blob: b3f97de25b4307e81981bab578055db0b3b5e393 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000165 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
351 arguments into registers but allows them to be dynamcially
352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
356 This calling convention attempts to make the code in the caller as little
357 intrusive as possible. This calling convention behaves identical to the `C`
358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
371 of code that doesn't many registers. The cold path might need to call out to
372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000497.. _namedtypes:
498
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000499Structure Types
500---------------
Sean Silvab084af42012-12-07 10:36:55 +0000501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
503types <t_struct>`. Literal types are uniqued structurally, but identified types
504are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000505to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000506
507An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000508
509.. code-block:: llvm
510
511 %mytype = type { %mytype*, i32 }
512
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000513Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
514literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000515
516.. _globalvars:
517
518Global Variables
519----------------
520
521Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000522instead of run-time.
523
Bob Wilson85b24f22014-06-12 20:40:33 +0000524Global variables definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525
526Global variables in other translation units can also be declared, in which
527case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000528
Bob Wilson85b24f22014-06-12 20:40:33 +0000529Either global variable definitions or declarations may have an explicit section
530to be placed in and may have an optional explicit alignment specified.
531
Michael Gottesman006039c2013-01-31 05:48:48 +0000532A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000536initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000567Additionally, the global can placed in a comdat if the target has the necessary
568support.
Sean Silvab084af42012-12-07 10:36:55 +0000569
Michael Gottesmane743a302013-02-04 03:22:00 +0000570By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000571variables defined within the module are not modified from their
572initial values before the start of the global initializer. This is
573true even for variables potentially accessible from outside the
574module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000575``@llvm.used`` or dllexported variables. This assumption may be suppressed
576by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000577
Sean Silvab084af42012-12-07 10:36:55 +0000578An explicit alignment may be specified for a global, which must be a
579power of 2. If not present, or if the alignment is set to zero, the
580alignment of the global is set by the target to whatever it feels
581convenient. If an explicit alignment is specified, the global is forced
582to have exactly that alignment. Targets and optimizers are not allowed
583to over-align the global if the global has an assigned section. In this
584case, the extra alignment could be observable: for example, code could
585assume that the globals are densely packed in their section and try to
586iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000587iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000588
Nico Rieck7157bb72014-01-14 15:22:47 +0000589Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
590
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000591Variables and aliasaes can have a
592:ref:`Thread Local Storage Model <tls_model>`.
593
Nico Rieck7157bb72014-01-14 15:22:47 +0000594Syntax::
595
596 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000597 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000598 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000599 [, section "name"] [, comdat [($name)]]
600 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000601
Sean Silvab084af42012-12-07 10:36:55 +0000602For example, the following defines a global in a numbered address space
603with an initializer, section, and alignment:
604
605.. code-block:: llvm
606
607 @G = addrspace(5) constant float 1.0, section "foo", align 4
608
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000609The following example just declares a global variable
610
611.. code-block:: llvm
612
613 @G = external global i32
614
Sean Silvab084af42012-12-07 10:36:55 +0000615The following example defines a thread-local global with the
616``initialexec`` TLS model:
617
618.. code-block:: llvm
619
620 @G = thread_local(initialexec) global i32 0, align 4
621
622.. _functionstructure:
623
624Functions
625---------
626
627LLVM function definitions consist of the "``define``" keyword, an
628optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000629style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
630an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000631an optional ``unnamed_addr`` attribute, a return type, an optional
632:ref:`parameter attribute <paramattrs>` for the return type, a function
633name, a (possibly empty) argument list (each with optional :ref:`parameter
634attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000635an optional section, an optional alignment,
636an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000637an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
638an optional :ref:`prologue <prologuedata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000639curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000640
641LLVM function declarations consist of the "``declare``" keyword, an
642optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000643style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
644an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000645an optional ``unnamed_addr`` attribute, a return type, an optional
646:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000647name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000648:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
649and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000650
Bill Wendling6822ecb2013-10-27 05:09:12 +0000651A function definition contains a list of basic blocks, forming the CFG (Control
652Flow Graph) for the function. Each basic block may optionally start with a label
653(giving the basic block a symbol table entry), contains a list of instructions,
654and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
655function return). If an explicit label is not provided, a block is assigned an
656implicit numbered label, using the next value from the same counter as used for
657unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
658entry block does not have an explicit label, it will be assigned label "%0",
659then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000660
661The first basic block in a function is special in two ways: it is
662immediately executed on entrance to the function, and it is not allowed
663to have predecessor basic blocks (i.e. there can not be any branches to
664the entry block of a function). Because the block can have no
665predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
666
667LLVM allows an explicit section to be specified for functions. If the
668target supports it, it will emit functions to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000669Additionally, the function can placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000670
671An explicit alignment may be specified for a function. If not present,
672or if the alignment is set to zero, the alignment of the function is set
673by the target to whatever it feels convenient. If an explicit alignment
674is specified, the function is forced to have at least that much
675alignment. All alignments must be a power of 2.
676
677If the ``unnamed_addr`` attribute is given, the address is know to not
678be significant and two identical functions can be merged.
679
680Syntax::
681
Nico Rieck7157bb72014-01-14 15:22:47 +0000682 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000683 [cconv] [ret attrs]
684 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000686 [align N] [gc] [prefix Constant] [prologue Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000687
Dan Liew2661dfc2014-08-20 15:06:30 +0000688The argument list is a comma seperated sequence of arguments where each
689argument is of the following form
690
691Syntax::
692
693 <type> [parameter Attrs] [name]
694
695
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000696.. _langref_aliases:
697
Sean Silvab084af42012-12-07 10:36:55 +0000698Aliases
699-------
700
Rafael Espindola64c1e182014-06-03 02:41:57 +0000701Aliases, unlike function or variables, don't create any new data. They
702are just a new symbol and metadata for an existing position.
703
704Aliases have a name and an aliasee that is either a global value or a
705constant expression.
706
Nico Rieck7157bb72014-01-14 15:22:47 +0000707Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000708:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
709<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000710
711Syntax::
712
Rafael Espindola464fe022014-07-30 22:51:54 +0000713 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000714
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000715The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000716``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000717might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000718
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000719Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000720the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
721to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000722
Rafael Espindola64c1e182014-06-03 02:41:57 +0000723Since aliases are only a second name, some restrictions apply, of which
724some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000725
Rafael Espindola64c1e182014-06-03 02:41:57 +0000726* The expression defining the aliasee must be computable at assembly
727 time. Since it is just a name, no relocations can be used.
728
729* No alias in the expression can be weak as the possibility of the
730 intermediate alias being overridden cannot be represented in an
731 object file.
732
733* No global value in the expression can be a declaration, since that
734 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000735
David Majnemerdad0a642014-06-27 18:19:56 +0000736.. _langref_comdats:
737
738Comdats
739-------
740
741Comdat IR provides access to COFF and ELF object file COMDAT functionality.
742
Richard Smith32dbdf62014-07-31 04:25:36 +0000743Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000744specify this key will only end up in the final object file if the linker chooses
745that key over some other key. Aliases are placed in the same COMDAT that their
746aliasee computes to, if any.
747
748Comdats have a selection kind to provide input on how the linker should
749choose between keys in two different object files.
750
751Syntax::
752
753 $<Name> = comdat SelectionKind
754
755The selection kind must be one of the following:
756
757``any``
758 The linker may choose any COMDAT key, the choice is arbitrary.
759``exactmatch``
760 The linker may choose any COMDAT key but the sections must contain the
761 same data.
762``largest``
763 The linker will choose the section containing the largest COMDAT key.
764``noduplicates``
765 The linker requires that only section with this COMDAT key exist.
766``samesize``
767 The linker may choose any COMDAT key but the sections must contain the
768 same amount of data.
769
770Note that the Mach-O platform doesn't support COMDATs and ELF only supports
771``any`` as a selection kind.
772
773Here is an example of a COMDAT group where a function will only be selected if
774the COMDAT key's section is the largest:
775
776.. code-block:: llvm
777
778 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000779 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000780
Rafael Espindola83a362c2015-01-06 22:55:16 +0000781 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000782 ret void
783 }
784
Rafael Espindola83a362c2015-01-06 22:55:16 +0000785As a syntactic sugar the ``$name`` can be omitted if the name is the same as
786the global name:
787
788.. code-block:: llvm
789
790 $foo = comdat any
791 @foo = global i32 2, comdat
792
793
David Majnemerdad0a642014-06-27 18:19:56 +0000794In a COFF object file, this will create a COMDAT section with selection kind
795``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
796and another COMDAT section with selection kind
797``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000798section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000799
800There are some restrictions on the properties of the global object.
801It, or an alias to it, must have the same name as the COMDAT group when
802targeting COFF.
803The contents and size of this object may be used during link-time to determine
804which COMDAT groups get selected depending on the selection kind.
805Because the name of the object must match the name of the COMDAT group, the
806linkage of the global object must not be local; local symbols can get renamed
807if a collision occurs in the symbol table.
808
809The combined use of COMDATS and section attributes may yield surprising results.
810For example:
811
812.. code-block:: llvm
813
814 $foo = comdat any
815 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000816 @g1 = global i32 42, section "sec", comdat($foo)
817 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000818
819From the object file perspective, this requires the creation of two sections
820with the same name. This is necessary because both globals belong to different
821COMDAT groups and COMDATs, at the object file level, are represented by
822sections.
823
824Note that certain IR constructs like global variables and functions may create
825COMDATs in the object file in addition to any which are specified using COMDAT
826IR. This arises, for example, when a global variable has linkonce_odr linkage.
827
Sean Silvab084af42012-12-07 10:36:55 +0000828.. _namedmetadatastructure:
829
830Named Metadata
831--------------
832
833Named metadata is a collection of metadata. :ref:`Metadata
834nodes <metadata>` (but not metadata strings) are the only valid
835operands for a named metadata.
836
837Syntax::
838
839 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000840 !0 = !{!"zero"}
841 !1 = !{!"one"}
842 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000843 ; A named metadata.
844 !name = !{!0, !1, !2}
845
846.. _paramattrs:
847
848Parameter Attributes
849--------------------
850
851The return type and each parameter of a function type may have a set of
852*parameter attributes* associated with them. Parameter attributes are
853used to communicate additional information about the result or
854parameters of a function. Parameter attributes are considered to be part
855of the function, not of the function type, so functions with different
856parameter attributes can have the same function type.
857
858Parameter attributes are simple keywords that follow the type specified.
859If multiple parameter attributes are needed, they are space separated.
860For example:
861
862.. code-block:: llvm
863
864 declare i32 @printf(i8* noalias nocapture, ...)
865 declare i32 @atoi(i8 zeroext)
866 declare signext i8 @returns_signed_char()
867
868Note that any attributes for the function result (``nounwind``,
869``readonly``) come immediately after the argument list.
870
871Currently, only the following parameter attributes are defined:
872
873``zeroext``
874 This indicates to the code generator that the parameter or return
875 value should be zero-extended to the extent required by the target's
876 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
877 the caller (for a parameter) or the callee (for a return value).
878``signext``
879 This indicates to the code generator that the parameter or return
880 value should be sign-extended to the extent required by the target's
881 ABI (which is usually 32-bits) by the caller (for a parameter) or
882 the callee (for a return value).
883``inreg``
884 This indicates that this parameter or return value should be treated
885 in a special target-dependent fashion during while emitting code for
886 a function call or return (usually, by putting it in a register as
887 opposed to memory, though some targets use it to distinguish between
888 two different kinds of registers). Use of this attribute is
889 target-specific.
890``byval``
891 This indicates that the pointer parameter should really be passed by
892 value to the function. The attribute implies that a hidden copy of
893 the pointee is made between the caller and the callee, so the callee
894 is unable to modify the value in the caller. This attribute is only
895 valid on LLVM pointer arguments. It is generally used to pass
896 structs and arrays by value, but is also valid on pointers to
897 scalars. The copy is considered to belong to the caller not the
898 callee (for example, ``readonly`` functions should not write to
899 ``byval`` parameters). This is not a valid attribute for return
900 values.
901
902 The byval attribute also supports specifying an alignment with the
903 align attribute. It indicates the alignment of the stack slot to
904 form and the known alignment of the pointer specified to the call
905 site. If the alignment is not specified, then the code generator
906 makes a target-specific assumption.
907
Reid Klecknera534a382013-12-19 02:14:12 +0000908.. _attr_inalloca:
909
910``inalloca``
911
Reid Kleckner60d3a832014-01-16 22:59:24 +0000912 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000913 address of outgoing stack arguments. An ``inalloca`` argument must
914 be a pointer to stack memory produced by an ``alloca`` instruction.
915 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000916 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000917 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000918
Reid Kleckner436c42e2014-01-17 23:58:17 +0000919 An argument allocation may be used by a call at most once because
920 the call may deallocate it. The ``inalloca`` attribute cannot be
921 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000922 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
923 ``inalloca`` attribute also disables LLVM's implicit lowering of
924 large aggregate return values, which means that frontend authors
925 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000926
Reid Kleckner60d3a832014-01-16 22:59:24 +0000927 When the call site is reached, the argument allocation must have
928 been the most recent stack allocation that is still live, or the
929 results are undefined. It is possible to allocate additional stack
930 space after an argument allocation and before its call site, but it
931 must be cleared off with :ref:`llvm.stackrestore
932 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000933
934 See :doc:`InAlloca` for more information on how to use this
935 attribute.
936
Sean Silvab084af42012-12-07 10:36:55 +0000937``sret``
938 This indicates that the pointer parameter specifies the address of a
939 structure that is the return value of the function in the source
940 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000941 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000942 not to trap and to be properly aligned. This may only be applied to
943 the first parameter. This is not a valid attribute for return
944 values.
Sean Silva1703e702014-04-08 21:06:22 +0000945
Hal Finkelccc70902014-07-22 16:58:55 +0000946``align <n>``
947 This indicates that the pointer value may be assumed by the optimizer to
948 have the specified alignment.
949
950 Note that this attribute has additional semantics when combined with the
951 ``byval`` attribute.
952
Sean Silva1703e702014-04-08 21:06:22 +0000953.. _noalias:
954
Sean Silvab084af42012-12-07 10:36:55 +0000955``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000956 This indicates that objects accessed via pointer values
957 :ref:`based <pointeraliasing>` on the argument or return value are not also
958 accessed, during the execution of the function, via pointer values not
959 *based* on the argument or return value. The attribute on a return value
960 also has additional semantics described below. The caller shares the
961 responsibility with the callee for ensuring that these requirements are met.
962 For further details, please see the discussion of the NoAlias response in
963 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000964
965 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000966 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000967
968 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000969 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
970 attribute on return values are stronger than the semantics of the attribute
971 when used on function arguments. On function return values, the ``noalias``
972 attribute indicates that the function acts like a system memory allocation
973 function, returning a pointer to allocated storage disjoint from the
974 storage for any other object accessible to the caller.
975
Sean Silvab084af42012-12-07 10:36:55 +0000976``nocapture``
977 This indicates that the callee does not make any copies of the
978 pointer that outlive the callee itself. This is not a valid
979 attribute for return values.
980
981.. _nest:
982
983``nest``
984 This indicates that the pointer parameter can be excised using the
985 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000986 attribute for return values and can only be applied to one parameter.
987
988``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000989 This indicates that the function always returns the argument as its return
990 value. This is an optimization hint to the code generator when generating
991 the caller, allowing tail call optimization and omission of register saves
992 and restores in some cases; it is not checked or enforced when generating
993 the callee. The parameter and the function return type must be valid
994 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
995 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000996
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000997``nonnull``
998 This indicates that the parameter or return pointer is not null. This
999 attribute may only be applied to pointer typed parameters. This is not
1000 checked or enforced by LLVM, the caller must ensure that the pointer
1001 passed in is non-null, or the callee must ensure that the returned pointer
1002 is non-null.
1003
Hal Finkelb0407ba2014-07-18 15:51:28 +00001004``dereferenceable(<n>)``
1005 This indicates that the parameter or return pointer is dereferenceable. This
1006 attribute may only be applied to pointer typed parameters. A pointer that
1007 is dereferenceable can be loaded from speculatively without a risk of
1008 trapping. The number of bytes known to be dereferenceable must be provided
1009 in parentheses. It is legal for the number of bytes to be less than the
1010 size of the pointee type. The ``nonnull`` attribute does not imply
1011 dereferenceability (consider a pointer to one element past the end of an
1012 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1013 ``addrspace(0)`` (which is the default address space).
1014
Sean Silvab084af42012-12-07 10:36:55 +00001015.. _gc:
1016
1017Garbage Collector Names
1018-----------------------
1019
1020Each function may specify a garbage collector name, which is simply a
1021string:
1022
1023.. code-block:: llvm
1024
1025 define void @f() gc "name" { ... }
1026
1027The compiler declares the supported values of *name*. Specifying a
Richard Smith32dbdf62014-07-31 04:25:36 +00001028collector will cause the compiler to alter its output in order to
Sean Silvab084af42012-12-07 10:36:55 +00001029support the named garbage collection algorithm.
1030
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001031.. _prefixdata:
1032
1033Prefix Data
1034-----------
1035
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001036Prefix data is data associated with a function which the code
1037generator will emit immediately before the function's entrypoint.
1038The purpose of this feature is to allow frontends to associate
1039language-specific runtime metadata with specific functions and make it
1040available through the function pointer while still allowing the
1041function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001042
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001043To access the data for a given function, a program may bitcast the
1044function pointer to a pointer to the constant's type and dereference
1045index -1. This implies that the IR symbol points just past the end of
1046the prefix data. For instance, take the example of a function annotated
1047with a single ``i32``,
1048
1049.. code-block:: llvm
1050
1051 define void @f() prefix i32 123 { ... }
1052
1053The prefix data can be referenced as,
1054
1055.. code-block:: llvm
1056
1057 %0 = bitcast *void () @f to *i32
1058 %a = getelementptr inbounds *i32 %0, i32 -1
1059 %b = load i32* %a
1060
1061Prefix data is laid out as if it were an initializer for a global variable
1062of the prefix data's type. The function will be placed such that the
1063beginning of the prefix data is aligned. This means that if the size
1064of the prefix data is not a multiple of the alignment size, the
1065function's entrypoint will not be aligned. If alignment of the
1066function's entrypoint is desired, padding must be added to the prefix
1067data.
1068
1069A function may have prefix data but no body. This has similar semantics
1070to the ``available_externally`` linkage in that the data may be used by the
1071optimizers but will not be emitted in the object file.
1072
1073.. _prologuedata:
1074
1075Prologue Data
1076-------------
1077
1078The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1079be inserted prior to the function body. This can be used for enabling
1080function hot-patching and instrumentation.
1081
1082To maintain the semantics of ordinary function calls, the prologue data must
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001083have a particular format. Specifically, it must begin with a sequence of
1084bytes which decode to a sequence of machine instructions, valid for the
1085module's target, which transfer control to the point immediately succeeding
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001086the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001087the inliner and other passes to reason about the semantics of the function
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001088definition without needing to reason about the prologue data. Obviously this
1089makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001090
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001091A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001092which encodes the ``nop`` instruction:
1093
1094.. code-block:: llvm
1095
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001096 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001097
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001098Generally prologue data can be formed by encoding a relative branch instruction
1099which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001100x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1101
1102.. code-block:: llvm
1103
1104 %0 = type <{ i8, i8, i8* }>
1105
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001106 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001107
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001108A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001109to the ``available_externally`` linkage in that the data may be used by the
1110optimizers but will not be emitted in the object file.
1111
Bill Wendling63b88192013-02-06 06:52:58 +00001112.. _attrgrp:
1113
1114Attribute Groups
1115----------------
1116
1117Attribute groups are groups of attributes that are referenced by objects within
1118the IR. They are important for keeping ``.ll`` files readable, because a lot of
1119functions will use the same set of attributes. In the degenerative case of a
1120``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1121group will capture the important command line flags used to build that file.
1122
1123An attribute group is a module-level object. To use an attribute group, an
1124object references the attribute group's ID (e.g. ``#37``). An object may refer
1125to more than one attribute group. In that situation, the attributes from the
1126different groups are merged.
1127
1128Here is an example of attribute groups for a function that should always be
1129inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1130
1131.. code-block:: llvm
1132
1133 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001134 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001135
1136 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001137 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001138
1139 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1140 define void @f() #0 #1 { ... }
1141
Sean Silvab084af42012-12-07 10:36:55 +00001142.. _fnattrs:
1143
1144Function Attributes
1145-------------------
1146
1147Function attributes are set to communicate additional information about
1148a function. Function attributes are considered to be part of the
1149function, not of the function type, so functions with different function
1150attributes can have the same function type.
1151
1152Function attributes are simple keywords that follow the type specified.
1153If multiple attributes are needed, they are space separated. For
1154example:
1155
1156.. code-block:: llvm
1157
1158 define void @f() noinline { ... }
1159 define void @f() alwaysinline { ... }
1160 define void @f() alwaysinline optsize { ... }
1161 define void @f() optsize { ... }
1162
Sean Silvab084af42012-12-07 10:36:55 +00001163``alignstack(<n>)``
1164 This attribute indicates that, when emitting the prologue and
1165 epilogue, the backend should forcibly align the stack pointer.
1166 Specify the desired alignment, which must be a power of two, in
1167 parentheses.
1168``alwaysinline``
1169 This attribute indicates that the inliner should attempt to inline
1170 this function into callers whenever possible, ignoring any active
1171 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001172``builtin``
1173 This indicates that the callee function at a call site should be
1174 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001175 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001176 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001177 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001178``cold``
1179 This attribute indicates that this function is rarely called. When
1180 computing edge weights, basic blocks post-dominated by a cold
1181 function call are also considered to be cold; and, thus, given low
1182 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001183``inlinehint``
1184 This attribute indicates that the source code contained a hint that
1185 inlining this function is desirable (such as the "inline" keyword in
1186 C/C++). It is just a hint; it imposes no requirements on the
1187 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001188``jumptable``
1189 This attribute indicates that the function should be added to a
1190 jump-instruction table at code-generation time, and that all address-taken
1191 references to this function should be replaced with a reference to the
1192 appropriate jump-instruction-table function pointer. Note that this creates
1193 a new pointer for the original function, which means that code that depends
1194 on function-pointer identity can break. So, any function annotated with
1195 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001196``minsize``
1197 This attribute suggests that optimization passes and code generator
1198 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001199 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001200 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001201``naked``
1202 This attribute disables prologue / epilogue emission for the
1203 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001204``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001205 This indicates that the callee function at a call site is not recognized as
1206 a built-in function. LLVM will retain the original call and not replace it
1207 with equivalent code based on the semantics of the built-in function, unless
1208 the call site uses the ``builtin`` attribute. This is valid at call sites
1209 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001210``noduplicate``
1211 This attribute indicates that calls to the function cannot be
1212 duplicated. A call to a ``noduplicate`` function may be moved
1213 within its parent function, but may not be duplicated within
1214 its parent function.
1215
1216 A function containing a ``noduplicate`` call may still
1217 be an inlining candidate, provided that the call is not
1218 duplicated by inlining. That implies that the function has
1219 internal linkage and only has one call site, so the original
1220 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001221``noimplicitfloat``
1222 This attributes disables implicit floating point instructions.
1223``noinline``
1224 This attribute indicates that the inliner should never inline this
1225 function in any situation. This attribute may not be used together
1226 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001227``nonlazybind``
1228 This attribute suppresses lazy symbol binding for the function. This
1229 may make calls to the function faster, at the cost of extra program
1230 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001231``noredzone``
1232 This attribute indicates that the code generator should not use a
1233 red zone, even if the target-specific ABI normally permits it.
1234``noreturn``
1235 This function attribute indicates that the function never returns
1236 normally. This produces undefined behavior at runtime if the
1237 function ever does dynamically return.
1238``nounwind``
1239 This function attribute indicates that the function never returns
1240 with an unwind or exceptional control flow. If the function does
1241 unwind, its runtime behavior is undefined.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001242``optnone``
1243 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001244 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001245 exception of interprocedural optimization passes.
1246 This attribute cannot be used together with the ``alwaysinline``
1247 attribute; this attribute is also incompatible
1248 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001249
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001250 This attribute requires the ``noinline`` attribute to be specified on
1251 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001252 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001253 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001254``optsize``
1255 This attribute suggests that optimization passes and code generator
1256 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001257 and otherwise do optimizations specifically to reduce code size as
1258 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001259``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001260 On a function, this attribute indicates that the function computes its
1261 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001262 without dereferencing any pointer arguments or otherwise accessing
1263 any mutable state (e.g. memory, control registers, etc) visible to
1264 caller functions. It does not write through any pointer arguments
1265 (including ``byval`` arguments) and never changes any state visible
1266 to callers. This means that it cannot unwind exceptions by calling
1267 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001268
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001269 On an argument, this attribute indicates that the function does not
1270 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001271 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001272``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001273 On a function, this attribute indicates that the function does not write
1274 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001275 modify any state (e.g. memory, control registers, etc) visible to
1276 caller functions. It may dereference pointer arguments and read
1277 state that may be set in the caller. A readonly function always
1278 returns the same value (or unwinds an exception identically) when
1279 called with the same set of arguments and global state. It cannot
1280 unwind an exception by calling the ``C++`` exception throwing
1281 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001282
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001283 On an argument, this attribute indicates that the function does not write
1284 through this pointer argument, even though it may write to the memory that
1285 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001286``returns_twice``
1287 This attribute indicates that this function can return twice. The C
1288 ``setjmp`` is an example of such a function. The compiler disables
1289 some optimizations (like tail calls) in the caller of these
1290 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001291``sanitize_address``
1292 This attribute indicates that AddressSanitizer checks
1293 (dynamic address safety analysis) are enabled for this function.
1294``sanitize_memory``
1295 This attribute indicates that MemorySanitizer checks (dynamic detection
1296 of accesses to uninitialized memory) are enabled for this function.
1297``sanitize_thread``
1298 This attribute indicates that ThreadSanitizer checks
1299 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001300``ssp``
1301 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001302 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001303 placed on the stack before the local variables that's checked upon
1304 return from the function to see if it has been overwritten. A
1305 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001306 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001307
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001308 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1309 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1310 - Calls to alloca() with variable sizes or constant sizes greater than
1311 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001312
Josh Magee24c7f062014-02-01 01:36:16 +00001313 Variables that are identified as requiring a protector will be arranged
1314 on the stack such that they are adjacent to the stack protector guard.
1315
Sean Silvab084af42012-12-07 10:36:55 +00001316 If a function that has an ``ssp`` attribute is inlined into a
1317 function that doesn't have an ``ssp`` attribute, then the resulting
1318 function will have an ``ssp`` attribute.
1319``sspreq``
1320 This attribute indicates that the function should *always* emit a
1321 stack smashing protector. This overrides the ``ssp`` function
1322 attribute.
1323
Josh Magee24c7f062014-02-01 01:36:16 +00001324 Variables that are identified as requiring a protector will be arranged
1325 on the stack such that they are adjacent to the stack protector guard.
1326 The specific layout rules are:
1327
1328 #. Large arrays and structures containing large arrays
1329 (``>= ssp-buffer-size``) are closest to the stack protector.
1330 #. Small arrays and structures containing small arrays
1331 (``< ssp-buffer-size``) are 2nd closest to the protector.
1332 #. Variables that have had their address taken are 3rd closest to the
1333 protector.
1334
Sean Silvab084af42012-12-07 10:36:55 +00001335 If a function that has an ``sspreq`` attribute is inlined into a
1336 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001337 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1338 an ``sspreq`` attribute.
1339``sspstrong``
1340 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001341 protector. This attribute causes a strong heuristic to be used when
1342 determining if a function needs stack protectors. The strong heuristic
1343 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001344
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001345 - Arrays of any size and type
1346 - Aggregates containing an array of any size and type.
1347 - Calls to alloca().
1348 - Local variables that have had their address taken.
1349
Josh Magee24c7f062014-02-01 01:36:16 +00001350 Variables that are identified as requiring a protector will be arranged
1351 on the stack such that they are adjacent to the stack protector guard.
1352 The specific layout rules are:
1353
1354 #. Large arrays and structures containing large arrays
1355 (``>= ssp-buffer-size``) are closest to the stack protector.
1356 #. Small arrays and structures containing small arrays
1357 (``< ssp-buffer-size``) are 2nd closest to the protector.
1358 #. Variables that have had their address taken are 3rd closest to the
1359 protector.
1360
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001361 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001362
1363 If a function that has an ``sspstrong`` attribute is inlined into a
1364 function that doesn't have an ``sspstrong`` attribute, then the
1365 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001366``uwtable``
1367 This attribute indicates that the ABI being targeted requires that
1368 an unwind table entry be produce for this function even if we can
1369 show that no exceptions passes by it. This is normally the case for
1370 the ELF x86-64 abi, but it can be disabled for some compilation
1371 units.
Sean Silvab084af42012-12-07 10:36:55 +00001372
1373.. _moduleasm:
1374
1375Module-Level Inline Assembly
1376----------------------------
1377
1378Modules may contain "module-level inline asm" blocks, which corresponds
1379to the GCC "file scope inline asm" blocks. These blocks are internally
1380concatenated by LLVM and treated as a single unit, but may be separated
1381in the ``.ll`` file if desired. The syntax is very simple:
1382
1383.. code-block:: llvm
1384
1385 module asm "inline asm code goes here"
1386 module asm "more can go here"
1387
1388The strings can contain any character by escaping non-printable
1389characters. The escape sequence used is simply "\\xx" where "xx" is the
1390two digit hex code for the number.
1391
1392The inline asm code is simply printed to the machine code .s file when
1393assembly code is generated.
1394
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001395.. _langref_datalayout:
1396
Sean Silvab084af42012-12-07 10:36:55 +00001397Data Layout
1398-----------
1399
1400A module may specify a target specific data layout string that specifies
1401how data is to be laid out in memory. The syntax for the data layout is
1402simply:
1403
1404.. code-block:: llvm
1405
1406 target datalayout = "layout specification"
1407
1408The *layout specification* consists of a list of specifications
1409separated by the minus sign character ('-'). Each specification starts
1410with a letter and may include other information after the letter to
1411define some aspect of the data layout. The specifications accepted are
1412as follows:
1413
1414``E``
1415 Specifies that the target lays out data in big-endian form. That is,
1416 the bits with the most significance have the lowest address
1417 location.
1418``e``
1419 Specifies that the target lays out data in little-endian form. That
1420 is, the bits with the least significance have the lowest address
1421 location.
1422``S<size>``
1423 Specifies the natural alignment of the stack in bits. Alignment
1424 promotion of stack variables is limited to the natural stack
1425 alignment to avoid dynamic stack realignment. The stack alignment
1426 must be a multiple of 8-bits. If omitted, the natural stack
1427 alignment defaults to "unspecified", which does not prevent any
1428 alignment promotions.
1429``p[n]:<size>:<abi>:<pref>``
1430 This specifies the *size* of a pointer and its ``<abi>`` and
1431 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001432 bits. The address space, ``n`` is optional, and if not specified,
1433 denotes the default address space 0. The value of ``n`` must be
1434 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001435``i<size>:<abi>:<pref>``
1436 This specifies the alignment for an integer type of a given bit
1437 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1438``v<size>:<abi>:<pref>``
1439 This specifies the alignment for a vector type of a given bit
1440 ``<size>``.
1441``f<size>:<abi>:<pref>``
1442 This specifies the alignment for a floating point type of a given bit
1443 ``<size>``. Only values of ``<size>`` that are supported by the target
1444 will work. 32 (float) and 64 (double) are supported on all targets; 80
1445 or 128 (different flavors of long double) are also supported on some
1446 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001447``a:<abi>:<pref>``
1448 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001449``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001450 If present, specifies that llvm names are mangled in the output. The
1451 options are
1452
1453 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1454 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1455 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1456 symbols get a ``_`` prefix.
1457 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1458 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001459``n<size1>:<size2>:<size3>...``
1460 This specifies a set of native integer widths for the target CPU in
1461 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1462 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1463 this set are considered to support most general arithmetic operations
1464 efficiently.
1465
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001466On every specification that takes a ``<abi>:<pref>``, specifying the
1467``<pref>`` alignment is optional. If omitted, the preceding ``:``
1468should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1469
Sean Silvab084af42012-12-07 10:36:55 +00001470When constructing the data layout for a given target, LLVM starts with a
1471default set of specifications which are then (possibly) overridden by
1472the specifications in the ``datalayout`` keyword. The default
1473specifications are given in this list:
1474
1475- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001476- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1477- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1478 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001479- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001480- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1481- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1482- ``i16:16:16`` - i16 is 16-bit aligned
1483- ``i32:32:32`` - i32 is 32-bit aligned
1484- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1485 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001486- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001487- ``f32:32:32`` - float is 32-bit aligned
1488- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001489- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001490- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1491- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001492- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001493
1494When LLVM is determining the alignment for a given type, it uses the
1495following rules:
1496
1497#. If the type sought is an exact match for one of the specifications,
1498 that specification is used.
1499#. If no match is found, and the type sought is an integer type, then
1500 the smallest integer type that is larger than the bitwidth of the
1501 sought type is used. If none of the specifications are larger than
1502 the bitwidth then the largest integer type is used. For example,
1503 given the default specifications above, the i7 type will use the
1504 alignment of i8 (next largest) while both i65 and i256 will use the
1505 alignment of i64 (largest specified).
1506#. If no match is found, and the type sought is a vector type, then the
1507 largest vector type that is smaller than the sought vector type will
1508 be used as a fall back. This happens because <128 x double> can be
1509 implemented in terms of 64 <2 x double>, for example.
