blob: f7b865d0de0259a3add7392bcb68fc61c767b451 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000165 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
351 arguments into registers but allows them to be dynamcially
352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
356 This calling convention attempts to make the code in the caller as little
357 intrusive as possible. This calling convention behaves identical to the `C`
358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
371 of code that doesn't many registers. The cold path might need to call out to
372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000497.. _namedtypes:
498
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000499Structure Types
500---------------
Sean Silvab084af42012-12-07 10:36:55 +0000501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
503types <t_struct>`. Literal types are uniqued structurally, but identified types
504are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000505to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000506
507An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000508
509.. code-block:: llvm
510
511 %mytype = type { %mytype*, i32 }
512
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000513Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
514literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000515
516.. _globalvars:
517
518Global Variables
519----------------
520
521Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000522instead of run-time.
523
Bob Wilson85b24f22014-06-12 20:40:33 +0000524Global variables definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525
526Global variables in other translation units can also be declared, in which
527case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000528
Bob Wilson85b24f22014-06-12 20:40:33 +0000529Either global variable definitions or declarations may have an explicit section
530to be placed in and may have an optional explicit alignment specified.
531
Michael Gottesman006039c2013-01-31 05:48:48 +0000532A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000536initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000567Additionally, the global can placed in a comdat if the target has the necessary
568support.
Sean Silvab084af42012-12-07 10:36:55 +0000569
Michael Gottesmane743a302013-02-04 03:22:00 +0000570By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000571variables defined within the module are not modified from their
572initial values before the start of the global initializer. This is
573true even for variables potentially accessible from outside the
574module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000575``@llvm.used`` or dllexported variables. This assumption may be suppressed
576by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000577
Sean Silvab084af42012-12-07 10:36:55 +0000578An explicit alignment may be specified for a global, which must be a
579power of 2. If not present, or if the alignment is set to zero, the
580alignment of the global is set by the target to whatever it feels
581convenient. If an explicit alignment is specified, the global is forced
582to have exactly that alignment. Targets and optimizers are not allowed
583to over-align the global if the global has an assigned section. In this
584case, the extra alignment could be observable: for example, code could
585assume that the globals are densely packed in their section and try to
586iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000587iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000588
Nico Rieck7157bb72014-01-14 15:22:47 +0000589Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
590
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000591Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000592:ref:`Thread Local Storage Model <tls_model>`.
593
Nico Rieck7157bb72014-01-14 15:22:47 +0000594Syntax::
595
596 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000597 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000598 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000599 [, section "name"] [, comdat [($name)]]
600 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000601
Sean Silvab084af42012-12-07 10:36:55 +0000602For example, the following defines a global in a numbered address space
603with an initializer, section, and alignment:
604
605.. code-block:: llvm
606
607 @G = addrspace(5) constant float 1.0, section "foo", align 4
608
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000609The following example just declares a global variable
610
611.. code-block:: llvm
612
613 @G = external global i32
614
Sean Silvab084af42012-12-07 10:36:55 +0000615The following example defines a thread-local global with the
616``initialexec`` TLS model:
617
618.. code-block:: llvm
619
620 @G = thread_local(initialexec) global i32 0, align 4
621
622.. _functionstructure:
623
624Functions
625---------
626
627LLVM function definitions consist of the "``define``" keyword, an
628optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000629style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
630an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000631an optional ``unnamed_addr`` attribute, a return type, an optional
632:ref:`parameter attribute <paramattrs>` for the return type, a function
633name, a (possibly empty) argument list (each with optional :ref:`parameter
634attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000635an optional section, an optional alignment,
636an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000637an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
638an optional :ref:`prologue <prologuedata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000639curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000640
641LLVM function declarations consist of the "``declare``" keyword, an
642optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000643style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
644an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000645an optional ``unnamed_addr`` attribute, a return type, an optional
646:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000647name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000648:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
649and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000650
Bill Wendling6822ecb2013-10-27 05:09:12 +0000651A function definition contains a list of basic blocks, forming the CFG (Control
652Flow Graph) for the function. Each basic block may optionally start with a label
653(giving the basic block a symbol table entry), contains a list of instructions,
654and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
655function return). If an explicit label is not provided, a block is assigned an
656implicit numbered label, using the next value from the same counter as used for
657unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
658entry block does not have an explicit label, it will be assigned label "%0",
659then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000660
661The first basic block in a function is special in two ways: it is
662immediately executed on entrance to the function, and it is not allowed
663to have predecessor basic blocks (i.e. there can not be any branches to
664the entry block of a function). Because the block can have no
665predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
666
667LLVM allows an explicit section to be specified for functions. If the
668target supports it, it will emit functions to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000669Additionally, the function can placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000670
671An explicit alignment may be specified for a function. If not present,
672or if the alignment is set to zero, the alignment of the function is set
673by the target to whatever it feels convenient. If an explicit alignment
674is specified, the function is forced to have at least that much
675alignment. All alignments must be a power of 2.
676
677If the ``unnamed_addr`` attribute is given, the address is know to not
678be significant and two identical functions can be merged.
679
680Syntax::
681
Nico Rieck7157bb72014-01-14 15:22:47 +0000682 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000683 [cconv] [ret attrs]
684 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000686 [align N] [gc] [prefix Constant] [prologue Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000687
Dan Liew2661dfc2014-08-20 15:06:30 +0000688The argument list is a comma seperated sequence of arguments where each
689argument is of the following form
690
691Syntax::
692
693 <type> [parameter Attrs] [name]
694
695
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000696.. _langref_aliases:
697
Sean Silvab084af42012-12-07 10:36:55 +0000698Aliases
699-------
700
Rafael Espindola64c1e182014-06-03 02:41:57 +0000701Aliases, unlike function or variables, don't create any new data. They
702are just a new symbol and metadata for an existing position.
703
704Aliases have a name and an aliasee that is either a global value or a
705constant expression.
706
Nico Rieck7157bb72014-01-14 15:22:47 +0000707Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000708:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
709<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000710
711Syntax::
712
Rafael Espindola464fe022014-07-30 22:51:54 +0000713 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000714
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000715The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000716``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000717might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000718
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000719Alias that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000720the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
721to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000722
Rafael Espindola64c1e182014-06-03 02:41:57 +0000723Since aliases are only a second name, some restrictions apply, of which
724some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000725
Rafael Espindola64c1e182014-06-03 02:41:57 +0000726* The expression defining the aliasee must be computable at assembly
727 time. Since it is just a name, no relocations can be used.
728
729* No alias in the expression can be weak as the possibility of the
730 intermediate alias being overridden cannot be represented in an
731 object file.
732
733* No global value in the expression can be a declaration, since that
734 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000735
David Majnemerdad0a642014-06-27 18:19:56 +0000736.. _langref_comdats:
737
738Comdats
739-------
740
741Comdat IR provides access to COFF and ELF object file COMDAT functionality.
742
Richard Smith32dbdf62014-07-31 04:25:36 +0000743Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000744specify this key will only end up in the final object file if the linker chooses
745that key over some other key. Aliases are placed in the same COMDAT that their
746aliasee computes to, if any.
747
748Comdats have a selection kind to provide input on how the linker should
749choose between keys in two different object files.
750
751Syntax::
752
753 $<Name> = comdat SelectionKind
754
755The selection kind must be one of the following:
756
757``any``
758 The linker may choose any COMDAT key, the choice is arbitrary.
759``exactmatch``
760 The linker may choose any COMDAT key but the sections must contain the
761 same data.
762``largest``
763 The linker will choose the section containing the largest COMDAT key.
764``noduplicates``
765 The linker requires that only section with this COMDAT key exist.
766``samesize``
767 The linker may choose any COMDAT key but the sections must contain the
768 same amount of data.
769
770Note that the Mach-O platform doesn't support COMDATs and ELF only supports
771``any`` as a selection kind.
772
773Here is an example of a COMDAT group where a function will only be selected if
774the COMDAT key's section is the largest:
775
776.. code-block:: llvm
777
778 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000779 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000780
Rafael Espindola83a362c2015-01-06 22:55:16 +0000781 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000782 ret void
783 }
784
Rafael Espindola83a362c2015-01-06 22:55:16 +0000785As a syntactic sugar the ``$name`` can be omitted if the name is the same as
786the global name:
787
788.. code-block:: llvm
789
790 $foo = comdat any
791 @foo = global i32 2, comdat
792
793
David Majnemerdad0a642014-06-27 18:19:56 +0000794In a COFF object file, this will create a COMDAT section with selection kind
795``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
796and another COMDAT section with selection kind
797``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000798section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000799
800There are some restrictions on the properties of the global object.
801It, or an alias to it, must have the same name as the COMDAT group when
802targeting COFF.
803The contents and size of this object may be used during link-time to determine
804which COMDAT groups get selected depending on the selection kind.
805Because the name of the object must match the name of the COMDAT group, the
806linkage of the global object must not be local; local symbols can get renamed
807if a collision occurs in the symbol table.
808
809The combined use of COMDATS and section attributes may yield surprising results.
810For example:
811
812.. code-block:: llvm
813
814 $foo = comdat any
815 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000816 @g1 = global i32 42, section "sec", comdat($foo)
817 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000818
819From the object file perspective, this requires the creation of two sections
820with the same name. This is necessary because both globals belong to different
821COMDAT groups and COMDATs, at the object file level, are represented by
822sections.
823
824Note that certain IR constructs like global variables and functions may create
825COMDATs in the object file in addition to any which are specified using COMDAT
826IR. This arises, for example, when a global variable has linkonce_odr linkage.
827
Sean Silvab084af42012-12-07 10:36:55 +0000828.. _namedmetadatastructure:
829
830Named Metadata
831--------------
832
833Named metadata is a collection of metadata. :ref:`Metadata
834nodes <metadata>` (but not metadata strings) are the only valid
835operands for a named metadata.
836
837Syntax::
838
839 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000840 !0 = !{!"zero"}
841 !1 = !{!"one"}
842 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000843 ; A named metadata.
844 !name = !{!0, !1, !2}
845
846.. _paramattrs:
847
848Parameter Attributes
849--------------------
850
851The return type and each parameter of a function type may have a set of
852*parameter attributes* associated with them. Parameter attributes are
853used to communicate additional information about the result or
854parameters of a function. Parameter attributes are considered to be part
855of the function, not of the function type, so functions with different
856parameter attributes can have the same function type.
857
858Parameter attributes are simple keywords that follow the type specified.
859If multiple parameter attributes are needed, they are space separated.
860For example:
861
862.. code-block:: llvm
863
864 declare i32 @printf(i8* noalias nocapture, ...)
865 declare i32 @atoi(i8 zeroext)
866 declare signext i8 @returns_signed_char()
867
868Note that any attributes for the function result (``nounwind``,
869``readonly``) come immediately after the argument list.
870
871Currently, only the following parameter attributes are defined:
872
873``zeroext``
874 This indicates to the code generator that the parameter or return
875 value should be zero-extended to the extent required by the target's
876 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
877 the caller (for a parameter) or the callee (for a return value).
878``signext``
879 This indicates to the code generator that the parameter or return
880 value should be sign-extended to the extent required by the target's
881 ABI (which is usually 32-bits) by the caller (for a parameter) or
882 the callee (for a return value).
883``inreg``
884 This indicates that this parameter or return value should be treated
885 in a special target-dependent fashion during while emitting code for
886 a function call or return (usually, by putting it in a register as
887 opposed to memory, though some targets use it to distinguish between
888 two different kinds of registers). Use of this attribute is
889 target-specific.
890``byval``
891 This indicates that the pointer parameter should really be passed by
892 value to the function. The attribute implies that a hidden copy of
893 the pointee is made between the caller and the callee, so the callee
894 is unable to modify the value in the caller. This attribute is only
895 valid on LLVM pointer arguments. It is generally used to pass
896 structs and arrays by value, but is also valid on pointers to
897 scalars. The copy is considered to belong to the caller not the
898 callee (for example, ``readonly`` functions should not write to
899 ``byval`` parameters). This is not a valid attribute for return
900 values.
901
902 The byval attribute also supports specifying an alignment with the
903 align attribute. It indicates the alignment of the stack slot to
904 form and the known alignment of the pointer specified to the call
905 site. If the alignment is not specified, then the code generator
906 makes a target-specific assumption.
907
Reid Klecknera534a382013-12-19 02:14:12 +0000908.. _attr_inalloca:
909
910``inalloca``
911
Reid Kleckner60d3a832014-01-16 22:59:24 +0000912 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000913 address of outgoing stack arguments. An ``inalloca`` argument must
914 be a pointer to stack memory produced by an ``alloca`` instruction.
915 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000916 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000917 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000918
Reid Kleckner436c42e2014-01-17 23:58:17 +0000919 An argument allocation may be used by a call at most once because
920 the call may deallocate it. The ``inalloca`` attribute cannot be
921 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000922 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
923 ``inalloca`` attribute also disables LLVM's implicit lowering of
924 large aggregate return values, which means that frontend authors
925 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000926
Reid Kleckner60d3a832014-01-16 22:59:24 +0000927 When the call site is reached, the argument allocation must have
928 been the most recent stack allocation that is still live, or the
929 results are undefined. It is possible to allocate additional stack
930 space after an argument allocation and before its call site, but it
931 must be cleared off with :ref:`llvm.stackrestore
932 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000933
934 See :doc:`InAlloca` for more information on how to use this
935 attribute.
936
Sean Silvab084af42012-12-07 10:36:55 +0000937``sret``
938 This indicates that the pointer parameter specifies the address of a
939 structure that is the return value of the function in the source
940 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000941 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000942 not to trap and to be properly aligned. This may only be applied to
943 the first parameter. This is not a valid attribute for return
944 values.
Sean Silva1703e702014-04-08 21:06:22 +0000945
Hal Finkelccc70902014-07-22 16:58:55 +0000946``align <n>``
947 This indicates that the pointer value may be assumed by the optimizer to
948 have the specified alignment.
949
950 Note that this attribute has additional semantics when combined with the
951 ``byval`` attribute.
952
Sean Silva1703e702014-04-08 21:06:22 +0000953.. _noalias:
954
Sean Silvab084af42012-12-07 10:36:55 +0000955``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000956 This indicates that objects accessed via pointer values
957 :ref:`based <pointeraliasing>` on the argument or return value are not also
958 accessed, during the execution of the function, via pointer values not
959 *based* on the argument or return value. The attribute on a return value
960 also has additional semantics described below. The caller shares the
961 responsibility with the callee for ensuring that these requirements are met.
962 For further details, please see the discussion of the NoAlias response in
963 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000964
965 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000966 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000967
968 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000969 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
970 attribute on return values are stronger than the semantics of the attribute
971 when used on function arguments. On function return values, the ``noalias``
972 attribute indicates that the function acts like a system memory allocation
973 function, returning a pointer to allocated storage disjoint from the
974 storage for any other object accessible to the caller.
975
Sean Silvab084af42012-12-07 10:36:55 +0000976``nocapture``
977 This indicates that the callee does not make any copies of the
978 pointer that outlive the callee itself. This is not a valid
979 attribute for return values.
980
981.. _nest:
982
983``nest``
984 This indicates that the pointer parameter can be excised using the
985 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000986 attribute for return values and can only be applied to one parameter.
987
988``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000989 This indicates that the function always returns the argument as its return
990 value. This is an optimization hint to the code generator when generating
991 the caller, allowing tail call optimization and omission of register saves
992 and restores in some cases; it is not checked or enforced when generating
993 the callee. The parameter and the function return type must be valid
994 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
995 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000996
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000997``nonnull``
998 This indicates that the parameter or return pointer is not null. This
999 attribute may only be applied to pointer typed parameters. This is not
1000 checked or enforced by LLVM, the caller must ensure that the pointer
1001 passed in is non-null, or the callee must ensure that the returned pointer
1002 is non-null.
1003
Hal Finkelb0407ba2014-07-18 15:51:28 +00001004``dereferenceable(<n>)``
1005 This indicates that the parameter or return pointer is dereferenceable. This
1006 attribute may only be applied to pointer typed parameters. A pointer that
1007 is dereferenceable can be loaded from speculatively without a risk of
1008 trapping. The number of bytes known to be dereferenceable must be provided
1009 in parentheses. It is legal for the number of bytes to be less than the
1010 size of the pointee type. The ``nonnull`` attribute does not imply
1011 dereferenceability (consider a pointer to one element past the end of an
1012 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1013 ``addrspace(0)`` (which is the default address space).
1014
Sean Silvab084af42012-12-07 10:36:55 +00001015.. _gc:
1016
1017Garbage Collector Names
1018-----------------------
1019
1020Each function may specify a garbage collector name, which is simply a
1021string:
1022
1023.. code-block:: llvm
1024
1025 define void @f() gc "name" { ... }
1026
1027The compiler declares the supported values of *name*. Specifying a
Richard Smith32dbdf62014-07-31 04:25:36 +00001028collector will cause the compiler to alter its output in order to
Sean Silvab084af42012-12-07 10:36:55 +00001029support the named garbage collection algorithm.
1030
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001031.. _prefixdata:
1032
1033Prefix Data
1034-----------
1035
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001036Prefix data is data associated with a function which the code
1037generator will emit immediately before the function's entrypoint.
1038The purpose of this feature is to allow frontends to associate
1039language-specific runtime metadata with specific functions and make it
1040available through the function pointer while still allowing the
1041function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001042
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001043To access the data for a given function, a program may bitcast the
1044function pointer to a pointer to the constant's type and dereference
1045index -1. This implies that the IR symbol points just past the end of
1046the prefix data. For instance, take the example of a function annotated
1047with a single ``i32``,
1048
1049.. code-block:: llvm
1050
1051 define void @f() prefix i32 123 { ... }
1052
1053The prefix data can be referenced as,
1054
1055.. code-block:: llvm
1056
1057 %0 = bitcast *void () @f to *i32
1058 %a = getelementptr inbounds *i32 %0, i32 -1
1059 %b = load i32* %a
1060
1061Prefix data is laid out as if it were an initializer for a global variable
1062of the prefix data's type. The function will be placed such that the
1063beginning of the prefix data is aligned. This means that if the size
1064of the prefix data is not a multiple of the alignment size, the
1065function's entrypoint will not be aligned. If alignment of the
1066function's entrypoint is desired, padding must be added to the prefix
1067data.
1068
1069A function may have prefix data but no body. This has similar semantics
1070to the ``available_externally`` linkage in that the data may be used by the
1071optimizers but will not be emitted in the object file.
1072
1073.. _prologuedata:
1074
1075Prologue Data
1076-------------
1077
1078The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1079be inserted prior to the function body. This can be used for enabling
1080function hot-patching and instrumentation.
1081
1082To maintain the semantics of ordinary function calls, the prologue data must
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001083have a particular format. Specifically, it must begin with a sequence of
1084bytes which decode to a sequence of machine instructions, valid for the
1085module's target, which transfer control to the point immediately succeeding
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001086the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001087the inliner and other passes to reason about the semantics of the function
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001088definition without needing to reason about the prologue data. Obviously this
1089makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001090
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001091A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001092which encodes the ``nop`` instruction:
1093
1094.. code-block:: llvm
1095
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001096 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001097
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001098Generally prologue data can be formed by encoding a relative branch instruction
1099which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001100x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1101
1102.. code-block:: llvm
1103
1104 %0 = type <{ i8, i8, i8* }>
1105
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001106 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001107
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001108A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001109to the ``available_externally`` linkage in that the data may be used by the
1110optimizers but will not be emitted in the object file.
1111
Bill Wendling63b88192013-02-06 06:52:58 +00001112.. _attrgrp:
1113
1114Attribute Groups
1115----------------
1116
1117Attribute groups are groups of attributes that are referenced by objects within
1118the IR. They are important for keeping ``.ll`` files readable, because a lot of
1119functions will use the same set of attributes. In the degenerative case of a
1120``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1121group will capture the important command line flags used to build that file.
1122
1123An attribute group is a module-level object. To use an attribute group, an
1124object references the attribute group's ID (e.g. ``#37``). An object may refer
1125to more than one attribute group. In that situation, the attributes from the
1126different groups are merged.
1127
1128Here is an example of attribute groups for a function that should always be
1129inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1130
1131.. code-block:: llvm
1132
1133 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001134 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001135
1136 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001137 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001138
1139 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1140 define void @f() #0 #1 { ... }
1141
Sean Silvab084af42012-12-07 10:36:55 +00001142.. _fnattrs:
1143
1144Function Attributes
1145-------------------
1146
1147Function attributes are set to communicate additional information about
1148a function. Function attributes are considered to be part of the
1149function, not of the function type, so functions with different function
1150attributes can have the same function type.
1151
1152Function attributes are simple keywords that follow the type specified.
1153If multiple attributes are needed, they are space separated. For
1154example:
1155
1156.. code-block:: llvm
1157
1158 define void @f() noinline { ... }
1159 define void @f() alwaysinline { ... }
1160 define void @f() alwaysinline optsize { ... }
1161 define void @f() optsize { ... }
1162
Sean Silvab084af42012-12-07 10:36:55 +00001163``alignstack(<n>)``
1164 This attribute indicates that, when emitting the prologue and
1165 epilogue, the backend should forcibly align the stack pointer.
1166 Specify the desired alignment, which must be a power of two, in
1167 parentheses.
1168``alwaysinline``
1169 This attribute indicates that the inliner should attempt to inline
1170 this function into callers whenever possible, ignoring any active
1171 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001172``builtin``
1173 This indicates that the callee function at a call site should be
1174 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001175 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001176 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001177 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001178``cold``
1179 This attribute indicates that this function is rarely called. When
1180 computing edge weights, basic blocks post-dominated by a cold
1181 function call are also considered to be cold; and, thus, given low
1182 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001183``inlinehint``
1184 This attribute indicates that the source code contained a hint that
1185 inlining this function is desirable (such as the "inline" keyword in
1186 C/C++). It is just a hint; it imposes no requirements on the
1187 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001188``jumptable``
1189 This attribute indicates that the function should be added to a
1190 jump-instruction table at code-generation time, and that all address-taken
1191 references to this function should be replaced with a reference to the
1192 appropriate jump-instruction-table function pointer. Note that this creates
1193 a new pointer for the original function, which means that code that depends
1194 on function-pointer identity can break. So, any function annotated with
1195 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001196``minsize``
1197 This attribute suggests that optimization passes and code generator
1198 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001199 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001200 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001201``naked``
1202 This attribute disables prologue / epilogue emission for the
1203 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001204``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001205 This indicates that the callee function at a call site is not recognized as
1206 a built-in function. LLVM will retain the original call and not replace it
1207 with equivalent code based on the semantics of the built-in function, unless
1208 the call site uses the ``builtin`` attribute. This is valid at call sites
1209 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001210``noduplicate``
1211 This attribute indicates that calls to the function cannot be
1212 duplicated. A call to a ``noduplicate`` function may be moved
1213 within its parent function, but may not be duplicated within
1214 its parent function.
1215
1216 A function containing a ``noduplicate`` call may still
1217 be an inlining candidate, provided that the call is not
1218 duplicated by inlining. That implies that the function has
1219 internal linkage and only has one call site, so the original
1220 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001221``noimplicitfloat``
1222 This attributes disables implicit floating point instructions.
1223``noinline``
1224 This attribute indicates that the inliner should never inline this
1225 function in any situation. This attribute may not be used together
1226 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001227``nonlazybind``
1228 This attribute suppresses lazy symbol binding for the function. This
1229 may make calls to the function faster, at the cost of extra program
1230 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001231``noredzone``
1232 This attribute indicates that the code generator should not use a
1233 red zone, even if the target-specific ABI normally permits it.
1234``noreturn``
1235 This function attribute indicates that the function never returns
1236 normally. This produces undefined behavior at runtime if the
1237 function ever does dynamically return.
1238``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001239 This function attribute indicates that the function never raises an
1240 exception. If the function does raise an exception, its runtime
1241 behavior is undefined. However, functions marked nounwind may still
1242 trap or generate asynchronous exceptions. Exception handling schemes
1243 that are recognized by LLVM to handle asynchronous exceptions, such
1244 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001245``optnone``
1246 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001247 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001248 exception of interprocedural optimization passes.
1249 This attribute cannot be used together with the ``alwaysinline``
1250 attribute; this attribute is also incompatible
1251 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001252
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001253 This attribute requires the ``noinline`` attribute to be specified on
1254 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001255 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001256 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001257``optsize``
1258 This attribute suggests that optimization passes and code generator
1259 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001260 and otherwise do optimizations specifically to reduce code size as
1261 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001262``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001263 On a function, this attribute indicates that the function computes its
1264 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001265 without dereferencing any pointer arguments or otherwise accessing
1266 any mutable state (e.g. memory, control registers, etc) visible to
1267 caller functions. It does not write through any pointer arguments
1268 (including ``byval`` arguments) and never changes any state visible
1269 to callers. This means that it cannot unwind exceptions by calling
1270 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001271
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001272 On an argument, this attribute indicates that the function does not
1273 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001274 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001275``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001276 On a function, this attribute indicates that the function does not write
1277 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001278 modify any state (e.g. memory, control registers, etc) visible to
1279 caller functions. It may dereference pointer arguments and read
1280 state that may be set in the caller. A readonly function always
1281 returns the same value (or unwinds an exception identically) when
1282 called with the same set of arguments and global state. It cannot
1283 unwind an exception by calling the ``C++`` exception throwing
1284 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001285
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001286 On an argument, this attribute indicates that the function does not write
1287 through this pointer argument, even though it may write to the memory that
1288 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001289``returns_twice``
1290 This attribute indicates that this function can return twice. The C
1291 ``setjmp`` is an example of such a function. The compiler disables
1292 some optimizations (like tail calls) in the caller of these
1293 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001294``sanitize_address``
1295 This attribute indicates that AddressSanitizer checks
1296 (dynamic address safety analysis) are enabled for this function.
1297``sanitize_memory``
1298 This attribute indicates that MemorySanitizer checks (dynamic detection
1299 of accesses to uninitialized memory) are enabled for this function.
1300``sanitize_thread``
1301 This attribute indicates that ThreadSanitizer checks
1302 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001303``ssp``
1304 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001305 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001306 placed on the stack before the local variables that's checked upon
1307 return from the function to see if it has been overwritten. A
1308 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001309 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001310
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001311 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1312 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1313 - Calls to alloca() with variable sizes or constant sizes greater than
1314 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001315
Josh Magee24c7f062014-02-01 01:36:16 +00001316 Variables that are identified as requiring a protector will be arranged
1317 on the stack such that they are adjacent to the stack protector guard.
1318
Sean Silvab084af42012-12-07 10:36:55 +00001319 If a function that has an ``ssp`` attribute is inlined into a
1320 function that doesn't have an ``ssp`` attribute, then the resulting
1321 function will have an ``ssp`` attribute.
1322``sspreq``
1323 This attribute indicates that the function should *always* emit a
1324 stack smashing protector. This overrides the ``ssp`` function
1325 attribute.
1326
Josh Magee24c7f062014-02-01 01:36:16 +00001327 Variables that are identified as requiring a protector will be arranged
1328 on the stack such that they are adjacent to the stack protector guard.
1329 The specific layout rules are:
1330
1331 #. Large arrays and structures containing large arrays
1332 (``>= ssp-buffer-size``) are closest to the stack protector.
1333 #. Small arrays and structures containing small arrays
1334 (``< ssp-buffer-size``) are 2nd closest to the protector.
1335 #. Variables that have had their address taken are 3rd closest to the
1336 protector.
1337
Sean Silvab084af42012-12-07 10:36:55 +00001338 If a function that has an ``sspreq`` attribute is inlined into a
1339 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001340 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1341 an ``sspreq`` attribute.
1342``sspstrong``
1343 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001344 protector. This attribute causes a strong heuristic to be used when
1345 determining if a function needs stack protectors. The strong heuristic
1346 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001347
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001348 - Arrays of any size and type
1349 - Aggregates containing an array of any size and type.
1350 - Calls to alloca().
1351 - Local variables that have had their address taken.
1352
Josh Magee24c7f062014-02-01 01:36:16 +00001353 Variables that are identified as requiring a protector will be arranged
1354 on the stack such that they are adjacent to the stack protector guard.
1355 The specific layout rules are:
1356
1357 #. Large arrays and structures containing large arrays
1358 (``>= ssp-buffer-size``) are closest to the stack protector.
1359 #. Small arrays and structures containing small arrays
1360 (``< ssp-buffer-size``) are 2nd closest to the protector.
1361 #. Variables that have had their address taken are 3rd closest to the
1362 protector.
1363
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001364 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001365
1366 If a function that has an ``sspstrong`` attribute is inlined into a
1367 function that doesn't have an ``sspstrong`` attribute, then the
1368 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001369``uwtable``
1370 This attribute indicates that the ABI being targeted requires that
1371 an unwind table entry be produce for this function even if we can
1372 show that no exceptions passes by it. This is normally the case for
1373 the ELF x86-64 abi, but it can be disabled for some compilation
1374 units.
Sean Silvab084af42012-12-07 10:36:55 +00001375
1376.. _moduleasm:
1377
1378Module-Level Inline Assembly
1379----------------------------
1380
1381Modules may contain "module-level inline asm" blocks, which corresponds
1382to the GCC "file scope inline asm" blocks. These blocks are internally
1383concatenated by LLVM and treated as a single unit, but may be separated
1384in the ``.ll`` file if desired. The syntax is very simple:
1385
1386.. code-block:: llvm
1387
1388 module asm "inline asm code goes here"
1389 module asm "more can go here"
1390
1391The strings can contain any character by escaping non-printable
1392characters. The escape sequence used is simply "\\xx" where "xx" is the
1393two digit hex code for the number.
1394
1395The inline asm code is simply printed to the machine code .s file when
1396assembly code is generated.
1397
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001398.. _langref_datalayout:
1399
Sean Silvab084af42012-12-07 10:36:55 +00001400Data Layout
1401-----------
1402
1403A module may specify a target specific data layout string that specifies
1404how data is to be laid out in memory. The syntax for the data layout is
1405simply:
1406
1407.. code-block:: llvm
1408
1409 target datalayout = "layout specification"
1410
1411The *layout specification* consists of a list of specifications
1412separated by the minus sign character ('-'). Each specification starts
1413with a letter and may include other information after the letter to
1414define some aspect of the data layout. The specifications accepted are
1415as follows:
1416
1417``E``
1418 Specifies that the target lays out data in big-endian form. That is,
1419 the bits with the most significance have the lowest address
1420 location.
1421``e``
1422 Specifies that the target lays out data in little-endian form. That
1423 is, the bits with the least significance have the lowest address
1424 location.
1425``S<size>``
1426 Specifies the natural alignment of the stack in bits. Alignment
1427 promotion of stack variables is limited to the natural stack
1428 alignment to avoid dynamic stack realignment. The stack alignment
1429 must be a multiple of 8-bits. If omitted, the natural stack
1430 alignment defaults to "unspecified", which does not prevent any
1431 alignment promotions.
1432``p[n]:<size>:<abi>:<pref>``
1433 This specifies the *size* of a pointer and its ``<abi>`` and
1434 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001435 bits. The address space, ``n`` is optional, and if not specified,
1436 denotes the default address space 0. The value of ``n`` must be
1437 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001438``i<size>:<abi>:<pref>``
1439 This specifies the alignment for an integer type of a given bit
1440 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1441``v<size>:<abi>:<pref>``
1442 This specifies the alignment for a vector type of a given bit
1443 ``<size>``.
1444``f<size>:<abi>:<pref>``
1445 This specifies the alignment for a floating point type of a given bit
1446 ``<size>``. Only values of ``<size>`` that are supported by the target
1447 will work. 32 (float) and 64 (double) are supported on all targets; 80
1448 or 128 (different flavors of long double) are also supported on some
1449 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001450``a:<abi>:<pref>``
1451 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001452``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001453 If present, specifies that llvm names are mangled in the output. The
1454 options are
1455
1456 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1457 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1458 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1459 symbols get a ``_`` prefix.
1460 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1461 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001462``n<size1>:<size2>:<size3>...``
1463 This specifies a set of native integer widths for the target CPU in
1464 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1465 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1466 this set are considered to support most general arithmetic operations
1467 efficiently.
1468
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001469On every specification that takes a ``<abi>:<pref>``, specifying the
1470``<pref>`` alignment is optional. If omitted, the preceding ``:``
1471should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1472
Sean Silvab084af42012-12-07 10:36:55 +00001473When constructing the data layout for a given target, LLVM starts with a
1474default set of specifications which are then (possibly) overridden by
1475the specifications in the ``datalayout`` keyword. The default
1476specifications are given in this list:
1477
1478- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001479- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1480- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1481 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001482- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001483- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1484- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1485- ``i16:16:16`` - i16 is 16-bit aligned
1486- ``i32:32:32`` - i32 is 32-bit aligned
1487- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1488 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001489- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001490- ``f32:32:32`` - float is 32-bit aligned
1491- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001492- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001493- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1494- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001495- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001496
1497When LLVM is determining the alignment for a given type, it uses the
1498following rules:
1499
1500#. If the type sought is an exact match for one of the specifications,
1501 that specification is used.
1502#. If no match is found, and the type sought is an integer type, then
1503 the smallest integer type that is larger than the bitwidth of the
1504 sought type is used. If none of the specifications are larger than
1505 the bitwidth then the largest integer type is used. For example,
1506 given the default specifications above, the i7 type will use the
1507 alignment of i8 (next largest) while both i65 and i256 will use the
1508 alignment of i64 (largest specified).
1509#. If no match is found, and the type sought is a vector type, then the
1510 largest vector type that is smaller than the sought vector type will
1511 be used as a fall back. This happens because <128 x double> can be
1512 implemented in terms of 64 <2 x double>, for example.
1513
1514The function of the data layout string may not be what you expect.
1515Notably, this is not a specification from the frontend of what alignment
1516the code generator should use.
