruction (e.g. no bitwise
2734 operations on floating point values are allowed).
2735
2736Other Values
2737============
2738
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002739.. _inlineasmexprs:
2740
Sean Silvab084af42012-12-07 10:36:55 +00002741Inline Assembler Expressions
2742----------------------------
2743
2744LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2745Inline Assembly <moduleasm>`) through the use of a special value. This
2746value represents the inline assembler as a string (containing the
2747instructions to emit), a list of operand constraints (stored as a
2748string), a flag that indicates whether or not the inline asm expression
2749has side effects, and a flag indicating whether the function containing
2750the asm needs to align its stack conservatively. An example inline
2751assembler expression is:
2752
2753.. code-block:: llvm
2754
2755 i32 (i32) asm "bswap $0", "=r,r"
2756
2757Inline assembler expressions may **only** be used as the callee operand
2758of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2759Thus, typically we have:
2760
2761.. code-block:: llvm
2762
2763 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2764
2765Inline asms with side effects not visible in the constraint list must be
2766marked as having side effects. This is done through the use of the
2767'``sideeffect``' keyword, like so:
2768
2769.. code-block:: llvm
2770
2771 call void asm sideeffect "eieio", ""()
2772
2773In some cases inline asms will contain code that will not work unless
2774the stack is aligned in some way, such as calls or SSE instructions on
2775x86, yet will not contain code that does that alignment within the asm.
2776The compiler should make conservative assumptions about what the asm
2777might contain and should generate its usual stack alignment code in the
2778prologue if the '``alignstack``' keyword is present:
2779
2780.. code-block:: llvm
2781
2782 call void asm alignstack "eieio", ""()
2783
2784Inline asms also support using non-standard assembly dialects. The
2785assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2786the inline asm is using the Intel dialect. Currently, ATT and Intel are
2787the only supported dialects. An example is:
2788
2789.. code-block:: llvm
2790
2791 call void asm inteldialect "eieio", ""()
2792
2793If multiple keywords appear the '``sideeffect``' keyword must come
2794first, the '``alignstack``' keyword second and the '``inteldialect``'
2795keyword last.
2796
2797Inline Asm Metadata
2798^^^^^^^^^^^^^^^^^^^
2799
2800The call instructions that wrap inline asm nodes may have a
2801"``!srcloc``" MDNode attached to it that contains a list of constant
2802integers. If present, the code generator will use the integer as the
2803location cookie value when report errors through the ``LLVMContext``
2804error reporting mechanisms. This allows a front-end to correlate backend
2805errors that occur with inline asm back to the source code that produced
2806it. For example:
2807
2808.. code-block:: llvm
2809
2810 call void asm sideeffect "something bad", ""(), !srcloc !42
2811 ...
2812 !42 = !{ i32 1234567 }
2813
2814It is up to the front-end to make sense of the magic numbers it places
2815in the IR. If the MDNode contains multiple constants, the code generator
2816will use the one that corresponds to the line of the asm that the error
2817occurs on.
2818
2819.. _metadata:
2820
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002821Metadata
2822========
Sean Silvab084af42012-12-07 10:36:55 +00002823
2824LLVM IR allows metadata to be attached to instructions in the program
2825that can convey extra information about the code to the optimizers and
2826code generator. One example application of metadata is source-level
2827debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002828
2829Metadata does not have a type, and is not a value. If referenced from a
2830``call`` instruction, it uses the ``metadata`` type.
2831
2832All metadata are identified in syntax by a exclamation point ('``!``').
2833
2834Metadata Nodes and Metadata Strings
2835-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00002836
2837A metadata string is a string surrounded by double quotes. It can
2838contain any character by escaping non-printable characters with
2839"``\xx``" where "``xx``" is the two digit hex code. For example:
2840"``!"test\00"``".
2841
2842Metadata nodes are represented with notation similar to structure
2843constants (a comma separated list of elements, surrounded by braces and
2844preceded by an exclamation point). Metadata nodes can have any values as
2845their operand. For example:
2846
2847.. code-block:: llvm
2848
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002849 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00002850
2851A :ref:`named metadata <namedmetadatastructure>` is a collection of
2852metadata nodes, which can be looked up in the module symbol table. For
2853example:
2854
2855.. code-block:: llvm
2856
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002857 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00002858
2859Metadata can be used as function arguments. Here ``llvm.dbg.value``
2860function is using two metadata arguments:
2861
2862.. code-block:: llvm
2863
2864 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2865
2866Metadata can be attached with an instruction. Here metadata ``!21`` is
2867attached to the ``add`` instruction using the ``!dbg`` identifier:
2868
2869.. code-block:: llvm
2870
2871 %indvar.next = add i64 %indvar, 1, !dbg !21
2872
2873More information about specific metadata nodes recognized by the
2874optimizers and code generator is found below.
2875
2876'``tbaa``' Metadata
2877^^^^^^^^^^^^^^^^^^^
2878
2879In LLVM IR, memory does not have types, so LLVM's own type system is not
2880suitable for doing TBAA. Instead, metadata is added to the IR to
2881describe a type system of a higher level language. This can be used to
2882implement typical C/C++ TBAA, but it can also be used to implement
2883custom alias analysis behavior for other languages.
2884
2885The current metadata format is very simple. TBAA metadata nodes have up
2886to three fields, e.g.:
2887
2888.. code-block:: llvm
2889
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002890 !0 = !{ !"an example type tree" }
2891 !1 = !{ !"int", !0 }
2892 !2 = !{ !"float", !0 }
2893 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00002894
2895The first field is an identity field. It can be any value, usually a
2896metadata string, which uniquely identifies the type. The most important
2897name in the tree is the name of the root node. Two trees with different
2898root node names are entirely disjoint, even if they have leaves with
2899common names.
2900
2901The second field identifies the type's parent node in the tree, or is
2902null or omitted for a root node. A type is considered to alias all of
2903its descendants and all of its ancestors in the tree. Also, a type is
2904considered to alias all types in other trees, so that bitcode produced
2905from multiple front-ends is handled conservatively.
2906
2907If the third field is present, it's an integer which if equal to 1
2908indicates that the type is "constant" (meaning
2909``pointsToConstantMemory`` should return true; see `other useful
2910AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2911
2912'``tbaa.struct``' Metadata
2913^^^^^^^^^^^^^^^^^^^^^^^^^^
2914
2915The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2916aggregate assignment operations in C and similar languages, however it
2917is defined to copy a contiguous region of memory, which is more than
2918strictly necessary for aggregate types which contain holes due to
2919padding. Also, it doesn't contain any TBAA information about the fields
2920of the aggregate.
2921
2922``!tbaa.struct`` metadata can describe which memory subregions in a
2923memcpy are padding and what the TBAA tags of the struct are.
2924
2925The current metadata format is very simple. ``!tbaa.struct`` metadata
2926nodes are a list of operands which are in conceptual groups of three.
2927For each group of three, the first operand gives the byte offset of a
2928field in bytes, the second gives its size in bytes, and the third gives
2929its tbaa tag. e.g.:
2930
2931.. code-block:: llvm
2932
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002933 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00002934
2935This describes a struct with two fields. The first is at offset 0 bytes
2936with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2937and has size 4 bytes and has tbaa tag !2.
2938
2939Note that the fields need not be contiguous. In this example, there is a
29404 byte gap between the two fields. This gap represents padding which
2941does not carry useful data and need not be preserved.
2942
Hal Finkel94146652014-07-24 14:25:39 +00002943'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00002944^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00002945
2946``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
2947noalias memory-access sets. This means that some collection of memory access
2948instructions (loads, stores, memory-accessing calls, etc.) that carry
2949``noalias`` metadata can specifically be specified not to alias with some other
2950collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00002951Each type of metadata specifies a list of scopes where each scope has an id and
2952a domain. When evaluating an aliasing query, if for some some domain, the set
2953of scopes with that domain in one instruction's ``alias.scope`` list is a
2954subset of (or qual to) the set of scopes for that domain in another
2955instruction's ``noalias`` list, then the two memory accesses are assumed not to
2956alias.
Hal Finkel94146652014-07-24 14:25:39 +00002957
Hal Finkel029cde62014-07-25 15:50:02 +00002958The metadata identifying each domain is itself a list containing one or two
2959entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00002960string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00002961self-reference can be used to create globally unique domain names. A
2962descriptive string may optionally be provided as a second list entry.
2963
2964The metadata identifying each scope is also itself a list containing two or
2965three entries. The first entry is the name of the scope. Note that if the name
2966is a string then it can be combined accross functions and translation units. A
2967self-reference can be used to create globally unique scope names. A metadata
2968reference to the scope's domain is the second entry. A descriptive string may
2969optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00002970
2971For example,
2972
2973.. code-block:: llvm
2974
Hal Finkel029cde62014-07-25 15:50:02 +00002975 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002976 !0 = !{!0}
2977 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00002978
Hal Finkel029cde62014-07-25 15:50:02 +00002979 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002980 !2 = !{!2, !0}
2981 !3 = !{!3, !0}
2982 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00002983
Hal Finkel029cde62014-07-25 15:50:02 +00002984 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002985 !5 = !{!4} ; A list containing only scope !4
2986 !6 = !{!4, !3, !2}
2987 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00002988
2989 ; These two instructions don't alias:
Hal Finkel029cde62014-07-25 15:50:02 +00002990 %0 = load float* %c, align 4, !alias.scope !5
2991 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00002992
Hal Finkel029cde62014-07-25 15:50:02 +00002993 ; These two instructions also don't alias (for domain !1, the set of scopes
2994 ; in the !alias.scope equals that in the !noalias list):
2995 %2 = load float* %c, align 4, !alias.scope !5
2996 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00002997
Hal Finkel029cde62014-07-25 15:50:02 +00002998 ; These two instructions don't alias (for domain !0, the set of scopes in
2999 ; the !noalias list is not a superset of, or equal to, the scopes in the
3000 ; !alias.scope list):
3001 %2 = load float* %c, align 4, !alias.scope !6
3002 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00003003
Sean Silvab084af42012-12-07 10:36:55 +00003004'``fpmath``' Metadata
3005^^^^^^^^^^^^^^^^^^^^^
3006
3007``fpmath`` metadata may be attached to any instruction of floating point
3008type. It can be used to express the maximum acceptable error in the
3009result of that instruction, in ULPs, thus potentially allowing the
3010compiler to use a more efficient but less accurate method of computing
3011it. ULP is defined as follows:
3012
3013 If ``x`` is a real number that lies between two finite consecutive
3014 floating-point numbers ``a`` and ``b``, without being equal to one
3015 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
3016 distance between the two non-equal finite floating-point numbers
3017 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
3018
3019The metadata node shall consist of a single positive floating point
3020number representing the maximum relative error, for example:
3021
3022.. code-block:: llvm
3023
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003024 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00003025
3026'``range``' Metadata
3027^^^^^^^^^^^^^^^^^^^^
3028
Jingyue Wu37fcb592014-06-19 16:50:16 +00003029``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
3030integer types. It expresses the possible ranges the loaded value or the value
3031returned by the called function at this call site is in. The ranges are
3032represented with a flattened list of integers. The loaded value or the value
3033returned is known to be in the union of the ranges defined by each consecutive
3034pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00003035
3036- The type must match the type loaded by the instruction.
3037- The pair ``a,b`` represents the range ``[a,b)``.
3038- Both ``a`` and ``b`` are constants.
3039- The range is allowed to wrap.
3040- The range should not represent the full or empty set. That is,
3041 ``a!=b``.
3042
3043In addition, the pairs must be in signed order of the lower bound and
3044they must be non-contiguous.
3045
3046Examples:
3047
3048.. code-block:: llvm
3049
3050 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
3051 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00003052 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
3053 %d = invoke i8 @bar() to label %cont
3054 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00003055 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003056 !0 = !{ i8 0, i8 2 }
3057 !1 = !{ i8 255, i8 2 }
3058 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
3059 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00003060
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003061'``llvm.loop``'
3062^^^^^^^^^^^^^^^
3063
3064It is sometimes useful to attach information to loop constructs. Currently,
3065loop metadata is implemented as metadata attached to the branch instruction
3066in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00003067guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00003068specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003069
3070The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00003071itself to avoid merging it with any other identifier metadata, e.g.,
3072during module linkage or function inlining. That is, each loop should refer
3073to their own identification metadata even if they reside in separate functions.
3074The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003075constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003076
3077.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00003078
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003079 !0 = !{!0}
3080 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003081
Mark Heffernan893752a2014-07-18 19:24:51 +00003082The loop identifier metadata can be used to specify additional
3083per-loop metadata. Any operands after the first operand can be treated
3084as user-defined metadata. For example the ``llvm.loop.unroll.count``
3085suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003086
Paul Redmond5fdf8362013-05-28 20:00:34 +00003087.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003088
Paul Redmond5fdf8362013-05-28 20:00:34 +00003089 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
3090 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003091 !0 = !{!0, !1}
3092 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003093
Mark Heffernan9d20e422014-07-21 23:11:03 +00003094'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
3095^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00003096
Mark Heffernan9d20e422014-07-21 23:11:03 +00003097Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
3098used to control per-loop vectorization and interleaving parameters such as
3099vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00003100conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00003101``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
3102optimization hints and the optimizer will only interleave and vectorize loops if
3103it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
3104which contains information about loop-carried memory dependencies can be helpful
3105in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00003106
Mark Heffernan9d20e422014-07-21 23:11:03 +00003107'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00003108^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3109
Mark Heffernan9d20e422014-07-21 23:11:03 +00003110This metadata suggests an interleave count to the loop interleaver.
3111The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00003112second operand is an integer specifying the interleave count. For
3113example:
3114
3115.. code-block:: llvm
3116
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003117 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003118
Mark Heffernan9d20e422014-07-21 23:11:03 +00003119Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3120multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
3121then the interleave count will be determined automatically.
3122
3123'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00003124^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00003125
3126This metadata selectively enables or disables vectorization for the loop. The
3127first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3128is a bit. If the bit operand value is 1 vectorization is enabled. A value of
31290 disables vectorization:
3130
3131.. code-block:: llvm
3132
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003133 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
3134 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00003135
3136'``llvm.loop.vectorize.width``' Metadata
3137^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3138
3139This metadata sets the target width of the vectorizer. The first
3140operand is the string ``llvm.loop.vectorize.width`` and the second
3141operand is an integer specifying the width. For example:
3142
3143.. code-block:: llvm
3144
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003145 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003146
3147Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3148vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
31490 or if the loop does not have this metadata the width will be
3150determined automatically.
3151
3152'``llvm.loop.unroll``'
3153^^^^^^^^^^^^^^^^^^^^^^
3154
3155Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3156optimization hints such as the unroll factor. ``llvm.loop.unroll``
3157metadata should be used in conjunction with ``llvm.loop`` loop
3158identification metadata. The ``llvm.loop.unroll`` metadata are only
3159optimization hints and the unrolling will only be performed if the
3160optimizer believes it is safe to do so.
3161
Mark Heffernan893752a2014-07-18 19:24:51 +00003162'``llvm.loop.unroll.count``' Metadata
3163^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3164
3165This metadata suggests an unroll factor to the loop unroller. The
3166first operand is the string ``llvm.loop.unroll.count`` and the second
3167operand is a positive integer specifying the unroll factor. For
3168example:
3169
3170.. code-block:: llvm
3171
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003172 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003173
3174If the trip count of the loop is less than the unroll count the loop
3175will be partially unrolled.
3176
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003177'``llvm.loop.unroll.disable``' Metadata
3178^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3179
3180This metadata either disables loop unrolling. The metadata has a single operand
3181which is the string ``llvm.loop.unroll.disable``. For example:
3182
3183.. code-block:: llvm
3184
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003185 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003186
3187'``llvm.loop.unroll.full``' Metadata
3188^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3189
3190This metadata either suggests that the loop should be unrolled fully. The
3191metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3192For example:
3193
3194.. code-block:: llvm
3195
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003196 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003197
3198'``llvm.mem``'
3199^^^^^^^^^^^^^^^
3200
3201Metadata types used to annotate memory accesses with information helpful
3202for optimizations are prefixed with ``llvm.mem``.
3203
3204'``llvm.mem.parallel_loop_access``' Metadata
3205^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3206
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003207The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3208or metadata containing a list of loop identifiers for nested loops.
3209The metadata is attached to memory accessing instructions and denotes that
3210no loop carried memory dependence exist between it and other instructions denoted
3211with the same loop identifier.
3212
3213Precisely, given two instructions ``m1`` and ``m2`` that both have the
3214``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3215set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00003216carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003217``L2``.
3218
3219As a special case, if all memory accessing instructions in a loop have
3220``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3221loop has no loop carried memory dependences and is considered to be a parallel
3222loop.
3223
3224Note that if not all memory access instructions have such metadata referring to
3225the loop, then the loop is considered not being trivially parallel. Additional
3226memory dependence analysis is required to make that determination. As a fail
3227safe mechanism, this causes loops that were originally parallel to be considered
3228sequential (if optimization passes that are unaware of the parallel semantics
3229insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003230
3231Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003232both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003233metadata types that refer to the same loop identifier metadata.
3234
3235.. code-block:: llvm
3236
3237 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003238 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003239 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003240 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003241 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003242 ...
3243 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003244
3245 for.end:
3246 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003247 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003248
3249It is also possible to have nested parallel loops. In that case the
3250memory accesses refer to a list of loop identifier metadata nodes instead of
3251the loop identifier metadata node directly:
3252
3253.. code-block:: llvm
3254
3255 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003256 ...
3257 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
3258 ...
3259 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003260
3261 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003262 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003263 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003264 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003265 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003266 ...
3267 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003268
3269 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003270 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003271 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003272 ...
3273 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003274
3275 outer.for.end: ; preds = %for.body
3276 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003277 !0 = !{!1, !2} ; a list of loop identifiers
3278 !1 = !{!1} ; an identifier for the inner loop
3279 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003280
Sean Silvab084af42012-12-07 10:36:55 +00003281Module Flags Metadata
3282=====================
3283
3284Information about the module as a whole is difficult to convey to LLVM's
3285subsystems. The LLVM IR isn't sufficient to transmit this information.
3286The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003287this. These flags are in the form of key / value pairs --- much like a
3288dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003289look it up.
3290
3291The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3292Each triplet has the following form:
3293
3294- The first element is a *behavior* flag, which specifies the behavior
3295 when two (or more) modules are merged together, and it encounters two
3296 (or more) metadata with the same ID. The supported behaviors are
3297 described below.
3298- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003299 metadata. Each module may only have one flag entry for each unique ID (not
3300 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003301- The third element is the value of the flag.
3302
3303When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003304``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3305each unique metadata ID string, there will be exactly one entry in the merged
3306modules ``llvm.module.flags`` metadata table, and the value for that entry will
3307be determined by the merge behavior flag, as described below. The only exception
3308is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003309
3310The following behaviors are supported:
3311
3312.. list-table::
3313 :header-rows: 1
3314 :widths: 10 90
3315
3316 * - Value
3317 - Behavior
3318
3319 * - 1
3320 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003321 Emits an error if two values disagree, otherwise the resulting value
3322 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003323
3324 * - 2
3325 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003326 Emits a warning if two values disagree. The result value will be the
3327 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003328
3329 * - 3
3330 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003331 Adds a requirement that another module flag be present and have a
3332 specified value after linking is performed. The value must be a
3333 metadata pair, where the first element of the pair is the ID of the
3334 module flag to be restricted, and the second element of the pair is
3335 the value the module flag should be restricted to. This behavior can
3336 be used to restrict the allowable results (via triggering of an
3337 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003338
3339 * - 4
3340 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003341 Uses the specified value, regardless of the behavior or value of the
3342 other module. If both modules specify **Override**, but the values
3343 differ, an error will be emitted.
3344
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003345 * - 5
3346 - **Append**
3347 Appends the two values, which are required to be metadata nodes.
3348
3349 * - 6
3350 - **AppendUnique**
3351 Appends the two values, which are required to be metadata
3352 nodes. However, duplicate entries in the second list are dropped
3353 during the append operation.
3354
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003355It is an error for a particular unique flag ID to have multiple behaviors,
3356except in the case of **Require** (which adds restrictions on another metadata
3357value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003358
3359An example of module flags:
3360
3361.. code-block:: llvm
3362
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003363 !0 = !{ i32 1, !"foo", i32 1 }
3364 !1 = !{ i32 4, !"bar", i32 37 }
3365 !2 = !{ i32 2, !"qux", i32 42 }
3366 !3 = !{ i32 3, !"qux",
3367 !{
3368 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00003369 }
3370 }
3371 !llvm.module.flags = !{ !0, !1, !2, !3 }
3372
3373- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3374 if two or more ``!"foo"`` flags are seen is to emit an error if their
3375 values are not equal.
3376
3377- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3378 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003379 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003380
3381- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3382 behavior if two or more ``!"qux"`` flags are seen is to emit a
3383 warning if their values are not equal.
3384
3385- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3386
3387 ::
3388
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003389 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003390
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003391 The behavior is to emit an error if the ``llvm.module.flags`` does not
3392 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3393 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003394
3395Objective-C Garbage Collection Module Flags Metadata
3396----------------------------------------------------
3397
3398On the Mach-O platform, Objective-C stores metadata about garbage
3399collection in a special section called "image info". The metadata
3400consists of a version number and a bitmask specifying what types of
3401garbage collection are supported (if any) by the file. If two or more
3402modules are linked together their garbage collection metadata needs to
3403be merged rather than appended together.
3404
3405The Objective-C garbage collection module flags metadata consists of the
3406following key-value pairs:
3407
3408.. list-table::
3409 :header-rows: 1
3410 :widths: 30 70
3411
3412 * - Key
3413 - Value
3414
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003415 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003416 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003417
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003418 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003419 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003420 always 0.
3421
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003422 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003423 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003424 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3425 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3426 Objective-C ABI version 2.
3427
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003428 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003429 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003430 not. Valid values are 0, for no garbage collection, and 2, for garbage
3431 collection supported.
3432
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003433 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003434 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003435 If present, its value must be 6. This flag requires that the
3436 ``Objective-C Garbage Collection`` flag have the value 2.
3437
3438Some important flag interactions:
3439
3440- If a module with ``Objective-C Garbage Collection`` set to 0 is
3441 merged with a module with ``Objective-C Garbage Collection`` set to
3442 2, then the resulting module has the
3443 ``Objective-C Garbage Collection`` flag set to 0.
3444- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3445 merged with a module with ``Objective-C GC Only`` set to 6.
3446
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003447Automatic Linker Flags Module Flags Metadata
3448--------------------------------------------
3449
3450Some targets support embedding flags to the linker inside individual object
3451files. Typically this is used in conjunction with language extensions which
3452allow source files to explicitly declare the libraries they depend on, and have
3453these automatically be transmitted to the linker via object files.
3454
3455These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003456using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003457to be ``AppendUnique``, and the value for the key is expected to be a metadata
3458node which should be a list of other metadata nodes, each of which should be a
3459list of metadata strings defining linker options.
3460
3461For example, the following metadata section specifies two separate sets of
3462linker options, presumably to link against ``libz`` and the ``Cocoa``
3463framework::
3464
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003465 !0 = !{ i32 6, !"Linker Options",
3466 !{
3467 !{ !"-lz" },
3468 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003469 !llvm.module.flags = !{ !0 }
3470
3471The metadata encoding as lists of lists of options, as opposed to a collapsed
3472list of options, is chosen so that the IR encoding can use multiple option
3473strings to specify e.g., a single library, while still having that specifier be
3474preserved as an atomic element that can be recognized by a target specific
3475assembly writer or object file emitter.
3476
3477Each individual option is required to be either a valid option for the target's
3478linker, or an option that is reserved by the target specific assembly writer or
3479object file emitter. No other aspect of these options is defined by the IR.
3480
Oliver Stannard5dc29342014-06-20 10:08:11 +00003481C type width Module Flags Metadata
3482----------------------------------
3483
3484The ARM backend emits a section into each generated object file describing the
3485options that it was compiled with (in a compiler-independent way) to prevent
3486linking incompatible objects, and to allow automatic library selection. Some
3487of these options are not visible at the IR level, namely wchar_t width and enum
3488width.