1510
1511The function of the data layout string may not be what you expect.
1512Notably, this is not a specification from the frontend of what alignment
1513the code generator should use.
1514
1515Instead, if specified, the target data layout is required to match what
1516the ultimate *code generator* expects. This string is used by the
1517mid-level optimizers to improve code, and this only works if it matches
1518what the ultimate code generator uses. If you would like to generate IR
1519that does not embed this target-specific detail into the IR, then you
1520don't have to specify the string. This will disable some optimizations
1521that require precise layout information, but this also prevents those
1522optimizations from introducing target specificity into the IR.
1523
Bill Wendling5cc90842013-10-18 23:41:25 +00001524.. _langref_triple:
1525
1526Target Triple
1527-------------
1528
1529A module may specify a target triple string that describes the target
1530host. The syntax for the target triple is simply:
1531
1532.. code-block:: llvm
1533
1534 target triple = "x86_64-apple-macosx10.7.0"
1535
1536The *target triple* string consists of a series of identifiers delimited
1537by the minus sign character ('-'). The canonical forms are:
1538
1539::
1540
1541 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1542 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1543
1544This information is passed along to the backend so that it generates
1545code for the proper architecture. It's possible to override this on the
1546command line with the ``-mtriple`` command line option.
1547
Sean Silvab084af42012-12-07 10:36:55 +00001548.. _pointeraliasing:
1549
1550Pointer Aliasing Rules
1551----------------------
1552
1553Any memory access must be done through a pointer value associated with
1554an address range of the memory access, otherwise the behavior is
1555undefined. Pointer values are associated with address ranges according
1556to the following rules:
1557
1558- A pointer value is associated with the addresses associated with any
1559 value it is *based* on.
1560- An address of a global variable is associated with the address range
1561 of the variable's storage.
1562- The result value of an allocation instruction is associated with the
1563 address range of the allocated storage.
1564- A null pointer in the default address-space is associated with no
1565 address.
1566- An integer constant other than zero or a pointer value returned from
1567 a function not defined within LLVM may be associated with address
1568 ranges allocated through mechanisms other than those provided by
1569 LLVM. Such ranges shall not overlap with any ranges of addresses
1570 allocated by mechanisms provided by LLVM.
1571
1572A pointer value is *based* on another pointer value according to the
1573following rules:
1574
1575- A pointer value formed from a ``getelementptr`` operation is *based*
1576 on the first operand of the ``getelementptr``.
1577- The result value of a ``bitcast`` is *based* on the operand of the
1578 ``bitcast``.
1579- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1580 values that contribute (directly or indirectly) to the computation of
1581 the pointer's value.
1582- The "*based* on" relationship is transitive.
1583
1584Note that this definition of *"based"* is intentionally similar to the
1585definition of *"based"* in C99, though it is slightly weaker.
1586
1587LLVM IR does not associate types with memory. The result type of a
1588``load`` merely indicates the size and alignment of the memory from
1589which to load, as well as the interpretation of the value. The first
1590operand type of a ``store`` similarly only indicates the size and
1591alignment of the store.
1592
1593Consequently, type-based alias analysis, aka TBAA, aka
1594``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1595:ref:`Metadata <metadata>` may be used to encode additional information
1596which specialized optimization passes may use to implement type-based
1597alias analysis.
1598
1599.. _volatile:
1600
1601Volatile Memory Accesses
1602------------------------
1603
1604Certain memory accesses, such as :ref:`load <i_load>`'s,
1605:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1606marked ``volatile``. The optimizers must not change the number of
1607volatile operations or change their order of execution relative to other
1608volatile operations. The optimizers *may* change the order of volatile
1609operations relative to non-volatile operations. This is not Java's
1610"volatile" and has no cross-thread synchronization behavior.
1611
Andrew Trick89fc5a62013-01-30 21:19:35 +00001612IR-level volatile loads and stores cannot safely be optimized into
1613llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1614flagged volatile. Likewise, the backend should never split or merge
1615target-legal volatile load/store instructions.
1616
Andrew Trick7e6f9282013-01-31 00:49:39 +00001617.. admonition:: Rationale
1618
1619 Platforms may rely on volatile loads and stores of natively supported
1620 data width to be executed as single instruction. For example, in C
1621 this holds for an l-value of volatile primitive type with native
1622 hardware support, but not necessarily for aggregate types. The
1623 frontend upholds these expectations, which are intentionally
1624 unspecified in the IR. The rules above ensure that IR transformation
1625 do not violate the frontend's contract with the language.
1626
Sean Silvab084af42012-12-07 10:36:55 +00001627.. _memmodel:
1628
1629Memory Model for Concurrent Operations
1630--------------------------------------
1631
1632The LLVM IR does not define any way to start parallel threads of
1633execution or to register signal handlers. Nonetheless, there are
1634platform-specific ways to create them, and we define LLVM IR's behavior
1635in their presence. This model is inspired by the C++0x memory model.
1636
1637For a more informal introduction to this model, see the :doc:`Atomics`.
1638
1639We define a *happens-before* partial order as the least partial order
1640that
1641
1642- Is a superset of single-thread program order, and
1643- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1644 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1645 techniques, like pthread locks, thread creation, thread joining,
1646 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1647 Constraints <ordering>`).
1648
1649Note that program order does not introduce *happens-before* edges
1650between a thread and signals executing inside that thread.
1651
1652Every (defined) read operation (load instructions, memcpy, atomic
1653loads/read-modify-writes, etc.) R reads a series of bytes written by
1654(defined) write operations (store instructions, atomic
1655stores/read-modify-writes, memcpy, etc.). For the purposes of this
1656section, initialized globals are considered to have a write of the
1657initializer which is atomic and happens before any other read or write
1658of the memory in question. For each byte of a read R, R\ :sub:`byte`
1659may see any write to the same byte, except:
1660
1661- If write\ :sub:`1` happens before write\ :sub:`2`, and
1662 write\ :sub:`2` happens before R\ :sub:`byte`, then
1663 R\ :sub:`byte` does not see write\ :sub:`1`.
1664- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1665 R\ :sub:`byte` does not see write\ :sub:`3`.
1666
1667Given that definition, R\ :sub:`byte` is defined as follows:
1668
1669- If R is volatile, the result is target-dependent. (Volatile is
1670 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001671 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001672 like normal memory. It does not generally provide cross-thread
1673 synchronization.)
1674- Otherwise, if there is no write to the same byte that happens before
1675 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1676- Otherwise, if R\ :sub:`byte` may see exactly one write,
1677 R\ :sub:`byte` returns the value written by that write.
1678- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1679 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1680 Memory Ordering Constraints <ordering>` section for additional
1681 constraints on how the choice is made.
1682- Otherwise R\ :sub:`byte` returns ``undef``.
1683
1684R returns the value composed of the series of bytes it read. This
1685implies that some bytes within the value may be ``undef`` **without**
1686the entire value being ``undef``. Note that this only defines the
1687semantics of the operation; it doesn't mean that targets will emit more
1688than one instruction to read the series of bytes.
1689
1690Note that in cases where none of the atomic intrinsics are used, this
1691model places only one restriction on IR transformations on top of what
1692is required for single-threaded execution: introducing a store to a byte
1693which might not otherwise be stored is not allowed in general.
1694(Specifically, in the case where another thread might write to and read
1695from an address, introducing a store can change a load that may see
1696exactly one write into a load that may see multiple writes.)
1697
1698.. _ordering:
1699
1700Atomic Memory Ordering Constraints
1701----------------------------------
1702
1703Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1704:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1705:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001706ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001707the same address they *synchronize with*. These semantics are borrowed
1708from Java and C++0x, but are somewhat more colloquial. If these
1709descriptions aren't precise enough, check those specs (see spec
1710references in the :doc:`atomics guide <Atomics>`).
1711:ref:`fence <i_fence>` instructions treat these orderings somewhat
1712differently since they don't take an address. See that instruction's
1713documentation for details.
1714
1715For a simpler introduction to the ordering constraints, see the
1716:doc:`Atomics`.
1717
1718``unordered``
1719 The set of values that can be read is governed by the happens-before
1720 partial order. A value cannot be read unless some operation wrote
1721 it. This is intended to provide a guarantee strong enough to model
1722 Java's non-volatile shared variables. This ordering cannot be
1723 specified for read-modify-write operations; it is not strong enough
1724 to make them atomic in any interesting way.
1725``monotonic``
1726 In addition to the guarantees of ``unordered``, there is a single
1727 total order for modifications by ``monotonic`` operations on each
1728 address. All modification orders must be compatible with the
1729 happens-before order. There is no guarantee that the modification
1730 orders can be combined to a global total order for the whole program
1731 (and this often will not be possible). The read in an atomic
1732 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1733 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1734 order immediately before the value it writes. If one atomic read
1735 happens before another atomic read of the same address, the later
1736 read must see the same value or a later value in the address's
1737 modification order. This disallows reordering of ``monotonic`` (or
1738 stronger) operations on the same address. If an address is written
1739 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1740 read that address repeatedly, the other threads must eventually see
1741 the write. This corresponds to the C++0x/C1x
1742 ``memory_order_relaxed``.
1743``acquire``
1744 In addition to the guarantees of ``monotonic``, a
1745 *synchronizes-with* edge may be formed with a ``release`` operation.
1746 This is intended to model C++'s ``memory_order_acquire``.
1747``release``
1748 In addition to the guarantees of ``monotonic``, if this operation
1749 writes a value which is subsequently read by an ``acquire``
1750 operation, it *synchronizes-with* that operation. (This isn't a
1751 complete description; see the C++0x definition of a release
1752 sequence.) This corresponds to the C++0x/C1x
1753 ``memory_order_release``.
1754``acq_rel`` (acquire+release)
1755 Acts as both an ``acquire`` and ``release`` operation on its
1756 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1757``seq_cst`` (sequentially consistent)
1758 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001759 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001760 writes), there is a global total order on all
1761 sequentially-consistent operations on all addresses, which is
1762 consistent with the *happens-before* partial order and with the
1763 modification orders of all the affected addresses. Each
1764 sequentially-consistent read sees the last preceding write to the
1765 same address in this global order. This corresponds to the C++0x/C1x
1766 ``memory_order_seq_cst`` and Java volatile.
1767
1768.. _singlethread:
1769
1770If an atomic operation is marked ``singlethread``, it only *synchronizes
1771with* or participates in modification and seq\_cst total orderings with
1772other operations running in the same thread (for example, in signal
1773handlers).
1774
1775.. _fastmath:
1776
1777Fast-Math Flags
1778---------------
1779
1780LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1781:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1782:ref:`frem <i_frem>`) have the following flags that can set to enable
1783otherwise unsafe floating point operations
1784
1785``nnan``
1786 No NaNs - Allow optimizations to assume the arguments and result are not
1787 NaN. Such optimizations are required to retain defined behavior over
1788 NaNs, but the value of the result is undefined.
1789
1790``ninf``
1791 No Infs - Allow optimizations to assume the arguments and result are not
1792 +/-Inf. Such optimizations are required to retain defined behavior over
1793 +/-Inf, but the value of the result is undefined.
1794
1795``nsz``
1796 No Signed Zeros - Allow optimizations to treat the sign of a zero
1797 argument or result as insignificant.
1798
1799``arcp``
1800 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1801 argument rather than perform division.
1802
1803``fast``
1804 Fast - Allow algebraically equivalent transformations that may
1805 dramatically change results in floating point (e.g. reassociate). This
1806 flag implies all the others.
1807
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001808.. _uselistorder:
1809
1810Use-list Order Directives
1811-------------------------
1812
1813Use-list directives encode the in-memory order of each use-list, allowing the
1814order to be recreated. ``<order-indexes>`` is a comma-separated list of
1815indexes that are assigned to the referenced value's uses. The referenced
1816value's use-list is immediately sorted by these indexes.
1817
1818Use-list directives may appear at function scope or global scope. They are not
1819instructions, and have no effect on the semantics of the IR. When they're at
1820function scope, they must appear after the terminator of the final basic block.
1821
1822If basic blocks have their address taken via ``blockaddress()`` expressions,
1823``uselistorder_bb`` can be used to reorder their use-lists from outside their
1824function's scope.
1825
1826:Syntax:
1827
1828::
1829
1830 uselistorder <ty> <value>, { <order-indexes> }
1831 uselistorder_bb @function, %block { <order-indexes> }
1832
1833:Examples:
1834
1835::
1836
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001837 define void @foo(i32 %arg1, i32 %arg2) {
1838 entry:
1839 ; ... instructions ...
1840 bb:
1841 ; ... instructions ...
1842
1843 ; At function scope.
1844 uselistorder i32 %arg1, { 1, 0, 2 }
1845 uselistorder label %bb, { 1, 0 }
1846 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001847
1848 ; At global scope.
1849 uselistorder i32* @global, { 1, 2, 0 }
1850 uselistorder i32 7, { 1, 0 }
1851 uselistorder i32 (i32) @bar, { 1, 0 }
1852 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1853
Sean Silvab084af42012-12-07 10:36:55 +00001854.. _typesystem:
1855
1856Type System
1857===========
1858
1859The LLVM type system is one of the most important features of the
1860intermediate representation. Being typed enables a number of
1861optimizations to be performed on the intermediate representation
1862directly, without having to do extra analyses on the side before the
1863transformation. A strong type system makes it easier to read the
1864generated code and enables novel analyses and transformations that are
1865not feasible to perform on normal three address code representations.
1866
Rafael Espindola08013342013-12-07 19:34:20 +00001867.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001868
Rafael Espindola08013342013-12-07 19:34:20 +00001869Void Type
1870---------
Sean Silvab084af42012-12-07 10:36:55 +00001871
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001872:Overview:
1873
Rafael Espindola08013342013-12-07 19:34:20 +00001874
1875The void type does not represent any value and has no size.
1876
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001877:Syntax:
1878
Rafael Espindola08013342013-12-07 19:34:20 +00001879
1880::
1881
1882 void
Sean Silvab084af42012-12-07 10:36:55 +00001883
1884
Rafael Espindola08013342013-12-07 19:34:20 +00001885.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001886
Rafael Espindola08013342013-12-07 19:34:20 +00001887Function Type
1888-------------
Sean Silvab084af42012-12-07 10:36:55 +00001889
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001890:Overview:
1891
Sean Silvab084af42012-12-07 10:36:55 +00001892
Rafael Espindola08013342013-12-07 19:34:20 +00001893The function type can be thought of as a function signature. It consists of a
1894return type and a list of formal parameter types. The return type of a function
1895type is a void type or first class type --- except for :ref:`label <t_label>`
1896and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001897
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001898:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001899
Rafael Espindola08013342013-12-07 19:34:20 +00001900::
Sean Silvab084af42012-12-07 10:36:55 +00001901
Rafael Espindola08013342013-12-07 19:34:20 +00001902 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001903
Rafael Espindola08013342013-12-07 19:34:20 +00001904...where '``<parameter list>``' is a comma-separated list of type
1905specifiers. Optionally, the parameter list may include a type ``...``, which
1906indicates that the function takes a variable number of arguments. Variable
1907argument functions can access their arguments with the :ref:`variable argument
1908handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1909except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001910
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001911:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001912
Rafael Espindola08013342013-12-07 19:34:20 +00001913+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1914| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1915+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1916| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1917+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1918| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1919+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1920| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1921+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1922
1923.. _t_firstclass:
1924
1925First Class Types
1926-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001927
1928The :ref:`first class <t_firstclass>` types are perhaps the most important.
1929Values of these types are the only ones which can be produced by
1930instructions.
1931
Rafael Espindola08013342013-12-07 19:34:20 +00001932.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001933
Rafael Espindola08013342013-12-07 19:34:20 +00001934Single Value Types
1935^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001936
Rafael Espindola08013342013-12-07 19:34:20 +00001937These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001938
1939.. _t_integer:
1940
1941Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001942""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001943
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001944:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001945
1946The integer type is a very simple type that simply specifies an
1947arbitrary bit width for the integer type desired. Any bit width from 1
1948bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1949
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001950:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001951
1952::
1953
1954 iN
1955
1956The number of bits the integer will occupy is specified by the ``N``
1957value.
1958
1959Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001960*********
Sean Silvab084af42012-12-07 10:36:55 +00001961
1962+----------------+------------------------------------------------+
1963| ``i1`` | a single-bit integer. |
1964+----------------+------------------------------------------------+
1965| ``i32`` | a 32-bit integer. |
1966+----------------+------------------------------------------------+
1967| ``i1942652`` | a really big integer of over 1 million bits. |
1968+----------------+------------------------------------------------+
1969
1970.. _t_floating:
1971
1972Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001973""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001974
1975.. list-table::
1976 :header-rows: 1
1977
1978 * - Type
1979 - Description
1980
1981 * - ``half``
1982 - 16-bit floating point value
1983
1984 * - ``float``
1985 - 32-bit floating point value
1986
1987 * - ``double``
1988 - 64-bit floating point value
1989
1990 * - ``fp128``
1991 - 128-bit floating point value (112-bit mantissa)
1992
1993 * - ``x86_fp80``
1994 - 80-bit floating point value (X87)
1995
1996 * - ``ppc_fp128``
1997 - 128-bit floating point value (two 64-bits)
1998
Reid Kleckner9a16d082014-03-05 02:41:37 +00001999X86_mmx Type
2000""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002001
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002002:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002003
Reid Kleckner9a16d082014-03-05 02:41:37 +00002004The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002005machine. The operations allowed on it are quite limited: parameters and
2006return values, load and store, and bitcast. User-specified MMX
2007instructions are represented as intrinsic or asm calls with arguments
2008and/or results of this type. There are no arrays, vectors or constants
2009of this type.
2010
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002011:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002012
2013::
2014
Reid Kleckner9a16d082014-03-05 02:41:37 +00002015 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002016
Sean Silvab084af42012-12-07 10:36:55 +00002017
Rafael Espindola08013342013-12-07 19:34:20 +00002018.. _t_pointer:
2019
2020Pointer Type
2021""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002022
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002023:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002024
Rafael Espindola08013342013-12-07 19:34:20 +00002025The pointer type is used to specify memory locations. Pointers are
2026commonly used to reference objects in memory.
2027
2028Pointer types may have an optional address space attribute defining the
2029numbered address space where the pointed-to object resides. The default
2030address space is number zero. The semantics of non-zero address spaces
2031are target-specific.
2032
2033Note that LLVM does not permit pointers to void (``void*``) nor does it
2034permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002035
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002036:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002037
2038::
2039
Rafael Espindola08013342013-12-07 19:34:20 +00002040 <type> *
2041
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002042:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002043
2044+-------------------------+--------------------------------------------------------------------------------------------------------------+
2045| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2046+-------------------------+--------------------------------------------------------------------------------------------------------------+
2047| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2048+-------------------------+--------------------------------------------------------------------------------------------------------------+
2049| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2050+-------------------------+--------------------------------------------------------------------------------------------------------------+
2051
2052.. _t_vector:
2053
2054Vector Type
2055"""""""""""
2056
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002057:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002058
2059A vector type is a simple derived type that represents a vector of
2060elements. Vector types are used when multiple primitive data are
2061operated in parallel using a single instruction (SIMD). A vector type
2062requires a size (number of elements) and an underlying primitive data
2063type. Vector types are considered :ref:`first class <t_firstclass>`.
2064
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002065:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002066
2067::
2068
2069 < <# elements> x <elementtype> >
2070
2071The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002072elementtype may be any integer, floating point or pointer type. Vectors
2073of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002074
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002075:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002076
2077+-------------------+--------------------------------------------------+
2078| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2079+-------------------+--------------------------------------------------+
2080| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2081+-------------------+--------------------------------------------------+
2082| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2083+-------------------+--------------------------------------------------+
2084| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2085+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002086
2087.. _t_label:
2088
2089Label Type
2090^^^^^^^^^^
2091
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002092:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002093
2094The label type represents code labels.
2095
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002096:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002097
2098::
2099
2100 label
2101
2102.. _t_metadata:
2103
2104Metadata Type
2105^^^^^^^^^^^^^
2106
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002107:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002108
2109The metadata type represents embedded metadata. No derived types may be
2110created from metadata except for :ref:`function <t_function>` arguments.
2111
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002112:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002113
2114::
2115
2116 metadata
2117
Sean Silvab084af42012-12-07 10:36:55 +00002118.. _t_aggregate:
2119
2120Aggregate Types
2121^^^^^^^^^^^^^^^
2122
2123Aggregate Types are a subset of derived types that can contain multiple
2124member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2125aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2126aggregate types.
2127
2128.. _t_array:
2129
2130Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002131""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002132
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002133:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002134
2135The array type is a very simple derived type that arranges elements
2136sequentially in memory. The array type requires a size (number of
2137elements) and an underlying data type.
2138
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002139:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002140
2141::
2142
2143 [<# elements> x <elementtype>]
2144
2145The number of elements is a constant integer value; ``elementtype`` may
2146be any type with a size.
2147
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002148:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002149
2150+------------------+--------------------------------------+
2151| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2152+------------------+--------------------------------------+
2153| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2154+------------------+--------------------------------------+
2155| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2156+------------------+--------------------------------------+
2157
2158Here are some examples of multidimensional arrays:
2159
2160+-----------------------------+----------------------------------------------------------+
2161| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2162+-----------------------------+----------------------------------------------------------+
2163| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2164+-----------------------------+----------------------------------------------------------+
2165| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2166+-----------------------------+----------------------------------------------------------+
2167
2168There is no restriction on indexing beyond the end of the array implied
2169by a static type (though there are restrictions on indexing beyond the
2170bounds of an allocated object in some cases). This means that
2171single-dimension 'variable sized array' addressing can be implemented in
2172LLVM with a zero length array type. An implementation of 'pascal style
2173arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2174example.
2175
Sean Silvab084af42012-12-07 10:36:55 +00002176.. _t_struct:
2177
2178Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002179""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002180
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002181:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002182
2183The structure type is used to represent a collection of data members
2184together in memory. The elements of a structure may be any type that has
2185a size.
2186
2187Structures in memory are accessed using '``load``' and '``store``' by
2188getting a pointer to a field with the '``getelementptr``' instruction.
2189Structures in registers are accessed using the '``extractvalue``' and
2190'``insertvalue``' instructions.
2191
2192Structures may optionally be "packed" structures, which indicate that
2193the alignment of the struct is one byte, and that there is no padding
2194between the elements. In non-packed structs, padding between field types
2195is inserted as defined by the DataLayout string in the module, which is
2196required to match what the underlying code generator expects.
2197
2198Structures can either be "literal" or "identified". A literal structure
2199is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2200identified types are always defined at the top level with a name.
2201Literal types are uniqued by their contents and can never be recursive
2202or opaque since there is no way to write one. Identified types can be
2203recursive, can be opaqued, and are never uniqued.
2204
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002205:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002206
2207::
2208
2209 %T1 = type { <type list> } ; Identified normal struct type
2210 %T2 = type <{ <type list> }> ; Identified packed struct type
2211
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002212:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002213
2214+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2215| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2216+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002217| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002218+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2219| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2220+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2221
2222.. _t_opaque:
2223
2224Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002225""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002226
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002227:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002228
2229Opaque structure types are used to represent named structure types that
2230do not have a body specified. This corresponds (for example) to the C
2231notion of a forward declared structure.
2232
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002233:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002234
2235::
2236
2237 %X = type opaque
2238 %52 = type opaque
2239
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002240:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002241
2242+--------------+-------------------+
2243| ``opaque`` | An opaque type. |
2244+--------------+-------------------+
2245
Sean Silva1703e702014-04-08 21:06:22 +00002246.. _constants:
2247
Sean Silvab084af42012-12-07 10:36:55 +00002248Constants
2249=========
2250
2251LLVM has several different basic types of constants. This section
2252describes them all and their syntax.
2253
2254Simple Constants
2255----------------
2256
2257**Boolean constants**
2258 The two strings '``true``' and '``false``' are both valid constants
2259 of the ``i1`` type.
2260**Integer constants**
2261 Standard integers (such as '4') are constants of the
2262 :ref:`integer <t_integer>` type. Negative numbers may be used with
2263 integer types.
2264**Floating point constants**
2265 Floating point constants use standard decimal notation (e.g.
2266 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2267 hexadecimal notation (see below). The assembler requires the exact
2268 decimal value of a floating-point constant. For example, the
2269 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2270 decimal in binary. Floating point constants must have a :ref:`floating
2271 point <t_floating>` type.
2272**Null pointer constants**
2273 The identifier '``null``' is recognized as a null pointer constant
2274 and must be of :ref:`pointer type <t_pointer>`.
2275
2276The one non-intuitive notation for constants is the hexadecimal form of
2277floating point constants. For example, the form
2278'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2279than) '``double 4.5e+15``'. The only time hexadecimal floating point
2280constants are required (and the only time that they are generated by the
2281disassembler) is when a floating point constant must be emitted but it
2282cannot be represented as a decimal floating point number in a reasonable
2283number of digits. For example, NaN's, infinities, and other special
2284values are represented in their IEEE hexadecimal format so that assembly
2285and disassembly do not cause any bits to change in the constants.
2286
2287When using the hexadecimal form, constants of types half, float, and
2288double are represented using the 16-digit form shown above (which
2289matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002290must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002291precision, respectively. Hexadecimal format is always used for long
2292double, and there are three forms of long double. The 80-bit format used
2293by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2294128-bit format used by PowerPC (two adjacent doubles) is represented by
2295``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002296represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2297will only work if they match the long double format on your target.
2298The IEEE 16-bit format (half precision) is represented by ``0xH``
2299followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2300(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002301
Reid Kleckner9a16d082014-03-05 02:41:37 +00002302There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002303
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002304.. _complexconstants:
2305
Sean Silvab084af42012-12-07 10:36:55 +00002306Complex Constants
2307-----------------
2308
2309Complex constants are a (potentially recursive) combination of simple
2310constants and smaller complex constants.
2311
2312**Structure constants**
2313 Structure constants are represented with notation similar to
2314 structure type definitions (a comma separated list of elements,
2315 surrounded by braces (``{}``)). For example:
2316 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2317 "``@G = external global i32``". Structure constants must have
2318 :ref:`structure type <t_struct>`, and the number and types of elements
2319 must match those specified by the type.
2320**Array constants**
2321 Array constants are represented with notation similar to array type
2322 definitions (a comma separated list of elements, surrounded by
2323 square brackets (``[]``)). For example:
2324 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2325 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002326 match those specified by the type. As a special case, character array
2327 constants may also be represented as a double-quoted string using the ``c``
2328 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002329**Vector constants**
2330 Vector constants are represented with notation similar to vector
2331 type definitions (a comma separated list of elements, surrounded by
2332 less-than/greater-than's (``<>``)). For example:
2333 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2334 must have :ref:`vector type <t_vector>`, and the number and types of
2335 elements must match those specified by the type.
2336**Zero initialization**
2337 The string '``zeroinitializer``' can be used to zero initialize a
2338 value to zero of *any* type, including scalar and
2339 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2340 having to print large zero initializers (e.g. for large arrays) and
2341 is always exactly equivalent to using explicit zero initializers.
2342**Metadata node**
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002343 A metadata node is a constant tuple without types. For example:
2344 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
2345 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2346 Unlike other typed constants that are meant to be interpreted as part of
2347 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002348 information such as debug info.
2349
2350Global Variable and Function Addresses
2351--------------------------------------
2352
2353The addresses of :ref:`global variables <globalvars>` and
2354:ref:`functions <functionstructure>` are always implicitly valid
2355(link-time) constants. These constants are explicitly referenced when
2356the :ref:`identifier for the global <identifiers>` is used and always have
2357:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2358file:
2359
2360.. code-block:: llvm
2361
2362 @X = global i32 17
2363 @Y = global i32 42
2364 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2365
2366.. _undefvalues:
2367
2368Undefined Values
2369----------------
2370
2371The string '``undef``' can be used anywhere a constant is expected, and
2372indicates that the user of the value may receive an unspecified
2373bit-pattern. Undefined values may be of any type (other than '``label``'
2374or '``void``') and be used anywhere a constant is permitted.
2375
2376Undefined values are useful because they indicate to the compiler that
2377the program is well defined no matter what value is used. This gives the
2378compiler more freedom to optimize. Here are some examples of
2379(potentially surprising) transformations that are valid (in pseudo IR):
2380
2381.. code-block:: llvm
2382
2383 %A = add %X, undef
2384 %B = sub %X, undef
2385 %C = xor %X, undef
2386 Safe:
2387 %A = undef
2388 %B = undef
2389 %C = undef
2390
2391This is safe because all of the output bits are affected by the undef
2392bits. Any output bit can have a zero or one depending on the input bits.
2393
2394.. code-block:: llvm
2395
2396 %A = or %X, undef
2397 %B = and %X, undef
2398 Safe:
2399 %A = -1
2400 %B = 0
2401 Unsafe:
2402 %A = undef
2403 %B = undef
2404
2405These logical operations have bits that are not always affected by the
2406input. For example, if ``%X`` has a zero bit, then the output of the
2407'``and``' operation will always be a zero for that bit, no matter what
2408the corresponding bit from the '``undef``' is. As such, it is unsafe to
2409optimize or assume that the result of the '``and``' is '``undef``'.
2410However, it is safe to assume that all bits of the '``undef``' could be
24110, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2412all the bits of the '``undef``' operand to the '``or``' could be set,
2413allowing the '``or``' to be folded to -1.
2414
2415.. code-block:: llvm
2416
2417 %A = select undef, %X, %Y
2418 %B = select undef, 42, %Y
2419 %C = select %X, %Y, undef
2420 Safe:
2421 %A = %X (or %Y)
2422 %B = 42 (or %Y)
2423 %C = %Y
2424 Unsafe:
2425 %A = undef
2426 %B = undef
2427 %C = undef
2428
2429This set of examples shows that undefined '``select``' (and conditional
2430branch) conditions can go *either way*, but they have to come from one
2431of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2432both known to have a clear low bit, then ``%A`` would have to have a
2433cleared low bit. However, in the ``%C`` example, the optimizer is
2434allowed to assume that the '``undef``' operand could be the same as
2435``%Y``, allowing the whole '``select``' to be eliminated.
2436
2437.. code-block:: llvm
2438
2439 %A = xor undef, undef
2440
2441 %B = undef
2442 %C = xor %B, %B
2443
2444 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002445 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002446 %F = icmp gte %D, 4
2447
2448 Safe:
2449 %A = undef
2450 %B = undef
2451 %C = undef
2452 %D = undef
2453 %E = undef
2454 %F = undef
2455
2456This example points out that two '``undef``' operands are not
2457necessarily the same. This can be surprising to people (and also matches
2458C semantics) where they assume that "``X^X``" is always zero, even if
2459``X`` is undefined. This isn't true for a number of reasons, but the
2460short answer is that an '``undef``' "variable" can arbitrarily change
2461its value over its "live range". This is true because the variable
2462doesn't actually *have a live range*. Instead, the value is logically
2463read from arbitrary registers that happen to be around when needed, so
2464the value is not necessarily consistent over time. In fact, ``%A`` and
2465``%C`` need to have the same semantics or the core LLVM "replace all
2466uses with" concept would not hold.
2467
2468.. code-block:: llvm
2469
2470 %A = fdiv undef, %X
2471 %B = fdiv %X, undef
2472 Safe:
2473 %A = undef
2474 b: unreachable
2475
2476These examples show the crucial difference between an *undefined value*
2477and *undefined behavior*. An undefined value (like '``undef``') is
2478allowed to have an arbitrary bit-pattern. This means that the ``%A``
2479operation can be constant folded to '``undef``', because the '``undef``'
2480could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2481However, in the second example, we can make a more aggressive
2482assumption: because the ``undef`` is allowed to be an arbitrary value,
2483we are allowed to assume that it could be zero. Since a divide by zero
2484has *undefined behavior*, we are allowed to assume that the operation
2485does not execute at all. This allows us to delete the divide and all
2486code after it. Because the undefined operation "can't happen", the
2487optimizer can assume that it occurs in dead code.
2488
2489.. code-block:: llvm
2490
2491 a: store undef -> %X
2492 b: store %X -> undef
2493 Safe:
2494 a: <deleted>
2495 b: unreachable
2496
2497These examples reiterate the ``fdiv`` example: a store *of* an undefined
2498value can be assumed to not have any effect; we can assume that the
2499value is overwritten with bits that happen to match what was already
2500there. However, a store *to* an undefined location could clobber
2501arbitrary memory, therefore, it has undefined behavior.
2502
2503.. _poisonvalues:
2504
2505Poison Values
2506-------------
2507
2508Poison values are similar to :ref:`undef values <undefvalues>`, however
2509they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002510that cannot evoke side effects has nevertheless detected a condition
2511that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002512
2513There is currently no way of representing a poison value in the IR; they
2514only exist when produced by operations such as :ref:`add <i_add>` with
2515the ``nsw`` flag.
2516
2517Poison value behavior is defined in terms of value *dependence*:
2518
2519- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2520- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2521 their dynamic predecessor basic block.
2522- Function arguments depend on the corresponding actual argument values
2523 in the dynamic callers of their functions.
2524- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2525 instructions that dynamically transfer control back to them.
2526- :ref:`Invoke <i_invoke>` instructions depend on the
2527 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2528 call instructions that dynamically transfer control back to them.
