blob: 6b72e74d54dc657687ec0fc2d3918f809d5fa6be [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
Sean Silvab084af42012-12-07 10:36:55 +0000165 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
351 arguments into registers but allows them to be dynamcially
352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
356 This calling convention attempts to make the code in the caller as little
357 intrusive as possible. This calling convention behaves identical to the `C`
358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000497.. _namedtypes:
498
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000499Structure Types
500---------------
Sean Silvab084af42012-12-07 10:36:55 +0000501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
503types <t_struct>`. Literal types are uniqued structurally, but identified types
504are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000505to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000506
507An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000508
509.. code-block:: llvm
510
511 %mytype = type { %mytype*, i32 }
512
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000513Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
514literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000515
516.. _globalvars:
517
518Global Variables
519----------------
520
521Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000522instead of run-time.
523
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000524Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525
526Global variables in other translation units can also be declared, in which
527case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000528
Bob Wilson85b24f22014-06-12 20:40:33 +0000529Either global variable definitions or declarations may have an explicit section
530to be placed in and may have an optional explicit alignment specified.
531
Michael Gottesman006039c2013-01-31 05:48:48 +0000532A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000536initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000567Additionally, the global can placed in a comdat if the target has the necessary
568support.
Sean Silvab084af42012-12-07 10:36:55 +0000569
Michael Gottesmane743a302013-02-04 03:22:00 +0000570By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000571variables defined within the module are not modified from their
572initial values before the start of the global initializer. This is
573true even for variables potentially accessible from outside the
574module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000575``@llvm.used`` or dllexported variables. This assumption may be suppressed
576by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000577
Sean Silvab084af42012-12-07 10:36:55 +0000578An explicit alignment may be specified for a global, which must be a
579power of 2. If not present, or if the alignment is set to zero, the
580alignment of the global is set by the target to whatever it feels
581convenient. If an explicit alignment is specified, the global is forced
582to have exactly that alignment. Targets and optimizers are not allowed
583to over-align the global if the global has an assigned section. In this
584case, the extra alignment could be observable: for example, code could
585assume that the globals are densely packed in their section and try to
586iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000587iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000588
Nico Rieck7157bb72014-01-14 15:22:47 +0000589Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
590
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000591Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000592:ref:`Thread Local Storage Model <tls_model>`.
593
Nico Rieck7157bb72014-01-14 15:22:47 +0000594Syntax::
595
596 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000597 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000598 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000599 [, section "name"] [, comdat [($name)]]
600 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000601
Sean Silvab084af42012-12-07 10:36:55 +0000602For example, the following defines a global in a numbered address space
603with an initializer, section, and alignment:
604
605.. code-block:: llvm
606
607 @G = addrspace(5) constant float 1.0, section "foo", align 4
608
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000609The following example just declares a global variable
610
611.. code-block:: llvm
612
613 @G = external global i32
614
Sean Silvab084af42012-12-07 10:36:55 +0000615The following example defines a thread-local global with the
616``initialexec`` TLS model:
617
618.. code-block:: llvm
619
620 @G = thread_local(initialexec) global i32 0, align 4
621
622.. _functionstructure:
623
624Functions
625---------
626
627LLVM function definitions consist of the "``define``" keyword, an
628optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000629style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
630an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000631an optional ``unnamed_addr`` attribute, a return type, an optional
632:ref:`parameter attribute <paramattrs>` for the return type, a function
633name, a (possibly empty) argument list (each with optional :ref:`parameter
634attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000635an optional section, an optional alignment,
636an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000637an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
638an optional :ref:`prologue <prologuedata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000639curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000640
641LLVM function declarations consist of the "``declare``" keyword, an
642optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000643style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
644an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000645an optional ``unnamed_addr`` attribute, a return type, an optional
646:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000647name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000648:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
649and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000650
Bill Wendling6822ecb2013-10-27 05:09:12 +0000651A function definition contains a list of basic blocks, forming the CFG (Control
652Flow Graph) for the function. Each basic block may optionally start with a label
653(giving the basic block a symbol table entry), contains a list of instructions,
654and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
655function return). If an explicit label is not provided, a block is assigned an
656implicit numbered label, using the next value from the same counter as used for
657unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
658entry block does not have an explicit label, it will be assigned label "%0",
659then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000660
661The first basic block in a function is special in two ways: it is
662immediately executed on entrance to the function, and it is not allowed
663to have predecessor basic blocks (i.e. there can not be any branches to
664the entry block of a function). Because the block can have no
665predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
666
667LLVM allows an explicit section to be specified for functions. If the
668target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000669Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000670
671An explicit alignment may be specified for a function. If not present,
672or if the alignment is set to zero, the alignment of the function is set
673by the target to whatever it feels convenient. If an explicit alignment
674is specified, the function is forced to have at least that much
675alignment. All alignments must be a power of 2.
676
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000677If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000678be significant and two identical functions can be merged.
679
680Syntax::
681
Nico Rieck7157bb72014-01-14 15:22:47 +0000682 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000683 [cconv] [ret attrs]
684 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000686 [align N] [gc] [prefix Constant] [prologue Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000687
Dan Liew2661dfc2014-08-20 15:06:30 +0000688The argument list is a comma seperated sequence of arguments where each
689argument is of the following form
690
691Syntax::
692
693 <type> [parameter Attrs] [name]
694
695
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000696.. _langref_aliases:
697
Sean Silvab084af42012-12-07 10:36:55 +0000698Aliases
699-------
700
Rafael Espindola64c1e182014-06-03 02:41:57 +0000701Aliases, unlike function or variables, don't create any new data. They
702are just a new symbol and metadata for an existing position.