3489
3490To pass this information to the backend, these options are encoded in module
3491flags metadata, using the following key-value pairs:
3492
3493.. list-table::
3494 :header-rows: 1
3495 :widths: 30 70
3496
3497 * - Key
3498 - Value
3499
3500 * - short_wchar
3501 - * 0 --- sizeof(wchar_t) == 4
3502 * 1 --- sizeof(wchar_t) == 2
3503
3504 * - short_enum
3505 - * 0 --- Enums are at least as large as an ``int``.
3506 * 1 --- Enums are stored in the smallest integer type which can
3507 represent all of its values.
3508
3509For example, the following metadata section specifies that the module was
3510compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3511enum is the smallest type which can represent all of its values::
3512
3513 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003514 !0 = !{i32 1, !"short_wchar", i32 1}
3515 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00003516
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003517.. _intrinsicglobalvariables:
3518
Sean Silvab084af42012-12-07 10:36:55 +00003519Intrinsic Global Variables
3520==========================
3521
3522LLVM has a number of "magic" global variables that contain data that
3523affect code generation or other IR semantics. These are documented here.
3524All globals of this sort should have a section specified as
3525"``llvm.metadata``". This section and all globals that start with
3526"``llvm.``" are reserved for use by LLVM.
3527
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003528.. _gv_llvmused:
3529
Sean Silvab084af42012-12-07 10:36:55 +00003530The '``llvm.used``' Global Variable
3531-----------------------------------
3532
Rafael Espindola74f2e462013-04-22 14:58:02 +00003533The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003534:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003535pointers to named global variables, functions and aliases which may optionally
3536have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003537use of it is:
3538
3539.. code-block:: llvm
3540
3541 @X = global i8 4
3542 @Y = global i32 123
3543
3544 @llvm.used = appending global [2 x i8*] [
3545 i8* @X,
3546 i8* bitcast (i32* @Y to i8*)
3547 ], section "llvm.metadata"
3548
Rafael Espindola74f2e462013-04-22 14:58:02 +00003549If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3550and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003551symbol that it cannot see (which is why they have to be named). For example, if
3552a variable has internal linkage and no references other than that from the
3553``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3554references from inline asms and other things the compiler cannot "see", and
3555corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003556
3557On some targets, the code generator must emit a directive to the
3558assembler or object file to prevent the assembler and linker from
3559molesting the symbol.
3560
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003561.. _gv_llvmcompilerused:
3562
Sean Silvab084af42012-12-07 10:36:55 +00003563The '``llvm.compiler.used``' Global Variable
3564--------------------------------------------
3565
3566The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3567directive, except that it only prevents the compiler from touching the
3568symbol. On targets that support it, this allows an intelligent linker to
3569optimize references to the symbol without being impeded as it would be
3570by ``@llvm.used``.
3571
3572This is a rare construct that should only be used in rare circumstances,
3573and should not be exposed to source languages.
3574
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003575.. _gv_llvmglobalctors:
3576
Sean Silvab084af42012-12-07 10:36:55 +00003577The '``llvm.global_ctors``' Global Variable
3578-------------------------------------------
3579
3580.. code-block:: llvm
3581
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003582 %0 = type { i32, void ()*, i8* }
3583 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003584
3585The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003586functions, priorities, and an optional associated global or function.
3587The functions referenced by this array will be called in ascending order
3588of priority (i.e. lowest first) when the module is loaded. The order of
3589functions with the same priority is not defined.
3590
3591If the third field is present, non-null, and points to a global variable
3592or function, the initializer function will only run if the associated
3593data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003594
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003595.. _llvmglobaldtors:
3596
Sean Silvab084af42012-12-07 10:36:55 +00003597The '``llvm.global_dtors``' Global Variable
3598-------------------------------------------
3599
3600.. code-block:: llvm
3601
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003602 %0 = type { i32, void ()*, i8* }
3603 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003604
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003605The ``@llvm.global_dtors`` array contains a list of destructor
3606functions, priorities, and an optional associated global or function.
3607The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003608order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003609order of functions with the same priority is not defined.
3610
3611If the third field is present, non-null, and points to a global variable
3612or function, the destructor function will only run if the associated
3613data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003614
3615Instruction Reference
3616=====================
3617
3618The LLVM instruction set consists of several different classifications
3619of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3620instructions <binaryops>`, :ref:`bitwise binary
3621instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3622:ref:`other instructions <otherops>`.
3623
3624.. _terminators:
3625
3626Terminator Instructions
3627-----------------------
3628
3629As mentioned :ref:`previously <functionstructure>`, every basic block in a
3630program ends with a "Terminator" instruction, which indicates which
3631block should be executed after the current block is finished. These
3632terminator instructions typically yield a '``void``' value: they produce
3633control flow, not values (the one exception being the
3634':ref:`invoke <i_invoke>`' instruction).
3635
3636The terminator instructions are: ':ref:`ret <i_ret>`',
3637':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3638':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3639':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3640
3641.. _i_ret:
3642
3643'``ret``' Instruction
3644^^^^^^^^^^^^^^^^^^^^^
3645
3646Syntax:
3647"""""""
3648
3649::
3650
3651 ret <type> <value> ; Return a value from a non-void function
3652 ret void ; Return from void function
3653
3654Overview:
3655"""""""""
3656
3657The '``ret``' instruction is used to return control flow (and optionally
3658a value) from a function back to the caller.
3659
3660There are two forms of the '``ret``' instruction: one that returns a
3661value and then causes control flow, and one that just causes control
3662flow to occur.
3663
3664Arguments:
3665""""""""""
3666
3667The '``ret``' instruction optionally accepts a single argument, the
3668return value. The type of the return value must be a ':ref:`first
3669class <t_firstclass>`' type.
3670
3671A function is not :ref:`well formed <wellformed>` if it it has a non-void
3672return type and contains a '``ret``' instruction with no return value or
3673a return value with a type that does not match its type, or if it has a
3674void return type and contains a '``ret``' instruction with a return
3675value.
3676
3677Semantics:
3678""""""""""
3679
3680When the '``ret``' instruction is executed, control flow returns back to
3681the calling function's context. If the caller is a
3682":ref:`call <i_call>`" instruction, execution continues at the
3683instruction after the call. If the caller was an
3684":ref:`invoke <i_invoke>`" instruction, execution continues at the
3685beginning of the "normal" destination block. If the instruction returns
3686a value, that value shall set the call or invoke instruction's return
3687value.
3688
3689Example:
3690""""""""
3691
3692.. code-block:: llvm
3693
3694 ret i32 5 ; Return an integer value of 5
3695 ret void ; Return from a void function
3696 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3697
3698.. _i_br:
3699
3700'``br``' Instruction
3701^^^^^^^^^^^^^^^^^^^^
3702
3703Syntax:
3704"""""""
3705
3706::
3707
3708 br i1 <cond>, label <iftrue>, label <iffalse>
3709 br label <dest> ; Unconditional branch
3710
3711Overview:
3712"""""""""
3713
3714The '``br``' instruction is used to cause control flow to transfer to a
3715different basic block in the current function. There are two forms of
3716this instruction, corresponding to a conditional branch and an
3717unconditional branch.
3718
3719Arguments:
3720""""""""""
3721
3722The conditional branch form of the '``br``' instruction takes a single
3723'``i1``' value and two '``label``' values. The unconditional form of the
3724'``br``' instruction takes a single '``label``' value as a target.
3725
3726Semantics:
3727""""""""""
3728
3729Upon execution of a conditional '``br``' instruction, the '``i1``'
3730argument is evaluated. If the value is ``true``, control flows to the
3731'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3732to the '``iffalse``' ``label`` argument.
3733
3734Example:
3735""""""""
3736
3737.. code-block:: llvm
3738
3739 Test:
3740 %cond = icmp eq i32 %a, %b
3741 br i1 %cond, label %IfEqual, label %IfUnequal
3742 IfEqual:
3743 ret i32 1
3744 IfUnequal:
3745 ret i32 0
3746
3747.. _i_switch:
3748
3749'``switch``' Instruction
3750^^^^^^^^^^^^^^^^^^^^^^^^
3751
3752Syntax:
3753"""""""
3754
3755::
3756
3757 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3758
3759Overview:
3760"""""""""
3761
3762The '``switch``' instruction is used to transfer control flow to one of
3763several different places. It is a generalization of the '``br``'
3764instruction, allowing a branch to occur to one of many possible
3765destinations.
3766
3767Arguments:
3768""""""""""
3769
3770The '``switch``' instruction uses three parameters: an integer
3771comparison value '``value``', a default '``label``' destination, and an
3772array of pairs of comparison value constants and '``label``'s. The table
3773is not allowed to contain duplicate constant entries.
3774
3775Semantics:
3776""""""""""
3777
3778The ``switch`` instruction specifies a table of values and destinations.
3779When the '``switch``' instruction is executed, this table is searched
3780for the given value. If the value is found, control flow is transferred
3781to the corresponding destination; otherwise, control flow is transferred
3782to the default destination.
3783
3784Implementation:
3785"""""""""""""""
3786
3787Depending on properties of the target machine and the particular
3788``switch`` instruction, this instruction may be code generated in
3789different ways. For example, it could be generated as a series of
3790chained conditional branches or with a lookup table.
3791
3792Example:
3793""""""""
3794
3795.. code-block:: llvm
3796
3797 ; Emulate a conditional br instruction
3798 %Val = zext i1 %value to i32
3799 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3800
3801 ; Emulate an unconditional br instruction
3802 switch i32 0, label %dest [ ]
3803
3804 ; Implement a jump table:
3805 switch i32 %val, label %otherwise [ i32 0, label %onzero
3806 i32 1, label %onone
3807 i32 2, label %ontwo ]
3808
3809.. _i_indirectbr:
3810
3811'``indirectbr``' Instruction
3812^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3813
3814Syntax:
3815"""""""
3816
3817::
3818
3819 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3820
3821Overview:
3822"""""""""
3823
3824The '``indirectbr``' instruction implements an indirect branch to a
3825label within the current function, whose address is specified by
3826"``address``". Address must be derived from a
3827:ref:`blockaddress <blockaddress>` constant.
3828
3829Arguments:
3830""""""""""
3831
3832The '``address``' argument is the address of the label to jump to. The
3833rest of the arguments indicate the full set of possible destinations
3834that the address may point to. Blocks are allowed to occur multiple
3835times in the destination list, though this isn't particularly useful.
3836
3837This destination list is required so that dataflow analysis has an
3838accurate understanding of the CFG.
3839
3840Semantics:
3841""""""""""
3842
3843Control transfers to the block specified in the address argument. All
3844possible destination blocks must be listed in the label list, otherwise
3845this instruction has undefined behavior. This implies that jumps to
3846labels defined in other functions have undefined behavior as well.
3847
3848Implementation:
3849"""""""""""""""
3850
3851This is typically implemented with a jump through a register.
3852
3853Example:
3854""""""""
3855
3856.. code-block:: llvm
3857
3858 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3859
3860.. _i_invoke:
3861
3862'``invoke``' Instruction
3863^^^^^^^^^^^^^^^^^^^^^^^^
3864
3865Syntax:
3866"""""""
3867
3868::
3869
3870 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3871 to label <normal label> unwind label <exception label>
3872
3873Overview:
3874"""""""""
3875
3876The '``invoke``' instruction causes control to transfer to a specified
3877function, with the possibility of control flow transfer to either the
3878'``normal``' label or the '``exception``' label. If the callee function
3879returns with the "``ret``" instruction, control flow will return to the
3880"normal" label. If the callee (or any indirect callees) returns via the
3881":ref:`resume <i_resume>`" instruction or other exception handling
3882mechanism, control is interrupted and continued at the dynamically
3883nearest "exception" label.
3884
3885The '``exception``' label is a `landing
3886pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3887'``exception``' label is required to have the
3888":ref:`landingpad <i_landingpad>`" instruction, which contains the
3889information about the behavior of the program after unwinding happens,
3890as its first non-PHI instruction. The restrictions on the
3891"``landingpad``" instruction's tightly couples it to the "``invoke``"
3892instruction, so that the important information contained within the
3893"``landingpad``" instruction can't be lost through normal code motion.
3894
3895Arguments:
3896""""""""""
3897
3898This instruction requires several arguments:
3899
3900#. The optional "cconv" marker indicates which :ref:`calling
3901 convention <callingconv>` the call should use. If none is
3902 specified, the call defaults to using C calling conventions.
3903#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3904 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3905 are valid here.
3906#. '``ptr to function ty``': shall be the signature of the pointer to
3907 function value being invoked. In most cases, this is a direct
3908 function invocation, but indirect ``invoke``'s are just as possible,
3909 branching off an arbitrary pointer to function value.
3910#. '``function ptr val``': An LLVM value containing a pointer to a
3911 function to be invoked.
3912#. '``function args``': argument list whose types match the function
3913 signature argument types and parameter attributes. All arguments must
3914 be of :ref:`first class <t_firstclass>` type. If the function signature
3915 indicates the function accepts a variable number of arguments, the
3916 extra arguments can be specified.
3917#. '``normal label``': the label reached when the called function
3918 executes a '``ret``' instruction.
3919#. '``exception label``': the label reached when a callee returns via
3920 the :ref:`resume <i_resume>` instruction or other exception handling
3921 mechanism.
3922#. The optional :ref:`function attributes <fnattrs>` list. Only
3923 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3924 attributes are valid here.
3925
3926Semantics:
3927""""""""""
3928
3929This instruction is designed to operate as a standard '``call``'
3930instruction in most regards. The primary difference is that it
3931establishes an association with a label, which is used by the runtime
3932library to unwind the stack.
3933
3934This instruction is used in languages with destructors to ensure that
3935proper cleanup is performed in the case of either a ``longjmp`` or a
3936thrown exception. Additionally, this is important for implementation of
3937'``catch``' clauses in high-level languages that support them.
3938
3939For the purposes of the SSA form, the definition of the value returned
3940by the '``invoke``' instruction is deemed to occur on the edge from the
3941current block to the "normal" label. If the callee unwinds then no
3942return value is available.
3943
3944Example:
3945""""""""
3946
3947.. code-block:: llvm
3948
3949 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003950 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003951 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003952 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003953
3954.. _i_resume:
3955
3956'``resume``' Instruction
3957^^^^^^^^^^^^^^^^^^^^^^^^
3958
3959Syntax:
3960"""""""
3961
3962::
3963
3964 resume <type> <value>
3965
3966Overview:
3967"""""""""
3968
3969The '``resume``' instruction is a terminator instruction that has no
3970successors.
3971
3972Arguments:
3973""""""""""
3974
3975The '``resume``' instruction requires one argument, which must have the
3976same type as the result of any '``landingpad``' instruction in the same
3977function.
3978
3979Semantics:
3980""""""""""
3981
3982The '``resume``' instruction resumes propagation of an existing
3983(in-flight) exception whose unwinding was interrupted with a
3984:ref:`landingpad <i_landingpad>` instruction.
3985
3986Example:
3987""""""""
3988
3989.. code-block:: llvm
3990
3991 resume { i8*, i32 } %exn
3992
3993.. _i_unreachable:
3994
3995'``unreachable``' Instruction
3996^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3997
3998Syntax:
3999"""""""
4000
4001::
4002
4003 unreachable
4004
4005Overview:
4006"""""""""
4007
4008The '``unreachable``' instruction has no defined semantics. This
4009instruction is used to inform the optimizer that a particular portion of
4010the code is not reachable. This can be used to indicate that the code
4011after a no-return function cannot be reached, and other facts.
4012
4013Semantics:
4014""""""""""
4015
4016The '``unreachable``' instruction has no defined semantics.
4017
4018.. _binaryops:
4019
4020Binary Operations
4021-----------------
4022
4023Binary operators are used to do most of the computation in a program.
4024They require two operands of the same type, execute an operation on
4025them, and produce a single value. The operands might represent multiple
4026data, as is the case with the :ref:`vector <t_vector>` data type. The
4027result value has the same type as its operands.
4028
4029There are several different binary operators:
4030
4031.. _i_add:
4032
4033'``add``' Instruction
4034^^^^^^^^^^^^^^^^^^^^^
4035
4036Syntax:
4037"""""""
4038
4039::
4040
Tim Northover675a0962014-06-13 14:24:23 +00004041 <result> = add <ty> <op1>, <op2> ; yields ty:result
4042 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
4043 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
4044 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004045
4046Overview:
4047"""""""""
4048
4049The '``add``' instruction returns the sum of its two operands.
4050
4051Arguments:
4052""""""""""
4053
4054The two arguments to the '``add``' instruction must be
4055:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4056arguments must have identical types.
4057
4058Semantics:
4059""""""""""
4060
4061The value produced is the integer sum of the two operands.
4062
4063If the sum has unsigned overflow, the result returned is the
4064mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4065the result.
4066
4067Because LLVM integers use a two's complement representation, this
4068instruction is appropriate for both signed and unsigned integers.
4069
4070``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4071respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4072result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
4073unsigned and/or signed overflow, respectively, occurs.
4074
4075Example:
4076""""""""
4077
4078.. code-block:: llvm
4079
Tim Northover675a0962014-06-13 14:24:23 +00004080 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004081
4082.. _i_fadd:
4083
4084'``fadd``' Instruction
4085^^^^^^^^^^^^^^^^^^^^^^
4086
4087Syntax:
4088"""""""
4089
4090::
4091
Tim Northover675a0962014-06-13 14:24:23 +00004092 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004093
4094Overview:
4095"""""""""
4096
4097The '``fadd``' instruction returns the sum of its two operands.
4098
4099Arguments:
4100""""""""""
4101
4102The two arguments to the '``fadd``' instruction must be :ref:`floating
4103point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4104Both arguments must have identical types.
4105
4106Semantics:
4107""""""""""
4108
4109The value produced is the floating point sum of the two operands. This
4110instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4111which are optimization hints to enable otherwise unsafe floating point
4112optimizations:
4113
4114Example:
4115""""""""
4116
4117.. code-block:: llvm
4118
Tim Northover675a0962014-06-13 14:24:23 +00004119 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004120
4121'``sub``' Instruction
4122^^^^^^^^^^^^^^^^^^^^^
4123
4124Syntax:
4125"""""""
4126
4127::
4128
Tim Northover675a0962014-06-13 14:24:23 +00004129 <result> = sub <ty> <op1>, <op2> ; yields ty:result
4130 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
4131 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
4132 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004133
4134Overview:
4135"""""""""
4136
4137The '``sub``' instruction returns the difference of its two operands.
4138
4139Note that the '``sub``' instruction is used to represent the '``neg``'
4140instruction present in most other intermediate representations.
4141
4142Arguments:
4143""""""""""
4144
4145The two arguments to the '``sub``' instruction must be
4146:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4147arguments must have identical types.
4148
4149Semantics:
4150""""""""""
4151
4152The value produced is the integer difference of the two operands.
4153
4154If the difference has unsigned overflow, the result returned is the
4155mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4156the result.
4157
4158Because LLVM integers use a two's complement representation, this
4159instruction is appropriate for both signed and unsigned integers.
4160
4161``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4162respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4163result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4164unsigned and/or signed overflow, respectively, occurs.
4165
4166Example:
4167""""""""
4168
4169.. code-block:: llvm
4170
Tim Northover675a0962014-06-13 14:24:23 +00004171 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
4172 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004173
4174.. _i_fsub:
4175
4176'``fsub``' Instruction
4177^^^^^^^^^^^^^^^^^^^^^^
4178
4179Syntax:
4180"""""""
4181
4182::
4183
Tim Northover675a0962014-06-13 14:24:23 +00004184 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004185
4186Overview:
4187"""""""""
4188
4189The '``fsub``' instruction returns the difference of its two operands.
4190
4191Note that the '``fsub``' instruction is used to represent the '``fneg``'
4192instruction present in most other intermediate representations.
4193
4194Arguments:
4195""""""""""
4196
4197The two arguments to the '``fsub``' instruction must be :ref:`floating
4198point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4199Both arguments must have identical types.
4200
4201Semantics:
4202""""""""""
4203
4204The value produced is the floating point difference of the two operands.
4205This instruction can also take any number of :ref:`fast-math
4206flags <fastmath>`, which are optimization hints to enable otherwise
4207unsafe floating point optimizations:
4208
4209Example:
4210""""""""
4211
4212.. code-block:: llvm
4213
Tim Northover675a0962014-06-13 14:24:23 +00004214 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4215 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004216
4217'``mul``' Instruction
4218^^^^^^^^^^^^^^^^^^^^^
4219
4220Syntax:
4221"""""""
4222
4223::
4224
Tim Northover675a0962014-06-13 14:24:23 +00004225 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4226 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4227 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4228 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004229
4230Overview:
4231"""""""""
4232
4233The '``mul``' instruction returns the product of its two operands.
4234
4235Arguments:
4236""""""""""
4237
4238The two arguments to the '``mul``' instruction must be
4239:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4240arguments must have identical types.
4241
4242Semantics:
4243""""""""""
4244
4245The value produced is the integer product of the two operands.
4246
4247If the result of the multiplication has unsigned overflow, the result
4248returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4249bit width of the result.
4250
4251Because LLVM integers use a two's complement representation, and the
4252result is the same width as the operands, this instruction returns the
4253correct result for both signed and unsigned integers. If a full product
4254(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4255sign-extended or zero-extended as appropriate to the width of the full
4256product.
4257
4258``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4259respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4260result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4261unsigned and/or signed overflow, respectively, occurs.
4262
4263Example:
4264""""""""
4265
4266.. code-block:: llvm
4267
Tim Northover675a0962014-06-13 14:24:23 +00004268 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004269
4270.. _i_fmul:
4271
4272'``fmul``' Instruction
4273^^^^^^^^^^^^^^^^^^^^^^
4274
4275Syntax:
4276"""""""
4277
4278::
4279
Tim Northover675a0962014-06-13 14:24:23 +00004280 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004281
4282Overview:
4283"""""""""
4284
4285The '``fmul``' instruction returns the product of its two operands.
4286
4287Arguments:
4288""""""""""
4289
4290The two arguments to the '``fmul``' instruction must be :ref:`floating
4291point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4292Both arguments must have identical types.
4293
4294Semantics:
4295""""""""""
4296
4297The value produced is the floating point product of the two operands.
4298This instruction can also take any number of :ref:`fast-math
4299flags <fastmath>`, which are optimization hints to enable otherwise
4300unsafe floating point optimizations:
4301
4302Example:
4303""""""""
4304
4305.. code-block:: llvm
4306
Tim Northover675a0962014-06-13 14:24:23 +00004307 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004308
4309'``udiv``' Instruction
4310^^^^^^^^^^^^^^^^^^^^^^
4311
4312Syntax:
4313"""""""
4314
4315::
4316
Tim Northover675a0962014-06-13 14:24:23 +00004317 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4318 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004319
4320Overview:
4321"""""""""
4322
4323The '``udiv``' instruction returns the quotient of its two operands.
4324
4325Arguments:
4326""""""""""
4327
4328The two arguments to the '``udiv``' instruction must be
4329:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4330arguments must have identical types.
4331
4332Semantics:
4333""""""""""
4334
4335The value produced is the unsigned integer quotient of the two operands.
4336
4337Note that unsigned integer division and signed integer division are
4338distinct operations; for signed integer division, use '``sdiv``'.
4339
4340Division by zero leads to undefined behavior.
4341
4342If the ``exact`` keyword is present, the result value of the ``udiv`` is
4343a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4344such, "((a udiv exact b) mul b) == a").
4345
4346Example:
4347""""""""
4348
4349.. code-block:: llvm
4350
Tim Northover675a0962014-06-13 14:24:23 +00004351 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004352
4353'``sdiv``' Instruction
4354^^^^^^^^^^^^^^^^^^^^^^
4355
4356Syntax:
4357"""""""
4358
4359::
4360
Tim Northover675a0962014-06-13 14:24:23 +00004361 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4362 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004363
4364Overview:
4365"""""""""
4366
4367The '``sdiv``' instruction returns the quotient of its two operands.