2529- Non-volatile loads and stores depend on the most recent stores to all
2530 of the referenced memory addresses, following the order in the IR
2531 (including loads and stores implied by intrinsics such as
2532 :ref:`@llvm.memcpy <int_memcpy>`.)
2533- An instruction with externally visible side effects depends on the
2534 most recent preceding instruction with externally visible side
2535 effects, following the order in the IR. (This includes :ref:`volatile
2536 operations <volatile>`.)
2537- An instruction *control-depends* on a :ref:`terminator
2538 instruction <terminators>` if the terminator instruction has
2539 multiple successors and the instruction is always executed when
2540 control transfers to one of the successors, and may not be executed
2541 when control is transferred to another.
2542- Additionally, an instruction also *control-depends* on a terminator
2543 instruction if the set of instructions it otherwise depends on would
2544 be different if the terminator had transferred control to a different
2545 successor.
2546- Dependence is transitive.
2547
Richard Smith32dbdf62014-07-31 04:25:36 +00002548Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2549with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002550on a poison value has undefined behavior.
2551
2552Here are some examples:
2553
2554.. code-block:: llvm
2555
2556 entry:
2557 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2558 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2559 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2560 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2561
2562 store i32 %poison, i32* @g ; Poison value stored to memory.
2563 %poison2 = load i32* @g ; Poison value loaded back from memory.
2564
2565 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2566
2567 %narrowaddr = bitcast i32* @g to i16*
2568 %wideaddr = bitcast i32* @g to i64*
2569 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2570 %poison4 = load i64* %wideaddr ; Returns a poison value.
2571
2572 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2573 br i1 %cmp, label %true, label %end ; Branch to either destination.
2574
2575 true:
2576 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2577 ; it has undefined behavior.
2578 br label %end
2579
2580 end:
2581 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2582 ; Both edges into this PHI are
2583 ; control-dependent on %cmp, so this
2584 ; always results in a poison value.
2585
2586 store volatile i32 0, i32* @g ; This would depend on the store in %true
2587 ; if %cmp is true, or the store in %entry
2588 ; otherwise, so this is undefined behavior.
2589
2590 br i1 %cmp, label %second_true, label %second_end
2591 ; The same branch again, but this time the
2592 ; true block doesn't have side effects.
2593
2594 second_true:
2595 ; No side effects!
2596 ret void
2597
2598 second_end:
2599 store volatile i32 0, i32* @g ; This time, the instruction always depends
2600 ; on the store in %end. Also, it is
2601 ; control-equivalent to %end, so this is
2602 ; well-defined (ignoring earlier undefined
2603 ; behavior in this example).
2604
2605.. _blockaddress:
2606
2607Addresses of Basic Blocks
2608-------------------------
2609
2610``blockaddress(@function, %block)``
2611
2612The '``blockaddress``' constant computes the address of the specified
2613basic block in the specified function, and always has an ``i8*`` type.
2614Taking the address of the entry block is illegal.
2615
2616This value only has defined behavior when used as an operand to the
2617':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2618against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002619undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002620no label is equal to the null pointer. This may be passed around as an
2621opaque pointer sized value as long as the bits are not inspected. This
2622allows ``ptrtoint`` and arithmetic to be performed on these values so
2623long as the original value is reconstituted before the ``indirectbr``
2624instruction.
2625
2626Finally, some targets may provide defined semantics when using the value
2627as the operand to an inline assembly, but that is target specific.
2628
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002629.. _constantexprs:
2630
Sean Silvab084af42012-12-07 10:36:55 +00002631Constant Expressions
2632--------------------
2633
2634Constant expressions are used to allow expressions involving other
2635constants to be used as constants. Constant expressions may be of any
2636:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2637that does not have side effects (e.g. load and call are not supported).
2638The following is the syntax for constant expressions:
2639
2640``trunc (CST to TYPE)``
2641 Truncate a constant to another type. The bit size of CST must be
2642 larger than the bit size of TYPE. Both types must be integers.
2643``zext (CST to TYPE)``
2644 Zero extend a constant to another type. The bit size of CST must be
2645 smaller than the bit size of TYPE. Both types must be integers.
2646``sext (CST to TYPE)``
2647 Sign extend a constant to another type. The bit size of CST must be
2648 smaller than the bit size of TYPE. Both types must be integers.
2649``fptrunc (CST to TYPE)``
2650 Truncate a floating point constant to another floating point type.
2651 The size of CST must be larger than the size of TYPE. Both types
2652 must be floating point.
2653``fpext (CST to TYPE)``
2654 Floating point extend a constant to another type. The size of CST
2655 must be smaller or equal to the size of TYPE. Both types must be
2656 floating point.
2657``fptoui (CST to TYPE)``
2658 Convert a floating point constant to the corresponding unsigned
2659 integer constant. TYPE must be a scalar or vector integer type. CST
2660 must be of scalar or vector floating point type. Both CST and TYPE
2661 must be scalars, or vectors of the same number of elements. If the
2662 value won't fit in the integer type, the results are undefined.
2663``fptosi (CST to TYPE)``
2664 Convert a floating point constant to the corresponding signed
2665 integer constant. TYPE must be a scalar or vector integer type. CST
2666 must be of scalar or vector floating point type. Both CST and TYPE
2667 must be scalars, or vectors of the same number of elements. If the
2668 value won't fit in the integer type, the results are undefined.
2669``uitofp (CST to TYPE)``
2670 Convert an unsigned integer constant to the corresponding floating
2671 point constant. TYPE must be a scalar or vector floating point type.
2672 CST must be of scalar or vector integer type. Both CST and TYPE must
2673 be scalars, or vectors of the same number of elements. If the value
2674 won't fit in the floating point type, the results are undefined.
2675``sitofp (CST to TYPE)``
2676 Convert a signed integer constant to the corresponding floating
2677 point constant. TYPE must be a scalar or vector floating point type.
2678 CST must be of scalar or vector integer type. Both CST and TYPE must
2679 be scalars, or vectors of the same number of elements. If the value
2680 won't fit in the floating point type, the results are undefined.
2681``ptrtoint (CST to TYPE)``
2682 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002683 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002684 pointer type. The ``CST`` value is zero extended, truncated, or
2685 unchanged to make it fit in ``TYPE``.
2686``inttoptr (CST to TYPE)``
2687 Convert an integer constant to a pointer constant. TYPE must be a
2688 pointer type. CST must be of integer type. The CST value is zero
2689 extended, truncated, or unchanged to make it fit in a pointer size.
2690 This one is *really* dangerous!
2691``bitcast (CST to TYPE)``
2692 Convert a constant, CST, to another TYPE. The constraints of the
2693 operands are the same as those for the :ref:`bitcast
2694 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002695``addrspacecast (CST to TYPE)``
2696 Convert a constant pointer or constant vector of pointer, CST, to another
2697 TYPE in a different address space. The constraints of the operands are the
2698 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002699``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2700 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2701 constants. As with the :ref:`getelementptr <i_getelementptr>`
2702 instruction, the index list may have zero or more indexes, which are
2703 required to make sense for the type of "CSTPTR".
2704``select (COND, VAL1, VAL2)``
2705 Perform the :ref:`select operation <i_select>` on constants.
2706``icmp COND (VAL1, VAL2)``
2707 Performs the :ref:`icmp operation <i_icmp>` on constants.
2708``fcmp COND (VAL1, VAL2)``
2709 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2710``extractelement (VAL, IDX)``
2711 Perform the :ref:`extractelement operation <i_extractelement>` on
2712 constants.
2713``insertelement (VAL, ELT, IDX)``
2714 Perform the :ref:`insertelement operation <i_insertelement>` on
2715 constants.
2716``shufflevector (VEC1, VEC2, IDXMASK)``
2717 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2718 constants.
2719``extractvalue (VAL, IDX0, IDX1, ...)``
2720 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2721 constants. The index list is interpreted in a similar manner as
2722 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2723 least one index value must be specified.
2724``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2725 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2726 The index list is interpreted in a similar manner as indices in a
2727 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2728 value must be specified.
2729``OPCODE (LHS, RHS)``
2730 Perform the specified operation of the LHS and RHS constants. OPCODE
2731 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2732 binary <bitwiseops>` operations. The constraints on operands are
2733 the same as those for the corresponding instruction (e.g. no bitwise
2734 operations on floating point values are allowed).
2735
2736Other Values
2737============
2738
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002739.. _inlineasmexprs:
2740
Sean Silvab084af42012-12-07 10:36:55 +00002741Inline Assembler Expressions
2742----------------------------
2743
2744LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2745Inline Assembly <moduleasm>`) through the use of a special value. This
2746value represents the inline assembler as a string (containing the
2747instructions to emit), a list of operand constraints (stored as a
2748string), a flag that indicates whether or not the inline asm expression
2749has side effects, and a flag indicating whether the function containing
2750the asm needs to align its stack conservatively. An example inline
2751assembler expression is:
2752
2753.. code-block:: llvm
2754
2755 i32 (i32) asm "bswap $0", "=r,r"
2756
2757Inline assembler expressions may **only** be used as the callee operand
2758of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2759Thus, typically we have:
2760
2761.. code-block:: llvm
2762
2763 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2764
2765Inline asms with side effects not visible in the constraint list must be
2766marked as having side effects. This is done through the use of the
2767'``sideeffect``' keyword, like so:
2768
2769.. code-block:: llvm
2770
2771 call void asm sideeffect "eieio", ""()
2772
2773In some cases inline asms will contain code that will not work unless
2774the stack is aligned in some way, such as calls or SSE instructions on
2775x86, yet will not contain code that does that alignment within the asm.
2776The compiler should make conservative assumptions about what the asm
2777might contain and should generate its usual stack alignment code in the
2778prologue if the '``alignstack``' keyword is present:
2779
2780.. code-block:: llvm
2781
2782 call void asm alignstack "eieio", ""()
2783
2784Inline asms also support using non-standard assembly dialects. The
2785assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2786the inline asm is using the Intel dialect. Currently, ATT and Intel are
2787the only supported dialects. An example is:
2788
2789.. code-block:: llvm
2790
2791 call void asm inteldialect "eieio", ""()
2792
2793If multiple keywords appear the '``sideeffect``' keyword must come
2794first, the '``alignstack``' keyword second and the '``inteldialect``'
2795keyword last.
2796
2797Inline Asm Metadata
2798^^^^^^^^^^^^^^^^^^^
2799
2800The call instructions that wrap inline asm nodes may have a
2801"``!srcloc``" MDNode attached to it that contains a list of constant
2802integers. If present, the code generator will use the integer as the
2803location cookie value when report errors through the ``LLVMContext``
2804error reporting mechanisms. This allows a front-end to correlate backend
2805errors that occur with inline asm back to the source code that produced
2806it. For example:
2807
2808.. code-block:: llvm
2809
2810 call void asm sideeffect "something bad", ""(), !srcloc !42
2811 ...
2812 !42 = !{ i32 1234567 }
2813
2814It is up to the front-end to make sense of the magic numbers it places
2815in the IR. If the MDNode contains multiple constants, the code generator
2816will use the one that corresponds to the line of the asm that the error
2817occurs on.
2818
2819.. _metadata:
2820
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002821Metadata
2822========
Sean Silvab084af42012-12-07 10:36:55 +00002823
2824LLVM IR allows metadata to be attached to instructions in the program
2825that can convey extra information about the code to the optimizers and
2826code generator. One example application of metadata is source-level
2827debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002828
2829Metadata does not have a type, and is not a value. If referenced from a
2830``call`` instruction, it uses the ``metadata`` type.
2831
2832All metadata are identified in syntax by a exclamation point ('``!``').
2833
2834Metadata Nodes and Metadata Strings
2835-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00002836
2837A metadata string is a string surrounded by double quotes. It can
2838contain any character by escaping non-printable characters with
2839"``\xx``" where "``xx``" is the two digit hex code. For example:
2840"``!"test\00"``".
2841
2842Metadata nodes are represented with notation similar to structure
2843constants (a comma separated list of elements, surrounded by braces and
2844preceded by an exclamation point). Metadata nodes can have any values as
2845their operand. For example:
2846
2847.. code-block:: llvm
2848
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002849 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00002850
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00002851Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
2852
2853.. code-block:: llvm
2854
2855 !0 = distinct !{!"test\00", i32 10}
2856
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00002857``distinct`` nodes are useful when nodes shouldn't be merged based on their
2858content. They can also occur when transformations cause uniquing collisions
2859when metadata operands change.
2860
Sean Silvab084af42012-12-07 10:36:55 +00002861A :ref:`named metadata <namedmetadatastructure>` is a collection of
2862metadata nodes, which can be looked up in the module symbol table. For
2863example:
2864
2865.. code-block:: llvm
2866
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002867 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00002868
2869Metadata can be used as function arguments. Here ``llvm.dbg.value``
2870function is using two metadata arguments:
2871
2872.. code-block:: llvm
2873
2874 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2875
2876Metadata can be attached with an instruction. Here metadata ``!21`` is
2877attached to the ``add`` instruction using the ``!dbg`` identifier:
2878
2879.. code-block:: llvm
2880
2881 %indvar.next = add i64 %indvar, 1, !dbg !21
2882
2883More information about specific metadata nodes recognized by the
2884optimizers and code generator is found below.
2885
2886'``tbaa``' Metadata
2887^^^^^^^^^^^^^^^^^^^
2888
2889In LLVM IR, memory does not have types, so LLVM's own type system is not
2890suitable for doing TBAA. Instead, metadata is added to the IR to
2891describe a type system of a higher level language. This can be used to
2892implement typical C/C++ TBAA, but it can also be used to implement
2893custom alias analysis behavior for other languages.
2894
2895The current metadata format is very simple. TBAA metadata nodes have up
2896to three fields, e.g.:
2897
2898.. code-block:: llvm
2899
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002900 !0 = !{ !"an example type tree" }
2901 !1 = !{ !"int", !0 }
2902 !2 = !{ !"float", !0 }
2903 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00002904
2905The first field is an identity field. It can be any value, usually a
2906metadata string, which uniquely identifies the type. The most important
2907name in the tree is the name of the root node. Two trees with different
2908root node names are entirely disjoint, even if they have leaves with
2909common names.
2910
2911The second field identifies the type's parent node in the tree, or is
2912null or omitted for a root node. A type is considered to alias all of
2913its descendants and all of its ancestors in the tree. Also, a type is
2914considered to alias all types in other trees, so that bitcode produced
2915from multiple front-ends is handled conservatively.
2916
2917If the third field is present, it's an integer which if equal to 1
2918indicates that the type is "constant" (meaning
2919``pointsToConstantMemory`` should return true; see `other useful
2920AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2921
2922'``tbaa.struct``' Metadata
2923^^^^^^^^^^^^^^^^^^^^^^^^^^
2924
2925The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2926aggregate assignment operations in C and similar languages, however it
2927is defined to copy a contiguous region of memory, which is more than
2928strictly necessary for aggregate types which contain holes due to
2929padding. Also, it doesn't contain any TBAA information about the fields
2930of the aggregate.
2931
2932``!tbaa.struct`` metadata can describe which memory subregions in a
2933memcpy are padding and what the TBAA tags of the struct are.
2934
2935The current metadata format is very simple. ``!tbaa.struct`` metadata
2936nodes are a list of operands which are in conceptual groups of three.
2937For each group of three, the first operand gives the byte offset of a
2938field in bytes, the second gives its size in bytes, and the third gives
2939its tbaa tag. e.g.:
2940
2941.. code-block:: llvm
2942
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002943 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00002944
2945This describes a struct with two fields. The first is at offset 0 bytes
2946with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2947and has size 4 bytes and has tbaa tag !2.
2948
2949Note that the fields need not be contiguous. In this example, there is a
29504 byte gap between the two fields. This gap represents padding which
2951does not carry useful data and need not be preserved.
2952
Hal Finkel94146652014-07-24 14:25:39 +00002953'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00002954^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00002955
2956``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
2957noalias memory-access sets. This means that some collection of memory access
2958instructions (loads, stores, memory-accessing calls, etc.) that carry
2959``noalias`` metadata can specifically be specified not to alias with some other
2960collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00002961Each type of metadata specifies a list of scopes where each scope has an id and
2962a domain. When evaluating an aliasing query, if for some some domain, the set
2963of scopes with that domain in one instruction's ``alias.scope`` list is a
2964subset of (or qual to) the set of scopes for that domain in another
2965instruction's ``noalias`` list, then the two memory accesses are assumed not to
2966alias.
Hal Finkel94146652014-07-24 14:25:39 +00002967
Hal Finkel029cde62014-07-25 15:50:02 +00002968The metadata identifying each domain is itself a list containing one or two
2969entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00002970string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00002971self-reference can be used to create globally unique domain names. A
2972descriptive string may optionally be provided as a second list entry.
2973
2974The metadata identifying each scope is also itself a list containing two or
2975three entries. The first entry is the name of the scope. Note that if the name
2976is a string then it can be combined accross functions and translation units. A
2977self-reference can be used to create globally unique scope names. A metadata
2978reference to the scope's domain is the second entry. A descriptive string may
2979optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00002980
2981For example,
2982
2983.. code-block:: llvm
2984
Hal Finkel029cde62014-07-25 15:50:02 +00002985 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002986 !0 = !{!0}
2987 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00002988
Hal Finkel029cde62014-07-25 15:50:02 +00002989 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002990 !2 = !{!2, !0}
2991 !3 = !{!3, !0}
2992 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00002993
Hal Finkel029cde62014-07-25 15:50:02 +00002994 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002995 !5 = !{!4} ; A list containing only scope !4
2996 !6 = !{!4, !3, !2}
2997 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00002998
2999 ; These two instructions don't alias:
Hal Finkel029cde62014-07-25 15:50:02 +00003000 %0 = load float* %c, align 4, !alias.scope !5
3001 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00003002
Hal Finkel029cde62014-07-25 15:50:02 +00003003 ; These two instructions also don't alias (for domain !1, the set of scopes
3004 ; in the !alias.scope equals that in the !noalias list):
3005 %2 = load float* %c, align 4, !alias.scope !5
3006 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00003007
Hal Finkel029cde62014-07-25 15:50:02 +00003008 ; These two instructions don't alias (for domain !0, the set of scopes in
3009 ; the !noalias list is not a superset of, or equal to, the scopes in the
3010 ; !alias.scope list):
3011 %2 = load float* %c, align 4, !alias.scope !6
3012 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00003013
Sean Silvab084af42012-12-07 10:36:55 +00003014'``fpmath``' Metadata
3015^^^^^^^^^^^^^^^^^^^^^
3016
3017``fpmath`` metadata may be attached to any instruction of floating point
3018type. It can be used to express the maximum acceptable error in the
3019result of that instruction, in ULPs, thus potentially allowing the
3020compiler to use a more efficient but less accurate method of computing
3021it. ULP is defined as follows:
3022
3023 If ``x`` is a real number that lies between two finite consecutive
3024 floating-point numbers ``a`` and ``b``, without being equal to one
3025 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
3026 distance between the two non-equal finite floating-point numbers
3027 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
3028
3029The metadata node shall consist of a single positive floating point
3030number representing the maximum relative error, for example:
3031
3032.. code-block:: llvm
3033
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003034 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00003035
3036'``range``' Metadata
3037^^^^^^^^^^^^^^^^^^^^
3038
Jingyue Wu37fcb592014-06-19 16:50:16 +00003039``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
3040integer types. It expresses the possible ranges the loaded value or the value
3041returned by the called function at this call site is in. The ranges are
3042represented with a flattened list of integers. The loaded value or the value
3043returned is known to be in the union of the ranges defined by each consecutive
3044pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00003045
3046- The type must match the type loaded by the instruction.
3047- The pair ``a,b`` represents the range ``[a,b)``.
3048- Both ``a`` and ``b`` are constants.
3049- The range is allowed to wrap.
3050- The range should not represent the full or empty set. That is,
3051 ``a!=b``.
3052
3053In addition, the pairs must be in signed order of the lower bound and
3054they must be non-contiguous.
3055
3056Examples:
3057
3058.. code-block:: llvm
3059
3060 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
3061 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00003062 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
3063 %d = invoke i8 @bar() to label %cont
3064 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00003065 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003066 !0 = !{ i8 0, i8 2 }
3067 !1 = !{ i8 255, i8 2 }
3068 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
3069 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00003070
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003071'``llvm.loop``'
3072^^^^^^^^^^^^^^^
3073
3074It is sometimes useful to attach information to loop constructs. Currently,
3075loop metadata is implemented as metadata attached to the branch instruction
3076in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00003077guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00003078specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003079
3080The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00003081itself to avoid merging it with any other identifier metadata, e.g.,
3082during module linkage or function inlining. That is, each loop should refer
3083to their own identification metadata even if they reside in separate functions.
3084The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003085constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003086
3087.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00003088
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003089 !0 = !{!0}
3090 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003091
Mark Heffernan893752a2014-07-18 19:24:51 +00003092The loop identifier metadata can be used to specify additional
3093per-loop metadata. Any operands after the first operand can be treated
3094as user-defined metadata. For example the ``llvm.loop.unroll.count``
3095suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003096
Paul Redmond5fdf8362013-05-28 20:00:34 +00003097.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003098
Paul Redmond5fdf8362013-05-28 20:00:34 +00003099 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
3100 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003101 !0 = !{!0, !1}
3102 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003103
Mark Heffernan9d20e422014-07-21 23:11:03 +00003104'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
3105^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00003106
Mark Heffernan9d20e422014-07-21 23:11:03 +00003107Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
3108used to control per-loop vectorization and interleaving parameters such as
3109vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00003110conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00003111``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
3112optimization hints and the optimizer will only interleave and vectorize loops if
3113it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
3114which contains information about loop-carried memory dependencies can be helpful
3115in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00003116
Mark Heffernan9d20e422014-07-21 23:11:03 +00003117'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00003118^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3119
Mark Heffernan9d20e422014-07-21 23:11:03 +00003120This metadata suggests an interleave count to the loop interleaver.
3121The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00003122second operand is an integer specifying the interleave count. For
3123example:
3124
3125.. code-block:: llvm
3126
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003127 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003128
Mark Heffernan9d20e422014-07-21 23:11:03 +00003129Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3130multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
3131then the interleave count will be determined automatically.
3132
3133'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00003134^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00003135
3136This metadata selectively enables or disables vectorization for the loop. The
3137first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3138is a bit. If the bit operand value is 1 vectorization is enabled. A value of
31390 disables vectorization:
3140
3141.. code-block:: llvm
3142
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003143 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
3144 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00003145
3146'``llvm.loop.vectorize.width``' Metadata
3147^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3148
3149This metadata sets the target width of the vectorizer. The first
3150operand is the string ``llvm.loop.vectorize.width`` and the second
3151operand is an integer specifying the width. For example:
3152
3153.. code-block:: llvm
3154
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003155 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003156
3157Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3158vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
31590 or if the loop does not have this metadata the width will be
3160determined automatically.
3161
3162'``llvm.loop.unroll``'
3163^^^^^^^^^^^^^^^^^^^^^^
3164
3165Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3166optimization hints such as the unroll factor. ``llvm.loop.unroll``
3167metadata should be used in conjunction with ``llvm.loop`` loop
3168identification metadata. The ``llvm.loop.unroll`` metadata are only
3169optimization hints and the unrolling will only be performed if the
3170optimizer believes it is safe to do so.
3171
Mark Heffernan893752a2014-07-18 19:24:51 +00003172'``llvm.loop.unroll.count``' Metadata
3173^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3174
3175This metadata suggests an unroll factor to the loop unroller. The
3176first operand is the string ``llvm.loop.unroll.count`` and the second
3177operand is a positive integer specifying the unroll factor. For
3178example:
3179
3180.. code-block:: llvm
3181
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003182 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003183
3184If the trip count of the loop is less than the unroll count the loop
3185will be partially unrolled.
3186
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003187'``llvm.loop.unroll.disable``' Metadata
3188^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3189
3190This metadata either disables loop unrolling. The metadata has a single operand
3191which is the string ``llvm.loop.unroll.disable``. For example:
3192
3193.. code-block:: llvm
3194
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003195 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003196
3197'``llvm.loop.unroll.full``' Metadata
3198^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3199
3200This metadata either suggests that the loop should be unrolled fully. The
3201metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3202For example:
3203
3204.. code-block:: llvm
3205
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003206 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003207
3208'``llvm.mem``'
3209^^^^^^^^^^^^^^^
3210
3211Metadata types used to annotate memory accesses with information helpful
3212for optimizations are prefixed with ``llvm.mem``.
3213
3214'``llvm.mem.parallel_loop_access``' Metadata
3215^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3216
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003217The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3218or metadata containing a list of loop identifiers for nested loops.
3219The metadata is attached to memory accessing instructions and denotes that
3220no loop carried memory dependence exist between it and other instructions denoted
3221with the same loop identifier.
3222
3223Precisely, given two instructions ``m1`` and ``m2`` that both have the
3224``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3225set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00003226carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003227``L2``.
3228
3229As a special case, if all memory accessing instructions in a loop have
3230``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3231loop has no loop carried memory dependences and is considered to be a parallel
3232loop.
3233
3234Note that if not all memory access instructions have such metadata referring to
3235the loop, then the loop is considered not being trivially parallel. Additional
3236memory dependence analysis is required to make that determination. As a fail
3237safe mechanism, this causes loops that were originally parallel to be considered
3238sequential (if optimization passes that are unaware of the parallel semantics
3239insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003240
3241Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003242both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003243metadata types that refer to the same loop identifier metadata.
3244
3245.. code-block:: llvm
3246
3247 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003248 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003249 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003250 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003251 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003252 ...
3253 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003254
3255 for.end:
3256 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003257 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003258
3259It is also possible to have nested parallel loops. In that case the
3260memory accesses refer to a list of loop identifier metadata nodes instead of
3261the loop identifier metadata node directly:
3262
3263.. code-block:: llvm
3264
3265 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003266 ...
3267 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
3268 ...
3269 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003270
3271 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003272 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003273 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003274 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003275 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003276 ...
3277 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003278
3279 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003280 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003281 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003282 ...
3283 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003284
3285 outer.for.end: ; preds = %for.body
3286 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003287 !0 = !{!1, !2} ; a list of loop identifiers
3288 !1 = !{!1} ; an identifier for the inner loop
3289 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003290
Sean Silvab084af42012-12-07 10:36:55 +00003291Module Flags Metadata
3292=====================
3293
3294Information about the module as a whole is difficult to convey to LLVM's
3295subsystems. The LLVM IR isn't sufficient to transmit this information.
3296The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003297this. These flags are in the form of key / value pairs --- much like a
3298dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003299look it up.
3300
3301The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3302Each triplet has the following form:
3303
3304- The first element is a *behavior* flag, which specifies the behavior
3305 when two (or more) modules are merged together, and it encounters two
3306 (or more) metadata with the same ID. The supported behaviors are
3307 described below.
3308- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003309 metadata. Each module may only have one flag entry for each unique ID (not
3310 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003311- The third element is the value of the flag.
3312
3313When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003314``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3315each unique metadata ID string, there will be exactly one entry in the merged
3316modules ``llvm.module.flags`` metadata table, and the value for that entry will
3317be determined by the merge behavior flag, as described below. The only exception
3318is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003319
3320The following behaviors are supported:
3321
3322.. list-table::
3323 :header-rows: 1
3324 :widths: 10 90
3325
3326 * - Value
3327 - Behavior
3328
3329 * - 1
3330 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003331 Emits an error if two values disagree, otherwise the resulting value
3332 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003333
3334 * - 2
3335 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003336 Emits a warning if two values disagree. The result value will be the
3337 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003338
3339 * - 3
3340 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003341 Adds a requirement that another module flag be present and have a
3342 specified value after linking is performed. The value must be a
3343 metadata pair, where the first element of the pair is the ID of the
3344 module flag to be restricted, and the second element of the pair is
3345 the value the module flag should be restricted to. This behavior can
3346 be used to restrict the allowable results (via triggering of an
3347 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003348
3349 * - 4
3350 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003351 Uses the specified value, regardless of the behavior or value of the
3352 other module. If both modules specify **Override**, but the values
3353 differ, an error will be emitted.
3354
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003355 * - 5
3356 - **Append**
3357 Appends the two values, which are required to be metadata nodes.
3358
3359 * - 6
3360 - **AppendUnique**
3361 Appends the two values, which are required to be metadata
3362 nodes. However, duplicate entries in the second list are dropped
3363 during the append operation.
3364
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003365It is an error for a particular unique flag ID to have multiple behaviors,
3366except in the case of **Require** (which adds restrictions on another metadata
3367value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003368
3369An example of module flags:
3370
3371.. code-block:: llvm
3372
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003373 !0 = !{ i32 1, !"foo", i32 1 }
3374 !1 = !{ i32 4, !"bar", i32 37 }
3375 !2 = !{ i32 2, !"qux", i32 42 }
3376 !3 = !{ i32 3, !"qux",
3377 !{
3378 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00003379 }
3380 }
3381 !llvm.module.flags = !{ !0, !1, !2, !3 }
3382
3383- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3384 if two or more ``!"foo"`` flags are seen is to emit an error if their
3385 values are not equal.
3386
3387- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3388 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003389 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003390
3391- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3392 behavior if two or more ``!"qux"`` flags are seen is to emit a
3393 warning if their values are not equal.
3394
3395- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3396
3397 ::
3398
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003399 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003400
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003401 The behavior is to emit an error if the ``llvm.module.flags`` does not
3402 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3403 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003404
3405Objective-C Garbage Collection Module Flags Metadata
3406----------------------------------------------------
3407
3408On the Mach-O platform, Objective-C stores metadata about garbage
3409collection in a special section called "image info". The metadata
3410consists of a version number and a bitmask specifying what types of
3411garbage collection are supported (if any) by the file. If two or more
3412modules are linked together their garbage collection metadata needs to
3413be merged rather than appended together.
3414
3415The Objective-C garbage collection module flags metadata consists of the
3416following key-value pairs:
3417
3418.. list-table::
3419 :header-rows: 1
3420 :widths: 30 70
3421
3422 * - Key
3423 - Value
3424
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003425 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003426 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003427
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003428 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003429 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003430 always 0.
3431
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003432 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003433 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003434 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3435 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3436 Objective-C ABI version 2.
3437
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003438 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003439 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003440 not. Valid values are 0, for no garbage collection, and 2, for garbage
3441 collection supported.
3442
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003443 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003444 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003445 If present, its value must be 6. This flag requires that the
3446 ``Objective-C Garbage Collection`` flag have the value 2.
3447
3448Some important flag interactions:
3449
3450- If a module with ``Objective-C Garbage Collection`` set to 0 is
3451 merged with a module with ``Objective-C Garbage Collection`` set to
3452 2, then the resulting module has the
3453 ``Objective-C Garbage Collection`` flag set to 0.
3454- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3455 merged with a module with ``Objective-C GC Only`` set to 6.
3456
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003457Automatic Linker Flags Module Flags Metadata
3458--------------------------------------------
3459
3460Some targets support embedding flags to the linker inside individual object
3461files. Typically this is used in conjunction with language extensions which
3462allow source files to explicitly declare the libraries they depend on, and have
3463these automatically be transmitted to the linker via object files.
3464
3465These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003466using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003467to be ``AppendUnique``, and the value for the key is expected to be a metadata
3468node which should be a list of other metadata nodes, each of which should be a
3469list of metadata strings defining linker options.
3470
3471For example, the following metadata section specifies two separate sets of
3472linker options, presumably to link against ``libz`` and the ``Cocoa``
3473framework::
3474
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003475 !0 = !{ i32 6, !"Linker Options",
3476 !{
3477 !{ !"-lz" },
3478 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003479 !llvm.module.flags = !{ !0 }
3480
3481The metadata encoding as lists of lists of options, as opposed to a collapsed
3482list of options, is chosen so that the IR encoding can use multiple option
3483strings to specify e.g., a single library, while still having that specifier be
3484preserved as an atomic element that can be recognized by a target specific
3485assembly writer or object file emitter.
3486
3487Each individual option is required to be either a valid option for the target's
3488linker, or an option that is reserved by the target specific assembly writer or
3489object file emitter. No other aspect of these options is defined by the IR.
3490
Oliver Stannard5dc29342014-06-20 10:08:11 +00003491C type width Module Flags Metadata
3492----------------------------------
3493
3494The ARM backend emits a section into each generated object file describing the
3495options that it was compiled with (in a compiler-independent way) to prevent
3496linking incompatible objects, and to allow automatic library selection. Some
3497of these options are not visible at the IR level, namely wchar_t width and enum
3498width.
3499
3500To pass this information to the backend, these options are encoded in module
3501flags metadata, using the following key-value pairs:
3502
3503.. list-table::
3504 :header-rows: 1
3505 :widths: 30 70
3506
3507 * - Key
3508 - Value
3509
3510 * - short_wchar
3511 - * 0 --- sizeof(wchar_t) == 4
3512 * 1 --- sizeof(wchar_t) == 2
3513
3514 * - short_enum
3515 - * 0 --- Enums are at least as large as an ``int``.
3516 * 1 --- Enums are stored in the smallest integer type which can
3517 represent all of its values.
3518
3519For example, the following metadata section specifies that the module was
3520compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3521enum is the smallest type which can represent all of its values::
3522
3523 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003524 !0 = !{i32 1, !"short_wchar", i32 1}
3525 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00003526
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003527.. _intrinsicglobalvariables:
3528
Sean Silvab084af42012-12-07 10:36:55 +00003529Intrinsic Global Variables
3530==========================
3531
3532LLVM has a number of "magic" global variables that contain data that
3533affect code generation or other IR semantics. These are documented here.