1517
1518Instead, if specified, the target data layout is required to match what
1519the ultimate *code generator* expects. This string is used by the
1520mid-level optimizers to improve code, and this only works if it matches
1521what the ultimate code generator uses. If you would like to generate IR
1522that does not embed this target-specific detail into the IR, then you
1523don't have to specify the string. This will disable some optimizations
1524that require precise layout information, but this also prevents those
1525optimizations from introducing target specificity into the IR.
1526
Bill Wendling5cc90842013-10-18 23:41:25 +00001527.. _langref_triple:
1528
1529Target Triple
1530-------------
1531
1532A module may specify a target triple string that describes the target
1533host. The syntax for the target triple is simply:
1534
1535.. code-block:: llvm
1536
1537 target triple = "x86_64-apple-macosx10.7.0"
1538
1539The *target triple* string consists of a series of identifiers delimited
1540by the minus sign character ('-'). The canonical forms are:
1541
1542::
1543
1544 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1545 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1546
1547This information is passed along to the backend so that it generates
1548code for the proper architecture. It's possible to override this on the
1549command line with the ``-mtriple`` command line option.
1550
Sean Silvab084af42012-12-07 10:36:55 +00001551.. _pointeraliasing:
1552
1553Pointer Aliasing Rules
1554----------------------
1555
1556Any memory access must be done through a pointer value associated with
1557an address range of the memory access, otherwise the behavior is
1558undefined. Pointer values are associated with address ranges according
1559to the following rules:
1560
1561- A pointer value is associated with the addresses associated with any
1562 value it is *based* on.
1563- An address of a global variable is associated with the address range
1564 of the variable's storage.
1565- The result value of an allocation instruction is associated with the
1566 address range of the allocated storage.
1567- A null pointer in the default address-space is associated with no
1568 address.
1569- An integer constant other than zero or a pointer value returned from
1570 a function not defined within LLVM may be associated with address
1571 ranges allocated through mechanisms other than those provided by
1572 LLVM. Such ranges shall not overlap with any ranges of addresses
1573 allocated by mechanisms provided by LLVM.
1574
1575A pointer value is *based* on another pointer value according to the
1576following rules:
1577
1578- A pointer value formed from a ``getelementptr`` operation is *based*
1579 on the first operand of the ``getelementptr``.
1580- The result value of a ``bitcast`` is *based* on the operand of the
1581 ``bitcast``.
1582- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1583 values that contribute (directly or indirectly) to the computation of
1584 the pointer's value.
1585- The "*based* on" relationship is transitive.
1586
1587Note that this definition of *"based"* is intentionally similar to the
1588definition of *"based"* in C99, though it is slightly weaker.
1589
1590LLVM IR does not associate types with memory. The result type of a
1591``load`` merely indicates the size and alignment of the memory from
1592which to load, as well as the interpretation of the value. The first
1593operand type of a ``store`` similarly only indicates the size and
1594alignment of the store.
1595
1596Consequently, type-based alias analysis, aka TBAA, aka
1597``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1598:ref:`Metadata <metadata>` may be used to encode additional information
1599which specialized optimization passes may use to implement type-based
1600alias analysis.
1601
1602.. _volatile:
1603
1604Volatile Memory Accesses
1605------------------------
1606
1607Certain memory accesses, such as :ref:`load <i_load>`'s,
1608:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1609marked ``volatile``. The optimizers must not change the number of
1610volatile operations or change their order of execution relative to other
1611volatile operations. The optimizers *may* change the order of volatile
1612operations relative to non-volatile operations. This is not Java's
1613"volatile" and has no cross-thread synchronization behavior.
1614
Andrew Trick89fc5a62013-01-30 21:19:35 +00001615IR-level volatile loads and stores cannot safely be optimized into
1616llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1617flagged volatile. Likewise, the backend should never split or merge
1618target-legal volatile load/store instructions.
1619
Andrew Trick7e6f9282013-01-31 00:49:39 +00001620.. admonition:: Rationale
1621
1622 Platforms may rely on volatile loads and stores of natively supported
1623 data width to be executed as single instruction. For example, in C
1624 this holds for an l-value of volatile primitive type with native
1625 hardware support, but not necessarily for aggregate types. The
1626 frontend upholds these expectations, which are intentionally
1627 unspecified in the IR. The rules above ensure that IR transformation
1628 do not violate the frontend's contract with the language.
1629
Sean Silvab084af42012-12-07 10:36:55 +00001630.. _memmodel:
1631
1632Memory Model for Concurrent Operations
1633--------------------------------------
1634
1635The LLVM IR does not define any way to start parallel threads of
1636execution or to register signal handlers. Nonetheless, there are
1637platform-specific ways to create them, and we define LLVM IR's behavior
1638in their presence. This model is inspired by the C++0x memory model.
1639
1640For a more informal introduction to this model, see the :doc:`Atomics`.
1641
1642We define a *happens-before* partial order as the least partial order
1643that
1644
1645- Is a superset of single-thread program order, and
1646- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1647 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1648 techniques, like pthread locks, thread creation, thread joining,
1649 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1650 Constraints <ordering>`).
1651
1652Note that program order does not introduce *happens-before* edges
1653between a thread and signals executing inside that thread.
1654
1655Every (defined) read operation (load instructions, memcpy, atomic
1656loads/read-modify-writes, etc.) R reads a series of bytes written by
1657(defined) write operations (store instructions, atomic
1658stores/read-modify-writes, memcpy, etc.). For the purposes of this
1659section, initialized globals are considered to have a write of the
1660initializer which is atomic and happens before any other read or write
1661of the memory in question. For each byte of a read R, R\ :sub:`byte`
1662may see any write to the same byte, except:
1663
1664- If write\ :sub:`1` happens before write\ :sub:`2`, and
1665 write\ :sub:`2` happens before R\ :sub:`byte`, then
1666 R\ :sub:`byte` does not see write\ :sub:`1`.
1667- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1668 R\ :sub:`byte` does not see write\ :sub:`3`.
1669
1670Given that definition, R\ :sub:`byte` is defined as follows:
1671
1672- If R is volatile, the result is target-dependent. (Volatile is
1673 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001674 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001675 like normal memory. It does not generally provide cross-thread
1676 synchronization.)
1677- Otherwise, if there is no write to the same byte that happens before
1678 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1679- Otherwise, if R\ :sub:`byte` may see exactly one write,
1680 R\ :sub:`byte` returns the value written by that write.
1681- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1682 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1683 Memory Ordering Constraints <ordering>` section for additional
1684 constraints on how the choice is made.
1685- Otherwise R\ :sub:`byte` returns ``undef``.
1686
1687R returns the value composed of the series of bytes it read. This
1688implies that some bytes within the value may be ``undef`` **without**
1689the entire value being ``undef``. Note that this only defines the
1690semantics of the operation; it doesn't mean that targets will emit more
1691than one instruction to read the series of bytes.
1692
1693Note that in cases where none of the atomic intrinsics are used, this
1694model places only one restriction on IR transformations on top of what
1695is required for single-threaded execution: introducing a store to a byte
1696which might not otherwise be stored is not allowed in general.
1697(Specifically, in the case where another thread might write to and read
1698from an address, introducing a store can change a load that may see
1699exactly one write into a load that may see multiple writes.)
1700
1701.. _ordering:
1702
1703Atomic Memory Ordering Constraints
1704----------------------------------
1705
1706Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1707:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1708:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001709ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001710the same address they *synchronize with*. These semantics are borrowed
1711from Java and C++0x, but are somewhat more colloquial. If these
1712descriptions aren't precise enough, check those specs (see spec
1713references in the :doc:`atomics guide <Atomics>`).
1714:ref:`fence <i_fence>` instructions treat these orderings somewhat
1715differently since they don't take an address. See that instruction's
1716documentation for details.
1717
1718For a simpler introduction to the ordering constraints, see the
1719:doc:`Atomics`.
1720
1721``unordered``
1722 The set of values that can be read is governed by the happens-before
1723 partial order. A value cannot be read unless some operation wrote
1724 it. This is intended to provide a guarantee strong enough to model
1725 Java's non-volatile shared variables. This ordering cannot be
1726 specified for read-modify-write operations; it is not strong enough
1727 to make them atomic in any interesting way.
1728``monotonic``
1729 In addition to the guarantees of ``unordered``, there is a single
1730 total order for modifications by ``monotonic`` operations on each
1731 address. All modification orders must be compatible with the
1732 happens-before order. There is no guarantee that the modification
1733 orders can be combined to a global total order for the whole program
1734 (and this often will not be possible). The read in an atomic
1735 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1736 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1737 order immediately before the value it writes. If one atomic read
1738 happens before another atomic read of the same address, the later
1739 read must see the same value or a later value in the address's
1740 modification order. This disallows reordering of ``monotonic`` (or
1741 stronger) operations on the same address. If an address is written
1742 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1743 read that address repeatedly, the other threads must eventually see
1744 the write. This corresponds to the C++0x/C1x
1745 ``memory_order_relaxed``.
1746``acquire``
1747 In addition to the guarantees of ``monotonic``, a
1748 *synchronizes-with* edge may be formed with a ``release`` operation.
1749 This is intended to model C++'s ``memory_order_acquire``.
1750``release``
1751 In addition to the guarantees of ``monotonic``, if this operation
1752 writes a value which is subsequently read by an ``acquire``
1753 operation, it *synchronizes-with* that operation. (This isn't a
1754 complete description; see the C++0x definition of a release
1755 sequence.) This corresponds to the C++0x/C1x
1756 ``memory_order_release``.
1757``acq_rel`` (acquire+release)
1758 Acts as both an ``acquire`` and ``release`` operation on its
1759 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1760``seq_cst`` (sequentially consistent)
1761 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001762 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001763 writes), there is a global total order on all
1764 sequentially-consistent operations on all addresses, which is
1765 consistent with the *happens-before* partial order and with the
1766 modification orders of all the affected addresses. Each
1767 sequentially-consistent read sees the last preceding write to the
1768 same address in this global order. This corresponds to the C++0x/C1x
1769 ``memory_order_seq_cst`` and Java volatile.
1770
1771.. _singlethread:
1772
1773If an atomic operation is marked ``singlethread``, it only *synchronizes
1774with* or participates in modification and seq\_cst total orderings with
1775other operations running in the same thread (for example, in signal
1776handlers).
1777
1778.. _fastmath:
1779
1780Fast-Math Flags
1781---------------
1782
1783LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1784:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1785:ref:`frem <i_frem>`) have the following flags that can set to enable
1786otherwise unsafe floating point operations
1787
1788``nnan``
1789 No NaNs - Allow optimizations to assume the arguments and result are not
1790 NaN. Such optimizations are required to retain defined behavior over
1791 NaNs, but the value of the result is undefined.
1792
1793``ninf``
1794 No Infs - Allow optimizations to assume the arguments and result are not
1795 +/-Inf. Such optimizations are required to retain defined behavior over
1796 +/-Inf, but the value of the result is undefined.
1797
1798``nsz``
1799 No Signed Zeros - Allow optimizations to treat the sign of a zero
1800 argument or result as insignificant.
1801
1802``arcp``
1803 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1804 argument rather than perform division.
1805
1806``fast``
1807 Fast - Allow algebraically equivalent transformations that may
1808 dramatically change results in floating point (e.g. reassociate). This
1809 flag implies all the others.
1810
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001811.. _uselistorder:
1812
1813Use-list Order Directives
1814-------------------------
1815
1816Use-list directives encode the in-memory order of each use-list, allowing the
1817order to be recreated. ``<order-indexes>`` is a comma-separated list of
1818indexes that are assigned to the referenced value's uses. The referenced
1819value's use-list is immediately sorted by these indexes.
1820
1821Use-list directives may appear at function scope or global scope. They are not
1822instructions, and have no effect on the semantics of the IR. When they're at
1823function scope, they must appear after the terminator of the final basic block.
1824
1825If basic blocks have their address taken via ``blockaddress()`` expressions,
1826``uselistorder_bb`` can be used to reorder their use-lists from outside their
1827function's scope.
1828
1829:Syntax:
1830
1831::
1832
1833 uselistorder <ty> <value>, { <order-indexes> }
1834 uselistorder_bb @function, %block { <order-indexes> }
1835
1836:Examples:
1837
1838::
1839
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001840 define void @foo(i32 %arg1, i32 %arg2) {
1841 entry:
1842 ; ... instructions ...
1843 bb:
1844 ; ... instructions ...
1845
1846 ; At function scope.
1847 uselistorder i32 %arg1, { 1, 0, 2 }
1848 uselistorder label %bb, { 1, 0 }
1849 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001850
1851 ; At global scope.
1852 uselistorder i32* @global, { 1, 2, 0 }
1853 uselistorder i32 7, { 1, 0 }
1854 uselistorder i32 (i32) @bar, { 1, 0 }
1855 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1856
Sean Silvab084af42012-12-07 10:36:55 +00001857.. _typesystem:
1858
1859Type System
1860===========
1861
1862The LLVM type system is one of the most important features of the
1863intermediate representation. Being typed enables a number of
1864optimizations to be performed on the intermediate representation
1865directly, without having to do extra analyses on the side before the
1866transformation. A strong type system makes it easier to read the
1867generated code and enables novel analyses and transformations that are
1868not feasible to perform on normal three address code representations.
1869
Rafael Espindola08013342013-12-07 19:34:20 +00001870.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001871
Rafael Espindola08013342013-12-07 19:34:20 +00001872Void Type
1873---------
Sean Silvab084af42012-12-07 10:36:55 +00001874
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001875:Overview:
1876
Rafael Espindola08013342013-12-07 19:34:20 +00001877
1878The void type does not represent any value and has no size.
1879
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001880:Syntax:
1881
Rafael Espindola08013342013-12-07 19:34:20 +00001882
1883::
1884
1885 void
Sean Silvab084af42012-12-07 10:36:55 +00001886
1887
Rafael Espindola08013342013-12-07 19:34:20 +00001888.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001889
Rafael Espindola08013342013-12-07 19:34:20 +00001890Function Type
1891-------------
Sean Silvab084af42012-12-07 10:36:55 +00001892
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001893:Overview:
1894
Sean Silvab084af42012-12-07 10:36:55 +00001895
Rafael Espindola08013342013-12-07 19:34:20 +00001896The function type can be thought of as a function signature. It consists of a
1897return type and a list of formal parameter types. The return type of a function
1898type is a void type or first class type --- except for :ref:`label <t_label>`
1899and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001900
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001901:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001902
Rafael Espindola08013342013-12-07 19:34:20 +00001903::
Sean Silvab084af42012-12-07 10:36:55 +00001904
Rafael Espindola08013342013-12-07 19:34:20 +00001905 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001906
Rafael Espindola08013342013-12-07 19:34:20 +00001907...where '``<parameter list>``' is a comma-separated list of type
1908specifiers. Optionally, the parameter list may include a type ``...``, which
1909indicates that the function takes a variable number of arguments. Variable
1910argument functions can access their arguments with the :ref:`variable argument
1911handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1912except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001913
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001914:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001915
Rafael Espindola08013342013-12-07 19:34:20 +00001916+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1917| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1918+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1919| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1920+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1921| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1922+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1923| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1924+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1925
1926.. _t_firstclass:
1927
1928First Class Types
1929-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001930
1931The :ref:`first class <t_firstclass>` types are perhaps the most important.
1932Values of these types are the only ones which can be produced by
1933instructions.
1934
Rafael Espindola08013342013-12-07 19:34:20 +00001935.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001936
Rafael Espindola08013342013-12-07 19:34:20 +00001937Single Value Types
1938^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001939
Rafael Espindola08013342013-12-07 19:34:20 +00001940These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001941
1942.. _t_integer:
1943
1944Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001945""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001946
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001947:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001948
1949The integer type is a very simple type that simply specifies an
1950arbitrary bit width for the integer type desired. Any bit width from 1
1951bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1952
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001953:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001954
1955::
1956
1957 iN
1958
1959The number of bits the integer will occupy is specified by the ``N``
1960value.
1961
1962Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001963*********
Sean Silvab084af42012-12-07 10:36:55 +00001964
1965+----------------+------------------------------------------------+
1966| ``i1`` | a single-bit integer. |
1967+----------------+------------------------------------------------+
1968| ``i32`` | a 32-bit integer. |
1969+----------------+------------------------------------------------+
1970| ``i1942652`` | a really big integer of over 1 million bits. |
1971+----------------+------------------------------------------------+
1972
1973.. _t_floating:
1974
1975Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001976""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001977
1978.. list-table::
1979 :header-rows: 1
1980
1981 * - Type
1982 - Description
1983
1984 * - ``half``
1985 - 16-bit floating point value
1986
1987 * - ``float``
1988 - 32-bit floating point value
1989
1990 * - ``double``
1991 - 64-bit floating point value
1992
1993 * - ``fp128``
1994 - 128-bit floating point value (112-bit mantissa)
1995
1996 * - ``x86_fp80``
1997 - 80-bit floating point value (X87)
1998
1999 * - ``ppc_fp128``
2000 - 128-bit floating point value (two 64-bits)
2001
Reid Kleckner9a16d082014-03-05 02:41:37 +00002002X86_mmx Type
2003""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002004
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002005:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002006
Reid Kleckner9a16d082014-03-05 02:41:37 +00002007The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002008machine. The operations allowed on it are quite limited: parameters and
2009return values, load and store, and bitcast. User-specified MMX
2010instructions are represented as intrinsic or asm calls with arguments
2011and/or results of this type. There are no arrays, vectors or constants
2012of this type.
2013
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002014:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002015
2016::
2017
Reid Kleckner9a16d082014-03-05 02:41:37 +00002018 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002019
Sean Silvab084af42012-12-07 10:36:55 +00002020
Rafael Espindola08013342013-12-07 19:34:20 +00002021.. _t_pointer:
2022
2023Pointer Type
2024""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002025
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002026:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002027
Rafael Espindola08013342013-12-07 19:34:20 +00002028The pointer type is used to specify memory locations. Pointers are
2029commonly used to reference objects in memory.
2030
2031Pointer types may have an optional address space attribute defining the
2032numbered address space where the pointed-to object resides. The default
2033address space is number zero. The semantics of non-zero address spaces
2034are target-specific.
2035
2036Note that LLVM does not permit pointers to void (``void*``) nor does it
2037permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002038
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002039:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002040
2041::
2042
Rafael Espindola08013342013-12-07 19:34:20 +00002043 <type> *
2044
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002045:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002046
2047+-------------------------+--------------------------------------------------------------------------------------------------------------+
2048| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2049+-------------------------+--------------------------------------------------------------------------------------------------------------+
2050| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2051+-------------------------+--------------------------------------------------------------------------------------------------------------+
2052| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2053+-------------------------+--------------------------------------------------------------------------------------------------------------+
2054
2055.. _t_vector:
2056
2057Vector Type
2058"""""""""""
2059
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002060:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002061
2062A vector type is a simple derived type that represents a vector of
2063elements. Vector types are used when multiple primitive data are
2064operated in parallel using a single instruction (SIMD). A vector type
2065requires a size (number of elements) and an underlying primitive data
2066type. Vector types are considered :ref:`first class <t_firstclass>`.
2067
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002068:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002069
2070::
2071
2072 < <# elements> x <elementtype> >
2073
2074The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002075elementtype may be any integer, floating point or pointer type. Vectors
2076of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002077
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002078:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002079
2080+-------------------+--------------------------------------------------+
2081| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2082+-------------------+--------------------------------------------------+
2083| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2084+-------------------+--------------------------------------------------+
2085| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2086+-------------------+--------------------------------------------------+
2087| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2088+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002089
2090.. _t_label:
2091
2092Label Type
2093^^^^^^^^^^
2094
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002095:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002096
2097The label type represents code labels.
2098
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002099:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002100
2101::
2102
2103 label
2104
2105.. _t_metadata:
2106
2107Metadata Type
2108^^^^^^^^^^^^^
2109
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002110:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002111
2112The metadata type represents embedded metadata. No derived types may be
2113created from metadata except for :ref:`function <t_function>` arguments.
2114
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002115:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002116
2117::
2118
2119 metadata
2120
Sean Silvab084af42012-12-07 10:36:55 +00002121.. _t_aggregate:
2122
2123Aggregate Types
2124^^^^^^^^^^^^^^^
2125
2126Aggregate Types are a subset of derived types that can contain multiple
2127member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2128aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2129aggregate types.
2130
2131.. _t_array:
2132
2133Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002134""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002135
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002136:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002137
2138The array type is a very simple derived type that arranges elements
2139sequentially in memory. The array type requires a size (number of
2140elements) and an underlying data type.
2141
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002142:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002143
2144::
2145
2146 [<# elements> x <elementtype>]
2147
2148The number of elements is a constant integer value; ``elementtype`` may
2149be any type with a size.
2150
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002151:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002152
2153+------------------+--------------------------------------+
2154| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2155+------------------+--------------------------------------+
2156| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2157+------------------+--------------------------------------+
2158| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2159+------------------+--------------------------------------+
2160
2161Here are some examples of multidimensional arrays:
2162
2163+-----------------------------+----------------------------------------------------------+
2164| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2165+-----------------------------+----------------------------------------------------------+
2166| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2167+-----------------------------+----------------------------------------------------------+
2168| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2169+-----------------------------+----------------------------------------------------------+
2170
2171There is no restriction on indexing beyond the end of the array implied
2172by a static type (though there are restrictions on indexing beyond the
2173bounds of an allocated object in some cases). This means that
2174single-dimension 'variable sized array' addressing can be implemented in
2175LLVM with a zero length array type. An implementation of 'pascal style
2176arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2177example.
2178
Sean Silvab084af42012-12-07 10:36:55 +00002179.. _t_struct:
2180
2181Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002182""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002183
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002184:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002185
2186The structure type is used to represent a collection of data members
2187together in memory. The elements of a structure may be any type that has
2188a size.
2189
2190Structures in memory are accessed using '``load``' and '``store``' by
2191getting a pointer to a field with the '``getelementptr``' instruction.
2192Structures in registers are accessed using the '``extractvalue``' and
2193'``insertvalue``' instructions.
2194
2195Structures may optionally be "packed" structures, which indicate that
2196the alignment of the struct is one byte, and that there is no padding
2197between the elements. In non-packed structs, padding between field types
2198is inserted as defined by the DataLayout string in the module, which is
2199required to match what the underlying code generator expects.
2200
2201Structures can either be "literal" or "identified". A literal structure
2202is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2203identified types are always defined at the top level with a name.
2204Literal types are uniqued by their contents and can never be recursive
2205or opaque since there is no way to write one. Identified types can be
2206recursive, can be opaqued, and are never uniqued.
2207
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002208:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002209
2210::
2211
2212 %T1 = type { <type list> } ; Identified normal struct type
2213 %T2 = type <{ <type list> }> ; Identified packed struct type
2214
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002215:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002216
2217+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2218| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2219+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002220| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002221+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2222| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2223+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2224
2225.. _t_opaque:
2226
2227Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002228""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002229
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002230:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002231
2232Opaque structure types are used to represent named structure types that
2233do not have a body specified. This corresponds (for example) to the C
2234notion of a forward declared structure.
2235
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002236:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002237
2238::
2239
2240 %X = type opaque
2241 %52 = type opaque
2242
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002243:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002244
2245+--------------+-------------------+
2246| ``opaque`` | An opaque type. |
2247+--------------+-------------------+
2248
Sean Silva1703e702014-04-08 21:06:22 +00002249.. _constants:
2250
Sean Silvab084af42012-12-07 10:36:55 +00002251Constants
2252=========
2253
2254LLVM has several different basic types of constants. This section
2255describes them all and their syntax.
2256
2257Simple Constants
2258----------------
2259
2260**Boolean constants**
2261 The two strings '``true``' and '``false``' are both valid constants
2262 of the ``i1`` type.
2263**Integer constants**
2264 Standard integers (such as '4') are constants of the
2265 :ref:`integer <t_integer>` type. Negative numbers may be used with
2266 integer types.
2267**Floating point constants**
2268 Floating point constants use standard decimal notation (e.g.
2269 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2270 hexadecimal notation (see below). The assembler requires the exact
2271 decimal value of a floating-point constant. For example, the
2272 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2273 decimal in binary. Floating point constants must have a :ref:`floating
2274 point <t_floating>` type.
2275**Null pointer constants**
2276 The identifier '``null``' is recognized as a null pointer constant
2277 and must be of :ref:`pointer type <t_pointer>`.
2278
2279The one non-intuitive notation for constants is the hexadecimal form of
2280floating point constants. For example, the form
2281'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2282than) '``double 4.5e+15``'. The only time hexadecimal floating point
2283constants are required (and the only time that they are generated by the
2284disassembler) is when a floating point constant must be emitted but it
2285cannot be represented as a decimal floating point number in a reasonable
2286number of digits. For example, NaN's, infinities, and other special
2287values are represented in their IEEE hexadecimal format so that assembly
2288and disassembly do not cause any bits to change in the constants.
2289
2290When using the hexadecimal form, constants of types half, float, and
2291double are represented using the 16-digit form shown above (which
2292matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002293must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002294precision, respectively. Hexadecimal format is always used for long
2295double, and there are three forms of long double. The 80-bit format used
2296by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2297128-bit format used by PowerPC (two adjacent doubles) is represented by
2298``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002299represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2300will only work if they match the long double format on your target.
2301The IEEE 16-bit format (half precision) is represented by ``0xH``
2302followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2303(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002304
Reid Kleckner9a16d082014-03-05 02:41:37 +00002305There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002306
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002307.. _complexconstants:
2308
Sean Silvab084af42012-12-07 10:36:55 +00002309Complex Constants
2310-----------------
2311
2312Complex constants are a (potentially recursive) combination of simple
2313constants and smaller complex constants.
2314
2315**Structure constants**
2316 Structure constants are represented with notation similar to
2317 structure type definitions (a comma separated list of elements,
2318 surrounded by braces (``{}``)). For example:
2319 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2320 "``@G = external global i32``". Structure constants must have
2321 :ref:`structure type <t_struct>`, and the number and types of elements
2322 must match those specified by the type.
2323**Array constants**
2324 Array constants are represented with notation similar to array type
2325 definitions (a comma separated list of elements, surrounded by
2326 square brackets (``[]``)). For example:
2327 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2328 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002329 match those specified by the type. As a special case, character array
2330 constants may also be represented as a double-quoted string using the ``c``
2331 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002332**Vector constants**
2333 Vector constants are represented with notation similar to vector
2334 type definitions (a comma separated list of elements, surrounded by
2335 less-than/greater-than's (``<>``)). For example:
2336 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2337 must have :ref:`vector type <t_vector>`, and the number and types of
2338 elements must match those specified by the type.
2339**Zero initialization**
2340 The string '``zeroinitializer``' can be used to zero initialize a
2341 value to zero of *any* type, including scalar and
2342 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2343 having to print large zero initializers (e.g. for large arrays) and
2344 is always exactly equivalent to using explicit zero initializers.
2345**Metadata node**
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002346 A metadata node is a constant tuple without types. For example:
2347 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
2348 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2349 Unlike other typed constants that are meant to be interpreted as part of
2350 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002351 information such as debug info.
2352
2353Global Variable and Function Addresses
2354--------------------------------------
2355
2356The addresses of :ref:`global variables <globalvars>` and
2357:ref:`functions <functionstructure>` are always implicitly valid
2358(link-time) constants. These constants are explicitly referenced when
2359the :ref:`identifier for the global <identifiers>` is used and always have
2360:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2361file:
2362
2363.. code-block:: llvm
2364
2365 @X = global i32 17
2366 @Y = global i32 42
2367 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2368
2369.. _undefvalues:
2370
2371Undefined Values
2372----------------
2373
2374The string '``undef``' can be used anywhere a constant is expected, and
2375indicates that the user of the value may receive an unspecified
2376bit-pattern. Undefined values may be of any type (other than '``label``'
2377or '``void``') and be used anywhere a constant is permitted.
2378
2379Undefined values are useful because they indicate to the compiler that
2380the program is well defined no matter what value is used. This gives the
2381compiler more freedom to optimize. Here are some examples of
2382(potentially surprising) transformations that are valid (in pseudo IR):
2383
2384.. code-block:: llvm
2385
2386 %A = add %X, undef
2387 %B = sub %X, undef
2388 %C = xor %X, undef
2389 Safe:
2390 %A = undef
2391 %B = undef
2392 %C = undef
2393
2394This is safe because all of the output bits are affected by the undef
2395bits. Any output bit can have a zero or one depending on the input bits.
2396
2397.. code-block:: llvm
2398
2399 %A = or %X, undef
2400 %B = and %X, undef
2401 Safe:
2402 %A = -1
2403 %B = 0
2404 Unsafe:
2405 %A = undef
2406 %B = undef
2407
2408These logical operations have bits that are not always affected by the
2409input. For example, if ``%X`` has a zero bit, then the output of the
2410'``and``' operation will always be a zero for that bit, no matter what
2411the corresponding bit from the '``undef``' is. As such, it is unsafe to
2412optimize or assume that the result of the '``and``' is '``undef``'.
2413However, it is safe to assume that all bits of the '``undef``' could be
24140, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2415all the bits of the '``undef``' operand to the '``or``' could be set,
2416allowing the '``or``' to be folded to -1.
2417
2418.. code-block:: llvm
2419
2420 %A = select undef, %X, %Y
2421 %B = select undef, 42, %Y
2422 %C = select %X, %Y, undef
2423 Safe:
2424 %A = %X (or %Y)
2425 %B = 42 (or %Y)
2426 %C = %Y
2427 Unsafe:
2428 %A = undef
2429 %B = undef
2430 %C = undef
2431
2432This set of examples shows that undefined '``select``' (and conditional
2433branch) conditions can go *either way*, but they have to come from one
2434of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2435both known to have a clear low bit, then ``%A`` would have to have a
2436cleared low bit. However, in the ``%C`` example, the optimizer is
2437allowed to assume that the '``undef``' operand could be the same as
2438``%Y``, allowing the whole '``select``' to be eliminated.
2439
2440.. code-block:: llvm
2441
2442 %A = xor undef, undef
2443
2444 %B = undef
2445 %C = xor %B, %B
2446
2447 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002448 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002449 %F = icmp gte %D, 4
2450
2451 Safe:
2452 %A = undef
2453 %B = undef
2454 %C = undef
2455 %D = undef
2456 %E = undef
2457 %F = undef
2458
2459This example points out that two '``undef``' operands are not
2460necessarily the same. This can be surprising to people (and also matches
2461C semantics) where they assume that "``X^X``" is always zero, even if
2462``X`` is undefined. This isn't true for a number of reasons, but the
2463short answer is that an '``undef``' "variable" can arbitrarily change
2464its value over its "live range". This is true because the variable
2465doesn't actually *have a live range*. Instead, the value is logically
2466read from arbitrary registers that happen to be around when needed, so
2467the value is not necessarily consistent over time. In fact, ``%A`` and
2468``%C`` need to have the same semantics or the core LLVM "replace all
2469uses with" concept would not hold.
2470
2471.. code-block:: llvm
2472
2473 %A = fdiv undef, %X
2474 %B = fdiv %X, undef
2475 Safe:
2476 %A = undef
2477 b: unreachable
2478
2479These examples show the crucial difference between an *undefined value*
2480and *undefined behavior*. An undefined value (like '``undef``') is
2481allowed to have an arbitrary bit-pattern. This means that the ``%A``
2482operation can be constant folded to '``undef``', because the '``undef``'
2483could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2484However, in the second example, we can make a more aggressive
2485assumption: because the ``undef`` is allowed to be an arbitrary value,
2486we are allowed to assume that it could be zero. Since a divide by zero
2487has *undefined behavior*, we are allowed to assume that the operation
2488does not execute at all. This allows us to delete the divide and all
2489code after it. Because the undefined operation "can't happen", the
2490optimizer can assume that it occurs in dead code.
2491
2492.. code-block:: llvm
2493
2494 a: store undef -> %X
2495 b: store %X -> undef
2496 Safe:
2497 a: <deleted>
2498 b: unreachable
2499
2500These examples reiterate the ``fdiv`` example: a store *of* an undefined
2501value can be assumed to not have any effect; we can assume that the
2502value is overwritten with bits that happen to match what was already
2503there. However, a store *to* an undefined location could clobber
2504arbitrary memory, therefore, it has undefined behavior.
2505
2506.. _poisonvalues:
2507
2508Poison Values
2509-------------
2510
2511Poison values are similar to :ref:`undef values <undefvalues>`, however
2512they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002513that cannot evoke side effects has nevertheless detected a condition
2514that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002515
2516There is currently no way of representing a poison value in the IR; they
2517only exist when produced by operations such as :ref:`add <i_add>` with
2518the ``nsw`` flag.
2519
2520Poison value behavior is defined in terms of value *dependence*:
2521
2522- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2523- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2524 their dynamic predecessor basic block.
2525- Function arguments depend on the corresponding actual argument values
2526 in the dynamic callers of their functions.
2527- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2528 instructions that dynamically transfer control back to them.
2529- :ref:`Invoke <i_invoke>` instructions depend on the
2530 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2531 call instructions that dynamically transfer control back to them.
2532- Non-volatile loads and stores depend on the most recent stores to all
2533 of the referenced memory addresses, following the order in the IR
2534 (including loads and stores implied by intrinsics such as
2535 :ref:`@llvm.memcpy <int_memcpy>`.)
2536- An instruction with externally visible side effects depends on the
2537 most recent preceding instruction with externally visible side
2538 effects, following the order in the IR. (This includes :ref:`volatile
2539 operations <volatile>`.)
2540- An instruction *control-depends* on a :ref:`terminator
2541 instruction <terminators>` if the terminator instruction has
2542 multiple successors and the instruction is always executed when
2543 control transfers to one of the successors, and may not be executed
2544 when control is transferred to another.
2545- Additionally, an instruction also *control-depends* on a terminator
2546 instruction if the set of instructions it otherwise depends on would
2547 be different if the terminator had transferred control to a different
2548 successor.