4368
4369Arguments:
4370""""""""""
4371
4372The two arguments to the '``sdiv``' instruction must be
4373:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4374arguments must have identical types.
4375
4376Semantics:
4377""""""""""
4378
4379The value produced is the signed integer quotient of the two operands
4380rounded towards zero.
4381
4382Note that signed integer division and unsigned integer division are
4383distinct operations; for unsigned integer division, use '``udiv``'.
4384
4385Division by zero leads to undefined behavior. Overflow also leads to
4386undefined behavior; this is a rare case, but can occur, for example, by
4387doing a 32-bit division of -2147483648 by -1.
4388
4389If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4390a :ref:`poison value <poisonvalues>` if the result would be rounded.
4391
4392Example:
4393""""""""
4394
4395.. code-block:: llvm
4396
Tim Northover675a0962014-06-13 14:24:23 +00004397 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004398
4399.. _i_fdiv:
4400
4401'``fdiv``' Instruction
4402^^^^^^^^^^^^^^^^^^^^^^
4403
4404Syntax:
4405"""""""
4406
4407::
4408
Tim Northover675a0962014-06-13 14:24:23 +00004409 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004410
4411Overview:
4412"""""""""
4413
4414The '``fdiv``' instruction returns the quotient of its two operands.
4415
4416Arguments:
4417""""""""""
4418
4419The two arguments to the '``fdiv``' instruction must be :ref:`floating
4420point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4421Both arguments must have identical types.
4422
4423Semantics:
4424""""""""""
4425
4426The value produced is the floating point quotient of the two operands.
4427This instruction can also take any number of :ref:`fast-math
4428flags <fastmath>`, which are optimization hints to enable otherwise
4429unsafe floating point optimizations:
4430
4431Example:
4432""""""""
4433
4434.. code-block:: llvm
4435
Tim Northover675a0962014-06-13 14:24:23 +00004436 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004437
4438'``urem``' Instruction
4439^^^^^^^^^^^^^^^^^^^^^^
4440
4441Syntax:
4442"""""""
4443
4444::
4445
Tim Northover675a0962014-06-13 14:24:23 +00004446 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004447
4448Overview:
4449"""""""""
4450
4451The '``urem``' instruction returns the remainder from the unsigned
4452division of its two arguments.
4453
4454Arguments:
4455""""""""""
4456
4457The two arguments to the '``urem``' instruction must be
4458:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4459arguments must have identical types.
4460
4461Semantics:
4462""""""""""
4463
4464This instruction returns the unsigned integer *remainder* of a division.
4465This instruction always performs an unsigned division to get the
4466remainder.
4467
4468Note that unsigned integer remainder and signed integer remainder are
4469distinct operations; for signed integer remainder, use '``srem``'.
4470
4471Taking the remainder of a division by zero leads to undefined behavior.
4472
4473Example:
4474""""""""
4475
4476.. code-block:: llvm
4477
Tim Northover675a0962014-06-13 14:24:23 +00004478 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004479
4480'``srem``' Instruction
4481^^^^^^^^^^^^^^^^^^^^^^
4482
4483Syntax:
4484"""""""
4485
4486::
4487
Tim Northover675a0962014-06-13 14:24:23 +00004488 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004489
4490Overview:
4491"""""""""
4492
4493The '``srem``' instruction returns the remainder from the signed
4494division of its two operands. This instruction can also take
4495:ref:`vector <t_vector>` versions of the values in which case the elements
4496must be integers.
4497
4498Arguments:
4499""""""""""
4500
4501The two arguments to the '``srem``' instruction must be
4502:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4503arguments must have identical types.
4504
4505Semantics:
4506""""""""""
4507
4508This instruction returns the *remainder* of a division (where the result
4509is either zero or has the same sign as the dividend, ``op1``), not the
4510*modulo* operator (where the result is either zero or has the same sign
4511as the divisor, ``op2``) of a value. For more information about the
4512difference, see `The Math
4513Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4514table of how this is implemented in various languages, please see
4515`Wikipedia: modulo
4516operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4517
4518Note that signed integer remainder and unsigned integer remainder are
4519distinct operations; for unsigned integer remainder, use '``urem``'.
4520
4521Taking the remainder of a division by zero leads to undefined behavior.
4522Overflow also leads to undefined behavior; this is a rare case, but can
4523occur, for example, by taking the remainder of a 32-bit division of
4524-2147483648 by -1. (The remainder doesn't actually overflow, but this
4525rule lets srem be implemented using instructions that return both the
4526result of the division and the remainder.)
4527
4528Example:
4529""""""""
4530
4531.. code-block:: llvm
4532
Tim Northover675a0962014-06-13 14:24:23 +00004533 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004534
4535.. _i_frem:
4536
4537'``frem``' Instruction
4538^^^^^^^^^^^^^^^^^^^^^^
4539
4540Syntax:
4541"""""""
4542
4543::
4544
Tim Northover675a0962014-06-13 14:24:23 +00004545 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004546
4547Overview:
4548"""""""""
4549
4550The '``frem``' instruction returns the remainder from the division of
4551its two operands.
4552
4553Arguments:
4554""""""""""
4555
4556The two arguments to the '``frem``' instruction must be :ref:`floating
4557point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4558Both arguments must have identical types.
4559
4560Semantics:
4561""""""""""
4562
4563This instruction returns the *remainder* of a division. The remainder
4564has the same sign as the dividend. This instruction can also take any
4565number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4566to enable otherwise unsafe floating point optimizations:
4567
4568Example:
4569""""""""
4570
4571.. code-block:: llvm
4572
Tim Northover675a0962014-06-13 14:24:23 +00004573 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004574
4575.. _bitwiseops:
4576
4577Bitwise Binary Operations
4578-------------------------
4579
4580Bitwise binary operators are used to do various forms of bit-twiddling
4581in a program. They are generally very efficient instructions and can
4582commonly be strength reduced from other instructions. They require two
4583operands of the same type, execute an operation on them, and produce a
4584single value. The resulting value is the same type as its operands.
4585
4586'``shl``' Instruction
4587^^^^^^^^^^^^^^^^^^^^^
4588
4589Syntax:
4590"""""""
4591
4592::
4593
Tim Northover675a0962014-06-13 14:24:23 +00004594 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4595 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4596 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4597 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004598
4599Overview:
4600"""""""""
4601
4602The '``shl``' instruction returns the first operand shifted to the left
4603a specified number of bits.
4604
4605Arguments:
4606""""""""""
4607
4608Both arguments to the '``shl``' instruction must be the same
4609:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4610'``op2``' is treated as an unsigned value.
4611
4612Semantics:
4613""""""""""
4614
4615The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4616where ``n`` is the width of the result. If ``op2`` is (statically or
4617dynamically) negative or equal to or larger than the number of bits in
4618``op1``, the result is undefined. If the arguments are vectors, each
4619vector element of ``op1`` is shifted by the corresponding shift amount
4620in ``op2``.
4621
4622If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4623value <poisonvalues>` if it shifts out any non-zero bits. If the
4624``nsw`` keyword is present, then the shift produces a :ref:`poison
4625value <poisonvalues>` if it shifts out any bits that disagree with the
4626resultant sign bit. As such, NUW/NSW have the same semantics as they
4627would if the shift were expressed as a mul instruction with the same
4628nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4629
4630Example:
4631""""""""
4632
4633.. code-block:: llvm
4634
Tim Northover675a0962014-06-13 14:24:23 +00004635 <result> = shl i32 4, %var ; yields i32: 4 << %var
4636 <result> = shl i32 4, 2 ; yields i32: 16
4637 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004638 <result> = shl i32 1, 32 ; undefined
4639 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4640
4641'``lshr``' Instruction
4642^^^^^^^^^^^^^^^^^^^^^^
4643
4644Syntax:
4645"""""""
4646
4647::
4648
Tim Northover675a0962014-06-13 14:24:23 +00004649 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4650 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004651
4652Overview:
4653"""""""""
4654
4655The '``lshr``' instruction (logical shift right) returns the first
4656operand shifted to the right a specified number of bits with zero fill.
4657
4658Arguments:
4659""""""""""
4660
4661Both arguments to the '``lshr``' instruction must be the same
4662:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4663'``op2``' is treated as an unsigned value.
4664
4665Semantics:
4666""""""""""
4667
4668This instruction always performs a logical shift right operation. The
4669most significant bits of the result will be filled with zero bits after
4670the shift. If ``op2`` is (statically or dynamically) equal to or larger
4671than the number of bits in ``op1``, the result is undefined. If the
4672arguments are vectors, each vector element of ``op1`` is shifted by the
4673corresponding shift amount in ``op2``.
4674
4675If the ``exact`` keyword is present, the result value of the ``lshr`` is
4676a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4677non-zero.
4678
4679Example:
4680""""""""
4681
4682.. code-block:: llvm
4683
Tim Northover675a0962014-06-13 14:24:23 +00004684 <result> = lshr i32 4, 1 ; yields i32:result = 2
4685 <result> = lshr i32 4, 2 ; yields i32:result = 1
4686 <result> = lshr i8 4, 3 ; yields i8:result = 0
4687 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004688 <result> = lshr i32 1, 32 ; undefined
4689 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4690
4691'``ashr``' Instruction
4692^^^^^^^^^^^^^^^^^^^^^^
4693
4694Syntax:
4695"""""""
4696
4697::
4698
Tim Northover675a0962014-06-13 14:24:23 +00004699 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
4700 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004701
4702Overview:
4703"""""""""
4704
4705The '``ashr``' instruction (arithmetic shift right) returns the first
4706operand shifted to the right a specified number of bits with sign
4707extension.
4708
4709Arguments:
4710""""""""""
4711
4712Both arguments to the '``ashr``' instruction must be the same
4713:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4714'``op2``' is treated as an unsigned value.
4715
4716Semantics:
4717""""""""""
4718
4719This instruction always performs an arithmetic shift right operation,
4720The most significant bits of the result will be filled with the sign bit
4721of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4722than the number of bits in ``op1``, the result is undefined. If the
4723arguments are vectors, each vector element of ``op1`` is shifted by the
4724corresponding shift amount in ``op2``.
4725
4726If the ``exact`` keyword is present, the result value of the ``ashr`` is
4727a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4728non-zero.
4729
4730Example:
4731""""""""
4732
4733.. code-block:: llvm
4734
Tim Northover675a0962014-06-13 14:24:23 +00004735 <result> = ashr i32 4, 1 ; yields i32:result = 2
4736 <result> = ashr i32 4, 2 ; yields i32:result = 1
4737 <result> = ashr i8 4, 3 ; yields i8:result = 0
4738 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00004739 <result> = ashr i32 1, 32 ; undefined
4740 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4741
4742'``and``' Instruction
4743^^^^^^^^^^^^^^^^^^^^^
4744
4745Syntax:
4746"""""""
4747
4748::
4749
Tim Northover675a0962014-06-13 14:24:23 +00004750 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004751
4752Overview:
4753"""""""""
4754
4755The '``and``' instruction returns the bitwise logical and of its two
4756operands.
4757
4758Arguments:
4759""""""""""
4760
4761The two arguments to the '``and``' instruction must be
4762:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4763arguments must have identical types.
4764
4765Semantics:
4766""""""""""
4767
4768The truth table used for the '``and``' instruction is:
4769
4770+-----+-----+-----+
4771| In0 | In1 | Out |
4772+-----+-----+-----+
4773| 0 | 0 | 0 |
4774+-----+-----+-----+
4775| 0 | 1 | 0 |
4776+-----+-----+-----+
4777| 1 | 0 | 0 |
4778+-----+-----+-----+
4779| 1 | 1 | 1 |
4780+-----+-----+-----+
4781
4782Example:
4783""""""""
4784
4785.. code-block:: llvm
4786
Tim Northover675a0962014-06-13 14:24:23 +00004787 <result> = and i32 4, %var ; yields i32:result = 4 & %var
4788 <result> = and i32 15, 40 ; yields i32:result = 8
4789 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00004790
4791'``or``' Instruction
4792^^^^^^^^^^^^^^^^^^^^
4793
4794Syntax:
4795"""""""
4796
4797::
4798
Tim Northover675a0962014-06-13 14:24:23 +00004799 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004800
4801Overview:
4802"""""""""
4803
4804The '``or``' instruction returns the bitwise logical inclusive or of its
4805two operands.
4806
4807Arguments:
4808""""""""""
4809
4810The two arguments to the '``or``' instruction must be
4811:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4812arguments must have identical types.
4813
4814Semantics:
4815""""""""""
4816
4817The truth table used for the '``or``' instruction is:
4818
4819+-----+-----+-----+
4820| In0 | In1 | Out |
4821+-----+-----+-----+
4822| 0 | 0 | 0 |
4823+-----+-----+-----+
4824| 0 | 1 | 1 |
4825+-----+-----+-----+
4826| 1 | 0 | 1 |
4827+-----+-----+-----+
4828| 1 | 1 | 1 |
4829+-----+-----+-----+
4830
4831Example:
4832""""""""
4833
4834::
4835
Tim Northover675a0962014-06-13 14:24:23 +00004836 <result> = or i32 4, %var ; yields i32:result = 4 | %var
4837 <result> = or i32 15, 40 ; yields i32:result = 47
4838 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00004839
4840'``xor``' Instruction
4841^^^^^^^^^^^^^^^^^^^^^
4842
4843Syntax:
4844"""""""
4845
4846::
4847
Tim Northover675a0962014-06-13 14:24:23 +00004848 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004849
4850Overview:
4851"""""""""
4852
4853The '``xor``' instruction returns the bitwise logical exclusive or of
4854its two operands. The ``xor`` is used to implement the "one's
4855complement" operation, which is the "~" operator in C.
4856
4857Arguments:
4858""""""""""
4859
4860The two arguments to the '``xor``' instruction must be
4861:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4862arguments must have identical types.
4863
4864Semantics:
4865""""""""""
4866
4867The truth table used for the '``xor``' instruction is:
4868
4869+-----+-----+-----+
4870| In0 | In1 | Out |
4871+-----+-----+-----+
4872| 0 | 0 | 0 |
4873+-----+-----+-----+
4874| 0 | 1 | 1 |
4875+-----+-----+-----+
4876| 1 | 0 | 1 |
4877+-----+-----+-----+
4878| 1 | 1 | 0 |
4879+-----+-----+-----+
4880
4881Example:
4882""""""""
4883
4884.. code-block:: llvm
4885
Tim Northover675a0962014-06-13 14:24:23 +00004886 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
4887 <result> = xor i32 15, 40 ; yields i32:result = 39
4888 <result> = xor i32 4, 8 ; yields i32:result = 12
4889 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00004890
4891Vector Operations
4892-----------------
4893
4894LLVM supports several instructions to represent vector operations in a
4895target-independent manner. These instructions cover the element-access
4896and vector-specific operations needed to process vectors effectively.
4897While LLVM does directly support these vector operations, many
4898sophisticated algorithms will want to use target-specific intrinsics to
4899take full advantage of a specific target.
4900
4901.. _i_extractelement:
4902
4903'``extractelement``' Instruction
4904^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4905
4906Syntax:
4907"""""""
4908
4909::
4910
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004911 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004912
4913Overview:
4914"""""""""
4915
4916The '``extractelement``' instruction extracts a single scalar element
4917from a vector at a specified index.
4918
4919Arguments:
4920""""""""""
4921
4922The first operand of an '``extractelement``' instruction is a value of
4923:ref:`vector <t_vector>` type. The second operand is an index indicating
4924the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004925variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004926
4927Semantics:
4928""""""""""
4929
4930The result is a scalar of the same type as the element type of ``val``.
4931Its value is the value at position ``idx`` of ``val``. If ``idx``
4932exceeds the length of ``val``, the results are undefined.
4933
4934Example:
4935""""""""
4936
4937.. code-block:: llvm
4938
4939 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4940
4941.. _i_insertelement:
4942
4943'``insertelement``' Instruction
4944^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4945
4946Syntax:
4947"""""""
4948
4949::
4950
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004951 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004952
4953Overview:
4954"""""""""
4955
4956The '``insertelement``' instruction inserts a scalar element into a
4957vector at a specified index.
4958
4959Arguments:
4960""""""""""
4961
4962The first operand of an '``insertelement``' instruction is a value of
4963:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4964type must equal the element type of the first operand. The third operand
4965is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004966index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004967
4968Semantics:
4969""""""""""
4970
4971The result is a vector of the same type as ``val``. Its element values
4972are those of ``val`` except at position ``idx``, where it gets the value
4973``elt``. If ``idx`` exceeds the length of ``val``, the results are
4974undefined.
4975
4976Example:
4977""""""""
4978
4979.. code-block:: llvm
4980
4981 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4982
4983.. _i_shufflevector:
4984
4985'``shufflevector``' Instruction
4986^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4987
4988Syntax:
4989"""""""
4990
4991::
4992
4993 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4994
4995Overview:
4996"""""""""
4997
4998The '``shufflevector``' instruction constructs a permutation of elements
4999from two input vectors, returning a vector with the same element type as
5000the input and length that is the same as the shuffle mask.
5001
5002Arguments:
5003""""""""""
5004
5005The first two operands of a '``shufflevector``' instruction are vectors
5006with the same type. The third argument is a shuffle mask whose element
5007type is always 'i32'. The result of the instruction is a vector whose
5008length is the same as the shuffle mask and whose element type is the
5009same as the element type of the first two operands.
5010
5011The shuffle mask operand is required to be a constant vector with either
5012constant integer or undef values.
5013
5014Semantics:
5015""""""""""
5016
5017The elements of the two input vectors are numbered from left to right
5018across both of the vectors. The shuffle mask operand specifies, for each
5019element of the result vector, which element of the two input vectors the
5020result element gets. The element selector may be undef (meaning "don't
5021care") and the second operand may be undef if performing a shuffle from
5022only one vector.
5023
5024Example:
5025""""""""
5026
5027.. code-block:: llvm
5028
5029 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5030 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
5031 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
5032 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
5033 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
5034 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
5035 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5036 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
5037
5038Aggregate Operations
5039--------------------
5040
5041LLVM supports several instructions for working with
5042:ref:`aggregate <t_aggregate>` values.
5043
5044.. _i_extractvalue:
5045
5046'``extractvalue``' Instruction
5047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5048
5049Syntax:
5050"""""""
5051
5052::
5053
5054 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
5055
5056Overview:
5057"""""""""
5058
5059The '``extractvalue``' instruction extracts the value of a member field
5060from an :ref:`aggregate <t_aggregate>` value.
5061
5062Arguments:
5063""""""""""
5064
5065The first operand of an '``extractvalue``' instruction is a value of
5066:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
5067constant indices to specify which value to extract in a similar manner
5068as indices in a '``getelementptr``' instruction.
5069
5070The major differences to ``getelementptr`` indexing are:
5071
5072- Since the value being indexed is not a pointer, the first index is
5073 omitted and assumed to be zero.
5074- At least one index must be specified.
5075- Not only struct indices but also array indices must be in bounds.
5076
5077Semantics:
5078""""""""""
5079
5080The result is the value at the position in the aggregate specified by
5081the index operands.
5082
5083Example:
5084""""""""
5085
5086.. code-block:: llvm
5087
5088 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
5089
5090.. _i_insertvalue:
5091
5092'``insertvalue``' Instruction
5093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5094
5095Syntax:
5096"""""""
5097
5098::
5099
5100 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
5101
5102Overview:
5103"""""""""
5104
5105The '``insertvalue``' instruction inserts a value into a member field in
5106an :ref:`aggregate <t_aggregate>` value.
5107
5108Arguments:
5109""""""""""
5110
5111The first operand of an '``insertvalue``' instruction is a value of
5112:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5113a first-class value to insert. The following operands are constant
5114indices indicating the position at which to insert the value in a
5115similar manner as indices in a '``extractvalue``' instruction. The value
5116to insert must have the same type as the value identified by the
5117indices.
5118
5119Semantics:
5120""""""""""
5121
5122The result is an aggregate of the same type as ``val``. Its value is
5123that of ``val`` except that the value at the position specified by the
5124indices is that of ``elt``.
5125
5126Example:
5127""""""""
5128
5129.. code-block:: llvm
5130
5131 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
5132 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00005133 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00005134
5135.. _memoryops:
5136
5137Memory Access and Addressing Operations
5138---------------------------------------
5139
5140A key design point of an SSA-based representation is how it represents
5141memory. In LLVM, no memory locations are in SSA form, which makes things
5142very simple. This section describes how to read, write, and allocate
5143memory in LLVM.
5144
5145.. _i_alloca:
5146
5147'``alloca``' Instruction
5148^^^^^^^^^^^^^^^^^^^^^^^^
5149
5150Syntax:
5151"""""""
5152
5153::
5154
Tim Northover675a0962014-06-13 14:24:23 +00005155 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00005156
5157Overview:
5158"""""""""
5159
5160The '``alloca``' instruction allocates memory on the stack frame of the
5161currently executing function, to be automatically released when this
5162function returns to its caller. The object is always allocated in the
5163generic address space (address space zero).
5164
5165Arguments:
5166""""""""""
5167
5168The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5169bytes of memory on the runtime stack, returning a pointer of the
5170appropriate type to the program. If "NumElements" is specified, it is
5171the number of elements allocated, otherwise "NumElements" is defaulted
5172to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005173allocation is guaranteed to be aligned to at least that boundary. The
5174alignment may not be greater than ``1 << 29``. If not specified, or if
5175zero, the target can choose to align the allocation on any convenient
5176boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00005177
5178'``type``' may be any sized type.
5179
5180Semantics:
5181""""""""""
5182
5183Memory is allocated; a pointer is returned. The operation is undefined
5184if there is insufficient stack space for the allocation. '``alloca``'d
5185memory is automatically released when the function returns. The
5186'``alloca``' instruction is commonly used to represent automatic
5187variables that must have an address available. When the function returns
5188(either with the ``ret`` or ``resume`` instructions), the memory is
5189reclaimed. Allocating zero bytes is legal, but the result is undefined.
5190The order in which memory is allocated (ie., which way the stack grows)
5191is not specified.
5192
5193Example:
5194""""""""
5195
5196.. code-block:: llvm
5197
Tim Northover675a0962014-06-13 14:24:23 +00005198 %ptr = alloca i32 ; yields i32*:ptr
5199 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5200 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5201 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005202
5203.. _i_load:
5204
5205'``load``' Instruction
5206^^^^^^^^^^^^^^^^^^^^^^
5207
5208Syntax:
5209"""""""
5210
5211::
5212
Philip Reamescdb72f32014-10-20 22:40:55 +00005213 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00005214 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5215 !<index> = !{ i32 1 }
5216
5217Overview:
5218"""""""""
5219
5220The '``load``' instruction is used to read from memory.
5221
5222Arguments:
5223""""""""""
5224
Eli Bendersky239a78b2013-04-17 20:17:08 +00005225The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00005226from which to load. The pointer must point to a :ref:`first
5227class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5228then the optimizer is not allowed to modify the number or order of
5229execution of this ``load`` with other :ref:`volatile
5230operations <volatile>`.
5231
5232If the ``load`` is marked as ``atomic``, it takes an extra
5233:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5234``release`` and ``acq_rel`` orderings are not valid on ``load``
5235instructions. Atomic loads produce :ref:`defined <memmodel>` results
5236when they may see multiple atomic stores. The type of the pointee must
5237be an integer type whose bit width is a power of two greater than or
5238equal to eight and less than or equal to a target-specific size limit.
5239``align`` must be explicitly specified on atomic loads, and the load has
5240undefined behavior if the alignment is not set to a value which is at
5241least the size in bytes of the pointee. ``!nontemporal`` does not have
5242any defined semantics for atomic loads.
5243
5244The optional constant ``align`` argument specifies the alignment of the
5245operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005246or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005247alignment for the target. It is the responsibility of the code emitter
5248to ensure that the alignment information is correct. Overestimating the
5249alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005250may produce less efficient code. An alignment of 1 is always safe. The
5251maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005252
5253The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005254metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005255``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005256metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005257that this load is not expected to be reused in the cache. The code
5258generator may select special instructions to save cache bandwidth, such
5259as the ``MOVNT`` instruction on x86.