703
704Aliases have a name and an aliasee that is either a global value or a
705constant expression.
706
Nico Rieck7157bb72014-01-14 15:22:47 +0000707Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000708:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
709<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000710
711Syntax::
712
Rafael Espindola464fe022014-07-30 22:51:54 +0000713 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000714
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000715The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000716``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000717might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000718
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000719Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000720the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
721to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000722
Rafael Espindola64c1e182014-06-03 02:41:57 +0000723Since aliases are only a second name, some restrictions apply, of which
724some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000725
Rafael Espindola64c1e182014-06-03 02:41:57 +0000726* The expression defining the aliasee must be computable at assembly
727 time. Since it is just a name, no relocations can be used.
728
729* No alias in the expression can be weak as the possibility of the
730 intermediate alias being overridden cannot be represented in an
731 object file.
732
733* No global value in the expression can be a declaration, since that
734 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000735
David Majnemerdad0a642014-06-27 18:19:56 +0000736.. _langref_comdats:
737
738Comdats
739-------
740
741Comdat IR provides access to COFF and ELF object file COMDAT functionality.
742
Richard Smith32dbdf62014-07-31 04:25:36 +0000743Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000744specify this key will only end up in the final object file if the linker chooses
745that key over some other key. Aliases are placed in the same COMDAT that their
746aliasee computes to, if any.
747
748Comdats have a selection kind to provide input on how the linker should
749choose between keys in two different object files.
750
751Syntax::
752
753 $<Name> = comdat SelectionKind
754
755The selection kind must be one of the following:
756
757``any``
758 The linker may choose any COMDAT key, the choice is arbitrary.
759``exactmatch``
760 The linker may choose any COMDAT key but the sections must contain the
761 same data.
762``largest``
763 The linker will choose the section containing the largest COMDAT key.
764``noduplicates``
765 The linker requires that only section with this COMDAT key exist.
766``samesize``
767 The linker may choose any COMDAT key but the sections must contain the
768 same amount of data.
769
770Note that the Mach-O platform doesn't support COMDATs and ELF only supports
771``any`` as a selection kind.
772
773Here is an example of a COMDAT group where a function will only be selected if
774the COMDAT key's section is the largest:
775
776.. code-block:: llvm
777
778 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000779 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000780
Rafael Espindola83a362c2015-01-06 22:55:16 +0000781 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000782 ret void
783 }
784
Rafael Espindola83a362c2015-01-06 22:55:16 +0000785As a syntactic sugar the ``$name`` can be omitted if the name is the same as
786the global name:
787
788.. code-block:: llvm
789
790 $foo = comdat any
791 @foo = global i32 2, comdat
792
793
David Majnemerdad0a642014-06-27 18:19:56 +0000794In a COFF object file, this will create a COMDAT section with selection kind
795``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
796and another COMDAT section with selection kind
797``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000798section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000799
800There are some restrictions on the properties of the global object.
801It, or an alias to it, must have the same name as the COMDAT group when
802targeting COFF.
803The contents and size of this object may be used during link-time to determine
804which COMDAT groups get selected depending on the selection kind.
805Because the name of the object must match the name of the COMDAT group, the
806linkage of the global object must not be local; local symbols can get renamed
807if a collision occurs in the symbol table.
808
809The combined use of COMDATS and section attributes may yield surprising results.
810For example:
811
812.. code-block:: llvm
813
814 $foo = comdat any
815 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000816 @g1 = global i32 42, section "sec", comdat($foo)
817 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000818
819From the object file perspective, this requires the creation of two sections
820with the same name. This is necessary because both globals belong to different
821COMDAT groups and COMDATs, at the object file level, are represented by
822sections.
823
824Note that certain IR constructs like global variables and functions may create
825COMDATs in the object file in addition to any which are specified using COMDAT
826IR. This arises, for example, when a global variable has linkonce_odr linkage.
827
Sean Silvab084af42012-12-07 10:36:55 +0000828.. _namedmetadatastructure:
829
830Named Metadata
831--------------
832
833Named metadata is a collection of metadata. :ref:`Metadata
834nodes <metadata>` (but not metadata strings) are the only valid
835operands for a named metadata.
836
837Syntax::
838
839 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000840 !0 = !{!"zero"}
841 !1 = !{!"one"}
842 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000843 ; A named metadata.
844 !name = !{!0, !1, !2}
845
846.. _paramattrs:
847
848Parameter Attributes
849--------------------
850
851The return type and each parameter of a function type may have a set of
852*parameter attributes* associated with them. Parameter attributes are
853used to communicate additional information about the result or
854parameters of a function. Parameter attributes are considered to be part
855of the function, not of the function type, so functions with different
856parameter attributes can have the same function type.
857
858Parameter attributes are simple keywords that follow the type specified.
859If multiple parameter attributes are needed, they are space separated.
860For example:
861
862.. code-block:: llvm
863
864 declare i32 @printf(i8* noalias nocapture, ...)
865 declare i32 @atoi(i8 zeroext)
866 declare signext i8 @returns_signed_char()
867
868Note that any attributes for the function result (``nounwind``,
869``readonly``) come immediately after the argument list.
870
871Currently, only the following parameter attributes are defined:
872
873``zeroext``
874 This indicates to the code generator that the parameter or return
875 value should be zero-extended to the extent required by the target's
876 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
877 the caller (for a parameter) or the callee (for a return value).