3534All globals of this sort should have a section specified as
3535"``llvm.metadata``". This section and all globals that start with
3536"``llvm.``" are reserved for use by LLVM.
3537
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003538.. _gv_llvmused:
3539
Sean Silvab084af42012-12-07 10:36:55 +00003540The '``llvm.used``' Global Variable
3541-----------------------------------
3542
Rafael Espindola74f2e462013-04-22 14:58:02 +00003543The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003544:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003545pointers to named global variables, functions and aliases which may optionally
3546have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003547use of it is:
3548
3549.. code-block:: llvm
3550
3551 @X = global i8 4
3552 @Y = global i32 123
3553
3554 @llvm.used = appending global [2 x i8*] [
3555 i8* @X,
3556 i8* bitcast (i32* @Y to i8*)
3557 ], section "llvm.metadata"
3558
Rafael Espindola74f2e462013-04-22 14:58:02 +00003559If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3560and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003561symbol that it cannot see (which is why they have to be named). For example, if
3562a variable has internal linkage and no references other than that from the
3563``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3564references from inline asms and other things the compiler cannot "see", and
3565corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003566
3567On some targets, the code generator must emit a directive to the
3568assembler or object file to prevent the assembler and linker from
3569molesting the symbol.
3570
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003571.. _gv_llvmcompilerused:
3572
Sean Silvab084af42012-12-07 10:36:55 +00003573The '``llvm.compiler.used``' Global Variable
3574--------------------------------------------
3575
3576The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3577directive, except that it only prevents the compiler from touching the
3578symbol. On targets that support it, this allows an intelligent linker to
3579optimize references to the symbol without being impeded as it would be
3580by ``@llvm.used``.
3581
3582This is a rare construct that should only be used in rare circumstances,
3583and should not be exposed to source languages.
3584
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003585.. _gv_llvmglobalctors:
3586
Sean Silvab084af42012-12-07 10:36:55 +00003587The '``llvm.global_ctors``' Global Variable
3588-------------------------------------------
3589
3590.. code-block:: llvm
3591
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003592 %0 = type { i32, void ()*, i8* }
3593 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003594
3595The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003596functions, priorities, and an optional associated global or function.
3597The functions referenced by this array will be called in ascending order
3598of priority (i.e. lowest first) when the module is loaded. The order of
3599functions with the same priority is not defined.
3600
3601If the third field is present, non-null, and points to a global variable
3602or function, the initializer function will only run if the associated
3603data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003604
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003605.. _llvmglobaldtors:
3606
Sean Silvab084af42012-12-07 10:36:55 +00003607The '``llvm.global_dtors``' Global Variable
3608-------------------------------------------
3609
3610.. code-block:: llvm
3611
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003612 %0 = type { i32, void ()*, i8* }
3613 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003614
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003615The ``@llvm.global_dtors`` array contains a list of destructor
3616functions, priorities, and an optional associated global or function.
3617The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003618order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003619order of functions with the same priority is not defined.
3620
3621If the third field is present, non-null, and points to a global variable
3622or function, the destructor function will only run if the associated
3623data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003624
3625Instruction Reference
3626=====================
3627
3628The LLVM instruction set consists of several different classifications
3629of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3630instructions <binaryops>`, :ref:`bitwise binary
3631instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3632:ref:`other instructions <otherops>`.
3633
3634.. _terminators:
3635
3636Terminator Instructions
3637-----------------------
3638
3639As mentioned :ref:`previously <functionstructure>`, every basic block in a
3640program ends with a "Terminator" instruction, which indicates which
3641block should be executed after the current block is finished. These
3642terminator instructions typically yield a '``void``' value: they produce
3643control flow, not values (the one exception being the
3644':ref:`invoke <i_invoke>`' instruction).
3645
3646The terminator instructions are: ':ref:`ret <i_ret>`',
3647':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3648':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3649':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3650
3651.. _i_ret:
3652
3653'``ret``' Instruction
3654^^^^^^^^^^^^^^^^^^^^^
3655
3656Syntax:
3657"""""""
3658
3659::
3660
3661 ret <type> <value> ; Return a value from a non-void function
3662 ret void ; Return from void function
3663
3664Overview:
3665"""""""""
3666
3667The '``ret``' instruction is used to return control flow (and optionally
3668a value) from a function back to the caller.
3669
3670There are two forms of the '``ret``' instruction: one that returns a
3671value and then causes control flow, and one that just causes control
3672flow to occur.
3673
3674Arguments:
3675""""""""""
3676
3677The '``ret``' instruction optionally accepts a single argument, the
3678return value. The type of the return value must be a ':ref:`first
3679class <t_firstclass>`' type.
3680
3681A function is not :ref:`well formed <wellformed>` if it it has a non-void
3682return type and contains a '``ret``' instruction with no return value or
3683a return value with a type that does not match its type, or if it has a
3684void return type and contains a '``ret``' instruction with a return
3685value.
3686
3687Semantics:
3688""""""""""
3689
3690When the '``ret``' instruction is executed, control flow returns back to
3691the calling function's context. If the caller is a
3692":ref:`call <i_call>`" instruction, execution continues at the
3693instruction after the call. If the caller was an
3694":ref:`invoke <i_invoke>`" instruction, execution continues at the
3695beginning of the "normal" destination block. If the instruction returns
3696a value, that value shall set the call or invoke instruction's return
3697value.
3698
3699Example:
3700""""""""
3701
3702.. code-block:: llvm
3703
3704 ret i32 5 ; Return an integer value of 5
3705 ret void ; Return from a void function
3706 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3707
3708.. _i_br:
3709
3710'``br``' Instruction
3711^^^^^^^^^^^^^^^^^^^^
3712
3713Syntax:
3714"""""""
3715
3716::
3717
3718 br i1 <cond>, label <iftrue>, label <iffalse>
3719 br label <dest> ; Unconditional branch
3720
3721Overview:
3722"""""""""
3723
3724The '``br``' instruction is used to cause control flow to transfer to a
3725different basic block in the current function. There are two forms of
3726this instruction, corresponding to a conditional branch and an
3727unconditional branch.
3728
3729Arguments:
3730""""""""""
3731
3732The conditional branch form of the '``br``' instruction takes a single
3733'``i1``' value and two '``label``' values. The unconditional form of the
3734'``br``' instruction takes a single '``label``' value as a target.
3735
3736Semantics:
3737""""""""""
3738
3739Upon execution of a conditional '``br``' instruction, the '``i1``'
3740argument is evaluated. If the value is ``true``, control flows to the
3741'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3742to the '``iffalse``' ``label`` argument.
3743
3744Example:
3745""""""""
3746
3747.. code-block:: llvm
3748
3749 Test:
3750 %cond = icmp eq i32 %a, %b
3751 br i1 %cond, label %IfEqual, label %IfUnequal
3752 IfEqual:
3753 ret i32 1
3754 IfUnequal:
3755 ret i32 0
3756
3757.. _i_switch:
3758
3759'``switch``' Instruction
3760^^^^^^^^^^^^^^^^^^^^^^^^
3761
3762Syntax:
3763"""""""
3764
3765::
3766
3767 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3768
3769Overview:
3770"""""""""
3771
3772The '``switch``' instruction is used to transfer control flow to one of
3773several different places. It is a generalization of the '``br``'
3774instruction, allowing a branch to occur to one of many possible
3775destinations.
3776
3777Arguments:
3778""""""""""
3779
3780The '``switch``' instruction uses three parameters: an integer
3781comparison value '``value``', a default '``label``' destination, and an
3782array of pairs of comparison value constants and '``label``'s. The table
3783is not allowed to contain duplicate constant entries.
3784
3785Semantics:
3786""""""""""
3787
3788The ``switch`` instruction specifies a table of values and destinations.
3789When the '``switch``' instruction is executed, this table is searched
3790for the given value. If the value is found, control flow is transferred
3791to the corresponding destination; otherwise, control flow is transferred
3792to the default destination.
3793
3794Implementation:
3795"""""""""""""""
3796
3797Depending on properties of the target machine and the particular
3798``switch`` instruction, this instruction may be code generated in
3799different ways. For example, it could be generated as a series of
3800chained conditional branches or with a lookup table.
3801
3802Example:
3803""""""""
3804
3805.. code-block:: llvm
3806
3807 ; Emulate a conditional br instruction
3808 %Val = zext i1 %value to i32
3809 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3810
3811 ; Emulate an unconditional br instruction
3812 switch i32 0, label %dest [ ]
3813
3814 ; Implement a jump table:
3815 switch i32 %val, label %otherwise [ i32 0, label %onzero
3816 i32 1, label %onone
3817 i32 2, label %ontwo ]
3818
3819.. _i_indirectbr:
3820
3821'``indirectbr``' Instruction
3822^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3823
3824Syntax:
3825"""""""
3826
3827::
3828
3829 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3830
3831Overview:
3832"""""""""
3833
3834The '``indirectbr``' instruction implements an indirect branch to a
3835label within the current function, whose address is specified by
3836"``address``". Address must be derived from a
3837:ref:`blockaddress <blockaddress>` constant.
3838
3839Arguments:
3840""""""""""
3841
3842The '``address``' argument is the address of the label to jump to. The
3843rest of the arguments indicate the full set of possible destinations
3844that the address may point to. Blocks are allowed to occur multiple
3845times in the destination list, though this isn't particularly useful.
3846
3847This destination list is required so that dataflow analysis has an
3848accurate understanding of the CFG.
3849
3850Semantics:
3851""""""""""
3852
3853Control transfers to the block specified in the address argument. All
3854possible destination blocks must be listed in the label list, otherwise
3855this instruction has undefined behavior. This implies that jumps to
3856labels defined in other functions have undefined behavior as well.
3857
3858Implementation:
3859"""""""""""""""
3860
3861This is typically implemented with a jump through a register.
3862
3863Example:
3864""""""""
3865
3866.. code-block:: llvm
3867
3868 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3869
3870.. _i_invoke:
3871
3872'``invoke``' Instruction
3873^^^^^^^^^^^^^^^^^^^^^^^^
3874
3875Syntax:
3876"""""""
3877
3878::
3879
3880 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3881 to label <normal label> unwind label <exception label>
3882
3883Overview:
3884"""""""""
3885
3886The '``invoke``' instruction causes control to transfer to a specified
3887function, with the possibility of control flow transfer to either the
3888'``normal``' label or the '``exception``' label. If the callee function
3889returns with the "``ret``" instruction, control flow will return to the
3890"normal" label. If the callee (or any indirect callees) returns via the
3891":ref:`resume <i_resume>`" instruction or other exception handling
3892mechanism, control is interrupted and continued at the dynamically
3893nearest "exception" label.
3894
3895The '``exception``' label is a `landing
3896pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3897'``exception``' label is required to have the
3898":ref:`landingpad <i_landingpad>`" instruction, which contains the
3899information about the behavior of the program after unwinding happens,
3900as its first non-PHI instruction. The restrictions on the
3901"``landingpad``" instruction's tightly couples it to the "``invoke``"
3902instruction, so that the important information contained within the
3903"``landingpad``" instruction can't be lost through normal code motion.
3904
3905Arguments:
3906""""""""""
3907
3908This instruction requires several arguments:
3909
3910#. The optional "cconv" marker indicates which :ref:`calling
3911 convention <callingconv>` the call should use. If none is
3912 specified, the call defaults to using C calling conventions.
3913#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3914 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3915 are valid here.
3916#. '``ptr to function ty``': shall be the signature of the pointer to
3917 function value being invoked. In most cases, this is a direct
3918 function invocation, but indirect ``invoke``'s are just as possible,
3919 branching off an arbitrary pointer to function value.
3920#. '``function ptr val``': An LLVM value containing a pointer to a
3921 function to be invoked.
3922#. '``function args``': argument list whose types match the function
3923 signature argument types and parameter attributes. All arguments must
3924 be of :ref:`first class <t_firstclass>` type. If the function signature
3925 indicates the function accepts a variable number of arguments, the
3926 extra arguments can be specified.
3927#. '``normal label``': the label reached when the called function
3928 executes a '``ret``' instruction.
3929#. '``exception label``': the label reached when a callee returns via
3930 the :ref:`resume <i_resume>` instruction or other exception handling
3931 mechanism.
3932#. The optional :ref:`function attributes <fnattrs>` list. Only
3933 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3934 attributes are valid here.
3935
3936Semantics:
3937""""""""""
3938
3939This instruction is designed to operate as a standard '``call``'
3940instruction in most regards. The primary difference is that it
3941establishes an association with a label, which is used by the runtime
3942library to unwind the stack.
3943
3944This instruction is used in languages with destructors to ensure that
3945proper cleanup is performed in the case of either a ``longjmp`` or a
3946thrown exception. Additionally, this is important for implementation of
3947'``catch``' clauses in high-level languages that support them.
3948
3949For the purposes of the SSA form, the definition of the value returned
3950by the '``invoke``' instruction is deemed to occur on the edge from the
3951current block to the "normal" label. If the callee unwinds then no
3952return value is available.
3953
3954Example:
3955""""""""
3956
3957.. code-block:: llvm
3958
3959 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003960 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003961 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003962 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003963
3964.. _i_resume:
3965
3966'``resume``' Instruction
3967^^^^^^^^^^^^^^^^^^^^^^^^
3968
3969Syntax:
3970"""""""
3971
3972::
3973
3974 resume <type> <value>
3975
3976Overview:
3977"""""""""
3978
3979The '``resume``' instruction is a terminator instruction that has no
3980successors.
3981
3982Arguments:
3983""""""""""
3984
3985The '``resume``' instruction requires one argument, which must have the
3986same type as the result of any '``landingpad``' instruction in the same
3987function.
3988
3989Semantics:
3990""""""""""
3991
3992The '``resume``' instruction resumes propagation of an existing
3993(in-flight) exception whose unwinding was interrupted with a
3994:ref:`landingpad <i_landingpad>` instruction.
3995
3996Example:
3997""""""""
3998
3999.. code-block:: llvm
4000
4001 resume { i8*, i32 } %exn
4002
4003.. _i_unreachable:
4004
4005'``unreachable``' Instruction
4006^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4007
4008Syntax:
4009"""""""
4010
4011::
4012
4013 unreachable
4014
4015Overview:
4016"""""""""
4017
4018The '``unreachable``' instruction has no defined semantics. This
4019instruction is used to inform the optimizer that a particular portion of
4020the code is not reachable. This can be used to indicate that the code
4021after a no-return function cannot be reached, and other facts.
4022
4023Semantics:
4024""""""""""
4025
4026The '``unreachable``' instruction has no defined semantics.
4027
4028.. _binaryops:
4029
4030Binary Operations
4031-----------------
4032
4033Binary operators are used to do most of the computation in a program.
4034They require two operands of the same type, execute an operation on
4035them, and produce a single value. The operands might represent multiple
4036data, as is the case with the :ref:`vector <t_vector>` data type. The
4037result value has the same type as its operands.
4038
4039There are several different binary operators:
4040
4041.. _i_add:
4042
4043'``add``' Instruction
4044^^^^^^^^^^^^^^^^^^^^^
4045
4046Syntax:
4047"""""""
4048
4049::
4050
Tim Northover675a0962014-06-13 14:24:23 +00004051 <result> = add <ty> <op1>, <op2> ; yields ty:result
4052 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
4053 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
4054 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004055
4056Overview:
4057"""""""""
4058
4059The '``add``' instruction returns the sum of its two operands.
4060
4061Arguments:
4062""""""""""
4063
4064The two arguments to the '``add``' instruction must be
4065:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4066arguments must have identical types.
4067
4068Semantics:
4069""""""""""
4070
4071The value produced is the integer sum of the two operands.
4072
4073If the sum has unsigned overflow, the result returned is the
4074mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4075the result.
4076
4077Because LLVM integers use a two's complement representation, this
4078instruction is appropriate for both signed and unsigned integers.
4079
4080``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4081respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4082result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
4083unsigned and/or signed overflow, respectively, occurs.
4084
4085Example:
4086""""""""
4087
4088.. code-block:: llvm
4089
Tim Northover675a0962014-06-13 14:24:23 +00004090 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004091
4092.. _i_fadd:
4093
4094'``fadd``' Instruction
4095^^^^^^^^^^^^^^^^^^^^^^
4096
4097Syntax:
4098"""""""
4099
4100::
4101
Tim Northover675a0962014-06-13 14:24:23 +00004102 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004103
4104Overview:
4105"""""""""
4106
4107The '``fadd``' instruction returns the sum of its two operands.
4108
4109Arguments:
4110""""""""""
4111
4112The two arguments to the '``fadd``' instruction must be :ref:`floating
4113point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4114Both arguments must have identical types.
4115
4116Semantics:
4117""""""""""
4118
4119The value produced is the floating point sum of the two operands. This
4120instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4121which are optimization hints to enable otherwise unsafe floating point
4122optimizations:
4123
4124Example:
4125""""""""
4126
4127.. code-block:: llvm
4128
Tim Northover675a0962014-06-13 14:24:23 +00004129 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004130
4131'``sub``' Instruction
4132^^^^^^^^^^^^^^^^^^^^^
4133
4134Syntax:
4135"""""""
4136
4137::
4138
Tim Northover675a0962014-06-13 14:24:23 +00004139 <result> = sub <ty> <op1>, <op2> ; yields ty:result
4140 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
4141 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
4142 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004143
4144Overview:
4145"""""""""
4146
4147The '``sub``' instruction returns the difference of its two operands.
4148
4149Note that the '``sub``' instruction is used to represent the '``neg``'
4150instruction present in most other intermediate representations.
4151
4152Arguments:
4153""""""""""
4154
4155The two arguments to the '``sub``' instruction must be
4156:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4157arguments must have identical types.
4158
4159Semantics:
4160""""""""""
4161
4162The value produced is the integer difference of the two operands.
4163
4164If the difference has unsigned overflow, the result returned is the
4165mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4166the result.
4167
4168Because LLVM integers use a two's complement representation, this
4169instruction is appropriate for both signed and unsigned integers.
4170
4171``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4172respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4173result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4174unsigned and/or signed overflow, respectively, occurs.
4175
4176Example:
4177""""""""
4178
4179.. code-block:: llvm
4180
Tim Northover675a0962014-06-13 14:24:23 +00004181 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
4182 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004183
4184.. _i_fsub:
4185
4186'``fsub``' Instruction
4187^^^^^^^^^^^^^^^^^^^^^^
4188
4189Syntax:
4190"""""""
4191
4192::
4193
Tim Northover675a0962014-06-13 14:24:23 +00004194 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004195
4196Overview:
4197"""""""""
4198
4199The '``fsub``' instruction returns the difference of its two operands.
4200
4201Note that the '``fsub``' instruction is used to represent the '``fneg``'
4202instruction present in most other intermediate representations.
4203
4204Arguments:
4205""""""""""
4206
4207The two arguments to the '``fsub``' instruction must be :ref:`floating
4208point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4209Both arguments must have identical types.
4210
4211Semantics:
4212""""""""""
4213
4214The value produced is the floating point difference of the two operands.
4215This instruction can also take any number of :ref:`fast-math
4216flags <fastmath>`, which are optimization hints to enable otherwise
4217unsafe floating point optimizations:
4218
4219Example:
4220""""""""
4221
4222.. code-block:: llvm
4223
Tim Northover675a0962014-06-13 14:24:23 +00004224 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4225 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004226
4227'``mul``' Instruction
4228^^^^^^^^^^^^^^^^^^^^^
4229
4230Syntax:
4231"""""""
4232
4233::
4234
Tim Northover675a0962014-06-13 14:24:23 +00004235 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4236 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4237 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4238 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004239
4240Overview:
4241"""""""""
4242
4243The '``mul``' instruction returns the product of its two operands.
4244
4245Arguments:
4246""""""""""
4247
4248The two arguments to the '``mul``' instruction must be
4249:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4250arguments must have identical types.
4251
4252Semantics:
4253""""""""""
4254
4255The value produced is the integer product of the two operands.
4256
4257If the result of the multiplication has unsigned overflow, the result
4258returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4259bit width of the result.
4260
4261Because LLVM integers use a two's complement representation, and the
4262result is the same width as the operands, this instruction returns the
4263correct result for both signed and unsigned integers. If a full product
4264(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4265sign-extended or zero-extended as appropriate to the width of the full
4266product.
4267
4268``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4269respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4270result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4271unsigned and/or signed overflow, respectively, occurs.
4272
4273Example:
4274""""""""
4275
4276.. code-block:: llvm
4277
Tim Northover675a0962014-06-13 14:24:23 +00004278 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004279
4280.. _i_fmul:
4281
4282'``fmul``' Instruction
4283^^^^^^^^^^^^^^^^^^^^^^
4284
4285Syntax:
4286"""""""
4287
4288::
4289
Tim Northover675a0962014-06-13 14:24:23 +00004290 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004291
4292Overview:
4293"""""""""
4294
4295The '``fmul``' instruction returns the product of its two operands.
4296
4297Arguments:
4298""""""""""
4299
4300The two arguments to the '``fmul``' instruction must be :ref:`floating
4301point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4302Both arguments must have identical types.
4303
4304Semantics:
4305""""""""""
4306
4307The value produced is the floating point product of the two operands.
4308This instruction can also take any number of :ref:`fast-math
4309flags <fastmath>`, which are optimization hints to enable otherwise
4310unsafe floating point optimizations:
4311
4312Example:
4313""""""""
4314
4315.. code-block:: llvm
4316
Tim Northover675a0962014-06-13 14:24:23 +00004317 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004318
4319'``udiv``' Instruction
4320^^^^^^^^^^^^^^^^^^^^^^
4321
4322Syntax:
4323"""""""
4324
4325::
4326
Tim Northover675a0962014-06-13 14:24:23 +00004327 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4328 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004329
4330Overview:
4331"""""""""
4332
4333The '``udiv``' instruction returns the quotient of its two operands.
4334
4335Arguments:
4336""""""""""
4337
4338The two arguments to the '``udiv``' instruction must be
4339:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4340arguments must have identical types.
4341
4342Semantics:
4343""""""""""
4344
4345The value produced is the unsigned integer quotient of the two operands.
4346
4347Note that unsigned integer division and signed integer division are
4348distinct operations; for signed integer division, use '``sdiv``'.
4349
4350Division by zero leads to undefined behavior.
4351
4352If the ``exact`` keyword is present, the result value of the ``udiv`` is
4353a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4354such, "((a udiv exact b) mul b) == a").
4355
4356Example:
4357""""""""
4358
4359.. code-block:: llvm
4360
Tim Northover675a0962014-06-13 14:24:23 +00004361 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004362
4363'``sdiv``' Instruction
4364^^^^^^^^^^^^^^^^^^^^^^
4365
4366Syntax:
4367"""""""
4368
4369::
4370
Tim Northover675a0962014-06-13 14:24:23 +00004371 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4372 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004373
4374Overview:
4375"""""""""
4376
4377The '``sdiv``' instruction returns the quotient of its two operands.
4378
4379Arguments:
4380""""""""""
4381
4382The two arguments to the '``sdiv``' instruction must be
4383:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4384arguments must have identical types.
4385
4386Semantics:
4387""""""""""
4388
4389The value produced is the signed integer quotient of the two operands
4390rounded towards zero.
4391
4392Note that signed integer division and unsigned integer division are
4393distinct operations; for unsigned integer division, use '``udiv``'.
4394
4395Division by zero leads to undefined behavior. Overflow also leads to
4396undefined behavior; this is a rare case, but can occur, for example, by
4397doing a 32-bit division of -2147483648 by -1.
4398
4399If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4400a :ref:`poison value <poisonvalues>` if the result would be rounded.
4401
4402Example:
4403""""""""
4404
4405.. code-block:: llvm
4406
Tim Northover675a0962014-06-13 14:24:23 +00004407 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004408
4409.. _i_fdiv:
4410
4411'``fdiv``' Instruction
4412^^^^^^^^^^^^^^^^^^^^^^
4413
4414Syntax:
4415"""""""
4416
4417::
4418
Tim Northover675a0962014-06-13 14:24:23 +00004419 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004420
4421Overview:
4422"""""""""
4423
4424The '``fdiv``' instruction returns the quotient of its two operands.
4425
4426Arguments:
4427""""""""""
4428
4429The two arguments to the '``fdiv``' instruction must be :ref:`floating
4430point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4431Both arguments must have identical types.
4432
4433Semantics:
4434""""""""""
4435
4436The value produced is the floating point quotient of the two operands.
4437This instruction can also take any number of :ref:`fast-math
4438flags <fastmath>`, which are optimization hints to enable otherwise
4439unsafe floating point optimizations:
4440
4441Example:
4442""""""""
4443
4444.. code-block:: llvm
4445
Tim Northover675a0962014-06-13 14:24:23 +00004446 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004447
4448'``urem``' Instruction
4449^^^^^^^^^^^^^^^^^^^^^^
4450
4451Syntax:
4452"""""""
4453
4454::
4455
Tim Northover675a0962014-06-13 14:24:23 +00004456 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004457
4458Overview:
4459"""""""""
4460
4461The '``urem``' instruction returns the remainder from the unsigned
4462division of its two arguments.
4463
4464Arguments:
4465""""""""""
4466
4467The two arguments to the '``urem``' instruction must be
4468:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4469arguments must have identical types.
4470
4471Semantics:
4472""""""""""
4473
4474This instruction returns the unsigned integer *remainder* of a division.
4475This instruction always performs an unsigned division to get the
4476remainder.
4477
4478Note that unsigned integer remainder and signed integer remainder are
4479distinct operations; for signed integer remainder, use '``srem``'.
4480
4481Taking the remainder of a division by zero leads to undefined behavior.
4482
4483Example:
4484""""""""
4485
4486.. code-block:: llvm
4487
Tim Northover675a0962014-06-13 14:24:23 +00004488 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004489
4490'``srem``' Instruction
4491^^^^^^^^^^^^^^^^^^^^^^
4492
4493Syntax:
4494"""""""
4495
4496::
4497
Tim Northover675a0962014-06-13 14:24:23 +00004498 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004499
4500Overview:
4501"""""""""
4502
4503The '``srem``' instruction returns the remainder from the signed
4504division of its two operands. This instruction can also take
4505:ref:`vector <t_vector>` versions of the values in which case the elements
4506must be integers.
4507
4508Arguments:
4509""""""""""
4510
4511The two arguments to the '``srem``' instruction must be
4512:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4513arguments must have identical types.
4514
4515Semantics:
4516""""""""""
4517
4518This instruction returns the *remainder* of a division (where the result
4519is either zero or has the same sign as the dividend, ``op1``), not the
4520*modulo* operator (where the result is either zero or has the same sign
4521as the divisor, ``op2``) of a value. For more information about the
4522difference, see `The Math
4523Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4524table of how this is implemented in various languages, please see
4525`Wikipedia: modulo
4526operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4527
4528Note that signed integer remainder and unsigned integer remainder are
4529distinct operations; for unsigned integer remainder, use '``urem``'.
4530
4531Taking the remainder of a division by zero leads to undefined behavior.
4532Overflow also leads to undefined behavior; this is a rare case, but can
4533occur, for example, by taking the remainder of a 32-bit division of
4534-2147483648 by -1. (The remainder doesn't actually overflow, but this
4535rule lets srem be implemented using instructions that return both the
4536result of the division and the remainder.)
4537
4538Example:
4539""""""""
4540
4541.. code-block:: llvm
4542
Tim Northover675a0962014-06-13 14:24:23 +00004543 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004544
4545.. _i_frem:
4546
4547'``frem``' Instruction
4548^^^^^^^^^^^^^^^^^^^^^^
4549
4550Syntax:
4551"""""""
4552
4553::
4554
Tim Northover675a0962014-06-13 14:24:23 +00004555 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004556
4557Overview:
4558"""""""""
4559
4560The '``frem``' instruction returns the remainder from the division of
4561its two operands.
4562
4563Arguments:
4564""""""""""
4565
4566The two arguments to the '``frem``' instruction must be :ref:`floating
4567point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4568Both arguments must have identical types.
4569
4570Semantics:
4571""""""""""
4572
4573This instruction returns the *remainder* of a division. The remainder
4574has the same sign as the dividend. This instruction can also take any
4575number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4576to enable otherwise unsafe floating point optimizations:
4577
4578Example:
4579""""""""
4580
4581.. code-block:: llvm
4582
Tim Northover675a0962014-06-13 14:24:23 +00004583 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004584
4585.. _bitwiseops:
4586
4587Bitwise Binary Operations
4588-------------------------
4589
4590Bitwise binary operators are used to do various forms of bit-twiddling
4591in a program. They are generally very efficient instructions and can
4592commonly be strength reduced from other instructions. They require two
4593operands of the same type, execute an operation on them, and produce a
4594single value. The resulting value is the same type as its operands.
4595
4596'``shl``' Instruction
4597^^^^^^^^^^^^^^^^^^^^^
4598
4599Syntax:
4600"""""""
4601
4602::
4603
Tim Northover675a0962014-06-13 14:24:23 +00004604 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4605 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4606 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4607 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004608
4609Overview:
4610"""""""""
4611
4612The '``shl``' instruction returns the first operand shifted to the left
4613a specified number of bits.
4614
4615Arguments:
4616""""""""""
4617
4618Both arguments to the '``shl``' instruction must be the same
4619:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4620'``op2``' is treated as an unsigned value.
4621
4622Semantics:
4623""""""""""
4624
4625The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4626where ``n`` is the width of the result. If ``op2`` is (statically or
4627dynamically) negative or equal to or larger than the number of bits in
4628``op1``, the result is undefined. If the arguments are vectors, each
4629vector element of ``op1`` is shifted by the corresponding shift amount
4630in ``op2``.
4631
4632If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4633value <poisonvalues>` if it shifts out any non-zero bits. If the
4634``nsw`` keyword is present, then the shift produces a :ref:`poison
4635value <poisonvalues>` if it shifts out any bits that disagree with the
4636resultant sign bit. As such, NUW/NSW have the same semantics as they
4637would if the shift were expressed as a mul instruction with the same
4638nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4639
4640Example:
4641""""""""
4642
4643.. code-block:: llvm
4644
Tim Northover675a0962014-06-13 14:24:23 +00004645 <result> = shl i32 4, %var ; yields i32: 4 << %var
4646 <result> = shl i32 4, 2 ; yields i32: 16
4647 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004648 <result> = shl i32 1, 32 ; undefined
4649 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4650
4651'``lshr``' Instruction
4652^^^^^^^^^^^^^^^^^^^^^^
4653
4654Syntax:
4655"""""""
4656
4657::
4658
Tim Northover675a0962014-06-13 14:24:23 +00004659 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4660 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004661
4662Overview:
4663"""""""""
4664
4665The '``lshr``' instruction (logical shift right) returns the first
4666operand shifted to the right a specified number of bits with zero fill.
4667
4668Arguments:
4669""""""""""
4670
4671Both arguments to the '``lshr``' instruction must be the same
4672:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4673'``op2``' is treated as an unsigned value.
4674
4675Semantics:
4676""""""""""
4677
4678This instruction always performs a logical shift right operation. The
4679most significant bits of the result will be filled with zero bits after
4680the shift. If ``op2`` is (statically or dynamically) equal to or larger
4681than the number of bits in ``op1``, the result is undefined. If the
4682arguments are vectors, each vector element of ``op1`` is shifted by the
4683corresponding shift amount in ``op2``.
4684
4685If the ``exact`` keyword is present, the result value of the ``lshr`` is
4686a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4687non-zero.
4688
4689Example:
4690""""""""
4691
4692.. code-block:: llvm
4693
Tim Northover675a0962014-06-13 14:24:23 +00004694 <result> = lshr i32 4, 1 ; yields i32:result = 2
4695 <result> = lshr i32 4, 2 ; yields i32:result = 1
4696 <result> = lshr i8 4, 3 ; yields i8:result = 0
4697 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004698 <result> = lshr i32 1, 32 ; undefined
4699 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4700
4701'``ashr``' Instruction
4702^^^^^^^^^^^^^^^^^^^^^^
4703
4704Syntax:
4705"""""""
4706
4707::
4708
Tim Northover675a0962014-06-13 14:24:23 +00004709 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
4710 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004711
4712Overview:
4713"""""""""
4714
4715The '``ashr``' instruction (arithmetic shift right) returns the first
4716operand shifted to the right a specified number of bits with sign
4717extension.
4718
4719Arguments:
4720""""""""""
4721
4722Both arguments to the '``ashr``' instruction must be the same
4723:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4724'``op2``' is treated as an unsigned value.
4725
4726Semantics:
4727""""""""""
4728
4729This instruction always performs an arithmetic shift right operation,
4730The most significant bits of the result will be filled with the sign bit
4731of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4732than the number of bits in ``op1``, the result is undefined. If the
4733arguments are vectors, each vector element of ``op1`` is shifted by the
4734corresponding shift amount in ``op2``.
4735
4736If the ``exact`` keyword is present, the result value of the ``ashr`` is
4737a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4738non-zero.
4739
4740Example:
4741""""""""
4742
4743.. code-block:: llvm
4744
Tim Northover675a0962014-06-13 14:24:23 +00004745 <result> = ashr i32 4, 1 ; yields i32:result = 2
4746 <result> = ashr i32 4, 2 ; yields i32:result = 1
4747 <result> = ashr i8 4, 3 ; yields i8:result = 0
4748 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00004749 <result> = ashr i32 1, 32 ; undefined
4750 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4751
4752'``and``' Instruction
4753^^^^^^^^^^^^^^^^^^^^^
4754
4755Syntax:
4756"""""""
4757
4758::
4759
Tim Northover675a0962014-06-13 14:24:23 +00004760 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004761
4762Overview:
4763"""""""""
4764
4765The '``and``' instruction returns the bitwise logical and of its two
4766operands.