5260
5261The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005262metadata name ``<index>`` corresponding to a metadata node with no
5263entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00005264instruction tells the optimizer and code generator that the address
5265operand to this load points to memory which can be assumed unchanged.
5266Being invariant does not imply that a location is dereferenceable,
5267but it does imply that once the location is known dereferenceable
5268its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00005269
Philip Reamescdb72f32014-10-20 22:40:55 +00005270The optional ``!nonnull`` metadata must reference a single
5271metadata name ``<index>`` corresponding to a metadata node with no
5272entries. The existence of the ``!nonnull`` metadata on the
5273instruction tells the optimizer that the value loaded is known to
5274never be null. This is analogous to the ''nonnull'' attribute
5275on parameters and return values. This metadata can only be applied
5276to loads of a pointer type.
5277
Sean Silvab084af42012-12-07 10:36:55 +00005278Semantics:
5279""""""""""
5280
5281The location of memory pointed to is loaded. If the value being loaded
5282is of scalar type then the number of bytes read does not exceed the
5283minimum number of bytes needed to hold all bits of the type. For
5284example, loading an ``i24`` reads at most three bytes. When loading a
5285value of a type like ``i20`` with a size that is not an integral number
5286of bytes, the result is undefined if the value was not originally
5287written using a store of the same type.
5288
5289Examples:
5290"""""""""
5291
5292.. code-block:: llvm
5293
Tim Northover675a0962014-06-13 14:24:23 +00005294 %ptr = alloca i32 ; yields i32*:ptr
5295 store i32 3, i32* %ptr ; yields void
5296 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005297
5298.. _i_store:
5299
5300'``store``' Instruction
5301^^^^^^^^^^^^^^^^^^^^^^^
5302
5303Syntax:
5304"""""""
5305
5306::
5307
Tim Northover675a0962014-06-13 14:24:23 +00005308 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5309 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005310
5311Overview:
5312"""""""""
5313
5314The '``store``' instruction is used to write to memory.
5315
5316Arguments:
5317""""""""""
5318
Eli Benderskyca380842013-04-17 17:17:20 +00005319There are two arguments to the ``store`` instruction: a value to store
5320and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005321operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005322the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005323then the optimizer is not allowed to modify the number or order of
5324execution of this ``store`` with other :ref:`volatile
5325operations <volatile>`.
5326
5327If the ``store`` is marked as ``atomic``, it takes an extra
5328:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5329``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5330instructions. Atomic loads produce :ref:`defined <memmodel>` results
5331when they may see multiple atomic stores. The type of the pointee must
5332be an integer type whose bit width is a power of two greater than or
5333equal to eight and less than or equal to a target-specific size limit.
5334``align`` must be explicitly specified on atomic stores, and the store
5335has undefined behavior if the alignment is not set to a value which is
5336at least the size in bytes of the pointee. ``!nontemporal`` does not
5337have any defined semantics for atomic stores.
5338
Eli Benderskyca380842013-04-17 17:17:20 +00005339The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005340operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005341or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005342alignment for the target. It is the responsibility of the code emitter
5343to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005344alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005345alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005346safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005347
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005348The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005349name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005350value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005351tells the optimizer and code generator that this load is not expected to
5352be reused in the cache. The code generator may select special
5353instructions to save cache bandwidth, such as the MOVNT instruction on
5354x86.
5355
5356Semantics:
5357""""""""""
5358
Eli Benderskyca380842013-04-17 17:17:20 +00005359The contents of memory are updated to contain ``<value>`` at the
5360location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005361of scalar type then the number of bytes written does not exceed the
5362minimum number of bytes needed to hold all bits of the type. For
5363example, storing an ``i24`` writes at most three bytes. When writing a
5364value of a type like ``i20`` with a size that is not an integral number
5365of bytes, it is unspecified what happens to the extra bits that do not
5366belong to the type, but they will typically be overwritten.
5367
5368Example:
5369""""""""
5370
5371.. code-block:: llvm
5372
Tim Northover675a0962014-06-13 14:24:23 +00005373 %ptr = alloca i32 ; yields i32*:ptr
5374 store i32 3, i32* %ptr ; yields void
5375 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005376
5377.. _i_fence:
5378
5379'``fence``' Instruction
5380^^^^^^^^^^^^^^^^^^^^^^^
5381
5382Syntax:
5383"""""""
5384
5385::
5386
Tim Northover675a0962014-06-13 14:24:23 +00005387 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005388
5389Overview:
5390"""""""""
5391
5392The '``fence``' instruction is used to introduce happens-before edges
5393between operations.
5394
5395Arguments:
5396""""""""""
5397
5398'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5399defines what *synchronizes-with* edges they add. They can only be given
5400``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5401
5402Semantics:
5403""""""""""
5404
5405A fence A which has (at least) ``release`` ordering semantics
5406*synchronizes with* a fence B with (at least) ``acquire`` ordering
5407semantics if and only if there exist atomic operations X and Y, both
5408operating on some atomic object M, such that A is sequenced before X, X
5409modifies M (either directly or through some side effect of a sequence
5410headed by X), Y is sequenced before B, and Y observes M. This provides a
5411*happens-before* dependency between A and B. Rather than an explicit
5412``fence``, one (but not both) of the atomic operations X or Y might
5413provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5414still *synchronize-with* the explicit ``fence`` and establish the
5415*happens-before* edge.
5416
5417A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5418``acquire`` and ``release`` semantics specified above, participates in
5419the global program order of other ``seq_cst`` operations and/or fences.
5420
5421The optional ":ref:`singlethread <singlethread>`" argument specifies
5422that the fence only synchronizes with other fences in the same thread.
5423(This is useful for interacting with signal handlers.)
5424
5425Example:
5426""""""""
5427
5428.. code-block:: llvm
5429
Tim Northover675a0962014-06-13 14:24:23 +00005430 fence acquire ; yields void
5431 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005432
5433.. _i_cmpxchg:
5434
5435'``cmpxchg``' Instruction
5436^^^^^^^^^^^^^^^^^^^^^^^^^
5437
5438Syntax:
5439"""""""
5440
5441::
5442
Tim Northover675a0962014-06-13 14:24:23 +00005443 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005444
5445Overview:
5446"""""""""
5447
5448The '``cmpxchg``' instruction is used to atomically modify memory. It
5449loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005450equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005451
5452Arguments:
5453""""""""""
5454
5455There are three arguments to the '``cmpxchg``' instruction: an address
5456to operate on, a value to compare to the value currently be at that
5457address, and a new value to place at that address if the compared values
5458are equal. The type of '<cmp>' must be an integer type whose bit width
5459is a power of two greater than or equal to eight and less than or equal
5460to a target-specific size limit. '<cmp>' and '<new>' must have the same
5461type, and the type of '<pointer>' must be a pointer to that type. If the
5462``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5463to modify the number or order of execution of this ``cmpxchg`` with
5464other :ref:`volatile operations <volatile>`.
5465
Tim Northovere94a5182014-03-11 10:48:52 +00005466The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005467``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5468must be at least ``monotonic``, the ordering constraint on failure must be no
5469stronger than that on success, and the failure ordering cannot be either
5470``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005471
5472The optional "``singlethread``" argument declares that the ``cmpxchg``
5473is only atomic with respect to code (usually signal handlers) running in
5474the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5475respect to all other code in the system.
5476
5477The pointer passed into cmpxchg must have alignment greater than or
5478equal to the size in memory of the operand.
5479
5480Semantics:
5481""""""""""
5482
Tim Northover420a2162014-06-13 14:24:07 +00005483The contents of memory at the location specified by the '``<pointer>``' operand
5484is read and compared to '``<cmp>``'; if the read value is the equal, the
5485'``<new>``' is written. The original value at the location is returned, together
5486with a flag indicating success (true) or failure (false).
5487
5488If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5489permitted: the operation may not write ``<new>`` even if the comparison
5490matched.
5491
5492If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5493if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005494
Tim Northovere94a5182014-03-11 10:48:52 +00005495A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5496identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5497load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005498
5499Example:
5500""""""""
5501
5502.. code-block:: llvm
5503
5504 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005505 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005506 br label %loop
5507
5508 loop:
5509 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5510 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005511 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005512 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5513 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005514 br i1 %success, label %done, label %loop
5515
5516 done:
5517 ...
5518
5519.. _i_atomicrmw:
5520
5521'``atomicrmw``' Instruction
5522^^^^^^^^^^^^^^^^^^^^^^^^^^^
5523
5524Syntax:
5525"""""""
5526
5527::
5528
Tim Northover675a0962014-06-13 14:24:23 +00005529 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005530
5531Overview:
5532"""""""""
5533
5534The '``atomicrmw``' instruction is used to atomically modify memory.
5535
5536Arguments:
5537""""""""""
5538
5539There are three arguments to the '``atomicrmw``' instruction: an
5540operation to apply, an address whose value to modify, an argument to the
5541operation. The operation must be one of the following keywords:
5542
5543- xchg
5544- add
5545- sub
5546- and
5547- nand
5548- or
5549- xor
5550- max
5551- min
5552- umax
5553- umin
5554
5555The type of '<value>' must be an integer type whose bit width is a power
5556of two greater than or equal to eight and less than or equal to a
5557target-specific size limit. The type of the '``<pointer>``' operand must
5558be a pointer to that type. If the ``atomicrmw`` is marked as
5559``volatile``, then the optimizer is not allowed to modify the number or
5560order of execution of this ``atomicrmw`` with other :ref:`volatile
5561operations <volatile>`.
5562
5563Semantics:
5564""""""""""
5565
5566The contents of memory at the location specified by the '``<pointer>``'
5567operand are atomically read, modified, and written back. The original
5568value at the location is returned. The modification is specified by the
5569operation argument:
5570
5571- xchg: ``*ptr = val``
5572- add: ``*ptr = *ptr + val``
5573- sub: ``*ptr = *ptr - val``
5574- and: ``*ptr = *ptr & val``
5575- nand: ``*ptr = ~(*ptr & val)``
5576- or: ``*ptr = *ptr | val``
5577- xor: ``*ptr = *ptr ^ val``
5578- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5579- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5580- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5581 comparison)
5582- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5583 comparison)
5584
5585Example:
5586""""""""
5587
5588.. code-block:: llvm
5589
Tim Northover675a0962014-06-13 14:24:23 +00005590 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005591
5592.. _i_getelementptr:
5593
5594'``getelementptr``' Instruction
5595^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5596
5597Syntax:
5598"""""""
5599
5600::
5601
5602 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5603 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5604 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5605
5606Overview:
5607"""""""""
5608
5609The '``getelementptr``' instruction is used to get the address of a
5610subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5611address calculation only and does not access memory.
5612
5613Arguments:
5614""""""""""
5615
5616The first argument is always a pointer or a vector of pointers, and
5617forms the basis of the calculation. The remaining arguments are indices
5618that indicate which of the elements of the aggregate object are indexed.
5619The interpretation of each index is dependent on the type being indexed
5620into. The first index always indexes the pointer value given as the
5621first argument, the second index indexes a value of the type pointed to
5622(not necessarily the value directly pointed to, since the first index
5623can be non-zero), etc. The first type indexed into must be a pointer
5624value, subsequent types can be arrays, vectors, and structs. Note that
5625subsequent types being indexed into can never be pointers, since that
5626would require loading the pointer before continuing calculation.
5627
5628The type of each index argument depends on the type it is indexing into.
5629When indexing into a (optionally packed) structure, only ``i32`` integer
5630**constants** are allowed (when using a vector of indices they must all
5631be the **same** ``i32`` integer constant). When indexing into an array,
5632pointer or vector, integers of any width are allowed, and they are not
5633required to be constant. These integers are treated as signed values
5634where relevant.
5635
5636For example, let's consider a C code fragment and how it gets compiled
5637to LLVM:
5638
5639.. code-block:: c
5640
5641 struct RT {
5642 char A;
5643 int B[10][20];
5644 char C;
5645 };
5646 struct ST {
5647 int X;
5648 double Y;
5649 struct RT Z;
5650 };
5651
5652 int *foo(struct ST *s) {
5653 return &s[1].Z.B[5][13];
5654 }
5655
5656The LLVM code generated by Clang is:
5657
5658.. code-block:: llvm
5659
5660 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5661 %struct.ST = type { i32, double, %struct.RT }
5662
5663 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5664 entry:
5665 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5666 ret i32* %arrayidx
5667 }
5668
5669Semantics:
5670""""""""""
5671
5672In the example above, the first index is indexing into the
5673'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5674= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5675indexes into the third element of the structure, yielding a
5676'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5677structure. The third index indexes into the second element of the
5678structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5679dimensions of the array are subscripted into, yielding an '``i32``'
5680type. The '``getelementptr``' instruction returns a pointer to this
5681element, thus computing a value of '``i32*``' type.
5682
5683Note that it is perfectly legal to index partially through a structure,
5684returning a pointer to an inner element. Because of this, the LLVM code
5685for the given testcase is equivalent to:
5686
5687.. code-block:: llvm
5688
5689 define i32* @foo(%struct.ST* %s) {
5690 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5691 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5692 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5693 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5694 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5695 ret i32* %t5
5696 }
5697
5698If the ``inbounds`` keyword is present, the result value of the
5699``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5700pointer is not an *in bounds* address of an allocated object, or if any
5701of the addresses that would be formed by successive addition of the
5702offsets implied by the indices to the base address with infinitely
5703precise signed arithmetic are not an *in bounds* address of that
5704allocated object. The *in bounds* addresses for an allocated object are
5705all the addresses that point into the object, plus the address one byte
5706past the end. In cases where the base is a vector of pointers the
5707``inbounds`` keyword applies to each of the computations element-wise.
5708
5709If the ``inbounds`` keyword is not present, the offsets are added to the
5710base address with silently-wrapping two's complement arithmetic. If the
5711offsets have a different width from the pointer, they are sign-extended
5712or truncated to the width of the pointer. The result value of the
5713``getelementptr`` may be outside the object pointed to by the base
5714pointer. The result value may not necessarily be used to access memory
5715though, even if it happens to point into allocated storage. See the
5716:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5717information.
5718
5719The getelementptr instruction is often confusing. For some more insight
5720into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5721
5722Example:
5723""""""""
5724
5725.. code-block:: llvm
5726
5727 ; yields [12 x i8]*:aptr
5728 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5729 ; yields i8*:vptr
5730 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5731 ; yields i8*:eptr
5732 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5733 ; yields i32*:iptr
5734 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5735
5736In cases where the pointer argument is a vector of pointers, each index
5737must be a vector with the same number of elements. For example:
5738
5739.. code-block:: llvm
5740
5741 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5742
5743Conversion Operations
5744---------------------
5745
5746The instructions in this category are the conversion instructions
5747(casting) which all take a single operand and a type. They perform
5748various bit conversions on the operand.
5749
5750'``trunc .. to``' Instruction
5751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5752
5753Syntax:
5754"""""""
5755
5756::
5757
5758 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5759
5760Overview:
5761"""""""""
5762
5763The '``trunc``' instruction truncates its operand to the type ``ty2``.
5764
5765Arguments:
5766""""""""""
5767
5768The '``trunc``' instruction takes a value to trunc, and a type to trunc
5769it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5770of the same number of integers. The bit size of the ``value`` must be
5771larger than the bit size of the destination type, ``ty2``. Equal sized
5772types are not allowed.
5773
5774Semantics:
5775""""""""""
5776
5777The '``trunc``' instruction truncates the high order bits in ``value``
5778and converts the remaining bits to ``ty2``. Since the source size must
5779be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5780It will always truncate bits.
5781
5782Example:
5783""""""""
5784
5785.. code-block:: llvm
5786
5787 %X = trunc i32 257 to i8 ; yields i8:1
5788 %Y = trunc i32 123 to i1 ; yields i1:true
5789 %Z = trunc i32 122 to i1 ; yields i1:false
5790 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5791
5792'``zext .. to``' Instruction
5793^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5794
5795Syntax:
5796"""""""
5797
5798::
5799
5800 <result> = zext <ty> <value> to <ty2> ; yields ty2
5801
5802Overview:
5803"""""""""
5804
5805The '``zext``' instruction zero extends its operand to type ``ty2``.
5806
5807Arguments:
5808""""""""""
5809
5810The '``zext``' instruction takes a value to cast, and a type to cast it
5811to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5812the same number of integers. The bit size of the ``value`` must be
5813smaller than the bit size of the destination type, ``ty2``.
5814
5815Semantics:
5816""""""""""
5817
5818The ``zext`` fills the high order bits of the ``value`` with zero bits
5819until it reaches the size of the destination type, ``ty2``.
5820
5821When zero extending from i1, the result will always be either 0 or 1.
5822
5823Example:
5824""""""""
5825
5826.. code-block:: llvm
5827
5828 %X = zext i32 257 to i64 ; yields i64:257
5829 %Y = zext i1 true to i32 ; yields i32:1
5830 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5831
5832'``sext .. to``' Instruction
5833^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5834
5835Syntax:
5836"""""""
5837
5838::
5839
5840 <result> = sext <ty> <value> to <ty2> ; yields ty2
5841
5842Overview:
5843"""""""""
5844
5845The '``sext``' sign extends ``value`` to the type ``ty2``.
5846
5847Arguments:
5848""""""""""
5849
5850The '``sext``' instruction takes a value to cast, and a type to cast it
5851to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5852the same number of integers. The bit size of the ``value`` must be
5853smaller than the bit size of the destination type, ``ty2``.
5854
5855Semantics:
5856""""""""""
5857
5858The '``sext``' instruction performs a sign extension by copying the sign
5859bit (highest order bit) of the ``value`` until it reaches the bit size
5860of the type ``ty2``.
5861
5862When sign extending from i1, the extension always results in -1 or 0.
5863
5864Example:
5865""""""""
5866
5867.. code-block:: llvm
5868
5869 %X = sext i8 -1 to i16 ; yields i16 :65535
5870 %Y = sext i1 true to i32 ; yields i32:-1
5871 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5872
5873'``fptrunc .. to``' Instruction
5874^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5875
5876Syntax:
5877"""""""
5878
5879::
5880
5881 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5882
5883Overview:
5884"""""""""
5885
5886The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5887
5888Arguments:
5889""""""""""
5890
5891The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5892value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5893The size of ``value`` must be larger than the size of ``ty2``. This
5894implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5895
5896Semantics:
5897""""""""""
5898
5899The '``fptrunc``' instruction truncates a ``value`` from a larger
5900:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5901point <t_floating>` type. If the value cannot fit within the
5902destination type, ``ty2``, then the results are undefined.
5903
5904Example:
5905""""""""
5906
5907.. code-block:: llvm
5908
5909 %X = fptrunc double 123.0 to float ; yields float:123.0
5910 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5911
5912'``fpext .. to``' Instruction
5913^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5914
5915Syntax:
5916"""""""
5917
5918::
5919
5920 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5921
5922Overview:
5923"""""""""
5924
5925The '``fpext``' extends a floating point ``value`` to a larger floating
5926point value.
5927
5928Arguments:
5929""""""""""
5930
5931The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5932``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5933to. The source type must be smaller than the destination type.
5934
5935Semantics:
5936""""""""""
5937
5938The '``fpext``' instruction extends the ``value`` from a smaller
5939:ref:`floating point <t_floating>` type to a larger :ref:`floating
5940point <t_floating>` type. The ``fpext`` cannot be used to make a
5941*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5942*no-op cast* for a floating point cast.
5943
5944Example:
5945""""""""
5946
5947.. code-block:: llvm
5948
5949 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5950 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5951
5952'``fptoui .. to``' Instruction
5953^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5954
5955Syntax:
5956"""""""
5957
5958::
5959
5960 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5961
5962Overview:
5963"""""""""
5964
5965The '``fptoui``' converts a floating point ``value`` to its unsigned
5966integer equivalent of type ``ty2``.
5967
5968Arguments:
5969""""""""""
5970
5971The '``fptoui``' instruction takes a value to cast, which must be a
5972scalar or vector :ref:`floating point <t_floating>` value, and a type to
5973cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5974``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5975type with the same number of elements as ``ty``
5976
5977Semantics:
5978""""""""""
5979
5980The '``fptoui``' instruction converts its :ref:`floating
5981point <t_floating>` operand into the nearest (rounding towards zero)
5982unsigned integer value. If the value cannot fit in ``ty2``, the results
5983are undefined.
5984
5985Example:
5986""""""""
5987
5988.. code-block:: llvm
5989
5990 %X = fptoui double 123.0 to i32 ; yields i32:123
5991 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5992 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5993
5994'``fptosi .. to``' Instruction
5995^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5996
5997Syntax:
5998"""""""
5999
6000::
6001
6002 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
6003
6004Overview:
6005"""""""""
6006
6007The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
6008``value`` to type ``ty2``.
6009
6010Arguments:
6011""""""""""
6012
6013The '``fptosi``' instruction takes a value to cast, which must be a
6014scalar or vector :ref:`floating point <t_floating>` value, and a type to
6015cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6016``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6017type with the same number of elements as ``ty``
6018
6019Semantics:
6020""""""""""
6021
6022The '``fptosi``' instruction converts its :ref:`floating
6023point <t_floating>` operand into the nearest (rounding towards zero)
6024signed integer value. If the value cannot fit in ``ty2``, the results
6025are undefined.
6026
6027Example:
6028""""""""
6029
6030.. code-block:: llvm
6031
6032 %X = fptosi double -123.0 to i32 ; yields i32:-123
6033 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
6034 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
6035
6036'``uitofp .. to``' Instruction
6037^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6038
6039Syntax:
6040"""""""
6041
6042::
6043
6044 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
6045
6046Overview:
6047"""""""""
6048
6049The '``uitofp``' instruction regards ``value`` as an unsigned integer
6050and converts that value to the ``ty2`` type.
6051
6052Arguments:
6053""""""""""
6054
6055The '``uitofp``' instruction takes a value to cast, which must be a
6056scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6057``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6058``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6059type with the same number of elements as ``ty``
6060
6061Semantics:
6062""""""""""
6063
6064The '``uitofp``' instruction interprets its operand as an unsigned
6065integer quantity and converts it to the corresponding floating point
6066value. If the value cannot fit in the floating point value, the results
6067are undefined.
6068
6069Example:
6070""""""""
6071
6072.. code-block:: llvm
6073
6074 %X = uitofp i32 257 to float ; yields float:257.0
6075 %Y = uitofp i8 -1 to double ; yields double:255.0
6076
6077'``sitofp .. to``' Instruction
6078^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6079
6080Syntax:
6081"""""""
6082
6083::
6084
6085 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
6086
6087Overview:
6088"""""""""
6089
6090The '``sitofp``' instruction regards ``value`` as a signed integer and
6091converts that value to the ``ty2`` type.
6092
6093Arguments:
6094""""""""""
6095
6096The '``sitofp``' instruction takes a value to cast, which must be a
6097scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6098``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6099``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6100type with the same number of elements as ``ty``
6101
6102Semantics:
6103""""""""""
6104
6105The '``sitofp``' instruction interprets its operand as a signed integer
6106quantity and converts it to the corresponding floating point value. If
6107the value cannot fit in the floating point value, the results are
6108undefined.
6109
6110Example:
6111""""""""
6112
6113.. code-block:: llvm
6114
6115 %X = sitofp i32 257 to float ; yields float:257.0
6116 %Y = sitofp i8 -1 to double ; yields double:-1.0
6117
6118.. _i_ptrtoint:
6119
6120'``ptrtoint .. to``' Instruction
6121^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6122
6123Syntax:
6124"""""""
6125
6126::
6127
6128 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
6129
6130Overview:
6131"""""""""
6132
6133The '``ptrtoint``' instruction converts the pointer or a vector of
6134pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6135
6136Arguments:
6137""""""""""
6138
6139The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
6140a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
6141type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6142a vector of integers type.
6143
6144Semantics:
6145""""""""""
6146
6147The '``ptrtoint``' instruction converts ``value`` to integer type
6148``ty2`` by interpreting the pointer value as an integer and either
6149truncating or zero extending that value to the size of the integer type.
6150If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6151``value`` is larger than ``ty2`` then a truncation is done. If they are
6152the same size, then nothing is done (*no-op cast*) other than a type
6153change.
