blob: 0a1c7768d5a9dc76cd9302d0c037b6598a298b35 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000165 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
351 arguments into registers but allows them to be dynamcially
352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
356 This calling convention attempts to make the code in the caller as little
357 intrusive as possible. This calling convention behaves identical to the `C`
358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
371 of code that doesn't many registers. The cold path might need to call out to
372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000497.. _namedtypes:
498
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000499Structure Types
500---------------
Sean Silvab084af42012-12-07 10:36:55 +0000501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
503types <t_struct>`. Literal types are uniqued structurally, but identified types
504are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000505to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000506
507An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000508
509.. code-block:: llvm
510
511 %mytype = type { %mytype*, i32 }
512
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000513Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
514literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000515
516.. _globalvars:
517
518Global Variables
519----------------
520
521Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000522instead of run-time.
523
Bob Wilson85b24f22014-06-12 20:40:33 +0000524Global variables definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525
526Global variables in other translation units can also be declared, in which
527case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000528
Bob Wilson85b24f22014-06-12 20:40:33 +0000529Either global variable definitions or declarations may have an explicit section
530to be placed in and may have an optional explicit alignment specified.
531
Michael Gottesman006039c2013-01-31 05:48:48 +0000532A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000536initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000567Additionally, the global can placed in a comdat if the target has the necessary
568support.
Sean Silvab084af42012-12-07 10:36:55 +0000569
Michael Gottesmane743a302013-02-04 03:22:00 +0000570By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000571variables defined within the module are not modified from their
572initial values before the start of the global initializer. This is
573true even for variables potentially accessible from outside the
574module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000575``@llvm.used`` or dllexported variables. This assumption may be suppressed
576by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000577
Sean Silvab084af42012-12-07 10:36:55 +0000578An explicit alignment may be specified for a global, which must be a
579power of 2. If not present, or if the alignment is set to zero, the
580alignment of the global is set by the target to whatever it feels
581convenient. If an explicit alignment is specified, the global is forced
582to have exactly that alignment. Targets and optimizers are not allowed
583to over-align the global if the global has an assigned section. In this
584case, the extra alignment could be observable: for example, code could
585assume that the globals are densely packed in their section and try to
586iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000587iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000588
Nico Rieck7157bb72014-01-14 15:22:47 +0000589Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
590
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000591Variables and aliasaes can have a
592:ref:`Thread Local Storage Model <tls_model>`.
593
Nico Rieck7157bb72014-01-14 15:22:47 +0000594Syntax::
595
596 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000597 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000598 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000599 [, section "name"] [, comdat [($name)]]
600 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000601
Sean Silvab084af42012-12-07 10:36:55 +0000602For example, the following defines a global in a numbered address space
603with an initializer, section, and alignment:
604
605.. code-block:: llvm
606
607 @G = addrspace(5) constant float 1.0, section "foo", align 4
608
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000609The following example just declares a global variable
610
611.. code-block:: llvm
612
613 @G = external global i32
614
Sean Silvab084af42012-12-07 10:36:55 +0000615The following example defines a thread-local global with the
616``initialexec`` TLS model:
617
618.. code-block:: llvm
619
620 @G = thread_local(initialexec) global i32 0, align 4
621
622.. _functionstructure:
623
624Functions
625---------
626
627LLVM function definitions consist of the "``define``" keyword, an
628optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000629style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
630an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000631an optional ``unnamed_addr`` attribute, a return type, an optional
632:ref:`parameter attribute <paramattrs>` for the return type, a function
633name, a (possibly empty) argument list (each with optional :ref:`parameter
634attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000635an optional section, an optional alignment,
636an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000637an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
638an optional :ref:`prologue <prologuedata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000639curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000640
641LLVM function declarations consist of the "``declare``" keyword, an
642optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000643style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
644an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000645an optional ``unnamed_addr`` attribute, a return type, an optional
646:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000647name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000648:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
649and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000650
Bill Wendling6822ecb2013-10-27 05:09:12 +0000651A function definition contains a list of basic blocks, forming the CFG (Control
652Flow Graph) for the function. Each basic block may optionally start with a label
653(giving the basic block a symbol table entry), contains a list of instructions,
654and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
655function return). If an explicit label is not provided, a block is assigned an
656implicit numbered label, using the next value from the same counter as used for
657unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
658entry block does not have an explicit label, it will be assigned label "%0",
659then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000660
661The first basic block in a function is special in two ways: it is
662immediately executed on entrance to the function, and it is not allowed
663to have predecessor basic blocks (i.e. there can not be any branches to
664the entry block of a function). Because the block can have no
665predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
666
667LLVM allows an explicit section to be specified for functions. If the
668target supports it, it will emit functions to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000669Additionally, the function can placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000670
671An explicit alignment may be specified for a function. If not present,
672or if the alignment is set to zero, the alignment of the function is set
673by the target to whatever it feels convenient. If an explicit alignment
674is specified, the function is forced to have at least that much
675alignment. All alignments must be a power of 2.
676
677If the ``unnamed_addr`` attribute is given, the address is know to not
678be significant and two identical functions can be merged.
679
680Syntax::
681
Nico Rieck7157bb72014-01-14 15:22:47 +0000682 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000683 [cconv] [ret attrs]
684 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000686 [align N] [gc] [prefix Constant] [prologue Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000687
Dan Liew2661dfc2014-08-20 15:06:30 +0000688The argument list is a comma seperated sequence of arguments where each
689argument is of the following form
690
691Syntax::
692
693 <type> [parameter Attrs] [name]
694
695
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000696.. _langref_aliases:
697
Sean Silvab084af42012-12-07 10:36:55 +0000698Aliases
699-------
700
Rafael Espindola64c1e182014-06-03 02:41:57 +0000701Aliases, unlike function or variables, don't create any new data. They
702are just a new symbol and metadata for an existing position.
703
704Aliases have a name and an aliasee that is either a global value or a
705constant expression.
706
Nico Rieck7157bb72014-01-14 15:22:47 +0000707Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000708:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
709<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000710
711Syntax::
712
Rafael Espindola464fe022014-07-30 22:51:54 +0000713 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000714
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000715The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000716``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000717might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000718
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000719Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000720the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
721to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000722
Rafael Espindola64c1e182014-06-03 02:41:57 +0000723Since aliases are only a second name, some restrictions apply, of which
724some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000725
Rafael Espindola64c1e182014-06-03 02:41:57 +0000726* The expression defining the aliasee must be computable at assembly
727 time. Since it is just a name, no relocations can be used.
728
729* No alias in the expression can be weak as the possibility of the
730 intermediate alias being overridden cannot be represented in an
731 object file.
732
733* No global value in the expression can be a declaration, since that
734 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000735
David Majnemerdad0a642014-06-27 18:19:56 +0000736.. _langref_comdats:
737
738Comdats
739-------
740
741Comdat IR provides access to COFF and ELF object file COMDAT functionality.
742
Richard Smith32dbdf62014-07-31 04:25:36 +0000743Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000744specify this key will only end up in the final object file if the linker chooses
745that key over some other key. Aliases are placed in the same COMDAT that their
746aliasee computes to, if any.
747
748Comdats have a selection kind to provide input on how the linker should
749choose between keys in two different object files.
750
751Syntax::
752
753 $<Name> = comdat SelectionKind
754
755The selection kind must be one of the following:
756
757``any``
758 The linker may choose any COMDAT key, the choice is arbitrary.
759``exactmatch``
760 The linker may choose any COMDAT key but the sections must contain the
761 same data.
762``largest``
763 The linker will choose the section containing the largest COMDAT key.
764``noduplicates``
765 The linker requires that only section with this COMDAT key exist.
766``samesize``
767 The linker may choose any COMDAT key but the sections must contain the
768 same amount of data.
769
770Note that the Mach-O platform doesn't support COMDATs and ELF only supports
771``any`` as a selection kind.
772
773Here is an example of a COMDAT group where a function will only be selected if
774the COMDAT key's section is the largest:
775
776.. code-block:: llvm
777
778 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000779 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000780
Rafael Espindola83a362c2015-01-06 22:55:16 +0000781 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000782 ret void
783 }
784
Rafael Espindola83a362c2015-01-06 22:55:16 +0000785As a syntactic sugar the ``$name`` can be omitted if the name is the same as
786the global name:
787
788.. code-block:: llvm
789
790 $foo = comdat any
791 @foo = global i32 2, comdat
792
793
David Majnemerdad0a642014-06-27 18:19:56 +0000794In a COFF object file, this will create a COMDAT section with selection kind
795``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
796and another COMDAT section with selection kind
797``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000798section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000799
800There are some restrictions on the properties of the global object.
801It, or an alias to it, must have the same name as the COMDAT group when
802targeting COFF.
803The contents and size of this object may be used during link-time to determine
804which COMDAT groups get selected depending on the selection kind.
805Because the name of the object must match the name of the COMDAT group, the
806linkage of the global object must not be local; local symbols can get renamed
807if a collision occurs in the symbol table.
808
809The combined use of COMDATS and section attributes may yield surprising results.
810For example:
811
812.. code-block:: llvm
813
814 $foo = comdat any
815 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000816 @g1 = global i32 42, section "sec", comdat($foo)
817 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000818
819From the object file perspective, this requires the creation of two sections
820with the same name. This is necessary because both globals belong to different
821COMDAT groups and COMDATs, at the object file level, are represented by
822sections.
823
824Note that certain IR constructs like global variables and functions may create
825COMDATs in the object file in addition to any which are specified using COMDAT
826IR. This arises, for example, when a global variable has linkonce_odr linkage.
827
Sean Silvab084af42012-12-07 10:36:55 +0000828.. _namedmetadatastructure:
829
830Named Metadata
831--------------
832
833Named metadata is a collection of metadata. :ref:`Metadata
834nodes <metadata>` (but not metadata strings) are the only valid
835operands for a named metadata.
836
837Syntax::
838
839 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000840 !0 = !{!"zero"}
841 !1 = !{!"one"}
842 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000843 ; A named metadata.
844 !name = !{!0, !1, !2}
845
846.. _paramattrs:
847
848Parameter Attributes
849--------------------
850
851The return type and each parameter of a function type may have a set of
852*parameter attributes* associated with them. Parameter attributes are
853used to communicate additional information about the result or
854parameters of a function. Parameter attributes are considered to be part
855of the function, not of the function type, so functions with different
856parameter attributes can have the same function type.
857
858Parameter attributes are simple keywords that follow the type specified.
859If multiple parameter attributes are needed, they are space separated.
860For example:
861
862.. code-block:: llvm
863
864 declare i32 @printf(i8* noalias nocapture, ...)
865 declare i32 @atoi(i8 zeroext)
866 declare signext i8 @returns_signed_char()
867
868Note that any attributes for the function result (``nounwind``,
869``readonly``) come immediately after the argument list.
870
871Currently, only the following parameter attributes are defined:
872
873``zeroext``
874 This indicates to the code generator that the parameter or return
875 value should be zero-extended to the extent required by the target's
876 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
877 the caller (for a parameter) or the callee (for a return value).
878``signext``
879 This indicates to the code generator that the parameter or return
880 value should be sign-extended to the extent required by the target's
881 ABI (which is usually 32-bits) by the caller (for a parameter) or
882 the callee (for a return value).
883``inreg``
884 This indicates that this parameter or return value should be treated
885 in a special target-dependent fashion during while emitting code for
886 a function call or return (usually, by putting it in a register as
887 opposed to memory, though some targets use it to distinguish between
888 two different kinds of registers). Use of this attribute is
889 target-specific.
890``byval``
891 This indicates that the pointer parameter should really be passed by
892 value to the function. The attribute implies that a hidden copy of
893 the pointee is made between the caller and the callee, so the callee
894 is unable to modify the value in the caller. This attribute is only
895 valid on LLVM pointer arguments. It is generally used to pass
896 structs and arrays by value, but is also valid on pointers to
897 scalars. The copy is considered to belong to the caller not the
898 callee (for example, ``readonly`` functions should not write to
899 ``byval`` parameters). This is not a valid attribute for return
900 values.
901
902 The byval attribute also supports specifying an alignment with the
903 align attribute. It indicates the alignment of the stack slot to
904 form and the known alignment of the pointer specified to the call
905 site. If the alignment is not specified, then the code generator
906 makes a target-specific assumption.
907
Reid Klecknera534a382013-12-19 02:14:12 +0000908.. _attr_inalloca:
909
910``inalloca``
911
Reid Kleckner60d3a832014-01-16 22:59:24 +0000912 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000913 address of outgoing stack arguments. An ``inalloca`` argument must
914 be a pointer to stack memory produced by an ``alloca`` instruction.
915 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000916 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000917 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000918
Reid Kleckner436c42e2014-01-17 23:58:17 +0000919 An argument allocation may be used by a call at most once because
920 the call may deallocate it. The ``inalloca`` attribute cannot be
921 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000922 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
923 ``inalloca`` attribute also disables LLVM's implicit lowering of
924 large aggregate return values, which means that frontend authors
925 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000926
Reid Kleckner60d3a832014-01-16 22:59:24 +0000927 When the call site is reached, the argument allocation must have
928 been the most recent stack allocation that is still live, or the
929 results are undefined. It is possible to allocate additional stack
930 space after an argument allocation and before its call site, but it
931 must be cleared off with :ref:`llvm.stackrestore
932 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000933
934 See :doc:`InAlloca` for more information on how to use this
935 attribute.
936
Sean Silvab084af42012-12-07 10:36:55 +0000937``sret``
938 This indicates that the pointer parameter specifies the address of a
939 structure that is the return value of the function in the source
940 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000941 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000942 not to trap and to be properly aligned. This may only be applied to
943 the first parameter. This is not a valid attribute for return
944 values.
Sean Silva1703e702014-04-08 21:06:22 +0000945
Hal Finkelccc70902014-07-22 16:58:55 +0000946``align <n>``
947 This indicates that the pointer value may be assumed by the optimizer to
948 have the specified alignment.
949
950 Note that this attribute has additional semantics when combined with the
951 ``byval`` attribute.
952
Sean Silva1703e702014-04-08 21:06:22 +0000953.. _noalias:
954
Sean Silvab084af42012-12-07 10:36:55 +0000955``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000956 This indicates that objects accessed via pointer values
957 :ref:`based <pointeraliasing>` on the argument or return value are not also
958 accessed, during the execution of the function, via pointer values not
959 *based* on the argument or return value. The attribute on a return value
960 also has additional semantics described below. The caller shares the
961 responsibility with the callee for ensuring that these requirements are met.
962 For further details, please see the discussion of the NoAlias response in
963 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000964
965 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000966 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000967
968 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000969 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
970 attribute on return values are stronger than the semantics of the attribute
971 when used on function arguments. On function return values, the ``noalias``
972 attribute indicates that the function acts like a system memory allocation
973 function, returning a pointer to allocated storage disjoint from the
974 storage for any other object accessible to the caller.
975
Sean Silvab084af42012-12-07 10:36:55 +0000976``nocapture``
977 This indicates that the callee does not make any copies of the
978 pointer that outlive the callee itself. This is not a valid
979 attribute for return values.
980
981.. _nest:
982
983``nest``
984 This indicates that the pointer parameter can be excised using the
985 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000986 attribute for return values and can only be applied to one parameter.
987
988``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000989 This indicates that the function always returns the argument as its return
990 value. This is an optimization hint to the code generator when generating
991 the caller, allowing tail call optimization and omission of register saves
992 and restores in some cases; it is not checked or enforced when generating
993 the callee. The parameter and the function return type must be valid
994 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
995 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000996
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000997``nonnull``
998 This indicates that the parameter or return pointer is not null. This
999 attribute may only be applied to pointer typed parameters. This is not
1000 checked or enforced by LLVM, the caller must ensure that the pointer
1001 passed in is non-null, or the callee must ensure that the returned pointer
1002 is non-null.
1003
Hal Finkelb0407ba2014-07-18 15:51:28 +00001004``dereferenceable(<n>)``
1005 This indicates that the parameter or return pointer is dereferenceable. This
1006 attribute may only be applied to pointer typed parameters. A pointer that
1007 is dereferenceable can be loaded from speculatively without a risk of
1008 trapping. The number of bytes known to be dereferenceable must be provided
1009 in parentheses. It is legal for the number of bytes to be less than the
1010 size of the pointee type. The ``nonnull`` attribute does not imply
1011 dereferenceability (consider a pointer to one element past the end of an
1012 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1013 ``addrspace(0)`` (which is the default address space).
1014
Sean Silvab084af42012-12-07 10:36:55 +00001015.. _gc:
1016
1017Garbage Collector Names
1018-----------------------
1019
1020Each function may specify a garbage collector name, which is simply a
1021string:
1022
1023.. code-block:: llvm
1024
1025 define void @f() gc "name" { ... }
1026
1027The compiler declares the supported values of *name*. Specifying a
Richard Smith32dbdf62014-07-31 04:25:36 +00001028collector will cause the compiler to alter its output in order to
Sean Silvab084af42012-12-07 10:36:55 +00001029support the named garbage collection algorithm.
1030
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001031.. _prefixdata:
1032
1033Prefix Data
1034-----------
1035
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001036Prefix data is data associated with a function which the code
1037generator will emit immediately before the function's entrypoint.
1038The purpose of this feature is to allow frontends to associate
1039language-specific runtime metadata with specific functions and make it
1040available through the function pointer while still allowing the
1041function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001042
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001043To access the data for a given function, a program may bitcast the
1044function pointer to a pointer to the constant's type and dereference
1045index -1. This implies that the IR symbol points just past the end of
1046the prefix data. For instance, take the example of a function annotated
1047with a single ``i32``,
1048
1049.. code-block:: llvm
1050
1051 define void @f() prefix i32 123 { ... }
1052
1053The prefix data can be referenced as,
1054
1055.. code-block:: llvm
1056
1057 %0 = bitcast *void () @f to *i32
1058 %a = getelementptr inbounds *i32 %0, i32 -1
1059 %b = load i32* %a
1060
1061Prefix data is laid out as if it were an initializer for a global variable
1062of the prefix data's type. The function will be placed such that the
1063beginning of the prefix data is aligned. This means that if the size
1064of the prefix data is not a multiple of the alignment size, the
1065function's entrypoint will not be aligned. If alignment of the
1066function's entrypoint is desired, padding must be added to the prefix
1067data.
1068
1069A function may have prefix data but no body. This has similar semantics
1070to the ``available_externally`` linkage in that the data may be used by the
1071optimizers but will not be emitted in the object file.
1072
1073.. _prologuedata:
1074
1075Prologue Data
1076-------------
1077
1078The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1079be inserted prior to the function body. This can be used for enabling
1080function hot-patching and instrumentation.
1081
1082To maintain the semantics of ordinary function calls, the prologue data must
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001083have a particular format. Specifically, it must begin with a sequence of
1084bytes which decode to a sequence of machine instructions, valid for the
1085module's target, which transfer control to the point immediately succeeding
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001086the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001087the inliner and other passes to reason about the semantics of the function
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001088definition without needing to reason about the prologue data. Obviously this
1089makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001090
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001091A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001092which encodes the ``nop`` instruction:
1093
1094.. code-block:: llvm
1095
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001096 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001097
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001098Generally prologue data can be formed by encoding a relative branch instruction
1099which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001100x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1101
1102.. code-block:: llvm
1103
1104 %0 = type <{ i8, i8, i8* }>
1105
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001106 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001107
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001108A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001109to the ``available_externally`` linkage in that the data may be used by the
1110optimizers but will not be emitted in the object file.
1111
Bill Wendling63b88192013-02-06 06:52:58 +00001112.. _attrgrp:
1113
1114Attribute Groups
1115----------------
1116
1117Attribute groups are groups of attributes that are referenced by objects within
1118the IR. They are important for keeping ``.ll`` files readable, because a lot of
1119functions will use the same set of attributes. In the degenerative case of a
1120``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1121group will capture the important command line flags used to build that file.
1122
1123An attribute group is a module-level object. To use an attribute group, an
1124object references the attribute group's ID (e.g. ``#37``). An object may refer
1125to more than one attribute group. In that situation, the attributes from the
1126different groups are merged.
1127
1128Here is an example of attribute groups for a function that should always be
1129inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1130
1131.. code-block:: llvm
1132
1133 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001134 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001135
1136 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001137 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001138
1139 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1140 define void @f() #0 #1 { ... }
1141
Sean Silvab084af42012-12-07 10:36:55 +00001142.. _fnattrs:
1143
1144Function Attributes
1145-------------------
1146
1147Function attributes are set to communicate additional information about
1148a function. Function attributes are considered to be part of the
1149function, not of the function type, so functions with different function
1150attributes can have the same function type.
1151
1152Function attributes are simple keywords that follow the type specified.
1153If multiple attributes are needed, they are space separated. For
1154example:
1155
1156.. code-block:: llvm
1157
1158 define void @f() noinline { ... }
1159 define void @f() alwaysinline { ... }
1160 define void @f() alwaysinline optsize { ... }
1161 define void @f() optsize { ... }
1162
Sean Silvab084af42012-12-07 10:36:55 +00001163``alignstack(<n>)``
1164 This attribute indicates that, when emitting the prologue and
1165 epilogue, the backend should forcibly align the stack pointer.
1166 Specify the desired alignment, which must be a power of two, in
1167 parentheses.
1168``alwaysinline``
1169 This attribute indicates that the inliner should attempt to inline
1170 this function into callers whenever possible, ignoring any active
1171 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001172``builtin``
1173 This indicates that the callee function at a call site should be
1174 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001175 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001176 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001177 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001178``cold``
1179 This attribute indicates that this function is rarely called. When
1180 computing edge weights, basic blocks post-dominated by a cold
1181 function call are also considered to be cold; and, thus, given low
1182 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001183``inlinehint``
1184 This attribute indicates that the source code contained a hint that
1185 inlining this function is desirable (such as the "inline" keyword in
1186 C/C++). It is just a hint; it imposes no requirements on the
1187 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001188``jumptable``
1189 This attribute indicates that the function should be added to a
1190 jump-instruction table at code-generation time, and that all address-taken
1191 references to this function should be replaced with a reference to the
1192 appropriate jump-instruction-table function pointer. Note that this creates
1193 a new pointer for the original function, which means that code that depends
1194 on function-pointer identity can break. So, any function annotated with
1195 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001196``minsize``
1197 This attribute suggests that optimization passes and code generator
1198 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001199 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001200 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001201``naked``
1202 This attribute disables prologue / epilogue emission for the
1203 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001204``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001205 This indicates that the callee function at a call site is not recognized as
1206 a built-in function. LLVM will retain the original call and not replace it
1207 with equivalent code based on the semantics of the built-in function, unless
1208 the call site uses the ``builtin`` attribute. This is valid at call sites
1209 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001210``noduplicate``
1211 This attribute indicates that calls to the function cannot be
1212 duplicated. A call to a ``noduplicate`` function may be moved
1213 within its parent function, but may not be duplicated within
1214 its parent function.
1215
1216 A function containing a ``noduplicate`` call may still
1217 be an inlining candidate, provided that the call is not
1218 duplicated by inlining. That implies that the function has
1219 internal linkage and only has one call site, so the original
1220 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001221``noimplicitfloat``
1222 This attributes disables implicit floating point instructions.
1223``noinline``
1224 This attribute indicates that the inliner should never inline this
1225 function in any situation. This attribute may not be used together
1226 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001227``nonlazybind``
1228 This attribute suppresses lazy symbol binding for the function. This
1229 may make calls to the function faster, at the cost of extra program
1230 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001231``noredzone``
1232 This attribute indicates that the code generator should not use a
1233 red zone, even if the target-specific ABI normally permits it.
1234``noreturn``
1235 This function attribute indicates that the function never returns
1236 normally. This produces undefined behavior at runtime if the
1237 function ever does dynamically return.
1238``nounwind``
1239 This function attribute indicates that the function never returns
1240 with an unwind or exceptional control flow. If the function does
1241 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001242``optnone``
1243 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001244 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001245 exception of interprocedural optimization passes.
1246 This attribute cannot be used together with the ``alwaysinline``
1247 attribute; this attribute is also incompatible
1248 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001249
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001250 This attribute requires the ``noinline`` attribute to be specified on
1251 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001252 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001253 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001254``optsize``
1255 This attribute suggests that optimization passes and code generator
1256 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001257 and otherwise do optimizations specifically to reduce code size as
1258 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001259``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001260 On a function, this attribute indicates that the function computes its
1261 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001262 without dereferencing any pointer arguments or otherwise accessing
1263 any mutable state (e.g. memory, control registers, etc) visible to
1264 caller functions. It does not write through any pointer arguments
1265 (including ``byval`` arguments) and never changes any state visible
1266 to callers. This means that it cannot unwind exceptions by calling
1267 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001268
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001269 On an argument, this attribute indicates that the function does not
1270 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001271 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001272``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001273 On a function, this attribute indicates that the function does not write
1274 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001275 modify any state (e.g. memory, control registers, etc) visible to
1276 caller functions. It may dereference pointer arguments and read
1277 state that may be set in the caller. A readonly function always
1278 returns the same value (or unwinds an exception identically) when
1279 called with the same set of arguments and global state. It cannot
1280 unwind an exception by calling the ``C++`` exception throwing
1281 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001282
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001283 On an argument, this attribute indicates that the function does not write
1284 through this pointer argument, even though it may write to the memory that
1285 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001286``returns_twice``
1287 This attribute indicates that this function can return twice. The C
1288 ``setjmp`` is an example of such a function. The compiler disables
1289 some optimizations (like tail calls) in the caller of these
1290 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001291``sanitize_address``
1292 This attribute indicates that AddressSanitizer checks
1293 (dynamic address safety analysis) are enabled for this function.
1294``sanitize_memory``
1295 This attribute indicates that MemorySanitizer checks (dynamic detection
1296 of accesses to uninitialized memory) are enabled for this function.
1297``sanitize_thread``
1298 This attribute indicates that ThreadSanitizer checks
1299 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001300``ssp``
1301 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001302 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001303 placed on the stack before the local variables that's checked upon
1304 return from the function to see if it has been overwritten. A
1305 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001306 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001307
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001308 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1309 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1310 - Calls to alloca() with variable sizes or constant sizes greater than
1311 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001312
Josh Magee24c7f062014-02-01 01:36:16 +00001313 Variables that are identified as requiring a protector will be arranged
1314 on the stack such that they are adjacent to the stack protector guard.
1315
Sean Silvab084af42012-12-07 10:36:55 +00001316 If a function that has an ``ssp`` attribute is inlined into a
1317 function that doesn't have an ``ssp`` attribute, then the resulting
1318 function will have an ``ssp`` attribute.
1319``sspreq``
1320 This attribute indicates that the function should *always* emit a
1321 stack smashing protector. This overrides the ``ssp`` function
1322 attribute.
1323
Josh Magee24c7f062014-02-01 01:36:16 +00001324 Variables that are identified as requiring a protector will be arranged
1325 on the stack such that they are adjacent to the stack protector guard.
1326 The specific layout rules are:
1327
1328 #. Large arrays and structures containing large arrays
1329 (``>= ssp-buffer-size``) are closest to the stack protector.
1330 #. Small arrays and structures containing small arrays
1331 (``< ssp-buffer-size``) are 2nd closest to the protector.
1332 #. Variables that have had their address taken are 3rd closest to the
1333 protector.
1334
Sean Silvab084af42012-12-07 10:36:55 +00001335 If a function that has an ``sspreq`` attribute is inlined into a
1336 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001337 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1338 an ``sspreq`` attribute.
1339``sspstrong``
1340 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001341 protector. This attribute causes a strong heuristic to be used when
1342 determining if a function needs stack protectors. The strong heuristic
1343 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001344
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001345 - Arrays of any size and type
1346 - Aggregates containing an array of any size and type.
1347 - Calls to alloca().
1348 - Local variables that have had their address taken.
1349
Josh Magee24c7f062014-02-01 01:36:16 +00001350 Variables that are identified as requiring a protector will be arranged
1351 on the stack such that they are adjacent to the stack protector guard.
1352 The specific layout rules are:
1353
1354 #. Large arrays and structures containing large arrays
1355 (``>= ssp-buffer-size``) are closest to the stack protector.
1356 #. Small arrays and structures containing small arrays
1357 (``< ssp-buffer-size``) are 2nd closest to the protector.
1358 #. Variables that have had their address taken are 3rd closest to the
1359 protector.
1360
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001361 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001362
1363 If a function that has an ``sspstrong`` attribute is inlined into a
1364 function that doesn't have an ``sspstrong`` attribute, then the
1365 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001366``uwtable``
1367 This attribute indicates that the ABI being targeted requires that
1368 an unwind table entry be produce for this function even if we can
1369 show that no exceptions passes by it. This is normally the case for
1370 the ELF x86-64 abi, but it can be disabled for some compilation
1371 units.
Sean Silvab084af42012-12-07 10:36:55 +00001372
1373.. _moduleasm:
1374
1375Module-Level Inline Assembly
1376----------------------------
1377
1378Modules may contain "module-level inline asm" blocks, which corresponds
1379to the GCC "file scope inline asm" blocks. These blocks are internally
1380concatenated by LLVM and treated as a single unit, but may be separated
1381in the ``.ll`` file if desired. The syntax is very simple:
1382
1383.. code-block:: llvm
1384
1385 module asm "inline asm code goes here"
1386 module asm "more can go here"
1387
1388The strings can contain any character by escaping non-printable
1389characters. The escape sequence used is simply "\\xx" where "xx" is the
1390two digit hex code for the number.
1391
1392The inline asm code is simply printed to the machine code .s file when
1393assembly code is generated.
1394
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001395.. _langref_datalayout:
1396
Sean Silvab084af42012-12-07 10:36:55 +00001397Data Layout
1398-----------
1399
1400A module may specify a target specific data layout string that specifies
1401how data is to be laid out in memory. The syntax for the data layout is
1402simply:
1403
1404.. code-block:: llvm
1405
1406 target datalayout = "layout specification"
1407
1408The *layout specification* consists of a list of specifications
1409separated by the minus sign character ('-'). Each specification starts
1410with a letter and may include other information after the letter to
1411define some aspect of the data layout. The specifications accepted are
1412as follows:
1413
1414``E``
1415 Specifies that the target lays out data in big-endian form. That is,
1416 the bits with the most significance have the lowest address
1417 location.
1418``e``
1419 Specifies that the target lays out data in little-endian form. That
1420 is, the bits with the least significance have the lowest address
1421 location.
1422``S<size>``
1423 Specifies the natural alignment of the stack in bits. Alignment
1424 promotion of stack variables is limited to the natural stack
1425 alignment to avoid dynamic stack realignment. The stack alignment
1426 must be a multiple of 8-bits. If omitted, the natural stack
1427 alignment defaults to "unspecified", which does not prevent any
1428 alignment promotions.
1429``p[n]:<size>:<abi>:<pref>``
1430 This specifies the *size* of a pointer and its ``<abi>`` and
1431 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001432 bits. The address space, ``n`` is optional, and if not specified,
1433 denotes the default address space 0. The value of ``n`` must be
1434 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001435``i<size>:<abi>:<pref>``
1436 This specifies the alignment for an integer type of a given bit
1437 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1438``v<size>:<abi>:<pref>``
1439 This specifies the alignment for a vector type of a given bit
1440 ``<size>``.
1441``f<size>:<abi>:<pref>``
1442 This specifies the alignment for a floating point type of a given bit
1443 ``<size>``. Only values of ``<size>`` that are supported by the target
1444 will work. 32 (float) and 64 (double) are supported on all targets; 80
1445 or 128 (different flavors of long double) are also supported on some
1446 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001447``a:<abi>:<pref>``
1448 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001449``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001450 If present, specifies that llvm names are mangled in the output. The
1451 options are
1452
1453 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1454 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1455 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1456 symbols get a ``_`` prefix.
1457 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1458 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001459``n<size1>:<size2>:<size3>...``
1460 This specifies a set of native integer widths for the target CPU in
1461 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1462 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1463 this set are considered to support most general arithmetic operations
1464 efficiently.
1465
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001466On every specification that takes a ``<abi>:<pref>``, specifying the
1467``<pref>`` alignment is optional. If omitted, the preceding ``:``
1468should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1469
Sean Silvab084af42012-12-07 10:36:55 +00001470When constructing the data layout for a given target, LLVM starts with a
1471default set of specifications which are then (possibly) overridden by
1472the specifications in the ``datalayout`` keyword. The default
1473specifications are given in this list:
1474
1475- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001476- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1477- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1478 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001479- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001480- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1481- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1482- ``i16:16:16`` - i16 is 16-bit aligned
1483- ``i32:32:32`` - i32 is 32-bit aligned
1484- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1485 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001486- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001487- ``f32:32:32`` - float is 32-bit aligned
1488- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001489- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001490- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1491- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001492- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001493
1494When LLVM is determining the alignment for a given type, it uses the
1495following rules:
1496
1497#. If the type sought is an exact match for one of the specifications,
1498 that specification is used.
1499#. If no match is found, and the type sought is an integer type, then
1500 the smallest integer type that is larger than the bitwidth of the
1501 sought type is used. If none of the specifications are larger than
1502 the bitwidth then the largest integer type is used. For example,
1503 given the default specifications above, the i7 type will use the
1504 alignment of i8 (next largest) while both i65 and i256 will use the
1505 alignment of i64 (largest specified).
1506#. If no match is found, and the type sought is a vector type, then the
1507 largest vector type that is smaller than the sought vector type will
1508 be used as a fall back. This happens because <128 x double> can be
1509 implemented in terms of 64 <2 x double>, for example.