2549- Dependence is transitive.
2550
Richard Smith32dbdf62014-07-31 04:25:36 +00002551Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2552with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002553on a poison value has undefined behavior.
2554
2555Here are some examples:
2556
2557.. code-block:: llvm
2558
2559 entry:
2560 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2561 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2562 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2563 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2564
2565 store i32 %poison, i32* @g ; Poison value stored to memory.
2566 %poison2 = load i32* @g ; Poison value loaded back from memory.
2567
2568 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2569
2570 %narrowaddr = bitcast i32* @g to i16*
2571 %wideaddr = bitcast i32* @g to i64*
2572 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2573 %poison4 = load i64* %wideaddr ; Returns a poison value.
2574
2575 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2576 br i1 %cmp, label %true, label %end ; Branch to either destination.
2577
2578 true:
2579 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2580 ; it has undefined behavior.
2581 br label %end
2582
2583 end:
2584 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2585 ; Both edges into this PHI are
2586 ; control-dependent on %cmp, so this
2587 ; always results in a poison value.
2588
2589 store volatile i32 0, i32* @g ; This would depend on the store in %true
2590 ; if %cmp is true, or the store in %entry
2591 ; otherwise, so this is undefined behavior.
2592
2593 br i1 %cmp, label %second_true, label %second_end
2594 ; The same branch again, but this time the
2595 ; true block doesn't have side effects.
2596
2597 second_true:
2598 ; No side effects!
2599 ret void
2600
2601 second_end:
2602 store volatile i32 0, i32* @g ; This time, the instruction always depends
2603 ; on the store in %end. Also, it is
2604 ; control-equivalent to %end, so this is
2605 ; well-defined (ignoring earlier undefined
2606 ; behavior in this example).
2607
2608.. _blockaddress:
2609
2610Addresses of Basic Blocks
2611-------------------------
2612
2613``blockaddress(@function, %block)``
2614
2615The '``blockaddress``' constant computes the address of the specified
2616basic block in the specified function, and always has an ``i8*`` type.
2617Taking the address of the entry block is illegal.
2618
2619This value only has defined behavior when used as an operand to the
2620':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2621against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002622undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002623no label is equal to the null pointer. This may be passed around as an
2624opaque pointer sized value as long as the bits are not inspected. This
2625allows ``ptrtoint`` and arithmetic to be performed on these values so
2626long as the original value is reconstituted before the ``indirectbr``
2627instruction.
2628
2629Finally, some targets may provide defined semantics when using the value
2630as the operand to an inline assembly, but that is target specific.
2631
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002632.. _constantexprs:
2633
Sean Silvab084af42012-12-07 10:36:55 +00002634Constant Expressions
2635--------------------
2636
2637Constant expressions are used to allow expressions involving other
2638constants to be used as constants. Constant expressions may be of any
2639:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2640that does not have side effects (e.g. load and call are not supported).
2641The following is the syntax for constant expressions:
2642
2643``trunc (CST to TYPE)``
2644 Truncate a constant to another type. The bit size of CST must be
2645 larger than the bit size of TYPE. Both types must be integers.
2646``zext (CST to TYPE)``
2647 Zero extend a constant to another type. The bit size of CST must be
2648 smaller than the bit size of TYPE. Both types must be integers.
2649``sext (CST to TYPE)``
2650 Sign extend a constant to another type. The bit size of CST must be
2651 smaller than the bit size of TYPE. Both types must be integers.
2652``fptrunc (CST to TYPE)``
2653 Truncate a floating point constant to another floating point type.
2654 The size of CST must be larger than the size of TYPE. Both types
2655 must be floating point.
2656``fpext (CST to TYPE)``
2657 Floating point extend a constant to another type. The size of CST
2658 must be smaller or equal to the size of TYPE. Both types must be
2659 floating point.
2660``fptoui (CST to TYPE)``
2661 Convert a floating point constant to the corresponding unsigned
2662 integer constant. TYPE must be a scalar or vector integer type. CST
2663 must be of scalar or vector floating point type. Both CST and TYPE
2664 must be scalars, or vectors of the same number of elements. If the
2665 value won't fit in the integer type, the results are undefined.
2666``fptosi (CST to TYPE)``
2667 Convert a floating point constant to the corresponding signed
2668 integer constant. TYPE must be a scalar or vector integer type. CST
2669 must be of scalar or vector floating point type. Both CST and TYPE
2670 must be scalars, or vectors of the same number of elements. If the
2671 value won't fit in the integer type, the results are undefined.
2672``uitofp (CST to TYPE)``
2673 Convert an unsigned integer constant to the corresponding floating
2674 point constant. TYPE must be a scalar or vector floating point type.
2675 CST must be of scalar or vector integer type. Both CST and TYPE must
2676 be scalars, or vectors of the same number of elements. If the value
2677 won't fit in the floating point type, the results are undefined.
2678``sitofp (CST to TYPE)``
2679 Convert a signed integer constant to the corresponding floating
2680 point constant. TYPE must be a scalar or vector floating point type.
2681 CST must be of scalar or vector integer type. Both CST and TYPE must
2682 be scalars, or vectors of the same number of elements. If the value
2683 won't fit in the floating point type, the results are undefined.
2684``ptrtoint (CST to TYPE)``
2685 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002686 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002687 pointer type. The ``CST`` value is zero extended, truncated, or
2688 unchanged to make it fit in ``TYPE``.
2689``inttoptr (CST to TYPE)``
2690 Convert an integer constant to a pointer constant. TYPE must be a
2691 pointer type. CST must be of integer type. The CST value is zero
2692 extended, truncated, or unchanged to make it fit in a pointer size.
2693 This one is *really* dangerous!
2694``bitcast (CST to TYPE)``
2695 Convert a constant, CST, to another TYPE. The constraints of the
2696 operands are the same as those for the :ref:`bitcast
2697 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002698``addrspacecast (CST to TYPE)``
2699 Convert a constant pointer or constant vector of pointer, CST, to another
2700 TYPE in a different address space. The constraints of the operands are the
2701 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002702``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2703 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2704 constants. As with the :ref:`getelementptr <i_getelementptr>`
2705 instruction, the index list may have zero or more indexes, which are
2706 required to make sense for the type of "CSTPTR".
2707``select (COND, VAL1, VAL2)``
2708 Perform the :ref:`select operation <i_select>` on constants.
2709``icmp COND (VAL1, VAL2)``
2710 Performs the :ref:`icmp operation <i_icmp>` on constants.
2711``fcmp COND (VAL1, VAL2)``
2712 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2713``extractelement (VAL, IDX)``
2714 Perform the :ref:`extractelement operation <i_extractelement>` on
2715 constants.
2716``insertelement (VAL, ELT, IDX)``
2717 Perform the :ref:`insertelement operation <i_insertelement>` on
2718 constants.
2719``shufflevector (VEC1, VEC2, IDXMASK)``
2720 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2721 constants.
2722``extractvalue (VAL, IDX0, IDX1, ...)``
2723 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2724 constants. The index list is interpreted in a similar manner as
2725 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2726 least one index value must be specified.
2727``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2728 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2729 The index list is interpreted in a similar manner as indices in a
2730 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2731 value must be specified.
2732``OPCODE (LHS, RHS)``
2733 Perform the specified operation of the LHS and RHS constants. OPCODE
2734 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2735 binary <bitwiseops>` operations. The constraints on operands are
2736 the same as those for the corresponding instruction (e.g. no bitwise
2737 operations on floating point values are allowed).
2738
2739Other Values
2740============
2741
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002742.. _inlineasmexprs:
2743
Sean Silvab084af42012-12-07 10:36:55 +00002744Inline Assembler Expressions
2745----------------------------
2746
2747LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2748Inline Assembly <moduleasm>`) through the use of a special value. This
2749value represents the inline assembler as a string (containing the
2750instructions to emit), a list of operand constraints (stored as a
2751string), a flag that indicates whether or not the inline asm expression
2752has side effects, and a flag indicating whether the function containing
2753the asm needs to align its stack conservatively. An example inline
2754assembler expression is:
2755
2756.. code-block:: llvm
2757
2758 i32 (i32) asm "bswap $0", "=r,r"
2759
2760Inline assembler expressions may **only** be used as the callee operand
2761of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2762Thus, typically we have:
2763
2764.. code-block:: llvm
2765
2766 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2767
2768Inline asms with side effects not visible in the constraint list must be
2769marked as having side effects. This is done through the use of the
2770'``sideeffect``' keyword, like so:
2771
2772.. code-block:: llvm
2773
2774 call void asm sideeffect "eieio", ""()
2775
2776In some cases inline asms will contain code that will not work unless
2777the stack is aligned in some way, such as calls or SSE instructions on
2778x86, yet will not contain code that does that alignment within the asm.
2779The compiler should make conservative assumptions about what the asm
2780might contain and should generate its usual stack alignment code in the
2781prologue if the '``alignstack``' keyword is present:
2782
2783.. code-block:: llvm
2784
2785 call void asm alignstack "eieio", ""()
2786
2787Inline asms also support using non-standard assembly dialects. The
2788assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2789the inline asm is using the Intel dialect. Currently, ATT and Intel are
2790the only supported dialects. An example is:
2791
2792.. code-block:: llvm
2793
2794 call void asm inteldialect "eieio", ""()
2795
2796If multiple keywords appear the '``sideeffect``' keyword must come
2797first, the '``alignstack``' keyword second and the '``inteldialect``'
2798keyword last.
2799
2800Inline Asm Metadata
2801^^^^^^^^^^^^^^^^^^^
2802
2803The call instructions that wrap inline asm nodes may have a
2804"``!srcloc``" MDNode attached to it that contains a list of constant
2805integers. If present, the code generator will use the integer as the
2806location cookie value when report errors through the ``LLVMContext``
2807error reporting mechanisms. This allows a front-end to correlate backend
2808errors that occur with inline asm back to the source code that produced
2809it. For example:
2810
2811.. code-block:: llvm
2812
2813 call void asm sideeffect "something bad", ""(), !srcloc !42
2814 ...
2815 !42 = !{ i32 1234567 }
2816
2817It is up to the front-end to make sense of the magic numbers it places
2818in the IR. If the MDNode contains multiple constants, the code generator
2819will use the one that corresponds to the line of the asm that the error
2820occurs on.
2821
2822.. _metadata:
2823
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002824Metadata
2825========
Sean Silvab084af42012-12-07 10:36:55 +00002826
2827LLVM IR allows metadata to be attached to instructions in the program
2828that can convey extra information about the code to the optimizers and
2829code generator. One example application of metadata is source-level
2830debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002831
2832Metadata does not have a type, and is not a value. If referenced from a
2833``call`` instruction, it uses the ``metadata`` type.
2834
2835All metadata are identified in syntax by a exclamation point ('``!``').
2836
2837Metadata Nodes and Metadata Strings
2838-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00002839
2840A metadata string is a string surrounded by double quotes. It can
2841contain any character by escaping non-printable characters with
2842"``\xx``" where "``xx``" is the two digit hex code. For example:
2843"``!"test\00"``".
2844
2845Metadata nodes are represented with notation similar to structure
2846constants (a comma separated list of elements, surrounded by braces and
2847preceded by an exclamation point). Metadata nodes can have any values as
2848their operand. For example:
2849
2850.. code-block:: llvm
2851
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002852 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00002853
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00002854Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
2855
2856.. code-block:: llvm
2857
2858 !0 = distinct !{!"test\00", i32 10}
2859
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00002860``distinct`` nodes are useful when nodes shouldn't be merged based on their
2861content. They can also occur when transformations cause uniquing collisions
2862when metadata operands change.
2863
Sean Silvab084af42012-12-07 10:36:55 +00002864A :ref:`named metadata <namedmetadatastructure>` is a collection of
2865metadata nodes, which can be looked up in the module symbol table. For
2866example:
2867
2868.. code-block:: llvm
2869
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002870 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00002871
2872Metadata can be used as function arguments. Here ``llvm.dbg.value``
2873function is using two metadata arguments:
2874
2875.. code-block:: llvm
2876
2877 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2878
2879Metadata can be attached with an instruction. Here metadata ``!21`` is
2880attached to the ``add`` instruction using the ``!dbg`` identifier:
2881
2882.. code-block:: llvm
2883
2884 %indvar.next = add i64 %indvar, 1, !dbg !21
2885
2886More information about specific metadata nodes recognized by the
2887optimizers and code generator is found below.
2888
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00002889Specialized Metadata Nodes
2890^^^^^^^^^^^^^^^^^^^^^^^^^^
2891
2892Specialized metadata nodes are custom data structures in metadata (as opposed
2893to generic tuples). Their fields are labelled, and can be specified in any
2894order.
2895
2896MDLocation
2897""""""""""
2898
2899``MDLocation`` nodes represent source debug locations. The ``scope:`` field is
2900mandatory.
2901
2902.. code-block:: llvm
2903
2904 !0 = !MDLocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
2905
Sean Silvab084af42012-12-07 10:36:55 +00002906'``tbaa``' Metadata
2907^^^^^^^^^^^^^^^^^^^
2908
2909In LLVM IR, memory does not have types, so LLVM's own type system is not
2910suitable for doing TBAA. Instead, metadata is added to the IR to
2911describe a type system of a higher level language. This can be used to
2912implement typical C/C++ TBAA, but it can also be used to implement
2913custom alias analysis behavior for other languages.
2914
2915The current metadata format is very simple. TBAA metadata nodes have up
2916to three fields, e.g.:
2917
2918.. code-block:: llvm
2919
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002920 !0 = !{ !"an example type tree" }
2921 !1 = !{ !"int", !0 }
2922 !2 = !{ !"float", !0 }
2923 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00002924
2925The first field is an identity field. It can be any value, usually a
2926metadata string, which uniquely identifies the type. The most important
2927name in the tree is the name of the root node. Two trees with different
2928root node names are entirely disjoint, even if they have leaves with
2929common names.
2930
2931The second field identifies the type's parent node in the tree, or is
2932null or omitted for a root node. A type is considered to alias all of
2933its descendants and all of its ancestors in the tree. Also, a type is
2934considered to alias all types in other trees, so that bitcode produced
2935from multiple front-ends is handled conservatively.
2936
2937If the third field is present, it's an integer which if equal to 1
2938indicates that the type is "constant" (meaning
2939``pointsToConstantMemory`` should return true; see `other useful
2940AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2941
2942'``tbaa.struct``' Metadata
2943^^^^^^^^^^^^^^^^^^^^^^^^^^
2944
2945The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2946aggregate assignment operations in C and similar languages, however it
2947is defined to copy a contiguous region of memory, which is more than
2948strictly necessary for aggregate types which contain holes due to
2949padding. Also, it doesn't contain any TBAA information about the fields
2950of the aggregate.
2951
2952``!tbaa.struct`` metadata can describe which memory subregions in a
2953memcpy are padding and what the TBAA tags of the struct are.
2954
2955The current metadata format is very simple. ``!tbaa.struct`` metadata
2956nodes are a list of operands which are in conceptual groups of three.
2957For each group of three, the first operand gives the byte offset of a
2958field in bytes, the second gives its size in bytes, and the third gives
2959its tbaa tag. e.g.:
2960
2961.. code-block:: llvm
2962
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002963 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00002964
2965This describes a struct with two fields. The first is at offset 0 bytes
2966with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2967and has size 4 bytes and has tbaa tag !2.
2968
2969Note that the fields need not be contiguous. In this example, there is a
29704 byte gap between the two fields. This gap represents padding which
2971does not carry useful data and need not be preserved.
2972
Hal Finkel94146652014-07-24 14:25:39 +00002973'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00002974^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00002975
2976``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
2977noalias memory-access sets. This means that some collection of memory access
2978instructions (loads, stores, memory-accessing calls, etc.) that carry
2979``noalias`` metadata can specifically be specified not to alias with some other
2980collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00002981Each type of metadata specifies a list of scopes where each scope has an id and
2982a domain. When evaluating an aliasing query, if for some some domain, the set
2983of scopes with that domain in one instruction's ``alias.scope`` list is a
2984subset of (or qual to) the set of scopes for that domain in another
2985instruction's ``noalias`` list, then the two memory accesses are assumed not to
2986alias.
Hal Finkel94146652014-07-24 14:25:39 +00002987
Hal Finkel029cde62014-07-25 15:50:02 +00002988The metadata identifying each domain is itself a list containing one or two
2989entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00002990string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00002991self-reference can be used to create globally unique domain names. A
2992descriptive string may optionally be provided as a second list entry.
2993
2994The metadata identifying each scope is also itself a list containing two or
2995three entries. The first entry is the name of the scope. Note that if the name
2996is a string then it can be combined accross functions and translation units. A
2997self-reference can be used to create globally unique scope names. A metadata
2998reference to the scope's domain is the second entry. A descriptive string may
2999optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00003000
3001For example,
3002
3003.. code-block:: llvm
3004
Hal Finkel029cde62014-07-25 15:50:02 +00003005 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003006 !0 = !{!0}
3007 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00003008
Hal Finkel029cde62014-07-25 15:50:02 +00003009 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003010 !2 = !{!2, !0}
3011 !3 = !{!3, !0}
3012 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00003013
Hal Finkel029cde62014-07-25 15:50:02 +00003014 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003015 !5 = !{!4} ; A list containing only scope !4
3016 !6 = !{!4, !3, !2}
3017 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00003018
3019 ; These two instructions don't alias:
Hal Finkel029cde62014-07-25 15:50:02 +00003020 %0 = load float* %c, align 4, !alias.scope !5
3021 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00003022
Hal Finkel029cde62014-07-25 15:50:02 +00003023 ; These two instructions also don't alias (for domain !1, the set of scopes
3024 ; in the !alias.scope equals that in the !noalias list):
3025 %2 = load float* %c, align 4, !alias.scope !5
3026 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00003027
Hal Finkel029cde62014-07-25 15:50:02 +00003028 ; These two instructions don't alias (for domain !0, the set of scopes in
3029 ; the !noalias list is not a superset of, or equal to, the scopes in the
3030 ; !alias.scope list):
3031 %2 = load float* %c, align 4, !alias.scope !6
3032 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00003033
Sean Silvab084af42012-12-07 10:36:55 +00003034'``fpmath``' Metadata
3035^^^^^^^^^^^^^^^^^^^^^
3036
3037``fpmath`` metadata may be attached to any instruction of floating point
3038type. It can be used to express the maximum acceptable error in the
3039result of that instruction, in ULPs, thus potentially allowing the
3040compiler to use a more efficient but less accurate method of computing
3041it. ULP is defined as follows:
3042
3043 If ``x`` is a real number that lies between two finite consecutive
3044 floating-point numbers ``a`` and ``b``, without being equal to one
3045 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
3046 distance between the two non-equal finite floating-point numbers
3047 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
3048
3049The metadata node shall consist of a single positive floating point
3050number representing the maximum relative error, for example:
3051
3052.. code-block:: llvm
3053
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003054 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00003055
3056'``range``' Metadata
3057^^^^^^^^^^^^^^^^^^^^
3058
Jingyue Wu37fcb592014-06-19 16:50:16 +00003059``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
3060integer types. It expresses the possible ranges the loaded value or the value
3061returned by the called function at this call site is in. The ranges are
3062represented with a flattened list of integers. The loaded value or the value
3063returned is known to be in the union of the ranges defined by each consecutive
3064pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00003065
3066- The type must match the type loaded by the instruction.
3067- The pair ``a,b`` represents the range ``[a,b)``.
3068- Both ``a`` and ``b`` are constants.
3069- The range is allowed to wrap.
3070- The range should not represent the full or empty set. That is,
3071 ``a!=b``.
3072
3073In addition, the pairs must be in signed order of the lower bound and
3074they must be non-contiguous.
3075
3076Examples:
3077
3078.. code-block:: llvm
3079
3080 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
3081 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00003082 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
3083 %d = invoke i8 @bar() to label %cont
3084 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00003085 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003086 !0 = !{ i8 0, i8 2 }
3087 !1 = !{ i8 255, i8 2 }
3088 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
3089 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00003090
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003091'``llvm.loop``'
3092^^^^^^^^^^^^^^^
3093
3094It is sometimes useful to attach information to loop constructs. Currently,
3095loop metadata is implemented as metadata attached to the branch instruction
3096in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00003097guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00003098specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003099
3100The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00003101itself to avoid merging it with any other identifier metadata, e.g.,
3102during module linkage or function inlining. That is, each loop should refer
3103to their own identification metadata even if they reside in separate functions.
3104The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003105constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003106
3107.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00003108
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003109 !0 = !{!0}
3110 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003111
Mark Heffernan893752a2014-07-18 19:24:51 +00003112The loop identifier metadata can be used to specify additional
3113per-loop metadata. Any operands after the first operand can be treated
3114as user-defined metadata. For example the ``llvm.loop.unroll.count``
3115suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003116
Paul Redmond5fdf8362013-05-28 20:00:34 +00003117.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003118
Paul Redmond5fdf8362013-05-28 20:00:34 +00003119 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
3120 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003121 !0 = !{!0, !1}
3122 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003123
Mark Heffernan9d20e422014-07-21 23:11:03 +00003124'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
3125^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00003126
Mark Heffernan9d20e422014-07-21 23:11:03 +00003127Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
3128used to control per-loop vectorization and interleaving parameters such as
3129vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00003130conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00003131``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
3132optimization hints and the optimizer will only interleave and vectorize loops if
3133it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
3134which contains information about loop-carried memory dependencies can be helpful
3135in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00003136
Mark Heffernan9d20e422014-07-21 23:11:03 +00003137'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00003138^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3139
Mark Heffernan9d20e422014-07-21 23:11:03 +00003140This metadata suggests an interleave count to the loop interleaver.
3141The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00003142second operand is an integer specifying the interleave count. For
3143example:
3144
3145.. code-block:: llvm
3146
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003147 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003148
Mark Heffernan9d20e422014-07-21 23:11:03 +00003149Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3150multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
3151then the interleave count will be determined automatically.
3152
3153'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00003154^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00003155
3156This metadata selectively enables or disables vectorization for the loop. The
3157first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3158is a bit. If the bit operand value is 1 vectorization is enabled. A value of
31590 disables vectorization:
3160
3161.. code-block:: llvm
3162
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003163 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
3164 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00003165
3166'``llvm.loop.vectorize.width``' Metadata
3167^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3168
3169This metadata sets the target width of the vectorizer. The first
3170operand is the string ``llvm.loop.vectorize.width`` and the second
3171operand is an integer specifying the width. For example:
3172
3173.. code-block:: llvm
3174
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003175 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003176
3177Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3178vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
31790 or if the loop does not have this metadata the width will be
3180determined automatically.
3181
3182'``llvm.loop.unroll``'
3183^^^^^^^^^^^^^^^^^^^^^^
3184
3185Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3186optimization hints such as the unroll factor. ``llvm.loop.unroll``
3187metadata should be used in conjunction with ``llvm.loop`` loop
3188identification metadata. The ``llvm.loop.unroll`` metadata are only
3189optimization hints and the unrolling will only be performed if the
3190optimizer believes it is safe to do so.
3191
Mark Heffernan893752a2014-07-18 19:24:51 +00003192'``llvm.loop.unroll.count``' Metadata
3193^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3194
3195This metadata suggests an unroll factor to the loop unroller. The
3196first operand is the string ``llvm.loop.unroll.count`` and the second
3197operand is a positive integer specifying the unroll factor. For
3198example:
3199
3200.. code-block:: llvm
3201
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003202 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003203
3204If the trip count of the loop is less than the unroll count the loop
3205will be partially unrolled.
3206
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003207'``llvm.loop.unroll.disable``' Metadata
3208^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3209
3210This metadata either disables loop unrolling. The metadata has a single operand
3211which is the string ``llvm.loop.unroll.disable``. For example:
3212
3213.. code-block:: llvm
3214
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003215 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003216
3217'``llvm.loop.unroll.full``' Metadata
3218^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3219
3220This metadata either suggests that the loop should be unrolled fully. The
3221metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3222For example:
3223
3224.. code-block:: llvm
3225
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003226 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003227
3228'``llvm.mem``'
3229^^^^^^^^^^^^^^^
3230
3231Metadata types used to annotate memory accesses with information helpful
3232for optimizations are prefixed with ``llvm.mem``.
3233
3234'``llvm.mem.parallel_loop_access``' Metadata
3235^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3236
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003237The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3238or metadata containing a list of loop identifiers for nested loops.
3239The metadata is attached to memory accessing instructions and denotes that
3240no loop carried memory dependence exist between it and other instructions denoted
3241with the same loop identifier.
3242
3243Precisely, given two instructions ``m1`` and ``m2`` that both have the
3244``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3245set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00003246carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003247``L2``.
3248
3249As a special case, if all memory accessing instructions in a loop have
3250``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3251loop has no loop carried memory dependences and is considered to be a parallel
3252loop.
3253
3254Note that if not all memory access instructions have such metadata referring to
3255the loop, then the loop is considered not being trivially parallel. Additional
3256memory dependence analysis is required to make that determination. As a fail
3257safe mechanism, this causes loops that were originally parallel to be considered
3258sequential (if optimization passes that are unaware of the parallel semantics
3259insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003260
3261Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003262both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003263metadata types that refer to the same loop identifier metadata.
3264
3265.. code-block:: llvm
3266
3267 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003268 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003269 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003270 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003271 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003272 ...
3273 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003274
3275 for.end:
3276 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003277 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003278
3279It is also possible to have nested parallel loops. In that case the
3280memory accesses refer to a list of loop identifier metadata nodes instead of
3281the loop identifier metadata node directly:
3282
3283.. code-block:: llvm
3284
3285 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003286 ...
3287 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
3288 ...
3289 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003290
3291 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003292 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003293 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003294 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003295 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003296 ...
3297 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003298
3299 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003300 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003301 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003302 ...
3303 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003304
3305 outer.for.end: ; preds = %for.body
3306 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003307 !0 = !{!1, !2} ; a list of loop identifiers
3308 !1 = !{!1} ; an identifier for the inner loop
3309 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003310
Sean Silvab084af42012-12-07 10:36:55 +00003311Module Flags Metadata
3312=====================
3313
3314Information about the module as a whole is difficult to convey to LLVM's
3315subsystems. The LLVM IR isn't sufficient to transmit this information.
3316The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003317this. These flags are in the form of key / value pairs --- much like a
3318dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003319look it up.
3320
3321The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3322Each triplet has the following form:
3323
3324- The first element is a *behavior* flag, which specifies the behavior
3325 when two (or more) modules are merged together, and it encounters two
3326 (or more) metadata with the same ID. The supported behaviors are
3327 described below.
3328- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003329 metadata. Each module may only have one flag entry for each unique ID (not
3330 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003331- The third element is the value of the flag.
3332
3333When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003334``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3335each unique metadata ID string, there will be exactly one entry in the merged
3336modules ``llvm.module.flags`` metadata table, and the value for that entry will
3337be determined by the merge behavior flag, as described below. The only exception
3338is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003339
3340The following behaviors are supported:
3341
3342.. list-table::
3343 :header-rows: 1
3344 :widths: 10 90
3345
3346 * - Value
3347 - Behavior
3348
3349 * - 1
3350 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003351 Emits an error if two values disagree, otherwise the resulting value
3352 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003353
3354 * - 2
3355 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003356 Emits a warning if two values disagree. The result value will be the
3357 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003358
3359 * - 3
3360 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003361 Adds a requirement that another module flag be present and have a
3362 specified value after linking is performed. The value must be a
3363 metadata pair, where the first element of the pair is the ID of the
3364 module flag to be restricted, and the second element of the pair is
3365 the value the module flag should be restricted to. This behavior can
3366 be used to restrict the allowable results (via triggering of an
3367 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003368
3369 * - 4
3370 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003371 Uses the specified value, regardless of the behavior or value of the
3372 other module. If both modules specify **Override**, but the values
3373 differ, an error will be emitted.
3374
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003375 * - 5
3376 - **Append**
3377 Appends the two values, which are required to be metadata nodes.
3378
3379 * - 6
3380 - **AppendUnique**
3381 Appends the two values, which are required to be metadata
3382 nodes. However, duplicate entries in the second list are dropped
3383 during the append operation.
3384
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003385It is an error for a particular unique flag ID to have multiple behaviors,
3386except in the case of **Require** (which adds restrictions on another metadata
3387value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003388
3389An example of module flags:
3390
3391.. code-block:: llvm
3392
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003393 !0 = !{ i32 1, !"foo", i32 1 }
3394 !1 = !{ i32 4, !"bar", i32 37 }
3395 !2 = !{ i32 2, !"qux", i32 42 }
3396 !3 = !{ i32 3, !"qux",
3397 !{
3398 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00003399 }
3400 }
3401 !llvm.module.flags = !{ !0, !1, !2, !3 }
3402
3403- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3404 if two or more ``!"foo"`` flags are seen is to emit an error if their
3405 values are not equal.
3406
3407- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3408 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003409 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003410
3411- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3412 behavior if two or more ``!"qux"`` flags are seen is to emit a
3413 warning if their values are not equal.
3414
3415- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3416
3417 ::
3418
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003419 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003420
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003421 The behavior is to emit an error if the ``llvm.module.flags`` does not
3422 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3423 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003424
3425Objective-C Garbage Collection Module Flags Metadata
3426----------------------------------------------------
3427
3428On the Mach-O platform, Objective-C stores metadata about garbage
3429collection in a special section called "image info". The metadata
3430consists of a version number and a bitmask specifying what types of
3431garbage collection are supported (if any) by the file. If two or more
3432modules are linked together their garbage collection metadata needs to
3433be merged rather than appended together.
3434
3435The Objective-C garbage collection module flags metadata consists of the
3436following key-value pairs:
3437
3438.. list-table::
3439 :header-rows: 1
3440 :widths: 30 70
3441
3442 * - Key
3443 - Value
3444
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003445 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003446 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003447
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003448 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003449 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003450 always 0.
3451
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003452 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003453 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003454 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3455 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3456 Objective-C ABI version 2.
3457
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003458 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003459 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003460 not. Valid values are 0, for no garbage collection, and 2, for garbage
3461 collection supported.
3462
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003463 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003464 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003465 If present, its value must be 6. This flag requires that the
3466 ``Objective-C Garbage Collection`` flag have the value 2.
3467
3468Some important flag interactions:
3469
3470- If a module with ``Objective-C Garbage Collection`` set to 0 is
3471 merged with a module with ``Objective-C Garbage Collection`` set to
3472 2, then the resulting module has the
3473 ``Objective-C Garbage Collection`` flag set to 0.
3474- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3475 merged with a module with ``Objective-C GC Only`` set to 6.
3476
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003477Automatic Linker Flags Module Flags Metadata
3478--------------------------------------------
3479
3480Some targets support embedding flags to the linker inside individual object
3481files. Typically this is used in conjunction with language extensions which
3482allow source files to explicitly declare the libraries they depend on, and have
3483these automatically be transmitted to the linker via object files.
3484
3485These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003486using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003487to be ``AppendUnique``, and the value for the key is expected to be a metadata
3488node which should be a list of other metadata nodes, each of which should be a
3489list of metadata strings defining linker options.
3490
3491For example, the following metadata section specifies two separate sets of
3492linker options, presumably to link against ``libz`` and the ``Cocoa``
3493framework::
3494
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003495 !0 = !{ i32 6, !"Linker Options",
3496 !{
3497 !{ !"-lz" },
3498 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003499 !llvm.module.flags = !{ !0 }
3500
3501The metadata encoding as lists of lists of options, as opposed to a collapsed
3502list of options, is chosen so that the IR encoding can use multiple option
3503strings to specify e.g., a single library, while still having that specifier be
3504preserved as an atomic element that can be recognized by a target specific
3505assembly writer or object file emitter.
3506
3507Each individual option is required to be either a valid option for the target's
3508linker, or an option that is reserved by the target specific assembly writer or
3509object file emitter. No other aspect of these options is defined by the IR.
3510
Oliver Stannard5dc29342014-06-20 10:08:11 +00003511C type width Module Flags Metadata
3512----------------------------------
3513
3514The ARM backend emits a section into each generated object file describing the
3515options that it was compiled with (in a compiler-independent way) to prevent
3516linking incompatible objects, and to allow automatic library selection. Some
3517of these options are not visible at the IR level, namely wchar_t width and enum
3518width.
3519
3520To pass this information to the backend, these options are encoded in module
3521flags metadata, using the following key-value pairs:
3522
3523.. list-table::
3524 :header-rows: 1
3525 :widths: 30 70
3526
3527 * - Key
3528 - Value
3529
3530 * - short_wchar
3531 - * 0 --- sizeof(wchar_t) == 4
3532 * 1 --- sizeof(wchar_t) == 2
3533
3534 * - short_enum
3535 - * 0 --- Enums are at least as large as an ``int``.
3536 * 1 --- Enums are stored in the smallest integer type which can
3537 represent all of its values.
3538
3539For example, the following metadata section specifies that the module was
3540compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3541enum is the smallest type which can represent all of its values::
3542
3543 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003544 !0 = !{i32 1, !"short_wchar", i32 1}
3545 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00003546
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003547.. _intrinsicglobalvariables:
3548
Sean Silvab084af42012-12-07 10:36:55 +00003549Intrinsic Global Variables
3550==========================
3551
3552LLVM has a number of "magic" global variables that contain data that
3553affect code generation or other IR semantics. These are documented here.
3554All globals of this sort should have a section specified as
3555"``llvm.metadata``". This section and all globals that start with
3556"``llvm.``" are reserved for use by LLVM.