6154
6155Example:
6156""""""""
6157
6158.. code-block:: llvm
6159
6160 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
6161 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
6162 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6163
6164.. _i_inttoptr:
6165
6166'``inttoptr .. to``' Instruction
6167^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6168
6169Syntax:
6170"""""""
6171
6172::
6173
6174 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
6175
6176Overview:
6177"""""""""
6178
6179The '``inttoptr``' instruction converts an integer ``value`` to a
6180pointer type, ``ty2``.
6181
6182Arguments:
6183""""""""""
6184
6185The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6186cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6187type.
6188
6189Semantics:
6190""""""""""
6191
6192The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6193applying either a zero extension or a truncation depending on the size
6194of the integer ``value``. If ``value`` is larger than the size of a
6195pointer then a truncation is done. If ``value`` is smaller than the size
6196of a pointer then a zero extension is done. If they are the same size,
6197nothing is done (*no-op cast*).
6198
6199Example:
6200""""""""
6201
6202.. code-block:: llvm
6203
6204 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6205 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6206 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6207 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6208
6209.. _i_bitcast:
6210
6211'``bitcast .. to``' Instruction
6212^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6213
6214Syntax:
6215"""""""
6216
6217::
6218
6219 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6220
6221Overview:
6222"""""""""
6223
6224The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6225changing any bits.
6226
6227Arguments:
6228""""""""""
6229
6230The '``bitcast``' instruction takes a value to cast, which must be a
6231non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006232also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6233bit sizes of ``value`` and the destination type, ``ty2``, must be
6234identical. If the source type is a pointer, the destination type must
6235also be a pointer of the same size. This instruction supports bitwise
6236conversion of vectors to integers and to vectors of other types (as
6237long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006238
6239Semantics:
6240""""""""""
6241
Matt Arsenault24b49c42013-07-31 17:49:08 +00006242The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6243is always a *no-op cast* because no bits change with this
6244conversion. The conversion is done as if the ``value`` had been stored
6245to memory and read back as type ``ty2``. Pointer (or vector of
6246pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006247pointers) types with the same address space through this instruction.
6248To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6249or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006250
6251Example:
6252""""""""
6253
6254.. code-block:: llvm
6255
6256 %X = bitcast i8 255 to i8 ; yields i8 :-1
6257 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6258 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6259 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6260
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006261.. _i_addrspacecast:
6262
6263'``addrspacecast .. to``' Instruction
6264^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6265
6266Syntax:
6267"""""""
6268
6269::
6270
6271 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6272
6273Overview:
6274"""""""""
6275
6276The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6277address space ``n`` to type ``pty2`` in address space ``m``.
6278
6279Arguments:
6280""""""""""
6281
6282The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6283to cast and a pointer type to cast it to, which must have a different
6284address space.
6285
6286Semantics:
6287""""""""""
6288
6289The '``addrspacecast``' instruction converts the pointer value
6290``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006291value modification, depending on the target and the address space
6292pair. Pointer conversions within the same address space must be
6293performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006294conversion is legal then both result and operand refer to the same memory
6295location.
6296
6297Example:
6298""""""""
6299
6300.. code-block:: llvm
6301
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006302 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6303 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6304 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006305
Sean Silvab084af42012-12-07 10:36:55 +00006306.. _otherops:
6307
6308Other Operations
6309----------------
6310
6311The instructions in this category are the "miscellaneous" instructions,
6312which defy better classification.
6313
6314.. _i_icmp:
6315
6316'``icmp``' Instruction
6317^^^^^^^^^^^^^^^^^^^^^^
6318
6319Syntax:
6320"""""""
6321
6322::
6323
Tim Northover675a0962014-06-13 14:24:23 +00006324 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006325
6326Overview:
6327"""""""""
6328
6329The '``icmp``' instruction returns a boolean value or a vector of
6330boolean values based on comparison of its two integer, integer vector,
6331pointer, or pointer vector operands.
6332
6333Arguments:
6334""""""""""
6335
6336The '``icmp``' instruction takes three operands. The first operand is
6337the condition code indicating the kind of comparison to perform. It is
6338not a value, just a keyword. The possible condition code are:
6339
6340#. ``eq``: equal
6341#. ``ne``: not equal
6342#. ``ugt``: unsigned greater than
6343#. ``uge``: unsigned greater or equal
6344#. ``ult``: unsigned less than
6345#. ``ule``: unsigned less or equal
6346#. ``sgt``: signed greater than
6347#. ``sge``: signed greater or equal
6348#. ``slt``: signed less than
6349#. ``sle``: signed less or equal
6350
6351The remaining two arguments must be :ref:`integer <t_integer>` or
6352:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6353must also be identical types.
6354
6355Semantics:
6356""""""""""
6357
6358The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6359code given as ``cond``. The comparison performed always yields either an
6360:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6361
6362#. ``eq``: yields ``true`` if the operands are equal, ``false``
6363 otherwise. No sign interpretation is necessary or performed.
6364#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6365 otherwise. No sign interpretation is necessary or performed.
6366#. ``ugt``: interprets the operands as unsigned values and yields
6367 ``true`` if ``op1`` is greater than ``op2``.
6368#. ``uge``: interprets the operands as unsigned values and yields
6369 ``true`` if ``op1`` is greater than or equal to ``op2``.
6370#. ``ult``: interprets the operands as unsigned values and yields
6371 ``true`` if ``op1`` is less than ``op2``.
6372#. ``ule``: interprets the operands as unsigned values and yields
6373 ``true`` if ``op1`` is less than or equal to ``op2``.
6374#. ``sgt``: interprets the operands as signed values and yields ``true``
6375 if ``op1`` is greater than ``op2``.
6376#. ``sge``: interprets the operands as signed values and yields ``true``
6377 if ``op1`` is greater than or equal to ``op2``.
6378#. ``slt``: interprets the operands as signed values and yields ``true``
6379 if ``op1`` is less than ``op2``.
6380#. ``sle``: interprets the operands as signed values and yields ``true``
6381 if ``op1`` is less than or equal to ``op2``.
6382
6383If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6384are compared as if they were integers.
6385
6386If the operands are integer vectors, then they are compared element by
6387element. The result is an ``i1`` vector with the same number of elements
6388as the values being compared. Otherwise, the result is an ``i1``.
6389
6390Example:
6391""""""""
6392
6393.. code-block:: llvm
6394
6395 <result> = icmp eq i32 4, 5 ; yields: result=false
6396 <result> = icmp ne float* %X, %X ; yields: result=false
6397 <result> = icmp ult i16 4, 5 ; yields: result=true
6398 <result> = icmp sgt i16 4, 5 ; yields: result=false
6399 <result> = icmp ule i16 -4, 5 ; yields: result=false
6400 <result> = icmp sge i16 4, 5 ; yields: result=false
6401
6402Note that the code generator does not yet support vector types with the
6403``icmp`` instruction.
6404
6405.. _i_fcmp:
6406
6407'``fcmp``' Instruction
6408^^^^^^^^^^^^^^^^^^^^^^
6409
6410Syntax:
6411"""""""
6412
6413::
6414
Tim Northover675a0962014-06-13 14:24:23 +00006415 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006416
6417Overview:
6418"""""""""
6419
6420The '``fcmp``' instruction returns a boolean value or vector of boolean
6421values based on comparison of its operands.
6422
6423If the operands are floating point scalars, then the result type is a
6424boolean (:ref:`i1 <t_integer>`).
6425
6426If the operands are floating point vectors, then the result type is a
6427vector of boolean with the same number of elements as the operands being
6428compared.
6429
6430Arguments:
6431""""""""""
6432
6433The '``fcmp``' instruction takes three operands. The first operand is
6434the condition code indicating the kind of comparison to perform. It is
6435not a value, just a keyword. The possible condition code are:
6436
6437#. ``false``: no comparison, always returns false
6438#. ``oeq``: ordered and equal
6439#. ``ogt``: ordered and greater than
6440#. ``oge``: ordered and greater than or equal
6441#. ``olt``: ordered and less than
6442#. ``ole``: ordered and less than or equal
6443#. ``one``: ordered and not equal
6444#. ``ord``: ordered (no nans)
6445#. ``ueq``: unordered or equal
6446#. ``ugt``: unordered or greater than
6447#. ``uge``: unordered or greater than or equal
6448#. ``ult``: unordered or less than
6449#. ``ule``: unordered or less than or equal
6450#. ``une``: unordered or not equal
6451#. ``uno``: unordered (either nans)
6452#. ``true``: no comparison, always returns true
6453
6454*Ordered* means that neither operand is a QNAN while *unordered* means
6455that either operand may be a QNAN.
6456
6457Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6458point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6459type. They must have identical types.
6460
6461Semantics:
6462""""""""""
6463
6464The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6465condition code given as ``cond``. If the operands are vectors, then the
6466vectors are compared element by element. Each comparison performed
6467always yields an :ref:`i1 <t_integer>` result, as follows:
6468
6469#. ``false``: always yields ``false``, regardless of operands.
6470#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6471 is equal to ``op2``.
6472#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6473 is greater than ``op2``.
6474#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6475 is greater than or equal to ``op2``.
6476#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6477 is less than ``op2``.
6478#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6479 is less than or equal to ``op2``.
6480#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6481 is not equal to ``op2``.
6482#. ``ord``: yields ``true`` if both operands are not a QNAN.
6483#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6484 equal to ``op2``.
6485#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6486 greater than ``op2``.
6487#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6488 greater than or equal to ``op2``.
6489#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6490 less than ``op2``.
6491#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6492 less than or equal to ``op2``.
6493#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6494 not equal to ``op2``.
6495#. ``uno``: yields ``true`` if either operand is a QNAN.
6496#. ``true``: always yields ``true``, regardless of operands.
6497
6498Example:
6499""""""""
6500
6501.. code-block:: llvm
6502
6503 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6504 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6505 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6506 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6507
6508Note that the code generator does not yet support vector types with the
6509``fcmp`` instruction.
6510
6511.. _i_phi:
6512
6513'``phi``' Instruction
6514^^^^^^^^^^^^^^^^^^^^^
6515
6516Syntax:
6517"""""""
6518
6519::
6520
6521 <result> = phi <ty> [ <val0>, <label0>], ...
6522
6523Overview:
6524"""""""""
6525
6526The '``phi``' instruction is used to implement the φ node in the SSA
6527graph representing the function.
6528
6529Arguments:
6530""""""""""
6531
6532The type of the incoming values is specified with the first type field.
6533After this, the '``phi``' instruction takes a list of pairs as
6534arguments, with one pair for each predecessor basic block of the current
6535block. Only values of :ref:`first class <t_firstclass>` type may be used as
6536the value arguments to the PHI node. Only labels may be used as the
6537label arguments.
6538
6539There must be no non-phi instructions between the start of a basic block
6540and the PHI instructions: i.e. PHI instructions must be first in a basic
6541block.
6542
6543For the purposes of the SSA form, the use of each incoming value is
6544deemed to occur on the edge from the corresponding predecessor block to
6545the current block (but after any definition of an '``invoke``'
6546instruction's return value on the same edge).
6547
6548Semantics:
6549""""""""""
6550
6551At runtime, the '``phi``' instruction logically takes on the value
6552specified by the pair corresponding to the predecessor basic block that
6553executed just prior to the current block.
6554
6555Example:
6556""""""""
6557
6558.. code-block:: llvm
6559
6560 Loop: ; Infinite loop that counts from 0 on up...
6561 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6562 %nextindvar = add i32 %indvar, 1
6563 br label %Loop
6564
6565.. _i_select:
6566
6567'``select``' Instruction
6568^^^^^^^^^^^^^^^^^^^^^^^^
6569
6570Syntax:
6571"""""""
6572
6573::
6574
6575 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6576
6577 selty is either i1 or {<N x i1>}
6578
6579Overview:
6580"""""""""
6581
6582The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006583condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006584
6585Arguments:
6586""""""""""
6587
6588The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6589values indicating the condition, and two values of the same :ref:`first
6590class <t_firstclass>` type. If the val1/val2 are vectors and the
6591condition is a scalar, then entire vectors are selected, not individual
6592elements.
6593
6594Semantics:
6595""""""""""
6596
6597If the condition is an i1 and it evaluates to 1, the instruction returns
6598the first value argument; otherwise, it returns the second value
6599argument.
6600
6601If the condition is a vector of i1, then the value arguments must be
6602vectors of the same size, and the selection is done element by element.
6603
6604Example:
6605""""""""
6606
6607.. code-block:: llvm
6608
6609 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6610
6611.. _i_call:
6612
6613'``call``' Instruction
6614^^^^^^^^^^^^^^^^^^^^^^
6615
6616Syntax:
6617"""""""
6618
6619::
6620
Reid Kleckner5772b772014-04-24 20:14:34 +00006621 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006622
6623Overview:
6624"""""""""
6625
6626The '``call``' instruction represents a simple function call.
6627
6628Arguments:
6629""""""""""
6630
6631This instruction requires several arguments:
6632
Reid Kleckner5772b772014-04-24 20:14:34 +00006633#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6634 should perform tail call optimization. The ``tail`` marker is a hint that
6635 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6636 means that the call must be tail call optimized in order for the program to
6637 be correct. The ``musttail`` marker provides these guarantees:
6638
6639 #. The call will not cause unbounded stack growth if it is part of a
6640 recursive cycle in the call graph.
6641 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6642 forwarded in place.
6643
6644 Both markers imply that the callee does not access allocas or varargs from
6645 the caller. Calls marked ``musttail`` must obey the following additional
6646 rules:
6647
6648 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6649 or a pointer bitcast followed by a ret instruction.
6650 - The ret instruction must return the (possibly bitcasted) value
6651 produced by the call or void.
6652 - The caller and callee prototypes must match. Pointer types of
6653 parameters or return types may differ in pointee type, but not
6654 in address space.
6655 - The calling conventions of the caller and callee must match.
6656 - All ABI-impacting function attributes, such as sret, byval, inreg,
6657 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00006658 - The callee must be varargs iff the caller is varargs. Bitcasting a
6659 non-varargs function to the appropriate varargs type is legal so
6660 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00006661
6662 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6663 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006664
6665 - Caller and callee both have the calling convention ``fastcc``.
6666 - The call is in tail position (ret immediately follows call and ret
6667 uses value of call or is void).
6668 - Option ``-tailcallopt`` is enabled, or
6669 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00006670 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00006671 met. <CodeGenerator.html#tailcallopt>`_
6672
6673#. The optional "cconv" marker indicates which :ref:`calling
6674 convention <callingconv>` the call should use. If none is
6675 specified, the call defaults to using C calling conventions. The
6676 calling convention of the call must match the calling convention of
6677 the target function, or else the behavior is undefined.
6678#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6679 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6680 are valid here.
6681#. '``ty``': the type of the call instruction itself which is also the
6682 type of the return value. Functions that return no value are marked
6683 ``void``.
6684#. '``fnty``': shall be the signature of the pointer to function value
6685 being invoked. The argument types must match the types implied by
6686 this signature. This type can be omitted if the function is not
6687 varargs and if the function type does not return a pointer to a
6688 function.
6689#. '``fnptrval``': An LLVM value containing a pointer to a function to
6690 be invoked. In most cases, this is a direct function invocation, but
6691 indirect ``call``'s are just as possible, calling an arbitrary pointer
6692 to function value.
6693#. '``function args``': argument list whose types match the function
6694 signature argument types and parameter attributes. All arguments must
6695 be of :ref:`first class <t_firstclass>` type. If the function signature
6696 indicates the function accepts a variable number of arguments, the
6697 extra arguments can be specified.
6698#. The optional :ref:`function attributes <fnattrs>` list. Only
6699 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6700 attributes are valid here.
6701
6702Semantics:
6703""""""""""
6704
6705The '``call``' instruction is used to cause control flow to transfer to
6706a specified function, with its incoming arguments bound to the specified
6707values. Upon a '``ret``' instruction in the called function, control
6708flow continues with the instruction after the function call, and the
6709return value of the function is bound to the result argument.
6710
6711Example:
6712""""""""
6713
6714.. code-block:: llvm
6715
6716 %retval = call i32 @test(i32 %argc)
6717 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6718 %X = tail call i32 @foo() ; yields i32
6719 %Y = tail call fastcc i32 @foo() ; yields i32
6720 call void %foo(i8 97 signext)
6721
6722 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00006723 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00006724 %gr = extractvalue %struct.A %r, 0 ; yields i32
6725 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6726 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6727 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6728
6729llvm treats calls to some functions with names and arguments that match
6730the standard C99 library as being the C99 library functions, and may
6731perform optimizations or generate code for them under that assumption.
6732This is something we'd like to change in the future to provide better
6733support for freestanding environments and non-C-based languages.
6734
6735.. _i_va_arg:
6736
6737'``va_arg``' Instruction
6738^^^^^^^^^^^^^^^^^^^^^^^^
6739
6740Syntax:
6741"""""""
6742
6743::
6744
6745 <resultval> = va_arg <va_list*> <arglist>, <argty>
6746
6747Overview:
6748"""""""""
6749
6750The '``va_arg``' instruction is used to access arguments passed through
6751the "variable argument" area of a function call. It is used to implement
6752the ``va_arg`` macro in C.
6753
6754Arguments:
6755""""""""""
6756
6757This instruction takes a ``va_list*`` value and the type of the
6758argument. It returns a value of the specified argument type and
6759increments the ``va_list`` to point to the next argument. The actual
6760type of ``va_list`` is target specific.
6761
6762Semantics:
6763""""""""""
6764
6765The '``va_arg``' instruction loads an argument of the specified type
6766from the specified ``va_list`` and causes the ``va_list`` to point to
6767the next argument. For more information, see the variable argument
6768handling :ref:`Intrinsic Functions <int_varargs>`.
6769
6770It is legal for this instruction to be called in a function which does
6771not take a variable number of arguments, for example, the ``vfprintf``
6772function.
6773
6774``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6775function <intrinsics>` because it takes a type as an argument.
6776
6777Example:
6778""""""""
6779
6780See the :ref:`variable argument processing <int_varargs>` section.
6781
6782Note that the code generator does not yet fully support va\_arg on many
6783targets. Also, it does not currently support va\_arg with aggregate
6784types on any target.
6785
6786.. _i_landingpad:
6787
6788'``landingpad``' Instruction
6789^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6790
6791Syntax:
6792"""""""
6793
6794::
6795
6796 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6797 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6798
6799 <clause> := catch <type> <value>
6800 <clause> := filter <array constant type> <array constant>
6801
6802Overview:
6803"""""""""
6804
6805The '``landingpad``' instruction is used by `LLVM's exception handling
6806system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006807is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006808code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6809defines values supplied by the personality function (``pers_fn``) upon
6810re-entry to the function. The ``resultval`` has the type ``resultty``.
6811
6812Arguments:
6813""""""""""
6814
6815This instruction takes a ``pers_fn`` value. This is the personality
6816function associated with the unwinding mechanism. The optional
6817``cleanup`` flag indicates that the landing pad block is a cleanup.
6818
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006819A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006820contains the global variable representing the "type" that may be caught
6821or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6822clause takes an array constant as its argument. Use
6823"``[0 x i8**] undef``" for a filter which cannot throw. The
6824'``landingpad``' instruction must contain *at least* one ``clause`` or
6825the ``cleanup`` flag.
6826
6827Semantics:
6828""""""""""
6829
6830The '``landingpad``' instruction defines the values which are set by the
6831personality function (``pers_fn``) upon re-entry to the function, and
6832therefore the "result type" of the ``landingpad`` instruction. As with
6833calling conventions, how the personality function results are
6834represented in LLVM IR is target specific.
6835
6836The clauses are applied in order from top to bottom. If two
6837``landingpad`` instructions are merged together through inlining, the
6838clauses from the calling function are appended to the list of clauses.
6839When the call stack is being unwound due to an exception being thrown,
6840the exception is compared against each ``clause`` in turn. If it doesn't
6841match any of the clauses, and the ``cleanup`` flag is not set, then
6842unwinding continues further up the call stack.
6843
6844The ``landingpad`` instruction has several restrictions:
6845
6846- A landing pad block is a basic block which is the unwind destination
6847 of an '``invoke``' instruction.
6848- A landing pad block must have a '``landingpad``' instruction as its
6849 first non-PHI instruction.
6850- There can be only one '``landingpad``' instruction within the landing
6851 pad block.
6852- A basic block that is not a landing pad block may not include a
6853 '``landingpad``' instruction.
6854- All '``landingpad``' instructions in a function must have the same
6855 personality function.
6856
6857Example:
6858""""""""
6859
6860.. code-block:: llvm
6861
6862 ;; A landing pad which can catch an integer.
6863 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6864 catch i8** @_ZTIi
6865 ;; A landing pad that is a cleanup.
6866 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6867 cleanup
6868 ;; A landing pad which can catch an integer and can only throw a double.
6869 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6870 catch i8** @_ZTIi
6871 filter [1 x i8**] [@_ZTId]
6872
6873.. _intrinsics:
6874
6875Intrinsic Functions
6876===================
6877
6878LLVM supports the notion of an "intrinsic function". These functions
6879have well known names and semantics and are required to follow certain
6880restrictions. Overall, these intrinsics represent an extension mechanism
6881for the LLVM language that does not require changing all of the
6882transformations in LLVM when adding to the language (or the bitcode
6883reader/writer, the parser, etc...).
6884
6885Intrinsic function names must all start with an "``llvm.``" prefix. This
6886prefix is reserved in LLVM for intrinsic names; thus, function names may
6887not begin with this prefix. Intrinsic functions must always be external
6888functions: you cannot define the body of intrinsic functions. Intrinsic
6889functions may only be used in call or invoke instructions: it is illegal
6890to take the address of an intrinsic function. Additionally, because
6891intrinsic functions are part of the LLVM language, it is required if any
6892are added that they be documented here.
6893
6894Some intrinsic functions can be overloaded, i.e., the intrinsic
6895represents a family of functions that perform the same operation but on
6896different data types. Because LLVM can represent over 8 million
6897different integer types, overloading is used commonly to allow an
6898intrinsic function to operate on any integer type. One or more of the
6899argument types or the result type can be overloaded to accept any
6900integer type. Argument types may also be defined as exactly matching a
6901previous argument's type or the result type. This allows an intrinsic
6902function which accepts multiple arguments, but needs all of them to be
6903of the same type, to only be overloaded with respect to a single
6904argument or the result.
6905
6906Overloaded intrinsics will have the names of its overloaded argument
6907types encoded into its function name, each preceded by a period. Only
6908those types which are overloaded result in a name suffix. Arguments
6909whose type is matched against another type do not. For example, the
6910``llvm.ctpop`` function can take an integer of any width and returns an
6911integer of exactly the same integer width. This leads to a family of
6912functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6913``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6914overloaded, and only one type suffix is required. Because the argument's
6915type is matched against the return type, it does not require its own
6916name suffix.
6917
6918To learn how to add an intrinsic function, please see the `Extending
6919LLVM Guide <ExtendingLLVM.html>`_.
6920
6921.. _int_varargs:
6922
6923Variable Argument Handling Intrinsics
6924-------------------------------------
6925
6926Variable argument support is defined in LLVM with the
6927:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6928functions. These functions are related to the similarly named macros
6929defined in the ``<stdarg.h>`` header file.
6930
6931All of these functions operate on arguments that use a target-specific
6932value type "``va_list``". The LLVM assembly language reference manual
6933does not define what this type is, so all transformations should be
6934prepared to handle these functions regardless of the type used.
6935
6936This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6937variable argument handling intrinsic functions are used.
6938
6939.. code-block:: llvm
6940
Tim Northoverab60bb92014-11-02 01:21:51 +00006941 ; This struct is different for every platform. For most platforms,
6942 ; it is merely an i8*.