4767
4768Arguments:
4769""""""""""
4770
4771The two arguments to the '``and``' instruction must be
4772:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4773arguments must have identical types.
4774
4775Semantics:
4776""""""""""
4777
4778The truth table used for the '``and``' instruction is:
4779
4780+-----+-----+-----+
4781| In0 | In1 | Out |
4782+-----+-----+-----+
4783| 0 | 0 | 0 |
4784+-----+-----+-----+
4785| 0 | 1 | 0 |
4786+-----+-----+-----+
4787| 1 | 0 | 0 |
4788+-----+-----+-----+
4789| 1 | 1 | 1 |
4790+-----+-----+-----+
4791
4792Example:
4793""""""""
4794
4795.. code-block:: llvm
4796
Tim Northover675a0962014-06-13 14:24:23 +00004797 <result> = and i32 4, %var ; yields i32:result = 4 & %var
4798 <result> = and i32 15, 40 ; yields i32:result = 8
4799 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00004800
4801'``or``' Instruction
4802^^^^^^^^^^^^^^^^^^^^
4803
4804Syntax:
4805"""""""
4806
4807::
4808
Tim Northover675a0962014-06-13 14:24:23 +00004809 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004810
4811Overview:
4812"""""""""
4813
4814The '``or``' instruction returns the bitwise logical inclusive or of its
4815two operands.
4816
4817Arguments:
4818""""""""""
4819
4820The two arguments to the '``or``' instruction must be
4821:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4822arguments must have identical types.
4823
4824Semantics:
4825""""""""""
4826
4827The truth table used for the '``or``' instruction is:
4828
4829+-----+-----+-----+
4830| In0 | In1 | Out |
4831+-----+-----+-----+
4832| 0 | 0 | 0 |
4833+-----+-----+-----+
4834| 0 | 1 | 1 |
4835+-----+-----+-----+
4836| 1 | 0 | 1 |
4837+-----+-----+-----+
4838| 1 | 1 | 1 |
4839+-----+-----+-----+
4840
4841Example:
4842""""""""
4843
4844::
4845
Tim Northover675a0962014-06-13 14:24:23 +00004846 <result> = or i32 4, %var ; yields i32:result = 4 | %var
4847 <result> = or i32 15, 40 ; yields i32:result = 47
4848 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00004849
4850'``xor``' Instruction
4851^^^^^^^^^^^^^^^^^^^^^
4852
4853Syntax:
4854"""""""
4855
4856::
4857
Tim Northover675a0962014-06-13 14:24:23 +00004858 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004859
4860Overview:
4861"""""""""
4862
4863The '``xor``' instruction returns the bitwise logical exclusive or of
4864its two operands. The ``xor`` is used to implement the "one's
4865complement" operation, which is the "~" operator in C.
4866
4867Arguments:
4868""""""""""
4869
4870The two arguments to the '``xor``' instruction must be
4871:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4872arguments must have identical types.
4873
4874Semantics:
4875""""""""""
4876
4877The truth table used for the '``xor``' instruction is:
4878
4879+-----+-----+-----+
4880| In0 | In1 | Out |
4881+-----+-----+-----+
4882| 0 | 0 | 0 |
4883+-----+-----+-----+
4884| 0 | 1 | 1 |
4885+-----+-----+-----+
4886| 1 | 0 | 1 |
4887+-----+-----+-----+
4888| 1 | 1 | 0 |
4889+-----+-----+-----+
4890
4891Example:
4892""""""""
4893
4894.. code-block:: llvm
4895
Tim Northover675a0962014-06-13 14:24:23 +00004896 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
4897 <result> = xor i32 15, 40 ; yields i32:result = 39
4898 <result> = xor i32 4, 8 ; yields i32:result = 12
4899 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00004900
4901Vector Operations
4902-----------------
4903
4904LLVM supports several instructions to represent vector operations in a
4905target-independent manner. These instructions cover the element-access
4906and vector-specific operations needed to process vectors effectively.
4907While LLVM does directly support these vector operations, many
4908sophisticated algorithms will want to use target-specific intrinsics to
4909take full advantage of a specific target.
4910
4911.. _i_extractelement:
4912
4913'``extractelement``' Instruction
4914^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4915
4916Syntax:
4917"""""""
4918
4919::
4920
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004921 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004922
4923Overview:
4924"""""""""
4925
4926The '``extractelement``' instruction extracts a single scalar element
4927from a vector at a specified index.
4928
4929Arguments:
4930""""""""""
4931
4932The first operand of an '``extractelement``' instruction is a value of
4933:ref:`vector <t_vector>` type. The second operand is an index indicating
4934the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004935variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004936
4937Semantics:
4938""""""""""
4939
4940The result is a scalar of the same type as the element type of ``val``.
4941Its value is the value at position ``idx`` of ``val``. If ``idx``
4942exceeds the length of ``val``, the results are undefined.
4943
4944Example:
4945""""""""
4946
4947.. code-block:: llvm
4948
4949 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4950
4951.. _i_insertelement:
4952
4953'``insertelement``' Instruction
4954^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4955
4956Syntax:
4957"""""""
4958
4959::
4960
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004961 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004962
4963Overview:
4964"""""""""
4965
4966The '``insertelement``' instruction inserts a scalar element into a
4967vector at a specified index.
4968
4969Arguments:
4970""""""""""
4971
4972The first operand of an '``insertelement``' instruction is a value of
4973:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4974type must equal the element type of the first operand. The third operand
4975is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004976index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004977
4978Semantics:
4979""""""""""
4980
4981The result is a vector of the same type as ``val``. Its element values
4982are those of ``val`` except at position ``idx``, where it gets the value
4983``elt``. If ``idx`` exceeds the length of ``val``, the results are
4984undefined.
4985
4986Example:
4987""""""""
4988
4989.. code-block:: llvm
4990
4991 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4992
4993.. _i_shufflevector:
4994
4995'``shufflevector``' Instruction
4996^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4997
4998Syntax:
4999"""""""
5000
5001::
5002
5003 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
5004
5005Overview:
5006"""""""""
5007
5008The '``shufflevector``' instruction constructs a permutation of elements
5009from two input vectors, returning a vector with the same element type as
5010the input and length that is the same as the shuffle mask.
5011
5012Arguments:
5013""""""""""
5014
5015The first two operands of a '``shufflevector``' instruction are vectors
5016with the same type. The third argument is a shuffle mask whose element
5017type is always 'i32'. The result of the instruction is a vector whose
5018length is the same as the shuffle mask and whose element type is the
5019same as the element type of the first two operands.
5020
5021The shuffle mask operand is required to be a constant vector with either
5022constant integer or undef values.
5023
5024Semantics:
5025""""""""""
5026
5027The elements of the two input vectors are numbered from left to right
5028across both of the vectors. The shuffle mask operand specifies, for each
5029element of the result vector, which element of the two input vectors the
5030result element gets. The element selector may be undef (meaning "don't
5031care") and the second operand may be undef if performing a shuffle from
5032only one vector.
5033
5034Example:
5035""""""""
5036
5037.. code-block:: llvm
5038
5039 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5040 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
5041 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
5042 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
5043 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
5044 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
5045 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5046 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
5047
5048Aggregate Operations
5049--------------------
5050
5051LLVM supports several instructions for working with
5052:ref:`aggregate <t_aggregate>` values.
5053
5054.. _i_extractvalue:
5055
5056'``extractvalue``' Instruction
5057^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5058
5059Syntax:
5060"""""""
5061
5062::
5063
5064 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
5065
5066Overview:
5067"""""""""
5068
5069The '``extractvalue``' instruction extracts the value of a member field
5070from an :ref:`aggregate <t_aggregate>` value.
5071
5072Arguments:
5073""""""""""
5074
5075The first operand of an '``extractvalue``' instruction is a value of
5076:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
5077constant indices to specify which value to extract in a similar manner
5078as indices in a '``getelementptr``' instruction.
5079
5080The major differences to ``getelementptr`` indexing are:
5081
5082- Since the value being indexed is not a pointer, the first index is
5083 omitted and assumed to be zero.
5084- At least one index must be specified.
5085- Not only struct indices but also array indices must be in bounds.
5086
5087Semantics:
5088""""""""""
5089
5090The result is the value at the position in the aggregate specified by
5091the index operands.
5092
5093Example:
5094""""""""
5095
5096.. code-block:: llvm
5097
5098 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
5099
5100.. _i_insertvalue:
5101
5102'``insertvalue``' Instruction
5103^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5104
5105Syntax:
5106"""""""
5107
5108::
5109
5110 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
5111
5112Overview:
5113"""""""""
5114
5115The '``insertvalue``' instruction inserts a value into a member field in
5116an :ref:`aggregate <t_aggregate>` value.
5117
5118Arguments:
5119""""""""""
5120
5121The first operand of an '``insertvalue``' instruction is a value of
5122:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5123a first-class value to insert. The following operands are constant
5124indices indicating the position at which to insert the value in a
5125similar manner as indices in a '``extractvalue``' instruction. The value
5126to insert must have the same type as the value identified by the
5127indices.
5128
5129Semantics:
5130""""""""""
5131
5132The result is an aggregate of the same type as ``val``. Its value is
5133that of ``val`` except that the value at the position specified by the
5134indices is that of ``elt``.
5135
5136Example:
5137""""""""
5138
5139.. code-block:: llvm
5140
5141 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
5142 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00005143 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00005144
5145.. _memoryops:
5146
5147Memory Access and Addressing Operations
5148---------------------------------------
5149
5150A key design point of an SSA-based representation is how it represents
5151memory. In LLVM, no memory locations are in SSA form, which makes things
5152very simple. This section describes how to read, write, and allocate
5153memory in LLVM.
5154
5155.. _i_alloca:
5156
5157'``alloca``' Instruction
5158^^^^^^^^^^^^^^^^^^^^^^^^
5159
5160Syntax:
5161"""""""
5162
5163::
5164
Tim Northover675a0962014-06-13 14:24:23 +00005165 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00005166
5167Overview:
5168"""""""""
5169
5170The '``alloca``' instruction allocates memory on the stack frame of the
5171currently executing function, to be automatically released when this
5172function returns to its caller. The object is always allocated in the
5173generic address space (address space zero).
5174
5175Arguments:
5176""""""""""
5177
5178The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5179bytes of memory on the runtime stack, returning a pointer of the
5180appropriate type to the program. If "NumElements" is specified, it is
5181the number of elements allocated, otherwise "NumElements" is defaulted
5182to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005183allocation is guaranteed to be aligned to at least that boundary. The
5184alignment may not be greater than ``1 << 29``. If not specified, or if
5185zero, the target can choose to align the allocation on any convenient
5186boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00005187
5188'``type``' may be any sized type.
5189
5190Semantics:
5191""""""""""
5192
5193Memory is allocated; a pointer is returned. The operation is undefined
5194if there is insufficient stack space for the allocation. '``alloca``'d
5195memory is automatically released when the function returns. The
5196'``alloca``' instruction is commonly used to represent automatic
5197variables that must have an address available. When the function returns
5198(either with the ``ret`` or ``resume`` instructions), the memory is
5199reclaimed. Allocating zero bytes is legal, but the result is undefined.
5200The order in which memory is allocated (ie., which way the stack grows)
5201is not specified.
5202
5203Example:
5204""""""""
5205
5206.. code-block:: llvm
5207
Tim Northover675a0962014-06-13 14:24:23 +00005208 %ptr = alloca i32 ; yields i32*:ptr
5209 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5210 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5211 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005212
5213.. _i_load:
5214
5215'``load``' Instruction
5216^^^^^^^^^^^^^^^^^^^^^^
5217
5218Syntax:
5219"""""""
5220
5221::
5222
Philip Reamescdb72f32014-10-20 22:40:55 +00005223 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00005224 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5225 !<index> = !{ i32 1 }
5226
5227Overview:
5228"""""""""
5229
5230The '``load``' instruction is used to read from memory.
5231
5232Arguments:
5233""""""""""
5234
Eli Bendersky239a78b2013-04-17 20:17:08 +00005235The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00005236from which to load. The pointer must point to a :ref:`first
5237class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5238then the optimizer is not allowed to modify the number or order of
5239execution of this ``load`` with other :ref:`volatile
5240operations <volatile>`.
5241
5242If the ``load`` is marked as ``atomic``, it takes an extra
5243:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5244``release`` and ``acq_rel`` orderings are not valid on ``load``
5245instructions. Atomic loads produce :ref:`defined <memmodel>` results
5246when they may see multiple atomic stores. The type of the pointee must
5247be an integer type whose bit width is a power of two greater than or
5248equal to eight and less than or equal to a target-specific size limit.
5249``align`` must be explicitly specified on atomic loads, and the load has
5250undefined behavior if the alignment is not set to a value which is at
5251least the size in bytes of the pointee. ``!nontemporal`` does not have
5252any defined semantics for atomic loads.
5253
5254The optional constant ``align`` argument specifies the alignment of the
5255operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005256or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005257alignment for the target. It is the responsibility of the code emitter
5258to ensure that the alignment information is correct. Overestimating the
5259alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005260may produce less efficient code. An alignment of 1 is always safe. The
5261maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005262
5263The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005264metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005265``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005266metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005267that this load is not expected to be reused in the cache. The code
5268generator may select special instructions to save cache bandwidth, such
5269as the ``MOVNT`` instruction on x86.
5270
5271The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005272metadata name ``<index>`` corresponding to a metadata node with no
5273entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00005274instruction tells the optimizer and code generator that the address
5275operand to this load points to memory which can be assumed unchanged.
5276Being invariant does not imply that a location is dereferenceable,
5277but it does imply that once the location is known dereferenceable
5278its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00005279
Philip Reamescdb72f32014-10-20 22:40:55 +00005280The optional ``!nonnull`` metadata must reference a single
5281metadata name ``<index>`` corresponding to a metadata node with no
5282entries. The existence of the ``!nonnull`` metadata on the
5283instruction tells the optimizer that the value loaded is known to
5284never be null. This is analogous to the ''nonnull'' attribute
5285on parameters and return values. This metadata can only be applied
5286to loads of a pointer type.
5287
Sean Silvab084af42012-12-07 10:36:55 +00005288Semantics:
5289""""""""""
5290
5291The location of memory pointed to is loaded. If the value being loaded
5292is of scalar type then the number of bytes read does not exceed the
5293minimum number of bytes needed to hold all bits of the type. For
5294example, loading an ``i24`` reads at most three bytes. When loading a
5295value of a type like ``i20`` with a size that is not an integral number
5296of bytes, the result is undefined if the value was not originally
5297written using a store of the same type.
5298
5299Examples:
5300"""""""""
5301
5302.. code-block:: llvm
5303
Tim Northover675a0962014-06-13 14:24:23 +00005304 %ptr = alloca i32 ; yields i32*:ptr
5305 store i32 3, i32* %ptr ; yields void
5306 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005307
5308.. _i_store:
5309
5310'``store``' Instruction
5311^^^^^^^^^^^^^^^^^^^^^^^
5312
5313Syntax:
5314"""""""
5315
5316::
5317
Tim Northover675a0962014-06-13 14:24:23 +00005318 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5319 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005320
5321Overview:
5322"""""""""
5323
5324The '``store``' instruction is used to write to memory.
5325
5326Arguments:
5327""""""""""
5328
Eli Benderskyca380842013-04-17 17:17:20 +00005329There are two arguments to the ``store`` instruction: a value to store
5330and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005331operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005332the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005333then the optimizer is not allowed to modify the number or order of
5334execution of this ``store`` with other :ref:`volatile
5335operations <volatile>`.
5336
5337If the ``store`` is marked as ``atomic``, it takes an extra
5338:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5339``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5340instructions. Atomic loads produce :ref:`defined <memmodel>` results
5341when they may see multiple atomic stores. The type of the pointee must
5342be an integer type whose bit width is a power of two greater than or
5343equal to eight and less than or equal to a target-specific size limit.
5344``align`` must be explicitly specified on atomic stores, and the store
5345has undefined behavior if the alignment is not set to a value which is
5346at least the size in bytes of the pointee. ``!nontemporal`` does not
5347have any defined semantics for atomic stores.
5348
Eli Benderskyca380842013-04-17 17:17:20 +00005349The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005350operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005351or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005352alignment for the target. It is the responsibility of the code emitter
5353to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005354alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005355alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005356safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005357
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005358The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005359name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005360value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005361tells the optimizer and code generator that this load is not expected to
5362be reused in the cache. The code generator may select special
5363instructions to save cache bandwidth, such as the MOVNT instruction on
5364x86.
5365
5366Semantics:
5367""""""""""
5368
Eli Benderskyca380842013-04-17 17:17:20 +00005369The contents of memory are updated to contain ``<value>`` at the
5370location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005371of scalar type then the number of bytes written does not exceed the
5372minimum number of bytes needed to hold all bits of the type. For
5373example, storing an ``i24`` writes at most three bytes. When writing a
5374value of a type like ``i20`` with a size that is not an integral number
5375of bytes, it is unspecified what happens to the extra bits that do not
5376belong to the type, but they will typically be overwritten.
5377
5378Example:
5379""""""""
5380
5381.. code-block:: llvm
5382
Tim Northover675a0962014-06-13 14:24:23 +00005383 %ptr = alloca i32 ; yields i32*:ptr
5384 store i32 3, i32* %ptr ; yields void
5385 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005386
5387.. _i_fence:
5388
5389'``fence``' Instruction
5390^^^^^^^^^^^^^^^^^^^^^^^
5391
5392Syntax:
5393"""""""
5394
5395::
5396
Tim Northover675a0962014-06-13 14:24:23 +00005397 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005398
5399Overview:
5400"""""""""
5401
5402The '``fence``' instruction is used to introduce happens-before edges
5403between operations.
5404
5405Arguments:
5406""""""""""
5407
5408'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5409defines what *synchronizes-with* edges they add. They can only be given
5410``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5411
5412Semantics:
5413""""""""""
5414
5415A fence A which has (at least) ``release`` ordering semantics
5416*synchronizes with* a fence B with (at least) ``acquire`` ordering
5417semantics if and only if there exist atomic operations X and Y, both
5418operating on some atomic object M, such that A is sequenced before X, X
5419modifies M (either directly or through some side effect of a sequence
5420headed by X), Y is sequenced before B, and Y observes M. This provides a
5421*happens-before* dependency between A and B. Rather than an explicit
5422``fence``, one (but not both) of the atomic operations X or Y might
5423provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5424still *synchronize-with* the explicit ``fence`` and establish the
5425*happens-before* edge.
5426
5427A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5428``acquire`` and ``release`` semantics specified above, participates in
5429the global program order of other ``seq_cst`` operations and/or fences.
5430
5431The optional ":ref:`singlethread <singlethread>`" argument specifies
5432that the fence only synchronizes with other fences in the same thread.
5433(This is useful for interacting with signal handlers.)
5434
5435Example:
5436""""""""
5437
5438.. code-block:: llvm
5439
Tim Northover675a0962014-06-13 14:24:23 +00005440 fence acquire ; yields void
5441 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005442
5443.. _i_cmpxchg:
5444
5445'``cmpxchg``' Instruction
5446^^^^^^^^^^^^^^^^^^^^^^^^^
5447
5448Syntax:
5449"""""""
5450
5451::
5452
Tim Northover675a0962014-06-13 14:24:23 +00005453 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005454
5455Overview:
5456"""""""""
5457
5458The '``cmpxchg``' instruction is used to atomically modify memory. It
5459loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005460equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005461
5462Arguments:
5463""""""""""
5464
5465There are three arguments to the '``cmpxchg``' instruction: an address
5466to operate on, a value to compare to the value currently be at that
5467address, and a new value to place at that address if the compared values
5468are equal. The type of '<cmp>' must be an integer type whose bit width
5469is a power of two greater than or equal to eight and less than or equal
5470to a target-specific size limit. '<cmp>' and '<new>' must have the same
5471type, and the type of '<pointer>' must be a pointer to that type. If the
5472``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5473to modify the number or order of execution of this ``cmpxchg`` with
5474other :ref:`volatile operations <volatile>`.
5475
Tim Northovere94a5182014-03-11 10:48:52 +00005476The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005477``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5478must be at least ``monotonic``, the ordering constraint on failure must be no
5479stronger than that on success, and the failure ordering cannot be either
5480``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005481
5482The optional "``singlethread``" argument declares that the ``cmpxchg``
5483is only atomic with respect to code (usually signal handlers) running in
5484the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5485respect to all other code in the system.
5486
5487The pointer passed into cmpxchg must have alignment greater than or
5488equal to the size in memory of the operand.
5489
5490Semantics:
5491""""""""""
5492
Tim Northover420a2162014-06-13 14:24:07 +00005493The contents of memory at the location specified by the '``<pointer>``' operand
5494is read and compared to '``<cmp>``'; if the read value is the equal, the
5495'``<new>``' is written. The original value at the location is returned, together
5496with a flag indicating success (true) or failure (false).
5497
5498If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5499permitted: the operation may not write ``<new>`` even if the comparison
5500matched.
5501
5502If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5503if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005504
Tim Northovere94a5182014-03-11 10:48:52 +00005505A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5506identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5507load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005508
5509Example:
5510""""""""
5511
5512.. code-block:: llvm
5513
5514 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005515 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005516 br label %loop
5517
5518 loop:
5519 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5520 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005521 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005522 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5523 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005524 br i1 %success, label %done, label %loop
5525
5526 done:
5527 ...
5528
5529.. _i_atomicrmw:
5530
5531'``atomicrmw``' Instruction
5532^^^^^^^^^^^^^^^^^^^^^^^^^^^
5533
5534Syntax:
5535"""""""
5536
5537::
5538
Tim Northover675a0962014-06-13 14:24:23 +00005539 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005540
5541Overview:
5542"""""""""
5543
5544The '``atomicrmw``' instruction is used to atomically modify memory.
5545
5546Arguments:
5547""""""""""
5548
5549There are three arguments to the '``atomicrmw``' instruction: an
5550operation to apply, an address whose value to modify, an argument to the
5551operation. The operation must be one of the following keywords:
5552
5553- xchg
5554- add
5555- sub
5556- and
5557- nand
5558- or
5559- xor
5560- max
5561- min
5562- umax
5563- umin
5564
5565The type of '<value>' must be an integer type whose bit width is a power
5566of two greater than or equal to eight and less than or equal to a
5567target-specific size limit. The type of the '``<pointer>``' operand must
5568be a pointer to that type. If the ``atomicrmw`` is marked as
5569``volatile``, then the optimizer is not allowed to modify the number or
5570order of execution of this ``atomicrmw`` with other :ref:`volatile
5571operations <volatile>`.
5572
5573Semantics:
5574""""""""""
5575
5576The contents of memory at the location specified by the '``<pointer>``'
5577operand are atomically read, modified, and written back. The original
5578value at the location is returned. The modification is specified by the
5579operation argument:
5580
5581- xchg: ``*ptr = val``
5582- add: ``*ptr = *ptr + val``
5583- sub: ``*ptr = *ptr - val``
5584- and: ``*ptr = *ptr & val``
5585- nand: ``*ptr = ~(*ptr & val)``
5586- or: ``*ptr = *ptr | val``
5587- xor: ``*ptr = *ptr ^ val``
5588- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5589- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5590- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5591 comparison)
5592- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5593 comparison)
5594
5595Example:
5596""""""""
5597
5598.. code-block:: llvm
5599
Tim Northover675a0962014-06-13 14:24:23 +00005600 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005601
5602.. _i_getelementptr:
5603
5604'``getelementptr``' Instruction
5605^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5606
5607Syntax:
5608"""""""
5609
5610::
5611
5612 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5613 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5614 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5615
5616Overview:
5617"""""""""
5618
5619The '``getelementptr``' instruction is used to get the address of a
5620subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5621address calculation only and does not access memory.
5622
5623Arguments:
5624""""""""""
5625
5626The first argument is always a pointer or a vector of pointers, and
5627forms the basis of the calculation. The remaining arguments are indices
5628that indicate which of the elements of the aggregate object are indexed.
5629The interpretation of each index is dependent on the type being indexed
5630into. The first index always indexes the pointer value given as the
5631first argument, the second index indexes a value of the type pointed to
5632(not necessarily the value directly pointed to, since the first index
5633can be non-zero), etc. The first type indexed into must be a pointer
5634value, subsequent types can be arrays, vectors, and structs. Note that
5635subsequent types being indexed into can never be pointers, since that
5636would require loading the pointer before continuing calculation.
5637
5638The type of each index argument depends on the type it is indexing into.
5639When indexing into a (optionally packed) structure, only ``i32`` integer
5640**constants** are allowed (when using a vector of indices they must all
5641be the **same** ``i32`` integer constant). When indexing into an array,
5642pointer or vector, integers of any width are allowed, and they are not
5643required to be constant. These integers are treated as signed values
5644where relevant.
5645
5646For example, let's consider a C code fragment and how it gets compiled
5647to LLVM:
5648
5649.. code-block:: c
5650
5651 struct RT {
5652 char A;
5653 int B[10][20];
5654 char C;
5655 };
5656 struct ST {
5657 int X;
5658 double Y;
5659 struct RT Z;
5660 };
5661
5662 int *foo(struct ST *s) {
5663 return &s[1].Z.B[5][13];
5664 }
5665
5666The LLVM code generated by Clang is:
5667
5668.. code-block:: llvm
5669
5670 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5671 %struct.ST = type { i32, double, %struct.RT }
5672
5673 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5674 entry:
5675 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5676 ret i32* %arrayidx
5677 }
5678
5679Semantics:
5680""""""""""
5681
5682In the example above, the first index is indexing into the
5683'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5684= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5685indexes into the third element of the structure, yielding a
5686'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5687structure. The third index indexes into the second element of the
5688structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5689dimensions of the array are subscripted into, yielding an '``i32``'
5690type. The '``getelementptr``' instruction returns a pointer to this
5691element, thus computing a value of '``i32*``' type.
5692
5693Note that it is perfectly legal to index partially through a structure,
5694returning a pointer to an inner element. Because of this, the LLVM code
5695for the given testcase is equivalent to:
5696
5697.. code-block:: llvm
5698
5699 define i32* @foo(%struct.ST* %s) {
5700 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5701 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5702 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5703 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5704 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5705 ret i32* %t5
5706 }
5707
5708If the ``inbounds`` keyword is present, the result value of the
5709``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5710pointer is not an *in bounds* address of an allocated object, or if any
5711of the addresses that would be formed by successive addition of the
5712offsets implied by the indices to the base address with infinitely
5713precise signed arithmetic are not an *in bounds* address of that
5714allocated object. The *in bounds* addresses for an allocated object are
5715all the addresses that point into the object, plus the address one byte
5716past the end. In cases where the base is a vector of pointers the
5717``inbounds`` keyword applies to each of the computations element-wise.
5718
5719If the ``inbounds`` keyword is not present, the offsets are added to the
5720base address with silently-wrapping two's complement arithmetic. If the
5721offsets have a different width from the pointer, they are sign-extended
5722or truncated to the width of the pointer. The result value of the
5723``getelementptr`` may be outside the object pointed to by the base
5724pointer. The result value may not necessarily be used to access memory
5725though, even if it happens to point into allocated storage. See the
5726:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5727information.
5728
5729The getelementptr instruction is often confusing. For some more insight
5730into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5731
5732Example:
5733""""""""
5734
5735.. code-block:: llvm
5736
5737 ; yields [12 x i8]*:aptr
5738 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5739 ; yields i8*:vptr
5740 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5741 ; yields i8*:eptr
5742 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5743 ; yields i32*:iptr
5744 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5745
5746In cases where the pointer argument is a vector of pointers, each index
5747must be a vector with the same number of elements. For example:
5748
5749.. code-block:: llvm
5750
5751 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5752
5753Conversion Operations
5754---------------------
5755
5756The instructions in this category are the conversion instructions
5757(casting) which all take a single operand and a type. They perform
5758various bit conversions on the operand.
5759
5760'``trunc .. to``' Instruction
5761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5762
5763Syntax:
5764"""""""
5765
5766::
5767
5768 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5769
5770Overview:
5771"""""""""
5772
5773The '``trunc``' instruction truncates its operand to the type ``ty2``.
5774
5775Arguments:
5776""""""""""
5777
5778The '``trunc``' instruction takes a value to trunc, and a type to trunc
5779it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5780of the same number of integers. The bit size of the ``value`` must be
5781larger than the bit size of the destination type, ``ty2``. Equal sized
5782types are not allowed.
5783
5784Semantics:
5785""""""""""
5786
5787The '``trunc``' instruction truncates the high order bits in ``value``
5788and converts the remaining bits to ``ty2``. Since the source size must
5789be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5790It will always truncate bits.
5791
5792Example:
5793""""""""
5794
5795.. code-block:: llvm
5796
5797 %X = trunc i32 257 to i8 ; yields i8:1
5798 %Y = trunc i32 123 to i1 ; yields i1:true
5799 %Z = trunc i32 122 to i1 ; yields i1:false
5800 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5801
5802'``zext .. to``' Instruction
5803^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5804
5805Syntax:
5806"""""""
5807
5808::
5809
5810 <result> = zext <ty> <value> to <ty2> ; yields ty2
5811
5812Overview:
5813"""""""""
5814
5815The '``zext``' instruction zero extends its operand to type ``ty2``.
5816
5817Arguments:
5818""""""""""
5819
5820The '``zext``' instruction takes a value to cast, and a type to cast it
5821to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5822the same number of integers. The bit size of the ``value`` must be
5823smaller than the bit size of the destination type, ``ty2``.
5824
5825Semantics:
5826""""""""""
5827
5828The ``zext`` fills the high order bits of the ``value`` with zero bits
5829until it reaches the size of the destination type, ``ty2``.
5830
5831When zero extending from i1, the result will always be either 0 or 1.
5832
5833Example:
5834""""""""
5835
5836.. code-block:: llvm
5837
5838 %X = zext i32 257 to i64 ; yields i64:257
5839 %Y = zext i1 true to i32 ; yields i32:1
5840 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5841
5842'``sext .. to``' Instruction
5843^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5844
5845Syntax:
5846"""""""
5847
5848::
5849
5850 <result> = sext <ty> <value> to <ty2> ; yields ty2
5851
5852Overview:
5853"""""""""
5854
5855The '``sext``' sign extends ``value`` to the type ``ty2``.
5856
5857Arguments:
5858""""""""""
5859
5860The '``sext``' instruction takes a value to cast, and a type to cast it
5861to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5862the same number of integers. The bit size of the ``value`` must be
5863smaller than the bit size of the destination type, ``ty2``.
5864
5865Semantics:
5866""""""""""
5867
5868The '``sext``' instruction performs a sign extension by copying the sign
5869bit (highest order bit) of the ``value`` until it reaches the bit size
5870of the type ``ty2``.
5871
5872When sign extending from i1, the extension always results in -1 or 0.
5873
5874Example:
5875""""""""
5876
5877.. code-block:: llvm
5878
5879 %X = sext i8 -1 to i16 ; yields i16 :65535
5880 %Y = sext i1 true to i32 ; yields i32:-1
5881 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5882
5883'``fptrunc .. to``' Instruction
5884^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5885
5886Syntax:
5887"""""""
5888
5889::
5890
5891 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5892
5893Overview:
5894"""""""""
5895
5896The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5897
5898Arguments:
5899""""""""""
5900
5901The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5902value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5903The size of ``value`` must be larger than the size of ``ty2``. This
5904implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5905
5906Semantics:
5907""""""""""
5908
5909The '``fptrunc``' instruction truncates a ``value`` from a larger
5910:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5911point <t_floating>` type. If the value cannot fit within the
5912destination type, ``ty2``, then the results are undefined.
5913
5914Example:
5915""""""""
5916
5917.. code-block:: llvm
5918
5919 %X = fptrunc double 123.0 to float ; yields float:123.0
5920 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5921
5922'``fpext .. to``' Instruction
5923^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5924
5925Syntax:
5926"""""""
5927
5928::
5929
5930 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5931
5932Overview:
5933"""""""""
5934
5935The '``fpext``' extends a floating point ``value`` to a larger floating
5936point value.
5937
5938Arguments:
5939""""""""""
5940
5941The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5942``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5943to. The source type must be smaller than the destination type.
5944
5945Semantics:
5946""""""""""
5947
5948The '``fpext``' instruction extends the ``value`` from a smaller
5949:ref:`floating point <t_floating>` type to a larger :ref:`floating
5950point <t_floating>` type. The ``fpext`` cannot be used to make a
5951*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5952*no-op cast* for a floating point cast.
5953
5954Example:
5955""""""""
5956
5957.. code-block:: llvm
5958
5959 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5960 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5961
5962'``fptoui .. to``' Instruction
5963^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5964
5965Syntax:
5966"""""""
5967
5968::
5969
5970 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5971
5972Overview:
5973"""""""""
5974
5975The '``fptoui``' converts a floating point ``value`` to its unsigned
5976integer equivalent of type ``ty2``.