1510
1511The function of the data layout string may not be what you expect.
1512Notably, this is not a specification from the frontend of what alignment
1513the code generator should use.
1514
1515Instead, if specified, the target data layout is required to match what
1516the ultimate *code generator* expects. This string is used by the
1517mid-level optimizers to improve code, and this only works if it matches
1518what the ultimate code generator uses. If you would like to generate IR
1519that does not embed this target-specific detail into the IR, then you
1520don't have to specify the string. This will disable some optimizations
1521that require precise layout information, but this also prevents those
1522optimizations from introducing target specificity into the IR.
1523
Bill Wendling5cc90842013-10-18 23:41:25 +00001524.. _langref_triple:
1525
1526Target Triple
1527-------------
1528
1529A module may specify a target triple string that describes the target
1530host. The syntax for the target triple is simply:
1531
1532.. code-block:: llvm
1533
1534 target triple = "x86_64-apple-macosx10.7.0"
1535
1536The *target triple* string consists of a series of identifiers delimited
1537by the minus sign character ('-'). The canonical forms are:
1538
1539::
1540
1541 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1542 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1543
1544This information is passed along to the backend so that it generates
1545code for the proper architecture. It's possible to override this on the
1546command line with the ``-mtriple`` command line option.
1547
Sean Silvab084af42012-12-07 10:36:55 +00001548.. _pointeraliasing:
1549
1550Pointer Aliasing Rules
1551----------------------
1552
1553Any memory access must be done through a pointer value associated with
1554an address range of the memory access, otherwise the behavior is
1555undefined. Pointer values are associated with address ranges according
1556to the following rules:
1557
1558- A pointer value is associated with the addresses associated with any
1559 value it is *based* on.
1560- An address of a global variable is associated with the address range
1561 of the variable's storage.
1562- The result value of an allocation instruction is associated with the
1563 address range of the allocated storage.
1564- A null pointer in the default address-space is associated with no
1565 address.
1566- An integer constant other than zero or a pointer value returned from
1567 a function not defined within LLVM may be associated with address
1568 ranges allocated through mechanisms other than those provided by
1569 LLVM. Such ranges shall not overlap with any ranges of addresses
1570 allocated by mechanisms provided by LLVM.
1571
1572A pointer value is *based* on another pointer value according to the
1573following rules:
1574
1575- A pointer value formed from a ``getelementptr`` operation is *based*
1576 on the first operand of the ``getelementptr``.
1577- The result value of a ``bitcast`` is *based* on the operand of the
1578 ``bitcast``.
1579- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1580 values that contribute (directly or indirectly) to the computation of
1581 the pointer's value.
1582- The "*based* on" relationship is transitive.
1583
1584Note that this definition of *"based"* is intentionally similar to the
1585definition of *"based"* in C99, though it is slightly weaker.
1586
1587LLVM IR does not associate types with memory. The result type of a
1588``load`` merely indicates the size and alignment of the memory from
1589which to load, as well as the interpretation of the value. The first
1590operand type of a ``store`` similarly only indicates the size and
1591alignment of the store.
1592
1593Consequently, type-based alias analysis, aka TBAA, aka
1594``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1595:ref:`Metadata <metadata>` may be used to encode additional information
1596which specialized optimization passes may use to implement type-based
1597alias analysis.
1598
1599.. _volatile:
1600
1601Volatile Memory Accesses
1602------------------------
1603
1604Certain memory accesses, such as :ref:`load <i_load>`'s,
1605:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1606marked ``volatile``. The optimizers must not change the number of
1607volatile operations or change their order of execution relative to other
1608volatile operations. The optimizers *may* change the order of volatile
1609operations relative to non-volatile operations. This is not Java's
1610"volatile" and has no cross-thread synchronization behavior.
1611
Andrew Trick89fc5a62013-01-30 21:19:35 +00001612IR-level volatile loads and stores cannot safely be optimized into
1613llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1614flagged volatile. Likewise, the backend should never split or merge
1615target-legal volatile load/store instructions.
1616
Andrew Trick7e6f9282013-01-31 00:49:39 +00001617.. admonition:: Rationale
1618
1619 Platforms may rely on volatile loads and stores of natively supported
1620 data width to be executed as single instruction. For example, in C
1621 this holds for an l-value of volatile primitive type with native
1622 hardware support, but not necessarily for aggregate types. The
1623 frontend upholds these expectations, which are intentionally
1624 unspecified in the IR. The rules above ensure that IR transformation
1625 do not violate the frontend's contract with the language.
1626
Sean Silvab084af42012-12-07 10:36:55 +00001627.. _memmodel:
1628
1629Memory Model for Concurrent Operations
1630--------------------------------------
1631
1632The LLVM IR does not define any way to start parallel threads of
1633execution or to register signal handlers. Nonetheless, there are
1634platform-specific ways to create them, and we define LLVM IR's behavior
1635in their presence. This model is inspired by the C++0x memory model.
1636
1637For a more informal introduction to this model, see the :doc:`Atomics`.
1638
1639We define a *happens-before* partial order as the least partial order
1640that
1641
1642- Is a superset of single-thread program order, and
1643- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1644 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1645 techniques, like pthread locks, thread creation, thread joining,
1646 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1647 Constraints <ordering>`).
1648
1649Note that program order does not introduce *happens-before* edges
1650between a thread and signals executing inside that thread.
1651
1652Every (defined) read operation (load instructions, memcpy, atomic
1653loads/read-modify-writes, etc.) R reads a series of bytes written by
1654(defined) write operations (store instructions, atomic
1655stores/read-modify-writes, memcpy, etc.). For the purposes of this
1656section, initialized globals are considered to have a write of the
1657initializer which is atomic and happens before any other read or write
1658of the memory in question. For each byte of a read R, R\ :sub:`byte`
1659may see any write to the same byte, except:
1660
1661- If write\ :sub:`1` happens before write\ :sub:`2`, and
1662 write\ :sub:`2` happens before R\ :sub:`byte`, then
1663 R\ :sub:`byte` does not see write\ :sub:`1`.
1664- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1665 R\ :sub:`byte` does not see write\ :sub:`3`.
1666
1667Given that definition, R\ :sub:`byte` is defined as follows:
1668
1669- If R is volatile, the result is target-dependent. (Volatile is
1670 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001671 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001672 like normal memory. It does not generally provide cross-thread
1673 synchronization.)
1674- Otherwise, if there is no write to the same byte that happens before
1675 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1676- Otherwise, if R\ :sub:`byte` may see exactly one write,
1677 R\ :sub:`byte` returns the value written by that write.
1678- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1679 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1680 Memory Ordering Constraints <ordering>` section for additional
1681 constraints on how the choice is made.
1682- Otherwise R\ :sub:`byte` returns ``undef``.
1683
1684R returns the value composed of the series of bytes it read. This
1685implies that some bytes within the value may be ``undef`` **without**
1686the entire value being ``undef``. Note that this only defines the
1687semantics of the operation; it doesn't mean that targets will emit more
1688than one instruction to read the series of bytes.
1689
1690Note that in cases where none of the atomic intrinsics are used, this
1691model places only one restriction on IR transformations on top of what
1692is required for single-threaded execution: introducing a store to a byte
1693which might not otherwise be stored is not allowed in general.
1694(Specifically, in the case where another thread might write to and read
1695from an address, introducing a store can change a load that may see
1696exactly one write into a load that may see multiple writes.)
1697
1698.. _ordering:
1699
1700Atomic Memory Ordering Constraints
1701----------------------------------
1702
1703Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1704:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1705:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001706ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001707the same address they *synchronize with*. These semantics are borrowed
1708from Java and C++0x, but are somewhat more colloquial. If these
1709descriptions aren't precise enough, check those specs (see spec
1710references in the :doc:`atomics guide <Atomics>`).
1711:ref:`fence <i_fence>` instructions treat these orderings somewhat
1712differently since they don't take an address. See that instruction's
1713documentation for details.
1714
1715For a simpler introduction to the ordering constraints, see the
1716:doc:`Atomics`.
1717
1718``unordered``
1719 The set of values that can be read is governed by the happens-before
1720 partial order. A value cannot be read unless some operation wrote
1721 it. This is intended to provide a guarantee strong enough to model
1722 Java's non-volatile shared variables. This ordering cannot be
1723 specified for read-modify-write operations; it is not strong enough
1724 to make them atomic in any interesting way.
1725``monotonic``
1726 In addition to the guarantees of ``unordered``, there is a single
1727 total order for modifications by ``monotonic`` operations on each
1728 address. All modification orders must be compatible with the
1729 happens-before order. There is no guarantee that the modification
1730 orders can be combined to a global total order for the whole program
1731 (and this often will not be possible). The read in an atomic
1732 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1733 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1734 order immediately before the value it writes. If one atomic read
1735 happens before another atomic read of the same address, the later
1736 read must see the same value or a later value in the address's
1737 modification order. This disallows reordering of ``monotonic`` (or
1738 stronger) operations on the same address. If an address is written
1739 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1740 read that address repeatedly, the other threads must eventually see
1741 the write. This corresponds to the C++0x/C1x
1742 ``memory_order_relaxed``.
1743``acquire``
1744 In addition to the guarantees of ``monotonic``, a
1745 *synchronizes-with* edge may be formed with a ``release`` operation.
1746 This is intended to model C++'s ``memory_order_acquire``.
1747``release``
1748 In addition to the guarantees of ``monotonic``, if this operation
1749 writes a value which is subsequently read by an ``acquire``
1750 operation, it *synchronizes-with* that operation. (This isn't a
1751 complete description; see the C++0x definition of a release
1752 sequence.) This corresponds to the C++0x/C1x
1753 ``memory_order_release``.
1754``acq_rel`` (acquire+release)
1755 Acts as both an ``acquire`` and ``release`` operation on its
1756 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1757``seq_cst`` (sequentially consistent)
1758 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001759 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001760 writes), there is a global total order on all
1761 sequentially-consistent operations on all addresses, which is
1762 consistent with the *happens-before* partial order and with the
1763 modification orders of all the affected addresses. Each
1764 sequentially-consistent read sees the last preceding write to the
1765 same address in this global order. This corresponds to the C++0x/C1x
1766 ``memory_order_seq_cst`` and Java volatile.
1767
1768.. _singlethread:
1769
1770If an atomic operation is marked ``singlethread``, it only *synchronizes
1771with* or participates in modification and seq\_cst total orderings with
1772other operations running in the same thread (for example, in signal
1773handlers).
1774
1775.. _fastmath:
1776
1777Fast-Math Flags
1778---------------
1779
1780LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1781:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1782:ref:`frem <i_frem>`) have the following flags that can set to enable
1783otherwise unsafe floating point operations
1784
1785``nnan``
1786 No NaNs - Allow optimizations to assume the arguments and result are not
1787 NaN. Such optimizations are required to retain defined behavior over
1788 NaNs, but the value of the result is undefined.
1789
1790``ninf``
1791 No Infs - Allow optimizations to assume the arguments and result are not
1792 +/-Inf. Such optimizations are required to retain defined behavior over
1793 +/-Inf, but the value of the result is undefined.
1794
1795``nsz``
1796 No Signed Zeros - Allow optimizations to treat the sign of a zero
1797 argument or result as insignificant.
1798
1799``arcp``
1800 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1801 argument rather than perform division.
1802
1803``fast``
1804 Fast - Allow algebraically equivalent transformations that may
1805 dramatically change results in floating point (e.g. reassociate). This
1806 flag implies all the others.
1807
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001808.. _uselistorder:
1809
1810Use-list Order Directives
1811-------------------------
1812
1813Use-list directives encode the in-memory order of each use-list, allowing the
1814order to be recreated. ``<order-indexes>`` is a comma-separated list of
1815indexes that are assigned to the referenced value's uses. The referenced
1816value's use-list is immediately sorted by these indexes.
1817
1818Use-list directives may appear at function scope or global scope. They are not
1819instructions, and have no effect on the semantics of the IR. When they're at
1820function scope, they must appear after the terminator of the final basic block.
1821
1822If basic blocks have their address taken via ``blockaddress()`` expressions,
1823``uselistorder_bb`` can be used to reorder their use-lists from outside their
1824function's scope.
1825
1826:Syntax:
1827
1828::
1829
1830 uselistorder <ty> <value>, { <order-indexes> }
1831 uselistorder_bb @function, %block { <order-indexes> }
1832
1833:Examples:
1834
1835::
1836
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001837 define void @foo(i32 %arg1, i32 %arg2) {
1838 entry:
1839 ; ... instructions ...
1840 bb:
1841 ; ... instructions ...
1842
1843 ; At function scope.
1844 uselistorder i32 %arg1, { 1, 0, 2 }
1845 uselistorder label %bb, { 1, 0 }
1846 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001847
1848 ; At global scope.
1849 uselistorder i32* @global, { 1, 2, 0 }
1850 uselistorder i32 7, { 1, 0 }
1851 uselistorder i32 (i32) @bar, { 1, 0 }
1852 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1853
Sean Silvab084af42012-12-07 10:36:55 +00001854.. _typesystem:
1855
1856Type System
1857===========
1858
1859The LLVM type system is one of the most important features of the
1860intermediate representation. Being typed enables a number of
1861optimizations to be performed on the intermediate representation
1862directly, without having to do extra analyses on the side before the
1863transformation. A strong type system makes it easier to read the
1864generated code and enables novel analyses and transformations that are
1865not feasible to perform on normal three address code representations.
1866
Rafael Espindola08013342013-12-07 19:34:20 +00001867.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001868
Rafael Espindola08013342013-12-07 19:34:20 +00001869Void Type
1870---------
Sean Silvab084af42012-12-07 10:36:55 +00001871
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001872:Overview:
1873
Rafael Espindola08013342013-12-07 19:34:20 +00001874
1875The void type does not represent any value and has no size.
1876
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001877:Syntax:
1878
Rafael Espindola08013342013-12-07 19:34:20 +00001879
1880::
1881
1882 void
Sean Silvab084af42012-12-07 10:36:55 +00001883
1884
Rafael Espindola08013342013-12-07 19:34:20 +00001885.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001886
Rafael Espindola08013342013-12-07 19:34:20 +00001887Function Type
1888-------------
Sean Silvab084af42012-12-07 10:36:55 +00001889
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001890:Overview:
1891
Sean Silvab084af42012-12-07 10:36:55 +00001892
Rafael Espindola08013342013-12-07 19:34:20 +00001893The function type can be thought of as a function signature. It consists of a
1894return type and a list of formal parameter types. The return type of a function
1895type is a void type or first class type --- except for :ref:`label <t_label>`
1896and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001897
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001898:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001899
Rafael Espindola08013342013-12-07 19:34:20 +00001900::
Sean Silvab084af42012-12-07 10:36:55 +00001901
Rafael Espindola08013342013-12-07 19:34:20 +00001902 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001903
Rafael Espindola08013342013-12-07 19:34:20 +00001904...where '``<parameter list>``' is a comma-separated list of type
1905specifiers. Optionally, the parameter list may include a type ``...``, which
1906indicates that the function takes a variable number of arguments. Variable
1907argument functions can access their arguments with the :ref:`variable argument
1908handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1909except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001910
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001911:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001912
Rafael Espindola08013342013-12-07 19:34:20 +00001913+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1914| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1915+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1916| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1917+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1918| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1919+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1920| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1921+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1922
1923.. _t_firstclass:
1924
1925First Class Types
1926-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001927
1928The :ref:`first class <t_firstclass>` types are perhaps the most important.
1929Values of these types are the only ones which can be produced by
1930instructions.
1931
Rafael Espindola08013342013-12-07 19:34:20 +00001932.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001933
Rafael Espindola08013342013-12-07 19:34:20 +00001934Single Value Types
1935^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001936
Rafael Espindola08013342013-12-07 19:34:20 +00001937These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001938
1939.. _t_integer:
1940
1941Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001942""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001943
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001944:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001945
1946The integer type is a very simple type that simply specifies an
1947arbitrary bit width for the integer type desired. Any bit width from 1
1948bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1949
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001950:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001951
1952::
1953
1954 iN
1955
1956The number of bits the integer will occupy is specified by the ``N``
1957value.
1958
1959Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001960*********
Sean Silvab084af42012-12-07 10:36:55 +00001961
1962+----------------+------------------------------------------------+
1963| ``i1`` | a single-bit integer. |
1964+----------------+------------------------------------------------+
1965| ``i32`` | a 32-bit integer. |
1966+----------------+------------------------------------------------+
1967| ``i1942652`` | a really big integer of over 1 million bits. |
1968+----------------+------------------------------------------------+
1969
1970.. _t_floating:
1971
1972Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001973""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001974
1975.. list-table::
1976 :header-rows: 1
1977
1978 * - Type
1979 - Description
1980
1981 * - ``half``
1982 - 16-bit floating point value
1983
1984 * - ``float``
1985 - 32-bit floating point value
1986
1987 * - ``double``
1988 - 64-bit floating point value
1989
1990 * - ``fp128``
1991 - 128-bit floating point value (112-bit mantissa)
1992
1993 * - ``x86_fp80``
1994 - 80-bit floating point value (X87)
1995
1996 * - ``ppc_fp128``
1997 - 128-bit floating point value (two 64-bits)
1998
Reid Kleckner9a16d082014-03-05 02:41:37 +00001999X86_mmx Type
2000""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002001
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002002:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002003
Reid Kleckner9a16d082014-03-05 02:41:37 +00002004The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002005machine. The operations allowed on it are quite limited: parameters and
2006return values, load and store, and bitcast. User-specified MMX
2007instructions are represented as intrinsic or asm calls with arguments
2008and/or results of this type. There are no arrays, vectors or constants
2009of this type.
2010
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002011:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002012
2013::
2014
Reid Kleckner9a16d082014-03-05 02:41:37 +00002015 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002016
Sean Silvab084af42012-12-07 10:36:55 +00002017
Rafael Espindola08013342013-12-07 19:34:20 +00002018.. _t_pointer:
2019
2020Pointer Type
2021""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002022
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002023:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002024
Rafael Espindola08013342013-12-07 19:34:20 +00002025The pointer type is used to specify memory locations. Pointers are
2026commonly used to reference objects in memory.
2027
2028Pointer types may have an optional address space attribute defining the
2029numbered address space where the pointed-to object resides. The default
2030address space is number zero. The semantics of non-zero address spaces
2031are target-specific.
2032
2033Note that LLVM does not permit pointers to void (``void*``) nor does it
2034permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002035
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002036:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002037
2038::
2039
Rafael Espindola08013342013-12-07 19:34:20 +00002040 <type> *
2041
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002042:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002043
2044+-------------------------+--------------------------------------------------------------------------------------------------------------+
2045| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2046+-------------------------+--------------------------------------------------------------------------------------------------------------+
2047| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2048+-------------------------+--------------------------------------------------------------------------------------------------------------+
2049| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2050+-------------------------+--------------------------------------------------------------------------------------------------------------+
2051
2052.. _t_vector:
2053
2054Vector Type
2055"""""""""""
2056
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002057:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002058
2059A vector type is a simple derived type that represents a vector of
2060elements. Vector types are used when multiple primitive data are
2061operated in parallel using a single instruction (SIMD). A vector type
2062requires a size (number of elements) and an underlying primitive data
2063type. Vector types are considered :ref:`first class <t_firstclass>`.
2064
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002065:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002066
2067::
2068
2069 < <# elements> x <elementtype> >
2070
2071The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002072elementtype may be any integer, floating point or pointer type. Vectors
2073of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002074
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002075:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002076
2077+-------------------+--------------------------------------------------+
2078| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2079+-------------------+--------------------------------------------------+
2080| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2081+-------------------+--------------------------------------------------+
2082| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2083+-------------------+--------------------------------------------------+
2084| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2085+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002086
2087.. _t_label:
2088
2089Label Type
2090^^^^^^^^^^
2091
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002092:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002093
2094The label type represents code labels.
2095
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002096:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002097
2098::
2099
2100 label
2101
2102.. _t_metadata:
2103
2104Metadata Type
2105^^^^^^^^^^^^^
2106
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002107:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002108
2109The metadata type represents embedded metadata. No derived types may be
2110created from metadata except for :ref:`function <t_function>` arguments.
2111
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002112:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002113
2114::
2115
2116 metadata
2117
Sean Silvab084af42012-12-07 10:36:55 +00002118.. _t_aggregate:
2119
2120Aggregate Types
2121^^^^^^^^^^^^^^^
2122
2123Aggregate Types are a subset of derived types that can contain multiple
2124member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2125aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2126aggregate types.
2127
2128.. _t_array:
2129
2130Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002131""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002132
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002133:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002134
2135The array type is a very simple derived type that arranges elements
2136sequentially in memory. The array type requires a size (number of
2137elements) and an underlying data type.
2138
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002139:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002140
2141::
2142
2143 [<# elements> x <elementtype>]
2144
2145The number of elements is a constant integer value; ``elementtype`` may
2146be any type with a size.
2147
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002148:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002149
2150+------------------+--------------------------------------+
2151| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2152+------------------+--------------------------------------+
2153| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2154+------------------+--------------------------------------+
2155| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2156+------------------+--------------------------------------+
2157
2158Here are some examples of multidimensional arrays:
2159
2160+-----------------------------+----------------------------------------------------------+
2161| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2162+-----------------------------+----------------------------------------------------------+
2163| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2164+-----------------------------+----------------------------------------------------------+
2165| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2166+-----------------------------+----------------------------------------------------------+
2167
2168There is no restriction on indexing beyond the end of the array implied
2169by a static type (though there are restrictions on indexing beyond the
2170bounds of an allocated object in some cases). This means that
2171single-dimension 'variable sized array' addressing can be implemented in
2172LLVM with a zero length array type. An implementation of 'pascal style
2173arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2174example.
2175
Sean Silvab084af42012-12-07 10:36:55 +00002176.. _t_struct:
2177
2178Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002179""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002180
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002181:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002182
2183The structure type is used to represent a collection of data members
2184together in memory. The elements of a structure may be any type that has
2185a size.
2186
2187Structures in memory are accessed using '``load``' and '``store``' by
2188getting a pointer to a field with the '``getelementptr``' instruction.
2189Structures in registers are accessed using the '``extractvalue``' and
2190'``insertvalue``' instructions.
2191
2192Structures may optionally be "packed" structures, which indicate that
2193the alignment of the struct is one byte, and that there is no padding
2194between the elements. In non-packed structs, padding between field types
2195is inserted as defined by the DataLayout string in the module, which is
2196required to match what the underlying code generator expects.
2197
2198Structures can either be "literal" or "identified". A literal structure
2199is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2200identified types are always defined at the top level with a name.
2201Literal types are uniqued by their contents and can never be recursive
2202or opaque since there is no way to write one. Identified types can be
2203recursive, can be opaqued, and are never uniqued.
2204
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002205:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002206
2207::
2208
2209 %T1 = type { <type list> } ; Identified normal struct type
2210 %T2 = type <{ <type list> }> ; Identified packed struct type
2211
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002212:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002213
2214+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2215| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2216+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002217| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002218+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2219| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2220+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2221
2222.. _t_opaque:
2223
2224Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002225""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002226
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002227:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002228
2229Opaque structure types are used to represent named structure types that
2230do not have a body specified. This corresponds (for example) to the C
2231notion of a forward declared structure.
2232
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002233:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002234
2235::
2236
2237 %X = type opaque
2238 %52 = type opaque
2239
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002240:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002241
2242+--------------+-------------------+
2243| ``opaque`` | An opaque type. |
2244+--------------+-------------------+
2245
Sean Silva1703e702014-04-08 21:06:22 +00002246.. _constants:
2247
Sean Silvab084af42012-12-07 10:36:55 +00002248Constants
2249=========
2250
2251LLVM has several different basic types of constants. This section
2252describes them all and their syntax.
2253
2254Simple Constants
2255----------------
2256
2257**Boolean constants**
2258 The two strings '``true``' and '``false``' are both valid constants
2259 of the ``i1`` type.
2260**Integer constants**
2261 Standard integers (such as '4') are constants of the
2262 :ref:`integer <t_integer>` type. Negative numbers may be used with
2263 integer types.
2264**Floating point constants**
2265 Floating point constants use standard decimal notation (e.g.
2266 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2267 hexadecimal notation (see below). The assembler requires the exact
2268 decimal value of a floating-point constant. For example, the
2269 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2270 decimal in binary. Floating point constants must have a :ref:`floating
2271 point <t_floating>` type.
2272**Null pointer constants**
2273 The identifier '``null``' is recognized as a null pointer constant
2274 and must be of :ref:`pointer type <t_pointer>`.
2275
2276The one non-intuitive notation for constants is the hexadecimal form of
2277floating point constants. For example, the form
2278'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2279than) '``double 4.5e+15``'. The only time hexadecimal floating point
2280constants are required (and the only time that they are generated by the
2281disassembler) is when a floating point constant must be emitted but it
2282cannot be represented as a decimal floating point number in a reasonable
2283number of digits. For example, NaN's, infinities, and other special
2284values are represented in their IEEE hexadecimal format so that assembly
2285and disassembly do not cause any bits to change in the constants.
2286
2287When using the hexadecimal form, constants of types half, float, and
2288double are represented using the 16-digit form shown above (which
2289matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002290must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002291precision, respectively. Hexadecimal format is always used for long
2292double, and there are three forms of long double. The 80-bit format used
2293by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2294128-bit format used by PowerPC (two adjacent doubles) is represented by
2295``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002296represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2297will only work if they match the long double format on your target.
2298The IEEE 16-bit format (half precision) is represented by ``0xH``
2299followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2300(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002301
Reid Kleckner9a16d082014-03-05 02:41:37 +00002302There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002303
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002304.. _complexconstants:
2305
Sean Silvab084af42012-12-07 10:36:55 +00002306Complex Constants
2307-----------------
2308
2309Complex constants are a (potentially recursive) combination of simple
2310constants and smaller complex constants.
2311
2312**Structure constants**
2313 Structure constants are represented with notation similar to
2314 structure type definitions (a comma separated list of elements,
2315 surrounded by braces (``{}``)). For example:
2316 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2317 "``@G = external global i32``". Structure constants must have
2318 :ref:`structure type <t_struct>`, and the number and types of elements
2319 must match those specified by the type.
2320**Array constants**
2321 Array constants are represented with notation similar to array type
2322 definitions (a comma separated list of elements, surrounded by
2323 square brackets (``[]``)). For example:
2324 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2325 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002326 match those specified by the type. As a special case, character array
2327 constants may also be represented as a double-quoted string using the ``c``
2328 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002329**Vector constants**
2330 Vector constants are represented with notation similar to vector
2331 type definitions (a comma separated list of elements, surrounded by
2332 less-than/greater-than's (``<>``)). For example:
2333 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2334 must have :ref:`vector type <t_vector>`, and the number and types of
2335 elements must match those specified by the type.
2336**Zero initialization**
2337 The string '``zeroinitializer``' can be used to zero initialize a
2338 value to zero of *any* type, including scalar and
2339 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2340 having to print large zero initializers (e.g. for large arrays) and
2341 is always exactly equivalent to using explicit zero initializers.
2342**Metadata node**
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002343 A metadata node is a constant tuple without types. For example:
2344 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
2345 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2346 Unlike other typed constants that are meant to be interpreted as part of
2347 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002348 information such as debug info.
2349
2350Global Variable and Function Addresses
2351--------------------------------------
2352
2353The addresses of :ref:`global variables <globalvars>` and
2354:ref:`functions <functionstructure>` are always implicitly valid
2355(link-time) constants. These constants are explicitly referenced when
2356the :ref:`identifier for the global <identifiers>` is used and always have
2357:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2358file:
2359
2360.. code-block:: llvm
2361
2362 @X = global i32 17
2363 @Y = global i32 42
2364 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2365
2366.. _undefvalues:
2367
2368Undefined Values
2369----------------
2370
2371The string '``undef``' can be used anywhere a constant is expected, and
2372indicates that the user of the value may receive an unspecified
2373bit-pattern. Undefined values may be of any type (other than '``label``'
2374or '``void``') and be used anywhere a constant is permitted.
2375
2376Undefined values are useful because they indicate to the compiler that
2377the program is well defined no matter what value is used. This gives the
2378compiler more freedom to optimize. Here are some examples of
2379(potentially surprising) transformations that are valid (in pseudo IR):
2380
2381.. code-block:: llvm
2382
2383 %A = add %X, undef
2384 %B = sub %X, undef
2385 %C = xor %X, undef
2386 Safe:
2387 %A = undef
2388 %B = undef
2389 %C = undef
2390
2391This is safe because all of the output bits are affected by the undef
2392bits. Any output bit can have a zero or one depending on the input bits.
2393
2394.. code-block:: llvm
2395
2396 %A = or %X, undef
2397 %B = and %X, undef
2398 Safe:
2399 %A = -1
2400 %B = 0
2401 Unsafe:
2402 %A = undef
2403 %B = undef
2404
2405These logical operations have bits that are not always affected by the
2406input. For example, if ``%X`` has a zero bit, then the output of the
2407'``and``' operation will always be a zero for that bit, no matter what
2408the corresponding bit from the '``undef``' is. As such, it is unsafe to
2409optimize or assume that the result of the '``and``' is '``undef``'.
2410However, it is safe to assume that all bits of the '``undef``' could be
24110, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2412all the bits of the '``undef``' operand to the '``or``' could be set,
2413allowing the '``or``' to be folded to -1.
2414
2415.. code-block:: llvm
2416
2417 %A = select undef, %X, %Y
2418 %B = select undef, 42, %Y
2419 %C = select %X, %Y, undef
2420 Safe:
2421 %A = %X (or %Y)
2422 %B = 42 (or %Y)
2423 %C = %Y
2424 Unsafe:
2425 %A = undef
2426 %B = undef
2427 %C = undef
2428
2429This set of examples shows that undefined '``select``' (and conditional
2430branch) conditions can go *either way*, but they have to come from one
2431of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2432both known to have a clear low bit, then ``%A`` would have to have a
2433cleared low bit. However, in the ``%C`` example, the optimizer is
2434allowed to assume that the '``undef``' operand could be the same as
2435``%Y``, allowing the whole '``select``' to be eliminated.
2436
2437.. code-block:: llvm
2438
2439 %A = xor undef, undef
2440
2441 %B = undef
2442 %C = xor %B, %B
2443
2444 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002445 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002446 %F = icmp gte %D, 4
2447
2448 Safe:
2449 %A = undef
2450 %B = undef
2451 %C = undef
2452 %D = undef
2453 %E = undef
2454 %F = undef
2455
2456This example points out that two '``undef``' operands are not
2457necessarily the same. This can be surprising to people (and also matches
2458C semantics) where they assume that "``X^X``" is always zero, even if
2459``X`` is undefined. This isn't true for a number of reasons, but the
2460short answer is that an '``undef``' "variable" can arbitrarily change
2461its value over its "live range". This is true because the variable
2462doesn't actually *have a live range*. Instead, the value is logically
2463read from arbitrary registers that happen to be around when needed, so
2464the value is not necessarily consistent over time. In fact, ``%A`` and
2465``%C`` need to have the same semantics or the core LLVM "replace all
2466uses with" concept would not hold.
2467
2468.. code-block:: llvm
2469
2470 %A = fdiv undef, %X
2471 %B = fdiv %X, undef
2472 Safe:
2473 %A = undef
2474 b: unreachable
2475
2476These examples show the crucial difference between an *undefined value*
2477and *undefined behavior*. An undefined value (like '``undef``') is
2478allowed to have an arbitrary bit-pattern. This means that the ``%A``
2479operation can be constant folded to '``undef``', because the '``undef``'
2480could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2481However, in the second example, we can make a more aggressive
2482assumption: because the ``undef`` is allowed to be an arbitrary value,
2483we are allowed to assume that it could be zero. Since a divide by zero
2484has *undefined behavior*, we are allowed to assume that the operation
2485does not execute at all. This allows us to delete the divide and all
2486code after it. Because the undefined operation "can't happen", the
2487optimizer can assume that it occurs in dead code.
2488
2489.. code-block:: llvm
2490
2491 a: store undef -> %X
2492 b: store %X -> undef
2493 Safe:
2494 a: <deleted>
2495 b: unreachable
2496
2497These examples reiterate the ``fdiv`` example: a store *of* an undefined
2498value can be assumed to not have any effect; we can assume that the
2499value is overwritten with bits that happen to match what was already
2500there. However, a store *to* an undefined location could clobber
2501arbitrary memory, therefore, it has undefined behavior.
2502
2503.. _poisonvalues:
2504
2505Poison Values
2506-------------
2507
2508Poison values are similar to :ref:`undef values <undefvalues>`, however
2509they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002510that cannot evoke side effects has nevertheless detected a condition
2511that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002512
2513There is currently no way of representing a poison value in the IR; they
2514only exist when produced by operations such as :ref:`add <i_add>` with
2515the ``nsw`` flag.
2516
2517Poison value behavior is defined in terms of value *dependence*:
2518
2519- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2520- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2521 their dynamic predecessor basic block.
2522- Function arguments depend on the corresponding actual argument values
2523 in the dynamic callers of their functions.
2524- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2525 instructions that dynamically transfer control back to them.
2526- :ref:`Invoke <i_invoke>` instructions depend on the
2527 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2528 call instructions that dynamically transfer control back to them.