878``signext``
879 This indicates to the code generator that the parameter or return
880 value should be sign-extended to the extent required by the target's
881 ABI (which is usually 32-bits) by the caller (for a parameter) or
882 the callee (for a return value).
883``inreg``
884 This indicates that this parameter or return value should be treated
885 in a special target-dependent fashion during while emitting code for
886 a function call or return (usually, by putting it in a register as
887 opposed to memory, though some targets use it to distinguish between
888 two different kinds of registers). Use of this attribute is
889 target-specific.
890``byval``
891 This indicates that the pointer parameter should really be passed by
892 value to the function. The attribute implies that a hidden copy of
893 the pointee is made between the caller and the callee, so the callee
894 is unable to modify the value in the caller. This attribute is only
895 valid on LLVM pointer arguments. It is generally used to pass
896 structs and arrays by value, but is also valid on pointers to
897 scalars. The copy is considered to belong to the caller not the
898 callee (for example, ``readonly`` functions should not write to
899 ``byval`` parameters). This is not a valid attribute for return
900 values.
901
902 The byval attribute also supports specifying an alignment with the
903 align attribute. It indicates the alignment of the stack slot to
904 form and the known alignment of the pointer specified to the call
905 site. If the alignment is not specified, then the code generator
906 makes a target-specific assumption.
907
Reid Klecknera534a382013-12-19 02:14:12 +0000908.. _attr_inalloca:
909
910``inalloca``
911
Reid Kleckner60d3a832014-01-16 22:59:24 +0000912 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000913 address of outgoing stack arguments. An ``inalloca`` argument must
914 be a pointer to stack memory produced by an ``alloca`` instruction.
915 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000916 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000917 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000918
Reid Kleckner436c42e2014-01-17 23:58:17 +0000919 An argument allocation may be used by a call at most once because
920 the call may deallocate it. The ``inalloca`` attribute cannot be
921 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000922 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
923 ``inalloca`` attribute also disables LLVM's implicit lowering of
924 large aggregate return values, which means that frontend authors
925 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000926
Reid Kleckner60d3a832014-01-16 22:59:24 +0000927 When the call site is reached, the argument allocation must have
928 been the most recent stack allocation that is still live, or the
929 results are undefined. It is possible to allocate additional stack
930 space after an argument allocation and before its call site, but it
931 must be cleared off with :ref:`llvm.stackrestore
932 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000933
934 See :doc:`InAlloca` for more information on how to use this
935 attribute.
936
Sean Silvab084af42012-12-07 10:36:55 +0000937``sret``
938 This indicates that the pointer parameter specifies the address of a
939 structure that is the return value of the function in the source
940 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000941 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000942 not to trap and to be properly aligned. This may only be applied to
943 the first parameter. This is not a valid attribute for return
944 values.
Sean Silva1703e702014-04-08 21:06:22 +0000945
Hal Finkelccc70902014-07-22 16:58:55 +0000946``align <n>``
947 This indicates that the pointer value may be assumed by the optimizer to
948 have the specified alignment.
949
950 Note that this attribute has additional semantics when combined with the
951 ``byval`` attribute.
952
Sean Silva1703e702014-04-08 21:06:22 +0000953.. _noalias:
954
Sean Silvab084af42012-12-07 10:36:55 +0000955``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000956 This indicates that objects accessed via pointer values
957 :ref:`based <pointeraliasing>` on the argument or return value are not also
958 accessed, during the execution of the function, via pointer values not
959 *based* on the argument or return value. The attribute on a return value
960 also has additional semantics described below. The caller shares the
961 responsibility with the callee for ensuring that these requirements are met.
962 For further details, please see the discussion of the NoAlias response in
963 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000964
965 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000966 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000967
968 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000969 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
970 attribute on return values are stronger than the semantics of the attribute
971 when used on function arguments. On function return values, the ``noalias``
972 attribute indicates that the function acts like a system memory allocation
973 function, returning a pointer to allocated storage disjoint from the
974 storage for any other object accessible to the caller.
975
Sean Silvab084af42012-12-07 10:36:55 +0000976``nocapture``
977 This indicates that the callee does not make any copies of the
978 pointer that outlive the callee itself. This is not a valid
979 attribute for return values.
980
981.. _nest:
982
983``nest``
984 This indicates that the pointer parameter can be excised using the
985 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000986 attribute for return values and can only be applied to one parameter.
987
988``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000989 This indicates that the function always returns the argument as its return
990 value. This is an optimization hint to the code generator when generating
991 the caller, allowing tail call optimization and omission of register saves
992 and restores in some cases; it is not checked or enforced when generating
993 the callee. The parameter and the function return type must be valid
994 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
995 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000996
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000997``nonnull``
998 This indicates that the parameter or return pointer is not null. This
999 attribute may only be applied to pointer typed parameters. This is not
1000 checked or enforced by LLVM, the caller must ensure that the pointer
1001 passed in is non-null, or the callee must ensure that the returned pointer
1002 is non-null.
1003
Hal Finkelb0407ba2014-07-18 15:51:28 +00001004``dereferenceable(<n>)``
1005 This indicates that the parameter or return pointer is dereferenceable. This
1006 attribute may only be applied to pointer typed parameters. A pointer that
1007 is dereferenceable can be loaded from speculatively without a risk of
1008 trapping. The number of bytes known to be dereferenceable must be provided
1009 in parentheses. It is legal for the number of bytes to be less than the
1010 size of the pointee type. The ``nonnull`` attribute does not imply
1011 dereferenceability (consider a pointer to one element past the end of an
1012 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1013 ``addrspace(0)`` (which is the default address space).