6943 %struct.va_list = type { i8* }
6944
6945 ; For Unix x86_64 platforms, va_list is the following struct:
6946 ; %struct.va_list = type { i32, i32, i8*, i8* }
6947
Sean Silvab084af42012-12-07 10:36:55 +00006948 define i32 @test(i32 %X, ...) {
6949 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00006950 %ap = alloca %struct.va_list
6951 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00006952 call void @llvm.va_start(i8* %ap2)
6953
6954 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00006955 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00006956
6957 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6958 %aq = alloca i8*
6959 %aq2 = bitcast i8** %aq to i8*
6960 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6961 call void @llvm.va_end(i8* %aq2)
6962
6963 ; Stop processing of arguments.
6964 call void @llvm.va_end(i8* %ap2)
6965 ret i32 %tmp
6966 }
6967
6968 declare void @llvm.va_start(i8*)
6969 declare void @llvm.va_copy(i8*, i8*)
6970 declare void @llvm.va_end(i8*)
6971
6972.. _int_va_start:
6973
6974'``llvm.va_start``' Intrinsic
6975^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6976
6977Syntax:
6978"""""""
6979
6980::
6981
Nick Lewycky04f6de02013-09-11 22:04:52 +00006982 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006983
6984Overview:
6985"""""""""
6986
6987The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6988subsequent use by ``va_arg``.
6989
6990Arguments:
6991""""""""""
6992
6993The argument is a pointer to a ``va_list`` element to initialize.
6994
6995Semantics:
6996""""""""""
6997
6998The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6999available in C. In a target-dependent way, it initializes the
7000``va_list`` element to which the argument points, so that the next call
7001to ``va_arg`` will produce the first variable argument passed to the
7002function. Unlike the C ``va_start`` macro, this intrinsic does not need
7003to know the last argument of the function as the compiler can figure
7004that out.
7005
7006'``llvm.va_end``' Intrinsic
7007^^^^^^^^^^^^^^^^^^^^^^^^^^^
7008
7009Syntax:
7010"""""""
7011
7012::
7013
7014 declare void @llvm.va_end(i8* <arglist>)
7015
7016Overview:
7017"""""""""
7018
7019The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
7020initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
7021
7022Arguments:
7023""""""""""
7024
7025The argument is a pointer to a ``va_list`` to destroy.
7026
7027Semantics:
7028""""""""""
7029
7030The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
7031available in C. In a target-dependent way, it destroys the ``va_list``
7032element to which the argument points. Calls to
7033:ref:`llvm.va_start <int_va_start>` and
7034:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
7035``llvm.va_end``.
7036
7037.. _int_va_copy:
7038
7039'``llvm.va_copy``' Intrinsic
7040^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7041
7042Syntax:
7043"""""""
7044
7045::
7046
7047 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
7048
7049Overview:
7050"""""""""
7051
7052The '``llvm.va_copy``' intrinsic copies the current argument position
7053from the source argument list to the destination argument list.
7054
7055Arguments:
7056""""""""""
7057
7058The first argument is a pointer to a ``va_list`` element to initialize.
7059The second argument is a pointer to a ``va_list`` element to copy from.
7060
7061Semantics:
7062""""""""""
7063
7064The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
7065available in C. In a target-dependent way, it copies the source
7066``va_list`` element into the destination ``va_list`` element. This
7067intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
7068arbitrarily complex and require, for example, memory allocation.
7069
7070Accurate Garbage Collection Intrinsics
7071--------------------------------------
7072
7073LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
7074(GC) requires the implementation and generation of these intrinsics.
7075These intrinsics allow identification of :ref:`GC roots on the
7076stack <int_gcroot>`, as well as garbage collector implementations that
7077require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
7078Front-ends for type-safe garbage collected languages should generate
7079these intrinsics to make use of the LLVM garbage collectors. For more
7080details, see `Accurate Garbage Collection with
7081LLVM <GarbageCollection.html>`_.
7082
7083The garbage collection intrinsics only operate on objects in the generic
7084address space (address space zero).
7085
7086.. _int_gcroot:
7087
7088'``llvm.gcroot``' Intrinsic
7089^^^^^^^^^^^^^^^^^^^^^^^^^^^
7090
7091Syntax:
7092"""""""
7093
7094::
7095
7096 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
7097
7098Overview:
7099"""""""""
7100
7101The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
7102the code generator, and allows some metadata to be associated with it.
7103
7104Arguments:
7105""""""""""
7106
7107The first argument specifies the address of a stack object that contains
7108the root pointer. The second pointer (which must be either a constant or
7109a global value address) contains the meta-data to be associated with the
7110root.
7111
7112Semantics:
7113""""""""""
7114
7115At runtime, a call to this intrinsic stores a null pointer into the
7116"ptrloc" location. At compile-time, the code generator generates
7117information to allow the runtime to find the pointer at GC safe points.
7118The '``llvm.gcroot``' intrinsic may only be used in a function which
7119:ref:`specifies a GC algorithm <gc>`.
7120
7121.. _int_gcread:
7122
7123'``llvm.gcread``' Intrinsic
7124^^^^^^^^^^^^^^^^^^^^^^^^^^^
7125
7126Syntax:
7127"""""""
7128
7129::
7130
7131 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7132
7133Overview:
7134"""""""""
7135
7136The '``llvm.gcread``' intrinsic identifies reads of references from heap
7137locations, allowing garbage collector implementations that require read
7138barriers.
7139
7140Arguments:
7141""""""""""
7142
7143The second argument is the address to read from, which should be an
7144address allocated from the garbage collector. The first object is a
7145pointer to the start of the referenced object, if needed by the language
7146runtime (otherwise null).
7147
7148Semantics:
7149""""""""""
7150
7151The '``llvm.gcread``' intrinsic has the same semantics as a load
7152instruction, but may be replaced with substantially more complex code by
7153the garbage collector runtime, as needed. The '``llvm.gcread``'
7154intrinsic may only be used in a function which :ref:`specifies a GC
7155algorithm <gc>`.
7156
7157.. _int_gcwrite:
7158
7159'``llvm.gcwrite``' Intrinsic
7160^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7161
7162Syntax:
7163"""""""
7164
7165::
7166
7167 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7168
7169Overview:
7170"""""""""
7171
7172The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7173locations, allowing garbage collector implementations that require write
7174barriers (such as generational or reference counting collectors).
7175
7176Arguments:
7177""""""""""
7178
7179The first argument is the reference to store, the second is the start of
7180the object to store it to, and the third is the address of the field of
7181Obj to store to. If the runtime does not require a pointer to the
7182object, Obj may be null.
7183
7184Semantics:
7185""""""""""
7186
7187The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7188instruction, but may be replaced with substantially more complex code by
7189the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7190intrinsic may only be used in a function which :ref:`specifies a GC
7191algorithm <gc>`.
7192
7193Code Generator Intrinsics
7194-------------------------
7195
7196These intrinsics are provided by LLVM to expose special features that
7197may only be implemented with code generator support.
7198
7199'``llvm.returnaddress``' Intrinsic
7200^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7201
7202Syntax:
7203"""""""
7204
7205::
7206
7207 declare i8 *@llvm.returnaddress(i32 <level>)
7208
7209Overview:
7210"""""""""
7211
7212The '``llvm.returnaddress``' intrinsic attempts to compute a
7213target-specific value indicating the return address of the current
7214function or one of its callers.
7215
7216Arguments:
7217""""""""""
7218
7219The argument to this intrinsic indicates which function to return the
7220address for. Zero indicates the calling function, one indicates its
7221caller, etc. The argument is **required** to be a constant integer
7222value.
7223
7224Semantics:
7225""""""""""
7226
7227The '``llvm.returnaddress``' intrinsic either returns a pointer
7228indicating the return address of the specified call frame, or zero if it
7229cannot be identified. The value returned by this intrinsic is likely to
7230be incorrect or 0 for arguments other than zero, so it should only be
7231used for debugging purposes.
7232
7233Note that calling this intrinsic does not prevent function inlining or
7234other aggressive transformations, so the value returned may not be that
7235of the obvious source-language caller.
7236
7237'``llvm.frameaddress``' Intrinsic
7238^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7239
7240Syntax:
7241"""""""
7242
7243::
7244
7245 declare i8* @llvm.frameaddress(i32 <level>)
7246
7247Overview:
7248"""""""""
7249
7250The '``llvm.frameaddress``' intrinsic attempts to return the
7251target-specific frame pointer value for the specified stack frame.
7252
7253Arguments:
7254""""""""""
7255
7256The argument to this intrinsic indicates which function to return the
7257frame pointer for. Zero indicates the calling function, one indicates
7258its caller, etc. The argument is **required** to be a constant integer
7259value.
7260
7261Semantics:
7262""""""""""
7263
7264The '``llvm.frameaddress``' intrinsic either returns a pointer
7265indicating the frame address of the specified call frame, or zero if it
7266cannot be identified. The value returned by this intrinsic is likely to
7267be incorrect or 0 for arguments other than zero, so it should only be
7268used for debugging purposes.
7269
7270Note that calling this intrinsic does not prevent function inlining or
7271other aggressive transformations, so the value returned may not be that
7272of the obvious source-language caller.
7273
Renato Golinc7aea402014-05-06 16:51:25 +00007274.. _int_read_register:
7275.. _int_write_register:
7276
7277'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7278^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7279
7280Syntax:
7281"""""""
7282
7283::
7284
7285 declare i32 @llvm.read_register.i32(metadata)
7286 declare i64 @llvm.read_register.i64(metadata)
7287 declare void @llvm.write_register.i32(metadata, i32 @value)
7288 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00007289 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00007290
7291Overview:
7292"""""""""
7293
7294The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7295provides access to the named register. The register must be valid on
7296the architecture being compiled to. The type needs to be compatible
7297with the register being read.
7298
7299Semantics:
7300""""""""""
7301
7302The '``llvm.read_register``' intrinsic returns the current value of the
7303register, where possible. The '``llvm.write_register``' intrinsic sets
7304the current value of the register, where possible.
7305
7306This is useful to implement named register global variables that need
7307to always be mapped to a specific register, as is common practice on
7308bare-metal programs including OS kernels.
7309
7310The compiler doesn't check for register availability or use of the used
7311register in surrounding code, including inline assembly. Because of that,
7312allocatable registers are not supported.
7313
7314Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007315architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007316work is needed to support other registers and even more so, allocatable
7317registers.
7318
Sean Silvab084af42012-12-07 10:36:55 +00007319.. _int_stacksave:
7320
7321'``llvm.stacksave``' Intrinsic
7322^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7323
7324Syntax:
7325"""""""
7326
7327::
7328
7329 declare i8* @llvm.stacksave()
7330
7331Overview:
7332"""""""""
7333
7334The '``llvm.stacksave``' intrinsic is used to remember the current state
7335of the function stack, for use with
7336:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7337implementing language features like scoped automatic variable sized
7338arrays in C99.
7339
7340Semantics:
7341""""""""""
7342
7343This intrinsic returns a opaque pointer value that can be passed to
7344:ref:`llvm.stackrestore <int_stackrestore>`. When an
7345``llvm.stackrestore`` intrinsic is executed with a value saved from
7346``llvm.stacksave``, it effectively restores the state of the stack to
7347the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7348practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7349were allocated after the ``llvm.stacksave`` was executed.
7350
7351.. _int_stackrestore:
7352
7353'``llvm.stackrestore``' Intrinsic
7354^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7355
7356Syntax:
7357"""""""
7358
7359::
7360
7361 declare void @llvm.stackrestore(i8* %ptr)
7362
7363Overview:
7364"""""""""
7365
7366The '``llvm.stackrestore``' intrinsic is used to restore the state of
7367the function stack to the state it was in when the corresponding
7368:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7369useful for implementing language features like scoped automatic variable
7370sized arrays in C99.
7371
7372Semantics:
7373""""""""""
7374
7375See the description for :ref:`llvm.stacksave <int_stacksave>`.
7376
7377'``llvm.prefetch``' Intrinsic
7378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7379
7380Syntax:
7381"""""""
7382
7383::
7384
7385 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7386
7387Overview:
7388"""""""""
7389
7390The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7391insert a prefetch instruction if supported; otherwise, it is a noop.
7392Prefetches have no effect on the behavior of the program but can change
7393its performance characteristics.
7394
7395Arguments:
7396""""""""""
7397
7398``address`` is the address to be prefetched, ``rw`` is the specifier
7399determining if the fetch should be for a read (0) or write (1), and
7400``locality`` is a temporal locality specifier ranging from (0) - no
7401locality, to (3) - extremely local keep in cache. The ``cache type``
7402specifies whether the prefetch is performed on the data (1) or
7403instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7404arguments must be constant integers.
7405
7406Semantics:
7407""""""""""
7408
7409This intrinsic does not modify the behavior of the program. In
7410particular, prefetches cannot trap and do not produce a value. On
7411targets that support this intrinsic, the prefetch can provide hints to
7412the processor cache for better performance.
7413
7414'``llvm.pcmarker``' Intrinsic
7415^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7416
7417Syntax:
7418"""""""
7419
7420::
7421
7422 declare void @llvm.pcmarker(i32 <id>)
7423
7424Overview:
7425"""""""""
7426
7427The '``llvm.pcmarker``' intrinsic is a method to export a Program
7428Counter (PC) in a region of code to simulators and other tools. The
7429method is target specific, but it is expected that the marker will use
7430exported symbols to transmit the PC of the marker. The marker makes no
7431guarantees that it will remain with any specific instruction after
7432optimizations. It is possible that the presence of a marker will inhibit
7433optimizations. The intended use is to be inserted after optimizations to
7434allow correlations of simulation runs.
7435
7436Arguments:
7437""""""""""
7438
7439``id`` is a numerical id identifying the marker.
7440
7441Semantics:
7442""""""""""
7443
7444This intrinsic does not modify the behavior of the program. Backends
7445that do not support this intrinsic may ignore it.
7446
7447'``llvm.readcyclecounter``' Intrinsic
7448^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7449
7450Syntax:
7451"""""""
7452
7453::
7454
7455 declare i64 @llvm.readcyclecounter()
7456
7457Overview:
7458"""""""""
7459
7460The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7461counter register (or similar low latency, high accuracy clocks) on those
7462targets that support it. On X86, it should map to RDTSC. On Alpha, it
7463should map to RPCC. As the backing counters overflow quickly (on the
7464order of 9 seconds on alpha), this should only be used for small
7465timings.
7466
7467Semantics:
7468""""""""""
7469
7470When directly supported, reading the cycle counter should not modify any
7471memory. Implementations are allowed to either return a application
7472specific value or a system wide value. On backends without support, this
7473is lowered to a constant 0.
7474
Tim Northoverbc933082013-05-23 19:11:20 +00007475Note that runtime support may be conditional on the privilege-level code is
7476running at and the host platform.
7477
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007478'``llvm.clear_cache``' Intrinsic
7479^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7480
7481Syntax:
7482"""""""
7483
7484::
7485
7486 declare void @llvm.clear_cache(i8*, i8*)
7487
7488Overview:
7489"""""""""
7490
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007491The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7492in the specified range to the execution unit of the processor. On
7493targets with non-unified instruction and data cache, the implementation
7494flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007495
7496Semantics:
7497""""""""""
7498
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007499On platforms with coherent instruction and data caches (e.g. x86), this
7500intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007501cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007502instructions or a system call, if cache flushing requires special
7503privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007504
Sean Silvad02bf3e2014-04-07 22:29:53 +00007505The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007506time library.
Renato Golin93010e62014-03-26 14:01:32 +00007507
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007508This instrinsic does *not* empty the instruction pipeline. Modifications
7509of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007510
Justin Bogner61ba2e32014-12-08 18:02:35 +00007511'``llvm.instrprof_increment``' Intrinsic
7512^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7513
7514Syntax:
7515"""""""
7516
7517::
7518
7519 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
7520 i32 <num-counters>, i32 <index>)
7521
7522Overview:
7523"""""""""
7524
7525The '``llvm.instrprof_increment``' intrinsic can be emitted by a
7526frontend for use with instrumentation based profiling. These will be
7527lowered by the ``-instrprof`` pass to generate execution counts of a
7528program at runtime.
7529
7530Arguments:
7531""""""""""
7532
7533The first argument is a pointer to a global variable containing the
7534name of the entity being instrumented. This should generally be the
7535(mangled) function name for a set of counters.
7536
7537The second argument is a hash value that can be used by the consumer
7538of the profile data to detect changes to the instrumented source, and
7539the third is the number of counters associated with ``name``. It is an
7540error if ``hash`` or ``num-counters`` differ between two instances of
7541``instrprof_increment`` that refer to the same name.
7542
7543The last argument refers to which of the counters for ``name`` should
7544be incremented. It should be a value between 0 and ``num-counters``.
7545
7546Semantics:
7547""""""""""
7548
7549This intrinsic represents an increment of a profiling counter. It will
7550cause the ``-instrprof`` pass to generate the appropriate data
7551structures and the code to increment the appropriate value, in a
7552format that can be written out by a compiler runtime and consumed via
7553the ``llvm-profdata`` tool.
7554
Sean Silvab084af42012-12-07 10:36:55 +00007555Standard C Library Intrinsics
7556-----------------------------
7557
7558LLVM provides intrinsics for a few important standard C library
7559functions. These intrinsics allow source-language front-ends to pass
7560information about the alignment of the pointer arguments to the code
7561generator, providing opportunity for more efficient code generation.
7562
7563.. _int_memcpy:
7564
7565'``llvm.memcpy``' Intrinsic
7566^^^^^^^^^^^^^^^^^^^^^^^^^^^
7567
7568Syntax:
7569"""""""
7570
7571This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7572integer bit width and for different address spaces. Not all targets
7573support all bit widths however.
7574
7575::
7576
7577 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7578 i32 <len>, i32 <align>, i1 <isvolatile>)
7579 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7580 i64 <len>, i32 <align>, i1 <isvolatile>)
7581
7582Overview:
7583"""""""""
7584
7585The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7586source location to the destination location.
7587
7588Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7589intrinsics do not return a value, takes extra alignment/isvolatile
7590arguments and the pointers can be in specified address spaces.
7591
7592Arguments:
7593""""""""""
7594
7595The first argument is a pointer to the destination, the second is a
7596pointer to the source. The third argument is an integer argument
7597specifying the number of bytes to copy, the fourth argument is the
7598alignment of the source and destination locations, and the fifth is a
7599boolean indicating a volatile access.
7600
7601If the call to this intrinsic has an alignment value that is not 0 or 1,
7602then the caller guarantees that both the source and destination pointers
7603are aligned to that boundary.
7604
7605If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7606a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7607very cleanly specified and it is unwise to depend on it.
7608
7609Semantics:
7610""""""""""
7611
7612The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7613source location to the destination location, which are not allowed to
7614overlap. It copies "len" bytes of memory over. If the argument is known
7615to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007616argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007617
7618'``llvm.memmove``' Intrinsic
7619^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7620
7621Syntax:
7622"""""""
7623
7624This is an overloaded intrinsic. You can use llvm.memmove on any integer
7625bit width and for different address space. Not all targets support all
7626bit widths however.
7627
7628::
7629
7630 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7631 i32 <len>, i32 <align>, i1 <isvolatile>)
7632 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7633 i64 <len>, i32 <align>, i1 <isvolatile>)
7634
7635Overview:
7636"""""""""
7637
7638The '``llvm.memmove.*``' intrinsics move a block of memory from the
7639source location to the destination location. It is similar to the
7640'``llvm.memcpy``' intrinsic but allows the two memory locations to
7641overlap.
7642
7643Note that, unlike the standard libc function, the ``llvm.memmove.*``
7644intrinsics do not return a value, takes extra alignment/isvolatile
7645arguments and the pointers can be in specified address spaces.
7646
7647Arguments:
7648""""""""""
7649
7650The first argument is a pointer to the destination, the second is a
7651pointer to the source. The third argument is an integer argument
7652specifying the number of bytes to copy, the fourth argument is the
7653alignment of the source and destination locations, and the fifth is a
7654boolean indicating a volatile access.
7655
7656If the call to this intrinsic has an alignment value that is not 0 or 1,
7657then the caller guarantees that the source and destination pointers are
7658aligned to that boundary.
7659
7660If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7661is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7662not very cleanly specified and it is unwise to depend on it.
7663
7664Semantics:
7665""""""""""
7666
7667The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7668source location to the destination location, which may overlap. It
7669copies "len" bytes of memory over. If the argument is known to be
7670aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007671otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007672
7673'``llvm.memset.*``' Intrinsics
7674^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7675
7676Syntax:
7677"""""""
7678
7679This is an overloaded intrinsic. You can use llvm.memset on any integer
7680bit width and for different address spaces. However, not all targets
7681support all bit widths.
7682
7683::
7684
7685 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7686 i32 <len>, i32 <align>, i1 <isvolatile>)
7687 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7688 i64 <len>, i32 <align>, i1 <isvolatile>)
7689
7690Overview:
7691"""""""""
7692
7693The '``llvm.memset.*``' intrinsics fill a block of memory with a
7694particular byte value.
7695
7696Note that, unlike the standard libc function, the ``llvm.memset``
7697intrinsic does not return a value and takes extra alignment/volatile
7698arguments. Also, the destination can be in an arbitrary address space.
7699
7700Arguments:
7701""""""""""
7702
7703The first argument is a pointer to the destination to fill, the second
7704is the byte value with which to fill it, the third argument is an
7705integer argument specifying the number of bytes to fill, and the fourth
7706argument is the known alignment of the destination location.
7707
7708If the call to this intrinsic has an alignment value that is not 0 or 1,
7709then the caller guarantees that the destination pointer is aligned to
7710that boundary.
7711
7712If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7713a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7714very cleanly specified and it is unwise to depend on it.
7715
7716Semantics:
7717""""""""""
7718
7719The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7720at the destination location. If the argument is known to be aligned to
7721some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007722it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007723
7724'``llvm.sqrt.*``' Intrinsic
7725^^^^^^^^^^^^^^^^^^^^^^^^^^^
7726
7727Syntax:
7728"""""""
7729
7730This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7731floating point or vector of floating point type. Not all targets support
7732all types however.
7733
7734::
7735
7736 declare float @llvm.sqrt.f32(float %Val)
7737 declare double @llvm.sqrt.f64(double %Val)
7738 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7739 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7740 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7741
7742Overview:
7743"""""""""
7744
7745The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7746returning the same value as the libm '``sqrt``' functions would. Unlike
7747``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7748negative numbers other than -0.0 (which allows for better optimization,
7749because there is no need to worry about errno being set).
7750``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7751
7752Arguments:
7753""""""""""
7754
7755The argument and return value are floating point numbers of the same
7756type.
7757
7758Semantics:
7759""""""""""
7760
7761This function returns the sqrt of the specified operand if it is a
7762nonnegative floating point number.
7763
7764'``llvm.powi.*``' Intrinsic
7765^^^^^^^^^^^^^^^^^^^^^^^^^^^
7766
7767Syntax:
7768"""""""
7769
7770This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7771floating point or vector of floating point type. Not all targets support
7772all types however.
7773
7774::
7775
7776 declare float @llvm.powi.f32(float %Val, i32 %power)
7777 declare double @llvm.powi.f64(double %Val, i32 %power)
7778 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7779 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7780 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7781
7782Overview:
7783"""""""""
7784
7785The '``llvm.powi.*``' intrinsics return the first operand raised to the
7786specified (positive or negative) power. The order of evaluation of
7787multiplications is not defined. When a vector of floating point type is
7788used, the second argument remains a scalar integer value.
7789
7790Arguments:
7791""""""""""
7792
7793The second argument is an integer power, and the first is a value to
7794raise to that power.
7795
7796Semantics:
7797""""""""""
7798
7799This function returns the first value raised to the second power with an
7800unspecified sequence of rounding operations.
7801
7802'``llvm.sin.*``' Intrinsic
7803^^^^^^^^^^^^^^^^^^^^^^^^^^
7804
7805Syntax:
7806"""""""
7807
7808This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7809floating point or vector of floating point type. Not all targets support
7810all types however.
7811
7812::
7813
7814 declare float @llvm.sin.f32(float %Val)
7815 declare double @llvm.sin.f64(double %Val)
7816 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7817 declare fp128 @llvm.sin.f128(fp128 %Val)
7818 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7819
7820Overview:
7821"""""""""
7822
7823The '``llvm.sin.*``' intrinsics return the sine of the operand.