2529- Non-volatile loads and stores depend on the most recent stores to all
2530 of the referenced memory addresses, following the order in the IR
2531 (including loads and stores implied by intrinsics such as
2532 :ref:`@llvm.memcpy <int_memcpy>`.)
2533- An instruction with externally visible side effects depends on the
2534 most recent preceding instruction with externally visible side
2535 effects, following the order in the IR. (This includes :ref:`volatile
2536 operations <volatile>`.)
2537- An instruction *control-depends* on a :ref:`terminator
2538 instruction <terminators>` if the terminator instruction has
2539 multiple successors and the instruction is always executed when
2540 control transfers to one of the successors, and may not be executed
2541 when control is transferred to another.
2542- Additionally, an instruction also *control-depends* on a terminator
2543 instruction if the set of instructions it otherwise depends on would
2544 be different if the terminator had transferred control to a different
2545 successor.
2546- Dependence is transitive.
2547
Richard Smith32dbdf62014-07-31 04:25:36 +00002548Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2549with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002550on a poison value has undefined behavior.
2551
2552Here are some examples:
2553
2554.. code-block:: llvm
2555
2556 entry:
2557 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2558 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2559 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2560 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2561
2562 store i32 %poison, i32* @g ; Poison value stored to memory.
2563 %poison2 = load i32* @g ; Poison value loaded back from memory.
2564
2565 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2566
2567 %narrowaddr = bitcast i32* @g to i16*
2568 %wideaddr = bitcast i32* @g to i64*
2569 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2570 %poison4 = load i64* %wideaddr ; Returns a poison value.
2571
2572 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2573 br i1 %cmp, label %true, label %end ; Branch to either destination.
2574
2575 true:
2576 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2577 ; it has undefined behavior.
2578 br label %end
2579
2580 end:
2581 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2582 ; Both edges into this PHI are
2583 ; control-dependent on %cmp, so this
2584 ; always results in a poison value.
2585
2586 store volatile i32 0, i32* @g ; This would depend on the store in %true
2587 ; if %cmp is true, or the store in %entry
2588 ; otherwise, so this is undefined behavior.
2589
2590 br i1 %cmp, label %second_true, label %second_end
2591 ; The same branch again, but this time the
2592 ; true block doesn't have side effects.
2593
2594 second_true:
2595 ; No side effects!
2596 ret void
2597
2598 second_end:
2599 store volatile i32 0, i32* @g ; This time, the instruction always depends
2600 ; on the store in %end. Also, it is
2601 ; control-equivalent to %end, so this is
2602 ; well-defined (ignoring earlier undefined
2603 ; behavior in this example).
2604
2605.. _blockaddress:
2606
2607Addresses of Basic Blocks
2608-------------------------
2609
2610``blockaddress(@function, %block)``
2611
2612The '``blockaddress``' constant computes the address of the specified
2613basic block in the specified function, and always has an ``i8*`` type.
2614Taking the address of the entry block is illegal.
2615
2616This value only has defined behavior when used as an operand to the
2617':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2618against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002619undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002620no label is equal to the null pointer. This may be passed around as an
2621opaque pointer sized value as long as the bits are not inspected. This
2622allows ``ptrtoint`` and arithmetic to be performed on these values so
2623long as the original value is reconstituted before the ``indirectbr``
2624instruction.
2625
2626Finally, some targets may provide defined semantics when using the value
2627as the operand to an inline assembly, but that is target specific.
2628
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002629.. _constantexprs:
2630
Sean Silvab084af42012-12-07 10:36:55 +00002631Constant Expressions
2632--------------------
2633
2634Constant expressions are used to allow expressions involving other
2635constants to be used as constants. Constant expressions may be of any
2636:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2637that does not have side effects (e.g. load and call are not supported).
2638The following is the syntax for constant expressions:
2639
2640``trunc (CST to TYPE)``
2641 Truncate a constant to another type. The bit size of CST must be
2642 larger than the bit size of TYPE. Both types must be integers.
2643``zext (CST to TYPE)``
2644 Zero extend a constant to another type. The bit size of CST must be
2645 smaller than the bit size of TYPE. Both types must be integers.
2646``sext (CST to TYPE)``
2647 Sign extend a constant to another type. The bit size of CST must be
2648 smaller than the bit size of TYPE. Both types must be integers.
2649``fptrunc (CST to TYPE)``
2650 Truncate a floating point constant to another floating point type.
2651 The size of CST must be larger than the size of TYPE. Both types
2652 must be floating point.
2653``fpext (CST to TYPE)``
2654 Floating point extend a constant to another type. The size of CST
2655 must be smaller or equal to the size of TYPE. Both types must be
2656 floating point.
2657``fptoui (CST to TYPE)``
2658 Convert a floating point constant to the corresponding unsigned
2659 integer constant. TYPE must be a scalar or vector integer type. CST
2660 must be of scalar or vector floating point type. Both CST and TYPE
2661 must be scalars, or vectors of the same number of elements. If the
2662 value won't fit in the integer type, the results are undefined.
2663``fptosi (CST to TYPE)``
2664 Convert a floating point constant to the corresponding signed
2665 integer constant. TYPE must be a scalar or vector integer type. CST
2666 must be of scalar or vector floating point type. Both CST and TYPE
2667 must be scalars, or vectors of the same number of elements. If the
2668 value won't fit in the integer type, the results are undefined.
2669``uitofp (CST to TYPE)``
2670 Convert an unsigned integer constant to the corresponding floating
2671 point constant. TYPE must be a scalar or vector floating point type.
2672 CST must be of scalar or vector integer type. Both CST and TYPE must
2673 be scalars, or vectors of the same number of elements. If the value
2674 won't fit in the floating point type, the results are undefined.
2675``sitofp (CST to TYPE)``
2676 Convert a signed integer constant to the corresponding floating
2677 point constant. TYPE must be a scalar or vector floating point type.
2678 CST must be of scalar or vector integer type. Both CST and TYPE must
2679 be scalars, or vectors of the same number of elements. If the value
2680 won't fit in the floating point type, the results are undefined.
2681``ptrtoint (CST to TYPE)``
2682 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002683 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002684 pointer type. The ``CST`` value is zero extended, truncated, or
2685 unchanged to make it fit in ``TYPE``.
2686``inttoptr (CST to TYPE)``
2687 Convert an integer constant to a pointer constant. TYPE must be a
2688 pointer type. CST must be of integer type. The CST value is zero
2689 extended, truncated, or unchanged to make it fit in a pointer size.
2690 This one is *really* dangerous!
2691``bitcast (CST to TYPE)``
2692 Convert a constant, CST, to another TYPE. The constraints of the
2693 operands are the same as those for the :ref:`bitcast
2694 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002695``addrspacecast (CST to TYPE)``
2696 Convert a constant pointer or constant vector of pointer, CST, to another
2697 TYPE in a different address space. The constraints of the operands are the
2698 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002699``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2700 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2701 constants. As with the :ref:`getelementptr <i_getelementptr>`
2702 instruction, the index list may have zero or more indexes, which are
2703 required to make sense for the type of "CSTPTR".
2704``select (COND, VAL1, VAL2)``
2705 Perform the :ref:`select operation <i_select>` on constants.
2706``icmp COND (VAL1, VAL2)``
2707 Performs the :ref:`icmp operation <i_icmp>` on constants.
2708``fcmp COND (VAL1, VAL2)``
2709 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2710``extractelement (VAL, IDX)``
2711 Perform the :ref:`extractelement operation <i_extractelement>` on
2712 constants.
2713``insertelement (VAL, ELT, IDX)``
2714 Perform the :ref:`insertelement operation <i_insertelement>` on
2715 constants.
2716``shufflevector (VEC1, VEC2, IDXMASK)``
2717 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2718 constants.
2719``extractvalue (VAL, IDX0, IDX1, ...)``
2720 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2721 constants. The index list is interpreted in a similar manner as
2722 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2723 least one index value must be specified.
2724``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2725 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2726 The index list is interpreted in a similar manner as indices in a
2727 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2728 value must be specified.
2729``OPCODE (LHS, RHS)``
2730 Perform the specified operation of the LHS and RHS constants. OPCODE
2731 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2732 binary <bitwiseops>` operations. The constraints on operands are
2733 the same as those for the corresponding instruction (e.g. no bitwise
2734 operations on floating point values are allowed).
2735
2736Other Values
2737============
2738
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002739.. _inlineasmexprs:
2740
Sean Silvab084af42012-12-07 10:36:55 +00002741Inline Assembler Expressions
2742----------------------------
2743
2744LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2745Inline Assembly <moduleasm>`) through the use of a special value. This
2746value represents the inline assembler as a string (containing the
2747instructions to emit), a list of operand constraints (stored as a
2748string), a flag that indicates whether or not the inline asm expression
2749has side effects, and a flag indicating whether the function containing
2750the asm needs to align its stack conservatively. An example inline
2751assembler expression is:
2752
2753.. code-block:: llvm
2754
2755 i32 (i32) asm "bswap $0", "=r,r"
2756
2757Inline assembler expressions may **only** be used as the callee operand
2758of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2759Thus, typically we have:
2760
2761.. code-block:: llvm
2762
2763 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2764
2765Inline asms with side effects not visible in the constraint list must be
2766marked as having side effects. This is done through the use of the
2767'``sideeffect``' keyword, like so:
2768
2769.. code-block:: llvm
2770
2771 call void asm sideeffect "eieio", ""()
2772
2773In some cases inline asms will contain code that will not work unless
2774the stack is aligned in some way, such as calls or SSE instructions on
2775x86, yet will not contain code that does that alignment within the asm.
2776The compiler should make conservative assumptions about what the asm
2777might contain and should generate its usual stack alignment code in the
2778prologue if the '``alignstack``' keyword is present:
2779
2780.. code-block:: llvm
2781
2782 call void asm alignstack "eieio", ""()
2783
2784Inline asms also support using non-standard assembly dialects. The
2785assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2786the inline asm is using the Intel dialect. Currently, ATT and Intel are
2787the only supported dialects. An example is:
2788
2789.. code-block:: llvm
2790
2791 call void asm inteldialect "eieio", ""()
2792
2793If multiple keywords appear the '``sideeffect``' keyword must come
2794first, the '``alignstack``' keyword second and the '``inteldialect``'
2795keyword last.
2796
2797Inline Asm Metadata
2798^^^^^^^^^^^^^^^^^^^
2799
2800The call instructions that wrap inline asm nodes may have a
2801"``!srcloc``" MDNode attached to it that contains a list of constant
2802integers. If present, the code generator will use the integer as the
2803location cookie value when report errors through the ``LLVMContext``
2804error reporting mechanisms. This allows a front-end to correlate backend
2805errors that occur with inline asm back to the source code that produced
2806it. For example:
2807
2808.. code-block:: llvm
2809
2810 call void asm sideeffect "something bad", ""(), !srcloc !42
2811 ...
2812 !42 = !{ i32 1234567 }
2813
2814It is up to the front-end to make sense of the magic numbers it places
2815in the IR. If the MDNode contains multiple constants, the code generator
2816will use the one that corresponds to the line of the asm that the error
2817occurs on.
2818
2819.. _metadata:
2820
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002821Metadata
2822========
Sean Silvab084af42012-12-07 10:36:55 +00002823
2824LLVM IR allows metadata to be attached to instructions in the program
2825that can convey extra information about the code to the optimizers and
2826code generator. One example application of metadata is source-level
2827debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002828
2829Metadata does not have a type, and is not a value. If referenced from a
2830``call`` instruction, it uses the ``metadata`` type.
2831
2832All metadata are identified in syntax by a exclamation point ('``!``').
2833
2834Metadata Nodes and Metadata Strings
2835-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00002836
2837A metadata string is a string surrounded by double quotes. It can
2838contain any character by escaping non-printable characters with
2839"``\xx``" where "``xx``" is the two digit hex code. For example:
2840"``!"test\00"``".
2841
2842Metadata nodes are represented with notation similar to structure
2843constants (a comma separated list of elements, surrounded by braces and
2844preceded by an exclamation point). Metadata nodes can have any values as
2845their operand. For example:
2846
2847.. code-block:: llvm
2848
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002849 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00002850
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00002851Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
2852
2853.. code-block:: llvm
2854
2855 !0 = distinct !{!"test\00", i32 10}
2856
Sean Silvab084af42012-12-07 10:36:55 +00002857A :ref:`named metadata <namedmetadatastructure>` is a collection of
2858metadata nodes, which can be looked up in the module symbol table. For
2859example:
2860
2861.. code-block:: llvm
2862
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002863 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00002864
2865Metadata can be used as function arguments. Here ``llvm.dbg.value``
2866function is using two metadata arguments:
2867
2868.. code-block:: llvm
2869
2870 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2871
2872Metadata can be attached with an instruction. Here metadata ``!21`` is
2873attached to the ``add`` instruction using the ``!dbg`` identifier:
2874
2875.. code-block:: llvm
2876
2877 %indvar.next = add i64 %indvar, 1, !dbg !21
2878
2879More information about specific metadata nodes recognized by the
2880optimizers and code generator is found below.
2881
2882'``tbaa``' Metadata
2883^^^^^^^^^^^^^^^^^^^
2884
2885In LLVM IR, memory does not have types, so LLVM's own type system is not
2886suitable for doing TBAA. Instead, metadata is added to the IR to
2887describe a type system of a higher level language. This can be used to
2888implement typical C/C++ TBAA, but it can also be used to implement
2889custom alias analysis behavior for other languages.
2890
2891The current metadata format is very simple. TBAA metadata nodes have up
2892to three fields, e.g.:
2893
2894.. code-block:: llvm
2895
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002896 !0 = !{ !"an example type tree" }
2897 !1 = !{ !"int", !0 }
2898 !2 = !{ !"float", !0 }
2899 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00002900
2901The first field is an identity field. It can be any value, usually a
2902metadata string, which uniquely identifies the type. The most important
2903name in the tree is the name of the root node. Two trees with different
2904root node names are entirely disjoint, even if they have leaves with
2905common names.
2906
2907The second field identifies the type's parent node in the tree, or is
2908null or omitted for a root node. A type is considered to alias all of
2909its descendants and all of its ancestors in the tree. Also, a type is
2910considered to alias all types in other trees, so that bitcode produced
2911from multiple front-ends is handled conservatively.
2912
2913If the third field is present, it's an integer which if equal to 1
2914indicates that the type is "constant" (meaning
2915``pointsToConstantMemory`` should return true; see `other useful
2916AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2917
2918'``tbaa.struct``' Metadata
2919^^^^^^^^^^^^^^^^^^^^^^^^^^
2920
2921The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2922aggregate assignment operations in C and similar languages, however it
2923is defined to copy a contiguous region of memory, which is more than
2924strictly necessary for aggregate types which contain holes due to
2925padding. Also, it doesn't contain any TBAA information about the fields
2926of the aggregate.
2927
2928``!tbaa.struct`` metadata can describe which memory subregions in a
2929memcpy are padding and what the TBAA tags of the struct are.
2930
2931The current metadata format is very simple. ``!tbaa.struct`` metadata
2932nodes are a list of operands which are in conceptual groups of three.
2933For each group of three, the first operand gives the byte offset of a
2934field in bytes, the second gives its size in bytes, and the third gives
2935its tbaa tag. e.g.:
2936
2937.. code-block:: llvm
2938
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002939 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00002940
2941This describes a struct with two fields. The first is at offset 0 bytes
2942with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2943and has size 4 bytes and has tbaa tag !2.
2944
2945Note that the fields need not be contiguous. In this example, there is a
29464 byte gap between the two fields. This gap represents padding which
2947does not carry useful data and need not be preserved.
2948
Hal Finkel94146652014-07-24 14:25:39 +00002949'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00002950^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00002951
2952``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
2953noalias memory-access sets. This means that some collection of memory access
2954instructions (loads, stores, memory-accessing calls, etc.) that carry
2955``noalias`` metadata can specifically be specified not to alias with some other
2956collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00002957Each type of metadata specifies a list of scopes where each scope has an id and
2958a domain. When evaluating an aliasing query, if for some some domain, the set
2959of scopes with that domain in one instruction's ``alias.scope`` list is a
2960subset of (or qual to) the set of scopes for that domain in another
2961instruction's ``noalias`` list, then the two memory accesses are assumed not to
2962alias.
Hal Finkel94146652014-07-24 14:25:39 +00002963
Hal Finkel029cde62014-07-25 15:50:02 +00002964The metadata identifying each domain is itself a list containing one or two
2965entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00002966string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00002967self-reference can be used to create globally unique domain names. A
2968descriptive string may optionally be provided as a second list entry.
2969
2970The metadata identifying each scope is also itself a list containing two or
2971three entries. The first entry is the name of the scope. Note that if the name
2972is a string then it can be combined accross functions and translation units. A
2973self-reference can be used to create globally unique scope names. A metadata
2974reference to the scope's domain is the second entry. A descriptive string may
2975optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00002976
2977For example,
2978
2979.. code-block:: llvm
2980
Hal Finkel029cde62014-07-25 15:50:02 +00002981 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002982 !0 = !{!0}
2983 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00002984
Hal Finkel029cde62014-07-25 15:50:02 +00002985 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002986 !2 = !{!2, !0}
2987 !3 = !{!3, !0}
2988 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00002989
Hal Finkel029cde62014-07-25 15:50:02 +00002990 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002991 !5 = !{!4} ; A list containing only scope !4
2992 !6 = !{!4, !3, !2}
2993 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00002994
2995 ; These two instructions don't alias:
Hal Finkel029cde62014-07-25 15:50:02 +00002996 %0 = load float* %c, align 4, !alias.scope !5
2997 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00002998
Hal Finkel029cde62014-07-25 15:50:02 +00002999 ; These two instructions also don't alias (for domain !1, the set of scopes
3000 ; in the !alias.scope equals that in the !noalias list):
3001 %2 = load float* %c, align 4, !alias.scope !5
3002 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00003003
Hal Finkel029cde62014-07-25 15:50:02 +00003004 ; These two instructions don't alias (for domain !0, the set of scopes in
3005 ; the !noalias list is not a superset of, or equal to, the scopes in the
3006 ; !alias.scope list):
3007 %2 = load float* %c, align 4, !alias.scope !6
3008 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00003009
Sean Silvab084af42012-12-07 10:36:55 +00003010'``fpmath``' Metadata
3011^^^^^^^^^^^^^^^^^^^^^
3012
3013``fpmath`` metadata may be attached to any instruction of floating point
3014type. It can be used to express the maximum acceptable error in the
3015result of that instruction, in ULPs, thus potentially allowing the
3016compiler to use a more efficient but less accurate method of computing
3017it. ULP is defined as follows:
3018
3019 If ``x`` is a real number that lies between two finite consecutive
3020 floating-point numbers ``a`` and ``b``, without being equal to one
3021 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
3022 distance between the two non-equal finite floating-point numbers
3023 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
3024
3025The metadata node shall consist of a single positive floating point
3026number representing the maximum relative error, for example:
3027
3028.. code-block:: llvm
3029
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003030 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00003031
3032'``range``' Metadata
3033^^^^^^^^^^^^^^^^^^^^
3034
Jingyue Wu37fcb592014-06-19 16:50:16 +00003035``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
3036integer types. It expresses the possible ranges the loaded value or the value
3037returned by the called function at this call site is in. The ranges are
3038represented with a flattened list of integers. The loaded value or the value
3039returned is known to be in the union of the ranges defined by each consecutive
3040pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00003041
3042- The type must match the type loaded by the instruction.
3043- The pair ``a,b`` represents the range ``[a,b)``.
3044- Both ``a`` and ``b`` are constants.
3045- The range is allowed to wrap.
3046- The range should not represent the full or empty set. That is,
3047 ``a!=b``.
3048
3049In addition, the pairs must be in signed order of the lower bound and
3050they must be non-contiguous.
3051
3052Examples:
3053
3054.. code-block:: llvm
3055
3056 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
3057 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00003058 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
3059 %d = invoke i8 @bar() to label %cont
3060 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00003061 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003062 !0 = !{ i8 0, i8 2 }
3063 !1 = !{ i8 255, i8 2 }
3064 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
3065 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00003066
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003067'``llvm.loop``'
3068^^^^^^^^^^^^^^^
3069
3070It is sometimes useful to attach information to loop constructs. Currently,
3071loop metadata is implemented as metadata attached to the branch instruction
3072in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00003073guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00003074specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003075
3076The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00003077itself to avoid merging it with any other identifier metadata, e.g.,
3078during module linkage or function inlining. That is, each loop should refer
3079to their own identification metadata even if they reside in separate functions.
3080The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003081constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003082
3083.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00003084
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003085 !0 = !{!0}
3086 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003087
Mark Heffernan893752a2014-07-18 19:24:51 +00003088The loop identifier metadata can be used to specify additional
3089per-loop metadata. Any operands after the first operand can be treated
3090as user-defined metadata. For example the ``llvm.loop.unroll.count``
3091suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003092
Paul Redmond5fdf8362013-05-28 20:00:34 +00003093.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003094
Paul Redmond5fdf8362013-05-28 20:00:34 +00003095 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
3096 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003097 !0 = !{!0, !1}
3098 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003099
Mark Heffernan9d20e422014-07-21 23:11:03 +00003100'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
3101^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00003102
Mark Heffernan9d20e422014-07-21 23:11:03 +00003103Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
3104used to control per-loop vectorization and interleaving parameters such as
3105vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00003106conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00003107``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
3108optimization hints and the optimizer will only interleave and vectorize loops if
3109it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
3110which contains information about loop-carried memory dependencies can be helpful
3111in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00003112
Mark Heffernan9d20e422014-07-21 23:11:03 +00003113'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00003114^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3115
Mark Heffernan9d20e422014-07-21 23:11:03 +00003116This metadata suggests an interleave count to the loop interleaver.
3117The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00003118second operand is an integer specifying the interleave count. For
3119example:
3120
3121.. code-block:: llvm
3122
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003123 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003124
Mark Heffernan9d20e422014-07-21 23:11:03 +00003125Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3126multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
3127then the interleave count will be determined automatically.
3128
3129'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00003130^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00003131
3132This metadata selectively enables or disables vectorization for the loop. The
3133first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3134is a bit. If the bit operand value is 1 vectorization is enabled. A value of
31350 disables vectorization:
3136
3137.. code-block:: llvm
3138
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003139 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
3140 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00003141
3142'``llvm.loop.vectorize.width``' Metadata
3143^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3144
3145This metadata sets the target width of the vectorizer. The first
3146operand is the string ``llvm.loop.vectorize.width`` and the second
3147operand is an integer specifying the width. For example:
3148
3149.. code-block:: llvm
3150
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003151 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003152
3153Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3154vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
31550 or if the loop does not have this metadata the width will be
3156determined automatically.
3157
3158'``llvm.loop.unroll``'
3159^^^^^^^^^^^^^^^^^^^^^^
3160
3161Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3162optimization hints such as the unroll factor. ``llvm.loop.unroll``
3163metadata should be used in conjunction with ``llvm.loop`` loop
3164identification metadata. The ``llvm.loop.unroll`` metadata are only
3165optimization hints and the unrolling will only be performed if the
3166optimizer believes it is safe to do so.
3167
Mark Heffernan893752a2014-07-18 19:24:51 +00003168'``llvm.loop.unroll.count``' Metadata
3169^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3170
3171This metadata suggests an unroll factor to the loop unroller. The
3172first operand is the string ``llvm.loop.unroll.count`` and the second
3173operand is a positive integer specifying the unroll factor. For
3174example:
3175
3176.. code-block:: llvm
3177
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003178 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003179
3180If the trip count of the loop is less than the unroll count the loop
3181will be partially unrolled.
3182
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003183'``llvm.loop.unroll.disable``' Metadata
3184^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3185
3186This metadata either disables loop unrolling. The metadata has a single operand
3187which is the string ``llvm.loop.unroll.disable``. For example:
3188
3189.. code-block:: llvm
3190
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003191 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003192
3193'``llvm.loop.unroll.full``' Metadata
3194^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3195
3196This metadata either suggests that the loop should be unrolled fully. The
3197metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3198For example:
3199
3200.. code-block:: llvm
3201
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003202 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003203
3204'``llvm.mem``'
3205^^^^^^^^^^^^^^^
3206
3207Metadata types used to annotate memory accesses with information helpful
3208for optimizations are prefixed with ``llvm.mem``.
3209
3210'``llvm.mem.parallel_loop_access``' Metadata
3211^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3212
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003213The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3214or metadata containing a list of loop identifiers for nested loops.
3215The metadata is attached to memory accessing instructions and denotes that
3216no loop carried memory dependence exist between it and other instructions denoted
3217with the same loop identifier.
3218
3219Precisely, given two instructions ``m1`` and ``m2`` that both have the
3220``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3221set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00003222carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003223``L2``.
3224
3225As a special case, if all memory accessing instructions in a loop have
3226``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3227loop has no loop carried memory dependences and is considered to be a parallel
3228loop.
3229
3230Note that if not all memory access instructions have such metadata referring to
3231the loop, then the loop is considered not being trivially parallel. Additional
3232memory dependence analysis is required to make that determination. As a fail
3233safe mechanism, this causes loops that were originally parallel to be considered
3234sequential (if optimization passes that are unaware of the parallel semantics
3235insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003236
3237Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003238both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003239metadata types that refer to the same loop identifier metadata.
3240
3241.. code-block:: llvm
3242
3243 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003244 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003245 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003246 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003247 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003248 ...
3249 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003250
3251 for.end:
3252 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003253 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003254
3255It is also possible to have nested parallel loops. In that case the
3256memory accesses refer to a list of loop identifier metadata nodes instead of
3257the loop identifier metadata node directly:
3258
3259.. code-block:: llvm
3260
3261 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003262 ...
3263 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
3264 ...
3265 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003266
3267 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003268 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003269 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003270 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003271 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003272 ...
3273 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003274
3275 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003276 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003277 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003278 ...
3279 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003280
3281 outer.for.end: ; preds = %for.body
3282 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003283 !0 = !{!1, !2} ; a list of loop identifiers
3284 !1 = !{!1} ; an identifier for the inner loop
3285 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003286
Sean Silvab084af42012-12-07 10:36:55 +00003287Module Flags Metadata
3288=====================
3289
3290Information about the module as a whole is difficult to convey to LLVM's
3291subsystems. The LLVM IR isn't sufficient to transmit this information.
3292The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003293this. These flags are in the form of key / value pairs --- much like a
3294dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003295look it up.
3296
3297The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3298Each triplet has the following form:
3299
3300- The first element is a *behavior* flag, which specifies the behavior
3301 when two (or more) modules are merged together, and it encounters two
3302 (or more) metadata with the same ID. The supported behaviors are
3303 described below.
3304- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003305 metadata. Each module may only have one flag entry for each unique ID (not
3306 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003307- The third element is the value of the flag.
3308
3309When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003310``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3311each unique metadata ID string, there will be exactly one entry in the merged
3312modules ``llvm.module.flags`` metadata table, and the value for that entry will
3313be determined by the merge behavior flag, as described below. The only exception
3314is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003315
3316The following behaviors are supported:
3317
3318.. list-table::
3319 :header-rows: 1
3320 :widths: 10 90
3321
3322 * - Value
3323 - Behavior
3324
3325 * - 1
3326 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003327 Emits an error if two values disagree, otherwise the resulting value
3328 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003329
3330 * - 2
3331 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003332 Emits a warning if two values disagree. The result value will be the
3333 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003334
3335 * - 3
3336 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003337 Adds a requirement that another module flag be present and have a
3338 specified value after linking is performed. The value must be a
3339 metadata pair, where the first element of the pair is the ID of the
3340 module flag to be restricted, and the second element of the pair is
3341 the value the module flag should be restricted to. This behavior can
3342 be used to restrict the allowable results (via triggering of an
3343 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003344
3345 * - 4
3346 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003347 Uses the specified value, regardless of the behavior or value of the
3348 other module. If both modules specify **Override**, but the values
3349 differ, an error will be emitted.
3350
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003351 * - 5
3352 - **Append**
3353 Appends the two values, which are required to be metadata nodes.
3354
3355 * - 6
3356 - **AppendUnique**
3357 Appends the two values, which are required to be metadata
3358 nodes. However, duplicate entries in the second list are dropped
3359 during the append operation.
3360
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003361It is an error for a particular unique flag ID to have multiple behaviors,
3362except in the case of **Require** (which adds restrictions on another metadata
3363value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003364
3365An example of module flags:
3366
3367.. code-block:: llvm
3368
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003369 !0 = !{ i32 1, !"foo", i32 1 }
3370 !1 = !{ i32 4, !"bar", i32 37 }
3371 !2 = !{ i32 2, !"qux", i32 42 }
3372 !3 = !{ i32 3, !"qux",
3373 !{
3374 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00003375 }
3376 }
3377 !llvm.module.flags = !{ !0, !1, !2, !3 }
3378
3379- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3380 if two or more ``!"foo"`` flags are seen is to emit an error if their
3381 values are not equal.
3382
3383- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3384 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003385 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003386
3387- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3388 behavior if two or more ``!"qux"`` flags are seen is to emit a
3389 warning if their values are not equal.
3390
3391- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3392
3393 ::
3394
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003395 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003396
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003397 The behavior is to emit an error if the ``llvm.module.flags`` does not
3398 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3399 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003400
3401Objective-C Garbage Collection Module Flags Metadata
3402----------------------------------------------------
3403
3404On the Mach-O platform, Objective-C stores metadata about garbage
3405collection in a special section called "image info". The metadata
3406consists of a version number and a bitmask specifying what types of
3407garbage collection are supported (if any) by the file. If two or more
3408modules are linked together their garbage collection metadata needs to
3409be merged rather than appended together.
3410
3411The Objective-C garbage collection module flags metadata consists of the
3412following key-value pairs:
3413
3414.. list-table::
3415 :header-rows: 1
3416 :widths: 30 70
3417
3418 * - Key
3419 - Value
3420
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003421 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003422 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003423
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003424 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003425 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003426 always 0.
3427
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003428 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003429 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003430 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3431 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3432 Objective-C ABI version 2.
3433
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003434 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003435 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003436 not. Valid values are 0, for no garbage collection, and 2, for garbage
3437 collection supported.
3438
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003439 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003440 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003441 If present, its value must be 6. This flag requires that the
3442 ``Objective-C Garbage Collection`` flag have the value 2.
3443
3444Some important flag interactions:
3445
3446- If a module with ``Objective-C Garbage Collection`` set to 0 is
3447 merged with a module with ``Objective-C Garbage Collection`` set to
3448 2, then the resulting module has the
3449 ``Objective-C Garbage Collection`` flag set to 0.
3450- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3451 merged with a module with ``Objective-C GC Only`` set to 6.
3452
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003453Automatic Linker Flags Module Flags Metadata
3454--------------------------------------------
3455
3456Some targets support embedding flags to the linker inside individual object
3457files. Typically this is used in conjunction with language extensions which
3458allow source files to explicitly declare the libraries they depend on, and have
3459these automatically be transmitted to the linker via object files.
3460
3461These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003462using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003463to be ``AppendUnique``, and the value for the key is expected to be a metadata
3464node which should be a list of other metadata nodes, each of which should be a
3465list of metadata strings defining linker options.
3466
3467For example, the following metadata section specifies two separate sets of
3468linker options, presumably to link against ``libz`` and the ``Cocoa``
3469framework::
3470
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003471 !0 = !{ i32 6, !"Linker Options",
3472 !{
3473 !{ !"-lz" },
3474 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003475 !llvm.module.flags = !{ !0 }
3476
3477The metadata encoding as lists of lists of options, as opposed to a collapsed
3478list of options, is chosen so that the IR encoding can use multiple option
3479strings to specify e.g., a single library, while still having that specifier be
3480preserved as an atomic element that can be recognized by a target specific
3481assembly writer or object file emitter.
3482
3483Each individual option is required to be either a valid option for the target's
3484linker, or an option that is reserved by the target specific assembly writer or
3485object file emitter. No other aspect of these options is defined by the IR.
3486
Oliver Stannard5dc29342014-06-20 10:08:11 +00003487C type width Module Flags Metadata
3488----------------------------------
3489
3490The ARM backend emits a section into each generated object file describing the
3491options that it was compiled with (in a compiler-independent way) to prevent
3492linking incompatible objects, and to allow automatic library selection. Some
3493of these options are not visible at the IR level, namely wchar_t width and enum
3494width.
3495
3496To pass this information to the backend, these options are encoded in module
3497flags metadata, using the following key-value pairs:
3498
3499.. list-table::
3500 :header-rows: 1
3501 :widths: 30 70
3502
3503 * - Key
3504 - Value
3505
3506 * - short_wchar
3507 - * 0 --- sizeof(wchar_t) == 4
3508 * 1 --- sizeof(wchar_t) == 2
3509
3510 * - short_enum
3511 - * 0 --- Enums are at least as large as an ``int``.
3512 * 1 --- Enums are stored in the smallest integer type which can
3513 represent all of its values.
3514
3515For example, the following metadata section specifies that the module was
3516compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3517enum is the smallest type which can represent all of its values::
3518
3519 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003520 !0 = !{i32 1, !"short_wchar", i32 1}
3521 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00003522
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003523.. _intrinsicglobalvariables:
3524
Sean Silvab084af42012-12-07 10:36:55 +00003525Intrinsic Global Variables
3526==========================
3527
3528LLVM has a number of "magic" global variables that contain data that
3529affect code generation or other IR semantics. These are documented here.