1014
Sean Silvab084af42012-12-07 10:36:55 +00001015.. _gc:
1016
1017Garbage Collector Names
1018-----------------------
1019
1020Each function may specify a garbage collector name, which is simply a
1021string:
1022
1023.. code-block:: llvm
1024
1025 define void @f() gc "name" { ... }
1026
1027The compiler declares the supported values of *name*. Specifying a
Richard Smith32dbdf62014-07-31 04:25:36 +00001028collector will cause the compiler to alter its output in order to
Sean Silvab084af42012-12-07 10:36:55 +00001029support the named garbage collection algorithm.
1030
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001031.. _prefixdata:
1032
1033Prefix Data
1034-----------
1035
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001036Prefix data is data associated with a function which the code
1037generator will emit immediately before the function's entrypoint.
1038The purpose of this feature is to allow frontends to associate
1039language-specific runtime metadata with specific functions and make it
1040available through the function pointer while still allowing the
1041function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001042
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001043To access the data for a given function, a program may bitcast the
1044function pointer to a pointer to the constant's type and dereference
1045index -1. This implies that the IR symbol points just past the end of
1046the prefix data. For instance, take the example of a function annotated
1047with a single ``i32``,
1048
1049.. code-block:: llvm
1050
1051 define void @f() prefix i32 123 { ... }
1052
1053The prefix data can be referenced as,
1054
1055.. code-block:: llvm
1056
1057 %0 = bitcast *void () @f to *i32
1058 %a = getelementptr inbounds *i32 %0, i32 -1
1059 %b = load i32* %a
1060
1061Prefix data is laid out as if it were an initializer for a global variable
1062of the prefix data's type. The function will be placed such that the
1063beginning of the prefix data is aligned. This means that if the size
1064of the prefix data is not a multiple of the alignment size, the
1065function's entrypoint will not be aligned. If alignment of the
1066function's entrypoint is desired, padding must be added to the prefix
1067data.
1068
1069A function may have prefix data but no body. This has similar semantics
1070to the ``available_externally`` linkage in that the data may be used by the
1071optimizers but will not be emitted in the object file.
1072
1073.. _prologuedata:
1074
1075Prologue Data
1076-------------
1077
1078The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1079be inserted prior to the function body. This can be used for enabling
1080function hot-patching and instrumentation.
1081
1082To maintain the semantics of ordinary function calls, the prologue data must
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001083have a particular format. Specifically, it must begin with a sequence of
1084bytes which decode to a sequence of machine instructions, valid for the
1085module's target, which transfer control to the point immediately succeeding
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001086the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001087the inliner and other passes to reason about the semantics of the function
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001088definition without needing to reason about the prologue data. Obviously this
1089makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001090
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001091A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001092which encodes the ``nop`` instruction:
1093
1094.. code-block:: llvm
1095
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001096 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001097
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001098Generally prologue data can be formed by encoding a relative branch instruction
1099which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001100x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1101
1102.. code-block:: llvm
1103
1104 %0 = type <{ i8, i8, i8* }>
1105
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001106 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001107
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001108A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001109to the ``available_externally`` linkage in that the data may be used by the
1110optimizers but will not be emitted in the object file.
1111
Bill Wendling63b88192013-02-06 06:52:58 +00001112.. _attrgrp:
1113
1114Attribute Groups
1115----------------
1116
1117Attribute groups are groups of attributes that are referenced by objects within
1118the IR. They are important for keeping ``.ll`` files readable, because a lot of
1119functions will use the same set of attributes. In the degenerative case of a
1120``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1121group will capture the important command line flags used to build that file.
1122
1123An attribute group is a module-level object. To use an attribute group, an
1124object references the attribute group's ID (e.g. ``#37``). An object may refer
1125to more than one attribute group. In that situation, the attributes from the
1126different groups are merged.
1127
1128Here is an example of attribute groups for a function that should always be
1129inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1130
1131.. code-block:: llvm
1132
1133 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001134 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001135
1136 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001137 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001138
1139 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1140 define void @f() #0 #1 { ... }
1141
Sean Silvab084af42012-12-07 10:36:55 +00001142.. _fnattrs:
1143
1144Function Attributes
1145-------------------
1146
1147Function attributes are set to communicate additional information about
1148a function. Function attributes are considered to be part of the
1149function, not of the function type, so functions with different function
1150attributes can have the same function type.
1151
1152Function attributes are simple keywords that follow the type specified.
1153If multiple attributes are needed, they are space separated. For
1154example:
1155
1156.. code-block:: llvm
1157
1158 define void @f() noinline { ... }
1159 define void @f() alwaysinline { ... }
1160 define void @f() alwaysinline optsize { ... }
1161 define void @f() optsize { ... }
1162
Sean Silvab084af42012-12-07 10:36:55 +00001163``alignstack(<n>)``
1164 This attribute indicates that, when emitting the prologue and
1165 epilogue, the backend should forcibly align the stack pointer.
1166 Specify the desired alignment, which must be a power of two, in
1167 parentheses.