3557
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003558.. _gv_llvmused:
3559
Sean Silvab084af42012-12-07 10:36:55 +00003560The '``llvm.used``' Global Variable
3561-----------------------------------
3562
Rafael Espindola74f2e462013-04-22 14:58:02 +00003563The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003564:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003565pointers to named global variables, functions and aliases which may optionally
3566have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003567use of it is:
3568
3569.. code-block:: llvm
3570
3571 @X = global i8 4
3572 @Y = global i32 123
3573
3574 @llvm.used = appending global [2 x i8*] [
3575 i8* @X,
3576 i8* bitcast (i32* @Y to i8*)
3577 ], section "llvm.metadata"
3578
Rafael Espindola74f2e462013-04-22 14:58:02 +00003579If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3580and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003581symbol that it cannot see (which is why they have to be named). For example, if
3582a variable has internal linkage and no references other than that from the
3583``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3584references from inline asms and other things the compiler cannot "see", and
3585corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003586
3587On some targets, the code generator must emit a directive to the
3588assembler or object file to prevent the assembler and linker from
3589molesting the symbol.
3590
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003591.. _gv_llvmcompilerused:
3592
Sean Silvab084af42012-12-07 10:36:55 +00003593The '``llvm.compiler.used``' Global Variable
3594--------------------------------------------
3595
3596The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3597directive, except that it only prevents the compiler from touching the
3598symbol. On targets that support it, this allows an intelligent linker to
3599optimize references to the symbol without being impeded as it would be
3600by ``@llvm.used``.
3601
3602This is a rare construct that should only be used in rare circumstances,
3603and should not be exposed to source languages.
3604
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003605.. _gv_llvmglobalctors:
3606
Sean Silvab084af42012-12-07 10:36:55 +00003607The '``llvm.global_ctors``' Global Variable
3608-------------------------------------------
3609
3610.. code-block:: llvm
3611
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003612 %0 = type { i32, void ()*, i8* }
3613 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003614
3615The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003616functions, priorities, and an optional associated global or function.
3617The functions referenced by this array will be called in ascending order
3618of priority (i.e. lowest first) when the module is loaded. The order of
3619functions with the same priority is not defined.
3620
3621If the third field is present, non-null, and points to a global variable
3622or function, the initializer function will only run if the associated
3623data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003624
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003625.. _llvmglobaldtors:
3626
Sean Silvab084af42012-12-07 10:36:55 +00003627The '``llvm.global_dtors``' Global Variable
3628-------------------------------------------
3629
3630.. code-block:: llvm
3631
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003632 %0 = type { i32, void ()*, i8* }
3633 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003634
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003635The ``@llvm.global_dtors`` array contains a list of destructor
3636functions, priorities, and an optional associated global or function.
3637The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003638order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003639order of functions with the same priority is not defined.
3640
3641If the third field is present, non-null, and points to a global variable
3642or function, the destructor function will only run if the associated
3643data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003644
3645Instruction Reference
3646=====================
3647
3648The LLVM instruction set consists of several different classifications
3649of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3650instructions <binaryops>`, :ref:`bitwise binary
3651instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3652:ref:`other instructions <otherops>`.
3653
3654.. _terminators:
3655
3656Terminator Instructions
3657-----------------------
3658
3659As mentioned :ref:`previously <functionstructure>`, every basic block in a
3660program ends with a "Terminator" instruction, which indicates which
3661block should be executed after the current block is finished. These
3662terminator instructions typically yield a '``void``' value: they produce
3663control flow, not values (the one exception being the
3664':ref:`invoke <i_invoke>`' instruction).
3665
3666The terminator instructions are: ':ref:`ret <i_ret>`',
3667':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3668':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3669':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3670
3671.. _i_ret:
3672
3673'``ret``' Instruction
3674^^^^^^^^^^^^^^^^^^^^^
3675
3676Syntax:
3677"""""""
3678
3679::
3680
3681 ret <type> <value> ; Return a value from a non-void function
3682 ret void ; Return from void function
3683
3684Overview:
3685"""""""""
3686
3687The '``ret``' instruction is used to return control flow (and optionally
3688a value) from a function back to the caller.
3689
3690There are two forms of the '``ret``' instruction: one that returns a
3691value and then causes control flow, and one that just causes control
3692flow to occur.
3693
3694Arguments:
3695""""""""""
3696
3697The '``ret``' instruction optionally accepts a single argument, the
3698return value. The type of the return value must be a ':ref:`first
3699class <t_firstclass>`' type.
3700
3701A function is not :ref:`well formed <wellformed>` if it it has a non-void
3702return type and contains a '``ret``' instruction with no return value or
3703a return value with a type that does not match its type, or if it has a
3704void return type and contains a '``ret``' instruction with a return
3705value.
3706
3707Semantics:
3708""""""""""
3709
3710When the '``ret``' instruction is executed, control flow returns back to
3711the calling function's context. If the caller is a
3712":ref:`call <i_call>`" instruction, execution continues at the
3713instruction after the call. If the caller was an
3714":ref:`invoke <i_invoke>`" instruction, execution continues at the
3715beginning of the "normal" destination block. If the instruction returns
3716a value, that value shall set the call or invoke instruction's return
3717value.
3718
3719Example:
3720""""""""
3721
3722.. code-block:: llvm
3723
3724 ret i32 5 ; Return an integer value of 5
3725 ret void ; Return from a void function
3726 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3727
3728.. _i_br:
3729
3730'``br``' Instruction
3731^^^^^^^^^^^^^^^^^^^^
3732
3733Syntax:
3734"""""""
3735
3736::
3737
3738 br i1 <cond>, label <iftrue>, label <iffalse>
3739 br label <dest> ; Unconditional branch
3740
3741Overview:
3742"""""""""
3743
3744The '``br``' instruction is used to cause control flow to transfer to a
3745different basic block in the current function. There are two forms of
3746this instruction, corresponding to a conditional branch and an
3747unconditional branch.
3748
3749Arguments:
3750""""""""""
3751
3752The conditional branch form of the '``br``' instruction takes a single
3753'``i1``' value and two '``label``' values. The unconditional form of the
3754'``br``' instruction takes a single '``label``' value as a target.
3755
3756Semantics:
3757""""""""""
3758
3759Upon execution of a conditional '``br``' instruction, the '``i1``'
3760argument is evaluated. If the value is ``true``, control flows to the
3761'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3762to the '``iffalse``' ``label`` argument.
3763
3764Example:
3765""""""""
3766
3767.. code-block:: llvm
3768
3769 Test:
3770 %cond = icmp eq i32 %a, %b
3771 br i1 %cond, label %IfEqual, label %IfUnequal
3772 IfEqual:
3773 ret i32 1
3774 IfUnequal:
3775 ret i32 0
3776
3777.. _i_switch:
3778
3779'``switch``' Instruction
3780^^^^^^^^^^^^^^^^^^^^^^^^
3781
3782Syntax:
3783"""""""
3784
3785::
3786
3787 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3788
3789Overview:
3790"""""""""
3791
3792The '``switch``' instruction is used to transfer control flow to one of
3793several different places. It is a generalization of the '``br``'
3794instruction, allowing a branch to occur to one of many possible
3795destinations.
3796
3797Arguments:
3798""""""""""
3799
3800The '``switch``' instruction uses three parameters: an integer
3801comparison value '``value``', a default '``label``' destination, and an
3802array of pairs of comparison value constants and '``label``'s. The table
3803is not allowed to contain duplicate constant entries.
3804
3805Semantics:
3806""""""""""
3807
3808The ``switch`` instruction specifies a table of values and destinations.
3809When the '``switch``' instruction is executed, this table is searched
3810for the given value. If the value is found, control flow is transferred
3811to the corresponding destination; otherwise, control flow is transferred
3812to the default destination.
3813
3814Implementation:
3815"""""""""""""""
3816
3817Depending on properties of the target machine and the particular
3818``switch`` instruction, this instruction may be code generated in
3819different ways. For example, it could be generated as a series of
3820chained conditional branches or with a lookup table.
3821
3822Example:
3823""""""""
3824
3825.. code-block:: llvm
3826
3827 ; Emulate a conditional br instruction
3828 %Val = zext i1 %value to i32
3829 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3830
3831 ; Emulate an unconditional br instruction
3832 switch i32 0, label %dest [ ]
3833
3834 ; Implement a jump table:
3835 switch i32 %val, label %otherwise [ i32 0, label %onzero
3836 i32 1, label %onone
3837 i32 2, label %ontwo ]
3838
3839.. _i_indirectbr:
3840
3841'``indirectbr``' Instruction
3842^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3843
3844Syntax:
3845"""""""
3846
3847::
3848
3849 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3850
3851Overview:
3852"""""""""
3853
3854The '``indirectbr``' instruction implements an indirect branch to a
3855label within the current function, whose address is specified by
3856"``address``". Address must be derived from a
3857:ref:`blockaddress <blockaddress>` constant.
3858
3859Arguments:
3860""""""""""
3861
3862The '``address``' argument is the address of the label to jump to. The
3863rest of the arguments indicate the full set of possible destinations
3864that the address may point to. Blocks are allowed to occur multiple
3865times in the destination list, though this isn't particularly useful.
3866
3867This destination list is required so that dataflow analysis has an
3868accurate understanding of the CFG.
3869
3870Semantics:
3871""""""""""
3872
3873Control transfers to the block specified in the address argument. All
3874possible destination blocks must be listed in the label list, otherwise
3875this instruction has undefined behavior. This implies that jumps to
3876labels defined in other functions have undefined behavior as well.
3877
3878Implementation:
3879"""""""""""""""
3880
3881This is typically implemented with a jump through a register.
3882
3883Example:
3884""""""""
3885
3886.. code-block:: llvm
3887
3888 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3889
3890.. _i_invoke:
3891
3892'``invoke``' Instruction
3893^^^^^^^^^^^^^^^^^^^^^^^^
3894
3895Syntax:
3896"""""""
3897
3898::
3899
3900 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3901 to label <normal label> unwind label <exception label>
3902
3903Overview:
3904"""""""""
3905
3906The '``invoke``' instruction causes control to transfer to a specified
3907function, with the possibility of control flow transfer to either the
3908'``normal``' label or the '``exception``' label. If the callee function
3909returns with the "``ret``" instruction, control flow will return to the
3910"normal" label. If the callee (or any indirect callees) returns via the
3911":ref:`resume <i_resume>`" instruction or other exception handling
3912mechanism, control is interrupted and continued at the dynamically
3913nearest "exception" label.
3914
3915The '``exception``' label is a `landing
3916pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3917'``exception``' label is required to have the
3918":ref:`landingpad <i_landingpad>`" instruction, which contains the
3919information about the behavior of the program after unwinding happens,
3920as its first non-PHI instruction. The restrictions on the
3921"``landingpad``" instruction's tightly couples it to the "``invoke``"
3922instruction, so that the important information contained within the
3923"``landingpad``" instruction can't be lost through normal code motion.
3924
3925Arguments:
3926""""""""""
3927
3928This instruction requires several arguments:
3929
3930#. The optional "cconv" marker indicates which :ref:`calling
3931 convention <callingconv>` the call should use. If none is
3932 specified, the call defaults to using C calling conventions.
3933#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3934 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3935 are valid here.
3936#. '``ptr to function ty``': shall be the signature of the pointer to
3937 function value being invoked. In most cases, this is a direct
3938 function invocation, but indirect ``invoke``'s are just as possible,
3939 branching off an arbitrary pointer to function value.
3940#. '``function ptr val``': An LLVM value containing a pointer to a
3941 function to be invoked.
3942#. '``function args``': argument list whose types match the function
3943 signature argument types and parameter attributes. All arguments must
3944 be of :ref:`first class <t_firstclass>` type. If the function signature
3945 indicates the function accepts a variable number of arguments, the
3946 extra arguments can be specified.
3947#. '``normal label``': the label reached when the called function
3948 executes a '``ret``' instruction.
3949#. '``exception label``': the label reached when a callee returns via
3950 the :ref:`resume <i_resume>` instruction or other exception handling
3951 mechanism.
3952#. The optional :ref:`function attributes <fnattrs>` list. Only
3953 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3954 attributes are valid here.
3955
3956Semantics:
3957""""""""""
3958
3959This instruction is designed to operate as a standard '``call``'
3960instruction in most regards. The primary difference is that it
3961establishes an association with a label, which is used by the runtime
3962library to unwind the stack.
3963
3964This instruction is used in languages with destructors to ensure that
3965proper cleanup is performed in the case of either a ``longjmp`` or a
3966thrown exception. Additionally, this is important for implementation of
3967'``catch``' clauses in high-level languages that support them.
3968
3969For the purposes of the SSA form, the definition of the value returned
3970by the '``invoke``' instruction is deemed to occur on the edge from the
3971current block to the "normal" label. If the callee unwinds then no
3972return value is available.
3973
3974Example:
3975""""""""
3976
3977.. code-block:: llvm
3978
3979 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003980 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003981 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003982 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003983
3984.. _i_resume:
3985
3986'``resume``' Instruction
3987^^^^^^^^^^^^^^^^^^^^^^^^
3988
3989Syntax:
3990"""""""
3991
3992::
3993
3994 resume <type> <value>
3995
3996Overview:
3997"""""""""
3998
3999The '``resume``' instruction is a terminator instruction that has no
4000successors.
4001
4002Arguments:
4003""""""""""
4004
4005The '``resume``' instruction requires one argument, which must have the
4006same type as the result of any '``landingpad``' instruction in the same
4007function.
4008
4009Semantics:
4010""""""""""
4011
4012The '``resume``' instruction resumes propagation of an existing
4013(in-flight) exception whose unwinding was interrupted with a
4014:ref:`landingpad <i_landingpad>` instruction.
4015
4016Example:
4017""""""""
4018
4019.. code-block:: llvm
4020
4021 resume { i8*, i32 } %exn
4022
4023.. _i_unreachable:
4024
4025'``unreachable``' Instruction
4026^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4027
4028Syntax:
4029"""""""
4030
4031::
4032
4033 unreachable
4034
4035Overview:
4036"""""""""
4037
4038The '``unreachable``' instruction has no defined semantics. This
4039instruction is used to inform the optimizer that a particular portion of
4040the code is not reachable. This can be used to indicate that the code
4041after a no-return function cannot be reached, and other facts.
4042
4043Semantics:
4044""""""""""
4045
4046The '``unreachable``' instruction has no defined semantics.
4047
4048.. _binaryops:
4049
4050Binary Operations
4051-----------------
4052
4053Binary operators are used to do most of the computation in a program.
4054They require two operands of the same type, execute an operation on
4055them, and produce a single value. The operands might represent multiple
4056data, as is the case with the :ref:`vector <t_vector>` data type. The
4057result value has the same type as its operands.
4058
4059There are several different binary operators:
4060
4061.. _i_add:
4062
4063'``add``' Instruction
4064^^^^^^^^^^^^^^^^^^^^^
4065
4066Syntax:
4067"""""""
4068
4069::
4070
Tim Northover675a0962014-06-13 14:24:23 +00004071 <result> = add <ty> <op1>, <op2> ; yields ty:result
4072 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
4073 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
4074 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004075
4076Overview:
4077"""""""""
4078
4079The '``add``' instruction returns the sum of its two operands.
4080
4081Arguments:
4082""""""""""
4083
4084The two arguments to the '``add``' instruction must be
4085:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4086arguments must have identical types.
4087
4088Semantics:
4089""""""""""
4090
4091The value produced is the integer sum of the two operands.
4092
4093If the sum has unsigned overflow, the result returned is the
4094mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4095the result.
4096
4097Because LLVM integers use a two's complement representation, this
4098instruction is appropriate for both signed and unsigned integers.
4099
4100``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4101respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4102result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
4103unsigned and/or signed overflow, respectively, occurs.
4104
4105Example:
4106""""""""
4107
4108.. code-block:: llvm
4109
Tim Northover675a0962014-06-13 14:24:23 +00004110 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004111
4112.. _i_fadd:
4113
4114'``fadd``' Instruction
4115^^^^^^^^^^^^^^^^^^^^^^
4116
4117Syntax:
4118"""""""
4119
4120::
4121
Tim Northover675a0962014-06-13 14:24:23 +00004122 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004123
4124Overview:
4125"""""""""
4126
4127The '``fadd``' instruction returns the sum of its two operands.
4128
4129Arguments:
4130""""""""""
4131
4132The two arguments to the '``fadd``' instruction must be :ref:`floating
4133point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4134Both arguments must have identical types.
4135
4136Semantics:
4137""""""""""
4138
4139The value produced is the floating point sum of the two operands. This
4140instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4141which are optimization hints to enable otherwise unsafe floating point
4142optimizations:
4143
4144Example:
4145""""""""
4146
4147.. code-block:: llvm
4148
Tim Northover675a0962014-06-13 14:24:23 +00004149 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004150
4151'``sub``' Instruction
4152^^^^^^^^^^^^^^^^^^^^^
4153
4154Syntax:
4155"""""""
4156
4157::
4158
Tim Northover675a0962014-06-13 14:24:23 +00004159 <result> = sub <ty> <op1>, <op2> ; yields ty:result
4160 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
4161 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
4162 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004163
4164Overview:
4165"""""""""
4166
4167The '``sub``' instruction returns the difference of its two operands.
4168
4169Note that the '``sub``' instruction is used to represent the '``neg``'
4170instruction present in most other intermediate representations.
4171
4172Arguments:
4173""""""""""
4174
4175The two arguments to the '``sub``' instruction must be
4176:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4177arguments must have identical types.
4178
4179Semantics:
4180""""""""""
4181
4182The value produced is the integer difference of the two operands.
4183
4184If the difference has unsigned overflow, the result returned is the
4185mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4186the result.
4187
4188Because LLVM integers use a two's complement representation, this
4189instruction is appropriate for both signed and unsigned integers.
4190
4191``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4192respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4193result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4194unsigned and/or signed overflow, respectively, occurs.
4195
4196Example:
4197""""""""
4198
4199.. code-block:: llvm
4200
Tim Northover675a0962014-06-13 14:24:23 +00004201 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
4202 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004203
4204.. _i_fsub:
4205
4206'``fsub``' Instruction
4207^^^^^^^^^^^^^^^^^^^^^^
4208
4209Syntax:
4210"""""""
4211
4212::
4213
Tim Northover675a0962014-06-13 14:24:23 +00004214 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004215
4216Overview:
4217"""""""""
4218
4219The '``fsub``' instruction returns the difference of its two operands.
4220
4221Note that the '``fsub``' instruction is used to represent the '``fneg``'
4222instruction present in most other intermediate representations.
4223
4224Arguments:
4225""""""""""
4226
4227The two arguments to the '``fsub``' instruction must be :ref:`floating
4228point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4229Both arguments must have identical types.
4230
4231Semantics:
4232""""""""""
4233
4234The value produced is the floating point difference of the two operands.
4235This instruction can also take any number of :ref:`fast-math
4236flags <fastmath>`, which are optimization hints to enable otherwise
4237unsafe floating point optimizations:
4238
4239Example:
4240""""""""
4241
4242.. code-block:: llvm
4243
Tim Northover675a0962014-06-13 14:24:23 +00004244 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4245 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004246
4247'``mul``' Instruction
4248^^^^^^^^^^^^^^^^^^^^^
4249
4250Syntax:
4251"""""""
4252
4253::
4254
Tim Northover675a0962014-06-13 14:24:23 +00004255 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4256 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4257 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4258 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004259
4260Overview:
4261"""""""""
4262
4263The '``mul``' instruction returns the product of its two operands.
4264
4265Arguments:
4266""""""""""
4267
4268The two arguments to the '``mul``' instruction must be
4269:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4270arguments must have identical types.
4271
4272Semantics:
4273""""""""""
4274
4275The value produced is the integer product of the two operands.
4276
4277If the result of the multiplication has unsigned overflow, the result
4278returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4279bit width of the result.
4280
4281Because LLVM integers use a two's complement representation, and the
4282result is the same width as the operands, this instruction returns the
4283correct result for both signed and unsigned integers. If a full product
4284(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4285sign-extended or zero-extended as appropriate to the width of the full
4286product.
4287
4288``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4289respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4290result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4291unsigned and/or signed overflow, respectively, occurs.
4292
4293Example:
4294""""""""
4295
4296.. code-block:: llvm
4297
Tim Northover675a0962014-06-13 14:24:23 +00004298 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004299
4300.. _i_fmul:
4301
4302'``fmul``' Instruction
4303^^^^^^^^^^^^^^^^^^^^^^
4304
4305Syntax:
4306"""""""
4307
4308::
4309
Tim Northover675a0962014-06-13 14:24:23 +00004310 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004311
4312Overview:
4313"""""""""
4314
4315The '``fmul``' instruction returns the product of its two operands.
4316
4317Arguments:
4318""""""""""
4319
4320The two arguments to the '``fmul``' instruction must be :ref:`floating
4321point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4322Both arguments must have identical types.
4323
4324Semantics:
4325""""""""""
4326
4327The value produced is the floating point product of the two operands.
4328This instruction can also take any number of :ref:`fast-math
4329flags <fastmath>`, which are optimization hints to enable otherwise
4330unsafe floating point optimizations:
4331
4332Example:
4333""""""""
4334
4335.. code-block:: llvm
4336
Tim Northover675a0962014-06-13 14:24:23 +00004337 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004338
4339'``udiv``' Instruction
4340^^^^^^^^^^^^^^^^^^^^^^
4341
4342Syntax:
4343"""""""
4344
4345::
4346
Tim Northover675a0962014-06-13 14:24:23 +00004347 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4348 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004349
4350Overview:
4351"""""""""
4352
4353The '``udiv``' instruction returns the quotient of its two operands.
4354
4355Arguments:
4356""""""""""
4357
4358The two arguments to the '``udiv``' instruction must be
4359:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4360arguments must have identical types.
4361
4362Semantics:
4363""""""""""
4364
4365The value produced is the unsigned integer quotient of the two operands.
4366
4367Note that unsigned integer division and signed integer division are
4368distinct operations; for signed integer division, use '``sdiv``'.
4369
4370Division by zero leads to undefined behavior.
4371
4372If the ``exact`` keyword is present, the result value of the ``udiv`` is
4373a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4374such, "((a udiv exact b) mul b) == a").
4375
4376Example:
4377""""""""
4378
4379.. code-block:: llvm
4380
Tim Northover675a0962014-06-13 14:24:23 +00004381 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004382
4383'``sdiv``' Instruction
4384^^^^^^^^^^^^^^^^^^^^^^
4385
4386Syntax:
4387"""""""
4388
4389::
4390
Tim Northover675a0962014-06-13 14:24:23 +00004391 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4392 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004393
4394Overview:
4395"""""""""
4396
4397The '``sdiv``' instruction returns the quotient of its two operands.
4398
4399Arguments:
4400""""""""""
4401
4402The two arguments to the '``sdiv``' instruction must be
4403:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4404arguments must have identical types.
4405
4406Semantics:
4407""""""""""
4408
4409The value produced is the signed integer quotient of the two operands
4410rounded towards zero.
4411
4412Note that signed integer division and unsigned integer division are
4413distinct operations; for unsigned integer division, use '``udiv``'.
4414
4415Division by zero leads to undefined behavior. Overflow also leads to
4416undefined behavior; this is a rare case, but can occur, for example, by
4417doing a 32-bit division of -2147483648 by -1.
4418
4419If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4420a :ref:`poison value <poisonvalues>` if the result would be rounded.
4421
4422Example:
4423""""""""
4424
4425.. code-block:: llvm
4426
Tim Northover675a0962014-06-13 14:24:23 +00004427 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004428
4429.. _i_fdiv:
4430
4431'``fdiv``' Instruction
4432^^^^^^^^^^^^^^^^^^^^^^
4433
4434Syntax:
4435"""""""
4436
4437::
4438
Tim Northover675a0962014-06-13 14:24:23 +00004439 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004440
4441Overview:
4442"""""""""
4443
4444The '``fdiv``' instruction returns the quotient of its two operands.
4445
4446Arguments:
4447""""""""""
4448
4449The two arguments to the '``fdiv``' instruction must be :ref:`floating
4450point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4451Both arguments must have identical types.
4452
4453Semantics:
4454""""""""""
4455
4456The value produced is the floating point quotient of the two operands.
4457This instruction can also take any number of :ref:`fast-math
4458flags <fastmath>`, which are optimization hints to enable otherwise
4459unsafe floating point optimizations:
4460
4461Example:
4462""""""""
4463
4464.. code-block:: llvm
4465
Tim Northover675a0962014-06-13 14:24:23 +00004466 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004467
4468'``urem``' Instruction
4469^^^^^^^^^^^^^^^^^^^^^^
4470
4471Syntax:
4472"""""""
4473
4474::
4475
Tim Northover675a0962014-06-13 14:24:23 +00004476 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004477
4478Overview:
4479"""""""""
4480
4481The '``urem``' instruction returns the remainder from the unsigned
4482division of its two arguments.
4483
4484Arguments:
4485""""""""""
4486
4487The two arguments to the '``urem``' instruction must be
4488:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4489arguments must have identical types.
4490
4491Semantics:
4492""""""""""
4493
4494This instruction returns the unsigned integer *remainder* of a division.
4495This instruction always performs an unsigned division to get the
4496remainder.
4497
4498Note that unsigned integer remainder and signed integer remainder are
4499distinct operations; for signed integer remainder, use '``srem``'.
4500
4501Taking the remainder of a division by zero leads to undefined behavior.
4502
4503Example:
4504""""""""
4505
4506.. code-block:: llvm
4507
Tim Northover675a0962014-06-13 14:24:23 +00004508 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004509
4510'``srem``' Instruction
4511^^^^^^^^^^^^^^^^^^^^^^
4512
4513Syntax:
4514"""""""
4515
4516::
4517
Tim Northover675a0962014-06-13 14:24:23 +00004518 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004519
4520Overview:
4521"""""""""
4522
4523The '``srem``' instruction returns the remainder from the signed
4524division of its two operands. This instruction can also take
4525:ref:`vector <t_vector>` versions of the values in which case the elements
4526must be integers.
4527
4528Arguments:
4529""""""""""
4530
4531The two arguments to the '``srem``' instruction must be
4532:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4533arguments must have identical types.
4534
4535Semantics:
4536""""""""""
4537
4538This instruction returns the *remainder* of a division (where the result
4539is either zero or has the same sign as the dividend, ``op1``), not the
4540*modulo* operator (where the result is either zero or has the same sign
4541as the divisor, ``op2``) of a value. For more information about the
4542difference, see `The Math
4543Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4544table of how this is implemented in various languages, please see
4545`Wikipedia: modulo
4546operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4547
4548Note that signed integer remainder and unsigned integer remainder are
4549distinct operations; for unsigned integer remainder, use '``urem``'.
4550
4551Taking the remainder of a division by zero leads to undefined behavior.
4552Overflow also leads to undefined behavior; this is a rare case, but can
4553occur, for example, by taking the remainder of a 32-bit division of
4554-2147483648 by -1. (The remainder doesn't actually overflow, but this
4555rule lets srem be implemented using instructions that return both the
4556result of the division and the remainder.)
4557
4558Example:
4559""""""""
4560
4561.. code-block:: llvm
4562
Tim Northover675a0962014-06-13 14:24:23 +00004563 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004564
4565.. _i_frem:
4566
4567'``frem``' Instruction
4568^^^^^^^^^^^^^^^^^^^^^^
4569
4570Syntax:
4571"""""""
4572
4573::
4574
Tim Northover675a0962014-06-13 14:24:23 +00004575 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004576
4577Overview:
4578"""""""""
4579
4580The '``frem``' instruction returns the remainder from the division of
4581its two operands.
4582
4583Arguments:
4584""""""""""
4585
4586The two arguments to the '``frem``' instruction must be :ref:`floating
4587point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4588Both arguments must have identical types.
4589
4590Semantics:
4591""""""""""
4592
4593This instruction returns the *remainder* of a division. The remainder
4594has the same sign as the dividend. This instruction can also take any
4595number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4596to enable otherwise unsafe floating point optimizations:
4597
4598Example:
4599""""""""
4600
4601.. code-block:: llvm
4602
Tim Northover675a0962014-06-13 14:24:23 +00004603 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004604
4605.. _bitwiseops:
4606
4607Bitwise Binary Operations
4608-------------------------
4609
4610Bitwise binary operators are used to do various forms of bit-twiddling
4611in a program. They are generally very efficient instructions and can
4612commonly be strength reduced from other instructions. They require two
4613operands of the same type, execute an operation on them, and produce a
4614single value. The resulting value is the same type as its operands.
4615
4616'``shl``' Instruction
4617^^^^^^^^^^^^^^^^^^^^^
4618
4619Syntax:
4620"""""""
4621
4622::
4623
Tim Northover675a0962014-06-13 14:24:23 +00004624 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4625 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4626 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4627 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004628
4629Overview:
4630"""""""""
4631
4632The '``shl``' instruction returns the first operand shifted to the left
4633a specified number of bits.
4634
4635Arguments:
4636""""""""""
4637
4638Both arguments to the '``shl``' instruction must be the same
4639:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4640'``op2``' is treated as an unsigned value.
4641
4642Semantics:
4643""""""""""
4644
4645The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4646where ``n`` is the width of the result. If ``op2`` is (statically or
4647dynamically) negative or equal to or larger than the number of bits in
4648``op1``, the result is undefined. If the arguments are vectors, each
4649vector element of ``op1`` is shifted by the corresponding shift amount
4650in ``op2``.
4651
4652If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4653value <poisonvalues>` if it shifts out any non-zero bits. If the
4654``nsw`` keyword is present, then the shift produces a :ref:`poison
4655value <poisonvalues>` if it shifts out any bits that disagree with the
4656resultant sign bit. As such, NUW/NSW have the same semantics as they
4657would if the shift were expressed as a mul instruction with the same
4658nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4659
4660Example:
4661""""""""
4662
4663.. code-block:: llvm
4664
Tim Northover675a0962014-06-13 14:24:23 +00004665 <result> = shl i32 4, %var ; yields i32: 4 << %var
4666 <result> = shl i32 4, 2 ; yields i32: 16
4667 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004668 <result> = shl i32 1, 32 ; undefined
4669 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4670
4671'``lshr``' Instruction
4672^^^^^^^^^^^^^^^^^^^^^^
4673
4674Syntax:
4675"""""""
4676
4677::
4678
Tim Northover675a0962014-06-13 14:24:23 +00004679 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4680 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004681
4682Overview:
4683"""""""""
4684
4685The '``lshr``' instruction (logical shift right) returns the first
4686operand shifted to the right a specified number of bits with zero fill.
4687
4688Arguments:
4689""""""""""
4690
4691Both arguments to the '``lshr``' instruction must be the same
4692:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4693'``op2``' is treated as an unsigned value.
4694
4695Semantics:
4696""""""""""
4697
4698This instruction always performs a logical shift right operation. The
4699most significant bits of the result will be filled with zero bits after
4700the shift. If ``op2`` is (statically or dynamically) equal to or larger
4701than the number of bits in ``op1``, the result is undefined. If the
4702arguments are vectors, each vector element of ``op1`` is shifted by the
4703corresponding shift amount in ``op2``.
4704
4705If the ``exact`` keyword is present, the result value of the ``lshr`` is
4706a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4707non-zero.
4708
4709Example:
4710""""""""
4711
4712.. code-block:: llvm
4713
Tim Northover675a0962014-06-13 14:24:23 +00004714 <result> = lshr i32 4, 1 ; yields i32:result = 2
4715 <result> = lshr i32 4, 2 ; yields i32:result = 1
4716 <result> = lshr i8 4, 3 ; yields i8:result = 0
4717 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004718 <result> = lshr i32 1, 32 ; undefined
4719 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4720
4721'``ashr``' Instruction
4722^^^^^^^^^^^^^^^^^^^^^^
4723
4724Syntax:
4725"""""""
4726
4727::
4728
Tim Northover675a0962014-06-13 14:24:23 +00004729 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
4730 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004731
4732Overview:
4733"""""""""
4734
4735The '``ashr``' instruction (arithmetic shift right) returns the first
4736operand shifted to the right a specified number of bits with sign
4737extension.
4738
4739Arguments:
4740""""""""""
4741
4742Both arguments to the '``ashr``' instruction must be the same
4743:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4744'``op2``' is treated as an unsigned value.
4745
4746Semantics:
4747""""""""""
4748
4749This instruction always performs an arithmetic shift right operation,
4750The most significant bits of the result will be filled with the sign bit
4751of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4752than the number of bits in ``op1``, the result is undefined. If the
4753arguments are vectors, each vector element of ``op1`` is shifted by the
4754corresponding shift amount in ``op2``.
4755
4756If the ``exact`` keyword is present, the result value of the ``ashr`` is
4757a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4758non-zero.
4759
4760Example:
4761""""""""
4762
4763.. code-block:: llvm
4764
Tim Northover675a0962014-06-13 14:24:23 +00004765 <result> = ashr i32 4, 1 ; yields i32:result = 2
4766 <result> = ashr i32 4, 2 ; yields i32:result = 1
4767 <result> = ashr i8 4, 3 ; yields i8:result = 0
4768 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00004769 <result> = ashr i32 1, 32 ; undefined
4770 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4771
4772'``and``' Instruction
4773^^^^^^^^^^^^^^^^^^^^^
4774
4775Syntax:
4776"""""""
4777
4778::
4779
Tim Northover675a0962014-06-13 14:24:23 +00004780 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004781
4782Overview:
4783"""""""""
4784
4785The '``and``' instruction returns the bitwise logical and of its two
4786operands.
4787
4788Arguments:
4789""""""""""
4790
4791The two arguments to the '``and``' instruction must be
4792:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4793arguments must have identical types.