3530All globals of this sort should have a section specified as
3531"``llvm.metadata``". This section and all globals that start with
3532"``llvm.``" are reserved for use by LLVM.
3533
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003534.. _gv_llvmused:
3535
Sean Silvab084af42012-12-07 10:36:55 +00003536The '``llvm.used``' Global Variable
3537-----------------------------------
3538
Rafael Espindola74f2e462013-04-22 14:58:02 +00003539The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003540:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003541pointers to named global variables, functions and aliases which may optionally
3542have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003543use of it is:
3544
3545.. code-block:: llvm
3546
3547 @X = global i8 4
3548 @Y = global i32 123
3549
3550 @llvm.used = appending global [2 x i8*] [
3551 i8* @X,
3552 i8* bitcast (i32* @Y to i8*)
3553 ], section "llvm.metadata"
3554
Rafael Espindola74f2e462013-04-22 14:58:02 +00003555If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3556and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003557symbol that it cannot see (which is why they have to be named). For example, if
3558a variable has internal linkage and no references other than that from the
3559``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3560references from inline asms and other things the compiler cannot "see", and
3561corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003562
3563On some targets, the code generator must emit a directive to the
3564assembler or object file to prevent the assembler and linker from
3565molesting the symbol.
3566
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003567.. _gv_llvmcompilerused:
3568
Sean Silvab084af42012-12-07 10:36:55 +00003569The '``llvm.compiler.used``' Global Variable
3570--------------------------------------------
3571
3572The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3573directive, except that it only prevents the compiler from touching the
3574symbol. On targets that support it, this allows an intelligent linker to
3575optimize references to the symbol without being impeded as it would be
3576by ``@llvm.used``.
3577
3578This is a rare construct that should only be used in rare circumstances,
3579and should not be exposed to source languages.
3580
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003581.. _gv_llvmglobalctors:
3582
Sean Silvab084af42012-12-07 10:36:55 +00003583The '``llvm.global_ctors``' Global Variable
3584-------------------------------------------
3585
3586.. code-block:: llvm
3587
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003588 %0 = type { i32, void ()*, i8* }
3589 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003590
3591The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003592functions, priorities, and an optional associated global or function.
3593The functions referenced by this array will be called in ascending order
3594of priority (i.e. lowest first) when the module is loaded. The order of
3595functions with the same priority is not defined.
3596
3597If the third field is present, non-null, and points to a global variable
3598or function, the initializer function will only run if the associated
3599data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003600
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003601.. _llvmglobaldtors:
3602
Sean Silvab084af42012-12-07 10:36:55 +00003603The '``llvm.global_dtors``' Global Variable
3604-------------------------------------------
3605
3606.. code-block:: llvm
3607
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003608 %0 = type { i32, void ()*, i8* }
3609 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003610
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003611The ``@llvm.global_dtors`` array contains a list of destructor
3612functions, priorities, and an optional associated global or function.
3613The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003614order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003615order of functions with the same priority is not defined.
3616
3617If the third field is present, non-null, and points to a global variable
3618or function, the destructor function will only run if the associated
3619data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003620
3621Instruction Reference
3622=====================
3623
3624The LLVM instruction set consists of several different classifications
3625of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3626instructions <binaryops>`, :ref:`bitwise binary
3627instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3628:ref:`other instructions <otherops>`.
3629
3630.. _terminators:
3631
3632Terminator Instructions
3633-----------------------
3634
3635As mentioned :ref:`previously <functionstructure>`, every basic block in a
3636program ends with a "Terminator" instruction, which indicates which
3637block should be executed after the current block is finished. These
3638terminator instructions typically yield a '``void``' value: they produce
3639control flow, not values (the one exception being the
3640':ref:`invoke <i_invoke>`' instruction).
3641
3642The terminator instructions are: ':ref:`ret <i_ret>`',
3643':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3644':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3645':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3646
3647.. _i_ret:
3648
3649'``ret``' Instruction
3650^^^^^^^^^^^^^^^^^^^^^
3651
3652Syntax:
3653"""""""
3654
3655::
3656
3657 ret <type> <value> ; Return a value from a non-void function
3658 ret void ; Return from void function
3659
3660Overview:
3661"""""""""
3662
3663The '``ret``' instruction is used to return control flow (and optionally
3664a value) from a function back to the caller.
3665
3666There are two forms of the '``ret``' instruction: one that returns a
3667value and then causes control flow, and one that just causes control
3668flow to occur.
3669
3670Arguments:
3671""""""""""
3672
3673The '``ret``' instruction optionally accepts a single argument, the
3674return value. The type of the return value must be a ':ref:`first
3675class <t_firstclass>`' type.
3676
3677A function is not :ref:`well formed <wellformed>` if it it has a non-void
3678return type and contains a '``ret``' instruction with no return value or
3679a return value with a type that does not match its type, or if it has a
3680void return type and contains a '``ret``' instruction with a return
3681value.
3682
3683Semantics:
3684""""""""""
3685
3686When the '``ret``' instruction is executed, control flow returns back to
3687the calling function's context. If the caller is a
3688":ref:`call <i_call>`" instruction, execution continues at the
3689instruction after the call. If the caller was an
3690":ref:`invoke <i_invoke>`" instruction, execution continues at the
3691beginning of the "normal" destination block. If the instruction returns
3692a value, that value shall set the call or invoke instruction's return
3693value.
3694
3695Example:
3696""""""""
3697
3698.. code-block:: llvm
3699
3700 ret i32 5 ; Return an integer value of 5
3701 ret void ; Return from a void function
3702 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3703
3704.. _i_br:
3705
3706'``br``' Instruction
3707^^^^^^^^^^^^^^^^^^^^
3708
3709Syntax:
3710"""""""
3711
3712::
3713
3714 br i1 <cond>, label <iftrue>, label <iffalse>
3715 br label <dest> ; Unconditional branch
3716
3717Overview:
3718"""""""""
3719
3720The '``br``' instruction is used to cause control flow to transfer to a
3721different basic block in the current function. There are two forms of
3722this instruction, corresponding to a conditional branch and an
3723unconditional branch.
3724
3725Arguments:
3726""""""""""
3727
3728The conditional branch form of the '``br``' instruction takes a single
3729'``i1``' value and two '``label``' values. The unconditional form of the
3730'``br``' instruction takes a single '``label``' value as a target.
3731
3732Semantics:
3733""""""""""
3734
3735Upon execution of a conditional '``br``' instruction, the '``i1``'
3736argument is evaluated. If the value is ``true``, control flows to the
3737'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3738to the '``iffalse``' ``label`` argument.
3739
3740Example:
3741""""""""
3742
3743.. code-block:: llvm
3744
3745 Test:
3746 %cond = icmp eq i32 %a, %b
3747 br i1 %cond, label %IfEqual, label %IfUnequal
3748 IfEqual:
3749 ret i32 1
3750 IfUnequal:
3751 ret i32 0
3752
3753.. _i_switch:
3754
3755'``switch``' Instruction
3756^^^^^^^^^^^^^^^^^^^^^^^^
3757
3758Syntax:
3759"""""""
3760
3761::
3762
3763 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3764
3765Overview:
3766"""""""""
3767
3768The '``switch``' instruction is used to transfer control flow to one of
3769several different places. It is a generalization of the '``br``'
3770instruction, allowing a branch to occur to one of many possible
3771destinations.
3772
3773Arguments:
3774""""""""""
3775
3776The '``switch``' instruction uses three parameters: an integer
3777comparison value '``value``', a default '``label``' destination, and an
3778array of pairs of comparison value constants and '``label``'s. The table
3779is not allowed to contain duplicate constant entries.
3780
3781Semantics:
3782""""""""""
3783
3784The ``switch`` instruction specifies a table of values and destinations.
3785When the '``switch``' instruction is executed, this table is searched
3786for the given value. If the value is found, control flow is transferred
3787to the corresponding destination; otherwise, control flow is transferred
3788to the default destination.
3789
3790Implementation:
3791"""""""""""""""
3792
3793Depending on properties of the target machine and the particular
3794``switch`` instruction, this instruction may be code generated in
3795different ways. For example, it could be generated as a series of
3796chained conditional branches or with a lookup table.
3797
3798Example:
3799""""""""
3800
3801.. code-block:: llvm
3802
3803 ; Emulate a conditional br instruction
3804 %Val = zext i1 %value to i32
3805 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3806
3807 ; Emulate an unconditional br instruction
3808 switch i32 0, label %dest [ ]
3809
3810 ; Implement a jump table:
3811 switch i32 %val, label %otherwise [ i32 0, label %onzero
3812 i32 1, label %onone
3813 i32 2, label %ontwo ]
3814
3815.. _i_indirectbr:
3816
3817'``indirectbr``' Instruction
3818^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3819
3820Syntax:
3821"""""""
3822
3823::
3824
3825 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3826
3827Overview:
3828"""""""""
3829
3830The '``indirectbr``' instruction implements an indirect branch to a
3831label within the current function, whose address is specified by
3832"``address``". Address must be derived from a
3833:ref:`blockaddress <blockaddress>` constant.
3834
3835Arguments:
3836""""""""""
3837
3838The '``address``' argument is the address of the label to jump to. The
3839rest of the arguments indicate the full set of possible destinations
3840that the address may point to. Blocks are allowed to occur multiple
3841times in the destination list, though this isn't particularly useful.
3842
3843This destination list is required so that dataflow analysis has an
3844accurate understanding of the CFG.
3845
3846Semantics:
3847""""""""""
3848
3849Control transfers to the block specified in the address argument. All
3850possible destination blocks must be listed in the label list, otherwise
3851this instruction has undefined behavior. This implies that jumps to
3852labels defined in other functions have undefined behavior as well.
3853
3854Implementation:
3855"""""""""""""""
3856
3857This is typically implemented with a jump through a register.
3858
3859Example:
3860""""""""
3861
3862.. code-block:: llvm
3863
3864 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3865
3866.. _i_invoke:
3867
3868'``invoke``' Instruction
3869^^^^^^^^^^^^^^^^^^^^^^^^
3870
3871Syntax:
3872"""""""
3873
3874::
3875
3876 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3877 to label <normal label> unwind label <exception label>
3878
3879Overview:
3880"""""""""
3881
3882The '``invoke``' instruction causes control to transfer to a specified
3883function, with the possibility of control flow transfer to either the
3884'``normal``' label or the '``exception``' label. If the callee function
3885returns with the "``ret``" instruction, control flow will return to the
3886"normal" label. If the callee (or any indirect callees) returns via the
3887":ref:`resume <i_resume>`" instruction or other exception handling
3888mechanism, control is interrupted and continued at the dynamically
3889nearest "exception" label.
3890
3891The '``exception``' label is a `landing
3892pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3893'``exception``' label is required to have the
3894":ref:`landingpad <i_landingpad>`" instruction, which contains the
3895information about the behavior of the program after unwinding happens,
3896as its first non-PHI instruction. The restrictions on the
3897"``landingpad``" instruction's tightly couples it to the "``invoke``"
3898instruction, so that the important information contained within the
3899"``landingpad``" instruction can't be lost through normal code motion.
3900
3901Arguments:
3902""""""""""
3903
3904This instruction requires several arguments:
3905
3906#. The optional "cconv" marker indicates which :ref:`calling
3907 convention <callingconv>` the call should use. If none is
3908 specified, the call defaults to using C calling conventions.
3909#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3910 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3911 are valid here.
3912#. '``ptr to function ty``': shall be the signature of the pointer to
3913 function value being invoked. In most cases, this is a direct
3914 function invocation, but indirect ``invoke``'s are just as possible,
3915 branching off an arbitrary pointer to function value.
3916#. '``function ptr val``': An LLVM value containing a pointer to a
3917 function to be invoked.
3918#. '``function args``': argument list whose types match the function
3919 signature argument types and parameter attributes. All arguments must
3920 be of :ref:`first class <t_firstclass>` type. If the function signature
3921 indicates the function accepts a variable number of arguments, the
3922 extra arguments can be specified.
3923#. '``normal label``': the label reached when the called function
3924 executes a '``ret``' instruction.
3925#. '``exception label``': the label reached when a callee returns via
3926 the :ref:`resume <i_resume>` instruction or other exception handling
3927 mechanism.
3928#. The optional :ref:`function attributes <fnattrs>` list. Only
3929 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3930 attributes are valid here.
3931
3932Semantics:
3933""""""""""
3934
3935This instruction is designed to operate as a standard '``call``'
3936instruction in most regards. The primary difference is that it
3937establishes an association with a label, which is used by the runtime
3938library to unwind the stack.
3939
3940This instruction is used in languages with destructors to ensure that
3941proper cleanup is performed in the case of either a ``longjmp`` or a
3942thrown exception. Additionally, this is important for implementation of
3943'``catch``' clauses in high-level languages that support them.
3944
3945For the purposes of the SSA form, the definition of the value returned
3946by the '``invoke``' instruction is deemed to occur on the edge from the
3947current block to the "normal" label. If the callee unwinds then no
3948return value is available.
3949
3950Example:
3951""""""""
3952
3953.. code-block:: llvm
3954
3955 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003956 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003957 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003958 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003959
3960.. _i_resume:
3961
3962'``resume``' Instruction
3963^^^^^^^^^^^^^^^^^^^^^^^^
3964
3965Syntax:
3966"""""""
3967
3968::
3969
3970 resume <type> <value>
3971
3972Overview:
3973"""""""""
3974
3975The '``resume``' instruction is a terminator instruction that has no
3976successors.
3977
3978Arguments:
3979""""""""""
3980
3981The '``resume``' instruction requires one argument, which must have the
3982same type as the result of any '``landingpad``' instruction in the same
3983function.
3984
3985Semantics:
3986""""""""""
3987
3988The '``resume``' instruction resumes propagation of an existing
3989(in-flight) exception whose unwinding was interrupted with a
3990:ref:`landingpad <i_landingpad>` instruction.
3991
3992Example:
3993""""""""
3994
3995.. code-block:: llvm
3996
3997 resume { i8*, i32 } %exn
3998
3999.. _i_unreachable:
4000
4001'``unreachable``' Instruction
4002^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4003
4004Syntax:
4005"""""""
4006
4007::
4008
4009 unreachable
4010
4011Overview:
4012"""""""""
4013
4014The '``unreachable``' instruction has no defined semantics. This
4015instruction is used to inform the optimizer that a particular portion of
4016the code is not reachable. This can be used to indicate that the code
4017after a no-return function cannot be reached, and other facts.
4018
4019Semantics:
4020""""""""""
4021
4022The '``unreachable``' instruction has no defined semantics.
4023
4024.. _binaryops:
4025
4026Binary Operations
4027-----------------
4028
4029Binary operators are used to do most of the computation in a program.
4030They require two operands of the same type, execute an operation on
4031them, and produce a single value. The operands might represent multiple
4032data, as is the case with the :ref:`vector <t_vector>` data type. The
4033result value has the same type as its operands.
4034
4035There are several different binary operators:
4036
4037.. _i_add:
4038
4039'``add``' Instruction
4040^^^^^^^^^^^^^^^^^^^^^
4041
4042Syntax:
4043"""""""
4044
4045::
4046
Tim Northover675a0962014-06-13 14:24:23 +00004047 <result> = add <ty> <op1>, <op2> ; yields ty:result
4048 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
4049 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
4050 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004051
4052Overview:
4053"""""""""
4054
4055The '``add``' instruction returns the sum of its two operands.
4056
4057Arguments:
4058""""""""""
4059
4060The two arguments to the '``add``' instruction must be
4061:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4062arguments must have identical types.
4063
4064Semantics:
4065""""""""""
4066
4067The value produced is the integer sum of the two operands.
4068
4069If the sum has unsigned overflow, the result returned is the
4070mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4071the result.
4072
4073Because LLVM integers use a two's complement representation, this
4074instruction is appropriate for both signed and unsigned integers.
4075
4076``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4077respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4078result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
4079unsigned and/or signed overflow, respectively, occurs.
4080
4081Example:
4082""""""""
4083
4084.. code-block:: llvm
4085
Tim Northover675a0962014-06-13 14:24:23 +00004086 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004087
4088.. _i_fadd:
4089
4090'``fadd``' Instruction
4091^^^^^^^^^^^^^^^^^^^^^^
4092
4093Syntax:
4094"""""""
4095
4096::
4097
Tim Northover675a0962014-06-13 14:24:23 +00004098 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004099
4100Overview:
4101"""""""""
4102
4103The '``fadd``' instruction returns the sum of its two operands.
4104
4105Arguments:
4106""""""""""
4107
4108The two arguments to the '``fadd``' instruction must be :ref:`floating
4109point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4110Both arguments must have identical types.
4111
4112Semantics:
4113""""""""""
4114
4115The value produced is the floating point sum of the two operands. This
4116instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4117which are optimization hints to enable otherwise unsafe floating point
4118optimizations:
4119
4120Example:
4121""""""""
4122
4123.. code-block:: llvm
4124
Tim Northover675a0962014-06-13 14:24:23 +00004125 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004126
4127'``sub``' Instruction
4128^^^^^^^^^^^^^^^^^^^^^
4129
4130Syntax:
4131"""""""
4132
4133::
4134
Tim Northover675a0962014-06-13 14:24:23 +00004135 <result> = sub <ty> <op1>, <op2> ; yields ty:result
4136 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
4137 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
4138 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004139
4140Overview:
4141"""""""""
4142
4143The '``sub``' instruction returns the difference of its two operands.
4144
4145Note that the '``sub``' instruction is used to represent the '``neg``'
4146instruction present in most other intermediate representations.
4147
4148Arguments:
4149""""""""""
4150
4151The two arguments to the '``sub``' instruction must be
4152:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4153arguments must have identical types.
4154
4155Semantics:
4156""""""""""
4157
4158The value produced is the integer difference of the two operands.
4159
4160If the difference has unsigned overflow, the result returned is the
4161mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4162the result.
4163
4164Because LLVM integers use a two's complement representation, this
4165instruction is appropriate for both signed and unsigned integers.
4166
4167``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4168respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4169result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4170unsigned and/or signed overflow, respectively, occurs.
4171
4172Example:
4173""""""""
4174
4175.. code-block:: llvm
4176
Tim Northover675a0962014-06-13 14:24:23 +00004177 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
4178 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004179
4180.. _i_fsub:
4181
4182'``fsub``' Instruction
4183^^^^^^^^^^^^^^^^^^^^^^
4184
4185Syntax:
4186"""""""
4187
4188::
4189
Tim Northover675a0962014-06-13 14:24:23 +00004190 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004191
4192Overview:
4193"""""""""
4194
4195The '``fsub``' instruction returns the difference of its two operands.
4196
4197Note that the '``fsub``' instruction is used to represent the '``fneg``'
4198instruction present in most other intermediate representations.
4199
4200Arguments:
4201""""""""""
4202
4203The two arguments to the '``fsub``' instruction must be :ref:`floating
4204point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4205Both arguments must have identical types.
4206
4207Semantics:
4208""""""""""
4209
4210The value produced is the floating point difference of the two operands.
4211This instruction can also take any number of :ref:`fast-math
4212flags <fastmath>`, which are optimization hints to enable otherwise
4213unsafe floating point optimizations:
4214
4215Example:
4216""""""""
4217
4218.. code-block:: llvm
4219
Tim Northover675a0962014-06-13 14:24:23 +00004220 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4221 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004222
4223'``mul``' Instruction
4224^^^^^^^^^^^^^^^^^^^^^
4225
4226Syntax:
4227"""""""
4228
4229::
4230
Tim Northover675a0962014-06-13 14:24:23 +00004231 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4232 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4233 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4234 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004235
4236Overview:
4237"""""""""
4238
4239The '``mul``' instruction returns the product of its two operands.
4240
4241Arguments:
4242""""""""""
4243
4244The two arguments to the '``mul``' instruction must be
4245:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4246arguments must have identical types.
4247
4248Semantics:
4249""""""""""
4250
4251The value produced is the integer product of the two operands.
4252
4253If the result of the multiplication has unsigned overflow, the result
4254returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4255bit width of the result.
4256
4257Because LLVM integers use a two's complement representation, and the
4258result is the same width as the operands, this instruction returns the
4259correct result for both signed and unsigned integers. If a full product
4260(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4261sign-extended or zero-extended as appropriate to the width of the full
4262product.
4263
4264``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4265respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4266result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4267unsigned and/or signed overflow, respectively, occurs.
4268
4269Example:
4270""""""""
4271
4272.. code-block:: llvm
4273
Tim Northover675a0962014-06-13 14:24:23 +00004274 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004275
4276.. _i_fmul:
4277
4278'``fmul``' Instruction
4279^^^^^^^^^^^^^^^^^^^^^^
4280
4281Syntax:
4282"""""""
4283
4284::
4285
Tim Northover675a0962014-06-13 14:24:23 +00004286 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004287
4288Overview:
4289"""""""""
4290
4291The '``fmul``' instruction returns the product of its two operands.
4292
4293Arguments:
4294""""""""""
4295
4296The two arguments to the '``fmul``' instruction must be :ref:`floating
4297point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4298Both arguments must have identical types.
4299
4300Semantics:
4301""""""""""
4302
4303The value produced is the floating point product of the two operands.
4304This instruction can also take any number of :ref:`fast-math
4305flags <fastmath>`, which are optimization hints to enable otherwise
4306unsafe floating point optimizations:
4307
4308Example:
4309""""""""
4310
4311.. code-block:: llvm
4312
Tim Northover675a0962014-06-13 14:24:23 +00004313 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004314
4315'``udiv``' Instruction
4316^^^^^^^^^^^^^^^^^^^^^^
4317
4318Syntax:
4319"""""""
4320
4321::
4322
Tim Northover675a0962014-06-13 14:24:23 +00004323 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4324 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004325
4326Overview:
4327"""""""""
4328
4329The '``udiv``' instruction returns the quotient of its two operands.
4330
4331Arguments:
4332""""""""""
4333
4334The two arguments to the '``udiv``' instruction must be
4335:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4336arguments must have identical types.
4337
4338Semantics:
4339""""""""""
4340
4341The value produced is the unsigned integer quotient of the two operands.
4342
4343Note that unsigned integer division and signed integer division are
4344distinct operations; for signed integer division, use '``sdiv``'.
4345
4346Division by zero leads to undefined behavior.
4347
4348If the ``exact`` keyword is present, the result value of the ``udiv`` is
4349a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4350such, "((a udiv exact b) mul b) == a").
4351
4352Example:
4353""""""""
4354
4355.. code-block:: llvm
4356
Tim Northover675a0962014-06-13 14:24:23 +00004357 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004358
4359'``sdiv``' Instruction
4360^^^^^^^^^^^^^^^^^^^^^^
4361
4362Syntax:
4363"""""""
4364
4365::
4366
Tim Northover675a0962014-06-13 14:24:23 +00004367 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4368 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004369
4370Overview:
4371"""""""""
4372
4373The '``sdiv``' instruction returns the quotient of its two operands.
4374
4375Arguments:
4376""""""""""
4377
4378The two arguments to the '``sdiv``' instruction must be
4379:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4380arguments must have identical types.
4381
4382Semantics:
4383""""""""""
4384
4385The value produced is the signed integer quotient of the two operands
4386rounded towards zero.
4387
4388Note that signed integer division and unsigned integer division are
4389distinct operations; for unsigned integer division, use '``udiv``'.
4390
4391Division by zero leads to undefined behavior. Overflow also leads to
4392undefined behavior; this is a rare case, but can occur, for example, by
4393doing a 32-bit division of -2147483648 by -1.
4394
4395If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4396a :ref:`poison value <poisonvalues>` if the result would be rounded.
4397
4398Example:
4399""""""""
4400
4401.. code-block:: llvm
4402
Tim Northover675a0962014-06-13 14:24:23 +00004403 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004404
4405.. _i_fdiv:
4406
4407'``fdiv``' Instruction
4408^^^^^^^^^^^^^^^^^^^^^^
4409
4410Syntax:
4411"""""""
4412
4413::
4414
Tim Northover675a0962014-06-13 14:24:23 +00004415 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004416
4417Overview:
4418"""""""""
4419
4420The '``fdiv``' instruction returns the quotient of its two operands.
4421
4422Arguments:
4423""""""""""
4424
4425The two arguments to the '``fdiv``' instruction must be :ref:`floating
4426point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4427Both arguments must have identical types.
4428
4429Semantics:
4430""""""""""
4431
4432The value produced is the floating point quotient of the two operands.
4433This instruction can also take any number of :ref:`fast-math
4434flags <fastmath>`, which are optimization hints to enable otherwise
4435unsafe floating point optimizations:
4436
4437Example:
4438""""""""
4439
4440.. code-block:: llvm
4441
Tim Northover675a0962014-06-13 14:24:23 +00004442 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004443
4444'``urem``' Instruction
4445^^^^^^^^^^^^^^^^^^^^^^
4446
4447Syntax:
4448"""""""
4449
4450::
4451
Tim Northover675a0962014-06-13 14:24:23 +00004452 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004453
4454Overview:
4455"""""""""
4456
4457The '``urem``' instruction returns the remainder from the unsigned
4458division of its two arguments.
4459
4460Arguments:
4461""""""""""
4462
4463The two arguments to the '``urem``' instruction must be
4464:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4465arguments must have identical types.
4466
4467Semantics:
4468""""""""""
4469
4470This instruction returns the unsigned integer *remainder* of a division.
4471This instruction always performs an unsigned division to get the
4472remainder.
4473
4474Note that unsigned integer remainder and signed integer remainder are
4475distinct operations; for signed integer remainder, use '``srem``'.
4476
4477Taking the remainder of a division by zero leads to undefined behavior.
4478
4479Example:
4480""""""""
4481
4482.. code-block:: llvm
4483
Tim Northover675a0962014-06-13 14:24:23 +00004484 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004485
4486'``srem``' Instruction
4487^^^^^^^^^^^^^^^^^^^^^^
4488
4489Syntax:
4490"""""""
4491
4492::
4493
Tim Northover675a0962014-06-13 14:24:23 +00004494 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004495
4496Overview:
4497"""""""""
4498
4499The '``srem``' instruction returns the remainder from the signed
4500division of its two operands. This instruction can also take
4501:ref:`vector <t_vector>` versions of the values in which case the elements
4502must be integers.
4503
4504Arguments:
4505""""""""""
4506
4507The two arguments to the '``srem``' instruction must be
4508:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4509arguments must have identical types.
4510
4511Semantics:
4512""""""""""
4513
4514This instruction returns the *remainder* of a division (where the result
4515is either zero or has the same sign as the dividend, ``op1``), not the
4516*modulo* operator (where the result is either zero or has the same sign
4517as the divisor, ``op2``) of a value. For more information about the
4518difference, see `The Math
4519Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4520table of how this is implemented in various languages, please see
4521`Wikipedia: modulo
4522operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4523
4524Note that signed integer remainder and unsigned integer remainder are
4525distinct operations; for unsigned integer remainder, use '``urem``'.
4526
4527Taking the remainder of a division by zero leads to undefined behavior.
4528Overflow also leads to undefined behavior; this is a rare case, but can
4529occur, for example, by taking the remainder of a 32-bit division of
4530-2147483648 by -1. (The remainder doesn't actually overflow, but this
4531rule lets srem be implemented using instructions that return both the
4532result of the division and the remainder.)
4533
4534Example:
4535""""""""
4536
4537.. code-block:: llvm
4538
Tim Northover675a0962014-06-13 14:24:23 +00004539 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004540
4541.. _i_frem:
4542
4543'``frem``' Instruction
4544^^^^^^^^^^^^^^^^^^^^^^
4545
4546Syntax:
4547"""""""
4548
4549::
4550
Tim Northover675a0962014-06-13 14:24:23 +00004551 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004552
4553Overview:
4554"""""""""
4555
4556The '``frem``' instruction returns the remainder from the division of
4557its two operands.
4558
4559Arguments:
4560""""""""""
4561
4562The two arguments to the '``frem``' instruction must be :ref:`floating
4563point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4564Both arguments must have identical types.
4565
4566Semantics:
4567""""""""""
4568
4569This instruction returns the *remainder* of a division. The remainder
4570has the same sign as the dividend. This instruction can also take any
4571number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4572to enable otherwise unsafe floating point optimizations:
4573
4574Example:
4575""""""""
4576
4577.. code-block:: llvm
4578
Tim Northover675a0962014-06-13 14:24:23 +00004579 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004580
4581.. _bitwiseops:
4582
4583Bitwise Binary Operations
4584-------------------------
4585
4586Bitwise binary operators are used to do various forms of bit-twiddling
4587in a program. They are generally very efficient instructions and can
4588commonly be strength reduced from other instructions. They require two
4589operands of the same type, execute an operation on them, and produce a
4590single value. The resulting value is the same type as its operands.
4591
4592'``shl``' Instruction
4593^^^^^^^^^^^^^^^^^^^^^
4594
4595Syntax:
4596"""""""
4597
4598::
4599
Tim Northover675a0962014-06-13 14:24:23 +00004600 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4601 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4602 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4603 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004604
4605Overview:
4606"""""""""
4607
4608The '``shl``' instruction returns the first operand shifted to the left
4609a specified number of bits.
4610
4611Arguments:
4612""""""""""
4613
4614Both arguments to the '``shl``' instruction must be the same
4615:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4616'``op2``' is treated as an unsigned value.
4617
4618Semantics:
4619""""""""""
4620
4621The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4622where ``n`` is the width of the result. If ``op2`` is (statically or
4623dynamically) negative or equal to or larger than the number of bits in
4624``op1``, the result is undefined. If the arguments are vectors, each
4625vector element of ``op1`` is shifted by the corresponding shift amount
4626in ``op2``.
4627
4628If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4629value <poisonvalues>` if it shifts out any non-zero bits. If the
4630``nsw`` keyword is present, then the shift produces a :ref:`poison
4631value <poisonvalues>` if it shifts out any bits that disagree with the
4632resultant sign bit. As such, NUW/NSW have the same semantics as they
4633would if the shift were expressed as a mul instruction with the same
4634nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4635
4636Example:
4637""""""""
4638
4639.. code-block:: llvm
4640
Tim Northover675a0962014-06-13 14:24:23 +00004641 <result> = shl i32 4, %var ; yields i32: 4 << %var
4642 <result> = shl i32 4, 2 ; yields i32: 16
4643 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004644 <result> = shl i32 1, 32 ; undefined
4645 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4646
4647'``lshr``' Instruction
4648^^^^^^^^^^^^^^^^^^^^^^
4649
4650Syntax:
4651"""""""
4652
4653::
4654
Tim Northover675a0962014-06-13 14:24:23 +00004655 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4656 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004657
4658Overview:
4659"""""""""
4660
4661The '``lshr``' instruction (logical shift right) returns the first
4662operand shifted to the right a specified number of bits with zero fill.
4663
4664Arguments:
4665""""""""""
4666
4667Both arguments to the '``lshr``' instruction must be the same
4668:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4669'``op2``' is treated as an unsigned value.
4670
4671Semantics:
4672""""""""""
4673
4674This instruction always performs a logical shift right operation. The
4675most significant bits of the result will be filled with zero bits after
4676the shift. If ``op2`` is (statically or dynamically) equal to or larger
4677than the number of bits in ``op1``, the result is undefined. If the
4678arguments are vectors, each vector element of ``op1`` is shifted by the
4679corresponding shift amount in ``op2``.
4680
4681If the ``exact`` keyword is present, the result value of the ``lshr`` is
4682a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4683non-zero.
4684
4685Example:
4686""""""""
4687
4688.. code-block:: llvm
4689
Tim Northover675a0962014-06-13 14:24:23 +00004690 <result> = lshr i32 4, 1 ; yields i32:result = 2
4691 <result> = lshr i32 4, 2 ; yields i32:result = 1
4692 <result> = lshr i8 4, 3 ; yields i8:result = 0
4693 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004694 <result> = lshr i32 1, 32 ; undefined
4695 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4696
4697'``ashr``' Instruction
4698^^^^^^^^^^^^^^^^^^^^^^
4699
4700Syntax:
4701"""""""
4702
4703::
4704
Tim Northover675a0962014-06-13 14:24:23 +00004705 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
4706 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004707
4708Overview:
4709"""""""""
4710
4711The '``ashr``' instruction (arithmetic shift right) returns the first
4712operand shifted to the right a specified number of bits with sign
4713extension.
4714
4715Arguments:
4716""""""""""
4717
4718Both arguments to the '``ashr``' instruction must be the same
4719:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4720'``op2``' is treated as an unsigned value.
4721
4722Semantics:
4723""""""""""
4724
4725This instruction always performs an arithmetic shift right operation,
4726The most significant bits of the result will be filled with the sign bit
4727of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4728than the number of bits in ``op1``, the result is undefined. If the
4729arguments are vectors, each vector element of ``op1`` is shifted by the
4730corresponding shift amount in ``op2``.
4731
4732If the ``exact`` keyword is present, the result value of the ``ashr`` is
4733a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4734non-zero.
4735
4736Example:
4737""""""""
4738
4739.. code-block:: llvm
4740
Tim Northover675a0962014-06-13 14:24:23 +00004741 <result> = ashr i32 4, 1 ; yields i32:result = 2
4742 <result> = ashr i32 4, 2 ; yields i32:result = 1
4743 <result> = ashr i8 4, 3 ; yields i8:result = 0
4744 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00004745 <result> = ashr i32 1, 32 ; undefined
4746 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4747
4748'``and``' Instruction
4749^^^^^^^^^^^^^^^^^^^^^
4750
4751Syntax:
4752"""""""
4753
4754::
4755
Tim Northover675a0962014-06-13 14:24:23 +00004756 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004757
4758Overview:
4759"""""""""
4760
4761The '``and``' instruction returns the bitwise logical and of its two
4762operands.