1168``alwaysinline``
1169 This attribute indicates that the inliner should attempt to inline
1170 this function into callers whenever possible, ignoring any active
1171 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001172``builtin``
1173 This indicates that the callee function at a call site should be
1174 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001175 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001176 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001177 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001178``cold``
1179 This attribute indicates that this function is rarely called. When
1180 computing edge weights, basic blocks post-dominated by a cold
1181 function call are also considered to be cold; and, thus, given low
1182 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001183``inlinehint``
1184 This attribute indicates that the source code contained a hint that
1185 inlining this function is desirable (such as the "inline" keyword in
1186 C/C++). It is just a hint; it imposes no requirements on the
1187 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001188``jumptable``
1189 This attribute indicates that the function should be added to a
1190 jump-instruction table at code-generation time, and that all address-taken
1191 references to this function should be replaced with a reference to the
1192 appropriate jump-instruction-table function pointer. Note that this creates
1193 a new pointer for the original function, which means that code that depends
1194 on function-pointer identity can break. So, any function annotated with
1195 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001196``minsize``
1197 This attribute suggests that optimization passes and code generator
1198 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001199 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001200 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001201``naked``
1202 This attribute disables prologue / epilogue emission for the
1203 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001204``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001205 This indicates that the callee function at a call site is not recognized as
1206 a built-in function. LLVM will retain the original call and not replace it
1207 with equivalent code based on the semantics of the built-in function, unless
1208 the call site uses the ``builtin`` attribute. This is valid at call sites
1209 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001210``noduplicate``
1211 This attribute indicates that calls to the function cannot be
1212 duplicated. A call to a ``noduplicate`` function may be moved
1213 within its parent function, but may not be duplicated within
1214 its parent function.
1215
1216 A function containing a ``noduplicate`` call may still
1217 be an inlining candidate, provided that the call is not
1218 duplicated by inlining. That implies that the function has
1219 internal linkage and only has one call site, so the original
1220 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001221``noimplicitfloat``
1222 This attributes disables implicit floating point instructions.
1223``noinline``
1224 This attribute indicates that the inliner should never inline this
1225 function in any situation. This attribute may not be used together
1226 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001227``nonlazybind``
1228 This attribute suppresses lazy symbol binding for the function. This
1229 may make calls to the function faster, at the cost of extra program
1230 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001231``noredzone``
1232 This attribute indicates that the code generator should not use a
1233 red zone, even if the target-specific ABI normally permits it.
1234``noreturn``
1235 This function attribute indicates that the function never returns
1236 normally. This produces undefined behavior at runtime if the
1237 function ever does dynamically return.
1238``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001239 This function attribute indicates that the function never raises an
1240 exception. If the function does raise an exception, its runtime
1241 behavior is undefined. However, functions marked nounwind may still
1242 trap or generate asynchronous exceptions. Exception handling schemes
1243 that are recognized by LLVM to handle asynchronous exceptions, such
1244 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001245``optnone``
1246 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001247 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001248 exception of interprocedural optimization passes.
1249 This attribute cannot be used together with the ``alwaysinline``
1250 attribute; this attribute is also incompatible
1251 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001252
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001253 This attribute requires the ``noinline`` attribute to be specified on
1254 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001255 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001256 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001257``optsize``
1258 This attribute suggests that optimization passes and code generator
1259 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001260 and otherwise do optimizations specifically to reduce code size as
1261 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001262``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001263 On a function, this attribute indicates that the function computes its
1264 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001265 without dereferencing any pointer arguments or otherwise accessing
1266 any mutable state (e.g. memory, control registers, etc) visible to
1267 caller functions. It does not write through any pointer arguments
1268 (including ``byval`` arguments) and never changes any state visible
1269 to callers. This means that it cannot unwind exceptions by calling
1270 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001271
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001272 On an argument, this attribute indicates that the function does not
1273 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001274 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001275``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001276 On a function, this attribute indicates that the function does not write
1277 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001278 modify any state (e.g. memory, control registers, etc) visible to
1279 caller functions. It may dereference pointer arguments and read
1280 state that may be set in the caller. A readonly function always
1281 returns the same value (or unwinds an exception identically) when
1282 called with the same set of arguments and global state. It cannot
1283 unwind an exception by calling the ``C++`` exception throwing
1284 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001285
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001286 On an argument, this attribute indicates that the function does not write
1287 through this pointer argument, even though it may write to the memory that
1288 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001289``returns_twice``
1290 This attribute indicates that this function can return twice. The C
1291 ``setjmp`` is an example of such a function. The compiler disables
1292 some optimizations (like tail calls) in the caller of these
1293 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001294``sanitize_address``
1295 This attribute indicates that AddressSanitizer checks
1296 (dynamic address safety analysis) are enabled for this function.
1297``sanitize_memory``
1298 This attribute indicates that MemorySanitizer checks (dynamic detection
1299 of accesses to uninitialized memory) are enabled for this function.
1300``sanitize_thread``
1301 This attribute indicates that ThreadSanitizer checks
1302 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001303``ssp``
1304 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001305 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001306 placed on the stack before the local variables that's checked upon
1307 return from the function to see if it has been overwritten. A
1308 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001309 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001310
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001311 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1312 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1313 - Calls to alloca() with variable sizes or constant sizes greater than
1314 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001315
Josh Magee24c7f062014-02-01 01:36:16 +00001316 Variables that are identified as requiring a protector will be arranged
1317 on the stack such that they are adjacent to the stack protector guard.
1318
Sean Silvab084af42012-12-07 10:36:55 +00001319 If a function that has an ``ssp`` attribute is inlined into a
1320 function that doesn't have an ``ssp`` attribute, then the resulting
1321 function will have an ``ssp`` attribute.
1322``sspreq``
1323 This attribute indicates that the function should *always* emit a
1324 stack smashing protector. This overrides the ``ssp`` function
1325 attribute.