5977
5978Arguments:
5979""""""""""
5980
5981The '``fptoui``' instruction takes a value to cast, which must be a
5982scalar or vector :ref:`floating point <t_floating>` value, and a type to
5983cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5984``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5985type with the same number of elements as ``ty``
5986
5987Semantics:
5988""""""""""
5989
5990The '``fptoui``' instruction converts its :ref:`floating
5991point <t_floating>` operand into the nearest (rounding towards zero)
5992unsigned integer value. If the value cannot fit in ``ty2``, the results
5993are undefined.
5994
5995Example:
5996""""""""
5997
5998.. code-block:: llvm
5999
6000 %X = fptoui double 123.0 to i32 ; yields i32:123
6001 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
6002 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
6003
6004'``fptosi .. to``' Instruction
6005^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6006
6007Syntax:
6008"""""""
6009
6010::
6011
6012 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
6013
6014Overview:
6015"""""""""
6016
6017The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
6018``value`` to type ``ty2``.
6019
6020Arguments:
6021""""""""""
6022
6023The '``fptosi``' instruction takes a value to cast, which must be a
6024scalar or vector :ref:`floating point <t_floating>` value, and a type to
6025cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6026``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6027type with the same number of elements as ``ty``
6028
6029Semantics:
6030""""""""""
6031
6032The '``fptosi``' instruction converts its :ref:`floating
6033point <t_floating>` operand into the nearest (rounding towards zero)
6034signed integer value. If the value cannot fit in ``ty2``, the results
6035are undefined.
6036
6037Example:
6038""""""""
6039
6040.. code-block:: llvm
6041
6042 %X = fptosi double -123.0 to i32 ; yields i32:-123
6043 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
6044 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
6045
6046'``uitofp .. to``' Instruction
6047^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6048
6049Syntax:
6050"""""""
6051
6052::
6053
6054 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
6055
6056Overview:
6057"""""""""
6058
6059The '``uitofp``' instruction regards ``value`` as an unsigned integer
6060and converts that value to the ``ty2`` type.
6061
6062Arguments:
6063""""""""""
6064
6065The '``uitofp``' instruction takes a value to cast, which must be a
6066scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6067``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6068``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6069type with the same number of elements as ``ty``
6070
6071Semantics:
6072""""""""""
6073
6074The '``uitofp``' instruction interprets its operand as an unsigned
6075integer quantity and converts it to the corresponding floating point
6076value. If the value cannot fit in the floating point value, the results
6077are undefined.
6078
6079Example:
6080""""""""
6081
6082.. code-block:: llvm
6083
6084 %X = uitofp i32 257 to float ; yields float:257.0
6085 %Y = uitofp i8 -1 to double ; yields double:255.0
6086
6087'``sitofp .. to``' Instruction
6088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6089
6090Syntax:
6091"""""""
6092
6093::
6094
6095 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
6096
6097Overview:
6098"""""""""
6099
6100The '``sitofp``' instruction regards ``value`` as a signed integer and
6101converts that value to the ``ty2`` type.
6102
6103Arguments:
6104""""""""""
6105
6106The '``sitofp``' instruction takes a value to cast, which must be a
6107scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6108``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6109``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6110type with the same number of elements as ``ty``
6111
6112Semantics:
6113""""""""""
6114
6115The '``sitofp``' instruction interprets its operand as a signed integer
6116quantity and converts it to the corresponding floating point value. If
6117the value cannot fit in the floating point value, the results are
6118undefined.
6119
6120Example:
6121""""""""
6122
6123.. code-block:: llvm
6124
6125 %X = sitofp i32 257 to float ; yields float:257.0
6126 %Y = sitofp i8 -1 to double ; yields double:-1.0
6127
6128.. _i_ptrtoint:
6129
6130'``ptrtoint .. to``' Instruction
6131^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6132
6133Syntax:
6134"""""""
6135
6136::
6137
6138 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
6139
6140Overview:
6141"""""""""
6142
6143The '``ptrtoint``' instruction converts the pointer or a vector of
6144pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6145
6146Arguments:
6147""""""""""
6148
6149The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
6150a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
6151type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6152a vector of integers type.
6153
6154Semantics:
6155""""""""""
6156
6157The '``ptrtoint``' instruction converts ``value`` to integer type
6158``ty2`` by interpreting the pointer value as an integer and either
6159truncating or zero extending that value to the size of the integer type.
6160If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6161``value`` is larger than ``ty2`` then a truncation is done. If they are
6162the same size, then nothing is done (*no-op cast*) other than a type
6163change.
6164
6165Example:
6166""""""""
6167
6168.. code-block:: llvm
6169
6170 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
6171 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
6172 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6173
6174.. _i_inttoptr:
6175
6176'``inttoptr .. to``' Instruction
6177^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6178
6179Syntax:
6180"""""""
6181
6182::
6183
6184 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
6185
6186Overview:
6187"""""""""
6188
6189The '``inttoptr``' instruction converts an integer ``value`` to a
6190pointer type, ``ty2``.
6191
6192Arguments:
6193""""""""""
6194
6195The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6196cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6197type.
6198
6199Semantics:
6200""""""""""
6201
6202The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6203applying either a zero extension or a truncation depending on the size
6204of the integer ``value``. If ``value`` is larger than the size of a
6205pointer then a truncation is done. If ``value`` is smaller than the size
6206of a pointer then a zero extension is done. If they are the same size,
6207nothing is done (*no-op cast*).
6208
6209Example:
6210""""""""
6211
6212.. code-block:: llvm
6213
6214 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6215 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6216 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6217 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6218
6219.. _i_bitcast:
6220
6221'``bitcast .. to``' Instruction
6222^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6223
6224Syntax:
6225"""""""
6226
6227::
6228
6229 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6230
6231Overview:
6232"""""""""
6233
6234The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6235changing any bits.
6236
6237Arguments:
6238""""""""""
6239
6240The '``bitcast``' instruction takes a value to cast, which must be a
6241non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006242also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6243bit sizes of ``value`` and the destination type, ``ty2``, must be
6244identical. If the source type is a pointer, the destination type must
6245also be a pointer of the same size. This instruction supports bitwise
6246conversion of vectors to integers and to vectors of other types (as
6247long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006248
6249Semantics:
6250""""""""""
6251
Matt Arsenault24b49c42013-07-31 17:49:08 +00006252The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6253is always a *no-op cast* because no bits change with this
6254conversion. The conversion is done as if the ``value`` had been stored
6255to memory and read back as type ``ty2``. Pointer (or vector of
6256pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006257pointers) types with the same address space through this instruction.
6258To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6259or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006260
6261Example:
6262""""""""
6263
6264.. code-block:: llvm
6265
6266 %X = bitcast i8 255 to i8 ; yields i8 :-1
6267 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6268 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6269 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6270
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006271.. _i_addrspacecast:
6272
6273'``addrspacecast .. to``' Instruction
6274^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6275
6276Syntax:
6277"""""""
6278
6279::
6280
6281 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6282
6283Overview:
6284"""""""""
6285
6286The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6287address space ``n`` to type ``pty2`` in address space ``m``.
6288
6289Arguments:
6290""""""""""
6291
6292The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6293to cast and a pointer type to cast it to, which must have a different
6294address space.
6295
6296Semantics:
6297""""""""""
6298
6299The '``addrspacecast``' instruction converts the pointer value
6300``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006301value modification, depending on the target and the address space
6302pair. Pointer conversions within the same address space must be
6303performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006304conversion is legal then both result and operand refer to the same memory
6305location.
6306
6307Example:
6308""""""""
6309
6310.. code-block:: llvm
6311
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006312 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6313 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6314 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006315
Sean Silvab084af42012-12-07 10:36:55 +00006316.. _otherops:
6317
6318Other Operations
6319----------------
6320
6321The instructions in this category are the "miscellaneous" instructions,
6322which defy better classification.
6323
6324.. _i_icmp:
6325
6326'``icmp``' Instruction
6327^^^^^^^^^^^^^^^^^^^^^^
6328
6329Syntax:
6330"""""""
6331
6332::
6333
Tim Northover675a0962014-06-13 14:24:23 +00006334 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006335
6336Overview:
6337"""""""""
6338
6339The '``icmp``' instruction returns a boolean value or a vector of
6340boolean values based on comparison of its two integer, integer vector,
6341pointer, or pointer vector operands.
6342
6343Arguments:
6344""""""""""
6345
6346The '``icmp``' instruction takes three operands. The first operand is
6347the condition code indicating the kind of comparison to perform. It is
6348not a value, just a keyword. The possible condition code are:
6349
6350#. ``eq``: equal
6351#. ``ne``: not equal
6352#. ``ugt``: unsigned greater than
6353#. ``uge``: unsigned greater or equal
6354#. ``ult``: unsigned less than
6355#. ``ule``: unsigned less or equal
6356#. ``sgt``: signed greater than
6357#. ``sge``: signed greater or equal
6358#. ``slt``: signed less than
6359#. ``sle``: signed less or equal
6360
6361The remaining two arguments must be :ref:`integer <t_integer>` or
6362:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6363must also be identical types.
6364
6365Semantics:
6366""""""""""
6367
6368The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6369code given as ``cond``. The comparison performed always yields either an
6370:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6371
6372#. ``eq``: yields ``true`` if the operands are equal, ``false``
6373 otherwise. No sign interpretation is necessary or performed.
6374#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6375 otherwise. No sign interpretation is necessary or performed.
6376#. ``ugt``: interprets the operands as unsigned values and yields
6377 ``true`` if ``op1`` is greater than ``op2``.
6378#. ``uge``: interprets the operands as unsigned values and yields
6379 ``true`` if ``op1`` is greater than or equal to ``op2``.
6380#. ``ult``: interprets the operands as unsigned values and yields
6381 ``true`` if ``op1`` is less than ``op2``.
6382#. ``ule``: interprets the operands as unsigned values and yields
6383 ``true`` if ``op1`` is less than or equal to ``op2``.
6384#. ``sgt``: interprets the operands as signed values and yields ``true``
6385 if ``op1`` is greater than ``op2``.
6386#. ``sge``: interprets the operands as signed values and yields ``true``
6387 if ``op1`` is greater than or equal to ``op2``.
6388#. ``slt``: interprets the operands as signed values and yields ``true``
6389 if ``op1`` is less than ``op2``.
6390#. ``sle``: interprets the operands as signed values and yields ``true``
6391 if ``op1`` is less than or equal to ``op2``.
6392
6393If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6394are compared as if they were integers.
6395
6396If the operands are integer vectors, then they are compared element by
6397element. The result is an ``i1`` vector with the same number of elements
6398as the values being compared. Otherwise, the result is an ``i1``.
6399
6400Example:
6401""""""""
6402
6403.. code-block:: llvm
6404
6405 <result> = icmp eq i32 4, 5 ; yields: result=false
6406 <result> = icmp ne float* %X, %X ; yields: result=false
6407 <result> = icmp ult i16 4, 5 ; yields: result=true
6408 <result> = icmp sgt i16 4, 5 ; yields: result=false
6409 <result> = icmp ule i16 -4, 5 ; yields: result=false
6410 <result> = icmp sge i16 4, 5 ; yields: result=false
6411
6412Note that the code generator does not yet support vector types with the
6413``icmp`` instruction.
6414
6415.. _i_fcmp:
6416
6417'``fcmp``' Instruction
6418^^^^^^^^^^^^^^^^^^^^^^
6419
6420Syntax:
6421"""""""
6422
6423::
6424
Tim Northover675a0962014-06-13 14:24:23 +00006425 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006426
6427Overview:
6428"""""""""
6429
6430The '``fcmp``' instruction returns a boolean value or vector of boolean
6431values based on comparison of its operands.
6432
6433If the operands are floating point scalars, then the result type is a
6434boolean (:ref:`i1 <t_integer>`).
6435
6436If the operands are floating point vectors, then the result type is a
6437vector of boolean with the same number of elements as the operands being
6438compared.
6439
6440Arguments:
6441""""""""""
6442
6443The '``fcmp``' instruction takes three operands. The first operand is
6444the condition code indicating the kind of comparison to perform. It is
6445not a value, just a keyword. The possible condition code are:
6446
6447#. ``false``: no comparison, always returns false
6448#. ``oeq``: ordered and equal
6449#. ``ogt``: ordered and greater than
6450#. ``oge``: ordered and greater than or equal
6451#. ``olt``: ordered and less than
6452#. ``ole``: ordered and less than or equal
6453#. ``one``: ordered and not equal
6454#. ``ord``: ordered (no nans)
6455#. ``ueq``: unordered or equal
6456#. ``ugt``: unordered or greater than
6457#. ``uge``: unordered or greater than or equal
6458#. ``ult``: unordered or less than
6459#. ``ule``: unordered or less than or equal
6460#. ``une``: unordered or not equal
6461#. ``uno``: unordered (either nans)
6462#. ``true``: no comparison, always returns true
6463
6464*Ordered* means that neither operand is a QNAN while *unordered* means
6465that either operand may be a QNAN.
6466
6467Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6468point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6469type. They must have identical types.
6470
6471Semantics:
6472""""""""""
6473
6474The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6475condition code given as ``cond``. If the operands are vectors, then the
6476vectors are compared element by element. Each comparison performed
6477always yields an :ref:`i1 <t_integer>` result, as follows:
6478
6479#. ``false``: always yields ``false``, regardless of operands.
6480#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6481 is equal to ``op2``.
6482#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6483 is greater than ``op2``.
6484#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6485 is greater than or equal to ``op2``.
6486#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6487 is less than ``op2``.
6488#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6489 is less than or equal to ``op2``.
6490#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6491 is not equal to ``op2``.
6492#. ``ord``: yields ``true`` if both operands are not a QNAN.
6493#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6494 equal to ``op2``.
6495#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6496 greater than ``op2``.
6497#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6498 greater than or equal to ``op2``.
6499#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6500 less than ``op2``.
6501#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6502 less than or equal to ``op2``.
6503#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6504 not equal to ``op2``.
6505#. ``uno``: yields ``true`` if either operand is a QNAN.
6506#. ``true``: always yields ``true``, regardless of operands.
6507
6508Example:
6509""""""""
6510
6511.. code-block:: llvm
6512
6513 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6514 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6515 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6516 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6517
6518Note that the code generator does not yet support vector types with the
6519``fcmp`` instruction.
6520
6521.. _i_phi:
6522
6523'``phi``' Instruction
6524^^^^^^^^^^^^^^^^^^^^^
6525
6526Syntax:
6527"""""""
6528
6529::
6530
6531 <result> = phi <ty> [ <val0>, <label0>], ...
6532
6533Overview:
6534"""""""""
6535
6536The '``phi``' instruction is used to implement the φ node in the SSA
6537graph representing the function.
6538
6539Arguments:
6540""""""""""
6541
6542The type of the incoming values is specified with the first type field.
6543After this, the '``phi``' instruction takes a list of pairs as
6544arguments, with one pair for each predecessor basic block of the current
6545block. Only values of :ref:`first class <t_firstclass>` type may be used as
6546the value arguments to the PHI node. Only labels may be used as the
6547label arguments.
6548
6549There must be no non-phi instructions between the start of a basic block
6550and the PHI instructions: i.e. PHI instructions must be first in a basic
6551block.
6552
6553For the purposes of the SSA form, the use of each incoming value is
6554deemed to occur on the edge from the corresponding predecessor block to
6555the current block (but after any definition of an '``invoke``'
6556instruction's return value on the same edge).
6557
6558Semantics:
6559""""""""""
6560
6561At runtime, the '``phi``' instruction logically takes on the value
6562specified by the pair corresponding to the predecessor basic block that
6563executed just prior to the current block.
6564
6565Example:
6566""""""""
6567
6568.. code-block:: llvm
6569
6570 Loop: ; Infinite loop that counts from 0 on up...
6571 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6572 %nextindvar = add i32 %indvar, 1
6573 br label %Loop
6574
6575.. _i_select:
6576
6577'``select``' Instruction
6578^^^^^^^^^^^^^^^^^^^^^^^^
6579
6580Syntax:
6581"""""""
6582
6583::
6584
6585 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6586
6587 selty is either i1 or {<N x i1>}
6588
6589Overview:
6590"""""""""
6591
6592The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006593condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006594
6595Arguments:
6596""""""""""
6597
6598The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6599values indicating the condition, and two values of the same :ref:`first
6600class <t_firstclass>` type. If the val1/val2 are vectors and the
6601condition is a scalar, then entire vectors are selected, not individual
6602elements.
6603
6604Semantics:
6605""""""""""
6606
6607If the condition is an i1 and it evaluates to 1, the instruction returns
6608the first value argument; otherwise, it returns the second value
6609argument.
6610
6611If the condition is a vector of i1, then the value arguments must be
6612vectors of the same size, and the selection is done element by element.
6613
6614Example:
6615""""""""
6616
6617.. code-block:: llvm
6618
6619 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6620
6621.. _i_call:
6622
6623'``call``' Instruction
6624^^^^^^^^^^^^^^^^^^^^^^
6625
6626Syntax:
6627"""""""
6628
6629::
6630
Reid Kleckner5772b772014-04-24 20:14:34 +00006631 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006632
6633Overview:
6634"""""""""
6635
6636The '``call``' instruction represents a simple function call.
6637
6638Arguments:
6639""""""""""
6640
6641This instruction requires several arguments:
6642
Reid Kleckner5772b772014-04-24 20:14:34 +00006643#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6644 should perform tail call optimization. The ``tail`` marker is a hint that
6645 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6646 means that the call must be tail call optimized in order for the program to
6647 be correct. The ``musttail`` marker provides these guarantees:
6648
6649 #. The call will not cause unbounded stack growth if it is part of a
6650 recursive cycle in the call graph.
6651 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6652 forwarded in place.
6653
6654 Both markers imply that the callee does not access allocas or varargs from
6655 the caller. Calls marked ``musttail`` must obey the following additional
6656 rules:
6657
6658 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6659 or a pointer bitcast followed by a ret instruction.
6660 - The ret instruction must return the (possibly bitcasted) value
6661 produced by the call or void.
6662 - The caller and callee prototypes must match. Pointer types of
6663 parameters or return types may differ in pointee type, but not
6664 in address space.
6665 - The calling conventions of the caller and callee must match.
6666 - All ABI-impacting function attributes, such as sret, byval, inreg,
6667 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00006668 - The callee must be varargs iff the caller is varargs. Bitcasting a
6669 non-varargs function to the appropriate varargs type is legal so
6670 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00006671
6672 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6673 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006674
6675 - Caller and callee both have the calling convention ``fastcc``.
6676 - The call is in tail position (ret immediately follows call and ret
6677 uses value of call or is void).
6678 - Option ``-tailcallopt`` is enabled, or
6679 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00006680 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00006681 met. <CodeGenerator.html#tailcallopt>`_
6682
6683#. The optional "cconv" marker indicates which :ref:`calling
6684 convention <callingconv>` the call should use. If none is
6685 specified, the call defaults to using C calling conventions. The
6686 calling convention of the call must match the calling convention of
6687 the target function, or else the behavior is undefined.
6688#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6689 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6690 are valid here.
6691#. '``ty``': the type of the call instruction itself which is also the
6692 type of the return value. Functions that return no value are marked
6693 ``void``.
6694#. '``fnty``': shall be the signature of the pointer to function value
6695 being invoked. The argument types must match the types implied by
6696 this signature. This type can be omitted if the function is not
6697 varargs and if the function type does not return a pointer to a
6698 function.
6699#. '``fnptrval``': An LLVM value containing a pointer to a function to
6700 be invoked. In most cases, this is a direct function invocation, but
6701 indirect ``call``'s are just as possible, calling an arbitrary pointer
6702 to function value.
6703#. '``function args``': argument list whose types match the function
6704 signature argument types and parameter attributes. All arguments must
6705 be of :ref:`first class <t_firstclass>` type. If the function signature
6706 indicates the function accepts a variable number of arguments, the
6707 extra arguments can be specified.
6708#. The optional :ref:`function attributes <fnattrs>` list. Only
6709 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6710 attributes are valid here.
6711
6712Semantics:
6713""""""""""
6714
6715The '``call``' instruction is used to cause control flow to transfer to
6716a specified function, with its incoming arguments bound to the specified
6717values. Upon a '``ret``' instruction in the called function, control
6718flow continues with the instruction after the function call, and the
6719return value of the function is bound to the result argument.
6720
6721Example:
6722""""""""
6723
6724.. code-block:: llvm
6725
6726 %retval = call i32 @test(i32 %argc)
6727 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6728 %X = tail call i32 @foo() ; yields i32
6729 %Y = tail call fastcc i32 @foo() ; yields i32
6730 call void %foo(i8 97 signext)
6731
6732 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00006733 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00006734 %gr = extractvalue %struct.A %r, 0 ; yields i32
6735 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6736 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6737 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6738
6739llvm treats calls to some functions with names and arguments that match
6740the standard C99 library as being the C99 library functions, and may
6741perform optimizations or generate code for them under that assumption.
6742This is something we'd like to change in the future to provide better
6743support for freestanding environments and non-C-based languages.
6744
6745.. _i_va_arg:
6746
6747'``va_arg``' Instruction
6748^^^^^^^^^^^^^^^^^^^^^^^^
6749
6750Syntax:
6751"""""""
6752
6753::
6754
6755 <resultval> = va_arg <va_list*> <arglist>, <argty>
6756
6757Overview:
6758"""""""""
6759
6760The '``va_arg``' instruction is used to access arguments passed through
6761the "variable argument" area of a function call. It is used to implement
6762the ``va_arg`` macro in C.
6763
6764Arguments:
6765""""""""""
6766
6767This instruction takes a ``va_list*`` value and the type of the
6768argument. It returns a value of the specified argument type and
6769increments the ``va_list`` to point to the next argument. The actual
6770type of ``va_list`` is target specific.
6771
6772Semantics:
6773""""""""""
6774
6775The '``va_arg``' instruction loads an argument of the specified type
6776from the specified ``va_list`` and causes the ``va_list`` to point to
6777the next argument. For more information, see the variable argument
6778handling :ref:`Intrinsic Functions <int_varargs>`.
6779
6780It is legal for this instruction to be called in a function which does
6781not take a variable number of arguments, for example, the ``vfprintf``
6782function.
6783
6784``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6785function <intrinsics>` because it takes a type as an argument.
6786
6787Example:
6788""""""""
6789
6790See the :ref:`variable argument processing <int_varargs>` section.
6791
6792Note that the code generator does not yet fully support va\_arg on many
6793targets. Also, it does not currently support va\_arg with aggregate
6794types on any target.
6795
6796.. _i_landingpad:
6797
6798'``landingpad``' Instruction
6799^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6800
6801Syntax:
6802"""""""
6803
6804::
6805
6806 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6807 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6808
6809 <clause> := catch <type> <value>
6810 <clause> := filter <array constant type> <array constant>
6811
6812Overview:
6813"""""""""
6814
6815The '``landingpad``' instruction is used by `LLVM's exception handling
6816system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006817is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006818code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6819defines values supplied by the personality function (``pers_fn``) upon
6820re-entry to the function. The ``resultval`` has the type ``resultty``.
6821
6822Arguments:
6823""""""""""
6824
6825This instruction takes a ``pers_fn`` value. This is the personality
6826function associated with the unwinding mechanism. The optional
6827``cleanup`` flag indicates that the landing pad block is a cleanup.
6828
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006829A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006830contains the global variable representing the "type" that may be caught
6831or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6832clause takes an array constant as its argument. Use
6833"``[0 x i8**] undef``" for a filter which cannot throw. The
6834'``landingpad``' instruction must contain *at least* one ``clause`` or
6835the ``cleanup`` flag.
6836
6837Semantics:
6838""""""""""
6839
6840The '``landingpad``' instruction defines the values which are set by the
6841personality function (``pers_fn``) upon re-entry to the function, and
6842therefore the "result type" of the ``landingpad`` instruction. As with
6843calling conventions, how the personality function results are
6844represented in LLVM IR is target specific.
6845
6846The clauses are applied in order from top to bottom. If two
6847``landingpad`` instructions are merged together through inlining, the
6848clauses from the calling function are appended to the list of clauses.
6849When the call stack is being unwound due to an exception being thrown,
6850the exception is compared against each ``clause`` in turn. If it doesn't
6851match any of the clauses, and the ``cleanup`` flag is not set, then
6852unwinding continues further up the call stack.
6853
6854The ``landingpad`` instruction has several restrictions:
6855
6856- A landing pad block is a basic block which is the unwind destination
6857 of an '``invoke``' instruction.
6858- A landing pad block must have a '``landingpad``' instruction as its
6859 first non-PHI instruction.
6860- There can be only one '``landingpad``' instruction within the landing
6861 pad block.
6862- A basic block that is not a landing pad block may not include a
6863 '``landingpad``' instruction.
6864- All '``landingpad``' instructions in a function must have the same
6865 personality function.
6866
6867Example:
6868""""""""
6869
6870.. code-block:: llvm
6871
6872 ;; A landing pad which can catch an integer.
6873 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6874 catch i8** @_ZTIi
6875 ;; A landing pad that is a cleanup.
6876 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6877 cleanup
6878 ;; A landing pad which can catch an integer and can only throw a double.
6879 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6880 catch i8** @_ZTIi
6881 filter [1 x i8**] [@_ZTId]
6882
6883.. _intrinsics:
6884
6885Intrinsic Functions
6886===================
6887
6888LLVM supports the notion of an "intrinsic function". These functions
6889have well known names and semantics and are required to follow certain
6890restrictions. Overall, these intrinsics represent an extension mechanism
6891for the LLVM language that does not require changing all of the
6892transformations in LLVM when adding to the language (or the bitcode
6893reader/writer, the parser, etc...).
6894
6895Intrinsic function names must all start with an "``llvm.``" prefix. This
6896prefix is reserved in LLVM for intrinsic names; thus, function names may
6897not begin with this prefix. Intrinsic functions must always be external
6898functions: you cannot define the body of intrinsic functions. Intrinsic
6899functions may only be used in call or invoke instructions: it is illegal
6900to take the address of an intrinsic function. Additionally, because
6901intrinsic functions are part of the LLVM language, it is required if any
6902are added that they be documented here.
6903
6904Some intrinsic functions can be overloaded, i.e., the intrinsic
6905represents a family of functions that perform the same operation but on
6906different data types. Because LLVM can represent over 8 million
6907different integer types, overloading is used commonly to allow an
6908intrinsic function to operate on any integer type. One or more of the
6909argument types or the result type can be overloaded to accept any
6910integer type. Argument types may also be defined as exactly matching a
6911previous argument's type or the result type. This allows an intrinsic
6912function which accepts multiple arguments, but needs all of them to be
6913of the same type, to only be overloaded with respect to a single
6914argument or the result.
6915
6916Overloaded intrinsics will have the names of its overloaded argument
6917types encoded into its function name, each preceded by a period. Only
6918those types which are overloaded result in a name suffix. Arguments
6919whose type is matched against another type do not. For example, the
6920``llvm.ctpop`` function can take an integer of any width and returns an
6921integer of exactly the same integer width. This leads to a family of
6922functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6923``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6924overloaded, and only one type suffix is required. Because the argument's
6925type is matched against the return type, it does not require its own
6926name suffix.
6927
6928To learn how to add an intrinsic function, please see the `Extending
6929LLVM Guide <ExtendingLLVM.html>`_.
6930
6931.. _int_varargs:
6932
6933Variable Argument Handling Intrinsics
6934-------------------------------------
6935
6936Variable argument support is defined in LLVM with the
6937:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6938functions. These functions are related to the similarly named macros
6939defined in the ``<stdarg.h>`` header file.
6940
6941All of these functions operate on arguments that use a target-specific
6942value type "``va_list``". The LLVM assembly language reference manual
6943does not define what this type is, so all transformations should be
6944prepared to handle these functions regardless of the type used.
6945
6946This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6947variable argument handling intrinsic functions are used.
6948
6949.. code-block:: llvm
6950
Tim Northoverab60bb92014-11-02 01:21:51 +00006951 ; This struct is different for every platform. For most platforms,
6952 ; it is merely an i8*.
6953 %struct.va_list = type { i8* }
6954
6955 ; For Unix x86_64 platforms, va_list is the following struct:
6956 ; %struct.va_list = type { i32, i32, i8*, i8* }
6957
Sean Silvab084af42012-12-07 10:36:55 +00006958 define i32 @test(i32 %X, ...) {
6959 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00006960 %ap = alloca %struct.va_list
6961 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00006962 call void @llvm.va_start(i8* %ap2)
6963
6964 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00006965 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00006966
6967 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6968 %aq = alloca i8*
6969 %aq2 = bitcast i8** %aq to i8*
6970 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6971 call void @llvm.va_end(i8* %aq2)
6972
6973 ; Stop processing of arguments.
6974 call void @llvm.va_end(i8* %ap2)
6975 ret i32 %tmp
6976 }
6977
6978 declare void @llvm.va_start(i8*)
6979 declare void @llvm.va_copy(i8*, i8*)
6980 declare void @llvm.va_end(i8*)
6981
6982.. _int_va_start:
6983
6984'``llvm.va_start``' Intrinsic
6985^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6986
6987Syntax:
6988"""""""
6989
6990::
6991
Nick Lewycky04f6de02013-09-11 22:04:52 +00006992 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00006993
6994Overview:
6995"""""""""
6996
6997The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6998subsequent use by ``va_arg``.
6999
7000Arguments:
7001""""""""""
7002
7003The argument is a pointer to a ``va_list`` element to initialize.
7004
7005Semantics:
7006""""""""""
7007
7008The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
7009available in C. In a target-dependent way, it initializes the
7010``va_list`` element to which the argument points, so that the next call
7011to ``va_arg`` will produce the first variable argument passed to the
7012function. Unlike the C ``va_start`` macro, this intrinsic does not need
7013to know the last argument of the function as the compiler can figure
7014that out.
7015
7016'``llvm.va_end``' Intrinsic
7017^^^^^^^^^^^^^^^^^^^^^^^^^^^
7018
7019Syntax:
7020"""""""
7021
7022::
7023
7024 declare void @llvm.va_end(i8* <arglist>)
7025
7026Overview:
7027"""""""""
7028
7029The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
7030initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
7031
7032Arguments:
7033""""""""""
7034
7035The argument is a pointer to a ``va_list`` to destroy.
7036
7037Semantics:
7038""""""""""
7039
7040The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
7041available in C. In a target-dependent way, it destroys the ``va_list``
7042element to which the argument points. Calls to
7043:ref:`llvm.va_start <int_va_start>` and
7044:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
7045``llvm.va_end``.
7046
7047.. _int_va_copy:
7048
7049'``llvm.va_copy``' Intrinsic
7050^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7051
7052Syntax:
7053"""""""
7054
7055::
7056
7057 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
7058
7059Overview:
7060"""""""""
7061
7062The '``llvm.va_copy``' intrinsic copies the current argument position
7063from the source argument list to the destination argument list.
7064
7065Arguments:
7066""""""""""
7067
7068The first argument is a pointer to a ``va_list`` element to initialize.
7069The second argument is a pointer to a ``va_list`` element to copy from.
7070
7071Semantics:
7072""""""""""
7073
7074The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
7075available in C. In a target-dependent way, it copies the source
7076``va_list`` element into the destination ``va_list`` element. This
7077intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
7078arbitrarily complex and require, for example, memory allocation.
7079
7080Accurate Garbage Collection Intrinsics
7081--------------------------------------
7082
7083LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
7084(GC) requires the implementation and generation of these intrinsics.
7085These intrinsics allow identification of :ref:`GC roots on the
7086stack <int_gcroot>`, as well as garbage collector implementations that
7087require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
7088Front-ends for type-safe garbage collected languages should generate
7089these intrinsics to make use of the LLVM garbage collectors. For more
7090details, see `Accurate Garbage Collection with
7091LLVM <GarbageCollection.html>`_.
7092
7093The garbage collection intrinsics only operate on objects in the generic
7094address space (address space zero).
7095
7096.. _int_gcroot:
7097
7098'``llvm.gcroot``' Intrinsic
7099^^^^^^^^^^^^^^^^^^^^^^^^^^^
7100
7101Syntax:
7102"""""""
7103
7104::
7105
7106 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
7107
7108Overview:
7109"""""""""
7110
7111The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
7112the code generator, and allows some metadata to be associated with it.
7113
7114Arguments:
7115""""""""""
7116
7117The first argument specifies the address of a stack object that contains
7118the root pointer. The second pointer (which must be either a constant or
7119a global value address) contains the meta-data to be associated with the
7120root.
7121
7122Semantics:
7123""""""""""
7124
7125At runtime, a call to this intrinsic stores a null pointer into the
7126"ptrloc" location. At compile-time, the code generator generates
7127information to allow the runtime to find the pointer at GC safe points.
7128The '``llvm.gcroot``' intrinsic may only be used in a function which
7129:ref:`specifies a GC algorithm <gc>`.
7130
7131.. _int_gcread:
7132
7133'``llvm.gcread``' Intrinsic
7134^^^^^^^^^^^^^^^^^^^^^^^^^^^
7135
7136Syntax:
7137"""""""
7138
7139::
7140
7141 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7142
7143Overview:
7144"""""""""
7145
7146The '``llvm.gcread``' intrinsic identifies reads of references from heap
7147locations, allowing garbage collector implementations that require read
7148barriers.
7149
7150Arguments:
7151""""""""""
7152
7153The second argument is the address to read from, which should be an
7154address allocated from the garbage collector. The first object is a
7155pointer to the start of the referenced object, if needed by the language
7156runtime (otherwise null).