4794
4795Semantics:
4796""""""""""
4797
4798The truth table used for the '``and``' instruction is:
4799
4800+-----+-----+-----+
4801| In0 | In1 | Out |
4802+-----+-----+-----+
4803| 0 | 0 | 0 |
4804+-----+-----+-----+
4805| 0 | 1 | 0 |
4806+-----+-----+-----+
4807| 1 | 0 | 0 |
4808+-----+-----+-----+
4809| 1 | 1 | 1 |
4810+-----+-----+-----+
4811
4812Example:
4813""""""""
4814
4815.. code-block:: llvm
4816
Tim Northover675a0962014-06-13 14:24:23 +00004817 <result> = and i32 4, %var ; yields i32:result = 4 & %var
4818 <result> = and i32 15, 40 ; yields i32:result = 8
4819 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00004820
4821'``or``' Instruction
4822^^^^^^^^^^^^^^^^^^^^
4823
4824Syntax:
4825"""""""
4826
4827::
4828
Tim Northover675a0962014-06-13 14:24:23 +00004829 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004830
4831Overview:
4832"""""""""
4833
4834The '``or``' instruction returns the bitwise logical inclusive or of its
4835two operands.
4836
4837Arguments:
4838""""""""""
4839
4840The two arguments to the '``or``' instruction must be
4841:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4842arguments must have identical types.
4843
4844Semantics:
4845""""""""""
4846
4847The truth table used for the '``or``' instruction is:
4848
4849+-----+-----+-----+
4850| In0 | In1 | Out |
4851+-----+-----+-----+
4852| 0 | 0 | 0 |
4853+-----+-----+-----+
4854| 0 | 1 | 1 |
4855+-----+-----+-----+
4856| 1 | 0 | 1 |
4857+-----+-----+-----+
4858| 1 | 1 | 1 |
4859+-----+-----+-----+
4860
4861Example:
4862""""""""
4863
4864::
4865
Tim Northover675a0962014-06-13 14:24:23 +00004866 <result> = or i32 4, %var ; yields i32:result = 4 | %var
4867 <result> = or i32 15, 40 ; yields i32:result = 47
4868 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00004869
4870'``xor``' Instruction
4871^^^^^^^^^^^^^^^^^^^^^
4872
4873Syntax:
4874"""""""
4875
4876::
4877
Tim Northover675a0962014-06-13 14:24:23 +00004878 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004879
4880Overview:
4881"""""""""
4882
4883The '``xor``' instruction returns the bitwise logical exclusive or of
4884its two operands. The ``xor`` is used to implement the "one's
4885complement" operation, which is the "~" operator in C.
4886
4887Arguments:
4888""""""""""
4889
4890The two arguments to the '``xor``' instruction must be
4891:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4892arguments must have identical types.
4893
4894Semantics:
4895""""""""""
4896
4897The truth table used for the '``xor``' instruction is:
4898
4899+-----+-----+-----+
4900| In0 | In1 | Out |
4901+-----+-----+-----+
4902| 0 | 0 | 0 |
4903+-----+-----+-----+
4904| 0 | 1 | 1 |
4905+-----+-----+-----+
4906| 1 | 0 | 1 |
4907+-----+-----+-----+
4908| 1 | 1 | 0 |
4909+-----+-----+-----+
4910
4911Example:
4912""""""""
4913
4914.. code-block:: llvm
4915
Tim Northover675a0962014-06-13 14:24:23 +00004916 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
4917 <result> = xor i32 15, 40 ; yields i32:result = 39
4918 <result> = xor i32 4, 8 ; yields i32:result = 12
4919 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00004920
4921Vector Operations
4922-----------------
4923
4924LLVM supports several instructions to represent vector operations in a
4925target-independent manner. These instructions cover the element-access
4926and vector-specific operations needed to process vectors effectively.
4927While LLVM does directly support these vector operations, many
4928sophisticated algorithms will want to use target-specific intrinsics to
4929take full advantage of a specific target.
4930
4931.. _i_extractelement:
4932
4933'``extractelement``' Instruction
4934^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4935
4936Syntax:
4937"""""""
4938
4939::
4940
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004941 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004942
4943Overview:
4944"""""""""
4945
4946The '``extractelement``' instruction extracts a single scalar element
4947from a vector at a specified index.
4948
4949Arguments:
4950""""""""""
4951
4952The first operand of an '``extractelement``' instruction is a value of
4953:ref:`vector <t_vector>` type. The second operand is an index indicating
4954the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004955variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004956
4957Semantics:
4958""""""""""
4959
4960The result is a scalar of the same type as the element type of ``val``.
4961Its value is the value at position ``idx`` of ``val``. If ``idx``
4962exceeds the length of ``val``, the results are undefined.
4963
4964Example:
4965""""""""
4966
4967.. code-block:: llvm
4968
4969 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4970
4971.. _i_insertelement:
4972
4973'``insertelement``' Instruction
4974^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4975
4976Syntax:
4977"""""""
4978
4979::
4980
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004981 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004982
4983Overview:
4984"""""""""
4985
4986The '``insertelement``' instruction inserts a scalar element into a
4987vector at a specified index.
4988
4989Arguments:
4990""""""""""
4991
4992The first operand of an '``insertelement``' instruction is a value of
4993:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4994type must equal the element type of the first operand. The third operand
4995is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004996index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004997
4998Semantics:
4999""""""""""
5000
5001The result is a vector of the same type as ``val``. Its element values
5002are those of ``val`` except at position ``idx``, where it gets the value
5003``elt``. If ``idx`` exceeds the length of ``val``, the results are
5004undefined.
5005
5006Example:
5007""""""""
5008
5009.. code-block:: llvm
5010
5011 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
5012
5013.. _i_shufflevector:
5014
5015'``shufflevector``' Instruction
5016^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5017
5018Syntax:
5019"""""""
5020
5021::
5022
5023 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
5024
5025Overview:
5026"""""""""
5027
5028The '``shufflevector``' instruction constructs a permutation of elements
5029from two input vectors, returning a vector with the same element type as
5030the input and length that is the same as the shuffle mask.
5031
5032Arguments:
5033""""""""""
5034
5035The first two operands of a '``shufflevector``' instruction are vectors
5036with the same type. The third argument is a shuffle mask whose element
5037type is always 'i32'. The result of the instruction is a vector whose
5038length is the same as the shuffle mask and whose element type is the
5039same as the element type of the first two operands.
5040
5041The shuffle mask operand is required to be a constant vector with either
5042constant integer or undef values.
5043
5044Semantics:
5045""""""""""
5046
5047The elements of the two input vectors are numbered from left to right
5048across both of the vectors. The shuffle mask operand specifies, for each
5049element of the result vector, which element of the two input vectors the
5050result element gets. The element selector may be undef (meaning "don't
5051care") and the second operand may be undef if performing a shuffle from
5052only one vector.
5053
5054Example:
5055""""""""
5056
5057.. code-block:: llvm
5058
5059 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5060 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
5061 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
5062 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
5063 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
5064 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
5065 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5066 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
5067
5068Aggregate Operations
5069--------------------
5070
5071LLVM supports several instructions for working with
5072:ref:`aggregate <t_aggregate>` values.
5073
5074.. _i_extractvalue:
5075
5076'``extractvalue``' Instruction
5077^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5078
5079Syntax:
5080"""""""
5081
5082::
5083
5084 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
5085
5086Overview:
5087"""""""""
5088
5089The '``extractvalue``' instruction extracts the value of a member field
5090from an :ref:`aggregate <t_aggregate>` value.
5091
5092Arguments:
5093""""""""""
5094
5095The first operand of an '``extractvalue``' instruction is a value of
5096:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
5097constant indices to specify which value to extract in a similar manner
5098as indices in a '``getelementptr``' instruction.
5099
5100The major differences to ``getelementptr`` indexing are:
5101
5102- Since the value being indexed is not a pointer, the first index is
5103 omitted and assumed to be zero.
5104- At least one index must be specified.
5105- Not only struct indices but also array indices must be in bounds.
5106
5107Semantics:
5108""""""""""
5109
5110The result is the value at the position in the aggregate specified by
5111the index operands.
5112
5113Example:
5114""""""""
5115
5116.. code-block:: llvm
5117
5118 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
5119
5120.. _i_insertvalue:
5121
5122'``insertvalue``' Instruction
5123^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5124
5125Syntax:
5126"""""""
5127
5128::
5129
5130 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
5131
5132Overview:
5133"""""""""
5134
5135The '``insertvalue``' instruction inserts a value into a member field in
5136an :ref:`aggregate <t_aggregate>` value.
5137
5138Arguments:
5139""""""""""
5140
5141The first operand of an '``insertvalue``' instruction is a value of
5142:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5143a first-class value to insert. The following operands are constant
5144indices indicating the position at which to insert the value in a
5145similar manner as indices in a '``extractvalue``' instruction. The value
5146to insert must have the same type as the value identified by the
5147indices.
5148
5149Semantics:
5150""""""""""
5151
5152The result is an aggregate of the same type as ``val``. Its value is
5153that of ``val`` except that the value at the position specified by the
5154indices is that of ``elt``.
5155
5156Example:
5157""""""""
5158
5159.. code-block:: llvm
5160
5161 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
5162 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00005163 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00005164
5165.. _memoryops:
5166
5167Memory Access and Addressing Operations
5168---------------------------------------
5169
5170A key design point of an SSA-based representation is how it represents
5171memory. In LLVM, no memory locations are in SSA form, which makes things
5172very simple. This section describes how to read, write, and allocate
5173memory in LLVM.
5174
5175.. _i_alloca:
5176
5177'``alloca``' Instruction
5178^^^^^^^^^^^^^^^^^^^^^^^^
5179
5180Syntax:
5181"""""""
5182
5183::
5184
Tim Northover675a0962014-06-13 14:24:23 +00005185 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00005186
5187Overview:
5188"""""""""
5189
5190The '``alloca``' instruction allocates memory on the stack frame of the
5191currently executing function, to be automatically released when this
5192function returns to its caller. The object is always allocated in the
5193generic address space (address space zero).
5194
5195Arguments:
5196""""""""""
5197
5198The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5199bytes of memory on the runtime stack, returning a pointer of the
5200appropriate type to the program. If "NumElements" is specified, it is
5201the number of elements allocated, otherwise "NumElements" is defaulted
5202to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005203allocation is guaranteed to be aligned to at least that boundary. The
5204alignment may not be greater than ``1 << 29``. If not specified, or if
5205zero, the target can choose to align the allocation on any convenient
5206boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00005207
5208'``type``' may be any sized type.
5209
5210Semantics:
5211""""""""""
5212
5213Memory is allocated; a pointer is returned. The operation is undefined
5214if there is insufficient stack space for the allocation. '``alloca``'d
5215memory is automatically released when the function returns. The
5216'``alloca``' instruction is commonly used to represent automatic
5217variables that must have an address available. When the function returns
5218(either with the ``ret`` or ``resume`` instructions), the memory is
5219reclaimed. Allocating zero bytes is legal, but the result is undefined.
5220The order in which memory is allocated (ie., which way the stack grows)
5221is not specified.
5222
5223Example:
5224""""""""
5225
5226.. code-block:: llvm
5227
Tim Northover675a0962014-06-13 14:24:23 +00005228 %ptr = alloca i32 ; yields i32*:ptr
5229 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5230 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5231 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005232
5233.. _i_load:
5234
5235'``load``' Instruction
5236^^^^^^^^^^^^^^^^^^^^^^
5237
5238Syntax:
5239"""""""
5240
5241::
5242
Philip Reamescdb72f32014-10-20 22:40:55 +00005243 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00005244 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5245 !<index> = !{ i32 1 }
5246
5247Overview:
5248"""""""""
5249
5250The '``load``' instruction is used to read from memory.
5251
5252Arguments:
5253""""""""""
5254
Eli Bendersky239a78b2013-04-17 20:17:08 +00005255The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00005256from which to load. The pointer must point to a :ref:`first
5257class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5258then the optimizer is not allowed to modify the number or order of
5259execution of this ``load`` with other :ref:`volatile
5260operations <volatile>`.
5261
5262If the ``load`` is marked as ``atomic``, it takes an extra
5263:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5264``release`` and ``acq_rel`` orderings are not valid on ``load``
5265instructions. Atomic loads produce :ref:`defined <memmodel>` results
5266when they may see multiple atomic stores. The type of the pointee must
5267be an integer type whose bit width is a power of two greater than or
5268equal to eight and less than or equal to a target-specific size limit.
5269``align`` must be explicitly specified on atomic loads, and the load has
5270undefined behavior if the alignment is not set to a value which is at
5271least the size in bytes of the pointee. ``!nontemporal`` does not have
5272any defined semantics for atomic loads.
5273
5274The optional constant ``align`` argument specifies the alignment of the
5275operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005276or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005277alignment for the target. It is the responsibility of the code emitter
5278to ensure that the alignment information is correct. Overestimating the
5279alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005280may produce less efficient code. An alignment of 1 is always safe. The
5281maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005282
5283The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005284metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005285``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005286metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005287that this load is not expected to be reused in the cache. The code
5288generator may select special instructions to save cache bandwidth, such
5289as the ``MOVNT`` instruction on x86.
5290
5291The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005292metadata name ``<index>`` corresponding to a metadata node with no
5293entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00005294instruction tells the optimizer and code generator that the address
5295operand to this load points to memory which can be assumed unchanged.
5296Being invariant does not imply that a location is dereferenceable,
5297but it does imply that once the location is known dereferenceable
5298its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00005299
Philip Reamescdb72f32014-10-20 22:40:55 +00005300The optional ``!nonnull`` metadata must reference a single
5301metadata name ``<index>`` corresponding to a metadata node with no
5302entries. The existence of the ``!nonnull`` metadata on the
5303instruction tells the optimizer that the value loaded is known to
5304never be null. This is analogous to the ''nonnull'' attribute
5305on parameters and return values. This metadata can only be applied
5306to loads of a pointer type.
5307
Sean Silvab084af42012-12-07 10:36:55 +00005308Semantics:
5309""""""""""
5310
5311The location of memory pointed to is loaded. If the value being loaded
5312is of scalar type then the number of bytes read does not exceed the
5313minimum number of bytes needed to hold all bits of the type. For
5314example, loading an ``i24`` reads at most three bytes. When loading a
5315value of a type like ``i20`` with a size that is not an integral number
5316of bytes, the result is undefined if the value was not originally
5317written using a store of the same type.
5318
5319Examples:
5320"""""""""
5321
5322.. code-block:: llvm
5323
Tim Northover675a0962014-06-13 14:24:23 +00005324 %ptr = alloca i32 ; yields i32*:ptr
5325 store i32 3, i32* %ptr ; yields void
5326 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005327
5328.. _i_store:
5329
5330'``store``' Instruction
5331^^^^^^^^^^^^^^^^^^^^^^^
5332
5333Syntax:
5334"""""""
5335
5336::
5337
Tim Northover675a0962014-06-13 14:24:23 +00005338 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5339 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005340
5341Overview:
5342"""""""""
5343
5344The '``store``' instruction is used to write to memory.
5345
5346Arguments:
5347""""""""""
5348
Eli Benderskyca380842013-04-17 17:17:20 +00005349There are two arguments to the ``store`` instruction: a value to store
5350and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005351operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005352the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005353then the optimizer is not allowed to modify the number or order of
5354execution of this ``store`` with other :ref:`volatile
5355operations <volatile>`.
5356
5357If the ``store`` is marked as ``atomic``, it takes an extra
5358:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5359``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5360instructions. Atomic loads produce :ref:`defined <memmodel>` results
5361when they may see multiple atomic stores. The type of the pointee must
5362be an integer type whose bit width is a power of two greater than or
5363equal to eight and less than or equal to a target-specific size limit.
5364``align`` must be explicitly specified on atomic stores, and the store
5365has undefined behavior if the alignment is not set to a value which is
5366at least the size in bytes of the pointee. ``!nontemporal`` does not
5367have any defined semantics for atomic stores.
5368
Eli Benderskyca380842013-04-17 17:17:20 +00005369The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005370operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005371or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005372alignment for the target. It is the responsibility of the code emitter
5373to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005374alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005375alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005376safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005377
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005378The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005379name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005380value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005381tells the optimizer and code generator that this load is not expected to
5382be reused in the cache. The code generator may select special
5383instructions to save cache bandwidth, such as the MOVNT instruction on
5384x86.
5385
5386Semantics:
5387""""""""""
5388
Eli Benderskyca380842013-04-17 17:17:20 +00005389The contents of memory are updated to contain ``<value>`` at the
5390location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005391of scalar type then the number of bytes written does not exceed the
5392minimum number of bytes needed to hold all bits of the type. For
5393example, storing an ``i24`` writes at most three bytes. When writing a
5394value of a type like ``i20`` with a size that is not an integral number
5395of bytes, it is unspecified what happens to the extra bits that do not
5396belong to the type, but they will typically be overwritten.
5397
5398Example:
5399""""""""
5400
5401.. code-block:: llvm
5402
Tim Northover675a0962014-06-13 14:24:23 +00005403 %ptr = alloca i32 ; yields i32*:ptr
5404 store i32 3, i32* %ptr ; yields void
5405 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005406
5407.. _i_fence:
5408
5409'``fence``' Instruction
5410^^^^^^^^^^^^^^^^^^^^^^^
5411
5412Syntax:
5413"""""""
5414
5415::
5416
Tim Northover675a0962014-06-13 14:24:23 +00005417 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005418
5419Overview:
5420"""""""""
5421
5422The '``fence``' instruction is used to introduce happens-before edges
5423between operations.
5424
5425Arguments:
5426""""""""""
5427
5428'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5429defines what *synchronizes-with* edges they add. They can only be given
5430``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5431
5432Semantics:
5433""""""""""
5434
5435A fence A which has (at least) ``release`` ordering semantics
5436*synchronizes with* a fence B with (at least) ``acquire`` ordering
5437semantics if and only if there exist atomic operations X and Y, both
5438operating on some atomic object M, such that A is sequenced before X, X
5439modifies M (either directly or through some side effect of a sequence
5440headed by X), Y is sequenced before B, and Y observes M. This provides a
5441*happens-before* dependency between A and B. Rather than an explicit
5442``fence``, one (but not both) of the atomic operations X or Y might
5443provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5444still *synchronize-with* the explicit ``fence`` and establish the
5445*happens-before* edge.
5446
5447A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5448``acquire`` and ``release`` semantics specified above, participates in
5449the global program order of other ``seq_cst`` operations and/or fences.
5450
5451The optional ":ref:`singlethread <singlethread>`" argument specifies
5452that the fence only synchronizes with other fences in the same thread.
5453(This is useful for interacting with signal handlers.)
5454
5455Example:
5456""""""""
5457
5458.. code-block:: llvm
5459
Tim Northover675a0962014-06-13 14:24:23 +00005460 fence acquire ; yields void
5461 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005462
5463.. _i_cmpxchg:
5464
5465'``cmpxchg``' Instruction
5466^^^^^^^^^^^^^^^^^^^^^^^^^
5467
5468Syntax:
5469"""""""
5470
5471::
5472
Tim Northover675a0962014-06-13 14:24:23 +00005473 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005474
5475Overview:
5476"""""""""
5477
5478The '``cmpxchg``' instruction is used to atomically modify memory. It
5479loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005480equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005481
5482Arguments:
5483""""""""""
5484
5485There are three arguments to the '``cmpxchg``' instruction: an address
5486to operate on, a value to compare to the value currently be at that
5487address, and a new value to place at that address if the compared values
5488are equal. The type of '<cmp>' must be an integer type whose bit width
5489is a power of two greater than or equal to eight and less than or equal
5490to a target-specific size limit. '<cmp>' and '<new>' must have the same
5491type, and the type of '<pointer>' must be a pointer to that type. If the
5492``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5493to modify the number or order of execution of this ``cmpxchg`` with
5494other :ref:`volatile operations <volatile>`.
5495
Tim Northovere94a5182014-03-11 10:48:52 +00005496The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005497``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5498must be at least ``monotonic``, the ordering constraint on failure must be no
5499stronger than that on success, and the failure ordering cannot be either
5500``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005501
5502The optional "``singlethread``" argument declares that the ``cmpxchg``
5503is only atomic with respect to code (usually signal handlers) running in
5504the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5505respect to all other code in the system.
5506
5507The pointer passed into cmpxchg must have alignment greater than or
5508equal to the size in memory of the operand.
5509
5510Semantics:
5511""""""""""
5512
Tim Northover420a2162014-06-13 14:24:07 +00005513The contents of memory at the location specified by the '``<pointer>``' operand
5514is read and compared to '``<cmp>``'; if the read value is the equal, the
5515'``<new>``' is written. The original value at the location is returned, together
5516with a flag indicating success (true) or failure (false).
5517
5518If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5519permitted: the operation may not write ``<new>`` even if the comparison
5520matched.
5521
5522If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5523if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005524
Tim Northovere94a5182014-03-11 10:48:52 +00005525A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5526identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5527load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005528
5529Example:
5530""""""""
5531
5532.. code-block:: llvm
5533
5534 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005535 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005536 br label %loop
5537
5538 loop:
5539 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5540 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005541 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005542 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5543 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005544 br i1 %success, label %done, label %loop
5545
5546 done:
5547 ...
5548
5549.. _i_atomicrmw:
5550
5551'``atomicrmw``' Instruction
5552^^^^^^^^^^^^^^^^^^^^^^^^^^^
5553
5554Syntax:
5555"""""""
5556
5557::
5558
Tim Northover675a0962014-06-13 14:24:23 +00005559 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005560
5561Overview:
5562"""""""""
5563
5564The '``atomicrmw``' instruction is used to atomically modify memory.
5565
5566Arguments:
5567""""""""""
5568
5569There are three arguments to the '``atomicrmw``' instruction: an
5570operation to apply, an address whose value to modify, an argument to the
5571operation. The operation must be one of the following keywords:
5572
5573- xchg
5574- add
5575- sub
5576- and
5577- nand
5578- or
5579- xor
5580- max
5581- min
5582- umax
5583- umin
5584
5585The type of '<value>' must be an integer type whose bit width is a power
5586of two greater than or equal to eight and less than or equal to a
5587target-specific size limit. The type of the '``<pointer>``' operand must
5588be a pointer to that type. If the ``atomicrmw`` is marked as
5589``volatile``, then the optimizer is not allowed to modify the number or
5590order of execution of this ``atomicrmw`` with other :ref:`volatile
5591operations <volatile>`.
5592
5593Semantics:
5594""""""""""
5595
5596The contents of memory at the location specified by the '``<pointer>``'
5597operand are atomically read, modified, and written back. The original
5598value at the location is returned. The modification is specified by the
5599operation argument:
5600
5601- xchg: ``*ptr = val``
5602- add: ``*ptr = *ptr + val``
5603- sub: ``*ptr = *ptr - val``
5604- and: ``*ptr = *ptr & val``
5605- nand: ``*ptr = ~(*ptr & val)``
5606- or: ``*ptr = *ptr | val``
5607- xor: ``*ptr = *ptr ^ val``
5608- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5609- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5610- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5611 comparison)
5612- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5613 comparison)
5614
5615Example:
5616""""""""
5617
5618.. code-block:: llvm
5619
Tim Northover675a0962014-06-13 14:24:23 +00005620 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005621
5622.. _i_getelementptr:
5623
5624'``getelementptr``' Instruction
5625^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5626
5627Syntax:
5628"""""""
5629
5630::
5631
5632 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5633 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5634 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5635
5636Overview:
5637"""""""""
5638
5639The '``getelementptr``' instruction is used to get the address of a
5640subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5641address calculation only and does not access memory.
5642
5643Arguments:
5644""""""""""
5645
5646The first argument is always a pointer or a vector of pointers, and
5647forms the basis of the calculation. The remaining arguments are indices
5648that indicate which of the elements of the aggregate object are indexed.
5649The interpretation of each index is dependent on the type being indexed
5650into. The first index always indexes the pointer value given as the
5651first argument, the second index indexes a value of the type pointed to
5652(not necessarily the value directly pointed to, since the first index
5653can be non-zero), etc. The first type indexed into must be a pointer
5654value, subsequent types can be arrays, vectors, and structs. Note that
5655subsequent types being indexed into can never be pointers, since that
5656would require loading the pointer before continuing calculation.
5657
5658The type of each index argument depends on the type it is indexing into.
5659When indexing into a (optionally packed) structure, only ``i32`` integer
5660**constants** are allowed (when using a vector of indices they must all
5661be the **same** ``i32`` integer constant). When indexing into an array,
5662pointer or vector, integers of any width are allowed, and they are not
5663required to be constant. These integers are treated as signed values
5664where relevant.
5665
5666For example, let's consider a C code fragment and how it gets compiled
5667to LLVM:
5668
5669.. code-block:: c
5670
5671 struct RT {
5672 char A;
5673 int B[10][20];
5674 char C;
5675 };
5676 struct ST {
5677 int X;
5678 double Y;
5679 struct RT Z;
5680 };
5681
5682 int *foo(struct ST *s) {
5683 return &s[1].Z.B[5][13];
5684 }
5685
5686The LLVM code generated by Clang is:
5687
5688.. code-block:: llvm
5689
5690 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5691 %struct.ST = type { i32, double, %struct.RT }
5692
5693 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5694 entry:
5695 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5696 ret i32* %arrayidx
5697 }
5698
5699Semantics:
5700""""""""""
5701
5702In the example above, the first index is indexing into the
5703'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5704= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5705indexes into the third element of the structure, yielding a
5706'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5707structure. The third index indexes into the second element of the
5708structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5709dimensions of the array are subscripted into, yielding an '``i32``'
5710type. The '``getelementptr``' instruction returns a pointer to this
5711element, thus computing a value of '``i32*``' type.
5712
5713Note that it is perfectly legal to index partially through a structure,
5714returning a pointer to an inner element. Because of this, the LLVM code
5715for the given testcase is equivalent to:
5716
5717.. code-block:: llvm
5718
5719 define i32* @foo(%struct.ST* %s) {
5720 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5721 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5722 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5723 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5724 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5725 ret i32* %t5
5726 }
5727
5728If the ``inbounds`` keyword is present, the result value of the
5729``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5730pointer is not an *in bounds* address of an allocated object, or if any
5731of the addresses that would be formed by successive addition of the
5732offsets implied by the indices to the base address with infinitely
5733precise signed arithmetic are not an *in bounds* address of that
5734allocated object. The *in bounds* addresses for an allocated object are
5735all the addresses that point into the object, plus the address one byte
5736past the end. In cases where the base is a vector of pointers the
5737``inbounds`` keyword applies to each of the computations element-wise.
5738
5739If the ``inbounds`` keyword is not present, the offsets are added to the
5740base address with silently-wrapping two's complement arithmetic. If the
5741offsets have a different width from the pointer, they are sign-extended
5742or truncated to the width of the pointer. The result value of the
5743``getelementptr`` may be outside the object pointed to by the base
5744pointer. The result value may not necessarily be used to access memory
5745though, even if it happens to point into allocated storage. See the
5746:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5747information.
5748
5749The getelementptr instruction is often confusing. For some more insight
5750into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5751
5752Example:
5753""""""""
5754
5755.. code-block:: llvm
5756
5757 ; yields [12 x i8]*:aptr
5758 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5759 ; yields i8*:vptr
5760 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5761 ; yields i8*:eptr
5762 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5763 ; yields i32*:iptr
5764 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5765
5766In cases where the pointer argument is a vector of pointers, each index
5767must be a vector with the same number of elements. For example:
5768
5769.. code-block:: llvm
5770
5771 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5772
5773Conversion Operations
5774---------------------
5775
5776The instructions in this category are the conversion instructions
5777(casting) which all take a single operand and a type. They perform
5778various bit conversions on the operand.
5779
5780'``trunc .. to``' Instruction
5781^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5782
5783Syntax:
5784"""""""
5785
5786::
5787
5788 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5789
5790Overview:
5791"""""""""
5792
5793The '``trunc``' instruction truncates its operand to the type ``ty2``.
5794
5795Arguments:
5796""""""""""
5797
5798The '``trunc``' instruction takes a value to trunc, and a type to trunc
5799it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5800of the same number of integers. The bit size of the ``value`` must be
5801larger than the bit size of the destination type, ``ty2``. Equal sized
5802types are not allowed.
5803
5804Semantics:
5805""""""""""
5806
5807The '``trunc``' instruction truncates the high order bits in ``value``
5808and converts the remaining bits to ``ty2``. Since the source size must
5809be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5810It will always truncate bits.
5811
5812Example:
5813""""""""
5814
5815.. code-block:: llvm
5816
5817 %X = trunc i32 257 to i8 ; yields i8:1
5818 %Y = trunc i32 123 to i1 ; yields i1:true
5819 %Z = trunc i32 122 to i1 ; yields i1:false
5820 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5821
5822'``zext .. to``' Instruction
5823^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5824
5825Syntax:
5826"""""""
5827
5828::
5829
5830 <result> = zext <ty> <value> to <ty2> ; yields ty2
5831
5832Overview:
5833"""""""""
5834
5835The '``zext``' instruction zero extends its operand to type ``ty2``.
5836
5837Arguments:
5838""""""""""
5839
5840The '``zext``' instruction takes a value to cast, and a type to cast it
5841to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5842the same number of integers. The bit size of the ``value`` must be
5843smaller than the bit size of the destination type, ``ty2``.
5844
5845Semantics:
5846""""""""""
5847
5848The ``zext`` fills the high order bits of the ``value`` with zero bits
5849until it reaches the size of the destination type, ``ty2``.
5850
5851When zero extending from i1, the result will always be either 0 or 1.
5852
5853Example:
5854""""""""
5855
5856.. code-block:: llvm
5857
5858 %X = zext i32 257 to i64 ; yields i64:257
5859 %Y = zext i1 true to i32 ; yields i32:1
5860 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5861
5862'``sext .. to``' Instruction
5863^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5864
5865Syntax:
5866"""""""
5867
5868::
5869
5870 <result> = sext <ty> <value> to <ty2> ; yields ty2
5871
5872Overview:
5873"""""""""
5874
5875The '``sext``' sign extends ``value`` to the type ``ty2``.
5876
5877Arguments:
5878""""""""""
5879
5880The '``sext``' instruction takes a value to cast, and a type to cast it
5881to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5882the same number of integers. The bit size of the ``value`` must be
5883smaller than the bit size of the destination type, ``ty2``.
5884
5885Semantics:
5886""""""""""
5887
5888The '``sext``' instruction performs a sign extension by copying the sign
5889bit (highest order bit) of the ``value`` until it reaches the bit size
5890of the type ``ty2``.
5891
5892When sign extending from i1, the extension always results in -1 or 0.
5893
5894Example:
5895""""""""
5896
5897.. code-block:: llvm
5898
5899 %X = sext i8 -1 to i16 ; yields i16 :65535
5900 %Y = sext i1 true to i32 ; yields i32:-1
5901 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5902
5903'``fptrunc .. to``' Instruction
5904^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5905
5906Syntax:
5907"""""""
5908
5909::
5910
5911 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5912
5913Overview:
5914"""""""""
5915
5916The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5917
5918Arguments:
5919""""""""""
5920
5921The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5922value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5923The size of ``value`` must be larger than the size of ``ty2``. This
5924implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5925
5926Semantics:
5927""""""""""
5928
5929The '``fptrunc``' instruction truncates a ``value`` from a larger
5930:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5931point <t_floating>` type. If the value cannot fit within the
5932destination type, ``ty2``, then the results are undefined.
5933
5934Example:
5935""""""""
5936
5937.. code-block:: llvm
5938
5939 %X = fptrunc double 123.0 to float ; yields float:123.0
5940 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5941
5942'``fpext .. to``' Instruction
5943^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5944
5945Syntax:
5946"""""""
5947
5948::
5949
5950 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5951
5952Overview:
5953"""""""""
5954
5955The '``fpext``' extends a floating point ``value`` to a larger floating
5956point value.
5957
5958Arguments:
5959""""""""""
5960
5961The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5962``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5963to. The source type must be smaller than the destination type.
5964
5965Semantics:
5966""""""""""
5967
5968The '``fpext``' instruction extends the ``value`` from a smaller
5969:ref:`floating point <t_floating>` type to a larger :ref:`floating
5970point <t_floating>` type. The ``fpext`` cannot be used to make a
5971*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5972*no-op cast* for a floating point cast.
5973
5974Example:
5975""""""""
5976
5977.. code-block:: llvm
5978
5979 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5980 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5981
5982'``fptoui .. to``' Instruction
5983^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5984
5985Syntax:
5986"""""""
5987
5988::
5989
5990 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5991
5992Overview:
5993"""""""""
5994
5995The '``fptoui``' converts a floating point ``value`` to its unsigned
5996integer equivalent of type ``ty2``.
5997
5998Arguments:
5999""""""""""
6000
6001The '``fptoui``' instruction takes a value to cast, which must be a
6002scalar or vector :ref:`floating point <t_floating>` value, and a type to
6003cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6004``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6005type with the same number of elements as ``ty``
6006
6007Semantics:
6008""""""""""
6009
6010The '``fptoui``' instruction converts its :ref:`floating
6011point <t_floating>` operand into the nearest (rounding towards zero)
6012unsigned integer value. If the value cannot fit in ``ty2``, the results
6013are undefined.
6014
6015Example:
6016""""""""
6017
6018.. code-block:: llvm
6019
6020 %X = fptoui double 123.0 to i32 ; yields i32:123
6021 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
6022 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
6023
6024'``fptosi .. to``' Instruction
6025^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6026
6027Syntax:
6028"""""""
6029
6030::
6031
6032 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
6033
6034Overview:
6035"""""""""
6036
6037The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
6038``value`` to type ``ty2``.
6039
6040Arguments:
6041""""""""""
6042
6043The '``fptosi``' instruction takes a value to cast, which must be a
6044scalar or vector :ref:`floating point <t_floating>` value, and a type to
6045cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6046``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6047type with the same number of elements as ``ty``
6048
6049Semantics:
6050""""""""""
6051
6052The '``fptosi``' instruction converts its :ref:`floating
6053point <t_floating>` operand into the nearest (rounding towards zero)
6054signed integer value. If the value cannot fit in ``ty2``, the results
6055are undefined.