1326
Josh Magee24c7f062014-02-01 01:36:16 +00001327 Variables that are identified as requiring a protector will be arranged
1328 on the stack such that they are adjacent to the stack protector guard.
1329 The specific layout rules are:
1330
1331 #. Large arrays and structures containing large arrays
1332 (``>= ssp-buffer-size``) are closest to the stack protector.
1333 #. Small arrays and structures containing small arrays
1334 (``< ssp-buffer-size``) are 2nd closest to the protector.
1335 #. Variables that have had their address taken are 3rd closest to the
1336 protector.
1337
Sean Silvab084af42012-12-07 10:36:55 +00001338 If a function that has an ``sspreq`` attribute is inlined into a
1339 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001340 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1341 an ``sspreq`` attribute.
1342``sspstrong``
1343 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001344 protector. This attribute causes a strong heuristic to be used when
1345 determining if a function needs stack protectors. The strong heuristic
1346 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001347
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001348 - Arrays of any size and type
1349 - Aggregates containing an array of any size and type.
1350 - Calls to alloca().
1351 - Local variables that have had their address taken.
1352
Josh Magee24c7f062014-02-01 01:36:16 +00001353 Variables that are identified as requiring a protector will be arranged
1354 on the stack such that they are adjacent to the stack protector guard.
1355 The specific layout rules are:
1356
1357 #. Large arrays and structures containing large arrays
1358 (``>= ssp-buffer-size``) are closest to the stack protector.
1359 #. Small arrays and structures containing small arrays
1360 (``< ssp-buffer-size``) are 2nd closest to the protector.
1361 #. Variables that have had their address taken are 3rd closest to the
1362 protector.
1363
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001364 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001365
1366 If a function that has an ``sspstrong`` attribute is inlined into a
1367 function that doesn't have an ``sspstrong`` attribute, then the
1368 resulting function will have an ``sspstrong`` attribute.
Sean Silvab084af42012-12-07 10:36:55 +00001369``uwtable``
1370 This attribute indicates that the ABI being targeted requires that
1371 an unwind table entry be produce for this function even if we can
1372 show that no exceptions passes by it. This is normally the case for
1373 the ELF x86-64 abi, but it can be disabled for some compilation
1374 units.
Sean Silvab084af42012-12-07 10:36:55 +00001375
1376.. _moduleasm:
1377
1378Module-Level Inline Assembly
1379----------------------------
1380
1381Modules may contain "module-level inline asm" blocks, which corresponds
1382to the GCC "file scope inline asm" blocks. These blocks are internally
1383concatenated by LLVM and treated as a single unit, but may be separated
1384in the ``.ll`` file if desired. The syntax is very simple:
1385
1386.. code-block:: llvm
1387
1388 module asm "inline asm code goes here"
1389 module asm "more can go here"
1390
1391The strings can contain any character by escaping non-printable
1392characters. The escape sequence used is simply "\\xx" where "xx" is the
1393two digit hex code for the number.
1394
1395The inline asm code is simply printed to the machine code .s file when
1396assembly code is generated.
1397
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001398.. _langref_datalayout:
1399
Sean Silvab084af42012-12-07 10:36:55 +00001400Data Layout
1401-----------
1402
1403A module may specify a target specific data layout string that specifies
1404how data is to be laid out in memory. The syntax for the data layout is
1405simply:
1406
1407.. code-block:: llvm
1408
1409 target datalayout = "layout specification"
1410
1411The *layout specification* consists of a list of specifications
1412separated by the minus sign character ('-'). Each specification starts
1413with a letter and may include other information after the letter to
1414define some aspect of the data layout. The specifications accepted are
1415as follows:
1416
1417``E``
1418 Specifies that the target lays out data in big-endian form. That is,
1419 the bits with the most significance have the lowest address
1420 location.
1421``e``
1422 Specifies that the target lays out data in little-endian form. That
1423 is, the bits with the least significance have the lowest address
1424 location.
1425``S<size>``
1426 Specifies the natural alignment of the stack in bits. Alignment
1427 promotion of stack variables is limited to the natural stack
1428 alignment to avoid dynamic stack realignment. The stack alignment
1429 must be a multiple of 8-bits. If omitted, the natural stack
1430 alignment defaults to "unspecified", which does not prevent any
1431 alignment promotions.
1432``p[n]:<size>:<abi>:<pref>``
1433 This specifies the *size* of a pointer and its ``<abi>`` and
1434 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001435 bits. The address space, ``n`` is optional, and if not specified,
1436 denotes the default address space 0. The value of ``n`` must be
1437 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001438``i<size>:<abi>:<pref>``
1439 This specifies the alignment for an integer type of a given bit
1440 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1441``v<size>:<abi>:<pref>``
1442 This specifies the alignment for a vector type of a given bit
1443 ``<size>``.
1444``f<size>:<abi>:<pref>``
1445 This specifies the alignment for a floating point type of a given bit
1446 ``<size>``. Only values of ``<size>`` that are supported by the target
1447 will work. 32 (float) and 64 (double) are supported on all targets; 80
1448 or 128 (different flavors of long double) are also supported on some
1449 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001450``a:<abi>:<pref>``
1451 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001452``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001453 If present, specifies that llvm names are mangled in the output. The
1454 options are
1455
1456 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1457 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1458 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1459 symbols get a ``_`` prefix.
1460 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1461 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001462``n<size1>:<size2>:<size3>...``
1463 This specifies a set of native integer widths for the target CPU in
1464 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1465 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1466 this set are considered to support most general arithmetic operations
1467 efficiently.