7157
7158Semantics:
7159""""""""""
7160
7161The '``llvm.gcread``' intrinsic has the same semantics as a load
7162instruction, but may be replaced with substantially more complex code by
7163the garbage collector runtime, as needed. The '``llvm.gcread``'
7164intrinsic may only be used in a function which :ref:`specifies a GC
7165algorithm <gc>`.
7166
7167.. _int_gcwrite:
7168
7169'``llvm.gcwrite``' Intrinsic
7170^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7171
7172Syntax:
7173"""""""
7174
7175::
7176
7177 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7178
7179Overview:
7180"""""""""
7181
7182The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7183locations, allowing garbage collector implementations that require write
7184barriers (such as generational or reference counting collectors).
7185
7186Arguments:
7187""""""""""
7188
7189The first argument is the reference to store, the second is the start of
7190the object to store it to, and the third is the address of the field of
7191Obj to store to. If the runtime does not require a pointer to the
7192object, Obj may be null.
7193
7194Semantics:
7195""""""""""
7196
7197The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7198instruction, but may be replaced with substantially more complex code by
7199the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7200intrinsic may only be used in a function which :ref:`specifies a GC
7201algorithm <gc>`.
7202
7203Code Generator Intrinsics
7204-------------------------
7205
7206These intrinsics are provided by LLVM to expose special features that
7207may only be implemented with code generator support.
7208
7209'``llvm.returnaddress``' Intrinsic
7210^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7211
7212Syntax:
7213"""""""
7214
7215::
7216
7217 declare i8 *@llvm.returnaddress(i32 <level>)
7218
7219Overview:
7220"""""""""
7221
7222The '``llvm.returnaddress``' intrinsic attempts to compute a
7223target-specific value indicating the return address of the current
7224function or one of its callers.
7225
7226Arguments:
7227""""""""""
7228
7229The argument to this intrinsic indicates which function to return the
7230address for. Zero indicates the calling function, one indicates its
7231caller, etc. The argument is **required** to be a constant integer
7232value.
7233
7234Semantics:
7235""""""""""
7236
7237The '``llvm.returnaddress``' intrinsic either returns a pointer
7238indicating the return address of the specified call frame, or zero if it
7239cannot be identified. The value returned by this intrinsic is likely to
7240be incorrect or 0 for arguments other than zero, so it should only be
7241used for debugging purposes.
7242
7243Note that calling this intrinsic does not prevent function inlining or
7244other aggressive transformations, so the value returned may not be that
7245of the obvious source-language caller.
7246
7247'``llvm.frameaddress``' Intrinsic
7248^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7249
7250Syntax:
7251"""""""
7252
7253::
7254
7255 declare i8* @llvm.frameaddress(i32 <level>)
7256
7257Overview:
7258"""""""""
7259
7260The '``llvm.frameaddress``' intrinsic attempts to return the
7261target-specific frame pointer value for the specified stack frame.
7262
7263Arguments:
7264""""""""""
7265
7266The argument to this intrinsic indicates which function to return the
7267frame pointer for. Zero indicates the calling function, one indicates
7268its caller, etc. The argument is **required** to be a constant integer
7269value.
7270
7271Semantics:
7272""""""""""
7273
7274The '``llvm.frameaddress``' intrinsic either returns a pointer
7275indicating the frame address of the specified call frame, or zero if it
7276cannot be identified. The value returned by this intrinsic is likely to
7277be incorrect or 0 for arguments other than zero, so it should only be
7278used for debugging purposes.
7279
7280Note that calling this intrinsic does not prevent function inlining or
7281other aggressive transformations, so the value returned may not be that
7282of the obvious source-language caller.
7283
Renato Golinc7aea402014-05-06 16:51:25 +00007284.. _int_read_register:
7285.. _int_write_register:
7286
7287'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7288^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7289
7290Syntax:
7291"""""""
7292
7293::
7294
7295 declare i32 @llvm.read_register.i32(metadata)
7296 declare i64 @llvm.read_register.i64(metadata)
7297 declare void @llvm.write_register.i32(metadata, i32 @value)
7298 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00007299 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00007300
7301Overview:
7302"""""""""
7303
7304The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7305provides access to the named register. The register must be valid on
7306the architecture being compiled to. The type needs to be compatible
7307with the register being read.
7308
7309Semantics:
7310""""""""""
7311
7312The '``llvm.read_register``' intrinsic returns the current value of the
7313register, where possible. The '``llvm.write_register``' intrinsic sets
7314the current value of the register, where possible.
7315
7316This is useful to implement named register global variables that need
7317to always be mapped to a specific register, as is common practice on
7318bare-metal programs including OS kernels.
7319
7320The compiler doesn't check for register availability or use of the used
7321register in surrounding code, including inline assembly. Because of that,
7322allocatable registers are not supported.
7323
7324Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007325architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007326work is needed to support other registers and even more so, allocatable
7327registers.
7328
Sean Silvab084af42012-12-07 10:36:55 +00007329.. _int_stacksave:
7330
7331'``llvm.stacksave``' Intrinsic
7332^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7333
7334Syntax:
7335"""""""
7336
7337::
7338
7339 declare i8* @llvm.stacksave()
7340
7341Overview:
7342"""""""""
7343
7344The '``llvm.stacksave``' intrinsic is used to remember the current state
7345of the function stack, for use with
7346:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7347implementing language features like scoped automatic variable sized
7348arrays in C99.
7349
7350Semantics:
7351""""""""""
7352
7353This intrinsic returns a opaque pointer value that can be passed to
7354:ref:`llvm.stackrestore <int_stackrestore>`. When an
7355``llvm.stackrestore`` intrinsic is executed with a value saved from
7356``llvm.stacksave``, it effectively restores the state of the stack to
7357the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7358practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7359were allocated after the ``llvm.stacksave`` was executed.
7360
7361.. _int_stackrestore:
7362
7363'``llvm.stackrestore``' Intrinsic
7364^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7365
7366Syntax:
7367"""""""
7368
7369::
7370
7371 declare void @llvm.stackrestore(i8* %ptr)
7372
7373Overview:
7374"""""""""
7375
7376The '``llvm.stackrestore``' intrinsic is used to restore the state of
7377the function stack to the state it was in when the corresponding
7378:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7379useful for implementing language features like scoped automatic variable
7380sized arrays in C99.
7381
7382Semantics:
7383""""""""""
7384
7385See the description for :ref:`llvm.stacksave <int_stacksave>`.
7386
7387'``llvm.prefetch``' Intrinsic
7388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7389
7390Syntax:
7391"""""""
7392
7393::
7394
7395 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7396
7397Overview:
7398"""""""""
7399
7400The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7401insert a prefetch instruction if supported; otherwise, it is a noop.
7402Prefetches have no effect on the behavior of the program but can change
7403its performance characteristics.
7404
7405Arguments:
7406""""""""""
7407
7408``address`` is the address to be prefetched, ``rw`` is the specifier
7409determining if the fetch should be for a read (0) or write (1), and
7410``locality`` is a temporal locality specifier ranging from (0) - no
7411locality, to (3) - extremely local keep in cache. The ``cache type``
7412specifies whether the prefetch is performed on the data (1) or
7413instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7414arguments must be constant integers.
7415
7416Semantics:
7417""""""""""
7418
7419This intrinsic does not modify the behavior of the program. In
7420particular, prefetches cannot trap and do not produce a value. On
7421targets that support this intrinsic, the prefetch can provide hints to
7422the processor cache for better performance.
7423
7424'``llvm.pcmarker``' Intrinsic
7425^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7426
7427Syntax:
7428"""""""
7429
7430::
7431
7432 declare void @llvm.pcmarker(i32 <id>)
7433
7434Overview:
7435"""""""""
7436
7437The '``llvm.pcmarker``' intrinsic is a method to export a Program
7438Counter (PC) in a region of code to simulators and other tools. The
7439method is target specific, but it is expected that the marker will use
7440exported symbols to transmit the PC of the marker. The marker makes no
7441guarantees that it will remain with any specific instruction after
7442optimizations. It is possible that the presence of a marker will inhibit
7443optimizations. The intended use is to be inserted after optimizations to
7444allow correlations of simulation runs.
7445
7446Arguments:
7447""""""""""
7448
7449``id`` is a numerical id identifying the marker.
7450
7451Semantics:
7452""""""""""
7453
7454This intrinsic does not modify the behavior of the program. Backends
7455that do not support this intrinsic may ignore it.
7456
7457'``llvm.readcyclecounter``' Intrinsic
7458^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7459
7460Syntax:
7461"""""""
7462
7463::
7464
7465 declare i64 @llvm.readcyclecounter()
7466
7467Overview:
7468"""""""""
7469
7470The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7471counter register (or similar low latency, high accuracy clocks) on those
7472targets that support it. On X86, it should map to RDTSC. On Alpha, it
7473should map to RPCC. As the backing counters overflow quickly (on the
7474order of 9 seconds on alpha), this should only be used for small
7475timings.
7476
7477Semantics:
7478""""""""""
7479
7480When directly supported, reading the cycle counter should not modify any
7481memory. Implementations are allowed to either return a application
7482specific value or a system wide value. On backends without support, this
7483is lowered to a constant 0.
7484
Tim Northoverbc933082013-05-23 19:11:20 +00007485Note that runtime support may be conditional on the privilege-level code is
7486running at and the host platform.
7487
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007488'``llvm.clear_cache``' Intrinsic
7489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7490
7491Syntax:
7492"""""""
7493
7494::
7495
7496 declare void @llvm.clear_cache(i8*, i8*)
7497
7498Overview:
7499"""""""""
7500
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007501The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7502in the specified range to the execution unit of the processor. On
7503targets with non-unified instruction and data cache, the implementation
7504flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007505
7506Semantics:
7507""""""""""
7508
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007509On platforms with coherent instruction and data caches (e.g. x86), this
7510intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007511cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007512instructions or a system call, if cache flushing requires special
7513privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007514
Sean Silvad02bf3e2014-04-07 22:29:53 +00007515The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007516time library.
Renato Golin93010e62014-03-26 14:01:32 +00007517
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007518This instrinsic does *not* empty the instruction pipeline. Modifications
7519of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007520
Justin Bogner61ba2e32014-12-08 18:02:35 +00007521'``llvm.instrprof_increment``' Intrinsic
7522^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7523
7524Syntax:
7525"""""""
7526
7527::
7528
7529 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
7530 i32 <num-counters>, i32 <index>)
7531
7532Overview:
7533"""""""""
7534
7535The '``llvm.instrprof_increment``' intrinsic can be emitted by a
7536frontend for use with instrumentation based profiling. These will be
7537lowered by the ``-instrprof`` pass to generate execution counts of a
7538program at runtime.
7539
7540Arguments:
7541""""""""""
7542
7543The first argument is a pointer to a global variable containing the
7544name of the entity being instrumented. This should generally be the
7545(mangled) function name for a set of counters.
7546
7547The second argument is a hash value that can be used by the consumer
7548of the profile data to detect changes to the instrumented source, and
7549the third is the number of counters associated with ``name``. It is an
7550error if ``hash`` or ``num-counters`` differ between two instances of
7551``instrprof_increment`` that refer to the same name.
7552
7553The last argument refers to which of the counters for ``name`` should
7554be incremented. It should be a value between 0 and ``num-counters``.
7555
7556Semantics:
7557""""""""""
7558
7559This intrinsic represents an increment of a profiling counter. It will
7560cause the ``-instrprof`` pass to generate the appropriate data
7561structures and the code to increment the appropriate value, in a
7562format that can be written out by a compiler runtime and consumed via
7563the ``llvm-profdata`` tool.
7564
Sean Silvab084af42012-12-07 10:36:55 +00007565Standard C Library Intrinsics
7566-----------------------------
7567
7568LLVM provides intrinsics for a few important standard C library
7569functions. These intrinsics allow source-language front-ends to pass
7570information about the alignment of the pointer arguments to the code
7571generator, providing opportunity for more efficient code generation.
7572
7573.. _int_memcpy:
7574
7575'``llvm.memcpy``' Intrinsic
7576^^^^^^^^^^^^^^^^^^^^^^^^^^^
7577
7578Syntax:
7579"""""""
7580
7581This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7582integer bit width and for different address spaces. Not all targets
7583support all bit widths however.
7584
7585::
7586
7587 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7588 i32 <len>, i32 <align>, i1 <isvolatile>)
7589 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7590 i64 <len>, i32 <align>, i1 <isvolatile>)
7591
7592Overview:
7593"""""""""
7594
7595The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7596source location to the destination location.
7597
7598Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7599intrinsics do not return a value, takes extra alignment/isvolatile
7600arguments and the pointers can be in specified address spaces.
7601
7602Arguments:
7603""""""""""
7604
7605The first argument is a pointer to the destination, the second is a
7606pointer to the source. The third argument is an integer argument
7607specifying the number of bytes to copy, the fourth argument is the
7608alignment of the source and destination locations, and the fifth is a
7609boolean indicating a volatile access.
7610
7611If the call to this intrinsic has an alignment value that is not 0 or 1,
7612then the caller guarantees that both the source and destination pointers
7613are aligned to that boundary.
7614
7615If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7616a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7617very cleanly specified and it is unwise to depend on it.
7618
7619Semantics:
7620""""""""""
7621
7622The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7623source location to the destination location, which are not allowed to
7624overlap. It copies "len" bytes of memory over. If the argument is known
7625to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007626argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007627
7628'``llvm.memmove``' Intrinsic
7629^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7630
7631Syntax:
7632"""""""
7633
7634This is an overloaded intrinsic. You can use llvm.memmove on any integer
7635bit width and for different address space. Not all targets support all
7636bit widths however.
7637
7638::
7639
7640 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7641 i32 <len>, i32 <align>, i1 <isvolatile>)
7642 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7643 i64 <len>, i32 <align>, i1 <isvolatile>)
7644
7645Overview:
7646"""""""""
7647
7648The '``llvm.memmove.*``' intrinsics move a block of memory from the
7649source location to the destination location. It is similar to the
7650'``llvm.memcpy``' intrinsic but allows the two memory locations to
7651overlap.
7652
7653Note that, unlike the standard libc function, the ``llvm.memmove.*``
7654intrinsics do not return a value, takes extra alignment/isvolatile
7655arguments and the pointers can be in specified address spaces.
7656
7657Arguments:
7658""""""""""
7659
7660The first argument is a pointer to the destination, the second is a
7661pointer to the source. The third argument is an integer argument
7662specifying the number of bytes to copy, the fourth argument is the
7663alignment of the source and destination locations, and the fifth is a
7664boolean indicating a volatile access.
7665
7666If the call to this intrinsic has an alignment value that is not 0 or 1,
7667then the caller guarantees that the source and destination pointers are
7668aligned to that boundary.
7669
7670If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7671is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7672not very cleanly specified and it is unwise to depend on it.
7673
7674Semantics:
7675""""""""""
7676
7677The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7678source location to the destination location, which may overlap. It
7679copies "len" bytes of memory over. If the argument is known to be
7680aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007681otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007682
7683'``llvm.memset.*``' Intrinsics
7684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7685
7686Syntax:
7687"""""""
7688
7689This is an overloaded intrinsic. You can use llvm.memset on any integer
7690bit width and for different address spaces. However, not all targets
7691support all bit widths.
7692
7693::
7694
7695 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7696 i32 <len>, i32 <align>, i1 <isvolatile>)
7697 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7698 i64 <len>, i32 <align>, i1 <isvolatile>)
7699
7700Overview:
7701"""""""""
7702
7703The '``llvm.memset.*``' intrinsics fill a block of memory with a
7704particular byte value.
7705
7706Note that, unlike the standard libc function, the ``llvm.memset``
7707intrinsic does not return a value and takes extra alignment/volatile
7708arguments. Also, the destination can be in an arbitrary address space.
7709
7710Arguments:
7711""""""""""
7712
7713The first argument is a pointer to the destination to fill, the second
7714is the byte value with which to fill it, the third argument is an
7715integer argument specifying the number of bytes to fill, and the fourth
7716argument is the known alignment of the destination location.
7717
7718If the call to this intrinsic has an alignment value that is not 0 or 1,
7719then the caller guarantees that the destination pointer is aligned to
7720that boundary.
7721
7722If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7723a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7724very cleanly specified and it is unwise to depend on it.
7725
7726Semantics:
7727""""""""""
7728
7729The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7730at the destination location. If the argument is known to be aligned to
7731some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007732it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007733
7734'``llvm.sqrt.*``' Intrinsic
7735^^^^^^^^^^^^^^^^^^^^^^^^^^^
7736
7737Syntax:
7738"""""""
7739
7740This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7741floating point or vector of floating point type. Not all targets support
7742all types however.
7743
7744::
7745
7746 declare float @llvm.sqrt.f32(float %Val)
7747 declare double @llvm.sqrt.f64(double %Val)
7748 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7749 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7750 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7751
7752Overview:
7753"""""""""
7754
7755The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7756returning the same value as the libm '``sqrt``' functions would. Unlike
7757``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7758negative numbers other than -0.0 (which allows for better optimization,
7759because there is no need to worry about errno being set).
7760``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7761
7762Arguments:
7763""""""""""
7764
7765The argument and return value are floating point numbers of the same
7766type.
7767
7768Semantics:
7769""""""""""
7770
7771This function returns the sqrt of the specified operand if it is a
7772nonnegative floating point number.
7773
7774'``llvm.powi.*``' Intrinsic
7775^^^^^^^^^^^^^^^^^^^^^^^^^^^
7776
7777Syntax:
7778"""""""
7779
7780This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7781floating point or vector of floating point type. Not all targets support
7782all types however.
7783
7784::
7785
7786 declare float @llvm.powi.f32(float %Val, i32 %power)
7787 declare double @llvm.powi.f64(double %Val, i32 %power)
7788 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7789 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7790 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7791
7792Overview:
7793"""""""""
7794
7795The '``llvm.powi.*``' intrinsics return the first operand raised to the
7796specified (positive or negative) power. The order of evaluation of
7797multiplications is not defined. When a vector of floating point type is
7798used, the second argument remains a scalar integer value.
7799
7800Arguments:
7801""""""""""
7802
7803The second argument is an integer power, and the first is a value to
7804raise to that power.
7805
7806Semantics:
7807""""""""""
7808
7809This function returns the first value raised to the second power with an
7810unspecified sequence of rounding operations.
7811
7812'``llvm.sin.*``' Intrinsic
7813^^^^^^^^^^^^^^^^^^^^^^^^^^
7814
7815Syntax:
7816"""""""
7817
7818This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7819floating point or vector of floating point type. Not all targets support
7820all types however.
7821
7822::
7823
7824 declare float @llvm.sin.f32(float %Val)
7825 declare double @llvm.sin.f64(double %Val)
7826 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7827 declare fp128 @llvm.sin.f128(fp128 %Val)
7828 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7829
7830Overview:
7831"""""""""
7832
7833The '``llvm.sin.*``' intrinsics return the sine of the operand.
7834
7835Arguments:
7836""""""""""
7837
7838The argument and return value are floating point numbers of the same
7839type.
7840
7841Semantics:
7842""""""""""
7843
7844This function returns the sine of the specified operand, returning the
7845same values as the libm ``sin`` functions would, and handles error
7846conditions in the same way.
7847
7848'``llvm.cos.*``' Intrinsic
7849^^^^^^^^^^^^^^^^^^^^^^^^^^
7850
7851Syntax:
7852"""""""
7853
7854This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7855floating point or vector of floating point type. Not all targets support
7856all types however.
7857
7858::
7859
7860 declare float @llvm.cos.f32(float %Val)
7861 declare double @llvm.cos.f64(double %Val)
7862 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7863 declare fp128 @llvm.cos.f128(fp128 %Val)
7864 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7865
7866Overview:
7867"""""""""
7868
7869The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7870
7871Arguments:
7872""""""""""
7873
7874The argument and return value are floating point numbers of the same
7875type.
7876
7877Semantics:
7878""""""""""
7879
7880This function returns the cosine of the specified operand, returning the
7881same values as the libm ``cos`` functions would, and handles error
7882conditions in the same way.
7883
7884'``llvm.pow.*``' Intrinsic
7885^^^^^^^^^^^^^^^^^^^^^^^^^^
7886
7887Syntax:
7888"""""""
7889
7890This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7891floating point or vector of floating point type. Not all targets support
7892all types however.
7893
7894::
7895
7896 declare float @llvm.pow.f32(float %Val, float %Power)
7897 declare double @llvm.pow.f64(double %Val, double %Power)
7898 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7899 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7900 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7901
7902Overview:
7903"""""""""
7904
7905The '``llvm.pow.*``' intrinsics return the first operand raised to the
7906specified (positive or negative) power.
7907
7908Arguments:
7909""""""""""
7910
7911The second argument is a floating point power, and the first is a value
7912to raise to that power.
7913
7914Semantics:
7915""""""""""
7916
7917This function returns the first value raised to the second power,
7918returning the same values as the libm ``pow`` functions would, and
7919handles error conditions in the same way.
7920
7921'``llvm.exp.*``' Intrinsic
7922^^^^^^^^^^^^^^^^^^^^^^^^^^
7923
7924Syntax:
7925"""""""
7926
7927This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7928floating point or vector of floating point type. Not all targets support
7929all types however.
7930
7931::
7932
7933 declare float @llvm.exp.f32(float %Val)
7934 declare double @llvm.exp.f64(double %Val)
7935 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7936 declare fp128 @llvm.exp.f128(fp128 %Val)
7937 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7938
7939Overview:
7940"""""""""
7941
7942The '``llvm.exp.*``' intrinsics perform the exp function.
7943
7944Arguments:
7945""""""""""
7946
7947The argument and return value are floating point numbers of the same
7948type.
7949
7950Semantics:
7951""""""""""
7952
7953This function returns the same values as the libm ``exp`` functions
7954would, and handles error conditions in the same way.
7955
7956'``llvm.exp2.*``' Intrinsic
7957^^^^^^^^^^^^^^^^^^^^^^^^^^^
7958
7959Syntax:
7960"""""""
7961
7962This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7963floating point or vector of floating point type. Not all targets support
7964all types however.
7965
7966::
7967
7968 declare float @llvm.exp2.f32(float %Val)
7969 declare double @llvm.exp2.f64(double %Val)
7970 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7971 declare fp128 @llvm.exp2.f128(fp128 %Val)
7972 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7973
7974Overview:
7975"""""""""
7976
7977The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7978
7979Arguments:
7980""""""""""
7981
7982The argument and return value are floating point numbers of the same
7983type.
7984
7985Semantics:
7986""""""""""
7987
7988This function returns the same values as the libm ``exp2`` functions
7989would, and handles error conditions in the same way.
7990
7991'``llvm.log.*``' Intrinsic
7992^^^^^^^^^^^^^^^^^^^^^^^^^^
7993
7994Syntax:
7995"""""""
7996
7997This is an overloaded intrinsic. You can use ``llvm.log`` on any
7998floating point or vector of floating point type. Not all targets support
7999all types however.
8000
8001::
8002
8003 declare float @llvm.log.f32(float %Val)
8004 declare double @llvm.log.f64(double %Val)
8005 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
8006 declare fp128 @llvm.log.f128(fp128 %Val)
8007 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
8008
8009Overview:
8010"""""""""
8011
8012The '``llvm.log.*``' intrinsics perform the log function.
8013
8014Arguments:
8015""""""""""
8016
8017The argument and return value are floating point numbers of the same
8018type.
8019
8020Semantics:
8021""""""""""
8022
8023This function returns the same values as the libm ``log`` functions
8024would, and handles error conditions in the same way.
8025
8026'``llvm.log10.*``' Intrinsic
8027^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8028
8029Syntax:
8030"""""""
8031
8032This is an overloaded intrinsic. You can use ``llvm.log10`` on any
8033floating point or vector of floating point type. Not all targets support
8034all types however.
8035
8036::
8037
8038 declare float @llvm.log10.f32(float %Val)
8039 declare double @llvm.log10.f64(double %Val)
8040 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
8041 declare fp128 @llvm.log10.f128(fp128 %Val)
8042 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
8043
8044Overview:
8045"""""""""
8046
8047The '``llvm.log10.*``' intrinsics perform the log10 function.
8048
8049Arguments:
8050""""""""""
8051
8052The argument and return value are floating point numbers of the same
8053type.
8054
8055Semantics:
8056""""""""""
8057
8058This function returns the same values as the libm ``log10`` functions
8059would, and handles error conditions in the same way.
8060
8061'``llvm.log2.*``' Intrinsic
8062^^^^^^^^^^^^^^^^^^^^^^^^^^^
8063
8064Syntax:
8065"""""""
8066
8067This is an overloaded intrinsic. You can use ``llvm.log2`` on any
8068floating point or vector of floating point type. Not all targets support
8069all types however.
8070
8071::
8072
8073 declare float @llvm.log2.f32(float %Val)
8074 declare double @llvm.log2.f64(double %Val)
8075 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
8076 declare fp128 @llvm.log2.f128(fp128 %Val)
8077 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
8078
8079Overview:
8080"""""""""
8081
8082The '``llvm.log2.*``' intrinsics perform the log2 function.
8083
8084Arguments:
8085""""""""""
8086
8087The argument and return value are floating point numbers of the same
8088type.
8089
8090Semantics:
8091""""""""""
8092
8093This function returns the same values as the libm ``log2`` functions
8094would, and handles error conditions in the same way.
8095
8096'``llvm.fma.*``' Intrinsic
8097^^^^^^^^^^^^^^^^^^^^^^^^^^
8098
8099Syntax:
8100"""""""
8101
8102This is an overloaded intrinsic. You can use ``llvm.fma`` on any
8103floating point or vector of floating point type. Not all targets support
8104all types however.
8105
8106::
8107
8108 declare float @llvm.fma.f32(float %a, float %b, float %c)
8109 declare double @llvm.fma.f64(double %a, double %b, double %c)
8110 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
8111 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
8112 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
8113
8114Overview:
8115"""""""""
8116
8117The '``llvm.fma.*``' intrinsics perform the fused multiply-add
8118operation.
8119
8120Arguments:
8121""""""""""
8122
8123The argument and return value are floating point numbers of the same
8124type.
8125
8126Semantics:
8127""""""""""
8128
8129This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008130would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00008131
8132'``llvm.fabs.*``' Intrinsic
8133^^^^^^^^^^^^^^^^^^^^^^^^^^^
8134
8135Syntax:
8136"""""""
8137
8138This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
8139floating point or vector of floating point type. Not all targets support
8140all types however.
8141
8142::
8143
8144 declare float @llvm.fabs.f32(float %Val)
8145 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008146 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008147 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008148 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008149
8150Overview:
8151"""""""""
8152
8153The '``llvm.fabs.*``' intrinsics return the absolute value of the
8154operand.
8155
8156Arguments:
8157""""""""""
8158
8159The argument and return value are floating point numbers of the same
8160type.
8161
8162Semantics:
8163""""""""""
8164
8165This function returns the same values as the libm ``fabs`` functions
8166would, and handles error conditions in the same way.
8167
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008168'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008169^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008170
8171Syntax:
8172"""""""
8173
8174This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
8175floating point or vector of floating point type. Not all targets support
8176all types however.
8177
8178::
8179
Matt Arsenault64313c92014-10-22 18:25:02 +00008180 declare float @llvm.minnum.f32(float %Val0, float %Val1)
8181 declare double @llvm.minnum.f64(double %Val0, double %Val1)
8182 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8183 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
8184 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008185
8186Overview:
8187"""""""""
8188
8189The '``llvm.minnum.*``' intrinsics return the minimum of the two
8190arguments.
8191
8192
8193Arguments:
8194""""""""""
8195
8196The arguments and return value are floating point numbers of the same
8197type.
8198
8199Semantics:
8200""""""""""
8201
8202Follows the IEEE-754 semantics for minNum, which also match for libm's
8203fmin.
8204
8205If either operand is a NaN, returns the other non-NaN operand. Returns
8206NaN only if both operands are NaN. If the operands compare equal,
8207returns a value that compares equal to both operands. This means that
8208fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8209
8210'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008211^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008212
8213Syntax:
8214"""""""
8215
8216This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
8217floating point or vector of floating point type. Not all targets support
8218all types however.
8219
8220::
8221
Matt Arsenault64313c92014-10-22 18:25:02 +00008222 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
8223 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
8224 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8225 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
8226 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008227
8228Overview:
8229"""""""""
8230
8231The '``llvm.maxnum.*``' intrinsics return the maximum of the two
8232arguments.
8233
8234
8235Arguments:
8236""""""""""
8237
8238The arguments and return value are floating point numbers of the same
8239type.
8240
8241Semantics:
8242""""""""""
8243Follows the IEEE-754 semantics for maxNum, which also match for libm's
8244fmax.
8245
8246If either operand is a NaN, returns the other non-NaN operand. Returns
8247NaN only if both operands are NaN. If the operands compare equal,
8248returns a value that compares equal to both operands. This means that
8249fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8250
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00008251'``llvm.copysign.*``' Intrinsic
8252^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8253
8254Syntax:
8255"""""""
8256
8257This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
8258floating point or vector of floating point type. Not all targets support
8259all types however.
8260
8261::
8262
8263 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
8264 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
8265 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
8266 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8267 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
8268
8269Overview:
8270"""""""""
8271
8272The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8273first operand and the sign of the second operand.
8274
8275Arguments:
8276""""""""""
8277
8278The arguments and return value are floating point numbers of the same
8279type.
8280
8281Semantics:
8282""""""""""
8283
8284This function returns the same values as the libm ``copysign``
8285functions would, and handles error conditions in the same way.
8286
Sean Silvab084af42012-12-07 10:36:55 +00008287'``llvm.floor.*``' Intrinsic
8288^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8289
8290Syntax:
8291"""""""
8292
8293This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8294floating point or vector of floating point type. Not all targets support
8295all types however.
8296
8297::
8298
8299 declare float @llvm.floor.f32(float %Val)
8300 declare double @llvm.floor.f64(double %Val)
8301 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
8302 declare fp128 @llvm.floor.f128(fp128 %Val)
8303 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
8304
8305Overview:
8306"""""""""
8307
8308The '``llvm.floor.*``' intrinsics return the floor of the operand.
8309
8310Arguments:
8311""""""""""
8312
8313The argument and return value are floating point numbers of the same
8314type.
8315
8316Semantics:
8317""""""""""
8318
8319This function returns the same values as the libm ``floor`` functions
8320would, and handles error conditions in the same way.
8321
8322'``llvm.ceil.*``' Intrinsic
8323^^^^^^^^^^^^^^^^^^^^^^^^^^^
8324
8325Syntax:
8326"""""""
8327
8328This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8329floating point or vector of floating point type. Not all targets support
8330all types however.
8331
8332::
8333
8334 declare float @llvm.ceil.f32(float %Val)
8335 declare double @llvm.ceil.f64(double %Val)
8336 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8337 declare fp128 @llvm.ceil.f128(fp128 %Val)
8338 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8339
8340Overview:
8341"""""""""
8342
8343The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8344
8345Arguments:
8346""""""""""
8347
8348The argument and return value are floating point numbers of the same
8349type.
8350
8351Semantics:
8352""""""""""
8353
8354This function returns the same values as the libm ``ceil`` functions
8355would, and handles error conditions in the same way.
8356
8357'``llvm.trunc.*``' Intrinsic
8358^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8359
8360Syntax:
8361"""""""
8362
8363This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8364floating point or vector of floating point type. Not all targets support
8365all types however.
8366
8367::
8368
8369 declare float @llvm.trunc.f32(float %Val)
8370 declare double @llvm.trunc.f64(double %Val)
8371 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8372 declare fp128 @llvm.trunc.f128(fp128 %Val)
8373 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8374
8375Overview:
8376"""""""""
8377
8378The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8379nearest integer not larger in magnitude than the operand.
8380
8381Arguments:
8382""""""""""
8383
8384The argument and return value are floating point numbers of the same
8385type.
8386
8387Semantics:
8388""""""""""
8389
8390This function returns the same values as the libm ``trunc`` functions
8391would, and handles error conditions in the same way.
8392
8393'``llvm.rint.*``' Intrinsic
8394^^^^^^^^^^^^^^^^^^^^^^^^^^^
8395
8396Syntax:
8397"""""""
8398
8399This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8400floating point or vector of floating point type. Not all targets support
8401all types however.
8402
8403::
8404
8405 declare float @llvm.rint.f32(float %Val)
8406 declare double @llvm.rint.f64(double %Val)
8407 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8408 declare fp128 @llvm.rint.f128(fp128 %Val)
8409 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8410
8411Overview:
8412"""""""""
8413
8414The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8415nearest integer. It may raise an inexact floating-point exception if the
8416operand isn't an integer.
8417
8418Arguments:
8419""""""""""
8420
8421The argument and return value are floating point numbers of the same
8422type.
8423
8424Semantics:
8425""""""""""
8426
8427This function returns the same values as the libm ``rint`` functions
8428would, and handles error conditions in the same way.
8429
8430'``llvm.nearbyint.*``' Intrinsic
8431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8432
8433Syntax:
8434"""""""
8435
8436This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8437floating point or vector of floating point type. Not all targets support
8438all types however.
8439
8440::
8441
8442 declare float @llvm.nearbyint.f32(float %Val)
8443 declare double @llvm.nearbyint.f64(double %Val)
8444 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8445 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8446 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8447
8448Overview:
8449"""""""""
8450
8451The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8452nearest integer.
8453
8454Arguments:
8455""""""""""
8456
8457The argument and return value are floating point numbers of the same
8458type.