6056
6057Example:
6058""""""""
6059
6060.. code-block:: llvm
6061
6062 %X = fptosi double -123.0 to i32 ; yields i32:-123
6063 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
6064 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
6065
6066'``uitofp .. to``' Instruction
6067^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6068
6069Syntax:
6070"""""""
6071
6072::
6073
6074 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
6075
6076Overview:
6077"""""""""
6078
6079The '``uitofp``' instruction regards ``value`` as an unsigned integer
6080and converts that value to the ``ty2`` type.
6081
6082Arguments:
6083""""""""""
6084
6085The '``uitofp``' instruction takes a value to cast, which must be a
6086scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6087``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6088``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6089type with the same number of elements as ``ty``
6090
6091Semantics:
6092""""""""""
6093
6094The '``uitofp``' instruction interprets its operand as an unsigned
6095integer quantity and converts it to the corresponding floating point
6096value. If the value cannot fit in the floating point value, the results
6097are undefined.
6098
6099Example:
6100""""""""
6101
6102.. code-block:: llvm
6103
6104 %X = uitofp i32 257 to float ; yields float:257.0
6105 %Y = uitofp i8 -1 to double ; yields double:255.0
6106
6107'``sitofp .. to``' Instruction
6108^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6109
6110Syntax:
6111"""""""
6112
6113::
6114
6115 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
6116
6117Overview:
6118"""""""""
6119
6120The '``sitofp``' instruction regards ``value`` as a signed integer and
6121converts that value to the ``ty2`` type.
6122
6123Arguments:
6124""""""""""
6125
6126The '``sitofp``' instruction takes a value to cast, which must be a
6127scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6128``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6129``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6130type with the same number of elements as ``ty``
6131
6132Semantics:
6133""""""""""
6134
6135The '``sitofp``' instruction interprets its operand as a signed integer
6136quantity and converts it to the corresponding floating point value. If
6137the value cannot fit in the floating point value, the results are
6138undefined.
6139
6140Example:
6141""""""""
6142
6143.. code-block:: llvm
6144
6145 %X = sitofp i32 257 to float ; yields float:257.0
6146 %Y = sitofp i8 -1 to double ; yields double:-1.0
6147
6148.. _i_ptrtoint:
6149
6150'``ptrtoint .. to``' Instruction
6151^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6152
6153Syntax:
6154"""""""
6155
6156::
6157
6158 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
6159
6160Overview:
6161"""""""""
6162
6163The '``ptrtoint``' instruction converts the pointer or a vector of
6164pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6165
6166Arguments:
6167""""""""""
6168
6169The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
6170a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
6171type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6172a vector of integers type.
6173
6174Semantics:
6175""""""""""
6176
6177The '``ptrtoint``' instruction converts ``value`` to integer type
6178``ty2`` by interpreting the pointer value as an integer and either
6179truncating or zero extending that value to the size of the integer type.
6180If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6181``value`` is larger than ``ty2`` then a truncation is done. If they are
6182the same size, then nothing is done (*no-op cast*) other than a type
6183change.
6184
6185Example:
6186""""""""
6187
6188.. code-block:: llvm
6189
6190 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
6191 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
6192 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6193
6194.. _i_inttoptr:
6195
6196'``inttoptr .. to``' Instruction
6197^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6198
6199Syntax:
6200"""""""
6201
6202::
6203
6204 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
6205
6206Overview:
6207"""""""""
6208
6209The '``inttoptr``' instruction converts an integer ``value`` to a
6210pointer type, ``ty2``.
6211
6212Arguments:
6213""""""""""
6214
6215The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6216cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6217type.
6218
6219Semantics:
6220""""""""""
6221
6222The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6223applying either a zero extension or a truncation depending on the size
6224of the integer ``value``. If ``value`` is larger than the size of a
6225pointer then a truncation is done. If ``value`` is smaller than the size
6226of a pointer then a zero extension is done. If they are the same size,
6227nothing is done (*no-op cast*).
6228
6229Example:
6230""""""""
6231
6232.. code-block:: llvm
6233
6234 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6235 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6236 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6237 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6238
6239.. _i_bitcast:
6240
6241'``bitcast .. to``' Instruction
6242^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6243
6244Syntax:
6245"""""""
6246
6247::
6248
6249 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6250
6251Overview:
6252"""""""""
6253
6254The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6255changing any bits.
6256
6257Arguments:
6258""""""""""
6259
6260The '``bitcast``' instruction takes a value to cast, which must be a
6261non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006262also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6263bit sizes of ``value`` and the destination type, ``ty2``, must be
6264identical. If the source type is a pointer, the destination type must
6265also be a pointer of the same size. This instruction supports bitwise
6266conversion of vectors to integers and to vectors of other types (as
6267long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006268
6269Semantics:
6270""""""""""
6271
Matt Arsenault24b49c42013-07-31 17:49:08 +00006272The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6273is always a *no-op cast* because no bits change with this
6274conversion. The conversion is done as if the ``value`` had been stored
6275to memory and read back as type ``ty2``. Pointer (or vector of
6276pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006277pointers) types with the same address space through this instruction.
6278To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6279or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006280
6281Example:
6282""""""""
6283
6284.. code-block:: llvm
6285
6286 %X = bitcast i8 255 to i8 ; yields i8 :-1
6287 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6288 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6289 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6290
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006291.. _i_addrspacecast:
6292
6293'``addrspacecast .. to``' Instruction
6294^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6295
6296Syntax:
6297"""""""
6298
6299::
6300
6301 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6302
6303Overview:
6304"""""""""
6305
6306The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6307address space ``n`` to type ``pty2`` in address space ``m``.
6308
6309Arguments:
6310""""""""""
6311
6312The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6313to cast and a pointer type to cast it to, which must have a different
6314address space.
6315
6316Semantics:
6317""""""""""
6318
6319The '``addrspacecast``' instruction converts the pointer value
6320``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006321value modification, depending on the target and the address space
6322pair. Pointer conversions within the same address space must be
6323performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006324conversion is legal then both result and operand refer to the same memory
6325location.
6326
6327Example:
6328""""""""
6329
6330.. code-block:: llvm
6331
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006332 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6333 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6334 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006335
Sean Silvab084af42012-12-07 10:36:55 +00006336.. _otherops:
6337
6338Other Operations
6339----------------
6340
6341The instructions in this category are the "miscellaneous" instructions,
6342which defy better classification.
6343
6344.. _i_icmp:
6345
6346'``icmp``' Instruction
6347^^^^^^^^^^^^^^^^^^^^^^
6348
6349Syntax:
6350"""""""
6351
6352::
6353
Tim Northover675a0962014-06-13 14:24:23 +00006354 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006355
6356Overview:
6357"""""""""
6358
6359The '``icmp``' instruction returns a boolean value or a vector of
6360boolean values based on comparison of its two integer, integer vector,
6361pointer, or pointer vector operands.
6362
6363Arguments:
6364""""""""""
6365
6366The '``icmp``' instruction takes three operands. The first operand is
6367the condition code indicating the kind of comparison to perform. It is
6368not a value, just a keyword. The possible condition code are:
6369
6370#. ``eq``: equal
6371#. ``ne``: not equal
6372#. ``ugt``: unsigned greater than
6373#. ``uge``: unsigned greater or equal
6374#. ``ult``: unsigned less than
6375#. ``ule``: unsigned less or equal
6376#. ``sgt``: signed greater than
6377#. ``sge``: signed greater or equal
6378#. ``slt``: signed less than
6379#. ``sle``: signed less or equal
6380
6381The remaining two arguments must be :ref:`integer <t_integer>` or
6382:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6383must also be identical types.
6384
6385Semantics:
6386""""""""""
6387
6388The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6389code given as ``cond``. The comparison performed always yields either an
6390:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6391
6392#. ``eq``: yields ``true`` if the operands are equal, ``false``
6393 otherwise. No sign interpretation is necessary or performed.
6394#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6395 otherwise. No sign interpretation is necessary or performed.
6396#. ``ugt``: interprets the operands as unsigned values and yields
6397 ``true`` if ``op1`` is greater than ``op2``.
6398#. ``uge``: interprets the operands as unsigned values and yields
6399 ``true`` if ``op1`` is greater than or equal to ``op2``.
6400#. ``ult``: interprets the operands as unsigned values and yields
6401 ``true`` if ``op1`` is less than ``op2``.
6402#. ``ule``: interprets the operands as unsigned values and yields
6403 ``true`` if ``op1`` is less than or equal to ``op2``.
6404#. ``sgt``: interprets the operands as signed values and yields ``true``
6405 if ``op1`` is greater than ``op2``.
6406#. ``sge``: interprets the operands as signed values and yields ``true``
6407 if ``op1`` is greater than or equal to ``op2``.
6408#. ``slt``: interprets the operands as signed values and yields ``true``
6409 if ``op1`` is less than ``op2``.
6410#. ``sle``: interprets the operands as signed values and yields ``true``
6411 if ``op1`` is less than or equal to ``op2``.
6412
6413If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6414are compared as if they were integers.
6415
6416If the operands are integer vectors, then they are compared element by
6417element. The result is an ``i1`` vector with the same number of elements
6418as the values being compared. Otherwise, the result is an ``i1``.
6419
6420Example:
6421""""""""
6422
6423.. code-block:: llvm
6424
6425 <result> = icmp eq i32 4, 5 ; yields: result=false
6426 <result> = icmp ne float* %X, %X ; yields: result=false
6427 <result> = icmp ult i16 4, 5 ; yields: result=true
6428 <result> = icmp sgt i16 4, 5 ; yields: result=false
6429 <result> = icmp ule i16 -4, 5 ; yields: result=false
6430 <result> = icmp sge i16 4, 5 ; yields: result=false
6431
6432Note that the code generator does not yet support vector types with the
6433``icmp`` instruction.
6434
6435.. _i_fcmp:
6436
6437'``fcmp``' Instruction
6438^^^^^^^^^^^^^^^^^^^^^^
6439
6440Syntax:
6441"""""""
6442
6443::
6444
Tim Northover675a0962014-06-13 14:24:23 +00006445 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006446
6447Overview:
6448"""""""""
6449
6450The '``fcmp``' instruction returns a boolean value or vector of boolean
6451values based on comparison of its operands.
6452
6453If the operands are floating point scalars, then the result type is a
6454boolean (:ref:`i1 <t_integer>`).
6455
6456If the operands are floating point vectors, then the result type is a
6457vector of boolean with the same number of elements as the operands being
6458compared.
6459
6460Arguments:
6461""""""""""
6462
6463The '``fcmp``' instruction takes three operands. The first operand is
6464the condition code indicating the kind of comparison to perform. It is
6465not a value, just a keyword. The possible condition code are:
6466
6467#. ``false``: no comparison, always returns false
6468#. ``oeq``: ordered and equal
6469#. ``ogt``: ordered and greater than
6470#. ``oge``: ordered and greater than or equal
6471#. ``olt``: ordered and less than
6472#. ``ole``: ordered and less than or equal
6473#. ``one``: ordered and not equal
6474#. ``ord``: ordered (no nans)
6475#. ``ueq``: unordered or equal
6476#. ``ugt``: unordered or greater than
6477#. ``uge``: unordered or greater than or equal
6478#. ``ult``: unordered or less than
6479#. ``ule``: unordered or less than or equal
6480#. ``une``: unordered or not equal
6481#. ``uno``: unordered (either nans)
6482#. ``true``: no comparison, always returns true
6483
6484*Ordered* means that neither operand is a QNAN while *unordered* means
6485that either operand may be a QNAN.
6486
6487Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6488point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6489type. They must have identical types.
6490
6491Semantics:
6492""""""""""
6493
6494The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6495condition code given as ``cond``. If the operands are vectors, then the
6496vectors are compared element by element. Each comparison performed
6497always yields an :ref:`i1 <t_integer>` result, as follows:
6498
6499#. ``false``: always yields ``false``, regardless of operands.
6500#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6501 is equal to ``op2``.
6502#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6503 is greater than ``op2``.
6504#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6505 is greater than or equal to ``op2``.
6506#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6507 is less than ``op2``.
6508#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6509 is less than or equal to ``op2``.
6510#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6511 is not equal to ``op2``.
6512#. ``ord``: yields ``true`` if both operands are not a QNAN.
6513#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6514 equal to ``op2``.
6515#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6516 greater than ``op2``.
6517#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6518 greater than or equal to ``op2``.
6519#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6520 less than ``op2``.
6521#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6522 less than or equal to ``op2``.
6523#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6524 not equal to ``op2``.
6525#. ``uno``: yields ``true`` if either operand is a QNAN.
6526#. ``true``: always yields ``true``, regardless of operands.
6527
6528Example:
6529""""""""
6530
6531.. code-block:: llvm
6532
6533 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6534 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6535 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6536 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6537
6538Note that the code generator does not yet support vector types with the
6539``fcmp`` instruction.
6540
6541.. _i_phi:
6542
6543'``phi``' Instruction
6544^^^^^^^^^^^^^^^^^^^^^
6545
6546Syntax:
6547"""""""
6548
6549::
6550
6551 <result> = phi <ty> [ <val0>, <label0>], ...
6552
6553Overview:
6554"""""""""
6555
6556The '``phi``' instruction is used to implement the φ node in the SSA
6557graph representing the function.
6558
6559Arguments:
6560""""""""""
6561
6562The type of the incoming values is specified with the first type field.
6563After this, the '``phi``' instruction takes a list of pairs as
6564arguments, with one pair for each predecessor basic block of the current
6565block. Only values of :ref:`first class <t_firstclass>` type may be used as
6566the value arguments to the PHI node. Only labels may be used as the
6567label arguments.
6568
6569There must be no non-phi instructions between the start of a basic block
6570and the PHI instructions: i.e. PHI instructions must be first in a basic
6571block.
6572
6573For the purposes of the SSA form, the use of each incoming value is
6574deemed to occur on the edge from the corresponding predecessor block to
6575the current block (but after any definition of an '``invoke``'
6576instruction's return value on the same edge).
6577
6578Semantics:
6579""""""""""
6580
6581At runtime, the '``phi``' instruction logically takes on the value
6582specified by the pair corresponding to the predecessor basic block that
6583executed just prior to the current block.
6584
6585Example:
6586""""""""
6587
6588.. code-block:: llvm
6589
6590 Loop: ; Infinite loop that counts from 0 on up...
6591 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6592 %nextindvar = add i32 %indvar, 1
6593 br label %Loop
6594
6595.. _i_select:
6596
6597'``select``' Instruction
6598^^^^^^^^^^^^^^^^^^^^^^^^
6599
6600Syntax:
6601"""""""
6602
6603::
6604
6605 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6606
6607 selty is either i1 or {<N x i1>}
6608
6609Overview:
6610"""""""""
6611
6612The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006613condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006614
6615Arguments:
6616""""""""""
6617
6618The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6619values indicating the condition, and two values of the same :ref:`first
6620class <t_firstclass>` type. If the val1/val2 are vectors and the
6621condition is a scalar, then entire vectors are selected, not individual
6622elements.
6623
6624Semantics:
6625""""""""""
6626
6627If the condition is an i1 and it evaluates to 1, the instruction returns
6628the first value argument; otherwise, it returns the second value
6629argument.
6630
6631If the condition is a vector of i1, then the value arguments must be
6632vectors of the same size, and the selection is done element by element.
6633
6634Example:
6635""""""""
6636
6637.. code-block:: llvm
6638
6639 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6640
6641.. _i_call:
6642
6643'``call``' Instruction
6644^^^^^^^^^^^^^^^^^^^^^^
6645
6646Syntax:
6647"""""""
6648
6649::
6650
Reid Kleckner5772b772014-04-24 20:14:34 +00006651 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006652
6653Overview:
6654"""""""""
6655
6656The '``call``' instruction represents a simple function call.
6657
6658Arguments:
6659""""""""""
6660
6661This instruction requires several arguments:
6662
Reid Kleckner5772b772014-04-24 20:14:34 +00006663#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6664 should perform tail call optimization. The ``tail`` marker is a hint that
6665 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6666 means that the call must be tail call optimized in order for the program to
6667 be correct. The ``musttail`` marker provides these guarantees:
6668
6669 #. The call will not cause unbounded stack growth if it is part of a
6670 recursive cycle in the call graph.
6671 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6672 forwarded in place.
6673
6674 Both markers imply that the callee does not access allocas or varargs from
6675 the caller. Calls marked ``musttail`` must obey the following additional
6676 rules:
6677
6678 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6679 or a pointer bitcast followed by a ret instruction.
6680 - The ret instruction must return the (possibly bitcasted) value
6681 produced by the call or void.
6682 - The caller and callee prototypes must match. Pointer types of
6683 parameters or return types may differ in pointee type, but not
6684 in address space.
6685 - The calling conventions of the caller and callee must match.
6686 - All ABI-impacting function attributes, such as sret, byval, inreg,
6687 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00006688 - The callee must be varargs iff the caller is varargs. Bitcasting a
6689 non-varargs function to the appropriate varargs type is legal so
6690 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00006691
6692 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6693 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006694
6695 - Caller and callee both have the calling convention ``fastcc``.
6696 - The call is in tail position (ret immediately follows call and ret
6697 uses value of call or is void).
6698 - Option ``-tailcallopt`` is enabled, or
6699 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00006700 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00006701 met. <CodeGenerator.html#tailcallopt>`_
6702
6703#. The optional "cconv" marker indicates which :ref:`calling
6704 convention <callingconv>` the call should use. If none is
6705 specified, the call defaults to using C calling conventions. The
6706 calling convention of the call must match the calling convention of
6707 the target function, or else the behavior is undefined.
6708#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6709 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6710 are valid here.
6711#. '``ty``': the type of the call instruction itself which is also the
6712 type of the return value. Functions that return no value are marked
6713 ``void``.
6714#. '``fnty``': shall be the signature of the pointer to function value
6715 being invoked. The argument types must match the types implied by
6716 this signature. This type can be omitted if the function is not
6717 varargs and if the function type does not return a pointer to a
6718 function.
6719#. '``fnptrval``': An LLVM value containing a pointer to a function to
6720 be invoked. In most cases, this is a direct function invocation, but
6721 indirect ``call``'s are just as possible, calling an arbitrary pointer
6722 to function value.
6723#. '``function args``': argument list whose types match the function
6724 signature argument types and parameter attributes. All arguments must
6725 be of :ref:`first class <t_firstclass>` type. If the function signature
6726 indicates the function accepts a variable number of arguments, the
6727 extra arguments can be specified.
6728#. The optional :ref:`function attributes <fnattrs>` list. Only
6729 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6730 attributes are valid here.
6731
6732Semantics:
6733""""""""""
6734
6735The '``call``' instruction is used to cause control flow to transfer to
6736a specified function, with its incoming arguments bound to the specified
6737values. Upon a '``ret``' instruction in the called function, control
6738flow continues with the instruction after the function call, and the
6739return value of the function is bound to the result argument.
6740
6741Example:
6742""""""""
6743
6744.. code-block:: llvm
6745
6746 %retval = call i32 @test(i32 %argc)
6747 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6748 %X = tail call i32 @foo() ; yields i32
6749 %Y = tail call fastcc i32 @foo() ; yields i32
6750 call void %foo(i8 97 signext)
6751
6752 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00006753 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00006754 %gr = extractvalue %struct.A %r, 0 ; yields i32
6755 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6756 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6757 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6758
6759llvm treats calls to some functions with names and arguments that match
6760the standard C99 library as being the C99 library functions, and may
6761perform optimizations or generate code for them under that assumption.
6762This is something we'd like to change in the future to provide better
6763support for freestanding environments and non-C-based languages.
6764
6765.. _i_va_arg:
6766
6767'``va_arg``' Instruction
6768^^^^^^^^^^^^^^^^^^^^^^^^
6769
6770Syntax:
6771"""""""
6772
6773::
6774
6775 <resultval> = va_arg <va_list*> <arglist>, <argty>
6776
6777Overview:
6778"""""""""
6779
6780The '``va_arg``' instruction is used to access arguments passed through
6781the "variable argument" area of a function call. It is used to implement
6782the ``va_arg`` macro in C.
6783
6784Arguments:
6785""""""""""
6786
6787This instruction takes a ``va_list*`` value and the type of the
6788argument. It returns a value of the specified argument type and
6789increments the ``va_list`` to point to the next argument. The actual
6790type of ``va_list`` is target specific.
6791
6792Semantics:
6793""""""""""
6794
6795The '``va_arg``' instruction loads an argument of the specified type
6796from the specified ``va_list`` and causes the ``va_list`` to point to
6797the next argument. For more information, see the variable argument
6798handling :ref:`Intrinsic Functions <int_varargs>`.
6799
6800It is legal for this instruction to be called in a function which does
6801not take a variable number of arguments, for example, the ``vfprintf``
6802function.
6803
6804``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6805function <intrinsics>` because it takes a type as an argument.
6806
6807Example:
6808""""""""
6809
6810See the :ref:`variable argument processing <int_varargs>` section.
6811
6812Note that the code generator does not yet fully support va\_arg on many
6813targets. Also, it does not currently support va\_arg with aggregate
6814types on any target.
6815
6816.. _i_landingpad:
6817
6818'``landingpad``' Instruction
6819^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6820
6821Syntax:
6822"""""""
6823
6824::
6825
6826 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6827 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6828
6829 <clause> := catch <type> <value>
6830 <clause> := filter <array constant type> <array constant>
6831
6832Overview:
6833"""""""""
6834
6835The '``landingpad``' instruction is used by `LLVM's exception handling
6836system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006837is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006838code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6839defines values supplied by the personality function (``pers_fn``) upon
6840re-entry to the function. The ``resultval`` has the type ``resultty``.
6841
6842Arguments:
6843""""""""""
6844
6845This instruction takes a ``pers_fn`` value. This is the personality
6846function associated with the unwinding mechanism. The optional
6847``cleanup`` flag indicates that the landing pad block is a cleanup.
6848
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006849A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006850contains the global variable representing the "type" that may be caught
6851or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6852clause takes an array constant as its argument. Use
6853"``[0 x i8**] undef``" for a filter which cannot throw. The
6854'``landingpad``' instruction must contain *at least* one ``clause`` or
6855the ``cleanup`` flag.
6856
6857Semantics:
6858""""""""""
6859
6860The '``landingpad``' instruction defines the values which are set by the
6861personality function (``pers_fn``) upon re-entry to the function, and
6862therefore the "result type" of the ``landingpad`` instruction. As with
6863calling conventions, how the personality function results are
6864represented in LLVM IR is target specific.
6865
6866The clauses are applied in order from top to bottom. If two
6867``landingpad`` instructions are merged together through inlining, the
6868clauses from the calling function are appended to the list of clauses.
6869When the call stack is being unwound due to an exception being thrown,
6870the exception is compared against each ``clause`` in turn. If it doesn't
6871match any of the clauses, and the ``cleanup`` flag is not set, then
6872unwinding continues further up the call stack.
6873
6874The ``landingpad`` instruction has several restrictions:
6875
6876- A landing pad block is a basic block which is the unwind destination
6877 of an '``invoke``' instruction.
6878- A landing pad block must have a '``landingpad``' instruction as its
6879 first non-PHI instruction.
6880- There can be only one '``landingpad``' instruction within the landing
6881 pad block.
6882- A basic block that is not a landing pad block may not include a
6883 '``landingpad``' instruction.
6884- All '``landingpad``' instructions in a function must have the same
6885 personality function.
6886
6887Example:
6888""""""""
6889
6890.. code-block:: llvm
6891
6892 ;; A landing pad which can catch an integer.
6893 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6894 catch i8** @_ZTIi
6895 ;; A landing pad that is a cleanup.
6896 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6897 cleanup
6898 ;; A landing pad which can catch an integer and can only throw a double.
6899 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6900 catch i8** @_ZTIi
6901 filter [1 x i8**] [@_ZTId]
6902
6903.. _intrinsics:
6904
6905Intrinsic Functions
6906===================
6907
6908LLVM supports the notion of an "intrinsic function". These functions
6909have well known names and semantics and are required to follow certain
6910restrictions. Overall, these intrinsics represent an extension mechanism
6911for the LLVM language that does not require changing all of the
6912transformations in LLVM when adding to the language (or the bitcode
6913reader/writer, the parser, etc...).
6914
6915Intrinsic function names must all start with an "``llvm.``" prefix. This
6916prefix is reserved in LLVM for intrinsic names; thus, function names may
6917not begin with this prefix. Intrinsic functions must always be external
6918functions: you cannot define the body of intrinsic functions. Intrinsic
6919functions may only be used in call or invoke instructions: it is illegal
6920to take the address of an intrinsic function. Additionally, because
6921intrinsic functions are part of the LLVM language, it is required if any
6922are added that they be documented here.
6923
6924Some intrinsic functions can be overloaded, i.e., the intrinsic
6925represents a family of functions that perform the same operation but on
6926different data types. Because LLVM can represent over 8 million
6927different integer types, overloading is used commonly to allow an
6928intrinsic function to operate on any integer type. One or more of the
6929argument types or the result type can be overloaded to accept any
6930integer type. Argument types may also be defined as exactly matching a
6931previous argument's type or the result type. This allows an intrinsic
6932function which accepts multiple arguments, but needs all of them to be
6933of the same type, to only be overloaded with respect to a single
6934argument or the result.
6935
6936Overloaded intrinsics will have the names of its overloaded argument
6937types encoded into its function name, each preceded by a period. Only
6938those types which are overloaded result in a name suffix. Arguments
6939whose type is matched against another type do not. For example, the
6940``llvm.ctpop`` function can take an integer of any width and returns an
6941integer of exactly the same integer width. This leads to a family of
6942functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6943``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6944overloaded, and only one type suffix is required. Because the argument's
6945type is matched against the return type, it does not require its own
6946name suffix.
6947
6948To learn how to add an intrinsic function, please see the `Extending
6949LLVM Guide <ExtendingLLVM.html>`_.
6950
6951.. _int_varargs:
6952
6953Variable Argument Handling Intrinsics
6954-------------------------------------
6955
6956Variable argument support is defined in LLVM with the
6957:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6958functions. These functions are related to the similarly named macros
6959defined in the ``<stdarg.h>`` header file.
6960
6961All of these functions operate on arguments that use a target-specific
6962value type "``va_list``". The LLVM assembly language reference manual
6963does not define what this type is, so all transformations should be
6964prepared to handle these functions regardless of the type used.
6965
6966This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6967variable argument handling intrinsic functions are used.
6968
6969.. code-block:: llvm
6970
Tim Northoverab60bb92014-11-02 01:21:51 +00006971 ; This struct is different for every platform. For most platforms,
6972 ; it is merely an i8*.
6973 %struct.va_list = type { i8* }
6974
6975 ; For Unix x86_64 platforms, va_list is the following struct:
6976 ; %struct.va_list = type { i32, i32, i8*, i8* }
6977
Sean Silvab084af42012-12-07 10:36:55 +00006978 define i32 @test(i32 %X, ...) {
6979 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00006980 %ap = alloca %struct.va_list
6981 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00006982 call void @llvm.va_start(i8* %ap2)
6983
6984 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00006985 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00006986
6987 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6988 %aq = alloca i8*
6989 %aq2 = bitcast i8** %aq to i8*
6990 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6991 call void @llvm.va_end(i8* %aq2)
6992
6993 ; Stop processing of arguments.
6994 call void @llvm.va_end(i8* %ap2)
6995 ret i32 %tmp
6996 }
6997
6998 declare void @llvm.va_start(i8*)
6999 declare void @llvm.va_copy(i8*, i8*)
7000 declare void @llvm.va_end(i8*)
7001
7002.. _int_va_start:
7003
7004'``llvm.va_start``' Intrinsic
7005^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7006
7007Syntax:
7008"""""""
7009
7010::
7011
Nick Lewycky04f6de02013-09-11 22:04:52 +00007012 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00007013
7014Overview:
7015"""""""""
7016
7017The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
7018subsequent use by ``va_arg``.
7019
7020Arguments:
7021""""""""""
7022
7023The argument is a pointer to a ``va_list`` element to initialize.
7024
7025Semantics:
7026""""""""""
7027
7028The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
7029available in C. In a target-dependent way, it initializes the
7030``va_list`` element to which the argument points, so that the next call
7031to ``va_arg`` will produce the first variable argument passed to the
7032function. Unlike the C ``va_start`` macro, this intrinsic does not need
7033to know the last argument of the function as the compiler can figure
7034that out.
7035
7036'``llvm.va_end``' Intrinsic
7037^^^^^^^^^^^^^^^^^^^^^^^^^^^
7038
7039Syntax:
7040"""""""
7041
7042::
7043
7044 declare void @llvm.va_end(i8* <arglist>)
7045
7046Overview:
7047"""""""""
7048
7049The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
7050initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
7051
7052Arguments:
7053""""""""""
7054
7055The argument is a pointer to a ``va_list`` to destroy.
7056
7057Semantics:
7058""""""""""
7059
7060The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
7061available in C. In a target-dependent way, it destroys the ``va_list``
7062element to which the argument points. Calls to
7063:ref:`llvm.va_start <int_va_start>` and
7064:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
7065``llvm.va_end``.
7066
7067.. _int_va_copy:
7068
7069'``llvm.va_copy``' Intrinsic
7070^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7071
7072Syntax:
7073"""""""
7074
7075::
7076
7077 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
7078
7079Overview:
7080"""""""""
7081
7082The '``llvm.va_copy``' intrinsic copies the current argument position
7083from the source argument list to the destination argument list.
7084
7085Arguments:
7086""""""""""
7087
7088The first argument is a pointer to a ``va_list`` element to initialize.
7089The second argument is a pointer to a ``va_list`` element to copy from.
7090
7091Semantics:
7092""""""""""
7093
7094The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
7095available in C. In a target-dependent way, it copies the source
7096``va_list`` element into the destination ``va_list`` element. This
7097intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
7098arbitrarily complex and require, for example, memory allocation.
7099
7100Accurate Garbage Collection Intrinsics
7101--------------------------------------
7102
7103LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
7104(GC) requires the implementation and generation of these intrinsics.
7105These intrinsics allow identification of :ref:`GC roots on the
7106stack <int_gcroot>`, as well as garbage collector implementations that
7107require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
7108Front-ends for type-safe garbage collected languages should generate
7109these intrinsics to make use of the LLVM garbage collectors. For more
7110details, see `Accurate Garbage Collection with
7111LLVM <GarbageCollection.html>`_.
7112
7113The garbage collection intrinsics only operate on objects in the generic
7114address space (address space zero).
7115
7116.. _int_gcroot:
7117
7118'``llvm.gcroot``' Intrinsic
7119^^^^^^^^^^^^^^^^^^^^^^^^^^^
7120
7121Syntax:
7122"""""""
7123
7124::
7125
7126 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
7127
7128Overview:
7129"""""""""
7130
7131The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
7132the code generator, and allows some metadata to be associated with it.
7133
7134Arguments:
7135""""""""""
7136
7137The first argument specifies the address of a stack object that contains
7138the root pointer. The second pointer (which must be either a constant or
7139a global value address) contains the meta-data to be associated with the
7140root.
7141
7142Semantics:
7143""""""""""
7144
7145At runtime, a call to this intrinsic stores a null pointer into the
7146"ptrloc" location. At compile-time, the code generator generates
7147information to allow the runtime to find the pointer at GC safe points.
7148The '``llvm.gcroot``' intrinsic may only be used in a function which
7149:ref:`specifies a GC algorithm <gc>`.
7150
7151.. _int_gcread:
7152
7153'``llvm.gcread``' Intrinsic
7154^^^^^^^^^^^^^^^^^^^^^^^^^^^
7155
7156Syntax:
7157"""""""
7158
7159::
7160
7161 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7162
7163Overview:
7164"""""""""
7165
7166The '``llvm.gcread``' intrinsic identifies reads of references from heap
7167locations, allowing garbage collector implementations that require read
7168barriers.
7169
7170Arguments:
7171""""""""""
7172
7173The second argument is the address to read from, which should be an
7174address allocated from the garbage collector. The first object is a
7175pointer to the start of the referenced object, if needed by the language
7176runtime (otherwise null).
7177
7178Semantics:
7179""""""""""
7180
7181The '``llvm.gcread``' intrinsic has the same semantics as a load
7182instruction, but may be replaced with substantially more complex code by
7183the garbage collector runtime, as needed. The '``llvm.gcread``'
7184intrinsic may only be used in a function which :ref:`specifies a GC
7185algorithm <gc>`.
7186
7187.. _int_gcwrite:
7188
7189'``llvm.gcwrite``' Intrinsic
7190^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7191
7192Syntax:
7193"""""""
7194
7195::
7196
7197 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7198
7199Overview:
7200"""""""""
7201
7202The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7203locations, allowing garbage collector implementations that require write
7204barriers (such as generational or reference counting collectors).
7205
7206Arguments:
7207""""""""""
7208
7209The first argument is the reference to store, the second is the start of
7210the object to store it to, and the third is the address of the field of
7211Obj to store to. If the runtime does not require a pointer to the
7212object, Obj may be null.
7213
7214Semantics:
7215""""""""""
7216
7217The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7218instruction, but may be replaced with substantially more complex code by
7219the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7220intrinsic may only be used in a function which :ref:`specifies a GC
7221algorithm <gc>`.
7222
7223Code Generator Intrinsics
7224-------------------------
7225
7226These intrinsics are provided by LLVM to expose special features that
7227may only be implemented with code generator support.
7228
7229'``llvm.returnaddress``' Intrinsic
7230^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7231
7232Syntax:
7233"""""""
7234
7235::
7236
7237 declare i8 *@llvm.returnaddress(i32 <level>)
7238
7239Overview:
7240"""""""""
7241
7242The '``llvm.returnaddress``' intrinsic attempts to compute a
7243target-specific value indicating the return address of the current
7244function or one of its callers.
7245
7246Arguments:
7247""""""""""
7248
7249The argument to this intrinsic indicates which function to return the
7250address for. Zero indicates the calling function, one indicates its
7251caller, etc. The argument is **required** to be a constant integer
7252value.