4763
4764Arguments:
4765""""""""""
4766
4767The two arguments to the '``and``' instruction must be
4768:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4769arguments must have identical types.
4770
4771Semantics:
4772""""""""""
4773
4774The truth table used for the '``and``' instruction is:
4775
4776+-----+-----+-----+
4777| In0 | In1 | Out |
4778+-----+-----+-----+
4779| 0 | 0 | 0 |
4780+-----+-----+-----+
4781| 0 | 1 | 0 |
4782+-----+-----+-----+
4783| 1 | 0 | 0 |
4784+-----+-----+-----+
4785| 1 | 1 | 1 |
4786+-----+-----+-----+
4787
4788Example:
4789""""""""
4790
4791.. code-block:: llvm
4792
Tim Northover675a0962014-06-13 14:24:23 +00004793 <result> = and i32 4, %var ; yields i32:result = 4 & %var
4794 <result> = and i32 15, 40 ; yields i32:result = 8
4795 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00004796
4797'``or``' Instruction
4798^^^^^^^^^^^^^^^^^^^^
4799
4800Syntax:
4801"""""""
4802
4803::
4804
Tim Northover675a0962014-06-13 14:24:23 +00004805 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004806
4807Overview:
4808"""""""""
4809
4810The '``or``' instruction returns the bitwise logical inclusive or of its
4811two operands.
4812
4813Arguments:
4814""""""""""
4815
4816The two arguments to the '``or``' instruction must be
4817:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4818arguments must have identical types.
4819
4820Semantics:
4821""""""""""
4822
4823The truth table used for the '``or``' instruction is:
4824
4825+-----+-----+-----+
4826| In0 | In1 | Out |
4827+-----+-----+-----+
4828| 0 | 0 | 0 |
4829+-----+-----+-----+
4830| 0 | 1 | 1 |
4831+-----+-----+-----+
4832| 1 | 0 | 1 |
4833+-----+-----+-----+
4834| 1 | 1 | 1 |
4835+-----+-----+-----+
4836
4837Example:
4838""""""""
4839
4840::
4841
Tim Northover675a0962014-06-13 14:24:23 +00004842 <result> = or i32 4, %var ; yields i32:result = 4 | %var
4843 <result> = or i32 15, 40 ; yields i32:result = 47
4844 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00004845
4846'``xor``' Instruction
4847^^^^^^^^^^^^^^^^^^^^^
4848
4849Syntax:
4850"""""""
4851
4852::
4853
Tim Northover675a0962014-06-13 14:24:23 +00004854 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004855
4856Overview:
4857"""""""""
4858
4859The '``xor``' instruction returns the bitwise logical exclusive or of
4860its two operands. The ``xor`` is used to implement the "one's
4861complement" operation, which is the "~" operator in C.
4862
4863Arguments:
4864""""""""""
4865
4866The two arguments to the '``xor``' instruction must be
4867:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4868arguments must have identical types.
4869
4870Semantics:
4871""""""""""
4872
4873The truth table used for the '``xor``' instruction is:
4874
4875+-----+-----+-----+
4876| In0 | In1 | Out |
4877+-----+-----+-----+
4878| 0 | 0 | 0 |
4879+-----+-----+-----+
4880| 0 | 1 | 1 |
4881+-----+-----+-----+
4882| 1 | 0 | 1 |
4883+-----+-----+-----+
4884| 1 | 1 | 0 |
4885+-----+-----+-----+
4886
4887Example:
4888""""""""
4889
4890.. code-block:: llvm
4891
Tim Northover675a0962014-06-13 14:24:23 +00004892 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
4893 <result> = xor i32 15, 40 ; yields i32:result = 39
4894 <result> = xor i32 4, 8 ; yields i32:result = 12
4895 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00004896
4897Vector Operations
4898-----------------
4899
4900LLVM supports several instructions to represent vector operations in a
4901target-independent manner. These instructions cover the element-access
4902and vector-specific operations needed to process vectors effectively.
4903While LLVM does directly support these vector operations, many
4904sophisticated algorithms will want to use target-specific intrinsics to
4905take full advantage of a specific target.
4906
4907.. _i_extractelement:
4908
4909'``extractelement``' Instruction
4910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4911
4912Syntax:
4913"""""""
4914
4915::
4916
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004917 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004918
4919Overview:
4920"""""""""
4921
4922The '``extractelement``' instruction extracts a single scalar element
4923from a vector at a specified index.
4924
4925Arguments:
4926""""""""""
4927
4928The first operand of an '``extractelement``' instruction is a value of
4929:ref:`vector <t_vector>` type. The second operand is an index indicating
4930the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004931variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004932
4933Semantics:
4934""""""""""
4935
4936The result is a scalar of the same type as the element type of ``val``.
4937Its value is the value at position ``idx`` of ``val``. If ``idx``
4938exceeds the length of ``val``, the results are undefined.
4939
4940Example:
4941""""""""
4942
4943.. code-block:: llvm
4944
4945 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4946
4947.. _i_insertelement:
4948
4949'``insertelement``' Instruction
4950^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4951
4952Syntax:
4953"""""""
4954
4955::
4956
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004957 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004958
4959Overview:
4960"""""""""
4961
4962The '``insertelement``' instruction inserts a scalar element into a
4963vector at a specified index.
4964
4965Arguments:
4966""""""""""
4967
4968The first operand of an '``insertelement``' instruction is a value of
4969:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4970type must equal the element type of the first operand. The third operand
4971is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004972index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004973
4974Semantics:
4975""""""""""
4976
4977The result is a vector of the same type as ``val``. Its element values
4978are those of ``val`` except at position ``idx``, where it gets the value
4979``elt``. If ``idx`` exceeds the length of ``val``, the results are
4980undefined.
4981
4982Example:
4983""""""""
4984
4985.. code-block:: llvm
4986
4987 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4988
4989.. _i_shufflevector:
4990
4991'``shufflevector``' Instruction
4992^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4993
4994Syntax:
4995"""""""
4996
4997::
4998
4999 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
5000
5001Overview:
5002"""""""""
5003
5004The '``shufflevector``' instruction constructs a permutation of elements
5005from two input vectors, returning a vector with the same element type as
5006the input and length that is the same as the shuffle mask.
5007
5008Arguments:
5009""""""""""
5010
5011The first two operands of a '``shufflevector``' instruction are vectors
5012with the same type. The third argument is a shuffle mask whose element
5013type is always 'i32'. The result of the instruction is a vector whose
5014length is the same as the shuffle mask and whose element type is the
5015same as the element type of the first two operands.
5016
5017The shuffle mask operand is required to be a constant vector with either
5018constant integer or undef values.
5019
5020Semantics:
5021""""""""""
5022
5023The elements of the two input vectors are numbered from left to right
5024across both of the vectors. The shuffle mask operand specifies, for each
5025element of the result vector, which element of the two input vectors the
5026result element gets. The element selector may be undef (meaning "don't
5027care") and the second operand may be undef if performing a shuffle from
5028only one vector.
5029
5030Example:
5031""""""""
5032
5033.. code-block:: llvm
5034
5035 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5036 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
5037 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
5038 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
5039 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
5040 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
5041 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5042 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
5043
5044Aggregate Operations
5045--------------------
5046
5047LLVM supports several instructions for working with
5048:ref:`aggregate <t_aggregate>` values.
5049
5050.. _i_extractvalue:
5051
5052'``extractvalue``' Instruction
5053^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5054
5055Syntax:
5056"""""""
5057
5058::
5059
5060 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
5061
5062Overview:
5063"""""""""
5064
5065The '``extractvalue``' instruction extracts the value of a member field
5066from an :ref:`aggregate <t_aggregate>` value.
5067
5068Arguments:
5069""""""""""
5070
5071The first operand of an '``extractvalue``' instruction is a value of
5072:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
5073constant indices to specify which value to extract in a similar manner
5074as indices in a '``getelementptr``' instruction.
5075
5076The major differences to ``getelementptr`` indexing are:
5077
5078- Since the value being indexed is not a pointer, the first index is
5079 omitted and assumed to be zero.
5080- At least one index must be specified.
5081- Not only struct indices but also array indices must be in bounds.
5082
5083Semantics:
5084""""""""""
5085
5086The result is the value at the position in the aggregate specified by
5087the index operands.
5088
5089Example:
5090""""""""
5091
5092.. code-block:: llvm
5093
5094 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
5095
5096.. _i_insertvalue:
5097
5098'``insertvalue``' Instruction
5099^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5100
5101Syntax:
5102"""""""
5103
5104::
5105
5106 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
5107
5108Overview:
5109"""""""""
5110
5111The '``insertvalue``' instruction inserts a value into a member field in
5112an :ref:`aggregate <t_aggregate>` value.
5113
5114Arguments:
5115""""""""""
5116
5117The first operand of an '``insertvalue``' instruction is a value of
5118:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5119a first-class value to insert. The following operands are constant
5120indices indicating the position at which to insert the value in a
5121similar manner as indices in a '``extractvalue``' instruction. The value
5122to insert must have the same type as the value identified by the
5123indices.
5124
5125Semantics:
5126""""""""""
5127
5128The result is an aggregate of the same type as ``val``. Its value is
5129that of ``val`` except that the value at the position specified by the
5130indices is that of ``elt``.
5131
5132Example:
5133""""""""
5134
5135.. code-block:: llvm
5136
5137 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
5138 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00005139 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00005140
5141.. _memoryops:
5142
5143Memory Access and Addressing Operations
5144---------------------------------------
5145
5146A key design point of an SSA-based representation is how it represents
5147memory. In LLVM, no memory locations are in SSA form, which makes things
5148very simple. This section describes how to read, write, and allocate
5149memory in LLVM.
5150
5151.. _i_alloca:
5152
5153'``alloca``' Instruction
5154^^^^^^^^^^^^^^^^^^^^^^^^
5155
5156Syntax:
5157"""""""
5158
5159::
5160
Tim Northover675a0962014-06-13 14:24:23 +00005161 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00005162
5163Overview:
5164"""""""""
5165
5166The '``alloca``' instruction allocates memory on the stack frame of the
5167currently executing function, to be automatically released when this
5168function returns to its caller. The object is always allocated in the
5169generic address space (address space zero).
5170
5171Arguments:
5172""""""""""
5173
5174The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5175bytes of memory on the runtime stack, returning a pointer of the
5176appropriate type to the program. If "NumElements" is specified, it is
5177the number of elements allocated, otherwise "NumElements" is defaulted
5178to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005179allocation is guaranteed to be aligned to at least that boundary. The
5180alignment may not be greater than ``1 << 29``. If not specified, or if
5181zero, the target can choose to align the allocation on any convenient
5182boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00005183
5184'``type``' may be any sized type.
5185
5186Semantics:
5187""""""""""
5188
5189Memory is allocated; a pointer is returned. The operation is undefined
5190if there is insufficient stack space for the allocation. '``alloca``'d
5191memory is automatically released when the function returns. The
5192'``alloca``' instruction is commonly used to represent automatic
5193variables that must have an address available. When the function returns
5194(either with the ``ret`` or ``resume`` instructions), the memory is
5195reclaimed. Allocating zero bytes is legal, but the result is undefined.
5196The order in which memory is allocated (ie., which way the stack grows)
5197is not specified.
5198
5199Example:
5200""""""""
5201
5202.. code-block:: llvm
5203
Tim Northover675a0962014-06-13 14:24:23 +00005204 %ptr = alloca i32 ; yields i32*:ptr
5205 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5206 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5207 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005208
5209.. _i_load:
5210
5211'``load``' Instruction
5212^^^^^^^^^^^^^^^^^^^^^^
5213
5214Syntax:
5215"""""""
5216
5217::
5218
Philip Reamescdb72f32014-10-20 22:40:55 +00005219 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00005220 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5221 !<index> = !{ i32 1 }
5222
5223Overview:
5224"""""""""
5225
5226The '``load``' instruction is used to read from memory.
5227
5228Arguments:
5229""""""""""
5230
Eli Bendersky239a78b2013-04-17 20:17:08 +00005231The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00005232from which to load. The pointer must point to a :ref:`first
5233class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5234then the optimizer is not allowed to modify the number or order of
5235execution of this ``load`` with other :ref:`volatile
5236operations <volatile>`.
5237
5238If the ``load`` is marked as ``atomic``, it takes an extra
5239:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5240``release`` and ``acq_rel`` orderings are not valid on ``load``
5241instructions. Atomic loads produce :ref:`defined <memmodel>` results
5242when they may see multiple atomic stores. The type of the pointee must
5243be an integer type whose bit width is a power of two greater than or
5244equal to eight and less than or equal to a target-specific size limit.
5245``align`` must be explicitly specified on atomic loads, and the load has
5246undefined behavior if the alignment is not set to a value which is at
5247least the size in bytes of the pointee. ``!nontemporal`` does not have
5248any defined semantics for atomic loads.
5249
5250The optional constant ``align`` argument specifies the alignment of the
5251operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005252or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005253alignment for the target. It is the responsibility of the code emitter
5254to ensure that the alignment information is correct. Overestimating the
5255alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005256may produce less efficient code. An alignment of 1 is always safe. The
5257maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005258
5259The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005260metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005261``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005262metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005263that this load is not expected to be reused in the cache. The code
5264generator may select special instructions to save cache bandwidth, such
5265as the ``MOVNT`` instruction on x86.
5266
5267The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005268metadata name ``<index>`` corresponding to a metadata node with no
5269entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00005270instruction tells the optimizer and code generator that the address
5271operand to this load points to memory which can be assumed unchanged.
5272Being invariant does not imply that a location is dereferenceable,
5273but it does imply that once the location is known dereferenceable
5274its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00005275
Philip Reamescdb72f32014-10-20 22:40:55 +00005276The optional ``!nonnull`` metadata must reference a single
5277metadata name ``<index>`` corresponding to a metadata node with no
5278entries. The existence of the ``!nonnull`` metadata on the
5279instruction tells the optimizer that the value loaded is known to
5280never be null. This is analogous to the ''nonnull'' attribute
5281on parameters and return values. This metadata can only be applied
5282to loads of a pointer type.
5283
Sean Silvab084af42012-12-07 10:36:55 +00005284Semantics:
5285""""""""""
5286
5287The location of memory pointed to is loaded. If the value being loaded
5288is of scalar type then the number of bytes read does not exceed the
5289minimum number of bytes needed to hold all bits of the type. For
5290example, loading an ``i24`` reads at most three bytes. When loading a
5291value of a type like ``i20`` with a size that is not an integral number
5292of bytes, the result is undefined if the value was not originally
5293written using a store of the same type.
5294
5295Examples:
5296"""""""""
5297
5298.. code-block:: llvm
5299
Tim Northover675a0962014-06-13 14:24:23 +00005300 %ptr = alloca i32 ; yields i32*:ptr
5301 store i32 3, i32* %ptr ; yields void
5302 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005303
5304.. _i_store:
5305
5306'``store``' Instruction
5307^^^^^^^^^^^^^^^^^^^^^^^
5308
5309Syntax:
5310"""""""
5311
5312::
5313
Tim Northover675a0962014-06-13 14:24:23 +00005314 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5315 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005316
5317Overview:
5318"""""""""
5319
5320The '``store``' instruction is used to write to memory.
5321
5322Arguments:
5323""""""""""
5324
Eli Benderskyca380842013-04-17 17:17:20 +00005325There are two arguments to the ``store`` instruction: a value to store
5326and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005327operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005328the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005329then the optimizer is not allowed to modify the number or order of
5330execution of this ``store`` with other :ref:`volatile
5331operations <volatile>`.
5332
5333If the ``store`` is marked as ``atomic``, it takes an extra
5334:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5335``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5336instructions. Atomic loads produce :ref:`defined <memmodel>` results
5337when they may see multiple atomic stores. The type of the pointee must
5338be an integer type whose bit width is a power of two greater than or
5339equal to eight and less than or equal to a target-specific size limit.
5340``align`` must be explicitly specified on atomic stores, and the store
5341has undefined behavior if the alignment is not set to a value which is
5342at least the size in bytes of the pointee. ``!nontemporal`` does not
5343have any defined semantics for atomic stores.
5344
Eli Benderskyca380842013-04-17 17:17:20 +00005345The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005346operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005347or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005348alignment for the target. It is the responsibility of the code emitter
5349to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005350alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005351alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005352safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005353
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005354The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005355name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005356value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005357tells the optimizer and code generator that this load is not expected to
5358be reused in the cache. The code generator may select special
5359instructions to save cache bandwidth, such as the MOVNT instruction on
5360x86.
5361
5362Semantics:
5363""""""""""
5364
Eli Benderskyca380842013-04-17 17:17:20 +00005365The contents of memory are updated to contain ``<value>`` at the
5366location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005367of scalar type then the number of bytes written does not exceed the
5368minimum number of bytes needed to hold all bits of the type. For
5369example, storing an ``i24`` writes at most three bytes. When writing a
5370value of a type like ``i20`` with a size that is not an integral number
5371of bytes, it is unspecified what happens to the extra bits that do not
5372belong to the type, but they will typically be overwritten.
5373
5374Example:
5375""""""""
5376
5377.. code-block:: llvm
5378
Tim Northover675a0962014-06-13 14:24:23 +00005379 %ptr = alloca i32 ; yields i32*:ptr
5380 store i32 3, i32* %ptr ; yields void
5381 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005382
5383.. _i_fence:
5384
5385'``fence``' Instruction
5386^^^^^^^^^^^^^^^^^^^^^^^
5387
5388Syntax:
5389"""""""
5390
5391::
5392
Tim Northover675a0962014-06-13 14:24:23 +00005393 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005394
5395Overview:
5396"""""""""
5397
5398The '``fence``' instruction is used to introduce happens-before edges
5399between operations.
5400
5401Arguments:
5402""""""""""
5403
5404'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5405defines what *synchronizes-with* edges they add. They can only be given
5406``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5407
5408Semantics:
5409""""""""""
5410
5411A fence A which has (at least) ``release`` ordering semantics
5412*synchronizes with* a fence B with (at least) ``acquire`` ordering
5413semantics if and only if there exist atomic operations X and Y, both
5414operating on some atomic object M, such that A is sequenced before X, X
5415modifies M (either directly or through some side effect of a sequence
5416headed by X), Y is sequenced before B, and Y observes M. This provides a
5417*happens-before* dependency between A and B. Rather than an explicit
5418``fence``, one (but not both) of the atomic operations X or Y might
5419provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5420still *synchronize-with* the explicit ``fence`` and establish the
5421*happens-before* edge.
5422
5423A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5424``acquire`` and ``release`` semantics specified above, participates in
5425the global program order of other ``seq_cst`` operations and/or fences.
5426
5427The optional ":ref:`singlethread <singlethread>`" argument specifies
5428that the fence only synchronizes with other fences in the same thread.
5429(This is useful for interacting with signal handlers.)
5430
5431Example:
5432""""""""
5433
5434.. code-block:: llvm
5435
Tim Northover675a0962014-06-13 14:24:23 +00005436 fence acquire ; yields void
5437 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005438
5439.. _i_cmpxchg:
5440
5441'``cmpxchg``' Instruction
5442^^^^^^^^^^^^^^^^^^^^^^^^^
5443
5444Syntax:
5445"""""""
5446
5447::
5448
Tim Northover675a0962014-06-13 14:24:23 +00005449 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005450
5451Overview:
5452"""""""""
5453
5454The '``cmpxchg``' instruction is used to atomically modify memory. It
5455loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005456equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005457
5458Arguments:
5459""""""""""
5460
5461There are three arguments to the '``cmpxchg``' instruction: an address
5462to operate on, a value to compare to the value currently be at that
5463address, and a new value to place at that address if the compared values
5464are equal. The type of '<cmp>' must be an integer type whose bit width
5465is a power of two greater than or equal to eight and less than or equal
5466to a target-specific size limit. '<cmp>' and '<new>' must have the same
5467type, and the type of '<pointer>' must be a pointer to that type. If the
5468``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5469to modify the number or order of execution of this ``cmpxchg`` with
5470other :ref:`volatile operations <volatile>`.
5471
Tim Northovere94a5182014-03-11 10:48:52 +00005472The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005473``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5474must be at least ``monotonic``, the ordering constraint on failure must be no
5475stronger than that on success, and the failure ordering cannot be either
5476``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005477
5478The optional "``singlethread``" argument declares that the ``cmpxchg``
5479is only atomic with respect to code (usually signal handlers) running in
5480the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5481respect to all other code in the system.
5482
5483The pointer passed into cmpxchg must have alignment greater than or
5484equal to the size in memory of the operand.
5485
5486Semantics:
5487""""""""""
5488
Tim Northover420a2162014-06-13 14:24:07 +00005489The contents of memory at the location specified by the '``<pointer>``' operand
5490is read and compared to '``<cmp>``'; if the read value is the equal, the
5491'``<new>``' is written. The original value at the location is returned, together
5492with a flag indicating success (true) or failure (false).
5493
5494If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5495permitted: the operation may not write ``<new>`` even if the comparison
5496matched.
5497
5498If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5499if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005500
Tim Northovere94a5182014-03-11 10:48:52 +00005501A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5502identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5503load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005504
5505Example:
5506""""""""
5507
5508.. code-block:: llvm
5509
5510 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005511 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005512 br label %loop
5513
5514 loop:
5515 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5516 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005517 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005518 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5519 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005520 br i1 %success, label %done, label %loop
5521
5522 done:
5523 ...
5524
5525.. _i_atomicrmw:
5526
5527'``atomicrmw``' Instruction
5528^^^^^^^^^^^^^^^^^^^^^^^^^^^
5529
5530Syntax:
5531"""""""
5532
5533::
5534
Tim Northover675a0962014-06-13 14:24:23 +00005535 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005536
5537Overview:
5538"""""""""
5539
5540The '``atomicrmw``' instruction is used to atomically modify memory.
5541
5542Arguments:
5543""""""""""
5544
5545There are three arguments to the '``atomicrmw``' instruction: an
5546operation to apply, an address whose value to modify, an argument to the
5547operation. The operation must be one of the following keywords:
5548
5549- xchg
5550- add
5551- sub
5552- and
5553- nand
5554- or
5555- xor
5556- max
5557- min
5558- umax
5559- umin
5560
5561The type of '<value>' must be an integer type whose bit width is a power
5562of two greater than or equal to eight and less than or equal to a
5563target-specific size limit. The type of the '``<pointer>``' operand must
5564be a pointer to that type. If the ``atomicrmw`` is marked as
5565``volatile``, then the optimizer is not allowed to modify the number or
5566order of execution of this ``atomicrmw`` with other :ref:`volatile
5567operations <volatile>`.
5568
5569Semantics:
5570""""""""""
5571
5572The contents of memory at the location specified by the '``<pointer>``'
5573operand are atomically read, modified, and written back. The original
5574value at the location is returned. The modification is specified by the
5575operation argument:
5576
5577- xchg: ``*ptr = val``
5578- add: ``*ptr = *ptr + val``
5579- sub: ``*ptr = *ptr - val``
5580- and: ``*ptr = *ptr & val``
5581- nand: ``*ptr = ~(*ptr & val)``
5582- or: ``*ptr = *ptr | val``
5583- xor: ``*ptr = *ptr ^ val``
5584- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5585- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5586- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5587 comparison)
5588- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5589 comparison)
5590
5591Example:
5592""""""""
5593
5594.. code-block:: llvm
5595
Tim Northover675a0962014-06-13 14:24:23 +00005596 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005597
5598.. _i_getelementptr:
5599
5600'``getelementptr``' Instruction
5601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5602
5603Syntax:
5604"""""""
5605
5606::
5607
5608 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5609 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5610 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5611
5612Overview:
5613"""""""""
5614
5615The '``getelementptr``' instruction is used to get the address of a
5616subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5617address calculation only and does not access memory.
5618
5619Arguments:
5620""""""""""
5621
5622The first argument is always a pointer or a vector of pointers, and
5623forms the basis of the calculation. The remaining arguments are indices
5624that indicate which of the elements of the aggregate object are indexed.
5625The interpretation of each index is dependent on the type being indexed
5626into. The first index always indexes the pointer value given as the
5627first argument, the second index indexes a value of the type pointed to
5628(not necessarily the value directly pointed to, since the first index
5629can be non-zero), etc. The first type indexed into must be a pointer
5630value, subsequent types can be arrays, vectors, and structs. Note that
5631subsequent types being indexed into can never be pointers, since that
5632would require loading the pointer before continuing calculation.
5633
5634The type of each index argument depends on the type it is indexing into.
5635When indexing into a (optionally packed) structure, only ``i32`` integer
5636**constants** are allowed (when using a vector of indices they must all
5637be the **same** ``i32`` integer constant). When indexing into an array,
5638pointer or vector, integers of any width are allowed, and they are not
5639required to be constant. These integers are treated as signed values
5640where relevant.
5641
5642For example, let's consider a C code fragment and how it gets compiled
5643to LLVM:
5644
5645.. code-block:: c
5646
5647 struct RT {
5648 char A;
5649 int B[10][20];
5650 char C;
5651 };
5652 struct ST {
5653 int X;
5654 double Y;
5655 struct RT Z;
5656 };
5657
5658 int *foo(struct ST *s) {
5659 return &s[1].Z.B[5][13];
5660 }
5661
5662The LLVM code generated by Clang is:
5663
5664.. code-block:: llvm
5665
5666 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5667 %struct.ST = type { i32, double, %struct.RT }
5668
5669 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5670 entry:
5671 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5672 ret i32* %arrayidx
5673 }
5674
5675Semantics:
5676""""""""""
5677
5678In the example above, the first index is indexing into the
5679'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5680= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5681indexes into the third element of the structure, yielding a
5682'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5683structure. The third index indexes into the second element of the
5684structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5685dimensions of the array are subscripted into, yielding an '``i32``'
5686type. The '``getelementptr``' instruction returns a pointer to this
5687element, thus computing a value of '``i32*``' type.
5688
5689Note that it is perfectly legal to index partially through a structure,
5690returning a pointer to an inner element. Because of this, the LLVM code
5691for the given testcase is equivalent to:
5692
5693.. code-block:: llvm
5694
5695 define i32* @foo(%struct.ST* %s) {
5696 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5697 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5698 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5699 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5700 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5701 ret i32* %t5
5702 }
5703
5704If the ``inbounds`` keyword is present, the result value of the
5705``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5706pointer is not an *in bounds* address of an allocated object, or if any
5707of the addresses that would be formed by successive addition of the
5708offsets implied by the indices to the base address with infinitely
5709precise signed arithmetic are not an *in bounds* address of that
5710allocated object. The *in bounds* addresses for an allocated object are
5711all the addresses that point into the object, plus the address one byte
5712past the end. In cases where the base is a vector of pointers the
5713``inbounds`` keyword applies to each of the computations element-wise.
5714
5715If the ``inbounds`` keyword is not present, the offsets are added to the
5716base address with silently-wrapping two's complement arithmetic. If the
5717offsets have a different width from the pointer, they are sign-extended
5718or truncated to the width of the pointer. The result value of the
5719``getelementptr`` may be outside the object pointed to by the base
5720pointer. The result value may not necessarily be used to access memory
5721though, even if it happens to point into allocated storage. See the
5722:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5723information.
5724
5725The getelementptr instruction is often confusing. For some more insight
5726into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5727
5728Example:
5729""""""""
5730
5731.. code-block:: llvm
5732
5733 ; yields [12 x i8]*:aptr
5734 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5735 ; yields i8*:vptr
5736 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5737 ; yields i8*:eptr
5738 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5739 ; yields i32*:iptr
5740 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5741
5742In cases where the pointer argument is a vector of pointers, each index
5743must be a vector with the same number of elements. For example:
5744
5745.. code-block:: llvm
5746
5747 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5748
5749Conversion Operations
5750---------------------
5751
5752The instructions in this category are the conversion instructions
5753(casting) which all take a single operand and a type. They perform
5754various bit conversions on the operand.
5755
5756'``trunc .. to``' Instruction
5757^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5758
5759Syntax:
5760"""""""
5761
5762::
5763
5764 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5765
5766Overview:
5767"""""""""
5768
5769The '``trunc``' instruction truncates its operand to the type ``ty2``.
5770
5771Arguments:
5772""""""""""
5773
5774The '``trunc``' instruction takes a value to trunc, and a type to trunc
5775it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5776of the same number of integers. The bit size of the ``value`` must be
5777larger than the bit size of the destination type, ``ty2``. Equal sized
5778types are not allowed.
5779
5780Semantics:
5781""""""""""
5782
5783The '``trunc``' instruction truncates the high order bits in ``value``
5784and converts the remaining bits to ``ty2``. Since the source size must
5785be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5786It will always truncate bits.
5787
5788Example:
5789""""""""
5790
5791.. code-block:: llvm
5792
5793 %X = trunc i32 257 to i8 ; yields i8:1
5794 %Y = trunc i32 123 to i1 ; yields i1:true
5795 %Z = trunc i32 122 to i1 ; yields i1:false
5796 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5797
5798'``zext .. to``' Instruction
5799^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5800
5801Syntax:
5802"""""""
5803
5804::
5805
5806 <result> = zext <ty> <value> to <ty2> ; yields ty2
5807
5808Overview:
5809"""""""""
5810
5811The '``zext``' instruction zero extends its operand to type ``ty2``.
5812
5813Arguments:
5814""""""""""
5815
5816The '``zext``' instruction takes a value to cast, and a type to cast it
5817to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5818the same number of integers. The bit size of the ``value`` must be
5819smaller than the bit size of the destination type, ``ty2``.
5820
5821Semantics:
5822""""""""""
5823
5824The ``zext`` fills the high order bits of the ``value`` with zero bits
5825until it reaches the size of the destination type, ``ty2``.
5826
5827When zero extending from i1, the result will always be either 0 or 1.
5828
5829Example:
5830""""""""
5831
5832.. code-block:: llvm
5833
5834 %X = zext i32 257 to i64 ; yields i64:257
5835 %Y = zext i1 true to i32 ; yields i32:1
5836 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5837
5838'``sext .. to``' Instruction
5839^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5840
5841Syntax:
5842"""""""
5843
5844::
5845
5846 <result> = sext <ty> <value> to <ty2> ; yields ty2
5847
5848Overview:
5849"""""""""
5850
5851The '``sext``' sign extends ``value`` to the type ``ty2``.
5852
5853Arguments:
5854""""""""""
5855
5856The '``sext``' instruction takes a value to cast, and a type to cast it
5857to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5858the same number of integers. The bit size of the ``value`` must be
5859smaller than the bit size of the destination type, ``ty2``.
5860
5861Semantics:
5862""""""""""
5863
5864The '``sext``' instruction performs a sign extension by copying the sign
5865bit (highest order bit) of the ``value`` until it reaches the bit size
5866of the type ``ty2``.
5867
5868When sign extending from i1, the extension always results in -1 or 0.
5869
5870Example:
5871""""""""
5872
5873.. code-block:: llvm
5874
5875 %X = sext i8 -1 to i16 ; yields i16 :65535
5876 %Y = sext i1 true to i32 ; yields i32:-1
5877 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5878
5879'``fptrunc .. to``' Instruction
5880^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5881
5882Syntax:
5883"""""""
5884
5885::
5886
5887 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5888
5889Overview:
5890"""""""""
5891
5892The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5893
5894Arguments:
5895""""""""""
5896
5897The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5898value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5899The size of ``value`` must be larger than the size of ``ty2``. This
5900implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5901
5902Semantics:
5903""""""""""
5904
5905The '``fptrunc``' instruction truncates a ``value`` from a larger
5906:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5907point <t_floating>` type. If the value cannot fit within the
5908destination type, ``ty2``, then the results are undefined.
5909
5910Example:
5911""""""""
5912
5913.. code-block:: llvm
5914
5915 %X = fptrunc double 123.0 to float ; yields float:123.0
5916 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5917
5918'``fpext .. to``' Instruction
5919^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5920
5921Syntax:
5922"""""""
5923
5924::
5925
5926 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5927
5928Overview:
5929"""""""""
5930
5931The '``fpext``' extends a floating point ``value`` to a larger floating
5932point value.
5933
5934Arguments:
5935""""""""""
5936
5937The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5938``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5939to. The source type must be smaller than the destination type.
5940
5941Semantics:
5942""""""""""
5943
5944The '``fpext``' instruction extends the ``value`` from a smaller
5945:ref:`floating point <t_floating>` type to a larger :ref:`floating
5946point <t_floating>` type. The ``fpext`` cannot be used to make a
5947*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5948*no-op cast* for a floating point cast.
5949
5950Example:
5951""""""""
5952
5953.. code-block:: llvm
5954
5955 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5956 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5957
5958'``fptoui .. to``' Instruction
5959^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5960
5961Syntax:
5962"""""""
5963
5964::
5965
5966 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5967
5968Overview:
5969"""""""""
5970
5971The '``fptoui``' converts a floating point ``value`` to its unsigned
5972integer equivalent of type ``ty2``.