7824
7825Arguments:
7826""""""""""
7827
7828The argument and return value are floating point numbers of the same
7829type.
7830
7831Semantics:
7832""""""""""
7833
7834This function returns the sine of the specified operand, returning the
7835same values as the libm ``sin`` functions would, and handles error
7836conditions in the same way.
7837
7838'``llvm.cos.*``' Intrinsic
7839^^^^^^^^^^^^^^^^^^^^^^^^^^
7840
7841Syntax:
7842"""""""
7843
7844This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7845floating point or vector of floating point type. Not all targets support
7846all types however.
7847
7848::
7849
7850 declare float @llvm.cos.f32(float %Val)
7851 declare double @llvm.cos.f64(double %Val)
7852 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7853 declare fp128 @llvm.cos.f128(fp128 %Val)
7854 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7855
7856Overview:
7857"""""""""
7858
7859The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7860
7861Arguments:
7862""""""""""
7863
7864The argument and return value are floating point numbers of the same
7865type.
7866
7867Semantics:
7868""""""""""
7869
7870This function returns the cosine of the specified operand, returning the
7871same values as the libm ``cos`` functions would, and handles error
7872conditions in the same way.
7873
7874'``llvm.pow.*``' Intrinsic
7875^^^^^^^^^^^^^^^^^^^^^^^^^^
7876
7877Syntax:
7878"""""""
7879
7880This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7881floating point or vector of floating point type. Not all targets support
7882all types however.
7883
7884::
7885
7886 declare float @llvm.pow.f32(float %Val, float %Power)
7887 declare double @llvm.pow.f64(double %Val, double %Power)
7888 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7889 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7890 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7891
7892Overview:
7893"""""""""
7894
7895The '``llvm.pow.*``' intrinsics return the first operand raised to the
7896specified (positive or negative) power.
7897
7898Arguments:
7899""""""""""
7900
7901The second argument is a floating point power, and the first is a value
7902to raise to that power.
7903
7904Semantics:
7905""""""""""
7906
7907This function returns the first value raised to the second power,
7908returning the same values as the libm ``pow`` functions would, and
7909handles error conditions in the same way.
7910
7911'``llvm.exp.*``' Intrinsic
7912^^^^^^^^^^^^^^^^^^^^^^^^^^
7913
7914Syntax:
7915"""""""
7916
7917This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7918floating point or vector of floating point type. Not all targets support
7919all types however.
7920
7921::
7922
7923 declare float @llvm.exp.f32(float %Val)
7924 declare double @llvm.exp.f64(double %Val)
7925 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7926 declare fp128 @llvm.exp.f128(fp128 %Val)
7927 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7928
7929Overview:
7930"""""""""
7931
7932The '``llvm.exp.*``' intrinsics perform the exp function.
7933
7934Arguments:
7935""""""""""
7936
7937The argument and return value are floating point numbers of the same
7938type.
7939
7940Semantics:
7941""""""""""
7942
7943This function returns the same values as the libm ``exp`` functions
7944would, and handles error conditions in the same way.
7945
7946'``llvm.exp2.*``' Intrinsic
7947^^^^^^^^^^^^^^^^^^^^^^^^^^^
7948
7949Syntax:
7950"""""""
7951
7952This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7953floating point or vector of floating point type. Not all targets support
7954all types however.
7955
7956::
7957
7958 declare float @llvm.exp2.f32(float %Val)
7959 declare double @llvm.exp2.f64(double %Val)
7960 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7961 declare fp128 @llvm.exp2.f128(fp128 %Val)
7962 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7963
7964Overview:
7965"""""""""
7966
7967The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7968
7969Arguments:
7970""""""""""
7971
7972The argument and return value are floating point numbers of the same
7973type.
7974
7975Semantics:
7976""""""""""
7977
7978This function returns the same values as the libm ``exp2`` functions
7979would, and handles error conditions in the same way.
7980
7981'``llvm.log.*``' Intrinsic
7982^^^^^^^^^^^^^^^^^^^^^^^^^^
7983
7984Syntax:
7985"""""""
7986
7987This is an overloaded intrinsic. You can use ``llvm.log`` on any
7988floating point or vector of floating point type. Not all targets support
7989all types however.
7990
7991::
7992
7993 declare float @llvm.log.f32(float %Val)
7994 declare double @llvm.log.f64(double %Val)
7995 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7996 declare fp128 @llvm.log.f128(fp128 %Val)
7997 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7998
7999Overview:
8000"""""""""
8001
8002The '``llvm.log.*``' intrinsics perform the log function.
8003
8004Arguments:
8005""""""""""
8006
8007The argument and return value are floating point numbers of the same
8008type.
8009
8010Semantics:
8011""""""""""
8012
8013This function returns the same values as the libm ``log`` functions
8014would, and handles error conditions in the same way.
8015
8016'``llvm.log10.*``' Intrinsic
8017^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8018
8019Syntax:
8020"""""""
8021
8022This is an overloaded intrinsic. You can use ``llvm.log10`` on any
8023floating point or vector of floating point type. Not all targets support
8024all types however.
8025
8026::
8027
8028 declare float @llvm.log10.f32(float %Val)
8029 declare double @llvm.log10.f64(double %Val)
8030 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
8031 declare fp128 @llvm.log10.f128(fp128 %Val)
8032 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
8033
8034Overview:
8035"""""""""
8036
8037The '``llvm.log10.*``' intrinsics perform the log10 function.
8038
8039Arguments:
8040""""""""""
8041
8042The argument and return value are floating point numbers of the same
8043type.
8044
8045Semantics:
8046""""""""""
8047
8048This function returns the same values as the libm ``log10`` functions
8049would, and handles error conditions in the same way.
8050
8051'``llvm.log2.*``' Intrinsic
8052^^^^^^^^^^^^^^^^^^^^^^^^^^^
8053
8054Syntax:
8055"""""""
8056
8057This is an overloaded intrinsic. You can use ``llvm.log2`` on any
8058floating point or vector of floating point type. Not all targets support
8059all types however.
8060
8061::
8062
8063 declare float @llvm.log2.f32(float %Val)
8064 declare double @llvm.log2.f64(double %Val)
8065 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
8066 declare fp128 @llvm.log2.f128(fp128 %Val)
8067 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
8068
8069Overview:
8070"""""""""
8071
8072The '``llvm.log2.*``' intrinsics perform the log2 function.
8073
8074Arguments:
8075""""""""""
8076
8077The argument and return value are floating point numbers of the same
8078type.
8079
8080Semantics:
8081""""""""""
8082
8083This function returns the same values as the libm ``log2`` functions
8084would, and handles error conditions in the same way.
8085
8086'``llvm.fma.*``' Intrinsic
8087^^^^^^^^^^^^^^^^^^^^^^^^^^
8088
8089Syntax:
8090"""""""
8091
8092This is an overloaded intrinsic. You can use ``llvm.fma`` on any
8093floating point or vector of floating point type. Not all targets support
8094all types however.
8095
8096::
8097
8098 declare float @llvm.fma.f32(float %a, float %b, float %c)
8099 declare double @llvm.fma.f64(double %a, double %b, double %c)
8100 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
8101 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
8102 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
8103
8104Overview:
8105"""""""""
8106
8107The '``llvm.fma.*``' intrinsics perform the fused multiply-add
8108operation.
8109
8110Arguments:
8111""""""""""
8112
8113The argument and return value are floating point numbers of the same
8114type.
8115
8116Semantics:
8117""""""""""
8118
8119This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008120would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00008121
8122'``llvm.fabs.*``' Intrinsic
8123^^^^^^^^^^^^^^^^^^^^^^^^^^^
8124
8125Syntax:
8126"""""""
8127
8128This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
8129floating point or vector of floating point type. Not all targets support
8130all types however.
8131
8132::
8133
8134 declare float @llvm.fabs.f32(float %Val)
8135 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008136 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008137 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008138 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008139
8140Overview:
8141"""""""""
8142
8143The '``llvm.fabs.*``' intrinsics return the absolute value of the
8144operand.
8145
8146Arguments:
8147""""""""""
8148
8149The argument and return value are floating point numbers of the same
8150type.
8151
8152Semantics:
8153""""""""""
8154
8155This function returns the same values as the libm ``fabs`` functions
8156would, and handles error conditions in the same way.
8157
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008158'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008159^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008160
8161Syntax:
8162"""""""
8163
8164This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
8165floating point or vector of floating point type. Not all targets support
8166all types however.
8167
8168::
8169
Matt Arsenault64313c92014-10-22 18:25:02 +00008170 declare float @llvm.minnum.f32(float %Val0, float %Val1)
8171 declare double @llvm.minnum.f64(double %Val0, double %Val1)
8172 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8173 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
8174 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008175
8176Overview:
8177"""""""""
8178
8179The '``llvm.minnum.*``' intrinsics return the minimum of the two
8180arguments.
8181
8182
8183Arguments:
8184""""""""""
8185
8186The arguments and return value are floating point numbers of the same
8187type.
8188
8189Semantics:
8190""""""""""
8191
8192Follows the IEEE-754 semantics for minNum, which also match for libm's
8193fmin.
8194
8195If either operand is a NaN, returns the other non-NaN operand. Returns
8196NaN only if both operands are NaN. If the operands compare equal,
8197returns a value that compares equal to both operands. This means that
8198fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8199
8200'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008201^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008202
8203Syntax:
8204"""""""
8205
8206This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
8207floating point or vector of floating point type. Not all targets support
8208all types however.
8209
8210::
8211
Matt Arsenault64313c92014-10-22 18:25:02 +00008212 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
8213 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
8214 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8215 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
8216 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008217
8218Overview:
8219"""""""""
8220
8221The '``llvm.maxnum.*``' intrinsics return the maximum of the two
8222arguments.
8223
8224
8225Arguments:
8226""""""""""
8227
8228The arguments and return value are floating point numbers of the same
8229type.
8230
8231Semantics:
8232""""""""""
8233Follows the IEEE-754 semantics for maxNum, which also match for libm's
8234fmax.
8235
8236If either operand is a NaN, returns the other non-NaN operand. Returns
8237NaN only if both operands are NaN. If the operands compare equal,
8238returns a value that compares equal to both operands. This means that
8239fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8240
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00008241'``llvm.copysign.*``' Intrinsic
8242^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8243
8244Syntax:
8245"""""""
8246
8247This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
8248floating point or vector of floating point type. Not all targets support
8249all types however.
8250
8251::
8252
8253 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
8254 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
8255 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
8256 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8257 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
8258
8259Overview:
8260"""""""""
8261
8262The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8263first operand and the sign of the second operand.
8264
8265Arguments:
8266""""""""""
8267
8268The arguments and return value are floating point numbers of the same
8269type.
8270
8271Semantics:
8272""""""""""
8273
8274This function returns the same values as the libm ``copysign``
8275functions would, and handles error conditions in the same way.
8276
Sean Silvab084af42012-12-07 10:36:55 +00008277'``llvm.floor.*``' Intrinsic
8278^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8279
8280Syntax:
8281"""""""
8282
8283This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8284floating point or vector of floating point type. Not all targets support
8285all types however.
8286
8287::
8288
8289 declare float @llvm.floor.f32(float %Val)
8290 declare double @llvm.floor.f64(double %Val)
8291 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
8292 declare fp128 @llvm.floor.f128(fp128 %Val)
8293 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
8294
8295Overview:
8296"""""""""
8297
8298The '``llvm.floor.*``' intrinsics return the floor of the operand.
8299
8300Arguments:
8301""""""""""
8302
8303The argument and return value are floating point numbers of the same
8304type.
8305
8306Semantics:
8307""""""""""
8308
8309This function returns the same values as the libm ``floor`` functions
8310would, and handles error conditions in the same way.
8311
8312'``llvm.ceil.*``' Intrinsic
8313^^^^^^^^^^^^^^^^^^^^^^^^^^^
8314
8315Syntax:
8316"""""""
8317
8318This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8319floating point or vector of floating point type. Not all targets support
8320all types however.
8321
8322::
8323
8324 declare float @llvm.ceil.f32(float %Val)
8325 declare double @llvm.ceil.f64(double %Val)
8326 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8327 declare fp128 @llvm.ceil.f128(fp128 %Val)
8328 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8329
8330Overview:
8331"""""""""
8332
8333The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8334
8335Arguments:
8336""""""""""
8337
8338The argument and return value are floating point numbers of the same
8339type.
8340
8341Semantics:
8342""""""""""
8343
8344This function returns the same values as the libm ``ceil`` functions
8345would, and handles error conditions in the same way.
8346
8347'``llvm.trunc.*``' Intrinsic
8348^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8349
8350Syntax:
8351"""""""
8352
8353This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8354floating point or vector of floating point type. Not all targets support
8355all types however.
8356
8357::
8358
8359 declare float @llvm.trunc.f32(float %Val)
8360 declare double @llvm.trunc.f64(double %Val)
8361 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8362 declare fp128 @llvm.trunc.f128(fp128 %Val)
8363 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8364
8365Overview:
8366"""""""""
8367
8368The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8369nearest integer not larger in magnitude than the operand.
8370
8371Arguments:
8372""""""""""
8373
8374The argument and return value are floating point numbers of the same
8375type.
8376
8377Semantics:
8378""""""""""
8379
8380This function returns the same values as the libm ``trunc`` functions
8381would, and handles error conditions in the same way.
8382
8383'``llvm.rint.*``' Intrinsic
8384^^^^^^^^^^^^^^^^^^^^^^^^^^^
8385
8386Syntax:
8387"""""""
8388
8389This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8390floating point or vector of floating point type. Not all targets support
8391all types however.
8392
8393::
8394
8395 declare float @llvm.rint.f32(float %Val)
8396 declare double @llvm.rint.f64(double %Val)
8397 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8398 declare fp128 @llvm.rint.f128(fp128 %Val)
8399 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8400
8401Overview:
8402"""""""""
8403
8404The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8405nearest integer. It may raise an inexact floating-point exception if the
8406operand isn't an integer.
8407
8408Arguments:
8409""""""""""
8410
8411The argument and return value are floating point numbers of the same
8412type.
8413
8414Semantics:
8415""""""""""
8416
8417This function returns the same values as the libm ``rint`` functions
8418would, and handles error conditions in the same way.
8419
8420'``llvm.nearbyint.*``' Intrinsic
8421^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8422
8423Syntax:
8424"""""""
8425
8426This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8427floating point or vector of floating point type. Not all targets support
8428all types however.
8429
8430::
8431
8432 declare float @llvm.nearbyint.f32(float %Val)
8433 declare double @llvm.nearbyint.f64(double %Val)
8434 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8435 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8436 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8437
8438Overview:
8439"""""""""
8440
8441The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8442nearest integer.
8443
8444Arguments:
8445""""""""""
8446
8447The argument and return value are floating point numbers of the same
8448type.
8449
8450Semantics:
8451""""""""""
8452
8453This function returns the same values as the libm ``nearbyint``
8454functions would, and handles error conditions in the same way.
8455
Hal Finkel171817e2013-08-07 22:49:12 +00008456'``llvm.round.*``' Intrinsic
8457^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8458
8459Syntax:
8460"""""""
8461
8462This is an overloaded intrinsic. You can use ``llvm.round`` on any
8463floating point or vector of floating point type. Not all targets support
8464all types however.
8465
8466::
8467
8468 declare float @llvm.round.f32(float %Val)
8469 declare double @llvm.round.f64(double %Val)
8470 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8471 declare fp128 @llvm.round.f128(fp128 %Val)
8472 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8473
8474Overview:
8475"""""""""
8476
8477The '``llvm.round.*``' intrinsics returns the operand rounded to the
8478nearest integer.
8479
8480Arguments:
8481""""""""""
8482
8483The argument and return value are floating point numbers of the same
8484type.
8485
8486Semantics:
8487""""""""""
8488
8489This function returns the same values as the libm ``round``
8490functions would, and handles error conditions in the same way.
8491
Sean Silvab084af42012-12-07 10:36:55 +00008492Bit Manipulation Intrinsics
8493---------------------------
8494
8495LLVM provides intrinsics for a few important bit manipulation
8496operations. These allow efficient code generation for some algorithms.
8497
8498'``llvm.bswap.*``' Intrinsics
8499^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8500
8501Syntax:
8502"""""""
8503
8504This is an overloaded intrinsic function. You can use bswap on any
8505integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8506
8507::
8508
8509 declare i16 @llvm.bswap.i16(i16 <id>)
8510 declare i32 @llvm.bswap.i32(i32 <id>)
8511 declare i64 @llvm.bswap.i64(i64 <id>)
8512
8513Overview:
8514"""""""""
8515
8516The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8517values with an even number of bytes (positive multiple of 16 bits).
8518These are useful for performing operations on data that is not in the
8519target's native byte order.
8520
8521Semantics:
8522""""""""""
8523
8524The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8525and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8526intrinsic returns an i32 value that has the four bytes of the input i32
8527swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8528returned i32 will have its bytes in 3, 2, 1, 0 order. The
8529``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8530concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8531respectively).
8532
8533'``llvm.ctpop.*``' Intrinsic
8534^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8535
8536Syntax:
8537"""""""
8538
8539This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8540bit width, or on any vector with integer elements. Not all targets
8541support all bit widths or vector types, however.
8542
8543::
8544
8545 declare i8 @llvm.ctpop.i8(i8 <src>)
8546 declare i16 @llvm.ctpop.i16(i16 <src>)
8547 declare i32 @llvm.ctpop.i32(i32 <src>)
8548 declare i64 @llvm.ctpop.i64(i64 <src>)
8549 declare i256 @llvm.ctpop.i256(i256 <src>)
8550 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8551
8552Overview:
8553"""""""""
8554
8555The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8556in a value.
8557
8558Arguments:
8559""""""""""
8560
8561The only argument is the value to be counted. The argument may be of any
8562integer type, or a vector with integer elements. The return type must
8563match the argument type.
8564
8565Semantics:
8566""""""""""
8567
8568The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8569each element of a vector.
8570
8571'``llvm.ctlz.*``' Intrinsic
8572^^^^^^^^^^^^^^^^^^^^^^^^^^^
8573
8574Syntax:
8575"""""""
8576
8577This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8578integer bit width, or any vector whose elements are integers. Not all
8579targets support all bit widths or vector types, however.
8580
8581::
8582
8583 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8584 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8585 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8586 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8587 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8588 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8589
8590Overview:
8591"""""""""
8592
8593The '``llvm.ctlz``' family of intrinsic functions counts the number of
8594leading zeros in a variable.
8595
8596Arguments:
8597""""""""""
8598
8599The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00008600any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00008601type must match the first argument type.
8602
8603The second argument must be a constant and is a flag to indicate whether
8604the intrinsic should ensure that a zero as the first argument produces a
8605defined result. Historically some architectures did not provide a
8606defined result for zero values as efficiently, and many algorithms are
8607now predicated on avoiding zero-value inputs.
8608
8609Semantics:
8610""""""""""
8611
8612The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8613zeros in a variable, or within each element of the vector. If
8614``src == 0`` then the result is the size in bits of the type of ``src``
8615if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8616``llvm.ctlz(i32 2) = 30``.
8617
8618'``llvm.cttz.*``' Intrinsic
8619^^^^^^^^^^^^^^^^^^^^^^^^^^^
8620
8621Syntax:
8622"""""""
8623
8624This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8625integer bit width, or any vector of integer elements. Not all targets
8626support all bit widths or vector types, however.
8627
8628::
8629
8630 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8631 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8632 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8633 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8634 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8635 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8636
8637Overview:
8638"""""""""
8639
8640The '``llvm.cttz``' family of intrinsic functions counts the number of
8641trailing zeros.
8642
8643Arguments:
8644""""""""""
8645
8646The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00008647any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00008648type must match the first argument type.
8649
8650The second argument must be a constant and is a flag to indicate whether
8651the intrinsic should ensure that a zero as the first argument produces a
8652defined result. Historically some architectures did not provide a
8653defined result for zero values as efficiently, and many algorithms are
8654now predicated on avoiding zero-value inputs.
8655
8656Semantics:
8657""""""""""
8658
8659The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8660zeros in a variable, or within each element of a vector. If ``src == 0``
8661then the result is the size in bits of the type of ``src`` if
8662``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8663``llvm.cttz(2) = 1``.
8664
8665Arithmetic with Overflow Intrinsics
8666-----------------------------------
8667
8668LLVM provides intrinsics for some arithmetic with overflow operations.
8669
8670'``llvm.sadd.with.overflow.*``' Intrinsics
8671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8672
8673Syntax:
8674"""""""
8675
8676This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8677on any integer bit width.
8678
8679::
8680
8681 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8682 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8683 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8684
8685Overview:
8686"""""""""
8687
8688The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8689a signed addition of the two arguments, and indicate whether an overflow
8690occurred during the signed summation.
8691
8692Arguments:
8693""""""""""
8694
8695The arguments (%a and %b) and the first element of the result structure
8696may be of integer types of any bit width, but they must have the same
8697bit width. The second element of the result structure must be of type
8698``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8699addition.
8700
8701Semantics:
8702""""""""""
8703
8704The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008705a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008706first element of which is the signed summation, and the second element
8707of which is a bit specifying if the signed summation resulted in an
8708overflow.
8709
8710Examples:
8711"""""""""
8712
8713.. code-block:: llvm
8714
8715 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8716 %sum = extractvalue {i32, i1} %res, 0
8717 %obit = extractvalue {i32, i1} %res, 1
8718 br i1 %obit, label %overflow, label %normal
8719
8720'``llvm.uadd.with.overflow.*``' Intrinsics
8721^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8722
8723Syntax:
8724"""""""
8725
8726This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8727on any integer bit width.
8728
8729::
8730
8731 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8732 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8733 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8734
8735Overview:
8736"""""""""
8737
8738The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8739an unsigned addition of the two arguments, and indicate whether a carry
8740occurred during the unsigned summation.
8741
8742Arguments:
8743""""""""""
8744
8745The arguments (%a and %b) and the first element of the result structure
8746may be of integer types of any bit width, but they must have the same
8747bit width. The second element of the result structure must be of type
8748``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8749addition.
8750
8751Semantics:
8752""""""""""
8753
8754The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008755an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008756first element of which is the sum, and the second element of which is a
8757bit specifying if the unsigned summation resulted in a carry.
8758
8759Examples:
8760"""""""""
8761
8762.. code-block:: llvm
8763
8764 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8765 %sum = extractvalue {i32, i1} %res, 0
8766 %obit = extractvalue {i32, i1} %res, 1
8767 br i1 %obit, label %carry, label %normal
8768
8769'``llvm.ssub.with.overflow.*``' Intrinsics
8770^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8771
8772Syntax:
8773"""""""
8774
8775This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8776on any integer bit width.
8777
8778::
8779
8780 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8781 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8782 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8783
8784Overview:
8785"""""""""
8786
8787The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8788a signed subtraction of the two arguments, and indicate whether an
8789overflow occurred during the signed subtraction.
8790
8791Arguments:
8792""""""""""
8793
8794The arguments (%a and %b) and the first element of the result structure
8795may be of integer types of any bit width, but they must have the same
8796bit width. The second element of the result structure must be of type
8797``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8798subtraction.
8799
8800Semantics:
8801""""""""""
8802
8803The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008804a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008805first element of which is the subtraction, and the second element of
8806which is a bit specifying if the signed subtraction resulted in an
8807overflow.
8808
8809Examples:
8810"""""""""
8811
8812.. code-block:: llvm
8813
8814 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8815 %sum = extractvalue {i32, i1} %res, 0
8816 %obit = extractvalue {i32, i1} %res, 1
8817 br i1 %obit, label %overflow, label %normal
8818
8819'``llvm.usub.with.overflow.*``' Intrinsics
8820^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8821
8822Syntax:
8823"""""""
8824
8825This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8826on any integer bit width.
8827
8828::
8829
8830 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8831 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8832 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8833
8834Overview:
8835"""""""""
8836
8837The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8838an unsigned subtraction of the two arguments, and indicate whether an
8839overflow occurred during the unsigned subtraction.