1468
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001469On every specification that takes a ``<abi>:<pref>``, specifying the
1470``<pref>`` alignment is optional. If omitted, the preceding ``:``
1471should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1472
Sean Silvab084af42012-12-07 10:36:55 +00001473When constructing the data layout for a given target, LLVM starts with a
1474default set of specifications which are then (possibly) overridden by
1475the specifications in the ``datalayout`` keyword. The default
1476specifications are given in this list:
1477
1478- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001479- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1480- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1481 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001482- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001483- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1484- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1485- ``i16:16:16`` - i16 is 16-bit aligned
1486- ``i32:32:32`` - i32 is 32-bit aligned
1487- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1488 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001489- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001490- ``f32:32:32`` - float is 32-bit aligned
1491- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001492- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001493- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1494- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001495- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001496
1497When LLVM is determining the alignment for a given type, it uses the
1498following rules:
1499
1500#. If the type sought is an exact match for one of the specifications,
1501 that specification is used.
1502#. If no match is found, and the type sought is an integer type, then
1503 the smallest integer type that is larger than the bitwidth of the
1504 sought type is used. If none of the specifications are larger than
1505 the bitwidth then the largest integer type is used. For example,
1506 given the default specifications above, the i7 type will use the
1507 alignment of i8 (next largest) while both i65 and i256 will use the
1508 alignment of i64 (largest specified).
1509#. If no match is found, and the type sought is a vector type, then the
1510 largest vector type that is smaller than the sought vector type will
1511 be used as a fall back. This happens because <128 x double> can be
1512 implemented in terms of 64 <2 x double>, for example.
1513
1514The function of the data layout string may not be what you expect.
1515Notably, this is not a specification from the frontend of what alignment
1516the code generator should use.
1517
1518Instead, if specified, the target data layout is required to match what
1519the ultimate *code generator* expects. This string is used by the
1520mid-level optimizers to improve code, and this only works if it matches
1521what the ultimate code generator uses. If you would like to generate IR
1522that does not embed this target-specific detail into the IR, then you
1523don't have to specify the string. This will disable some optimizations
1524that require precise layout information, but this also prevents those
1525optimizations from introducing target specificity into the IR.
1526
Bill Wendling5cc90842013-10-18 23:41:25 +00001527.. _langref_triple:
1528
1529Target Triple
1530-------------
1531
1532A module may specify a target triple string that describes the target
1533host. The syntax for the target triple is simply:
1534
1535.. code-block:: llvm
1536
1537 target triple = "x86_64-apple-macosx10.7.0"
1538
1539The *target triple* string consists of a series of identifiers delimited
1540by the minus sign character ('-'). The canonical forms are:
1541
1542::
1543
1544 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1545 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1546
1547This information is passed along to the backend so that it generates
1548code for the proper architecture. It's possible to override this on the
1549command line with the ``-mtriple`` command line option.
1550
Sean Silvab084af42012-12-07 10:36:55 +00001551.. _pointeraliasing:
1552
1553Pointer Aliasing Rules
1554----------------------
1555
1556Any memory access must be done through a pointer value associated with
1557an address range of the memory access, otherwise the behavior is
1558undefined. Pointer values are associated with address ranges according
1559to the following rules:
1560
1561- A pointer value is associated with the addresses associated with any
1562 value it is *based* on.
1563- An address of a global variable is associated with the address range
1564 of the variable's storage.
1565- The result value of an allocation instruction is associated with the
1566 address range of the allocated storage.
1567- A null pointer in the default address-space is associated with no
1568 address.
1569- An integer constant other than zero or a pointer value returned from
1570 a function not defined within LLVM may be associated with address
1571 ranges allocated through mechanisms other than those provided by
1572 LLVM. Such ranges shall not overlap with any ranges of addresses
1573 allocated by mechanisms provided by LLVM.
1574
1575A pointer value is *based* on another pointer value according to the
1576following rules:
1577
1578- A pointer value formed from a ``getelementptr`` operation is *based*
1579 on the first operand of the ``getelementptr``.
1580- The result value of a ``bitcast`` is *based* on the operand of the
1581 ``bitcast``.
1582- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1583 values that contribute (directly or indirectly) to the computation of
1584 the pointer's value.
1585- The "*based* on" relationship is transitive.
1586
1587Note that this definition of *"based"* is intentionally similar to the
1588definition of *"based"* in C99, though it is slightly weaker.
1589
1590LLVM IR does not associate types with memory. The result type of a
1591``load`` merely indicates the size and alignment of the memory from
1592which to load, as well as the interpretation of the value. The first
1593operand type of a ``store`` similarly only indicates the size and
1594alignment of the store.
1595
1596Consequently, type-based alias analysis, aka TBAA, aka
1597``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1598:ref:`Metadata <metadata>` may be used to encode additional information
1599which specialized optimization passes may use to implement type-based
1600alias analysis.
1601
1602.. _volatile:
1603
1604Volatile Memory Accesses
1605------------------------
1606
1607Certain memory accesses, such as :ref:`load <i_load>`'s,
1608:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1609marked ``volatile``. The optimizers must not change the number of
1610volatile operations or change their order of execution relative to other
1611volatile operations. The optimizers *may* change the order of volatile
1612operations relative to non-volatile operations. This is not Java's
1613"volatile" and has no cross-thread synchronization behavior.
1614
Andrew Trick89fc5a62013-01-30 21:19:35 +00001615IR-level volatile loads and stores cannot safely be optimized into
1616llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1617flagged volatile. Likewise, the backend should never split or merge
1618target-legal volatile load/store instructions.