5973
5974Arguments:
5975""""""""""
5976
5977The '``fptoui``' instruction takes a value to cast, which must be a
5978scalar or vector :ref:`floating point <t_floating>` value, and a type to
5979cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5980``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5981type with the same number of elements as ``ty``
5982
5983Semantics:
5984""""""""""
5985
5986The '``fptoui``' instruction converts its :ref:`floating
5987point <t_floating>` operand into the nearest (rounding towards zero)
5988unsigned integer value. If the value cannot fit in ``ty2``, the results
5989are undefined.
5990
5991Example:
5992""""""""
5993
5994.. code-block:: llvm
5995
5996 %X = fptoui double 123.0 to i32 ; yields i32:123
5997 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5998 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5999
6000'``fptosi .. to``' Instruction
6001^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6002
6003Syntax:
6004"""""""
6005
6006::
6007
6008 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
6009
6010Overview:
6011"""""""""
6012
6013The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
6014``value`` to type ``ty2``.
6015
6016Arguments:
6017""""""""""
6018
6019The '``fptosi``' instruction takes a value to cast, which must be a
6020scalar or vector :ref:`floating point <t_floating>` value, and a type to
6021cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6022``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6023type with the same number of elements as ``ty``
6024
6025Semantics:
6026""""""""""
6027
6028The '``fptosi``' instruction converts its :ref:`floating
6029point <t_floating>` operand into the nearest (rounding towards zero)
6030signed integer value. If the value cannot fit in ``ty2``, the results
6031are undefined.
6032
6033Example:
6034""""""""
6035
6036.. code-block:: llvm
6037
6038 %X = fptosi double -123.0 to i32 ; yields i32:-123
6039 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
6040 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
6041
6042'``uitofp .. to``' Instruction
6043^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6044
6045Syntax:
6046"""""""
6047
6048::
6049
6050 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
6051
6052Overview:
6053"""""""""
6054
6055The '``uitofp``' instruction regards ``value`` as an unsigned integer
6056and converts that value to the ``ty2`` type.
6057
6058Arguments:
6059""""""""""
6060
6061The '``uitofp``' instruction takes a value to cast, which must be a
6062scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6063``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6064``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6065type with the same number of elements as ``ty``
6066
6067Semantics:
6068""""""""""
6069
6070The '``uitofp``' instruction interprets its operand as an unsigned
6071integer quantity and converts it to the corresponding floating point
6072value. If the value cannot fit in the floating point value, the results
6073are undefined.
6074
6075Example:
6076""""""""
6077
6078.. code-block:: llvm
6079
6080 %X = uitofp i32 257 to float ; yields float:257.0
6081 %Y = uitofp i8 -1 to double ; yields double:255.0
6082
6083'``sitofp .. to``' Instruction
6084^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6085
6086Syntax:
6087"""""""
6088
6089::
6090
6091 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
6092
6093Overview:
6094"""""""""
6095
6096The '``sitofp``' instruction regards ``value`` as a signed integer and
6097converts that value to the ``ty2`` type.
6098
6099Arguments:
6100""""""""""
6101
6102The '``sitofp``' instruction takes a value to cast, which must be a
6103scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6104``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6105``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6106type with the same number of elements as ``ty``
6107
6108Semantics:
6109""""""""""
6110
6111The '``sitofp``' instruction interprets its operand as a signed integer
6112quantity and converts it to the corresponding floating point value. If
6113the value cannot fit in the floating point value, the results are
6114undefined.
6115
6116Example:
6117""""""""
6118
6119.. code-block:: llvm
6120
6121 %X = sitofp i32 257 to float ; yields float:257.0
6122 %Y = sitofp i8 -1 to double ; yields double:-1.0
6123
6124.. _i_ptrtoint:
6125
6126'``ptrtoint .. to``' Instruction
6127^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6128
6129Syntax:
6130"""""""
6131
6132::
6133
6134 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
6135
6136Overview:
6137"""""""""
6138
6139The '``ptrtoint``' instruction converts the pointer or a vector of
6140pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6141
6142Arguments:
6143""""""""""
6144
6145The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
6146a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
6147type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6148a vector of integers type.
6149
6150Semantics:
6151""""""""""
6152
6153The '``ptrtoint``' instruction converts ``value`` to integer type
6154``ty2`` by interpreting the pointer value as an integer and either
6155truncating or zero extending that value to the size of the integer type.
6156If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6157``value`` is larger than ``ty2`` then a truncation is done. If they are
6158the same size, then nothing is done (*no-op cast*) other than a type
6159change.
6160
6161Example:
6162""""""""
6163
6164.. code-block:: llvm
6165
6166 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
6167 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
6168 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6169
6170.. _i_inttoptr:
6171
6172'``inttoptr .. to``' Instruction
6173^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6174
6175Syntax:
6176"""""""
6177
6178::
6179
6180 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
6181
6182Overview:
6183"""""""""
6184
6185The '``inttoptr``' instruction converts an integer ``value`` to a
6186pointer type, ``ty2``.
6187
6188Arguments:
6189""""""""""
6190
6191The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6192cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6193type.
6194
6195Semantics:
6196""""""""""
6197
6198The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6199applying either a zero extension or a truncation depending on the size
6200of the integer ``value``. If ``value`` is larger than the size of a
6201pointer then a truncation is done. If ``value`` is smaller than the size
6202of a pointer then a zero extension is done. If they are the same size,
6203nothing is done (*no-op cast*).
6204
6205Example:
6206""""""""
6207
6208.. code-block:: llvm
6209
6210 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6211 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6212 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6213 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6214
6215.. _i_bitcast:
6216
6217'``bitcast .. to``' Instruction
6218^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6219
6220Syntax:
6221"""""""
6222
6223::
6224
6225 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6226
6227Overview:
6228"""""""""
6229
6230The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6231changing any bits.
6232
6233Arguments:
6234""""""""""
6235
6236The '``bitcast``' instruction takes a value to cast, which must be a
6237non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006238also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6239bit sizes of ``value`` and the destination type, ``ty2``, must be
6240identical. If the source type is a pointer, the destination type must
6241also be a pointer of the same size. This instruction supports bitwise
6242conversion of vectors to integers and to vectors of other types (as
6243long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006244
6245Semantics:
6246""""""""""
6247
Matt Arsenault24b49c42013-07-31 17:49:08 +00006248The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6249is always a *no-op cast* because no bits change with this
6250conversion. The conversion is done as if the ``value`` had been stored
6251to memory and read back as type ``ty2``. Pointer (or vector of
6252pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006253pointers) types with the same address space through this instruction.
6254To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6255or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006256
6257Example:
6258""""""""
6259
6260.. code-block:: llvm
6261
6262 %X = bitcast i8 255 to i8 ; yields i8 :-1
6263 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6264 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6265 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6266
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006267.. _i_addrspacecast:
6268
6269'``addrspacecast .. to``' Instruction
6270^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6271
6272Syntax:
6273"""""""
6274
6275::
6276
6277 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6278
6279Overview:
6280"""""""""
6281
6282The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6283address space ``n`` to type ``pty2`` in address space ``m``.
6284
6285Arguments:
6286""""""""""
6287
6288The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6289to cast and a pointer type to cast it to, which must have a different
6290address space.
6291
6292Semantics:
6293""""""""""
6294
6295The '``addrspacecast``' instruction converts the pointer value
6296``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006297value modification, depending on the target and the address space
6298pair. Pointer conversions within the same address space must be
6299performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006300conversion is legal then both result and operand refer to the same memory
6301location.
6302
6303Example:
6304""""""""
6305
6306.. code-block:: llvm
6307
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006308 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6309 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6310 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006311
Sean Silvab084af42012-12-07 10:36:55 +00006312.. _otherops:
6313
6314Other Operations
6315----------------
6316
6317The instructions in this category are the "miscellaneous" instructions,
6318which defy better classification.
6319
6320.. _i_icmp:
6321
6322'``icmp``' Instruction
6323^^^^^^^^^^^^^^^^^^^^^^
6324
6325Syntax:
6326"""""""
6327
6328::
6329
Tim Northover675a0962014-06-13 14:24:23 +00006330 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006331
6332Overview:
6333"""""""""
6334
6335The '``icmp``' instruction returns a boolean value or a vector of
6336boolean values based on comparison of its two integer, integer vector,
6337pointer, or pointer vector operands.
6338
6339Arguments:
6340""""""""""
6341
6342The '``icmp``' instruction takes three operands. The first operand is
6343the condition code indicating the kind of comparison to perform. It is
6344not a value, just a keyword. The possible condition code are:
6345
6346#. ``eq``: equal
6347#. ``ne``: not equal
6348#. ``ugt``: unsigned greater than
6349#. ``uge``: unsigned greater or equal
6350#. ``ult``: unsigned less than
6351#. ``ule``: unsigned less or equal
6352#. ``sgt``: signed greater than
6353#. ``sge``: signed greater or equal
6354#. ``slt``: signed less than
6355#. ``sle``: signed less or equal
6356
6357The remaining two arguments must be :ref:`integer <t_integer>` or
6358:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6359must also be identical types.
6360
6361Semantics:
6362""""""""""
6363
6364The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6365code given as ``cond``. The comparison performed always yields either an
6366:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6367
6368#. ``eq``: yields ``true`` if the operands are equal, ``false``
6369 otherwise. No sign interpretation is necessary or performed.
6370#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6371 otherwise. No sign interpretation is necessary or performed.
6372#. ``ugt``: interprets the operands as unsigned values and yields
6373 ``true`` if ``op1`` is greater than ``op2``.
6374#. ``uge``: interprets the operands as unsigned values and yields
6375 ``true`` if ``op1`` is greater than or equal to ``op2``.
6376#. ``ult``: interprets the operands as unsigned values and yields
6377 ``true`` if ``op1`` is less than ``op2``.
6378#. ``ule``: interprets the operands as unsigned values and yields
6379 ``true`` if ``op1`` is less than or equal to ``op2``.
6380#. ``sgt``: interprets the operands as signed values and yields ``true``
6381 if ``op1`` is greater than ``op2``.
6382#. ``sge``: interprets the operands as signed values and yields ``true``
6383 if ``op1`` is greater than or equal to ``op2``.
6384#. ``slt``: interprets the operands as signed values and yields ``true``
6385 if ``op1`` is less than ``op2``.
6386#. ``sle``: interprets the operands as signed values and yields ``true``
6387 if ``op1`` is less than or equal to ``op2``.
6388
6389If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6390are compared as if they were integers.
6391
6392If the operands are integer vectors, then they are compared element by
6393element. The result is an ``i1`` vector with the same number of elements
6394as the values being compared. Otherwise, the result is an ``i1``.
6395
6396Example:
6397""""""""
6398
6399.. code-block:: llvm
6400
6401 <result> = icmp eq i32 4, 5 ; yields: result=false
6402 <result> = icmp ne float* %X, %X ; yields: result=false
6403 <result> = icmp ult i16 4, 5 ; yields: result=true
6404 <result> = icmp sgt i16 4, 5 ; yields: result=false
6405 <result> = icmp ule i16 -4, 5 ; yields: result=false
6406 <result> = icmp sge i16 4, 5 ; yields: result=false
6407
6408Note that the code generator does not yet support vector types with the
6409``icmp`` instruction.
6410
6411.. _i_fcmp:
6412
6413'``fcmp``' Instruction
6414^^^^^^^^^^^^^^^^^^^^^^
6415
6416Syntax:
6417"""""""
6418
6419::
6420
Tim Northover675a0962014-06-13 14:24:23 +00006421 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006422
6423Overview:
6424"""""""""
6425
6426The '``fcmp``' instruction returns a boolean value or vector of boolean
6427values based on comparison of its operands.
6428
6429If the operands are floating point scalars, then the result type is a
6430boolean (:ref:`i1 <t_integer>`).
6431
6432If the operands are floating point vectors, then the result type is a
6433vector of boolean with the same number of elements as the operands being
6434compared.
6435
6436Arguments:
6437""""""""""
6438
6439The '``fcmp``' instruction takes three operands. The first operand is
6440the condition code indicating the kind of comparison to perform. It is
6441not a value, just a keyword. The possible condition code are:
6442
6443#. ``false``: no comparison, always returns false
6444#. ``oeq``: ordered and equal
6445#. ``ogt``: ordered and greater than
6446#. ``oge``: ordered and greater than or equal
6447#. ``olt``: ordered and less than
6448#. ``ole``: ordered and less than or equal
6449#. ``one``: ordered and not equal
6450#. ``ord``: ordered (no nans)
6451#. ``ueq``: unordered or equal
6452#. ``ugt``: unordered or greater than
6453#. ``uge``: unordered or greater than or equal
6454#. ``ult``: unordered or less than
6455#. ``ule``: unordered or less than or equal
6456#. ``une``: unordered or not equal
6457#. ``uno``: unordered (either nans)
6458#. ``true``: no comparison, always returns true
6459
6460*Ordered* means that neither operand is a QNAN while *unordered* means
6461that either operand may be a QNAN.
6462
6463Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6464point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6465type. They must have identical types.
6466
6467Semantics:
6468""""""""""
6469
6470The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6471condition code given as ``cond``. If the operands are vectors, then the
6472vectors are compared element by element. Each comparison performed
6473always yields an :ref:`i1 <t_integer>` result, as follows:
6474
6475#. ``false``: always yields ``false``, regardless of operands.
6476#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6477 is equal to ``op2``.
6478#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6479 is greater than ``op2``.
6480#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6481 is greater than or equal to ``op2``.
6482#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6483 is less than ``op2``.
6484#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6485 is less than or equal to ``op2``.
6486#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6487 is not equal to ``op2``.
6488#. ``ord``: yields ``true`` if both operands are not a QNAN.
6489#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6490 equal to ``op2``.
6491#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6492 greater than ``op2``.
6493#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6494 greater than or equal to ``op2``.
6495#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6496 less than ``op2``.
6497#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6498 less than or equal to ``op2``.
6499#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6500 not equal to ``op2``.
6501#. ``uno``: yields ``true`` if either operand is a QNAN.
6502#. ``true``: always yields ``true``, regardless of operands.
6503
6504Example:
6505""""""""
6506
6507.. code-block:: llvm
6508
6509 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6510 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6511 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6512 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6513
6514Note that the code generator does not yet support vector types with the
6515``fcmp`` instruction.
6516
6517.. _i_phi:
6518
6519'``phi``' Instruction
6520^^^^^^^^^^^^^^^^^^^^^
6521
6522Syntax:
6523"""""""
6524
6525::
6526
6527 <result> = phi <ty> [ <val0>, <label0>], ...
6528
6529Overview:
6530"""""""""
6531
6532The '``phi``' instruction is used to implement the φ node in the SSA
6533graph representing the function.
6534
6535Arguments:
6536""""""""""
6537
6538The type of the incoming values is specified with the first type field.
6539After this, the '``phi``' instruction takes a list of pairs as
6540arguments, with one pair for each predecessor basic block of the current
6541block. Only values of :ref:`first class <t_firstclass>` type may be used as
6542the value arguments to the PHI node. Only labels may be used as the
6543label arguments.
6544
6545There must be no non-phi instructions between the start of a basic block
6546and the PHI instructions: i.e. PHI instructions must be first in a basic
6547block.
6548
6549For the purposes of the SSA form, the use of each incoming value is
6550deemed to occur on the edge from the corresponding predecessor block to
6551the current block (but after any definition of an '``invoke``'
6552instruction's return value on the same edge).
6553
6554Semantics:
6555""""""""""
6556
6557At runtime, the '``phi``' instruction logically takes on the value
6558specified by the pair corresponding to the predecessor basic block that
6559executed just prior to the current block.
6560
6561Example:
6562""""""""
6563
6564.. code-block:: llvm
6565
6566 Loop: ; Infinite loop that counts from 0 on up...
6567 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6568 %nextindvar = add i32 %indvar, 1
6569 br label %Loop
6570
6571.. _i_select:
6572
6573'``select``' Instruction
6574^^^^^^^^^^^^^^^^^^^^^^^^
6575
6576Syntax:
6577"""""""
6578
6579::
6580
6581 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6582
6583 selty is either i1 or {<N x i1>}
6584
6585Overview:
6586"""""""""
6587
6588The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006589condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006590
6591Arguments:
6592""""""""""
6593
6594The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6595values indicating the condition, and two values of the same :ref:`first
6596class <t_firstclass>` type. If the val1/val2 are vectors and the
6597condition is a scalar, then entire vectors are selected, not individual
6598elements.
6599
6600Semantics:
6601""""""""""
6602
6603If the condition is an i1 and it evaluates to 1, the instruction returns
6604the first value argument; otherwise, it returns the second value
6605argument.
6606
6607If the condition is a vector of i1, then the value arguments must be
6608vectors of the same size, and the selection is done element by element.
6609
6610Example:
6611""""""""
6612
6613.. code-block:: llvm
6614
6615 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6616
6617.. _i_call:
6618
6619'``call``' Instruction
6620^^^^^^^^^^^^^^^^^^^^^^
6621
6622Syntax:
6623"""""""
6624
6625::
6626
Reid Kleckner5772b772014-04-24 20:14:34 +00006627 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006628
6629Overview:
6630"""""""""
6631
6632The '``call``' instruction represents a simple function call.
6633
6634Arguments:
6635""""""""""
6636
6637This instruction requires several arguments:
6638
Reid Kleckner5772b772014-04-24 20:14:34 +00006639#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6640 should perform tail call optimization. The ``tail`` marker is a hint that
6641 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6642 means that the call must be tail call optimized in order for the program to
6643 be correct. The ``musttail`` marker provides these guarantees:
6644
6645 #. The call will not cause unbounded stack growth if it is part of a
6646 recursive cycle in the call graph.
6647 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6648 forwarded in place.
6649
6650 Both markers imply that the callee does not access allocas or varargs from
6651 the caller. Calls marked ``musttail`` must obey the following additional
6652 rules:
6653
6654 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6655 or a pointer bitcast followed by a ret instruction.
6656 - The ret instruction must return the (possibly bitcasted) value
6657 produced by the call or void.
6658 - The caller and callee prototypes must match. Pointer types of
6659 parameters or return types may differ in pointee type, but not
6660 in address space.
6661 - The calling conventions of the caller and callee must match.
6662 - All ABI-impacting function attributes, such as sret, byval, inreg,
6663 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00006664 - The callee must be varargs iff the caller is varargs. Bitcasting a
6665 non-varargs function to the appropriate varargs type is legal so
6666 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00006667
6668 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6669 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006670
6671 - Caller and callee both have the calling convention ``fastcc``.
6672 - The call is in tail position (ret immediately follows call and ret
6673 uses value of call or is void).
6674 - Option ``-tailcallopt`` is enabled, or
6675 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00006676 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00006677 met. <CodeGenerator.html#tailcallopt>`_
6678
6679#. The optional "cconv" marker indicates which :ref:`calling
6680 convention <callingconv>` the call should use. If none is
6681 specified, the call defaults to using C calling conventions. The
6682 calling convention of the call must match the calling convention of
6683 the target function, or else the behavior is undefined.
6684#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6685 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6686 are valid here.
6687#. '``ty``': the type of the call instruction itself which is also the
6688 type of the return value. Functions that return no value are marked
6689 ``void``.
6690#. '``fnty``': shall be the signature of the pointer to function value
6691 being invoked. The argument types must match the types implied by
6692 this signature. This type can be omitted if the function is not
6693 varargs and if the function type does not return a pointer to a
6694 function.
6695#. '``fnptrval``': An LLVM value containing a pointer to a function to
6696 be invoked. In most cases, this is a direct function invocation, but
6697 indirect ``call``'s are just as possible, calling an arbitrary pointer
6698 to function value.
6699#. '``function args``': argument list whose types match the function
6700 signature argument types and parameter attributes. All arguments must
6701 be of :ref:`first class <t_firstclass>` type. If the function signature
6702 indicates the function accepts a variable number of arguments, the
6703 extra arguments can be specified.
6704#. The optional :ref:`function attributes <fnattrs>` list. Only
6705 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6706 attributes are valid here.
6707
6708Semantics:
6709""""""""""
6710
6711The '``call``' instruction is used to cause control flow to transfer to
6712a specified function, with its incoming arguments bound to the specified
6713values. Upon a '``ret``' instruction in the called function, control
6714flow continues with the instruction after the function call, and the
6715return value of the function is bound to the result argument.
6716
6717Example:
6718""""""""
6719
6720.. code-block:: llvm
6721
6722 %retval = call i32 @test(i32 %argc)
6723 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6724 %X = tail call i32 @foo() ; yields i32
6725 %Y = tail call fastcc i32 @foo() ; yields i32
6726 call void %foo(i8 97 signext)
6727
6728 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00006729 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00006730 %gr = extractvalue %struct.A %r, 0 ; yields i32
6731 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6732 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6733 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6734
6735llvm treats calls to some functions with names and arguments that match
6736the standard C99 library as being the C99 library functions, and may
6737perform optimizations or generate code for them under that assumption.
6738This is something we'd like to change in the future to provide better
6739support for freestanding environments and non-C-based languages.
6740
6741.. _i_va_arg:
6742
6743'``va_arg``' Instruction
6744^^^^^^^^^^^^^^^^^^^^^^^^
6745
6746Syntax:
6747"""""""
6748
6749::
6750
6751 <resultval> = va_arg <va_list*> <arglist>, <argty>
6752
6753Overview:
6754"""""""""
6755
6756The '``va_arg``' instruction is used to access arguments passed through
6757the "variable argument" area of a function call. It is used to implement
6758the ``va_arg`` macro in C.
6759
6760Arguments:
6761""""""""""
6762
6763This instruction takes a ``va_list*`` value and the type of the
6764argument. It returns a value of the specified argument type and
6765increments the ``va_list`` to point to the next argument. The actual
6766type of ``va_list`` is target specific.
6767
6768Semantics:
6769""""""""""
6770
6771The '``va_arg``' instruction loads an argument of the specified type
6772from the specified ``va_list`` and causes the ``va_list`` to point to
6773the next argument. For more information, see the variable argument
6774handling :ref:`Intrinsic Functions <int_varargs>`.
6775
6776It is legal for this instruction to be called in a function which does
6777not take a variable number of arguments, for example, the ``vfprintf``
6778function.
6779
6780``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6781function <intrinsics>` because it takes a type as an argument.
6782
6783Example:
6784""""""""
6785
6786See the :ref:`variable argument processing <int_varargs>` section.
6787
6788Note that the code generator does not yet fully support va\_arg on many
6789targets. Also, it does not currently support va\_arg with aggregate
6790types on any target.
6791
6792.. _i_landingpad:
6793
6794'``landingpad``' Instruction
6795^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6796
6797Syntax:
6798"""""""
6799
6800::
6801
6802 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6803 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6804
6805 <clause> := catch <type> <value>
6806 <clause> := filter <array constant type> <array constant>
6807
6808Overview:
6809"""""""""
6810
6811The '``landingpad``' instruction is used by `LLVM's exception handling
6812system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006813is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006814code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6815defines values supplied by the personality function (``pers_fn``) upon
6816re-entry to the function. The ``resultval`` has the type ``resultty``.
6817
6818Arguments:
6819""""""""""
6820
6821This instruction takes a ``pers_fn`` value. This is the personality
6822function associated with the unwinding mechanism. The optional
6823``cleanup`` flag indicates that the landing pad block is a cleanup.
6824
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006825A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006826contains the global variable representing the "type" that may be caught
6827or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6828clause takes an array constant as its argument. Use
6829"``[0 x i8**] undef``" for a filter which cannot throw. The
6830'``landingpad``' instruction must contain *at least* one ``clause`` or
6831the ``cleanup`` flag.
6832
6833Semantics:
6834""""""""""
6835
6836The '``landingpad``' instruction defines the values which are set by the
6837personality function (``pers_fn``) upon re-entry to the function, and
6838therefore the "result type" of the ``landingpad`` instruction. As with
6839calling conventions, how the personality function results are
6840represented in LLVM IR is target specific.
6841
6842The clauses are applied in order from top to bottom. If two
6843``landingpad`` instructions are merged together through inlining, the
6844clauses from the calling function are appended to the list of clauses.
6845When the call stack is being unwound due to an exception being thrown,
6846the exception is compared against each ``clause`` in turn. If it doesn't
6847match any of the clauses, and the ``cleanup`` flag is not set, then
6848unwinding continues further up the call stack.
6849
6850The ``landingpad`` instruction has several restrictions:
6851
6852- A landing pad block is a basic block which is the unwind destination
6853 of an '``invoke``' instruction.
6854- A landing pad block must have a '``landingpad``' instruction as its
6855 first non-PHI instruction.
6856- There can be only one '``landingpad``' instruction within the landing
6857 pad block.
6858- A basic block that is not a landing pad block may not include a
6859 '``landingpad``' instruction.
6860- All '``landingpad``' instructions in a function must have the same
6861 personality function.
6862
6863Example:
6864""""""""
6865
6866.. code-block:: llvm
6867
6868 ;; A landing pad which can catch an integer.
6869 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6870 catch i8** @_ZTIi
6871 ;; A landing pad that is a cleanup.
6872 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6873 cleanup
6874 ;; A landing pad which can catch an integer and can only throw a double.
6875 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6876 catch i8** @_ZTIi
6877 filter [1 x i8**] [@_ZTId]
6878
6879.. _intrinsics:
6880
6881Intrinsic Functions
6882===================
6883
6884LLVM supports the notion of an "intrinsic function". These functions
6885have well known names and semantics and are required to follow certain
6886restrictions. Overall, these intrinsics represent an extension mechanism
6887for the LLVM language that does not require changing all of the
6888transformations in LLVM when adding to the language (or the bitcode
6889reader/writer, the parser, etc...).
6890
6891Intrinsic function names must all start with an "``llvm.``" prefix. This
6892prefix is reserved in LLVM for intrinsic names; thus, function names may
6893not begin with this prefix. Intrinsic functions must always be external
6894functions: you cannot define the body of intrinsic functions. Intrinsic
6895functions may only be used in call or invoke instructions: it is illegal
6896to take the address of an intrinsic function. Additionally, because
6897intrinsic functions are part of the LLVM language, it is required if any
6898are added that they be documented here.
6899
6900Some intrinsic functions can be overloaded, i.e., the intrinsic
6901represents a family of functions that perform the same operation but on
6902different data types. Because LLVM can represent over 8 million
6903different integer types, overloading is used commonly to allow an
6904intrinsic function to operate on any integer type. One or more of the
6905argument types or the result type can be overloaded to accept any
6906integer type. Argument types may also be defined as exactly matching a
6907previous argument's type or the result type. This allows an intrinsic
6908function which accepts multiple arguments, but needs all of them to be
6909of the same type, to only be overloaded with respect to a single
6910argument or the result.
6911
6912Overloaded intrinsics will have the names of its overloaded argument
6913types encoded into its function name, each preceded by a period. Only
6914those types which are overloaded result in a name suffix. Arguments
6915whose type is matched against another type do not. For example, the
6916``llvm.ctpop`` function can take an integer of any width and returns an
6917integer of exactly the same integer width. This leads to a family of
6918functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6919``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6920overloaded, and only one type suffix is required. Because the argument's
6921type is matched against the return type, it does not require its own
6922name suffix.
6923
6924To learn how to add an intrinsic function, please see the `Extending
6925LLVM Guide <ExtendingLLVM.html>`_.
6926
6927.. _int_varargs:
6928
6929Variable Argument Handling Intrinsics
6930-------------------------------------
6931
6932Variable argument support is defined in LLVM with the
6933:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6934functions. These functions are related to the similarly named macros
6935defined in the ``<stdarg.h>`` header file.
6936
6937All of these functions operate on arguments that use a target-specific
6938value type "``va_list``". The LLVM assembly language reference manual
6939does not define what this type is, so all transformations should be
6940prepared to handle these functions regardless of the type used.
6941
6942This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6943variable argument handling intrinsic functions are used.
6944
6945.. code-block:: llvm
6946
Tim Northoverab60bb92014-11-02 01:21:51 +00006947 ; This struct is different for every platform. For most platforms,
6948 ; it is merely an i8*.
6949 %struct.va_list = type { i8* }
6950
6951 ; For Unix x86_64 platforms, va_list is the following struct:
6952 ; %struct.va_list = type { i32, i32, i8*, i8* }
6953
Sean Silvab084af42012-12-07 10:36:55 +00006954 define i32 @test(i32 %X, ...) {
6955 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00006956 %ap = alloca %struct.va_list
6957 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00006958 call void @llvm.va_start(i8* %ap2)
6959
6960 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00006961 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00006962
6963 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6964 %aq = alloca i8*
6965 %aq2 = bitcast i8** %aq to i8*
6966 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6967 call void @llvm.va_end(i8* %aq2)
6968
6969 ; Stop processing of arguments.
6970 call void @llvm.va_end(i8* %ap2)
6971 ret i32 %tmp
6972 }
6973
6974 declare void @llvm.va_start(i8*)
6975 declare void @llvm.va_copy(i8*, i8*)
6976 declare void @llvm.va_end(i8*)
6977
6978.. _int_va_start:
6979
6980'``llvm.va_start``' Intrinsic
6981^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6982
6983Syntax:
6984"""""""
6985
6986::
6987
Nick Lewycky04f6de02013-09-11 22:04:52 +00006988 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006989
6990Overview:
6991"""""""""
6992
6993The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6994subsequent use by ``va_arg``.
6995
6996Arguments:
6997""""""""""
6998
6999The argument is a pointer to a ``va_list`` element to initialize.
7000
7001Semantics:
7002""""""""""
7003
7004The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
7005available in C. In a target-dependent way, it initializes the
7006``va_list`` element to which the argument points, so that the next call
7007to ``va_arg`` will produce the first variable argument passed to the
7008function. Unlike the C ``va_start`` macro, this intrinsic does not need
7009to know the last argument of the function as the compiler can figure
7010that out.
7011
7012'``llvm.va_end``' Intrinsic
7013^^^^^^^^^^^^^^^^^^^^^^^^^^^
7014
7015Syntax:
7016"""""""
7017
7018::
7019
7020 declare void @llvm.va_end(i8* <arglist>)
7021
7022Overview:
7023"""""""""
7024
7025The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
7026initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
7027
7028Arguments:
7029""""""""""
7030
7031The argument is a pointer to a ``va_list`` to destroy.
7032
7033Semantics:
7034""""""""""
7035
7036The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
7037available in C. In a target-dependent way, it destroys the ``va_list``
7038element to which the argument points. Calls to
7039:ref:`llvm.va_start <int_va_start>` and
7040:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
7041``llvm.va_end``.
7042
7043.. _int_va_copy:
7044
7045'``llvm.va_copy``' Intrinsic
7046^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7047
7048Syntax:
7049"""""""
7050
7051::
7052
7053 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
7054
7055Overview:
7056"""""""""
7057
7058The '``llvm.va_copy``' intrinsic copies the current argument position
7059from the source argument list to the destination argument list.
7060
7061Arguments:
7062""""""""""
7063
7064The first argument is a pointer to a ``va_list`` element to initialize.
7065The second argument is a pointer to a ``va_list`` element to copy from.
7066
7067Semantics:
7068""""""""""
7069
7070The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
7071available in C. In a target-dependent way, it copies the source
7072``va_list`` element into the destination ``va_list`` element. This
7073intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
7074arbitrarily complex and require, for example, memory allocation.
7075
7076Accurate Garbage Collection Intrinsics
7077--------------------------------------
7078
7079LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
7080(GC) requires the implementation and generation of these intrinsics.
7081These intrinsics allow identification of :ref:`GC roots on the
7082stack <int_gcroot>`, as well as garbage collector implementations that
7083require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
7084Front-ends for type-safe garbage collected languages should generate
7085these intrinsics to make use of the LLVM garbage collectors. For more
7086details, see `Accurate Garbage Collection with
7087LLVM <GarbageCollection.html>`_.
7088
7089The garbage collection intrinsics only operate on objects in the generic
7090address space (address space zero).
7091
7092.. _int_gcroot:
7093
7094'``llvm.gcroot``' Intrinsic
7095^^^^^^^^^^^^^^^^^^^^^^^^^^^
7096
7097Syntax:
7098"""""""
7099
7100::
7101
7102 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
7103
7104Overview:
7105"""""""""
7106
7107The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
7108the code generator, and allows some metadata to be associated with it.
7109
7110Arguments:
7111""""""""""
7112
7113The first argument specifies the address of a stack object that contains
7114the root pointer. The second pointer (which must be either a constant or
7115a global value address) contains the meta-data to be associated with the
7116root.
7117
7118Semantics:
7119""""""""""
7120
7121At runtime, a call to this intrinsic stores a null pointer into the
7122"ptrloc" location. At compile-time, the code generator generates
7123information to allow the runtime to find the pointer at GC safe points.
7124The '``llvm.gcroot``' intrinsic may only be used in a function which
7125:ref:`specifies a GC algorithm <gc>`.
7126
7127.. _int_gcread:
7128
7129'``llvm.gcread``' Intrinsic
7130^^^^^^^^^^^^^^^^^^^^^^^^^^^
7131
7132Syntax:
7133"""""""
7134
7135::
7136
7137 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7138
7139Overview:
7140"""""""""
7141
7142The '``llvm.gcread``' intrinsic identifies reads of references from heap
7143locations, allowing garbage collector implementations that require read
7144barriers.
7145
7146Arguments:
7147""""""""""
7148
7149The second argument is the address to read from, which should be an
7150address allocated from the garbage collector. The first object is a
7151pointer to the start of the referenced object, if needed by the language
7152runtime (otherwise null).