7253
7254Semantics:
7255""""""""""
7256
7257The '``llvm.returnaddress``' intrinsic either returns a pointer
7258indicating the return address of the specified call frame, or zero if it
7259cannot be identified. The value returned by this intrinsic is likely to
7260be incorrect or 0 for arguments other than zero, so it should only be
7261used for debugging purposes.
7262
7263Note that calling this intrinsic does not prevent function inlining or
7264other aggressive transformations, so the value returned may not be that
7265of the obvious source-language caller.
7266
7267'``llvm.frameaddress``' Intrinsic
7268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7269
7270Syntax:
7271"""""""
7272
7273::
7274
7275 declare i8* @llvm.frameaddress(i32 <level>)
7276
7277Overview:
7278"""""""""
7279
7280The '``llvm.frameaddress``' intrinsic attempts to return the
7281target-specific frame pointer value for the specified stack frame.
7282
7283Arguments:
7284""""""""""
7285
7286The argument to this intrinsic indicates which function to return the
7287frame pointer for. Zero indicates the calling function, one indicates
7288its caller, etc. The argument is **required** to be a constant integer
7289value.
7290
7291Semantics:
7292""""""""""
7293
7294The '``llvm.frameaddress``' intrinsic either returns a pointer
7295indicating the frame address of the specified call frame, or zero if it
7296cannot be identified. The value returned by this intrinsic is likely to
7297be incorrect or 0 for arguments other than zero, so it should only be
7298used for debugging purposes.
7299
7300Note that calling this intrinsic does not prevent function inlining or
7301other aggressive transformations, so the value returned may not be that
7302of the obvious source-language caller.
7303
Reid Kleckner3542ace2015-01-13 01:51:34 +00007304'``llvm.frameallocate``' and '``llvm.framerecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00007305^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7306
7307Syntax:
7308"""""""
7309
7310::
7311
7312 declare i8* @llvm.frameallocate(i32 %size)
Reid Kleckner3542ace2015-01-13 01:51:34 +00007313 declare i8* @llvm.framerecover(i8* %func, i8* %fp)
Reid Klecknere9b89312015-01-13 00:48:10 +00007314
7315Overview:
7316"""""""""
7317
7318The '``llvm.frameallocate``' intrinsic allocates stack memory at some fixed
Reid Kleckner3542ace2015-01-13 01:51:34 +00007319offset from the frame pointer, and the '``llvm.framerecover``'
Reid Klecknere9b89312015-01-13 00:48:10 +00007320intrinsic applies that offset to a live frame pointer to recover the address of
7321the allocation. The offset is computed during frame layout of the caller of
7322``llvm.frameallocate``.
7323
7324Arguments:
7325""""""""""
7326
7327The ``size`` argument to '``llvm.frameallocate``' must be a constant integer
7328indicating the amount of stack memory to allocate. As with allocas, allocating
7329zero bytes is legal, but the result is undefined.
7330
Reid Kleckner3542ace2015-01-13 01:51:34 +00007331The ``func`` argument to '``llvm.framerecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00007332bitcasted pointer to a function defined in the current module. The code
7333generator cannot determine the frame allocation offset of functions defined in
7334other modules.
7335
Reid Kleckner3542ace2015-01-13 01:51:34 +00007336The ``fp`` argument to '``llvm.framerecover``' must be a frame
Reid Klecknere9b89312015-01-13 00:48:10 +00007337pointer of a call frame that is currently live. The return value of
7338'``llvm.frameaddress``' is one way to produce such a value, but most platforms
7339also expose the frame pointer through stack unwinding mechanisms.
7340
7341Semantics:
7342""""""""""
7343
7344These intrinsics allow a group of functions to access one stack memory
7345allocation in an ancestor stack frame. The memory returned from
7346'``llvm.frameallocate``' may be allocated prior to stack realignment, so the
7347memory is only aligned to the ABI-required stack alignment. Each function may
7348only call '``llvm.frameallocate``' one or zero times from the function entry
7349block. The frame allocation intrinsic inhibits inlining, as any frame
7350allocations in the inlined function frame are likely to be at a different
Reid Kleckner3542ace2015-01-13 01:51:34 +00007351offset from the one used by '``llvm.framerecover``' called with the
Reid Klecknere9b89312015-01-13 00:48:10 +00007352uninlined function.
7353
Renato Golinc7aea402014-05-06 16:51:25 +00007354.. _int_read_register:
7355.. _int_write_register:
7356
7357'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7358^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7359
7360Syntax:
7361"""""""
7362
7363::
7364
7365 declare i32 @llvm.read_register.i32(metadata)
7366 declare i64 @llvm.read_register.i64(metadata)
7367 declare void @llvm.write_register.i32(metadata, i32 @value)
7368 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00007369 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00007370
7371Overview:
7372"""""""""
7373
7374The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7375provides access to the named register. The register must be valid on
7376the architecture being compiled to. The type needs to be compatible
7377with the register being read.
7378
7379Semantics:
7380""""""""""
7381
7382The '``llvm.read_register``' intrinsic returns the current value of the
7383register, where possible. The '``llvm.write_register``' intrinsic sets
7384the current value of the register, where possible.
7385
7386This is useful to implement named register global variables that need
7387to always be mapped to a specific register, as is common practice on
7388bare-metal programs including OS kernels.
7389
7390The compiler doesn't check for register availability or use of the used
7391register in surrounding code, including inline assembly. Because of that,
7392allocatable registers are not supported.
7393
7394Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007395architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007396work is needed to support other registers and even more so, allocatable
7397registers.
7398
Sean Silvab084af42012-12-07 10:36:55 +00007399.. _int_stacksave:
7400
7401'``llvm.stacksave``' Intrinsic
7402^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7403
7404Syntax:
7405"""""""
7406
7407::
7408
7409 declare i8* @llvm.stacksave()
7410
7411Overview:
7412"""""""""
7413
7414The '``llvm.stacksave``' intrinsic is used to remember the current state
7415of the function stack, for use with
7416:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7417implementing language features like scoped automatic variable sized
7418arrays in C99.
7419
7420Semantics:
7421""""""""""
7422
7423This intrinsic returns a opaque pointer value that can be passed to
7424:ref:`llvm.stackrestore <int_stackrestore>`. When an
7425``llvm.stackrestore`` intrinsic is executed with a value saved from
7426``llvm.stacksave``, it effectively restores the state of the stack to
7427the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7428practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7429were allocated after the ``llvm.stacksave`` was executed.
7430
7431.. _int_stackrestore:
7432
7433'``llvm.stackrestore``' Intrinsic
7434^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7435
7436Syntax:
7437"""""""
7438
7439::
7440
7441 declare void @llvm.stackrestore(i8* %ptr)
7442
7443Overview:
7444"""""""""
7445
7446The '``llvm.stackrestore``' intrinsic is used to restore the state of
7447the function stack to the state it was in when the corresponding
7448:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7449useful for implementing language features like scoped automatic variable
7450sized arrays in C99.
7451
7452Semantics:
7453""""""""""
7454
7455See the description for :ref:`llvm.stacksave <int_stacksave>`.
7456
7457'``llvm.prefetch``' Intrinsic
7458^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7459
7460Syntax:
7461"""""""
7462
7463::
7464
7465 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7466
7467Overview:
7468"""""""""
7469
7470The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7471insert a prefetch instruction if supported; otherwise, it is a noop.
7472Prefetches have no effect on the behavior of the program but can change
7473its performance characteristics.
7474
7475Arguments:
7476""""""""""
7477
7478``address`` is the address to be prefetched, ``rw`` is the specifier
7479determining if the fetch should be for a read (0) or write (1), and
7480``locality`` is a temporal locality specifier ranging from (0) - no
7481locality, to (3) - extremely local keep in cache. The ``cache type``
7482specifies whether the prefetch is performed on the data (1) or
7483instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7484arguments must be constant integers.
7485
7486Semantics:
7487""""""""""
7488
7489This intrinsic does not modify the behavior of the program. In
7490particular, prefetches cannot trap and do not produce a value. On
7491targets that support this intrinsic, the prefetch can provide hints to
7492the processor cache for better performance.
7493
7494'``llvm.pcmarker``' Intrinsic
7495^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7496
7497Syntax:
7498"""""""
7499
7500::
7501
7502 declare void @llvm.pcmarker(i32 <id>)
7503
7504Overview:
7505"""""""""
7506
7507The '``llvm.pcmarker``' intrinsic is a method to export a Program
7508Counter (PC) in a region of code to simulators and other tools. The
7509method is target specific, but it is expected that the marker will use
7510exported symbols to transmit the PC of the marker. The marker makes no
7511guarantees that it will remain with any specific instruction after
7512optimizations. It is possible that the presence of a marker will inhibit
7513optimizations. The intended use is to be inserted after optimizations to
7514allow correlations of simulation runs.
7515
7516Arguments:
7517""""""""""
7518
7519``id`` is a numerical id identifying the marker.
7520
7521Semantics:
7522""""""""""
7523
7524This intrinsic does not modify the behavior of the program. Backends
7525that do not support this intrinsic may ignore it.
7526
7527'``llvm.readcyclecounter``' Intrinsic
7528^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7529
7530Syntax:
7531"""""""
7532
7533::
7534
7535 declare i64 @llvm.readcyclecounter()
7536
7537Overview:
7538"""""""""
7539
7540The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7541counter register (or similar low latency, high accuracy clocks) on those
7542targets that support it. On X86, it should map to RDTSC. On Alpha, it
7543should map to RPCC. As the backing counters overflow quickly (on the
7544order of 9 seconds on alpha), this should only be used for small
7545timings.
7546
7547Semantics:
7548""""""""""
7549
7550When directly supported, reading the cycle counter should not modify any
7551memory. Implementations are allowed to either return a application
7552specific value or a system wide value. On backends without support, this
7553is lowered to a constant 0.
7554
Tim Northoverbc933082013-05-23 19:11:20 +00007555Note that runtime support may be conditional on the privilege-level code is
7556running at and the host platform.
7557
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007558'``llvm.clear_cache``' Intrinsic
7559^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7560
7561Syntax:
7562"""""""
7563
7564::
7565
7566 declare void @llvm.clear_cache(i8*, i8*)
7567
7568Overview:
7569"""""""""
7570
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007571The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7572in the specified range to the execution unit of the processor. On
7573targets with non-unified instruction and data cache, the implementation
7574flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007575
7576Semantics:
7577""""""""""
7578
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007579On platforms with coherent instruction and data caches (e.g. x86), this
7580intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007581cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007582instructions or a system call, if cache flushing requires special
7583privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007584
Sean Silvad02bf3e2014-04-07 22:29:53 +00007585The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007586time library.
Renato Golin93010e62014-03-26 14:01:32 +00007587
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007588This instrinsic does *not* empty the instruction pipeline. Modifications
7589of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007590
Justin Bogner61ba2e32014-12-08 18:02:35 +00007591'``llvm.instrprof_increment``' Intrinsic
7592^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7593
7594Syntax:
7595"""""""
7596
7597::
7598
7599 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
7600 i32 <num-counters>, i32 <index>)
7601
7602Overview:
7603"""""""""
7604
7605The '``llvm.instrprof_increment``' intrinsic can be emitted by a
7606frontend for use with instrumentation based profiling. These will be
7607lowered by the ``-instrprof`` pass to generate execution counts of a
7608program at runtime.
7609
7610Arguments:
7611""""""""""
7612
7613The first argument is a pointer to a global variable containing the
7614name of the entity being instrumented. This should generally be the
7615(mangled) function name for a set of counters.
7616
7617The second argument is a hash value that can be used by the consumer
7618of the profile data to detect changes to the instrumented source, and
7619the third is the number of counters associated with ``name``. It is an
7620error if ``hash`` or ``num-counters`` differ between two instances of
7621``instrprof_increment`` that refer to the same name.
7622
7623The last argument refers to which of the counters for ``name`` should
7624be incremented. It should be a value between 0 and ``num-counters``.
7625
7626Semantics:
7627""""""""""
7628
7629This intrinsic represents an increment of a profiling counter. It will
7630cause the ``-instrprof`` pass to generate the appropriate data
7631structures and the code to increment the appropriate value, in a
7632format that can be written out by a compiler runtime and consumed via
7633the ``llvm-profdata`` tool.
7634
Sean Silvab084af42012-12-07 10:36:55 +00007635Standard C Library Intrinsics
7636-----------------------------
7637
7638LLVM provides intrinsics for a few important standard C library
7639functions. These intrinsics allow source-language front-ends to pass
7640information about the alignment of the pointer arguments to the code
7641generator, providing opportunity for more efficient code generation.
7642
7643.. _int_memcpy:
7644
7645'``llvm.memcpy``' Intrinsic
7646^^^^^^^^^^^^^^^^^^^^^^^^^^^
7647
7648Syntax:
7649"""""""
7650
7651This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7652integer bit width and for different address spaces. Not all targets
7653support all bit widths however.
7654
7655::
7656
7657 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7658 i32 <len>, i32 <align>, i1 <isvolatile>)
7659 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7660 i64 <len>, i32 <align>, i1 <isvolatile>)
7661
7662Overview:
7663"""""""""
7664
7665The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7666source location to the destination location.
7667
7668Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7669intrinsics do not return a value, takes extra alignment/isvolatile
7670arguments and the pointers can be in specified address spaces.
7671
7672Arguments:
7673""""""""""
7674
7675The first argument is a pointer to the destination, the second is a
7676pointer to the source. The third argument is an integer argument
7677specifying the number of bytes to copy, the fourth argument is the
7678alignment of the source and destination locations, and the fifth is a
7679boolean indicating a volatile access.
7680
7681If the call to this intrinsic has an alignment value that is not 0 or 1,
7682then the caller guarantees that both the source and destination pointers
7683are aligned to that boundary.
7684
7685If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7686a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7687very cleanly specified and it is unwise to depend on it.
7688
7689Semantics:
7690""""""""""
7691
7692The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7693source location to the destination location, which are not allowed to
7694overlap. It copies "len" bytes of memory over. If the argument is known
7695to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007696argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007697
7698'``llvm.memmove``' Intrinsic
7699^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7700
7701Syntax:
7702"""""""
7703
7704This is an overloaded intrinsic. You can use llvm.memmove on any integer
7705bit width and for different address space. Not all targets support all
7706bit widths however.
7707
7708::
7709
7710 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7711 i32 <len>, i32 <align>, i1 <isvolatile>)
7712 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7713 i64 <len>, i32 <align>, i1 <isvolatile>)
7714
7715Overview:
7716"""""""""
7717
7718The '``llvm.memmove.*``' intrinsics move a block of memory from the
7719source location to the destination location. It is similar to the
7720'``llvm.memcpy``' intrinsic but allows the two memory locations to
7721overlap.
7722
7723Note that, unlike the standard libc function, the ``llvm.memmove.*``
7724intrinsics do not return a value, takes extra alignment/isvolatile
7725arguments and the pointers can be in specified address spaces.
7726
7727Arguments:
7728""""""""""
7729
7730The first argument is a pointer to the destination, the second is a
7731pointer to the source. The third argument is an integer argument
7732specifying the number of bytes to copy, the fourth argument is the
7733alignment of the source and destination locations, and the fifth is a
7734boolean indicating a volatile access.
7735
7736If the call to this intrinsic has an alignment value that is not 0 or 1,
7737then the caller guarantees that the source and destination pointers are
7738aligned to that boundary.
7739
7740If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7741is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7742not very cleanly specified and it is unwise to depend on it.
7743
7744Semantics:
7745""""""""""
7746
7747The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7748source location to the destination location, which may overlap. It
7749copies "len" bytes of memory over. If the argument is known to be
7750aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007751otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007752
7753'``llvm.memset.*``' Intrinsics
7754^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7755
7756Syntax:
7757"""""""
7758
7759This is an overloaded intrinsic. You can use llvm.memset on any integer
7760bit width and for different address spaces. However, not all targets
7761support all bit widths.
7762
7763::
7764
7765 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7766 i32 <len>, i32 <align>, i1 <isvolatile>)
7767 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7768 i64 <len>, i32 <align>, i1 <isvolatile>)
7769
7770Overview:
7771"""""""""
7772
7773The '``llvm.memset.*``' intrinsics fill a block of memory with a
7774particular byte value.
7775
7776Note that, unlike the standard libc function, the ``llvm.memset``
7777intrinsic does not return a value and takes extra alignment/volatile
7778arguments. Also, the destination can be in an arbitrary address space.
7779
7780Arguments:
7781""""""""""
7782
7783The first argument is a pointer to the destination to fill, the second
7784is the byte value with which to fill it, the third argument is an
7785integer argument specifying the number of bytes to fill, and the fourth
7786argument is the known alignment of the destination location.
7787
7788If the call to this intrinsic has an alignment value that is not 0 or 1,
7789then the caller guarantees that the destination pointer is aligned to
7790that boundary.
7791
7792If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7793a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7794very cleanly specified and it is unwise to depend on it.
7795
7796Semantics:
7797""""""""""
7798
7799The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7800at the destination location. If the argument is known to be aligned to
7801some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007802it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007803
7804'``llvm.sqrt.*``' Intrinsic
7805^^^^^^^^^^^^^^^^^^^^^^^^^^^
7806
7807Syntax:
7808"""""""
7809
7810This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7811floating point or vector of floating point type. Not all targets support
7812all types however.
7813
7814::
7815
7816 declare float @llvm.sqrt.f32(float %Val)
7817 declare double @llvm.sqrt.f64(double %Val)
7818 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7819 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7820 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7821
7822Overview:
7823"""""""""
7824
7825The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7826returning the same value as the libm '``sqrt``' functions would. Unlike
7827``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7828negative numbers other than -0.0 (which allows for better optimization,
7829because there is no need to worry about errno being set).
7830``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7831
7832Arguments:
7833""""""""""
7834
7835The argument and return value are floating point numbers of the same
7836type.
7837
7838Semantics:
7839""""""""""
7840
7841This function returns the sqrt of the specified operand if it is a
7842nonnegative floating point number.
7843
7844'``llvm.powi.*``' Intrinsic
7845^^^^^^^^^^^^^^^^^^^^^^^^^^^
7846
7847Syntax:
7848"""""""
7849
7850This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7851floating point or vector of floating point type. Not all targets support
7852all types however.
7853
7854::
7855
7856 declare float @llvm.powi.f32(float %Val, i32 %power)
7857 declare double @llvm.powi.f64(double %Val, i32 %power)
7858 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7859 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7860 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7861
7862Overview:
7863"""""""""
7864
7865The '``llvm.powi.*``' intrinsics return the first operand raised to the
7866specified (positive or negative) power. The order of evaluation of
7867multiplications is not defined. When a vector of floating point type is
7868used, the second argument remains a scalar integer value.
7869
7870Arguments:
7871""""""""""
7872
7873The second argument is an integer power, and the first is a value to
7874raise to that power.
7875
7876Semantics:
7877""""""""""
7878
7879This function returns the first value raised to the second power with an
7880unspecified sequence of rounding operations.
7881
7882'``llvm.sin.*``' Intrinsic
7883^^^^^^^^^^^^^^^^^^^^^^^^^^
7884
7885Syntax:
7886"""""""
7887
7888This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7889floating point or vector of floating point type. Not all targets support
7890all types however.
7891
7892::
7893
7894 declare float @llvm.sin.f32(float %Val)
7895 declare double @llvm.sin.f64(double %Val)
7896 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7897 declare fp128 @llvm.sin.f128(fp128 %Val)
7898 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7899
7900Overview:
7901"""""""""
7902
7903The '``llvm.sin.*``' intrinsics return the sine of the operand.
7904
7905Arguments:
7906""""""""""
7907
7908The argument and return value are floating point numbers of the same
7909type.
7910
7911Semantics:
7912""""""""""
7913
7914This function returns the sine of the specified operand, returning the
7915same values as the libm ``sin`` functions would, and handles error
7916conditions in the same way.
7917
7918'``llvm.cos.*``' Intrinsic
7919^^^^^^^^^^^^^^^^^^^^^^^^^^
7920
7921Syntax:
7922"""""""
7923
7924This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7925floating point or vector of floating point type. Not all targets support
7926all types however.
7927
7928::
7929
7930 declare float @llvm.cos.f32(float %Val)
7931 declare double @llvm.cos.f64(double %Val)
7932 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7933 declare fp128 @llvm.cos.f128(fp128 %Val)
7934 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7935
7936Overview:
7937"""""""""
7938
7939The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7940
7941Arguments:
7942""""""""""
7943
7944The argument and return value are floating point numbers of the same
7945type.
7946
7947Semantics:
7948""""""""""
7949
7950This function returns the cosine of the specified operand, returning the
7951same values as the libm ``cos`` functions would, and handles error
7952conditions in the same way.
7953
7954'``llvm.pow.*``' Intrinsic
7955^^^^^^^^^^^^^^^^^^^^^^^^^^
7956
7957Syntax:
7958"""""""
7959
7960This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7961floating point or vector of floating point type. Not all targets support
7962all types however.
7963
7964::
7965
7966 declare float @llvm.pow.f32(float %Val, float %Power)
7967 declare double @llvm.pow.f64(double %Val, double %Power)
7968 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7969 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7970 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7971
7972Overview:
7973"""""""""
7974
7975The '``llvm.pow.*``' intrinsics return the first operand raised to the
7976specified (positive or negative) power.
7977
7978Arguments:
7979""""""""""
7980
7981The second argument is a floating point power, and the first is a value
7982to raise to that power.
7983
7984Semantics:
7985""""""""""
7986
7987This function returns the first value raised to the second power,
7988returning the same values as the libm ``pow`` functions would, and
7989handles error conditions in the same way.
7990
7991'``llvm.exp.*``' Intrinsic
7992^^^^^^^^^^^^^^^^^^^^^^^^^^
7993
7994Syntax:
7995"""""""
7996
7997This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7998floating point or vector of floating point type. Not all targets support
7999all types however.
8000
8001::
8002
8003 declare float @llvm.exp.f32(float %Val)
8004 declare double @llvm.exp.f64(double %Val)
8005 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
8006 declare fp128 @llvm.exp.f128(fp128 %Val)
8007 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
8008
8009Overview:
8010"""""""""
8011
8012The '``llvm.exp.*``' intrinsics perform the exp function.
8013
8014Arguments:
8015""""""""""
8016
8017The argument and return value are floating point numbers of the same
8018type.
8019
8020Semantics:
8021""""""""""
8022
8023This function returns the same values as the libm ``exp`` functions
8024would, and handles error conditions in the same way.
8025
8026'``llvm.exp2.*``' Intrinsic
8027^^^^^^^^^^^^^^^^^^^^^^^^^^^
8028
8029Syntax:
8030"""""""
8031
8032This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
8033floating point or vector of floating point type. Not all targets support
8034all types however.
8035
8036::
8037
8038 declare float @llvm.exp2.f32(float %Val)
8039 declare double @llvm.exp2.f64(double %Val)
8040 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
8041 declare fp128 @llvm.exp2.f128(fp128 %Val)
8042 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
8043
8044Overview:
8045"""""""""
8046
8047The '``llvm.exp2.*``' intrinsics perform the exp2 function.
8048
8049Arguments:
8050""""""""""
8051
8052The argument and return value are floating point numbers of the same
8053type.
8054
8055Semantics:
8056""""""""""
8057
8058This function returns the same values as the libm ``exp2`` functions
8059would, and handles error conditions in the same way.
8060
8061'``llvm.log.*``' Intrinsic
8062^^^^^^^^^^^^^^^^^^^^^^^^^^
8063
8064Syntax:
8065"""""""
8066
8067This is an overloaded intrinsic. You can use ``llvm.log`` on any
8068floating point or vector of floating point type. Not all targets support
8069all types however.
8070
8071::
8072
8073 declare float @llvm.log.f32(float %Val)
8074 declare double @llvm.log.f64(double %Val)
8075 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
8076 declare fp128 @llvm.log.f128(fp128 %Val)
8077 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
8078
8079Overview:
8080"""""""""
8081
8082The '``llvm.log.*``' intrinsics perform the log function.
8083
8084Arguments:
8085""""""""""
8086
8087The argument and return value are floating point numbers of the same
8088type.
8089
8090Semantics:
8091""""""""""
8092
8093This function returns the same values as the libm ``log`` functions
8094would, and handles error conditions in the same way.
8095
8096'``llvm.log10.*``' Intrinsic
8097^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8098
8099Syntax:
8100"""""""
8101
8102This is an overloaded intrinsic. You can use ``llvm.log10`` on any
8103floating point or vector of floating point type. Not all targets support
8104all types however.
8105
8106::
8107
8108 declare float @llvm.log10.f32(float %Val)
8109 declare double @llvm.log10.f64(double %Val)
8110 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
8111 declare fp128 @llvm.log10.f128(fp128 %Val)
8112 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
8113
8114Overview:
8115"""""""""
8116
8117The '``llvm.log10.*``' intrinsics perform the log10 function.
8118
8119Arguments:
8120""""""""""
8121
8122The argument and return value are floating point numbers of the same
8123type.
8124
8125Semantics:
8126""""""""""
8127
8128This function returns the same values as the libm ``log10`` functions
8129would, and handles error conditions in the same way.
8130
8131'``llvm.log2.*``' Intrinsic
8132^^^^^^^^^^^^^^^^^^^^^^^^^^^
8133
8134Syntax:
8135"""""""
8136
8137This is an overloaded intrinsic. You can use ``llvm.log2`` on any
8138floating point or vector of floating point type. Not all targets support
8139all types however.
8140
8141::
8142
8143 declare float @llvm.log2.f32(float %Val)
8144 declare double @llvm.log2.f64(double %Val)
8145 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
8146 declare fp128 @llvm.log2.f128(fp128 %Val)
8147 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
8148
8149Overview:
8150"""""""""
8151
8152The '``llvm.log2.*``' intrinsics perform the log2 function.
8153
8154Arguments:
8155""""""""""
8156
8157The argument and return value are floating point numbers of the same
8158type.
8159
8160Semantics:
8161""""""""""
8162
8163This function returns the same values as the libm ``log2`` functions
8164would, and handles error conditions in the same way.
8165
8166'``llvm.fma.*``' Intrinsic
8167^^^^^^^^^^^^^^^^^^^^^^^^^^
8168
8169Syntax:
8170"""""""
8171
8172This is an overloaded intrinsic. You can use ``llvm.fma`` on any
8173floating point or vector of floating point type. Not all targets support
8174all types however.
8175
8176::
8177
8178 declare float @llvm.fma.f32(float %a, float %b, float %c)
8179 declare double @llvm.fma.f64(double %a, double %b, double %c)
8180 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
8181 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
8182 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
8183
8184Overview:
8185"""""""""
8186
8187The '``llvm.fma.*``' intrinsics perform the fused multiply-add
8188operation.
8189
8190Arguments:
8191""""""""""
8192
8193The argument and return value are floating point numbers of the same
8194type.
8195
8196Semantics:
8197""""""""""
8198
8199This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008200would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00008201
8202'``llvm.fabs.*``' Intrinsic
8203^^^^^^^^^^^^^^^^^^^^^^^^^^^
8204
8205Syntax:
8206"""""""
8207
8208This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
8209floating point or vector of floating point type. Not all targets support
8210all types however.
8211
8212::
8213
8214 declare float @llvm.fabs.f32(float %Val)
8215 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008216 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008217 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008218 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008219
8220Overview:
8221"""""""""
8222
8223The '``llvm.fabs.*``' intrinsics return the absolute value of the
8224operand.
8225
8226Arguments:
8227""""""""""
8228
8229The argument and return value are floating point numbers of the same
8230type.
8231
8232Semantics:
8233""""""""""
8234
8235This function returns the same values as the libm ``fabs`` functions
8236would, and handles error conditions in the same way.
8237
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008238'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008239^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008240
8241Syntax:
8242"""""""
8243
8244This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
8245floating point or vector of floating point type. Not all targets support
8246all types however.
8247
8248::
8249
Matt Arsenault64313c92014-10-22 18:25:02 +00008250 declare float @llvm.minnum.f32(float %Val0, float %Val1)
8251 declare double @llvm.minnum.f64(double %Val0, double %Val1)
8252 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8253 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
8254 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008255
8256Overview:
8257"""""""""
8258
8259The '``llvm.minnum.*``' intrinsics return the minimum of the two
8260arguments.
8261
8262
8263Arguments:
8264""""""""""
8265
8266The arguments and return value are floating point numbers of the same
8267type.
8268
8269Semantics:
8270""""""""""
8271
8272Follows the IEEE-754 semantics for minNum, which also match for libm's
8273fmin.
8274
8275If either operand is a NaN, returns the other non-NaN operand. Returns
8276NaN only if both operands are NaN. If the operands compare equal,
8277returns a value that compares equal to both operands. This means that
8278fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8279
8280'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008281^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008282
8283Syntax:
8284"""""""
8285
8286This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
8287floating point or vector of floating point type. Not all targets support
8288all types however.
8289
8290::
8291
Matt Arsenault64313c92014-10-22 18:25:02 +00008292 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
8293 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
8294 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8295 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
8296 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008297
8298Overview:
8299"""""""""
8300
8301The '``llvm.maxnum.*``' intrinsics return the maximum of the two
8302arguments.
8303
8304
8305Arguments:
8306""""""""""
8307
8308The arguments and return value are floating point numbers of the same
8309type.
8310
8311Semantics:
8312""""""""""
8313Follows the IEEE-754 semantics for maxNum, which also match for libm's
8314fmax.
8315
8316If either operand is a NaN, returns the other non-NaN operand. Returns
8317NaN only if both operands are NaN. If the operands compare equal,
8318returns a value that compares equal to both operands. This means that
8319fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8320
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00008321'``llvm.copysign.*``' Intrinsic
8322^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8323
8324Syntax:
8325"""""""
8326
8327This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
8328floating point or vector of floating point type. Not all targets support
8329all types however.
8330
8331::
8332
8333 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
8334 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
8335 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
8336 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8337 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
8338
8339Overview:
8340"""""""""
8341
8342The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8343first operand and the sign of the second operand.
8344
8345Arguments:
8346""""""""""
8347
8348The arguments and return value are floating point numbers of the same
8349type.
8350
8351Semantics:
8352""""""""""
8353
8354This function returns the same values as the libm ``copysign``
8355functions would, and handles error conditions in the same way.
8356
Sean Silvab084af42012-12-07 10:36:55 +00008357'``llvm.floor.*``' Intrinsic
8358^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8359
8360Syntax:
8361"""""""
8362
8363This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8364floating point or vector of floating point type. Not all targets support
8365all types however.
8366
8367::
8368
8369 declare float @llvm.floor.f32(float %Val)
8370 declare double @llvm.floor.f64(double %Val)
8371 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
8372 declare fp128 @llvm.floor.f128(fp128 %Val)
8373 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
8374
8375Overview:
8376"""""""""
8377
8378The '``llvm.floor.*``' intrinsics return the floor of the operand.
8379
8380Arguments:
8381""""""""""
8382
8383The argument and return value are floating point numbers of the same
8384type.
8385
8386Semantics:
8387""""""""""
8388
8389This function returns the same values as the libm ``floor`` functions
8390would, and handles error conditions in the same way.
8391
8392'``llvm.ceil.*``' Intrinsic
8393^^^^^^^^^^^^^^^^^^^^^^^^^^^
8394
8395Syntax:
8396"""""""
8397
8398This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8399floating point or vector of floating point type. Not all targets support
8400all types however.
8401
8402::
8403
8404 declare float @llvm.ceil.f32(float %Val)
8405 declare double @llvm.ceil.f64(double %Val)
8406 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8407 declare fp128 @llvm.ceil.f128(fp128 %Val)
8408 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8409
8410Overview:
8411"""""""""
8412
8413The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8414
8415Arguments:
8416""""""""""
8417
8418The argument and return value are floating point numbers of the same
8419type.
8420
8421Semantics:
8422""""""""""
8423
8424This function returns the same values as the libm ``ceil`` functions
8425would, and handles error conditions in the same way.
8426
8427'``llvm.trunc.*``' Intrinsic
8428^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8429
8430Syntax:
8431"""""""
8432
8433This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8434floating point or vector of floating point type. Not all targets support
8435all types however.
8436
8437::
8438
8439 declare float @llvm.trunc.f32(float %Val)
8440 declare double @llvm.trunc.f64(double %Val)
8441 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8442 declare fp128 @llvm.trunc.f128(fp128 %Val)
8443 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8444
8445Overview:
8446"""""""""
8447
8448The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8449nearest integer not larger in magnitude than the operand.
8450
8451Arguments:
8452""""""""""
8453
8454The argument and return value are floating point numbers of the same
8455type.
8456
8457Semantics:
8458""""""""""
8459
8460This function returns the same values as the libm ``trunc`` functions
8461would, and handles error conditions in the same way.
8462
8463'``llvm.rint.*``' Intrinsic
8464^^^^^^^^^^^^^^^^^^^^^^^^^^^
8465
8466Syntax:
8467"""""""
8468
8469This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8470floating point or vector of floating point type. Not all targets support
8471all types however.
8472
8473::
8474
8475 declare float @llvm.rint.f32(float %Val)
8476 declare double @llvm.rint.f64(double %Val)
8477 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8478 declare fp128 @llvm.rint.f128(fp128 %Val)
8479 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8480
8481Overview:
8482"""""""""
8483
8484The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8485nearest integer. It may raise an inexact floating-point exception if the
8486operand isn't an integer.
8487
8488Arguments:
8489""""""""""
8490
8491The argument and return value are floating point numbers of the same
8492type.
8493
8494Semantics:
8495""""""""""
8496
8497This function returns the same values as the libm ``rint`` functions
8498would, and handles error conditions in the same way.
8499
8500'``llvm.nearbyint.*``' Intrinsic
8501^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8502
8503Syntax:
8504"""""""
8505
8506This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8507floating point or vector of floating point type. Not all targets support
8508all types however.