8459
8460Semantics:
8461""""""""""
8462
8463This function returns the same values as the libm ``nearbyint``
8464functions would, and handles error conditions in the same way.
8465
Hal Finkel171817e2013-08-07 22:49:12 +00008466'``llvm.round.*``' Intrinsic
8467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8468
8469Syntax:
8470"""""""
8471
8472This is an overloaded intrinsic. You can use ``llvm.round`` on any
8473floating point or vector of floating point type. Not all targets support
8474all types however.
8475
8476::
8477
8478 declare float @llvm.round.f32(float %Val)
8479 declare double @llvm.round.f64(double %Val)
8480 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8481 declare fp128 @llvm.round.f128(fp128 %Val)
8482 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8483
8484Overview:
8485"""""""""
8486
8487The '``llvm.round.*``' intrinsics returns the operand rounded to the
8488nearest integer.
8489
8490Arguments:
8491""""""""""
8492
8493The argument and return value are floating point numbers of the same
8494type.
8495
8496Semantics:
8497""""""""""
8498
8499This function returns the same values as the libm ``round``
8500functions would, and handles error conditions in the same way.
8501
Sean Silvab084af42012-12-07 10:36:55 +00008502Bit Manipulation Intrinsics
8503---------------------------
8504
8505LLVM provides intrinsics for a few important bit manipulation
8506operations. These allow efficient code generation for some algorithms.
8507
8508'``llvm.bswap.*``' Intrinsics
8509^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8510
8511Syntax:
8512"""""""
8513
8514This is an overloaded intrinsic function. You can use bswap on any
8515integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8516
8517::
8518
8519 declare i16 @llvm.bswap.i16(i16 <id>)
8520 declare i32 @llvm.bswap.i32(i32 <id>)
8521 declare i64 @llvm.bswap.i64(i64 <id>)
8522
8523Overview:
8524"""""""""
8525
8526The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8527values with an even number of bytes (positive multiple of 16 bits).
8528These are useful for performing operations on data that is not in the
8529target's native byte order.
8530
8531Semantics:
8532""""""""""
8533
8534The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8535and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8536intrinsic returns an i32 value that has the four bytes of the input i32
8537swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8538returned i32 will have its bytes in 3, 2, 1, 0 order. The
8539``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8540concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8541respectively).
8542
8543'``llvm.ctpop.*``' Intrinsic
8544^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8545
8546Syntax:
8547"""""""
8548
8549This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8550bit width, or on any vector with integer elements. Not all targets
8551support all bit widths or vector types, however.
8552
8553::
8554
8555 declare i8 @llvm.ctpop.i8(i8 <src>)
8556 declare i16 @llvm.ctpop.i16(i16 <src>)
8557 declare i32 @llvm.ctpop.i32(i32 <src>)
8558 declare i64 @llvm.ctpop.i64(i64 <src>)
8559 declare i256 @llvm.ctpop.i256(i256 <src>)
8560 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8561
8562Overview:
8563"""""""""
8564
8565The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8566in a value.
8567
8568Arguments:
8569""""""""""
8570
8571The only argument is the value to be counted. The argument may be of any
8572integer type, or a vector with integer elements. The return type must
8573match the argument type.
8574
8575Semantics:
8576""""""""""
8577
8578The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8579each element of a vector.
8580
8581'``llvm.ctlz.*``' Intrinsic
8582^^^^^^^^^^^^^^^^^^^^^^^^^^^
8583
8584Syntax:
8585"""""""
8586
8587This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8588integer bit width, or any vector whose elements are integers. Not all
8589targets support all bit widths or vector types, however.
8590
8591::
8592
8593 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8594 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8595 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8596 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8597 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8598 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8599
8600Overview:
8601"""""""""
8602
8603The '``llvm.ctlz``' family of intrinsic functions counts the number of
8604leading zeros in a variable.
8605
8606Arguments:
8607""""""""""
8608
8609The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00008610any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00008611type must match the first argument type.
8612
8613The second argument must be a constant and is a flag to indicate whether
8614the intrinsic should ensure that a zero as the first argument produces a
8615defined result. Historically some architectures did not provide a
8616defined result for zero values as efficiently, and many algorithms are
8617now predicated on avoiding zero-value inputs.
8618
8619Semantics:
8620""""""""""
8621
8622The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8623zeros in a variable, or within each element of the vector. If
8624``src == 0`` then the result is the size in bits of the type of ``src``
8625if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8626``llvm.ctlz(i32 2) = 30``.
8627
8628'``llvm.cttz.*``' Intrinsic
8629^^^^^^^^^^^^^^^^^^^^^^^^^^^
8630
8631Syntax:
8632"""""""
8633
8634This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8635integer bit width, or any vector of integer elements. Not all targets
8636support all bit widths or vector types, however.
8637
8638::
8639
8640 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8641 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8642 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8643 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8644 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8645 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8646
8647Overview:
8648"""""""""
8649
8650The '``llvm.cttz``' family of intrinsic functions counts the number of
8651trailing zeros.
8652
8653Arguments:
8654""""""""""
8655
8656The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00008657any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00008658type must match the first argument type.
8659
8660The second argument must be a constant and is a flag to indicate whether
8661the intrinsic should ensure that a zero as the first argument produces a
8662defined result. Historically some architectures did not provide a
8663defined result for zero values as efficiently, and many algorithms are
8664now predicated on avoiding zero-value inputs.
8665
8666Semantics:
8667""""""""""
8668
8669The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8670zeros in a variable, or within each element of a vector. If ``src == 0``
8671then the result is the size in bits of the type of ``src`` if
8672``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8673``llvm.cttz(2) = 1``.
8674
8675Arithmetic with Overflow Intrinsics
8676-----------------------------------
8677
8678LLVM provides intrinsics for some arithmetic with overflow operations.
8679
8680'``llvm.sadd.with.overflow.*``' Intrinsics
8681^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8682
8683Syntax:
8684"""""""
8685
8686This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8687on any integer bit width.
8688
8689::
8690
8691 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8692 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8693 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8694
8695Overview:
8696"""""""""
8697
8698The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8699a signed addition of the two arguments, and indicate whether an overflow
8700occurred during the signed summation.
8701
8702Arguments:
8703""""""""""
8704
8705The arguments (%a and %b) and the first element of the result structure
8706may be of integer types of any bit width, but they must have the same
8707bit width. The second element of the result structure must be of type
8708``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8709addition.
8710
8711Semantics:
8712""""""""""
8713
8714The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008715a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008716first element of which is the signed summation, and the second element
8717of which is a bit specifying if the signed summation resulted in an
8718overflow.
8719
8720Examples:
8721"""""""""
8722
8723.. code-block:: llvm
8724
8725 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8726 %sum = extractvalue {i32, i1} %res, 0
8727 %obit = extractvalue {i32, i1} %res, 1
8728 br i1 %obit, label %overflow, label %normal
8729
8730'``llvm.uadd.with.overflow.*``' Intrinsics
8731^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8732
8733Syntax:
8734"""""""
8735
8736This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8737on any integer bit width.
8738
8739::
8740
8741 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8742 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8743 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8744
8745Overview:
8746"""""""""
8747
8748The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8749an unsigned addition of the two arguments, and indicate whether a carry
8750occurred during the unsigned summation.
8751
8752Arguments:
8753""""""""""
8754
8755The arguments (%a and %b) and the first element of the result structure
8756may be of integer types of any bit width, but they must have the same
8757bit width. The second element of the result structure must be of type
8758``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8759addition.
8760
8761Semantics:
8762""""""""""
8763
8764The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008765an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008766first element of which is the sum, and the second element of which is a
8767bit specifying if the unsigned summation resulted in a carry.
8768
8769Examples:
8770"""""""""
8771
8772.. code-block:: llvm
8773
8774 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8775 %sum = extractvalue {i32, i1} %res, 0
8776 %obit = extractvalue {i32, i1} %res, 1
8777 br i1 %obit, label %carry, label %normal
8778
8779'``llvm.ssub.with.overflow.*``' Intrinsics
8780^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8781
8782Syntax:
8783"""""""
8784
8785This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8786on any integer bit width.
8787
8788::
8789
8790 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8791 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8792 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8793
8794Overview:
8795"""""""""
8796
8797The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8798a signed subtraction of the two arguments, and indicate whether an
8799overflow occurred during the signed subtraction.
8800
8801Arguments:
8802""""""""""
8803
8804The arguments (%a and %b) and the first element of the result structure
8805may be of integer types of any bit width, but they must have the same
8806bit width. The second element of the result structure must be of type
8807``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8808subtraction.
8809
8810Semantics:
8811""""""""""
8812
8813The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008814a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008815first element of which is the subtraction, and the second element of
8816which is a bit specifying if the signed subtraction resulted in an
8817overflow.
8818
8819Examples:
8820"""""""""
8821
8822.. code-block:: llvm
8823
8824 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8825 %sum = extractvalue {i32, i1} %res, 0
8826 %obit = extractvalue {i32, i1} %res, 1
8827 br i1 %obit, label %overflow, label %normal
8828
8829'``llvm.usub.with.overflow.*``' Intrinsics
8830^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8831
8832Syntax:
8833"""""""
8834
8835This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8836on any integer bit width.
8837
8838::
8839
8840 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8841 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8842 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8843
8844Overview:
8845"""""""""
8846
8847The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8848an unsigned subtraction of the two arguments, and indicate whether an
8849overflow occurred during the unsigned subtraction.
8850
8851Arguments:
8852""""""""""
8853
8854The arguments (%a and %b) and the first element of the result structure
8855may be of integer types of any bit width, but they must have the same
8856bit width. The second element of the result structure must be of type
8857``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8858subtraction.
8859
8860Semantics:
8861""""""""""
8862
8863The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008864an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008865the first element of which is the subtraction, and the second element of
8866which is a bit specifying if the unsigned subtraction resulted in an
8867overflow.
8868
8869Examples:
8870"""""""""
8871
8872.. code-block:: llvm
8873
8874 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8875 %sum = extractvalue {i32, i1} %res, 0
8876 %obit = extractvalue {i32, i1} %res, 1
8877 br i1 %obit, label %overflow, label %normal
8878
8879'``llvm.smul.with.overflow.*``' Intrinsics
8880^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8881
8882Syntax:
8883"""""""
8884
8885This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8886on any integer bit width.
8887
8888::
8889
8890 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8891 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8892 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8893
8894Overview:
8895"""""""""
8896
8897The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8898a signed multiplication of the two arguments, and indicate whether an
8899overflow occurred during the signed multiplication.
8900
8901Arguments:
8902""""""""""
8903
8904The arguments (%a and %b) and the first element of the result structure
8905may be of integer types of any bit width, but they must have the same
8906bit width. The second element of the result structure must be of type
8907``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8908multiplication.
8909
8910Semantics:
8911""""""""""
8912
8913The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008914a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008915the first element of which is the multiplication, and the second element
8916of which is a bit specifying if the signed multiplication resulted in an
8917overflow.
8918
8919Examples:
8920"""""""""
8921
8922.. code-block:: llvm
8923
8924 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8925 %sum = extractvalue {i32, i1} %res, 0
8926 %obit = extractvalue {i32, i1} %res, 1
8927 br i1 %obit, label %overflow, label %normal
8928
8929'``llvm.umul.with.overflow.*``' Intrinsics
8930^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8931
8932Syntax:
8933"""""""
8934
8935This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
8936on any integer bit width.
8937
8938::
8939
8940 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
8941 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8942 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
8943
8944Overview:
8945"""""""""
8946
8947The '``llvm.umul.with.overflow``' family of intrinsic functions perform
8948a unsigned multiplication of the two arguments, and indicate whether an
8949overflow occurred during the unsigned multiplication.
8950
8951Arguments:
8952""""""""""
8953
8954The arguments (%a and %b) and the first element of the result structure
8955may be of integer types of any bit width, but they must have the same
8956bit width. The second element of the result structure must be of type
8957``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8958multiplication.
8959
8960Semantics:
8961""""""""""
8962
8963The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008964an unsigned multiplication of the two arguments. They return a structure ---
8965the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00008966element of which is a bit specifying if the unsigned multiplication
8967resulted in an overflow.
8968
8969Examples:
8970"""""""""
8971
8972.. code-block:: llvm
8973
8974 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
8975 %sum = extractvalue {i32, i1} %res, 0
8976 %obit = extractvalue {i32, i1} %res, 1
8977 br i1 %obit, label %overflow, label %normal
8978
8979Specialised Arithmetic Intrinsics
8980---------------------------------
8981
8982'``llvm.fmuladd.*``' Intrinsic
8983^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8984
8985Syntax:
8986"""""""
8987
8988::
8989
8990 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
8991 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
8992
8993Overview:
8994"""""""""
8995
8996The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00008997expressions that can be fused if the code generator determines that (a) the
8998target instruction set has support for a fused operation, and (b) that the
8999fused operation is more efficient than the equivalent, separate pair of mul
9000and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00009001
9002Arguments:
9003""""""""""
9004
9005The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
9006multiplicands, a and b, and an addend c.
9007
9008Semantics:
9009""""""""""
9010
9011The expression:
9012
9013::
9014
9015 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
9016
9017is equivalent to the expression a \* b + c, except that rounding will
9018not be performed between the multiplication and addition steps if the
9019code generator fuses the operations. Fusion is not guaranteed, even if
9020the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009021corresponding llvm.fma.\* intrinsic function should be used
9022instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00009023
9024Examples:
9025"""""""""
9026
9027.. code-block:: llvm
9028
Tim Northover675a0962014-06-13 14:24:23 +00009029 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00009030
9031Half Precision Floating Point Intrinsics
9032----------------------------------------
9033
9034For most target platforms, half precision floating point is a
9035storage-only format. This means that it is a dense encoding (in memory)
9036but does not support computation in the format.
9037
9038This means that code must first load the half-precision floating point
9039value as an i16, then convert it to float with
9040:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
9041then be performed on the float value (including extending to double
9042etc). To store the value back to memory, it is first converted to float
9043if needed, then converted to i16 with
9044:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
9045i16 value.
9046
9047.. _int_convert_to_fp16:
9048
9049'``llvm.convert.to.fp16``' Intrinsic
9050^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9051
9052Syntax:
9053"""""""
9054
9055::
9056
Tim Northoverfd7e4242014-07-17 10:51:23 +00009057 declare i16 @llvm.convert.to.fp16.f32(float %a)
9058 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00009059
9060Overview:
9061"""""""""
9062
Tim Northoverfd7e4242014-07-17 10:51:23 +00009063The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9064conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00009065
9066Arguments:
9067""""""""""
9068
9069The intrinsic function contains single argument - the value to be
9070converted.
9071
9072Semantics:
9073""""""""""
9074
Tim Northoverfd7e4242014-07-17 10:51:23 +00009075The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9076conventional floating point format to half precision floating point format. The
9077return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00009078
9079Examples:
9080"""""""""
9081
9082.. code-block:: llvm
9083
Tim Northoverfd7e4242014-07-17 10:51:23 +00009084 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00009085 store i16 %res, i16* @x, align 2
9086
9087.. _int_convert_from_fp16:
9088
9089'``llvm.convert.from.fp16``' Intrinsic
9090^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9091
9092Syntax:
9093"""""""
9094
9095::
9096
Tim Northoverfd7e4242014-07-17 10:51:23 +00009097 declare float @llvm.convert.from.fp16.f32(i16 %a)
9098 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009099
9100Overview:
9101"""""""""
9102
9103The '``llvm.convert.from.fp16``' intrinsic function performs a
9104conversion from half precision floating point format to single precision
9105floating point format.
9106
9107Arguments:
9108""""""""""
9109
9110The intrinsic function contains single argument - the value to be
9111converted.
9112
9113Semantics:
9114""""""""""
9115
9116The '``llvm.convert.from.fp16``' intrinsic function performs a
9117conversion from half single precision floating point format to single
9118precision floating point format. The input half-float value is
9119represented by an ``i16`` value.
9120
9121Examples:
9122"""""""""
9123
9124.. code-block:: llvm
9125
9126 %a = load i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00009127 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009128
9129Debugger Intrinsics
9130-------------------
9131
9132The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
9133prefix), are described in the `LLVM Source Level
9134Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
9135document.
9136
9137Exception Handling Intrinsics
9138-----------------------------
9139
9140The LLVM exception handling intrinsics (which all start with
9141``llvm.eh.`` prefix), are described in the `LLVM Exception
9142Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
9143
9144.. _int_trampoline:
9145
9146Trampoline Intrinsics
9147---------------------
9148
9149These intrinsics make it possible to excise one parameter, marked with
9150the :ref:`nest <nest>` attribute, from a function. The result is a
9151callable function pointer lacking the nest parameter - the caller does
9152not need to provide a value for it. Instead, the value to use is stored
9153in advance in a "trampoline", a block of memory usually allocated on the
9154stack, which also contains code to splice the nest value into the
9155argument list. This is used to implement the GCC nested function address
9156extension.
9157
9158For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
9159then the resulting function pointer has signature ``i32 (i32, i32)*``.
9160It can be created as follows:
9161
9162.. code-block:: llvm
9163
9164 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
9165 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
9166 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
9167 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
9168 %fp = bitcast i8* %p to i32 (i32, i32)*
9169
9170The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
9171``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
9172
9173.. _int_it:
9174
9175'``llvm.init.trampoline``' Intrinsic
9176^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9177
9178Syntax:
9179"""""""
9180
9181::
9182
9183 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
9184
9185Overview:
9186"""""""""
9187
9188This fills the memory pointed to by ``tramp`` with executable code,
9189turning it into a trampoline.
9190
9191Arguments:
9192""""""""""
9193
9194The ``llvm.init.trampoline`` intrinsic takes three arguments, all
9195pointers. The ``tramp`` argument must point to a sufficiently large and
9196sufficiently aligned block of memory; this memory is written to by the
9197intrinsic. Note that the size and the alignment are target-specific -
9198LLVM currently provides no portable way of determining them, so a
9199front-end that generates this intrinsic needs to have some
9200target-specific knowledge. The ``func`` argument must hold a function
9201bitcast to an ``i8*``.
9202
9203Semantics:
9204""""""""""
9205
9206The block of memory pointed to by ``tramp`` is filled with target
9207dependent code, turning it into a function. Then ``tramp`` needs to be
9208passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
9209be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
9210function's signature is the same as that of ``func`` with any arguments
9211marked with the ``nest`` attribute removed. At most one such ``nest``
9212argument is allowed, and it must be of pointer type. Calling the new
9213function is equivalent to calling ``func`` with the same argument list,
9214but with ``nval`` used for the missing ``nest`` argument. If, after
9215calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
9216modified, then the effect of any later call to the returned function
9217pointer is undefined.
9218
9219.. _int_at:
9220
9221'``llvm.adjust.trampoline``' Intrinsic
9222^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9223
9224Syntax:
9225"""""""
9226
9227::
9228
9229 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
9230
9231Overview:
9232"""""""""
9233
9234This performs any required machine-specific adjustment to the address of
9235a trampoline (passed as ``tramp``).
9236
9237Arguments:
9238""""""""""
9239
9240``tramp`` must point to a block of memory which already has trampoline
9241code filled in by a previous call to
9242:ref:`llvm.init.trampoline <int_it>`.
9243
9244Semantics:
9245""""""""""
9246
9247On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009248different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00009249intrinsic returns the executable address corresponding to ``tramp``
9250after performing the required machine specific adjustments. The pointer
9251returned can then be :ref:`bitcast and executed <int_trampoline>`.
9252
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009253Masked Vector Load and Store Intrinsics
9254---------------------------------------
9255
9256LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
9257
9258.. _int_mload:
9259
9260'``llvm.masked.load.*``' Intrinsics
9261^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9262
9263Syntax:
9264"""""""
9265This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
9266
9267::
9268
9269 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
9270 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
9271
9272Overview:
9273"""""""""
9274
9275Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes in the passthru operand.
9276
9277
9278Arguments:
9279""""""""""
9280
9281The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean 'i1' values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of passthru operand are the same vector types.
9282
9283
9284Semantics:
9285""""""""""
9286
9287The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
9288The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
9289
9290
9291::
9292
9293 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
9294
9295 ;; The result of the two following instructions is identical aside from potential memory access exception
9296 %loadlal = load <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009297 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009298
9299.. _int_mstore:
9300
9301'``llvm.masked.store.*``' Intrinsics
9302^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9303
9304Syntax:
9305"""""""
9306This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
9307
9308::
9309
9310 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
9311 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
9312
9313Overview:
9314"""""""""
9315
9316Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
9317
9318Arguments:
9319""""""""""
9320
9321The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
9322
9323
9324Semantics:
9325""""""""""
9326
9327The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
9328The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
9329
9330::
9331
9332 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
9333
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009334 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009335 %oldval = load <16 x float>* %ptr, align 4
9336 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
9337 store <16 x float> %res, <16 x float>* %ptr, align 4
9338
9339
Sean Silvab084af42012-12-07 10:36:55 +00009340Memory Use Markers
9341------------------
9342
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009343This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00009344memory objects and ranges where variables are immutable.
9345
Reid Klecknera534a382013-12-19 02:14:12 +00009346.. _int_lifestart:
9347
Sean Silvab084af42012-12-07 10:36:55 +00009348'``llvm.lifetime.start``' Intrinsic
9349^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9350
9351Syntax:
9352"""""""
9353
9354::
9355
9356 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
9357
9358Overview:
9359"""""""""
9360
9361The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
9362object's lifetime.
9363
9364Arguments:
9365""""""""""
9366
9367The first argument is a constant integer representing the size of the
9368object, or -1 if it is variable sized. The second argument is a pointer
9369to the object.
9370
9371Semantics:
9372""""""""""
9373
9374This intrinsic indicates that before this point in the code, the value
9375of the memory pointed to by ``ptr`` is dead. This means that it is known
9376to never be used and has an undefined value. A load from the pointer
9377that precedes this intrinsic can be replaced with ``'undef'``.
9378
Reid Klecknera534a382013-12-19 02:14:12 +00009379.. _int_lifeend:
9380
Sean Silvab084af42012-12-07 10:36:55 +00009381'``llvm.lifetime.end``' Intrinsic
9382^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9383
9384Syntax:
9385"""""""
9386
9387::
9388
9389 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
9390
9391Overview:
9392"""""""""
9393
9394The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
9395object's lifetime.
9396
9397Arguments:
9398""""""""""
9399
9400The first argument is a constant integer representing the size of the
9401object, or -1 if it is variable sized. The second argument is a pointer
9402to the object.
9403
9404Semantics:
9405""""""""""
9406
9407This intrinsic indicates that after this point in the code, the value of
9408the memory pointed to by ``ptr`` is dead. This means that it is known to
9409never be used and has an undefined value. Any stores into the memory
9410object following this intrinsic may be removed as dead.
9411
9412'``llvm.invariant.start``' Intrinsic
9413^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9414
9415Syntax:
9416"""""""
9417
9418::
9419
9420 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9421
9422Overview:
9423"""""""""
9424
9425The '``llvm.invariant.start``' intrinsic specifies that the contents of
9426a memory object will not change.
9427
9428Arguments:
9429""""""""""
9430
9431The first argument is a constant integer representing the size of the
9432object, or -1 if it is variable sized. The second argument is a pointer
9433to the object.
9434
9435Semantics:
9436""""""""""
9437
9438This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9439the return value, the referenced memory location is constant and
9440unchanging.
9441
9442'``llvm.invariant.end``' Intrinsic
9443^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9444
9445Syntax:
9446"""""""
9447
9448::
9449
9450 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9451
9452Overview:
9453"""""""""
9454
9455The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9456memory object are mutable.
9457
9458Arguments:
9459""""""""""
9460
9461The first argument is the matching ``llvm.invariant.start`` intrinsic.
9462The second argument is a constant integer representing the size of the
9463object, or -1 if it is variable sized and the third argument is a
9464pointer to the object.
9465
9466Semantics:
9467""""""""""
9468
9469This intrinsic indicates that the memory is mutable again.
9470
9471General Intrinsics
9472------------------
9473
9474This class of intrinsics is designed to be generic and has no specific
9475purpose.
9476
9477'``llvm.var.annotation``' Intrinsic
9478^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9479
9480Syntax:
9481"""""""
9482
9483::
9484
9485 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9486
9487Overview:
9488"""""""""
9489
9490The '``llvm.var.annotation``' intrinsic.
9491
9492Arguments:
9493""""""""""
9494
9495The first argument is a pointer to a value, the second is a pointer to a
9496global string, the third is a pointer to a global string which is the
9497source file name, and the last argument is the line number.
9498
9499Semantics:
9500""""""""""
9501
9502This intrinsic allows annotation of local variables with arbitrary
9503strings. This can be useful for special purpose optimizations that want
9504to look for these annotations. These have no other defined use; they are
9505ignored by code generation and optimization.
9506
Michael Gottesman88d18832013-03-26 00:34:27 +00009507'``llvm.ptr.annotation.*``' Intrinsic
9508^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9509
9510Syntax:
9511"""""""
9512
9513This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9514pointer to an integer of any width. *NOTE* you must specify an address space for
9515the pointer. The identifier for the default address space is the integer
9516'``0``'.
9517
9518::
9519
9520 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9521 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9522 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9523 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9524 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9525
9526Overview:
9527"""""""""
9528
9529The '``llvm.ptr.annotation``' intrinsic.
9530
9531Arguments:
9532""""""""""
9533
9534The first argument is a pointer to an integer value of arbitrary bitwidth
9535(result of some expression), the second is a pointer to a global string, the
9536third is a pointer to a global string which is the source file name, and the
9537last argument is the line number. It returns the value of the first argument.
9538
9539Semantics:
9540""""""""""
9541
9542This intrinsic allows annotation of a pointer to an integer with arbitrary
9543strings. This can be useful for special purpose optimizations that want to look
9544for these annotations. These have no other defined use; they are ignored by code
9545generation and optimization.
9546
Sean Silvab084af42012-12-07 10:36:55 +00009547'``llvm.annotation.*``' Intrinsic
9548^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9549
9550Syntax:
9551"""""""
9552
9553This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9554any integer bit width.
9555
9556::
9557
9558 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9559 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9560 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9561 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9562 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9563
9564Overview:
9565"""""""""
9566
9567The '``llvm.annotation``' intrinsic.
9568
9569Arguments:
9570""""""""""
9571
9572The first argument is an integer value (result of some expression), the
9573second is a pointer to a global string, the third is a pointer to a
9574global string which is the source file name, and the last argument is
9575the line number. It returns the value of the first argument.
9576
9577Semantics:
9578""""""""""
9579
9580This intrinsic allows annotations to be put on arbitrary expressions
9581with arbitrary strings. This can be useful for special purpose
9582optimizations that want to look for these annotations. These have no
9583other defined use; they are ignored by code generation and optimization.
9584
9585'``llvm.trap``' Intrinsic
9586^^^^^^^^^^^^^^^^^^^^^^^^^
9587
9588Syntax:
9589"""""""
9590
9591::
9592
9593 declare void @llvm.trap() noreturn nounwind
9594
9595Overview:
9596"""""""""
9597
9598The '``llvm.trap``' intrinsic.
9599
9600Arguments:
9601""""""""""
9602
9603None.
9604
9605Semantics:
9606""""""""""
9607
9608This intrinsic is lowered to the target dependent trap instruction. If
9609the target does not have a trap instruction, this intrinsic will be
9610lowered to a call of the ``abort()`` function.
9611
9612'``llvm.debugtrap``' Intrinsic
9613^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9614
9615Syntax:
9616"""""""
9617
9618::
9619
9620 declare void @llvm.debugtrap() nounwind
9621
9622Overview:
9623"""""""""
9624
9625The '``llvm.debugtrap``' intrinsic.
9626
9627Arguments:
9628""""""""""
9629
9630None.
9631
9632Semantics:
9633""""""""""
9634
9635This intrinsic is lowered to code which is intended to cause an
9636execution trap with the intention of requesting the attention of a
9637debugger.
9638
9639'``llvm.stackprotector``' Intrinsic
9640^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9641
9642Syntax:
9643"""""""
9644
9645::
9646
9647 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9648
9649Overview:
9650"""""""""
9651
9652The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9653onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9654is placed on the stack before local variables.
9655
9656Arguments:
9657""""""""""
9658
9659The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9660The first argument is the value loaded from the stack guard
9661``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9662enough space to hold the value of the guard.
9663
9664Semantics:
9665""""""""""
9666
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009667This intrinsic causes the prologue/epilogue inserter to force the position of
9668the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9669to ensure that if a local variable on the stack is overwritten, it will destroy
9670the value of the guard. When the function exits, the guard on the stack is
9671checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9672different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9673calling the ``__stack_chk_fail()`` function.
9674
9675'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009676^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009677
9678Syntax:
9679"""""""
9680
9681::
9682
9683 declare void @llvm.stackprotectorcheck(i8** <guard>)
9684
9685Overview:
9686"""""""""
9687
9688The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009689created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009690``__stack_chk_fail()`` function.
9691
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009692Arguments:
9693""""""""""
9694
9695The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9696the variable ``@__stack_chk_guard``.
9697
9698Semantics:
9699""""""""""
9700
9701This intrinsic is provided to perform the stack protector check by comparing
9702``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9703values do not match call the ``__stack_chk_fail()`` function.
9704
9705The reason to provide this as an IR level intrinsic instead of implementing it
9706via other IR operations is that in order to perform this operation at the IR
9707level without an intrinsic, one would need to create additional basic blocks to
9708handle the success/failure cases. This makes it difficult to stop the stack
9709protector check from disrupting sibling tail calls in Codegen. With this
9710intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009711codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009712
Sean Silvab084af42012-12-07 10:36:55 +00009713'``llvm.objectsize``' Intrinsic
9714^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9715
9716Syntax:
9717"""""""
9718
9719::
9720
9721 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9722 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9723
9724Overview:
9725"""""""""
9726
9727The ``llvm.objectsize`` intrinsic is designed to provide information to
9728the optimizers to determine at compile time whether a) an operation
9729(like memcpy) will overflow a buffer that corresponds to an object, or
9730b) that a runtime check for overflow isn't necessary. An object in this
9731context means an allocation of a specific class, structure, array, or
9732other object.
9733
9734Arguments:
9735""""""""""
9736
9737The ``llvm.objectsize`` intrinsic takes two arguments. The first
9738argument is a pointer to or into the ``object``. The second argument is
9739a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9740or -1 (if false) when the object size is unknown. The second argument
9741only accepts constants.
9742
9743Semantics:
9744""""""""""
9745
9746The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9747the size of the object concerned. If the size cannot be determined at
9748compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9749on the ``min`` argument).
9750
9751'``llvm.expect``' Intrinsic
9752^^^^^^^^^^^^^^^^^^^^^^^^^^^
9753
9754Syntax:
9755"""""""
9756
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009757This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9758integer bit width.
9759
Sean Silvab084af42012-12-07 10:36:55 +00009760::
9761
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009762 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009763 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9764 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9765
9766Overview:
9767"""""""""
9768
9769The ``llvm.expect`` intrinsic provides information about expected (the
9770most probable) value of ``val``, which can be used by optimizers.
9771
9772Arguments:
9773""""""""""
9774
9775The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9776a value. The second argument is an expected value, this needs to be a
9777constant value, variables are not allowed.
9778
9779Semantics:
9780""""""""""
9781
9782This intrinsic is lowered to the ``val``.
9783
Hal Finkel93046912014-07-25 21:13:35 +00009784'``llvm.assume``' Intrinsic
9785^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9786
9787Syntax:
9788"""""""
9789
9790::
9791
9792 declare void @llvm.assume(i1 %cond)
9793
9794Overview:
9795"""""""""
9796
9797The ``llvm.assume`` allows the optimizer to assume that the provided
9798condition is true. This information can then be used in simplifying other parts
9799of the code.
9800
9801Arguments:
9802""""""""""
9803
9804The condition which the optimizer may assume is always true.
9805
9806Semantics:
9807""""""""""
9808
9809The intrinsic allows the optimizer to assume that the provided condition is
9810always true whenever the control flow reaches the intrinsic call. No code is
9811generated for this intrinsic, and instructions that contribute only to the
9812provided condition are not used for code generation. If the condition is
9813violated during execution, the behavior is undefined.
9814
9815Please note that optimizer might limit the transformations performed on values
9816used by the ``llvm.assume`` intrinsic in order to preserve the instructions
9817only used to form the intrinsic's input argument. This might prove undesirable
9818if the extra information provided by the ``llvm.assume`` intrinsic does cause
9819sufficient overall improvement in code quality. For this reason,
9820``llvm.assume`` should not be used to document basic mathematical invariants
9821that the optimizer can otherwise deduce or facts that are of little use to the
9822optimizer.
9823
Sean Silvab084af42012-12-07 10:36:55 +00009824'``llvm.donothing``' Intrinsic
9825^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9826
9827Syntax:
9828"""""""
9829
9830::
9831
9832 declare void @llvm.donothing() nounwind readnone
9833
9834Overview:
9835"""""""""
9836
Juergen Ributzkac9161192014-10-23 22:36:13 +00009837The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
9838two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
9839with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009840
9841Arguments:
9842""""""""""
9843
9844None.
9845
9846Semantics:
9847""""""""""
9848
9849This intrinsic does nothing, and it's removed by optimizers and ignored
9850by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009851
9852Stack Map Intrinsics
9853--------------------
9854
9855LLVM provides experimental intrinsics to support runtime patching
9856mechanisms commonly desired in dynamic language JITs. These intrinsics
9857are described in :doc:`StackMaps`.