7153
7154Semantics:
7155""""""""""
7156
7157The '``llvm.gcread``' intrinsic has the same semantics as a load
7158instruction, but may be replaced with substantially more complex code by
7159the garbage collector runtime, as needed. The '``llvm.gcread``'
7160intrinsic may only be used in a function which :ref:`specifies a GC
7161algorithm <gc>`.
7162
7163.. _int_gcwrite:
7164
7165'``llvm.gcwrite``' Intrinsic
7166^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7167
7168Syntax:
7169"""""""
7170
7171::
7172
7173 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7174
7175Overview:
7176"""""""""
7177
7178The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7179locations, allowing garbage collector implementations that require write
7180barriers (such as generational or reference counting collectors).
7181
7182Arguments:
7183""""""""""
7184
7185The first argument is the reference to store, the second is the start of
7186the object to store it to, and the third is the address of the field of
7187Obj to store to. If the runtime does not require a pointer to the
7188object, Obj may be null.
7189
7190Semantics:
7191""""""""""
7192
7193The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7194instruction, but may be replaced with substantially more complex code by
7195the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7196intrinsic may only be used in a function which :ref:`specifies a GC
7197algorithm <gc>`.
7198
7199Code Generator Intrinsics
7200-------------------------
7201
7202These intrinsics are provided by LLVM to expose special features that
7203may only be implemented with code generator support.
7204
7205'``llvm.returnaddress``' Intrinsic
7206^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7207
7208Syntax:
7209"""""""
7210
7211::
7212
7213 declare i8 *@llvm.returnaddress(i32 <level>)
7214
7215Overview:
7216"""""""""
7217
7218The '``llvm.returnaddress``' intrinsic attempts to compute a
7219target-specific value indicating the return address of the current
7220function or one of its callers.
7221
7222Arguments:
7223""""""""""
7224
7225The argument to this intrinsic indicates which function to return the
7226address for. Zero indicates the calling function, one indicates its
7227caller, etc. The argument is **required** to be a constant integer
7228value.
7229
7230Semantics:
7231""""""""""
7232
7233The '``llvm.returnaddress``' intrinsic either returns a pointer
7234indicating the return address of the specified call frame, or zero if it
7235cannot be identified. The value returned by this intrinsic is likely to
7236be incorrect or 0 for arguments other than zero, so it should only be
7237used for debugging purposes.
7238
7239Note that calling this intrinsic does not prevent function inlining or
7240other aggressive transformations, so the value returned may not be that
7241of the obvious source-language caller.
7242
7243'``llvm.frameaddress``' Intrinsic
7244^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7245
7246Syntax:
7247"""""""
7248
7249::
7250
7251 declare i8* @llvm.frameaddress(i32 <level>)
7252
7253Overview:
7254"""""""""
7255
7256The '``llvm.frameaddress``' intrinsic attempts to return the
7257target-specific frame pointer value for the specified stack frame.
7258
7259Arguments:
7260""""""""""
7261
7262The argument to this intrinsic indicates which function to return the
7263frame pointer for. Zero indicates the calling function, one indicates
7264its caller, etc. The argument is **required** to be a constant integer
7265value.
7266
7267Semantics:
7268""""""""""
7269
7270The '``llvm.frameaddress``' intrinsic either returns a pointer
7271indicating the frame address of the specified call frame, or zero if it
7272cannot be identified. The value returned by this intrinsic is likely to
7273be incorrect or 0 for arguments other than zero, so it should only be
7274used for debugging purposes.
7275
7276Note that calling this intrinsic does not prevent function inlining or
7277other aggressive transformations, so the value returned may not be that
7278of the obvious source-language caller.
7279
Renato Golinc7aea402014-05-06 16:51:25 +00007280.. _int_read_register:
7281.. _int_write_register:
7282
7283'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7284^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7285
7286Syntax:
7287"""""""
7288
7289::
7290
7291 declare i32 @llvm.read_register.i32(metadata)
7292 declare i64 @llvm.read_register.i64(metadata)
7293 declare void @llvm.write_register.i32(metadata, i32 @value)
7294 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00007295 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00007296
7297Overview:
7298"""""""""
7299
7300The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7301provides access to the named register. The register must be valid on
7302the architecture being compiled to. The type needs to be compatible
7303with the register being read.
7304
7305Semantics:
7306""""""""""
7307
7308The '``llvm.read_register``' intrinsic returns the current value of the
7309register, where possible. The '``llvm.write_register``' intrinsic sets
7310the current value of the register, where possible.
7311
7312This is useful to implement named register global variables that need
7313to always be mapped to a specific register, as is common practice on
7314bare-metal programs including OS kernels.
7315
7316The compiler doesn't check for register availability or use of the used
7317register in surrounding code, including inline assembly. Because of that,
7318allocatable registers are not supported.
7319
7320Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007321architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007322work is needed to support other registers and even more so, allocatable
7323registers.
7324
Sean Silvab084af42012-12-07 10:36:55 +00007325.. _int_stacksave:
7326
7327'``llvm.stacksave``' Intrinsic
7328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7329
7330Syntax:
7331"""""""
7332
7333::
7334
7335 declare i8* @llvm.stacksave()
7336
7337Overview:
7338"""""""""
7339
7340The '``llvm.stacksave``' intrinsic is used to remember the current state
7341of the function stack, for use with
7342:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7343implementing language features like scoped automatic variable sized
7344arrays in C99.
7345
7346Semantics:
7347""""""""""
7348
7349This intrinsic returns a opaque pointer value that can be passed to
7350:ref:`llvm.stackrestore <int_stackrestore>`. When an
7351``llvm.stackrestore`` intrinsic is executed with a value saved from
7352``llvm.stacksave``, it effectively restores the state of the stack to
7353the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7354practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7355were allocated after the ``llvm.stacksave`` was executed.
7356
7357.. _int_stackrestore:
7358
7359'``llvm.stackrestore``' Intrinsic
7360^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7361
7362Syntax:
7363"""""""
7364
7365::
7366
7367 declare void @llvm.stackrestore(i8* %ptr)
7368
7369Overview:
7370"""""""""
7371
7372The '``llvm.stackrestore``' intrinsic is used to restore the state of
7373the function stack to the state it was in when the corresponding
7374:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7375useful for implementing language features like scoped automatic variable
7376sized arrays in C99.
7377
7378Semantics:
7379""""""""""
7380
7381See the description for :ref:`llvm.stacksave <int_stacksave>`.
7382
7383'``llvm.prefetch``' Intrinsic
7384^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7385
7386Syntax:
7387"""""""
7388
7389::
7390
7391 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7392
7393Overview:
7394"""""""""
7395
7396The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7397insert a prefetch instruction if supported; otherwise, it is a noop.
7398Prefetches have no effect on the behavior of the program but can change
7399its performance characteristics.
7400
7401Arguments:
7402""""""""""
7403
7404``address`` is the address to be prefetched, ``rw`` is the specifier
7405determining if the fetch should be for a read (0) or write (1), and
7406``locality`` is a temporal locality specifier ranging from (0) - no
7407locality, to (3) - extremely local keep in cache. The ``cache type``
7408specifies whether the prefetch is performed on the data (1) or
7409instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7410arguments must be constant integers.
7411
7412Semantics:
7413""""""""""
7414
7415This intrinsic does not modify the behavior of the program. In
7416particular, prefetches cannot trap and do not produce a value. On
7417targets that support this intrinsic, the prefetch can provide hints to
7418the processor cache for better performance.
7419
7420'``llvm.pcmarker``' Intrinsic
7421^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7422
7423Syntax:
7424"""""""
7425
7426::
7427
7428 declare void @llvm.pcmarker(i32 <id>)
7429
7430Overview:
7431"""""""""
7432
7433The '``llvm.pcmarker``' intrinsic is a method to export a Program
7434Counter (PC) in a region of code to simulators and other tools. The
7435method is target specific, but it is expected that the marker will use
7436exported symbols to transmit the PC of the marker. The marker makes no
7437guarantees that it will remain with any specific instruction after
7438optimizations. It is possible that the presence of a marker will inhibit
7439optimizations. The intended use is to be inserted after optimizations to
7440allow correlations of simulation runs.
7441
7442Arguments:
7443""""""""""
7444
7445``id`` is a numerical id identifying the marker.
7446
7447Semantics:
7448""""""""""
7449
7450This intrinsic does not modify the behavior of the program. Backends
7451that do not support this intrinsic may ignore it.
7452
7453'``llvm.readcyclecounter``' Intrinsic
7454^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7455
7456Syntax:
7457"""""""
7458
7459::
7460
7461 declare i64 @llvm.readcyclecounter()
7462
7463Overview:
7464"""""""""
7465
7466The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7467counter register (or similar low latency, high accuracy clocks) on those
7468targets that support it. On X86, it should map to RDTSC. On Alpha, it
7469should map to RPCC. As the backing counters overflow quickly (on the
7470order of 9 seconds on alpha), this should only be used for small
7471timings.
7472
7473Semantics:
7474""""""""""
7475
7476When directly supported, reading the cycle counter should not modify any
7477memory. Implementations are allowed to either return a application
7478specific value or a system wide value. On backends without support, this
7479is lowered to a constant 0.
7480
Tim Northoverbc933082013-05-23 19:11:20 +00007481Note that runtime support may be conditional on the privilege-level code is
7482running at and the host platform.
7483
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007484'``llvm.clear_cache``' Intrinsic
7485^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7486
7487Syntax:
7488"""""""
7489
7490::
7491
7492 declare void @llvm.clear_cache(i8*, i8*)
7493
7494Overview:
7495"""""""""
7496
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007497The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7498in the specified range to the execution unit of the processor. On
7499targets with non-unified instruction and data cache, the implementation
7500flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007501
7502Semantics:
7503""""""""""
7504
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007505On platforms with coherent instruction and data caches (e.g. x86), this
7506intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007507cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007508instructions or a system call, if cache flushing requires special
7509privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007510
Sean Silvad02bf3e2014-04-07 22:29:53 +00007511The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007512time library.
Renato Golin93010e62014-03-26 14:01:32 +00007513
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007514This instrinsic does *not* empty the instruction pipeline. Modifications
7515of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007516
Justin Bogner61ba2e32014-12-08 18:02:35 +00007517'``llvm.instrprof_increment``' Intrinsic
7518^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7519
7520Syntax:
7521"""""""
7522
7523::
7524
7525 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
7526 i32 <num-counters>, i32 <index>)
7527
7528Overview:
7529"""""""""
7530
7531The '``llvm.instrprof_increment``' intrinsic can be emitted by a
7532frontend for use with instrumentation based profiling. These will be
7533lowered by the ``-instrprof`` pass to generate execution counts of a
7534program at runtime.
7535
7536Arguments:
7537""""""""""
7538
7539The first argument is a pointer to a global variable containing the
7540name of the entity being instrumented. This should generally be the
7541(mangled) function name for a set of counters.
7542
7543The second argument is a hash value that can be used by the consumer
7544of the profile data to detect changes to the instrumented source, and
7545the third is the number of counters associated with ``name``. It is an
7546error if ``hash`` or ``num-counters`` differ between two instances of
7547``instrprof_increment`` that refer to the same name.
7548
7549The last argument refers to which of the counters for ``name`` should
7550be incremented. It should be a value between 0 and ``num-counters``.
7551
7552Semantics:
7553""""""""""
7554
7555This intrinsic represents an increment of a profiling counter. It will
7556cause the ``-instrprof`` pass to generate the appropriate data
7557structures and the code to increment the appropriate value, in a
7558format that can be written out by a compiler runtime and consumed via
7559the ``llvm-profdata`` tool.
7560
Sean Silvab084af42012-12-07 10:36:55 +00007561Standard C Library Intrinsics
7562-----------------------------
7563
7564LLVM provides intrinsics for a few important standard C library
7565functions. These intrinsics allow source-language front-ends to pass
7566information about the alignment of the pointer arguments to the code
7567generator, providing opportunity for more efficient code generation.
7568
7569.. _int_memcpy:
7570
7571'``llvm.memcpy``' Intrinsic
7572^^^^^^^^^^^^^^^^^^^^^^^^^^^
7573
7574Syntax:
7575"""""""
7576
7577This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7578integer bit width and for different address spaces. Not all targets
7579support all bit widths however.
7580
7581::
7582
7583 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7584 i32 <len>, i32 <align>, i1 <isvolatile>)
7585 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7586 i64 <len>, i32 <align>, i1 <isvolatile>)
7587
7588Overview:
7589"""""""""
7590
7591The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7592source location to the destination location.
7593
7594Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7595intrinsics do not return a value, takes extra alignment/isvolatile
7596arguments and the pointers can be in specified address spaces.
7597
7598Arguments:
7599""""""""""
7600
7601The first argument is a pointer to the destination, the second is a
7602pointer to the source. The third argument is an integer argument
7603specifying the number of bytes to copy, the fourth argument is the
7604alignment of the source and destination locations, and the fifth is a
7605boolean indicating a volatile access.
7606
7607If the call to this intrinsic has an alignment value that is not 0 or 1,
7608then the caller guarantees that both the source and destination pointers
7609are aligned to that boundary.
7610
7611If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7612a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7613very cleanly specified and it is unwise to depend on it.
7614
7615Semantics:
7616""""""""""
7617
7618The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7619source location to the destination location, which are not allowed to
7620overlap. It copies "len" bytes of memory over. If the argument is known
7621to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007622argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007623
7624'``llvm.memmove``' Intrinsic
7625^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7626
7627Syntax:
7628"""""""
7629
7630This is an overloaded intrinsic. You can use llvm.memmove on any integer
7631bit width and for different address space. Not all targets support all
7632bit widths however.
7633
7634::
7635
7636 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7637 i32 <len>, i32 <align>, i1 <isvolatile>)
7638 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7639 i64 <len>, i32 <align>, i1 <isvolatile>)
7640
7641Overview:
7642"""""""""
7643
7644The '``llvm.memmove.*``' intrinsics move a block of memory from the
7645source location to the destination location. It is similar to the
7646'``llvm.memcpy``' intrinsic but allows the two memory locations to
7647overlap.
7648
7649Note that, unlike the standard libc function, the ``llvm.memmove.*``
7650intrinsics do not return a value, takes extra alignment/isvolatile
7651arguments and the pointers can be in specified address spaces.
7652
7653Arguments:
7654""""""""""
7655
7656The first argument is a pointer to the destination, the second is a
7657pointer to the source. The third argument is an integer argument
7658specifying the number of bytes to copy, the fourth argument is the
7659alignment of the source and destination locations, and the fifth is a
7660boolean indicating a volatile access.
7661
7662If the call to this intrinsic has an alignment value that is not 0 or 1,
7663then the caller guarantees that the source and destination pointers are
7664aligned to that boundary.
7665
7666If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7667is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7668not very cleanly specified and it is unwise to depend on it.
7669
7670Semantics:
7671""""""""""
7672
7673The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7674source location to the destination location, which may overlap. It
7675copies "len" bytes of memory over. If the argument is known to be
7676aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007677otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007678
7679'``llvm.memset.*``' Intrinsics
7680^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7681
7682Syntax:
7683"""""""
7684
7685This is an overloaded intrinsic. You can use llvm.memset on any integer
7686bit width and for different address spaces. However, not all targets
7687support all bit widths.
7688
7689::
7690
7691 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7692 i32 <len>, i32 <align>, i1 <isvolatile>)
7693 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7694 i64 <len>, i32 <align>, i1 <isvolatile>)
7695
7696Overview:
7697"""""""""
7698
7699The '``llvm.memset.*``' intrinsics fill a block of memory with a
7700particular byte value.
7701
7702Note that, unlike the standard libc function, the ``llvm.memset``
7703intrinsic does not return a value and takes extra alignment/volatile
7704arguments. Also, the destination can be in an arbitrary address space.
7705
7706Arguments:
7707""""""""""
7708
7709The first argument is a pointer to the destination to fill, the second
7710is the byte value with which to fill it, the third argument is an
7711integer argument specifying the number of bytes to fill, and the fourth
7712argument is the known alignment of the destination location.
7713
7714If the call to this intrinsic has an alignment value that is not 0 or 1,
7715then the caller guarantees that the destination pointer is aligned to
7716that boundary.
7717
7718If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7719a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7720very cleanly specified and it is unwise to depend on it.
7721
7722Semantics:
7723""""""""""
7724
7725The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7726at the destination location. If the argument is known to be aligned to
7727some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007728it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007729
7730'``llvm.sqrt.*``' Intrinsic
7731^^^^^^^^^^^^^^^^^^^^^^^^^^^
7732
7733Syntax:
7734"""""""
7735
7736This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7737floating point or vector of floating point type. Not all targets support
7738all types however.
7739
7740::
7741
7742 declare float @llvm.sqrt.f32(float %Val)
7743 declare double @llvm.sqrt.f64(double %Val)
7744 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7745 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7746 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7747
7748Overview:
7749"""""""""
7750
7751The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7752returning the same value as the libm '``sqrt``' functions would. Unlike
7753``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7754negative numbers other than -0.0 (which allows for better optimization,
7755because there is no need to worry about errno being set).
7756``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7757
7758Arguments:
7759""""""""""
7760
7761The argument and return value are floating point numbers of the same
7762type.
7763
7764Semantics:
7765""""""""""
7766
7767This function returns the sqrt of the specified operand if it is a
7768nonnegative floating point number.
7769
7770'``llvm.powi.*``' Intrinsic
7771^^^^^^^^^^^^^^^^^^^^^^^^^^^
7772
7773Syntax:
7774"""""""
7775
7776This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7777floating point or vector of floating point type. Not all targets support
7778all types however.
7779
7780::
7781
7782 declare float @llvm.powi.f32(float %Val, i32 %power)
7783 declare double @llvm.powi.f64(double %Val, i32 %power)
7784 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7785 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7786 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7787
7788Overview:
7789"""""""""
7790
7791The '``llvm.powi.*``' intrinsics return the first operand raised to the
7792specified (positive or negative) power. The order of evaluation of
7793multiplications is not defined. When a vector of floating point type is
7794used, the second argument remains a scalar integer value.
7795
7796Arguments:
7797""""""""""
7798
7799The second argument is an integer power, and the first is a value to
7800raise to that power.
7801
7802Semantics:
7803""""""""""
7804
7805This function returns the first value raised to the second power with an
7806unspecified sequence of rounding operations.
7807
7808'``llvm.sin.*``' Intrinsic
7809^^^^^^^^^^^^^^^^^^^^^^^^^^
7810
7811Syntax:
7812"""""""
7813
7814This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7815floating point or vector of floating point type. Not all targets support
7816all types however.
7817
7818::
7819
7820 declare float @llvm.sin.f32(float %Val)
7821 declare double @llvm.sin.f64(double %Val)
7822 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7823 declare fp128 @llvm.sin.f128(fp128 %Val)
7824 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7825
7826Overview:
7827"""""""""
7828
7829The '``llvm.sin.*``' intrinsics return the sine of the operand.
7830
7831Arguments:
7832""""""""""
7833
7834The argument and return value are floating point numbers of the same
7835type.
7836
7837Semantics:
7838""""""""""
7839
7840This function returns the sine of the specified operand, returning the
7841same values as the libm ``sin`` functions would, and handles error
7842conditions in the same way.
7843
7844'``llvm.cos.*``' Intrinsic
7845^^^^^^^^^^^^^^^^^^^^^^^^^^
7846
7847Syntax:
7848"""""""
7849
7850This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7851floating point or vector of floating point type. Not all targets support
7852all types however.
7853
7854::
7855
7856 declare float @llvm.cos.f32(float %Val)
7857 declare double @llvm.cos.f64(double %Val)
7858 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7859 declare fp128 @llvm.cos.f128(fp128 %Val)
7860 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7861
7862Overview:
7863"""""""""
7864
7865The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7866
7867Arguments:
7868""""""""""
7869
7870The argument and return value are floating point numbers of the same
7871type.
7872
7873Semantics:
7874""""""""""
7875
7876This function returns the cosine of the specified operand, returning the
7877same values as the libm ``cos`` functions would, and handles error
7878conditions in the same way.
7879
7880'``llvm.pow.*``' Intrinsic
7881^^^^^^^^^^^^^^^^^^^^^^^^^^
7882
7883Syntax:
7884"""""""
7885
7886This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7887floating point or vector of floating point type. Not all targets support
7888all types however.
7889
7890::
7891
7892 declare float @llvm.pow.f32(float %Val, float %Power)
7893 declare double @llvm.pow.f64(double %Val, double %Power)
7894 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7895 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7896 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7897
7898Overview:
7899"""""""""
7900
7901The '``llvm.pow.*``' intrinsics return the first operand raised to the
7902specified (positive or negative) power.
7903
7904Arguments:
7905""""""""""
7906
7907The second argument is a floating point power, and the first is a value
7908to raise to that power.
7909
7910Semantics:
7911""""""""""
7912
7913This function returns the first value raised to the second power,
7914returning the same values as the libm ``pow`` functions would, and
7915handles error conditions in the same way.
7916
7917'``llvm.exp.*``' Intrinsic
7918^^^^^^^^^^^^^^^^^^^^^^^^^^
7919
7920Syntax:
7921"""""""
7922
7923This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7924floating point or vector of floating point type. Not all targets support
7925all types however.
7926
7927::
7928
7929 declare float @llvm.exp.f32(float %Val)
7930 declare double @llvm.exp.f64(double %Val)
7931 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7932 declare fp128 @llvm.exp.f128(fp128 %Val)
7933 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7934
7935Overview:
7936"""""""""
7937
7938The '``llvm.exp.*``' intrinsics perform the exp function.
7939
7940Arguments:
7941""""""""""
7942
7943The argument and return value are floating point numbers of the same
7944type.
7945
7946Semantics:
7947""""""""""
7948
7949This function returns the same values as the libm ``exp`` functions
7950would, and handles error conditions in the same way.
7951
7952'``llvm.exp2.*``' Intrinsic
7953^^^^^^^^^^^^^^^^^^^^^^^^^^^
7954
7955Syntax:
7956"""""""
7957
7958This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7959floating point or vector of floating point type. Not all targets support
7960all types however.
7961
7962::
7963
7964 declare float @llvm.exp2.f32(float %Val)
7965 declare double @llvm.exp2.f64(double %Val)
7966 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7967 declare fp128 @llvm.exp2.f128(fp128 %Val)
7968 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7969
7970Overview:
7971"""""""""
7972
7973The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7974
7975Arguments:
7976""""""""""
7977
7978The argument and return value are floating point numbers of the same
7979type.
7980
7981Semantics:
7982""""""""""
7983
7984This function returns the same values as the libm ``exp2`` functions
7985would, and handles error conditions in the same way.
7986
7987'``llvm.log.*``' Intrinsic
7988^^^^^^^^^^^^^^^^^^^^^^^^^^
7989
7990Syntax:
7991"""""""
7992
7993This is an overloaded intrinsic. You can use ``llvm.log`` on any
7994floating point or vector of floating point type. Not all targets support
7995all types however.
7996
7997::
7998
7999 declare float @llvm.log.f32(float %Val)
8000 declare double @llvm.log.f64(double %Val)
8001 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
8002 declare fp128 @llvm.log.f128(fp128 %Val)
8003 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
8004
8005Overview:
8006"""""""""
8007
8008The '``llvm.log.*``' intrinsics perform the log function.
8009
8010Arguments:
8011""""""""""
8012
8013The argument and return value are floating point numbers of the same
8014type.
8015
8016Semantics:
8017""""""""""
8018
8019This function returns the same values as the libm ``log`` functions
8020would, and handles error conditions in the same way.
8021
8022'``llvm.log10.*``' Intrinsic
8023^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8024
8025Syntax:
8026"""""""
8027
8028This is an overloaded intrinsic. You can use ``llvm.log10`` on any
8029floating point or vector of floating point type. Not all targets support
8030all types however.
8031
8032::
8033
8034 declare float @llvm.log10.f32(float %Val)
8035 declare double @llvm.log10.f64(double %Val)
8036 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
8037 declare fp128 @llvm.log10.f128(fp128 %Val)
8038 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
8039
8040Overview:
8041"""""""""
8042
8043The '``llvm.log10.*``' intrinsics perform the log10 function.
8044
8045Arguments:
8046""""""""""
8047
8048The argument and return value are floating point numbers of the same
8049type.
8050
8051Semantics:
8052""""""""""
8053
8054This function returns the same values as the libm ``log10`` functions
8055would, and handles error conditions in the same way.
8056
8057'``llvm.log2.*``' Intrinsic
8058^^^^^^^^^^^^^^^^^^^^^^^^^^^
8059
8060Syntax:
8061"""""""
8062
8063This is an overloaded intrinsic. You can use ``llvm.log2`` on any
8064floating point or vector of floating point type. Not all targets support
8065all types however.
8066
8067::
8068
8069 declare float @llvm.log2.f32(float %Val)
8070 declare double @llvm.log2.f64(double %Val)
8071 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
8072 declare fp128 @llvm.log2.f128(fp128 %Val)
8073 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
8074
8075Overview:
8076"""""""""
8077
8078The '``llvm.log2.*``' intrinsics perform the log2 function.
8079
8080Arguments:
8081""""""""""
8082
8083The argument and return value are floating point numbers of the same
8084type.
8085
8086Semantics:
8087""""""""""
8088
8089This function returns the same values as the libm ``log2`` functions
8090would, and handles error conditions in the same way.
8091
8092'``llvm.fma.*``' Intrinsic
8093^^^^^^^^^^^^^^^^^^^^^^^^^^
8094
8095Syntax:
8096"""""""
8097
8098This is an overloaded intrinsic. You can use ``llvm.fma`` on any
8099floating point or vector of floating point type. Not all targets support
8100all types however.
8101
8102::
8103
8104 declare float @llvm.fma.f32(float %a, float %b, float %c)
8105 declare double @llvm.fma.f64(double %a, double %b, double %c)
8106 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
8107 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
8108 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
8109
8110Overview:
8111"""""""""
8112
8113The '``llvm.fma.*``' intrinsics perform the fused multiply-add
8114operation.
8115
8116Arguments:
8117""""""""""
8118
8119The argument and return value are floating point numbers of the same
8120type.
8121
8122Semantics:
8123""""""""""
8124
8125This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008126would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00008127
8128'``llvm.fabs.*``' Intrinsic
8129^^^^^^^^^^^^^^^^^^^^^^^^^^^
8130
8131Syntax:
8132"""""""
8133
8134This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
8135floating point or vector of floating point type. Not all targets support
8136all types however.
8137
8138::
8139
8140 declare float @llvm.fabs.f32(float %Val)
8141 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008142 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008143 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008144 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008145
8146Overview:
8147"""""""""
8148
8149The '``llvm.fabs.*``' intrinsics return the absolute value of the
8150operand.
8151
8152Arguments:
8153""""""""""
8154
8155The argument and return value are floating point numbers of the same
8156type.
8157
8158Semantics:
8159""""""""""
8160
8161This function returns the same values as the libm ``fabs`` functions
8162would, and handles error conditions in the same way.
8163
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008164'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008165^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008166
8167Syntax:
8168"""""""
8169
8170This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
8171floating point or vector of floating point type. Not all targets support
8172all types however.
8173
8174::
8175
Matt Arsenault64313c92014-10-22 18:25:02 +00008176 declare float @llvm.minnum.f32(float %Val0, float %Val1)
8177 declare double @llvm.minnum.f64(double %Val0, double %Val1)
8178 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8179 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
8180 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008181
8182Overview:
8183"""""""""
8184
8185The '``llvm.minnum.*``' intrinsics return the minimum of the two
8186arguments.
8187
8188
8189Arguments:
8190""""""""""
8191
8192The arguments and return value are floating point numbers of the same
8193type.
8194
8195Semantics:
8196""""""""""
8197
8198Follows the IEEE-754 semantics for minNum, which also match for libm's
8199fmin.
8200
8201If either operand is a NaN, returns the other non-NaN operand. Returns
8202NaN only if both operands are NaN. If the operands compare equal,
8203returns a value that compares equal to both operands. This means that
8204fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8205
8206'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008207^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008208
8209Syntax:
8210"""""""
8211
8212This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
8213floating point or vector of floating point type. Not all targets support
8214all types however.
8215
8216::
8217
Matt Arsenault64313c92014-10-22 18:25:02 +00008218 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
8219 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
8220 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8221 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
8222 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008223
8224Overview:
8225"""""""""
8226
8227The '``llvm.maxnum.*``' intrinsics return the maximum of the two
8228arguments.
8229
8230
8231Arguments:
8232""""""""""
8233
8234The arguments and return value are floating point numbers of the same
8235type.
8236
8237Semantics:
8238""""""""""
8239Follows the IEEE-754 semantics for maxNum, which also match for libm's
8240fmax.
8241
8242If either operand is a NaN, returns the other non-NaN operand. Returns
8243NaN only if both operands are NaN. If the operands compare equal,
8244returns a value that compares equal to both operands. This means that
8245fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8246
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00008247'``llvm.copysign.*``' Intrinsic
8248^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8249
8250Syntax:
8251"""""""
8252
8253This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
8254floating point or vector of floating point type. Not all targets support
8255all types however.
8256
8257::
8258
8259 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
8260 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
8261 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
8262 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8263 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
8264
8265Overview:
8266"""""""""
8267
8268The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8269first operand and the sign of the second operand.
8270
8271Arguments:
8272""""""""""
8273
8274The arguments and return value are floating point numbers of the same
8275type.
8276
8277Semantics:
8278""""""""""
8279
8280This function returns the same values as the libm ``copysign``
8281functions would, and handles error conditions in the same way.
8282
Sean Silvab084af42012-12-07 10:36:55 +00008283'``llvm.floor.*``' Intrinsic
8284^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8285
8286Syntax:
8287"""""""
8288
8289This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8290floating point or vector of floating point type. Not all targets support
8291all types however.
8292
8293::
8294
8295 declare float @llvm.floor.f32(float %Val)
8296 declare double @llvm.floor.f64(double %Val)
8297 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
8298 declare fp128 @llvm.floor.f128(fp128 %Val)
8299 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
8300
8301Overview:
8302"""""""""
8303
8304The '``llvm.floor.*``' intrinsics return the floor of the operand.
8305
8306Arguments:
8307""""""""""
8308
8309The argument and return value are floating point numbers of the same
8310type.
8311
8312Semantics:
8313""""""""""
8314
8315This function returns the same values as the libm ``floor`` functions
8316would, and handles error conditions in the same way.
8317
8318'``llvm.ceil.*``' Intrinsic
8319^^^^^^^^^^^^^^^^^^^^^^^^^^^
8320
8321Syntax:
8322"""""""
8323
8324This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8325floating point or vector of floating point type. Not all targets support
8326all types however.
8327
8328::
8329
8330 declare float @llvm.ceil.f32(float %Val)
8331 declare double @llvm.ceil.f64(double %Val)
8332 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8333 declare fp128 @llvm.ceil.f128(fp128 %Val)
8334 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8335
8336Overview:
8337"""""""""
8338
8339The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8340
8341Arguments:
8342""""""""""
8343
8344The argument and return value are floating point numbers of the same
8345type.
8346
8347Semantics:
8348""""""""""
8349
8350This function returns the same values as the libm ``ceil`` functions
8351would, and handles error conditions in the same way.
8352
8353'``llvm.trunc.*``' Intrinsic
8354^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8355
8356Syntax:
8357"""""""
8358
8359This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8360floating point or vector of floating point type. Not all targets support
8361all types however.
8362
8363::
8364
8365 declare float @llvm.trunc.f32(float %Val)
8366 declare double @llvm.trunc.f64(double %Val)
8367 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8368 declare fp128 @llvm.trunc.f128(fp128 %Val)
8369 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8370
8371Overview:
8372"""""""""
8373
8374The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8375nearest integer not larger in magnitude than the operand.
8376
8377Arguments:
8378""""""""""
8379
8380The argument and return value are floating point numbers of the same
8381type.
8382
8383Semantics:
8384""""""""""
8385
8386This function returns the same values as the libm ``trunc`` functions
8387would, and handles error conditions in the same way.
8388
8389'``llvm.rint.*``' Intrinsic
8390^^^^^^^^^^^^^^^^^^^^^^^^^^^
8391
8392Syntax:
8393"""""""
8394
8395This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8396floating point or vector of floating point type. Not all targets support
8397all types however.
8398
8399::
8400
8401 declare float @llvm.rint.f32(float %Val)
8402 declare double @llvm.rint.f64(double %Val)
8403 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8404 declare fp128 @llvm.rint.f128(fp128 %Val)
8405 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8406
8407Overview:
8408"""""""""
8409
8410The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8411nearest integer. It may raise an inexact floating-point exception if the
8412operand isn't an integer.
8413
8414Arguments:
8415""""""""""
8416
8417The argument and return value are floating point numbers of the same
8418type.
8419
8420Semantics:
8421""""""""""
8422
8423This function returns the same values as the libm ``rint`` functions
8424would, and handles error conditions in the same way.
8425
8426'``llvm.nearbyint.*``' Intrinsic
8427^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8428
8429Syntax:
8430"""""""
8431
8432This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8433floating point or vector of floating point type. Not all targets support
8434all types however.
8435
8436::
8437
8438 declare float @llvm.nearbyint.f32(float %Val)
8439 declare double @llvm.nearbyint.f64(double %Val)
8440 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8441 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8442 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8443
8444Overview:
8445"""""""""
8446
8447The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8448nearest integer.
8449
8450Arguments:
8451""""""""""
8452
8453The argument and return value are floating point numbers of the same
8454type.