8509
8510::
8511
8512 declare float @llvm.nearbyint.f32(float %Val)
8513 declare double @llvm.nearbyint.f64(double %Val)
8514 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8515 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8516 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8517
8518Overview:
8519"""""""""
8520
8521The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8522nearest integer.
8523
8524Arguments:
8525""""""""""
8526
8527The argument and return value are floating point numbers of the same
8528type.
8529
8530Semantics:
8531""""""""""
8532
8533This function returns the same values as the libm ``nearbyint``
8534functions would, and handles error conditions in the same way.
8535
Hal Finkel171817e2013-08-07 22:49:12 +00008536'``llvm.round.*``' Intrinsic
8537^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8538
8539Syntax:
8540"""""""
8541
8542This is an overloaded intrinsic. You can use ``llvm.round`` on any
8543floating point or vector of floating point type. Not all targets support
8544all types however.
8545
8546::
8547
8548 declare float @llvm.round.f32(float %Val)
8549 declare double @llvm.round.f64(double %Val)
8550 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8551 declare fp128 @llvm.round.f128(fp128 %Val)
8552 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8553
8554Overview:
8555"""""""""
8556
8557The '``llvm.round.*``' intrinsics returns the operand rounded to the
8558nearest integer.
8559
8560Arguments:
8561""""""""""
8562
8563The argument and return value are floating point numbers of the same
8564type.
8565
8566Semantics:
8567""""""""""
8568
8569This function returns the same values as the libm ``round``
8570functions would, and handles error conditions in the same way.
8571
Sean Silvab084af42012-12-07 10:36:55 +00008572Bit Manipulation Intrinsics
8573---------------------------
8574
8575LLVM provides intrinsics for a few important bit manipulation
8576operations. These allow efficient code generation for some algorithms.
8577
8578'``llvm.bswap.*``' Intrinsics
8579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8580
8581Syntax:
8582"""""""
8583
8584This is an overloaded intrinsic function. You can use bswap on any
8585integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8586
8587::
8588
8589 declare i16 @llvm.bswap.i16(i16 <id>)
8590 declare i32 @llvm.bswap.i32(i32 <id>)
8591 declare i64 @llvm.bswap.i64(i64 <id>)
8592
8593Overview:
8594"""""""""
8595
8596The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8597values with an even number of bytes (positive multiple of 16 bits).
8598These are useful for performing operations on data that is not in the
8599target's native byte order.
8600
8601Semantics:
8602""""""""""
8603
8604The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8605and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8606intrinsic returns an i32 value that has the four bytes of the input i32
8607swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8608returned i32 will have its bytes in 3, 2, 1, 0 order. The
8609``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8610concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8611respectively).
8612
8613'``llvm.ctpop.*``' Intrinsic
8614^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8615
8616Syntax:
8617"""""""
8618
8619This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8620bit width, or on any vector with integer elements. Not all targets
8621support all bit widths or vector types, however.
8622
8623::
8624
8625 declare i8 @llvm.ctpop.i8(i8 <src>)
8626 declare i16 @llvm.ctpop.i16(i16 <src>)
8627 declare i32 @llvm.ctpop.i32(i32 <src>)
8628 declare i64 @llvm.ctpop.i64(i64 <src>)
8629 declare i256 @llvm.ctpop.i256(i256 <src>)
8630 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8631
8632Overview:
8633"""""""""
8634
8635The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8636in a value.
8637
8638Arguments:
8639""""""""""
8640
8641The only argument is the value to be counted. The argument may be of any
8642integer type, or a vector with integer elements. The return type must
8643match the argument type.
8644
8645Semantics:
8646""""""""""
8647
8648The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8649each element of a vector.
8650
8651'``llvm.ctlz.*``' Intrinsic
8652^^^^^^^^^^^^^^^^^^^^^^^^^^^
8653
8654Syntax:
8655"""""""
8656
8657This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8658integer bit width, or any vector whose elements are integers. Not all
8659targets support all bit widths or vector types, however.
8660
8661::
8662
8663 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8664 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8665 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8666 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8667 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8668 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8669
8670Overview:
8671"""""""""
8672
8673The '``llvm.ctlz``' family of intrinsic functions counts the number of
8674leading zeros in a variable.
8675
8676Arguments:
8677""""""""""
8678
8679The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00008680any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00008681type must match the first argument type.
8682
8683The second argument must be a constant and is a flag to indicate whether
8684the intrinsic should ensure that a zero as the first argument produces a
8685defined result. Historically some architectures did not provide a
8686defined result for zero values as efficiently, and many algorithms are
8687now predicated on avoiding zero-value inputs.
8688
8689Semantics:
8690""""""""""
8691
8692The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8693zeros in a variable, or within each element of the vector. If
8694``src == 0`` then the result is the size in bits of the type of ``src``
8695if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8696``llvm.ctlz(i32 2) = 30``.
8697
8698'``llvm.cttz.*``' Intrinsic
8699^^^^^^^^^^^^^^^^^^^^^^^^^^^
8700
8701Syntax:
8702"""""""
8703
8704This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8705integer bit width, or any vector of integer elements. Not all targets
8706support all bit widths or vector types, however.
8707
8708::
8709
8710 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8711 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8712 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8713 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8714 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8715 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8716
8717Overview:
8718"""""""""
8719
8720The '``llvm.cttz``' family of intrinsic functions counts the number of
8721trailing zeros.
8722
8723Arguments:
8724""""""""""
8725
8726The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00008727any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00008728type must match the first argument type.
8729
8730The second argument must be a constant and is a flag to indicate whether
8731the intrinsic should ensure that a zero as the first argument produces a
8732defined result. Historically some architectures did not provide a
8733defined result for zero values as efficiently, and many algorithms are
8734now predicated on avoiding zero-value inputs.
8735
8736Semantics:
8737""""""""""
8738
8739The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8740zeros in a variable, or within each element of a vector. If ``src == 0``
8741then the result is the size in bits of the type of ``src`` if
8742``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8743``llvm.cttz(2) = 1``.
8744
8745Arithmetic with Overflow Intrinsics
8746-----------------------------------
8747
8748LLVM provides intrinsics for some arithmetic with overflow operations.
8749
8750'``llvm.sadd.with.overflow.*``' Intrinsics
8751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8752
8753Syntax:
8754"""""""
8755
8756This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8757on any integer bit width.
8758
8759::
8760
8761 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8762 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8763 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8764
8765Overview:
8766"""""""""
8767
8768The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8769a signed addition of the two arguments, and indicate whether an overflow
8770occurred during the signed summation.
8771
8772Arguments:
8773""""""""""
8774
8775The arguments (%a and %b) and the first element of the result structure
8776may be of integer types of any bit width, but they must have the same
8777bit width. The second element of the result structure must be of type
8778``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8779addition.
8780
8781Semantics:
8782""""""""""
8783
8784The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008785a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008786first element of which is the signed summation, and the second element
8787of which is a bit specifying if the signed summation resulted in an
8788overflow.
8789
8790Examples:
8791"""""""""
8792
8793.. code-block:: llvm
8794
8795 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8796 %sum = extractvalue {i32, i1} %res, 0
8797 %obit = extractvalue {i32, i1} %res, 1
8798 br i1 %obit, label %overflow, label %normal
8799
8800'``llvm.uadd.with.overflow.*``' Intrinsics
8801^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8802
8803Syntax:
8804"""""""
8805
8806This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8807on any integer bit width.
8808
8809::
8810
8811 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8812 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8813 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8814
8815Overview:
8816"""""""""
8817
8818The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8819an unsigned addition of the two arguments, and indicate whether a carry
8820occurred during the unsigned summation.
8821
8822Arguments:
8823""""""""""
8824
8825The arguments (%a and %b) and the first element of the result structure
8826may be of integer types of any bit width, but they must have the same
8827bit width. The second element of the result structure must be of type
8828``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8829addition.
8830
8831Semantics:
8832""""""""""
8833
8834The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008835an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008836first element of which is the sum, and the second element of which is a
8837bit specifying if the unsigned summation resulted in a carry.
8838
8839Examples:
8840"""""""""
8841
8842.. code-block:: llvm
8843
8844 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8845 %sum = extractvalue {i32, i1} %res, 0
8846 %obit = extractvalue {i32, i1} %res, 1
8847 br i1 %obit, label %carry, label %normal
8848
8849'``llvm.ssub.with.overflow.*``' Intrinsics
8850^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8851
8852Syntax:
8853"""""""
8854
8855This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8856on any integer bit width.
8857
8858::
8859
8860 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8861 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8862 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8863
8864Overview:
8865"""""""""
8866
8867The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8868a signed subtraction of the two arguments, and indicate whether an
8869overflow occurred during the signed subtraction.
8870
8871Arguments:
8872""""""""""
8873
8874The arguments (%a and %b) and the first element of the result structure
8875may be of integer types of any bit width, but they must have the same
8876bit width. The second element of the result structure must be of type
8877``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8878subtraction.
8879
8880Semantics:
8881""""""""""
8882
8883The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008884a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008885first element of which is the subtraction, and the second element of
8886which is a bit specifying if the signed subtraction resulted in an
8887overflow.
8888
8889Examples:
8890"""""""""
8891
8892.. code-block:: llvm
8893
8894 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8895 %sum = extractvalue {i32, i1} %res, 0
8896 %obit = extractvalue {i32, i1} %res, 1
8897 br i1 %obit, label %overflow, label %normal
8898
8899'``llvm.usub.with.overflow.*``' Intrinsics
8900^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8901
8902Syntax:
8903"""""""
8904
8905This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8906on any integer bit width.
8907
8908::
8909
8910 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8911 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8912 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8913
8914Overview:
8915"""""""""
8916
8917The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8918an unsigned subtraction of the two arguments, and indicate whether an
8919overflow occurred during the unsigned subtraction.
8920
8921Arguments:
8922""""""""""
8923
8924The arguments (%a and %b) and the first element of the result structure
8925may be of integer types of any bit width, but they must have the same
8926bit width. The second element of the result structure must be of type
8927``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8928subtraction.
8929
8930Semantics:
8931""""""""""
8932
8933The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008934an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008935the first element of which is the subtraction, and the second element of
8936which is a bit specifying if the unsigned subtraction resulted in an
8937overflow.
8938
8939Examples:
8940"""""""""
8941
8942.. code-block:: llvm
8943
8944 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8945 %sum = extractvalue {i32, i1} %res, 0
8946 %obit = extractvalue {i32, i1} %res, 1
8947 br i1 %obit, label %overflow, label %normal
8948
8949'``llvm.smul.with.overflow.*``' Intrinsics
8950^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8951
8952Syntax:
8953"""""""
8954
8955This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8956on any integer bit width.
8957
8958::
8959
8960 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8961 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8962 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8963
8964Overview:
8965"""""""""
8966
8967The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8968a signed multiplication of the two arguments, and indicate whether an
8969overflow occurred during the signed multiplication.
8970
8971Arguments:
8972""""""""""
8973
8974The arguments (%a and %b) and the first element of the result structure
8975may be of integer types of any bit width, but they must have the same
8976bit width. The second element of the result structure must be of type
8977``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8978multiplication.
8979
8980Semantics:
8981""""""""""
8982
8983The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008984a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008985the first element of which is the multiplication, and the second element
8986of which is a bit specifying if the signed multiplication resulted in an
8987overflow.
8988
8989Examples:
8990"""""""""
8991
8992.. code-block:: llvm
8993
8994 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8995 %sum = extractvalue {i32, i1} %res, 0
8996 %obit = extractvalue {i32, i1} %res, 1
8997 br i1 %obit, label %overflow, label %normal
8998
8999'``llvm.umul.with.overflow.*``' Intrinsics
9000^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9001
9002Syntax:
9003"""""""
9004
9005This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
9006on any integer bit width.
9007
9008::
9009
9010 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
9011 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
9012 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
9013
9014Overview:
9015"""""""""
9016
9017The '``llvm.umul.with.overflow``' family of intrinsic functions perform
9018a unsigned multiplication of the two arguments, and indicate whether an
9019overflow occurred during the unsigned multiplication.
9020
9021Arguments:
9022""""""""""
9023
9024The arguments (%a and %b) and the first element of the result structure
9025may be of integer types of any bit width, but they must have the same
9026bit width. The second element of the result structure must be of type
9027``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9028multiplication.
9029
9030Semantics:
9031""""""""""
9032
9033The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009034an unsigned multiplication of the two arguments. They return a structure ---
9035the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00009036element of which is a bit specifying if the unsigned multiplication
9037resulted in an overflow.
9038
9039Examples:
9040"""""""""
9041
9042.. code-block:: llvm
9043
9044 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
9045 %sum = extractvalue {i32, i1} %res, 0
9046 %obit = extractvalue {i32, i1} %res, 1
9047 br i1 %obit, label %overflow, label %normal
9048
9049Specialised Arithmetic Intrinsics
9050---------------------------------
9051
9052'``llvm.fmuladd.*``' Intrinsic
9053^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9054
9055Syntax:
9056"""""""
9057
9058::
9059
9060 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
9061 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
9062
9063Overview:
9064"""""""""
9065
9066The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00009067expressions that can be fused if the code generator determines that (a) the
9068target instruction set has support for a fused operation, and (b) that the
9069fused operation is more efficient than the equivalent, separate pair of mul
9070and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00009071
9072Arguments:
9073""""""""""
9074
9075The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
9076multiplicands, a and b, and an addend c.
9077
9078Semantics:
9079""""""""""
9080
9081The expression:
9082
9083::
9084
9085 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
9086
9087is equivalent to the expression a \* b + c, except that rounding will
9088not be performed between the multiplication and addition steps if the
9089code generator fuses the operations. Fusion is not guaranteed, even if
9090the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009091corresponding llvm.fma.\* intrinsic function should be used
9092instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00009093
9094Examples:
9095"""""""""
9096
9097.. code-block:: llvm
9098
Tim Northover675a0962014-06-13 14:24:23 +00009099 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00009100
9101Half Precision Floating Point Intrinsics
9102----------------------------------------
9103
9104For most target platforms, half precision floating point is a
9105storage-only format. This means that it is a dense encoding (in memory)
9106but does not support computation in the format.
9107
9108This means that code must first load the half-precision floating point
9109value as an i16, then convert it to float with
9110:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
9111then be performed on the float value (including extending to double
9112etc). To store the value back to memory, it is first converted to float
9113if needed, then converted to i16 with
9114:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
9115i16 value.
9116
9117.. _int_convert_to_fp16:
9118
9119'``llvm.convert.to.fp16``' Intrinsic
9120^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9121
9122Syntax:
9123"""""""
9124
9125::
9126
Tim Northoverfd7e4242014-07-17 10:51:23 +00009127 declare i16 @llvm.convert.to.fp16.f32(float %a)
9128 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00009129
9130Overview:
9131"""""""""
9132
Tim Northoverfd7e4242014-07-17 10:51:23 +00009133The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9134conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00009135
9136Arguments:
9137""""""""""
9138
9139The intrinsic function contains single argument - the value to be
9140converted.
9141
9142Semantics:
9143""""""""""
9144
Tim Northoverfd7e4242014-07-17 10:51:23 +00009145The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9146conventional floating point format to half precision floating point format. The
9147return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00009148
9149Examples:
9150"""""""""
9151
9152.. code-block:: llvm
9153
Tim Northoverfd7e4242014-07-17 10:51:23 +00009154 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00009155 store i16 %res, i16* @x, align 2
9156
9157.. _int_convert_from_fp16:
9158
9159'``llvm.convert.from.fp16``' Intrinsic
9160^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9161
9162Syntax:
9163"""""""
9164
9165::
9166
Tim Northoverfd7e4242014-07-17 10:51:23 +00009167 declare float @llvm.convert.from.fp16.f32(i16 %a)
9168 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009169
9170Overview:
9171"""""""""
9172
9173The '``llvm.convert.from.fp16``' intrinsic function performs a
9174conversion from half precision floating point format to single precision
9175floating point format.
9176
9177Arguments:
9178""""""""""
9179
9180The intrinsic function contains single argument - the value to be
9181converted.
9182
9183Semantics:
9184""""""""""
9185
9186The '``llvm.convert.from.fp16``' intrinsic function performs a
9187conversion from half single precision floating point format to single
9188precision floating point format. The input half-float value is
9189represented by an ``i16`` value.
9190
9191Examples:
9192"""""""""
9193
9194.. code-block:: llvm
9195
9196 %a = load i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00009197 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009198
9199Debugger Intrinsics
9200-------------------
9201
9202The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
9203prefix), are described in the `LLVM Source Level
9204Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
9205document.
9206
9207Exception Handling Intrinsics
9208-----------------------------
9209
9210The LLVM exception handling intrinsics (which all start with
9211``llvm.eh.`` prefix), are described in the `LLVM Exception
9212Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
9213
9214.. _int_trampoline:
9215
9216Trampoline Intrinsics
9217---------------------
9218
9219These intrinsics make it possible to excise one parameter, marked with
9220the :ref:`nest <nest>` attribute, from a function. The result is a
9221callable function pointer lacking the nest parameter - the caller does
9222not need to provide a value for it. Instead, the value to use is stored
9223in advance in a "trampoline", a block of memory usually allocated on the
9224stack, which also contains code to splice the nest value into the
9225argument list. This is used to implement the GCC nested function address
9226extension.
9227
9228For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
9229then the resulting function pointer has signature ``i32 (i32, i32)*``.
9230It can be created as follows:
9231
9232.. code-block:: llvm
9233
9234 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
9235 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
9236 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
9237 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
9238 %fp = bitcast i8* %p to i32 (i32, i32)*
9239
9240The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
9241``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
9242
9243.. _int_it:
9244
9245'``llvm.init.trampoline``' Intrinsic
9246^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9247
9248Syntax:
9249"""""""
9250
9251::
9252
9253 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
9254
9255Overview:
9256"""""""""
9257
9258This fills the memory pointed to by ``tramp`` with executable code,
9259turning it into a trampoline.
9260
9261Arguments:
9262""""""""""
9263
9264The ``llvm.init.trampoline`` intrinsic takes three arguments, all
9265pointers. The ``tramp`` argument must point to a sufficiently large and
9266sufficiently aligned block of memory; this memory is written to by the
9267intrinsic. Note that the size and the alignment are target-specific -
9268LLVM currently provides no portable way of determining them, so a
9269front-end that generates this intrinsic needs to have some
9270target-specific knowledge. The ``func`` argument must hold a function
9271bitcast to an ``i8*``.
9272
9273Semantics:
9274""""""""""
9275
9276The block of memory pointed to by ``tramp`` is filled with target
9277dependent code, turning it into a function. Then ``tramp`` needs to be
9278passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
9279be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
9280function's signature is the same as that of ``func`` with any arguments
9281marked with the ``nest`` attribute removed. At most one such ``nest``
9282argument is allowed, and it must be of pointer type. Calling the new
9283function is equivalent to calling ``func`` with the same argument list,
9284but with ``nval`` used for the missing ``nest`` argument. If, after
9285calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
9286modified, then the effect of any later call to the returned function
9287pointer is undefined.
9288
9289.. _int_at:
9290
9291'``llvm.adjust.trampoline``' Intrinsic
9292^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9293
9294Syntax:
9295"""""""
9296
9297::
9298
9299 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
9300
9301Overview:
9302"""""""""
9303
9304This performs any required machine-specific adjustment to the address of
9305a trampoline (passed as ``tramp``).
9306
9307Arguments:
9308""""""""""
9309
9310``tramp`` must point to a block of memory which already has trampoline
9311code filled in by a previous call to
9312:ref:`llvm.init.trampoline <int_it>`.
9313
9314Semantics:
9315""""""""""
9316
9317On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009318different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00009319intrinsic returns the executable address corresponding to ``tramp``
9320after performing the required machine specific adjustments. The pointer
9321returned can then be :ref:`bitcast and executed <int_trampoline>`.
9322
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009323Masked Vector Load and Store Intrinsics
9324---------------------------------------
9325
9326LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
9327
9328.. _int_mload:
9329
9330'``llvm.masked.load.*``' Intrinsics
9331^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9332
9333Syntax:
9334"""""""
9335This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
9336
9337::
9338
9339 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
9340 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
9341
9342Overview:
9343"""""""""
9344
9345Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes in the passthru operand.
9346
9347
9348Arguments:
9349""""""""""
9350
9351The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean 'i1' values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of passthru operand are the same vector types.
9352
9353
9354Semantics:
9355""""""""""
9356
9357The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
9358The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
9359
9360
9361::
9362
9363 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
9364
9365 ;; The result of the two following instructions is identical aside from potential memory access exception
9366 %loadlal = load <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009367 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009368
9369.. _int_mstore:
9370
9371'``llvm.masked.store.*``' Intrinsics
9372^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9373
9374Syntax:
9375"""""""
9376This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
9377
9378::
9379
9380 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
9381 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
9382
9383Overview:
9384"""""""""
9385
9386Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
9387
9388Arguments:
9389""""""""""
9390
9391The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
9392
9393
9394Semantics:
9395""""""""""
9396
9397The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
9398The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
9399
9400::
9401
9402 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
9403
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009404 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009405 %oldval = load <16 x float>* %ptr, align 4
9406 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
9407 store <16 x float> %res, <16 x float>* %ptr, align 4
9408
9409
Sean Silvab084af42012-12-07 10:36:55 +00009410Memory Use Markers
9411------------------
9412
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009413This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00009414memory objects and ranges where variables are immutable.
9415
Reid Klecknera534a382013-12-19 02:14:12 +00009416.. _int_lifestart:
9417
Sean Silvab084af42012-12-07 10:36:55 +00009418'``llvm.lifetime.start``' Intrinsic
9419^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9420
9421Syntax:
9422"""""""
9423
9424::
9425
9426 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
9427
9428Overview:
9429"""""""""
9430
9431The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
9432object's lifetime.
9433
9434Arguments:
9435""""""""""
9436
9437The first argument is a constant integer representing the size of the
9438object, or -1 if it is variable sized. The second argument is a pointer
9439to the object.
9440
9441Semantics:
9442""""""""""
9443
9444This intrinsic indicates that before this point in the code, the value
9445of the memory pointed to by ``ptr`` is dead. This means that it is known
9446to never be used and has an undefined value. A load from the pointer
9447that precedes this intrinsic can be replaced with ``'undef'``.
9448
Reid Klecknera534a382013-12-19 02:14:12 +00009449.. _int_lifeend:
9450
Sean Silvab084af42012-12-07 10:36:55 +00009451'``llvm.lifetime.end``' Intrinsic
9452^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9453
9454Syntax:
9455"""""""
9456
9457::
9458
9459 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
9460
9461Overview:
9462"""""""""
9463
9464The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
9465object's lifetime.
9466
9467Arguments:
9468""""""""""
9469
9470The first argument is a constant integer representing the size of the
9471object, or -1 if it is variable sized. The second argument is a pointer
9472to the object.
9473
9474Semantics:
9475""""""""""
9476
9477This intrinsic indicates that after this point in the code, the value of
9478the memory pointed to by ``ptr`` is dead. This means that it is known to
9479never be used and has an undefined value. Any stores into the memory
9480object following this intrinsic may be removed as dead.
9481
9482'``llvm.invariant.start``' Intrinsic
9483^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9484
9485Syntax:
9486"""""""
9487
9488::
9489
9490 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9491
9492Overview:
9493"""""""""
9494
9495The '``llvm.invariant.start``' intrinsic specifies that the contents of
9496a memory object will not change.
9497
9498Arguments:
9499""""""""""
9500
9501The first argument is a constant integer representing the size of the
9502object, or -1 if it is variable sized. The second argument is a pointer
9503to the object.
9504
9505Semantics:
9506""""""""""
9507
9508This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9509the return value, the referenced memory location is constant and
9510unchanging.
9511
9512'``llvm.invariant.end``' Intrinsic
9513^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9514
9515Syntax:
9516"""""""
9517
9518::
9519
9520 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9521
9522Overview:
9523"""""""""
9524
9525The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9526memory object are mutable.
9527
9528Arguments:
9529""""""""""
9530
9531The first argument is the matching ``llvm.invariant.start`` intrinsic.
9532The second argument is a constant integer representing the size of the
9533object, or -1 if it is variable sized and the third argument is a
9534pointer to the object.
9535
9536Semantics:
9537""""""""""
9538
9539This intrinsic indicates that the memory is mutable again.
9540
9541General Intrinsics
9542------------------
9543
9544This class of intrinsics is designed to be generic and has no specific
9545purpose.
9546
9547'``llvm.var.annotation``' Intrinsic
9548^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9549
9550Syntax:
9551"""""""
9552
9553::
9554
9555 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9556
9557Overview:
9558"""""""""
9559
9560The '``llvm.var.annotation``' intrinsic.
9561
9562Arguments:
9563""""""""""
9564
9565The first argument is a pointer to a value, the second is a pointer to a
9566global string, the third is a pointer to a global string which is the
9567source file name, and the last argument is the line number.
9568
9569Semantics:
9570""""""""""
9571
9572This intrinsic allows annotation of local variables with arbitrary
9573strings. This can be useful for special purpose optimizations that want
9574to look for these annotations. These have no other defined use; they are
9575ignored by code generation and optimization.
9576
Michael Gottesman88d18832013-03-26 00:34:27 +00009577'``llvm.ptr.annotation.*``' Intrinsic
9578^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9579
9580Syntax:
9581"""""""
9582
9583This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9584pointer to an integer of any width. *NOTE* you must specify an address space for
9585the pointer. The identifier for the default address space is the integer
9586'``0``'.
9587
9588::
9589
9590 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9591 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9592 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9593 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9594 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9595
9596Overview:
9597"""""""""
9598
9599The '``llvm.ptr.annotation``' intrinsic.
9600
9601Arguments:
9602""""""""""
9603
9604The first argument is a pointer to an integer value of arbitrary bitwidth
9605(result of some expression), the second is a pointer to a global string, the
9606third is a pointer to a global string which is the source file name, and the
9607last argument is the line number. It returns the value of the first argument.
9608
9609Semantics:
9610""""""""""
9611
9612This intrinsic allows annotation of a pointer to an integer with arbitrary
9613strings. This can be useful for special purpose optimizations that want to look
9614for these annotations. These have no other defined use; they are ignored by code
9615generation and optimization.
9616
Sean Silvab084af42012-12-07 10:36:55 +00009617'``llvm.annotation.*``' Intrinsic
9618^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9619
9620Syntax:
9621"""""""
9622
9623This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9624any integer bit width.
9625
9626::
9627
9628 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9629 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9630 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9631 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9632 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9633
9634Overview:
9635"""""""""
9636
9637The '``llvm.annotation``' intrinsic.
9638
9639Arguments:
9640""""""""""
9641
9642The first argument is an integer value (result of some expression), the
9643second is a pointer to a global string, the third is a pointer to a
9644global string which is the source file name, and the last argument is
9645the line number. It returns the value of the first argument.
9646
9647Semantics:
9648""""""""""
9649
9650This intrinsic allows annotations to be put on arbitrary expressions
9651with arbitrary strings. This can be useful for special purpose
9652optimizations that want to look for these annotations. These have no
9653other defined use; they are ignored by code generation and optimization.
9654
9655'``llvm.trap``' Intrinsic
9656^^^^^^^^^^^^^^^^^^^^^^^^^
9657
9658Syntax:
9659"""""""
9660
9661::
9662
9663 declare void @llvm.trap() noreturn nounwind
9664
9665Overview:
9666"""""""""
9667
9668The '``llvm.trap``' intrinsic.
9669
9670Arguments:
9671""""""""""
9672
9673None.
9674
9675Semantics:
9676""""""""""
9677
9678This intrinsic is lowered to the target dependent trap instruction. If
9679the target does not have a trap instruction, this intrinsic will be
9680lowered to a call of the ``abort()`` function.
9681
9682'``llvm.debugtrap``' Intrinsic
9683^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9684
9685Syntax:
9686"""""""
9687
9688::
9689
9690 declare void @llvm.debugtrap() nounwind
9691
9692Overview:
9693"""""""""
9694
9695The '``llvm.debugtrap``' intrinsic.
9696
9697Arguments:
9698""""""""""
9699
9700None.
9701
9702Semantics:
9703""""""""""
9704
9705This intrinsic is lowered to code which is intended to cause an
9706execution trap with the intention of requesting the attention of a
9707debugger.
9708
9709'``llvm.stackprotector``' Intrinsic
9710^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9711
9712Syntax:
9713"""""""
9714
9715::
9716
9717 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9718
9719Overview:
9720"""""""""
9721
9722The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9723onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9724is placed on the stack before local variables.
9725
9726Arguments:
9727""""""""""
9728
9729The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9730The first argument is the value loaded from the stack guard
9731``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9732enough space to hold the value of the guard.
9733
9734Semantics:
9735""""""""""
9736
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009737This intrinsic causes the prologue/epilogue inserter to force the position of
9738the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9739to ensure that if a local variable on the stack is overwritten, it will destroy
9740the value of the guard. When the function exits, the guard on the stack is
9741checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9742different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9743calling the ``__stack_chk_fail()`` function.
9744
9745'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009746^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009747
9748Syntax:
9749"""""""
9750
9751::
9752
9753 declare void @llvm.stackprotectorcheck(i8** <guard>)
9754
9755Overview:
9756"""""""""
9757
9758The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009759created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009760``__stack_chk_fail()`` function.
9761
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009762Arguments:
9763""""""""""
9764
9765The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9766the variable ``@__stack_chk_guard``.
9767
9768Semantics:
9769""""""""""
9770
9771This intrinsic is provided to perform the stack protector check by comparing
9772``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9773values do not match call the ``__stack_chk_fail()`` function.
9774
9775The reason to provide this as an IR level intrinsic instead of implementing it
9776via other IR operations is that in order to perform this operation at the IR
9777level without an intrinsic, one would need to create additional basic blocks to
9778handle the success/failure cases. This makes it difficult to stop the stack
9779protector check from disrupting sibling tail calls in Codegen. With this
9780intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009781codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009782
Sean Silvab084af42012-12-07 10:36:55 +00009783'``llvm.objectsize``' Intrinsic
9784^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9785
9786Syntax:
9787"""""""
9788
9789::
9790
9791 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9792 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9793
9794Overview:
9795"""""""""
9796
9797The ``llvm.objectsize`` intrinsic is designed to provide information to
9798the optimizers to determine at compile time whether a) an operation
9799(like memcpy) will overflow a buffer that corresponds to an object, or
9800b) that a runtime check for overflow isn't necessary. An object in this
9801context means an allocation of a specific class, structure, array, or
9802other object.
9803
9804Arguments:
9805""""""""""
9806
9807The ``llvm.objectsize`` intrinsic takes two arguments. The first
9808argument is a pointer to or into the ``object``. The second argument is
9809a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9810or -1 (if false) when the object size is unknown. The second argument
9811only accepts constants.
9812
9813Semantics:
9814""""""""""
9815
9816The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9817the size of the object concerned. If the size cannot be determined at
9818compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9819on the ``min`` argument).
9820
9821'``llvm.expect``' Intrinsic
9822^^^^^^^^^^^^^^^^^^^^^^^^^^^
9823
9824Syntax:
9825"""""""
9826
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009827This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9828integer bit width.
9829
Sean Silvab084af42012-12-07 10:36:55 +00009830::
9831
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009832 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009833 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9834 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9835
9836Overview:
9837"""""""""
9838
9839The ``llvm.expect`` intrinsic provides information about expected (the
9840most probable) value of ``val``, which can be used by optimizers.
9841
9842Arguments:
9843""""""""""
9844
9845The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9846a value. The second argument is an expected value, this needs to be a
9847constant value, variables are not allowed.
9848
9849Semantics:
9850""""""""""
9851
9852This intrinsic is lowered to the ``val``.
9853
Hal Finkel93046912014-07-25 21:13:35 +00009854'``llvm.assume``' Intrinsic
9855^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9856
9857Syntax:
9858"""""""
9859
9860::
9861
9862 declare void @llvm.assume(i1 %cond)
9863
9864Overview:
9865"""""""""
9866
9867The ``llvm.assume`` allows the optimizer to assume that the provided
9868condition is true. This information can then be used in simplifying other parts
9869of the code.
9870
9871Arguments:
9872""""""""""
9873
9874The condition which the optimizer may assume is always true.
9875
9876Semantics:
9877""""""""""
9878
9879The intrinsic allows the optimizer to assume that the provided condition is
9880always true whenever the control flow reaches the intrinsic call. No code is
9881generated for this intrinsic, and instructions that contribute only to the
9882provided condition are not used for code generation. If the condition is
9883violated during execution, the behavior is undefined.
9884
Sanjay Patel1ed2bb52015-01-14 16:03:58 +00009885Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +00009886used by the ``llvm.assume`` intrinsic in order to preserve the instructions
9887only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +00009888if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +00009889sufficient overall improvement in code quality. For this reason,
9890``llvm.assume`` should not be used to document basic mathematical invariants
9891that the optimizer can otherwise deduce or facts that are of little use to the
9892optimizer.
9893
Sean Silvab084af42012-12-07 10:36:55 +00009894'``llvm.donothing``' Intrinsic
9895^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9896
9897Syntax:
9898"""""""
9899
9900::
9901
9902 declare void @llvm.donothing() nounwind readnone
9903
9904Overview:
9905"""""""""
9906
Juergen Ributzkac9161192014-10-23 22:36:13 +00009907The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
9908two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
9909with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009910
9911Arguments:
9912""""""""""
9913
9914None.
9915
9916Semantics:
9917""""""""""
9918
9919This intrinsic does nothing, and it's removed by optimizers and ignored
9920by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009921
9922Stack Map Intrinsics
9923--------------------
9924
9925LLVM provides experimental intrinsics to support runtime patching
9926mechanisms commonly desired in dynamic language JITs. These intrinsics
9927are described in :doc:`StackMaps`.