8840
8841Arguments:
8842""""""""""
8843
8844The arguments (%a and %b) and the first element of the result structure
8845may be of integer types of any bit width, but they must have the same
8846bit width. The second element of the result structure must be of type
8847``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8848subtraction.
8849
8850Semantics:
8851""""""""""
8852
8853The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008854an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008855the first element of which is the subtraction, and the second element of
8856which is a bit specifying if the unsigned subtraction resulted in an
8857overflow.
8858
8859Examples:
8860"""""""""
8861
8862.. code-block:: llvm
8863
8864 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8865 %sum = extractvalue {i32, i1} %res, 0
8866 %obit = extractvalue {i32, i1} %res, 1
8867 br i1 %obit, label %overflow, label %normal
8868
8869'``llvm.smul.with.overflow.*``' Intrinsics
8870^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8871
8872Syntax:
8873"""""""
8874
8875This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8876on any integer bit width.
8877
8878::
8879
8880 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8881 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8882 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8883
8884Overview:
8885"""""""""
8886
8887The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8888a signed multiplication of the two arguments, and indicate whether an
8889overflow occurred during the signed multiplication.
8890
8891Arguments:
8892""""""""""
8893
8894The arguments (%a and %b) and the first element of the result structure
8895may be of integer types of any bit width, but they must have the same
8896bit width. The second element of the result structure must be of type
8897``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8898multiplication.
8899
8900Semantics:
8901""""""""""
8902
8903The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008904a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008905the first element of which is the multiplication, and the second element
8906of which is a bit specifying if the signed multiplication resulted in an
8907overflow.
8908
8909Examples:
8910"""""""""
8911
8912.. code-block:: llvm
8913
8914 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8915 %sum = extractvalue {i32, i1} %res, 0
8916 %obit = extractvalue {i32, i1} %res, 1
8917 br i1 %obit, label %overflow, label %normal
8918
8919'``llvm.umul.with.overflow.*``' Intrinsics
8920^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8921
8922Syntax:
8923"""""""
8924
8925This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8926on any integer bit width.
8927
8928::
8929
8930 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8931 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8932 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8933
8934Overview:
8935"""""""""
8936
8937The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8938a unsigned multiplication of the two arguments, and indicate whether an
8939overflow occurred during the unsigned multiplication.
8940
8941Arguments:
8942""""""""""
8943
8944The arguments (%a and %b) and the first element of the result structure
8945may be of integer types of any bit width, but they must have the same
8946bit width. The second element of the result structure must be of type
8947``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8948multiplication.
8949
8950Semantics:
8951""""""""""
8952
8953The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008954an unsigned multiplication of the two arguments. They return a structure ---
8955the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008956element of which is a bit specifying if the unsigned multiplication
8957resulted in an overflow.
8958
8959Examples:
8960"""""""""
8961
8962.. code-block:: llvm
8963
8964 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8965 %sum = extractvalue {i32, i1} %res, 0
8966 %obit = extractvalue {i32, i1} %res, 1
8967 br i1 %obit, label %overflow, label %normal
8968
8969Specialised Arithmetic Intrinsics
8970---------------------------------
8971
8972'``llvm.fmuladd.*``' Intrinsic
8973^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8974
8975Syntax:
8976"""""""
8977
8978::
8979
8980 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8981 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8982
8983Overview:
8984"""""""""
8985
8986The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008987expressions that can be fused if the code generator determines that (a) the
8988target instruction set has support for a fused operation, and (b) that the
8989fused operation is more efficient than the equivalent, separate pair of mul
8990and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008991
8992Arguments:
8993""""""""""
8994
8995The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
8996multiplicands, a and b, and an addend c.
8997
8998Semantics:
8999""""""""""
9000
9001The expression:
9002
9003::
9004
9005 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
9006
9007is equivalent to the expression a \* b + c, except that rounding will
9008not be performed between the multiplication and addition steps if the
9009code generator fuses the operations. Fusion is not guaranteed, even if
9010the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009011corresponding llvm.fma.\* intrinsic function should be used
9012instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00009013
9014Examples:
9015"""""""""
9016
9017.. code-block:: llvm
9018
Tim Northover675a0962014-06-13 14:24:23 +00009019 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00009020
9021Half Precision Floating Point Intrinsics
9022----------------------------------------
9023
9024For most target platforms, half precision floating point is a
9025storage-only format. This means that it is a dense encoding (in memory)
9026but does not support computation in the format.
9027
9028This means that code must first load the half-precision floating point
9029value as an i16, then convert it to float with
9030:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
9031then be performed on the float value (including extending to double
9032etc). To store the value back to memory, it is first converted to float
9033if needed, then converted to i16 with
9034:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
9035i16 value.
9036
9037.. _int_convert_to_fp16:
9038
9039'``llvm.convert.to.fp16``' Intrinsic
9040^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9041
9042Syntax:
9043"""""""
9044
9045::
9046
Tim Northoverfd7e4242014-07-17 10:51:23 +00009047 declare i16 @llvm.convert.to.fp16.f32(float %a)
9048 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00009049
9050Overview:
9051"""""""""
9052
Tim Northoverfd7e4242014-07-17 10:51:23 +00009053The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9054conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00009055
9056Arguments:
9057""""""""""
9058
9059The intrinsic function contains single argument - the value to be
9060converted.
9061
9062Semantics:
9063""""""""""
9064
Tim Northoverfd7e4242014-07-17 10:51:23 +00009065The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9066conventional floating point format to half precision floating point format. The
9067return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00009068
9069Examples:
9070"""""""""
9071
9072.. code-block:: llvm
9073
Tim Northoverfd7e4242014-07-17 10:51:23 +00009074 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00009075 store i16 %res, i16* @x, align 2
9076
9077.. _int_convert_from_fp16:
9078
9079'``llvm.convert.from.fp16``' Intrinsic
9080^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9081
9082Syntax:
9083"""""""
9084
9085::
9086
Tim Northoverfd7e4242014-07-17 10:51:23 +00009087 declare float @llvm.convert.from.fp16.f32(i16 %a)
9088 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009089
9090Overview:
9091"""""""""
9092
9093The '``llvm.convert.from.fp16``' intrinsic function performs a
9094conversion from half precision floating point format to single precision
9095floating point format.
9096
9097Arguments:
9098""""""""""
9099
9100The intrinsic function contains single argument - the value to be
9101converted.
9102
9103Semantics:
9104""""""""""
9105
9106The '``llvm.convert.from.fp16``' intrinsic function performs a
9107conversion from half single precision floating point format to single
9108precision floating point format. The input half-float value is
9109represented by an ``i16`` value.
9110
9111Examples:
9112"""""""""
9113
9114.. code-block:: llvm
9115
9116 %a = load i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00009117 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009118
9119Debugger Intrinsics
9120-------------------
9121
9122The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
9123prefix), are described in the `LLVM Source Level
9124Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
9125document.
9126
9127Exception Handling Intrinsics
9128-----------------------------
9129
9130The LLVM exception handling intrinsics (which all start with
9131``llvm.eh.`` prefix), are described in the `LLVM Exception
9132Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
9133
9134.. _int_trampoline:
9135
9136Trampoline Intrinsics
9137---------------------
9138
9139These intrinsics make it possible to excise one parameter, marked with
9140the :ref:`nest <nest>` attribute, from a function. The result is a
9141callable function pointer lacking the nest parameter - the caller does
9142not need to provide a value for it. Instead, the value to use is stored
9143in advance in a "trampoline", a block of memory usually allocated on the
9144stack, which also contains code to splice the nest value into the
9145argument list. This is used to implement the GCC nested function address
9146extension.
9147
9148For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
9149then the resulting function pointer has signature ``i32 (i32, i32)*``.
9150It can be created as follows:
9151
9152.. code-block:: llvm
9153
9154 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
9155 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
9156 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
9157 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
9158 %fp = bitcast i8* %p to i32 (i32, i32)*
9159
9160The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
9161``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
9162
9163.. _int_it:
9164
9165'``llvm.init.trampoline``' Intrinsic
9166^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9167
9168Syntax:
9169"""""""
9170
9171::
9172
9173 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
9174
9175Overview:
9176"""""""""
9177
9178This fills the memory pointed to by ``tramp`` with executable code,
9179turning it into a trampoline.
9180
9181Arguments:
9182""""""""""
9183
9184The ``llvm.init.trampoline`` intrinsic takes three arguments, all
9185pointers. The ``tramp`` argument must point to a sufficiently large and
9186sufficiently aligned block of memory; this memory is written to by the
9187intrinsic. Note that the size and the alignment are target-specific -
9188LLVM currently provides no portable way of determining them, so a
9189front-end that generates this intrinsic needs to have some
9190target-specific knowledge. The ``func`` argument must hold a function
9191bitcast to an ``i8*``.
9192
9193Semantics:
9194""""""""""
9195
9196The block of memory pointed to by ``tramp`` is filled with target
9197dependent code, turning it into a function. Then ``tramp`` needs to be
9198passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
9199be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
9200function's signature is the same as that of ``func`` with any arguments
9201marked with the ``nest`` attribute removed. At most one such ``nest``
9202argument is allowed, and it must be of pointer type. Calling the new
9203function is equivalent to calling ``func`` with the same argument list,
9204but with ``nval`` used for the missing ``nest`` argument. If, after
9205calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
9206modified, then the effect of any later call to the returned function
9207pointer is undefined.
9208
9209.. _int_at:
9210
9211'``llvm.adjust.trampoline``' Intrinsic
9212^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9213
9214Syntax:
9215"""""""
9216
9217::
9218
9219 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
9220
9221Overview:
9222"""""""""
9223
9224This performs any required machine-specific adjustment to the address of
9225a trampoline (passed as ``tramp``).
9226
9227Arguments:
9228""""""""""
9229
9230``tramp`` must point to a block of memory which already has trampoline
9231code filled in by a previous call to
9232:ref:`llvm.init.trampoline <int_it>`.
9233
9234Semantics:
9235""""""""""
9236
9237On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009238different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00009239intrinsic returns the executable address corresponding to ``tramp``
9240after performing the required machine specific adjustments. The pointer
9241returned can then be :ref:`bitcast and executed <int_trampoline>`.
9242
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009243Masked Vector Load and Store Intrinsics
9244---------------------------------------
9245
9246LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
9247
9248.. _int_mload:
9249
9250'``llvm.masked.load.*``' Intrinsics
9251^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9252
9253Syntax:
9254"""""""
9255This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
9256
9257::
9258
9259 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
9260 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
9261
9262Overview:
9263"""""""""
9264
9265Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes in the passthru operand.
9266
9267
9268Arguments:
9269""""""""""
9270
9271The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean 'i1' values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of passthru operand are the same vector types.
9272
9273
9274Semantics:
9275""""""""""
9276
9277The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
9278The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
9279
9280
9281::
9282
9283 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
9284
9285 ;; The result of the two following instructions is identical aside from potential memory access exception
9286 %loadlal = load <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009287 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009288
9289.. _int_mstore:
9290
9291'``llvm.masked.store.*``' Intrinsics
9292^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9293
9294Syntax:
9295"""""""
9296This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
9297
9298::
9299
9300 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
9301 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
9302
9303Overview:
9304"""""""""
9305
9306Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
9307
9308Arguments:
9309""""""""""
9310
9311The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
9312
9313
9314Semantics:
9315""""""""""
9316
9317The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
9318The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
9319
9320::
9321
9322 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
9323
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009324 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009325 %oldval = load <16 x float>* %ptr, align 4
9326 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
9327 store <16 x float> %res, <16 x float>* %ptr, align 4
9328
9329
Sean Silvab084af42012-12-07 10:36:55 +00009330Memory Use Markers
9331------------------
9332
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009333This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00009334memory objects and ranges where variables are immutable.
9335
Reid Klecknera534a382013-12-19 02:14:12 +00009336.. _int_lifestart:
9337
Sean Silvab084af42012-12-07 10:36:55 +00009338'``llvm.lifetime.start``' Intrinsic
9339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9340
9341Syntax:
9342"""""""
9343
9344::
9345
9346 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
9347
9348Overview:
9349"""""""""
9350
9351The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
9352object's lifetime.
9353
9354Arguments:
9355""""""""""
9356
9357The first argument is a constant integer representing the size of the
9358object, or -1 if it is variable sized. The second argument is a pointer
9359to the object.
9360
9361Semantics:
9362""""""""""
9363
9364This intrinsic indicates that before this point in the code, the value
9365of the memory pointed to by ``ptr`` is dead. This means that it is known
9366to never be used and has an undefined value. A load from the pointer
9367that precedes this intrinsic can be replaced with ``'undef'``.
9368
Reid Klecknera534a382013-12-19 02:14:12 +00009369.. _int_lifeend:
9370
Sean Silvab084af42012-12-07 10:36:55 +00009371'``llvm.lifetime.end``' Intrinsic
9372^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9373
9374Syntax:
9375"""""""
9376
9377::
9378
9379 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
9380
9381Overview:
9382"""""""""
9383
9384The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
9385object's lifetime.
9386
9387Arguments:
9388""""""""""
9389
9390The first argument is a constant integer representing the size of the
9391object, or -1 if it is variable sized. The second argument is a pointer
9392to the object.
9393
9394Semantics:
9395""""""""""
9396
9397This intrinsic indicates that after this point in the code, the value of
9398the memory pointed to by ``ptr`` is dead. This means that it is known to
9399never be used and has an undefined value. Any stores into the memory
9400object following this intrinsic may be removed as dead.
9401
9402'``llvm.invariant.start``' Intrinsic
9403^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9404
9405Syntax:
9406"""""""
9407
9408::
9409
9410 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9411
9412Overview:
9413"""""""""
9414
9415The '``llvm.invariant.start``' intrinsic specifies that the contents of
9416a memory object will not change.
9417
9418Arguments:
9419""""""""""
9420
9421The first argument is a constant integer representing the size of the
9422object, or -1 if it is variable sized. The second argument is a pointer
9423to the object.
9424
9425Semantics:
9426""""""""""
9427
9428This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9429the return value, the referenced memory location is constant and
9430unchanging.
9431
9432'``llvm.invariant.end``' Intrinsic
9433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9434
9435Syntax:
9436"""""""
9437
9438::
9439
9440 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9441
9442Overview:
9443"""""""""
9444
9445The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9446memory object are mutable.
9447
9448Arguments:
9449""""""""""
9450
9451The first argument is the matching ``llvm.invariant.start`` intrinsic.
9452The second argument is a constant integer representing the size of the
9453object, or -1 if it is variable sized and the third argument is a
9454pointer to the object.
9455
9456Semantics:
9457""""""""""
9458
9459This intrinsic indicates that the memory is mutable again.
9460
9461General Intrinsics
9462------------------
9463
9464This class of intrinsics is designed to be generic and has no specific
9465purpose.
9466
9467'``llvm.var.annotation``' Intrinsic
9468^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9469
9470Syntax:
9471"""""""
9472
9473::
9474
9475 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9476
9477Overview:
9478"""""""""
9479
9480The '``llvm.var.annotation``' intrinsic.
9481
9482Arguments:
9483""""""""""
9484
9485The first argument is a pointer to a value, the second is a pointer to a
9486global string, the third is a pointer to a global string which is the
9487source file name, and the last argument is the line number.
9488
9489Semantics:
9490""""""""""
9491
9492This intrinsic allows annotation of local variables with arbitrary
9493strings. This can be useful for special purpose optimizations that want
9494to look for these annotations. These have no other defined use; they are
9495ignored by code generation and optimization.
9496
Michael Gottesman88d18832013-03-26 00:34:27 +00009497'``llvm.ptr.annotation.*``' Intrinsic
9498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9499
9500Syntax:
9501"""""""
9502
9503This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9504pointer to an integer of any width. *NOTE* you must specify an address space for
9505the pointer. The identifier for the default address space is the integer
9506'``0``'.
9507
9508::
9509
9510 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9511 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9512 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9513 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9514 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9515
9516Overview:
9517"""""""""
9518
9519The '``llvm.ptr.annotation``' intrinsic.
9520
9521Arguments:
9522""""""""""
9523
9524The first argument is a pointer to an integer value of arbitrary bitwidth
9525(result of some expression), the second is a pointer to a global string, the
9526third is a pointer to a global string which is the source file name, and the
9527last argument is the line number. It returns the value of the first argument.
9528
9529Semantics:
9530""""""""""
9531
9532This intrinsic allows annotation of a pointer to an integer with arbitrary
9533strings. This can be useful for special purpose optimizations that want to look
9534for these annotations. These have no other defined use; they are ignored by code
9535generation and optimization.
9536
Sean Silvab084af42012-12-07 10:36:55 +00009537'``llvm.annotation.*``' Intrinsic
9538^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9539
9540Syntax:
9541"""""""
9542
9543This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9544any integer bit width.
9545
9546::
9547
9548 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9549 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9550 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9551 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9552 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9553
9554Overview:
9555"""""""""
9556
9557The '``llvm.annotation``' intrinsic.
9558
9559Arguments:
9560""""""""""
9561
9562The first argument is an integer value (result of some expression), the
9563second is a pointer to a global string, the third is a pointer to a
9564global string which is the source file name, and the last argument is
9565the line number. It returns the value of the first argument.
9566
9567Semantics:
9568""""""""""
9569
9570This intrinsic allows annotations to be put on arbitrary expressions
9571with arbitrary strings. This can be useful for special purpose
9572optimizations that want to look for these annotations. These have no
9573other defined use; they are ignored by code generation and optimization.
9574
9575'``llvm.trap``' Intrinsic
9576^^^^^^^^^^^^^^^^^^^^^^^^^
9577
9578Syntax:
9579"""""""
9580
9581::
9582
9583 declare void @llvm.trap() noreturn nounwind
9584
9585Overview:
9586"""""""""
9587
9588The '``llvm.trap``' intrinsic.
9589
9590Arguments:
9591""""""""""
9592
9593None.
9594
9595Semantics:
9596""""""""""
9597
9598This intrinsic is lowered to the target dependent trap instruction. If
9599the target does not have a trap instruction, this intrinsic will be
9600lowered to a call of the ``abort()`` function.
9601
9602'``llvm.debugtrap``' Intrinsic
9603^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9604
9605Syntax:
9606"""""""
9607
9608::
9609
9610 declare void @llvm.debugtrap() nounwind
9611
9612Overview:
9613"""""""""
9614
9615The '``llvm.debugtrap``' intrinsic.
9616
9617Arguments:
9618""""""""""
9619
9620None.
9621
9622Semantics:
9623""""""""""
9624
9625This intrinsic is lowered to code which is intended to cause an
9626execution trap with the intention of requesting the attention of a
9627debugger.
9628
9629'``llvm.stackprotector``' Intrinsic
9630^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9631
9632Syntax:
9633"""""""
9634
9635::
9636
9637 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9638
9639Overview:
9640"""""""""
9641
9642The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9643onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9644is placed on the stack before local variables.
9645
9646Arguments:
9647""""""""""
9648
9649The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9650The first argument is the value loaded from the stack guard
9651``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9652enough space to hold the value of the guard.
9653
9654Semantics:
9655""""""""""
9656
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009657This intrinsic causes the prologue/epilogue inserter to force the position of
9658the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9659to ensure that if a local variable on the stack is overwritten, it will destroy
9660the value of the guard. When the function exits, the guard on the stack is
9661checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9662different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9663calling the ``__stack_chk_fail()`` function.
9664
9665'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009666^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009667
9668Syntax:
9669"""""""
9670
9671::
9672
9673 declare void @llvm.stackprotectorcheck(i8** <guard>)
9674
9675Overview:
9676"""""""""
9677
9678The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009679created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009680``__stack_chk_fail()`` function.
9681
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009682Arguments:
9683""""""""""
9684
9685The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9686the variable ``@__stack_chk_guard``.
9687
9688Semantics:
9689""""""""""
9690
9691This intrinsic is provided to perform the stack protector check by comparing
9692``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9693values do not match call the ``__stack_chk_fail()`` function.
9694
9695The reason to provide this as an IR level intrinsic instead of implementing it
9696via other IR operations is that in order to perform this operation at the IR
9697level without an intrinsic, one would need to create additional basic blocks to
9698handle the success/failure cases. This makes it difficult to stop the stack
9699protector check from disrupting sibling tail calls in Codegen. With this
9700intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009701codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009702
Sean Silvab084af42012-12-07 10:36:55 +00009703'``llvm.objectsize``' Intrinsic
9704^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9705
9706Syntax:
9707"""""""
9708
9709::
9710
9711 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9712 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9713
9714Overview:
9715"""""""""
9716
9717The ``llvm.objectsize`` intrinsic is designed to provide information to
9718the optimizers to determine at compile time whether a) an operation
9719(like memcpy) will overflow a buffer that corresponds to an object, or
9720b) that a runtime check for overflow isn't necessary. An object in this
9721context means an allocation of a specific class, structure, array, or
9722other object.
9723
9724Arguments:
9725""""""""""
9726
9727The ``llvm.objectsize`` intrinsic takes two arguments. The first
9728argument is a pointer to or into the ``object``. The second argument is
9729a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9730or -1 (if false) when the object size is unknown. The second argument
9731only accepts constants.
9732
9733Semantics:
9734""""""""""
9735
9736The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9737the size of the object concerned. If the size cannot be determined at
9738compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9739on the ``min`` argument).
9740
9741'``llvm.expect``' Intrinsic
9742^^^^^^^^^^^^^^^^^^^^^^^^^^^
9743
9744Syntax:
9745"""""""
9746
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009747This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9748integer bit width.
9749
Sean Silvab084af42012-12-07 10:36:55 +00009750::
9751
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009752 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009753 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9754 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9755
9756Overview:
9757"""""""""
9758
9759The ``llvm.expect`` intrinsic provides information about expected (the
9760most probable) value of ``val``, which can be used by optimizers.
9761
9762Arguments:
9763""""""""""
9764
9765The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9766a value. The second argument is an expected value, this needs to be a
9767constant value, variables are not allowed.
9768
9769Semantics:
9770""""""""""
9771
9772This intrinsic is lowered to the ``val``.
9773
Hal Finkel93046912014-07-25 21:13:35 +00009774'``llvm.assume``' Intrinsic
9775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9776
9777Syntax:
9778"""""""
9779
9780::
9781
9782 declare void @llvm.assume(i1 %cond)
9783
9784Overview:
9785"""""""""
9786
9787The ``llvm.assume`` allows the optimizer to assume that the provided
9788condition is true. This information can then be used in simplifying other parts
9789of the code.
9790
9791Arguments:
9792""""""""""
9793
9794The condition which the optimizer may assume is always true.
9795
9796Semantics:
9797""""""""""
9798
9799The intrinsic allows the optimizer to assume that the provided condition is
9800always true whenever the control flow reaches the intrinsic call. No code is
9801generated for this intrinsic, and instructions that contribute only to the
9802provided condition are not used for code generation. If the condition is
9803violated during execution, the behavior is undefined.
9804
9805Please note that optimizer might limit the transformations performed on values
9806used by the ``llvm.assume`` intrinsic in order to preserve the instructions
9807only used to form the intrinsic's input argument. This might prove undesirable
9808if the extra information provided by the ``llvm.assume`` intrinsic does cause
9809sufficient overall improvement in code quality. For this reason,
9810``llvm.assume`` should not be used to document basic mathematical invariants
9811that the optimizer can otherwise deduce or facts that are of little use to the
9812optimizer.
9813
Sean Silvab084af42012-12-07 10:36:55 +00009814'``llvm.donothing``' Intrinsic
9815^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9816
9817Syntax:
9818"""""""
9819
9820::
9821
9822 declare void @llvm.donothing() nounwind readnone
9823
9824Overview:
9825"""""""""
9826
Juergen Ributzkac9161192014-10-23 22:36:13 +00009827The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
9828two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
9829with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009830
9831Arguments:
9832""""""""""
9833
9834None.
9835
9836Semantics:
9837""""""""""
9838
9839This intrinsic does nothing, and it's removed by optimizers and ignored
9840by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009841
9842Stack Map Intrinsics
9843--------------------
9844
9845LLVM provides experimental intrinsics to support runtime patching
9846mechanisms commonly desired in dynamic language JITs. These intrinsics
9847are described in :doc:`StackMaps`.