8455
8456Semantics:
8457""""""""""
8458
8459This function returns the same values as the libm ``nearbyint``
8460functions would, and handles error conditions in the same way.
8461
Hal Finkel171817e2013-08-07 22:49:12 +00008462'``llvm.round.*``' Intrinsic
8463^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8464
8465Syntax:
8466"""""""
8467
8468This is an overloaded intrinsic. You can use ``llvm.round`` on any
8469floating point or vector of floating point type. Not all targets support
8470all types however.
8471
8472::
8473
8474 declare float @llvm.round.f32(float %Val)
8475 declare double @llvm.round.f64(double %Val)
8476 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8477 declare fp128 @llvm.round.f128(fp128 %Val)
8478 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8479
8480Overview:
8481"""""""""
8482
8483The '``llvm.round.*``' intrinsics returns the operand rounded to the
8484nearest integer.
8485
8486Arguments:
8487""""""""""
8488
8489The argument and return value are floating point numbers of the same
8490type.
8491
8492Semantics:
8493""""""""""
8494
8495This function returns the same values as the libm ``round``
8496functions would, and handles error conditions in the same way.
8497
Sean Silvab084af42012-12-07 10:36:55 +00008498Bit Manipulation Intrinsics
8499---------------------------
8500
8501LLVM provides intrinsics for a few important bit manipulation
8502operations. These allow efficient code generation for some algorithms.
8503
8504'``llvm.bswap.*``' Intrinsics
8505^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8506
8507Syntax:
8508"""""""
8509
8510This is an overloaded intrinsic function. You can use bswap on any
8511integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8512
8513::
8514
8515 declare i16 @llvm.bswap.i16(i16 <id>)
8516 declare i32 @llvm.bswap.i32(i32 <id>)
8517 declare i64 @llvm.bswap.i64(i64 <id>)
8518
8519Overview:
8520"""""""""
8521
8522The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8523values with an even number of bytes (positive multiple of 16 bits).
8524These are useful for performing operations on data that is not in the
8525target's native byte order.
8526
8527Semantics:
8528""""""""""
8529
8530The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8531and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8532intrinsic returns an i32 value that has the four bytes of the input i32
8533swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8534returned i32 will have its bytes in 3, 2, 1, 0 order. The
8535``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8536concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8537respectively).
8538
8539'``llvm.ctpop.*``' Intrinsic
8540^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8541
8542Syntax:
8543"""""""
8544
8545This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8546bit width, or on any vector with integer elements. Not all targets
8547support all bit widths or vector types, however.
8548
8549::
8550
8551 declare i8 @llvm.ctpop.i8(i8 <src>)
8552 declare i16 @llvm.ctpop.i16(i16 <src>)
8553 declare i32 @llvm.ctpop.i32(i32 <src>)
8554 declare i64 @llvm.ctpop.i64(i64 <src>)
8555 declare i256 @llvm.ctpop.i256(i256 <src>)
8556 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8557
8558Overview:
8559"""""""""
8560
8561The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8562in a value.
8563
8564Arguments:
8565""""""""""
8566
8567The only argument is the value to be counted. The argument may be of any
8568integer type, or a vector with integer elements. The return type must
8569match the argument type.
8570
8571Semantics:
8572""""""""""
8573
8574The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8575each element of a vector.
8576
8577'``llvm.ctlz.*``' Intrinsic
8578^^^^^^^^^^^^^^^^^^^^^^^^^^^
8579
8580Syntax:
8581"""""""
8582
8583This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8584integer bit width, or any vector whose elements are integers. Not all
8585targets support all bit widths or vector types, however.
8586
8587::
8588
8589 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8590 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8591 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8592 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8593 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8594 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8595
8596Overview:
8597"""""""""
8598
8599The '``llvm.ctlz``' family of intrinsic functions counts the number of
8600leading zeros in a variable.
8601
8602Arguments:
8603""""""""""
8604
8605The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00008606any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00008607type must match the first argument type.
8608
8609The second argument must be a constant and is a flag to indicate whether
8610the intrinsic should ensure that a zero as the first argument produces a
8611defined result. Historically some architectures did not provide a
8612defined result for zero values as efficiently, and many algorithms are
8613now predicated on avoiding zero-value inputs.
8614
8615Semantics:
8616""""""""""
8617
8618The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8619zeros in a variable, or within each element of the vector. If
8620``src == 0`` then the result is the size in bits of the type of ``src``
8621if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8622``llvm.ctlz(i32 2) = 30``.
8623
8624'``llvm.cttz.*``' Intrinsic
8625^^^^^^^^^^^^^^^^^^^^^^^^^^^
8626
8627Syntax:
8628"""""""
8629
8630This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8631integer bit width, or any vector of integer elements. Not all targets
8632support all bit widths or vector types, however.
8633
8634::
8635
8636 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8637 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8638 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8639 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8640 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8641 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8642
8643Overview:
8644"""""""""
8645
8646The '``llvm.cttz``' family of intrinsic functions counts the number of
8647trailing zeros.
8648
8649Arguments:
8650""""""""""
8651
8652The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00008653any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00008654type must match the first argument type.
8655
8656The second argument must be a constant and is a flag to indicate whether
8657the intrinsic should ensure that a zero as the first argument produces a
8658defined result. Historically some architectures did not provide a
8659defined result for zero values as efficiently, and many algorithms are
8660now predicated on avoiding zero-value inputs.
8661
8662Semantics:
8663""""""""""
8664
8665The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8666zeros in a variable, or within each element of a vector. If ``src == 0``
8667then the result is the size in bits of the type of ``src`` if
8668``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8669``llvm.cttz(2) = 1``.
8670
8671Arithmetic with Overflow Intrinsics
8672-----------------------------------
8673
8674LLVM provides intrinsics for some arithmetic with overflow operations.
8675
8676'``llvm.sadd.with.overflow.*``' Intrinsics
8677^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8678
8679Syntax:
8680"""""""
8681
8682This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8683on any integer bit width.
8684
8685::
8686
8687 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8688 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8689 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8690
8691Overview:
8692"""""""""
8693
8694The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8695a signed addition of the two arguments, and indicate whether an overflow
8696occurred during the signed summation.
8697
8698Arguments:
8699""""""""""
8700
8701The arguments (%a and %b) and the first element of the result structure
8702may be of integer types of any bit width, but they must have the same
8703bit width. The second element of the result structure must be of type
8704``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8705addition.
8706
8707Semantics:
8708""""""""""
8709
8710The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008711a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008712first element of which is the signed summation, and the second element
8713of which is a bit specifying if the signed summation resulted in an
8714overflow.
8715
8716Examples:
8717"""""""""
8718
8719.. code-block:: llvm
8720
8721 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8722 %sum = extractvalue {i32, i1} %res, 0
8723 %obit = extractvalue {i32, i1} %res, 1
8724 br i1 %obit, label %overflow, label %normal
8725
8726'``llvm.uadd.with.overflow.*``' Intrinsics
8727^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8728
8729Syntax:
8730"""""""
8731
8732This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8733on any integer bit width.
8734
8735::
8736
8737 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8738 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8739 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8740
8741Overview:
8742"""""""""
8743
8744The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8745an unsigned addition of the two arguments, and indicate whether a carry
8746occurred during the unsigned summation.
8747
8748Arguments:
8749""""""""""
8750
8751The arguments (%a and %b) and the first element of the result structure
8752may be of integer types of any bit width, but they must have the same
8753bit width. The second element of the result structure must be of type
8754``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8755addition.
8756
8757Semantics:
8758""""""""""
8759
8760The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008761an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008762first element of which is the sum, and the second element of which is a
8763bit specifying if the unsigned summation resulted in a carry.
8764
8765Examples:
8766"""""""""
8767
8768.. code-block:: llvm
8769
8770 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8771 %sum = extractvalue {i32, i1} %res, 0
8772 %obit = extractvalue {i32, i1} %res, 1
8773 br i1 %obit, label %carry, label %normal
8774
8775'``llvm.ssub.with.overflow.*``' Intrinsics
8776^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8777
8778Syntax:
8779"""""""
8780
8781This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8782on any integer bit width.
8783
8784::
8785
8786 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8787 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8788 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8789
8790Overview:
8791"""""""""
8792
8793The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8794a signed subtraction of the two arguments, and indicate whether an
8795overflow occurred during the signed subtraction.
8796
8797Arguments:
8798""""""""""
8799
8800The arguments (%a and %b) and the first element of the result structure
8801may be of integer types of any bit width, but they must have the same
8802bit width. The second element of the result structure must be of type
8803``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8804subtraction.
8805
8806Semantics:
8807""""""""""
8808
8809The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008810a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008811first element of which is the subtraction, and the second element of
8812which is a bit specifying if the signed subtraction resulted in an
8813overflow.
8814
8815Examples:
8816"""""""""
8817
8818.. code-block:: llvm
8819
8820 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8821 %sum = extractvalue {i32, i1} %res, 0
8822 %obit = extractvalue {i32, i1} %res, 1
8823 br i1 %obit, label %overflow, label %normal
8824
8825'``llvm.usub.with.overflow.*``' Intrinsics
8826^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8827
8828Syntax:
8829"""""""
8830
8831This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8832on any integer bit width.
8833
8834::
8835
8836 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8837 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8838 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8839
8840Overview:
8841"""""""""
8842
8843The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8844an unsigned subtraction of the two arguments, and indicate whether an
8845overflow occurred during the unsigned subtraction.
8846
8847Arguments:
8848""""""""""
8849
8850The arguments (%a and %b) and the first element of the result structure
8851may be of integer types of any bit width, but they must have the same
8852bit width. The second element of the result structure must be of type
8853``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8854subtraction.
8855
8856Semantics:
8857""""""""""
8858
8859The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008860an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008861the first element of which is the subtraction, and the second element of
8862which is a bit specifying if the unsigned subtraction resulted in an
8863overflow.
8864
8865Examples:
8866"""""""""
8867
8868.. code-block:: llvm
8869
8870 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8871 %sum = extractvalue {i32, i1} %res, 0
8872 %obit = extractvalue {i32, i1} %res, 1
8873 br i1 %obit, label %overflow, label %normal
8874
8875'``llvm.smul.with.overflow.*``' Intrinsics
8876^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8877
8878Syntax:
8879"""""""
8880
8881This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8882on any integer bit width.
8883
8884::
8885
8886 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8887 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8888 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8889
8890Overview:
8891"""""""""
8892
8893The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8894a signed multiplication of the two arguments, and indicate whether an
8895overflow occurred during the signed multiplication.
8896
8897Arguments:
8898""""""""""
8899
8900The arguments (%a and %b) and the first element of the result structure
8901may be of integer types of any bit width, but they must have the same
8902bit width. The second element of the result structure must be of type
8903``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8904multiplication.
8905
8906Semantics:
8907""""""""""
8908
8909The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008910a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008911the first element of which is the multiplication, and the second element
8912of which is a bit specifying if the signed multiplication resulted in an
8913overflow.
8914
8915Examples:
8916"""""""""
8917
8918.. code-block:: llvm
8919
8920 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8921 %sum = extractvalue {i32, i1} %res, 0
8922 %obit = extractvalue {i32, i1} %res, 1
8923 br i1 %obit, label %overflow, label %normal
8924
8925'``llvm.umul.with.overflow.*``' Intrinsics
8926^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8927
8928Syntax:
8929"""""""
8930
8931This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8932on any integer bit width.
8933
8934::
8935
8936 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8937 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8938 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8939
8940Overview:
8941"""""""""
8942
8943The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8944a unsigned multiplication of the two arguments, and indicate whether an
8945overflow occurred during the unsigned multiplication.
8946
8947Arguments:
8948""""""""""
8949
8950The arguments (%a and %b) and the first element of the result structure
8951may be of integer types of any bit width, but they must have the same
8952bit width. The second element of the result structure must be of type
8953``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8954multiplication.
8955
8956Semantics:
8957""""""""""
8958
8959The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008960an unsigned multiplication of the two arguments. They return a structure ---
8961the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008962element of which is a bit specifying if the unsigned multiplication
8963resulted in an overflow.
8964
8965Examples:
8966"""""""""
8967
8968.. code-block:: llvm
8969
8970 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8971 %sum = extractvalue {i32, i1} %res, 0
8972 %obit = extractvalue {i32, i1} %res, 1
8973 br i1 %obit, label %overflow, label %normal
8974
8975Specialised Arithmetic Intrinsics
8976---------------------------------
8977
8978'``llvm.fmuladd.*``' Intrinsic
8979^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8980
8981Syntax:
8982"""""""
8983
8984::
8985
8986 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8987 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8988
8989Overview:
8990"""""""""
8991
8992The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008993expressions that can be fused if the code generator determines that (a) the
8994target instruction set has support for a fused operation, and (b) that the
8995fused operation is more efficient than the equivalent, separate pair of mul
8996and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00008997
8998Arguments:
8999""""""""""
9000
9001The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
9002multiplicands, a and b, and an addend c.
9003
9004Semantics:
9005""""""""""
9006
9007The expression:
9008
9009::
9010
9011 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
9012
9013is equivalent to the expression a \* b + c, except that rounding will
9014not be performed between the multiplication and addition steps if the
9015code generator fuses the operations. Fusion is not guaranteed, even if
9016the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009017corresponding llvm.fma.\* intrinsic function should be used
9018instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00009019
9020Examples:
9021"""""""""
9022
9023.. code-block:: llvm
9024
Tim Northover675a0962014-06-13 14:24:23 +00009025 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00009026
9027Half Precision Floating Point Intrinsics
9028----------------------------------------
9029
9030For most target platforms, half precision floating point is a
9031storage-only format. This means that it is a dense encoding (in memory)
9032but does not support computation in the format.
9033
9034This means that code must first load the half-precision floating point
9035value as an i16, then convert it to float with
9036:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
9037then be performed on the float value (including extending to double
9038etc). To store the value back to memory, it is first converted to float
9039if needed, then converted to i16 with
9040:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
9041i16 value.
9042
9043.. _int_convert_to_fp16:
9044
9045'``llvm.convert.to.fp16``' Intrinsic
9046^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9047
9048Syntax:
9049"""""""
9050
9051::
9052
Tim Northoverfd7e4242014-07-17 10:51:23 +00009053 declare i16 @llvm.convert.to.fp16.f32(float %a)
9054 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00009055
9056Overview:
9057"""""""""
9058
Tim Northoverfd7e4242014-07-17 10:51:23 +00009059The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9060conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00009061
9062Arguments:
9063""""""""""
9064
9065The intrinsic function contains single argument - the value to be
9066converted.
9067
9068Semantics:
9069""""""""""
9070
Tim Northoverfd7e4242014-07-17 10:51:23 +00009071The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9072conventional floating point format to half precision floating point format. The
9073return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00009074
9075Examples:
9076"""""""""
9077
9078.. code-block:: llvm
9079
Tim Northoverfd7e4242014-07-17 10:51:23 +00009080 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00009081 store i16 %res, i16* @x, align 2
9082
9083.. _int_convert_from_fp16:
9084
9085'``llvm.convert.from.fp16``' Intrinsic
9086^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9087
9088Syntax:
9089"""""""
9090
9091::
9092
Tim Northoverfd7e4242014-07-17 10:51:23 +00009093 declare float @llvm.convert.from.fp16.f32(i16 %a)
9094 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009095
9096Overview:
9097"""""""""
9098
9099The '``llvm.convert.from.fp16``' intrinsic function performs a
9100conversion from half precision floating point format to single precision
9101floating point format.
9102
9103Arguments:
9104""""""""""
9105
9106The intrinsic function contains single argument - the value to be
9107converted.
9108
9109Semantics:
9110""""""""""
9111
9112The '``llvm.convert.from.fp16``' intrinsic function performs a
9113conversion from half single precision floating point format to single
9114precision floating point format. The input half-float value is
9115represented by an ``i16`` value.
9116
9117Examples:
9118"""""""""
9119
9120.. code-block:: llvm
9121
9122 %a = load i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00009123 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009124
9125Debugger Intrinsics
9126-------------------
9127
9128The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
9129prefix), are described in the `LLVM Source Level
9130Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
9131document.
9132
9133Exception Handling Intrinsics
9134-----------------------------
9135
9136The LLVM exception handling intrinsics (which all start with
9137``llvm.eh.`` prefix), are described in the `LLVM Exception
9138Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
9139
9140.. _int_trampoline:
9141
9142Trampoline Intrinsics
9143---------------------
9144
9145These intrinsics make it possible to excise one parameter, marked with
9146the :ref:`nest <nest>` attribute, from a function. The result is a
9147callable function pointer lacking the nest parameter - the caller does
9148not need to provide a value for it. Instead, the value to use is stored
9149in advance in a "trampoline", a block of memory usually allocated on the
9150stack, which also contains code to splice the nest value into the
9151argument list. This is used to implement the GCC nested function address
9152extension.
9153
9154For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
9155then the resulting function pointer has signature ``i32 (i32, i32)*``.
9156It can be created as follows:
9157
9158.. code-block:: llvm
9159
9160 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
9161 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
9162 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
9163 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
9164 %fp = bitcast i8* %p to i32 (i32, i32)*
9165
9166The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
9167``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
9168
9169.. _int_it:
9170
9171'``llvm.init.trampoline``' Intrinsic
9172^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9173
9174Syntax:
9175"""""""
9176
9177::
9178
9179 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
9180
9181Overview:
9182"""""""""
9183
9184This fills the memory pointed to by ``tramp`` with executable code,
9185turning it into a trampoline.
9186
9187Arguments:
9188""""""""""
9189
9190The ``llvm.init.trampoline`` intrinsic takes three arguments, all
9191pointers. The ``tramp`` argument must point to a sufficiently large and
9192sufficiently aligned block of memory; this memory is written to by the
9193intrinsic. Note that the size and the alignment are target-specific -
9194LLVM currently provides no portable way of determining them, so a
9195front-end that generates this intrinsic needs to have some
9196target-specific knowledge. The ``func`` argument must hold a function
9197bitcast to an ``i8*``.
9198
9199Semantics:
9200""""""""""
9201
9202The block of memory pointed to by ``tramp`` is filled with target
9203dependent code, turning it into a function. Then ``tramp`` needs to be
9204passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
9205be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
9206function's signature is the same as that of ``func`` with any arguments
9207marked with the ``nest`` attribute removed. At most one such ``nest``
9208argument is allowed, and it must be of pointer type. Calling the new
9209function is equivalent to calling ``func`` with the same argument list,
9210but with ``nval`` used for the missing ``nest`` argument. If, after
9211calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
9212modified, then the effect of any later call to the returned function
9213pointer is undefined.
9214
9215.. _int_at:
9216
9217'``llvm.adjust.trampoline``' Intrinsic
9218^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9219
9220Syntax:
9221"""""""
9222
9223::
9224
9225 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
9226
9227Overview:
9228"""""""""
9229
9230This performs any required machine-specific adjustment to the address of
9231a trampoline (passed as ``tramp``).
9232
9233Arguments:
9234""""""""""
9235
9236``tramp`` must point to a block of memory which already has trampoline
9237code filled in by a previous call to
9238:ref:`llvm.init.trampoline <int_it>`.
9239
9240Semantics:
9241""""""""""
9242
9243On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009244different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00009245intrinsic returns the executable address corresponding to ``tramp``
9246after performing the required machine specific adjustments. The pointer
9247returned can then be :ref:`bitcast and executed <int_trampoline>`.
9248
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009249Masked Vector Load and Store Intrinsics
9250---------------------------------------
9251
9252LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
9253
9254.. _int_mload:
9255
9256'``llvm.masked.load.*``' Intrinsics
9257^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9258
9259Syntax:
9260"""""""
9261This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
9262
9263::
9264
9265 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
9266 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
9267
9268Overview:
9269"""""""""
9270
9271Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes in the passthru operand.
9272
9273
9274Arguments:
9275""""""""""
9276
9277The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean 'i1' values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of passthru operand are the same vector types.
9278
9279
9280Semantics:
9281""""""""""
9282
9283The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
9284The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
9285
9286
9287::
9288
9289 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
9290
9291 ;; The result of the two following instructions is identical aside from potential memory access exception
9292 %loadlal = load <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009293 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009294
9295.. _int_mstore:
9296
9297'``llvm.masked.store.*``' Intrinsics
9298^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9299
9300Syntax:
9301"""""""
9302This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
9303
9304::
9305
9306 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
9307 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
9308
9309Overview:
9310"""""""""
9311
9312Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
9313
9314Arguments:
9315""""""""""
9316
9317The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
9318
9319
9320Semantics:
9321""""""""""
9322
9323The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
9324The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
9325
9326::
9327
9328 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
9329
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009330 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009331 %oldval = load <16 x float>* %ptr, align 4
9332 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
9333 store <16 x float> %res, <16 x float>* %ptr, align 4
9334
9335
Sean Silvab084af42012-12-07 10:36:55 +00009336Memory Use Markers
9337------------------
9338
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009339This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00009340memory objects and ranges where variables are immutable.
9341
Reid Klecknera534a382013-12-19 02:14:12 +00009342.. _int_lifestart:
9343
Sean Silvab084af42012-12-07 10:36:55 +00009344'``llvm.lifetime.start``' Intrinsic
9345^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9346
9347Syntax:
9348"""""""
9349
9350::
9351
9352 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
9353
9354Overview:
9355"""""""""
9356
9357The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
9358object's lifetime.
9359
9360Arguments:
9361""""""""""
9362
9363The first argument is a constant integer representing the size of the
9364object, or -1 if it is variable sized. The second argument is a pointer
9365to the object.
9366
9367Semantics:
9368""""""""""
9369
9370This intrinsic indicates that before this point in the code, the value
9371of the memory pointed to by ``ptr`` is dead. This means that it is known
9372to never be used and has an undefined value. A load from the pointer
9373that precedes this intrinsic can be replaced with ``'undef'``.
9374
Reid Klecknera534a382013-12-19 02:14:12 +00009375.. _int_lifeend:
9376
Sean Silvab084af42012-12-07 10:36:55 +00009377'``llvm.lifetime.end``' Intrinsic
9378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9379
9380Syntax:
9381"""""""
9382
9383::
9384
9385 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
9386
9387Overview:
9388"""""""""
9389
9390The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
9391object's lifetime.
9392
9393Arguments:
9394""""""""""
9395
9396The first argument is a constant integer representing the size of the
9397object, or -1 if it is variable sized. The second argument is a pointer
9398to the object.
9399
9400Semantics:
9401""""""""""
9402
9403This intrinsic indicates that after this point in the code, the value of
9404the memory pointed to by ``ptr`` is dead. This means that it is known to
9405never be used and has an undefined value. Any stores into the memory
9406object following this intrinsic may be removed as dead.
9407
9408'``llvm.invariant.start``' Intrinsic
9409^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9410
9411Syntax:
9412"""""""
9413
9414::
9415
9416 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9417
9418Overview:
9419"""""""""
9420
9421The '``llvm.invariant.start``' intrinsic specifies that the contents of
9422a memory object will not change.
9423
9424Arguments:
9425""""""""""
9426
9427The first argument is a constant integer representing the size of the
9428object, or -1 if it is variable sized. The second argument is a pointer
9429to the object.
9430
9431Semantics:
9432""""""""""
9433
9434This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9435the return value, the referenced memory location is constant and
9436unchanging.
9437
9438'``llvm.invariant.end``' Intrinsic
9439^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9440
9441Syntax:
9442"""""""
9443
9444::
9445
9446 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9447
9448Overview:
9449"""""""""
9450
9451The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9452memory object are mutable.
9453
9454Arguments:
9455""""""""""
9456
9457The first argument is the matching ``llvm.invariant.start`` intrinsic.
9458The second argument is a constant integer representing the size of the
9459object, or -1 if it is variable sized and the third argument is a
9460pointer to the object.
9461
9462Semantics:
9463""""""""""
9464
9465This intrinsic indicates that the memory is mutable again.
9466
9467General Intrinsics
9468------------------
9469
9470This class of intrinsics is designed to be generic and has no specific
9471purpose.
9472
9473'``llvm.var.annotation``' Intrinsic
9474^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9475
9476Syntax:
9477"""""""
9478
9479::
9480
9481 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9482
9483Overview:
9484"""""""""
9485
9486The '``llvm.var.annotation``' intrinsic.
9487
9488Arguments:
9489""""""""""
9490
9491The first argument is a pointer to a value, the second is a pointer to a
9492global string, the third is a pointer to a global string which is the
9493source file name, and the last argument is the line number.
9494
9495Semantics:
9496""""""""""
9497
9498This intrinsic allows annotation of local variables with arbitrary
9499strings. This can be useful for special purpose optimizations that want
9500to look for these annotations. These have no other defined use; they are
9501ignored by code generation and optimization.
9502
Michael Gottesman88d18832013-03-26 00:34:27 +00009503'``llvm.ptr.annotation.*``' Intrinsic
9504^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9505
9506Syntax:
9507"""""""
9508
9509This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9510pointer to an integer of any width. *NOTE* you must specify an address space for
9511the pointer. The identifier for the default address space is the integer
9512'``0``'.
9513
9514::
9515
9516 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9517 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9518 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9519 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9520 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9521
9522Overview:
9523"""""""""
9524
9525The '``llvm.ptr.annotation``' intrinsic.
9526
9527Arguments:
9528""""""""""
9529
9530The first argument is a pointer to an integer value of arbitrary bitwidth
9531(result of some expression), the second is a pointer to a global string, the
9532third is a pointer to a global string which is the source file name, and the
9533last argument is the line number. It returns the value of the first argument.
9534
9535Semantics:
9536""""""""""
9537
9538This intrinsic allows annotation of a pointer to an integer with arbitrary
9539strings. This can be useful for special purpose optimizations that want to look
9540for these annotations. These have no other defined use; they are ignored by code
9541generation and optimization.
9542
Sean Silvab084af42012-12-07 10:36:55 +00009543'``llvm.annotation.*``' Intrinsic
9544^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9545
9546Syntax:
9547"""""""
9548
9549This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9550any integer bit width.
9551
9552::
9553
9554 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9555 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9556 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9557 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9558 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9559
9560Overview:
9561"""""""""
9562
9563The '``llvm.annotation``' intrinsic.
9564
9565Arguments:
9566""""""""""
9567
9568The first argument is an integer value (result of some expression), the
9569second is a pointer to a global string, the third is a pointer to a
9570global string which is the source file name, and the last argument is
9571the line number. It returns the value of the first argument.
9572
9573Semantics:
9574""""""""""
9575
9576This intrinsic allows annotations to be put on arbitrary expressions
9577with arbitrary strings. This can be useful for special purpose
9578optimizations that want to look for these annotations. These have no
9579other defined use; they are ignored by code generation and optimization.
9580
9581'``llvm.trap``' Intrinsic
9582^^^^^^^^^^^^^^^^^^^^^^^^^
9583
9584Syntax:
9585"""""""
9586
9587::
9588
9589 declare void @llvm.trap() noreturn nounwind
9590
9591Overview:
9592"""""""""
9593
9594The '``llvm.trap``' intrinsic.
9595
9596Arguments:
9597""""""""""
9598
9599None.
9600
9601Semantics:
9602""""""""""
9603
9604This intrinsic is lowered to the target dependent trap instruction. If
9605the target does not have a trap instruction, this intrinsic will be
9606lowered to a call of the ``abort()`` function.
9607
9608'``llvm.debugtrap``' Intrinsic
9609^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9610
9611Syntax:
9612"""""""
9613
9614::
9615
9616 declare void @llvm.debugtrap() nounwind
9617
9618Overview:
9619"""""""""
9620
9621The '``llvm.debugtrap``' intrinsic.
9622
9623Arguments:
9624""""""""""
9625
9626None.
9627
9628Semantics:
9629""""""""""
9630
9631This intrinsic is lowered to code which is intended to cause an
9632execution trap with the intention of requesting the attention of a
9633debugger.
9634
9635'``llvm.stackprotector``' Intrinsic
9636^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9637
9638Syntax:
9639"""""""
9640
9641::
9642
9643 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9644
9645Overview:
9646"""""""""
9647
9648The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9649onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9650is placed on the stack before local variables.
9651
9652Arguments:
9653""""""""""
9654
9655The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9656The first argument is the value loaded from the stack guard
9657``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9658enough space to hold the value of the guard.
9659
9660Semantics:
9661""""""""""
9662
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009663This intrinsic causes the prologue/epilogue inserter to force the position of
9664the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9665to ensure that if a local variable on the stack is overwritten, it will destroy
9666the value of the guard. When the function exits, the guard on the stack is
9667checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9668different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9669calling the ``__stack_chk_fail()`` function.
9670
9671'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009672^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009673
9674Syntax:
9675"""""""
9676
9677::
9678
9679 declare void @llvm.stackprotectorcheck(i8** <guard>)
9680
9681Overview:
9682"""""""""
9683
9684The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009685created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009686``__stack_chk_fail()`` function.
9687
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009688Arguments:
9689""""""""""
9690
9691The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9692the variable ``@__stack_chk_guard``.
9693
9694Semantics:
9695""""""""""
9696
9697This intrinsic is provided to perform the stack protector check by comparing
9698``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9699values do not match call the ``__stack_chk_fail()`` function.
9700
9701The reason to provide this as an IR level intrinsic instead of implementing it
9702via other IR operations is that in order to perform this operation at the IR
9703level without an intrinsic, one would need to create additional basic blocks to
9704handle the success/failure cases. This makes it difficult to stop the stack
9705protector check from disrupting sibling tail calls in Codegen. With this
9706intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009707codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009708
Sean Silvab084af42012-12-07 10:36:55 +00009709'``llvm.objectsize``' Intrinsic
9710^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9711
9712Syntax:
9713"""""""
9714
9715::
9716
9717 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9718 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9719
9720Overview:
9721"""""""""
9722
9723The ``llvm.objectsize`` intrinsic is designed to provide information to
9724the optimizers to determine at compile time whether a) an operation
9725(like memcpy) will overflow a buffer that corresponds to an object, or
9726b) that a runtime check for overflow isn't necessary. An object in this
9727context means an allocation of a specific class, structure, array, or
9728other object.
9729
9730Arguments:
9731""""""""""
9732
9733The ``llvm.objectsize`` intrinsic takes two arguments. The first
9734argument is a pointer to or into the ``object``. The second argument is
9735a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9736or -1 (if false) when the object size is unknown. The second argument
9737only accepts constants.
9738
9739Semantics:
9740""""""""""
9741
9742The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9743the size of the object concerned. If the size cannot be determined at
9744compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9745on the ``min`` argument).
9746
9747'``llvm.expect``' Intrinsic
9748^^^^^^^^^^^^^^^^^^^^^^^^^^^
9749
9750Syntax:
9751"""""""
9752
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009753This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9754integer bit width.
9755
Sean Silvab084af42012-12-07 10:36:55 +00009756::
9757
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009758 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009759 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9760 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9761
9762Overview:
9763"""""""""
9764
9765The ``llvm.expect`` intrinsic provides information about expected (the
9766most probable) value of ``val``, which can be used by optimizers.
9767
9768Arguments:
9769""""""""""
9770
9771The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9772a value. The second argument is an expected value, this needs to be a
9773constant value, variables are not allowed.
9774
9775Semantics:
9776""""""""""
9777
9778This intrinsic is lowered to the ``val``.
9779
Hal Finkel93046912014-07-25 21:13:35 +00009780'``llvm.assume``' Intrinsic
9781^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9782
9783Syntax:
9784"""""""
9785
9786::
9787
9788 declare void @llvm.assume(i1 %cond)
9789
9790Overview:
9791"""""""""
9792
9793The ``llvm.assume`` allows the optimizer to assume that the provided
9794condition is true. This information can then be used in simplifying other parts
9795of the code.
9796
9797Arguments:
9798""""""""""
9799
9800The condition which the optimizer may assume is always true.
9801
9802Semantics:
9803""""""""""
9804
9805The intrinsic allows the optimizer to assume that the provided condition is
9806always true whenever the control flow reaches the intrinsic call. No code is
9807generated for this intrinsic, and instructions that contribute only to the
9808provided condition are not used for code generation. If the condition is
9809violated during execution, the behavior is undefined.
9810
9811Please note that optimizer might limit the transformations performed on values
9812used by the ``llvm.assume`` intrinsic in order to preserve the instructions
9813only used to form the intrinsic's input argument. This might prove undesirable
9814if the extra information provided by the ``llvm.assume`` intrinsic does cause
9815sufficient overall improvement in code quality. For this reason,
9816``llvm.assume`` should not be used to document basic mathematical invariants
9817that the optimizer can otherwise deduce or facts that are of little use to the
9818optimizer.
9819
Sean Silvab084af42012-12-07 10:36:55 +00009820'``llvm.donothing``' Intrinsic
9821^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9822
9823Syntax:
9824"""""""
9825
9826::
9827
9828 declare void @llvm.donothing() nounwind readnone
9829
9830Overview:
9831"""""""""
9832
Juergen Ributzkac9161192014-10-23 22:36:13 +00009833The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
9834two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
9835with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009836
9837Arguments:
9838""""""""""
9839
9840None.
9841
9842Semantics:
9843""""""""""
9844
9845This intrinsic does nothing, and it's removed by optimizers and ignored
9846by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009847
9848Stack Map Intrinsics
9849--------------------
9850
9851LLVM provides experimental intrinsics to support runtime patching
9852mechanisms commonly desired in dynamic language JITs. These intrinsics
9853are described in :doc:`StackMaps`.