1619
Andrew Trick7e6f9282013-01-31 00:49:39 +00001620.. admonition:: Rationale
1621
1622 Platforms may rely on volatile loads and stores of natively supported
1623 data width to be executed as single instruction. For example, in C
1624 this holds for an l-value of volatile primitive type with native
1625 hardware support, but not necessarily for aggregate types. The
1626 frontend upholds these expectations, which are intentionally
1627 unspecified in the IR. The rules above ensure that IR transformation
1628 do not violate the frontend's contract with the language.
1629
Sean Silvab084af42012-12-07 10:36:55 +00001630.. _memmodel:
1631
1632Memory Model for Concurrent Operations
1633--------------------------------------
1634
1635The LLVM IR does not define any way to start parallel threads of
1636execution or to register signal handlers. Nonetheless, there are
1637platform-specific ways to create them, and we define LLVM IR's behavior
1638in their presence. This model is inspired by the C++0x memory model.
1639
1640For a more informal introduction to this model, see the :doc:`Atomics`.
1641
1642We define a *happens-before* partial order as the least partial order
1643that
1644
1645- Is a superset of single-thread program order, and
1646- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1647 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1648 techniques, like pthread locks, thread creation, thread joining,
1649 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1650 Constraints <ordering>`).
1651
1652Note that program order does not introduce *happens-before* edges
1653between a thread and signals executing inside that thread.
1654
1655Every (defined) read operation (load instructions, memcpy, atomic
1656loads/read-modify-writes, etc.) R reads a series of bytes written by
1657(defined) write operations (store instructions, atomic
1658stores/read-modify-writes, memcpy, etc.). For the purposes of this
1659section, initialized globals are considered to have a write of the
1660initializer which is atomic and happens before any other read or write
1661of the memory in question. For each byte of a read R, R\ :sub:`byte`
1662may see any write to the same byte, except:
1663
1664- If write\ :sub:`1` happens before write\ :sub:`2`, and
1665 write\ :sub:`2` happens before R\ :sub:`byte`, then
1666 R\ :sub:`byte` does not see write\ :sub:`1`.
1667- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1668 R\ :sub:`byte` does not see write\ :sub:`3`.
1669
1670Given that definition, R\ :sub:`byte` is defined as follows:
1671
1672- If R is volatile, the result is target-dependent. (Volatile is
1673 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001674 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001675 like normal memory. It does not generally provide cross-thread
1676 synchronization.)
1677- Otherwise, if there is no write to the same byte that happens before
1678 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1679- Otherwise, if R\ :sub:`byte` may see exactly one write,
1680 R\ :sub:`byte` returns the value written by that write.
1681- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1682 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1683 Memory Ordering Constraints <ordering>` section for additional
1684 constraints on how the choice is made.
1685- Otherwise R\ :sub:`byte` returns ``undef``.
1686
1687R returns the value composed of the series of bytes it read. This
1688implies that some bytes within the value may be ``undef`` **without**
1689the entire value being ``undef``. Note that this only defines the
1690semantics of the operation; it doesn't mean that targets will emit more
1691than one instruction to read the series of bytes.
1692
1693Note that in cases where none of the atomic intrinsics are used, this
1694model places only one restriction on IR transformations on top of what
1695is required for single-threaded execution: introducing a store to a byte
1696which might not otherwise be stored is not allowed in general.
1697(Specifically, in the case where another thread might write to and read
1698from an address, introducing a store can change a load that may see
1699exactly one write into a load that may see multiple writes.)
1700
1701.. _ordering:
1702
1703Atomic Memory Ordering Constraints
1704----------------------------------
1705
1706Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1707:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1708:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001709ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001710the same address they *synchronize with*. These semantics are borrowed
1711from Java and C++0x, but are somewhat more colloquial. If these
1712descriptions aren't precise enough, check those specs (see spec
1713references in the :doc:`atomics guide <Atomics>`).
1714:ref:`fence <i_fence>` instructions treat these orderings somewhat
1715differently since they don't take an address. See that instruction's
1716documentation for details.
1717
1718For a simpler introduction to the ordering constraints, see the
1719:doc:`Atomics`.
1720
1721``unordered``
1722 The set of values that can be read is governed by the happens-before
1723 partial order. A value cannot be read unless some operation wrote
1724 it. This is intended to provide a guarantee strong enough to model
1725 Java's non-volatile shared variables. This ordering cannot be
1726 specified for read-modify-write operations; it is not strong enough
1727 to make them atomic in any interesting way.
1728``monotonic``
1729 In addition to the guarantees of ``unordered``, there is a single
1730 total order for modifications by ``monotonic`` operations on each
1731 address. All modification orders must be compatible with the
1732 happens-before order. There is no guarantee that the modification
1733 orders can be combined to a global total order for the whole program
1734 (and this often will not be possible). The read in an atomic
1735 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1736 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1737 order immediately before the value it writes. If one atomic read
1738 happens before another atomic read of the same address, the later
1739 read must see the same value or a later value in the address's
1740 modification order. This disallows reordering of ``monotonic`` (or
1741 stronger) operations on the same address. If an address is written
1742 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1743 read that address repeatedly, the other threads must eventually see
1744 the write. This corresponds to the C++0x/C1x
1745 ``memory_order_relaxed``.
1746``acquire``
1747 In addition to the guarantees of ``monotonic``, a
1748 *synchronizes-with* edge may be formed with a ``release`` operation.
1749 This is intended to model C++'s ``memory_order_acquire``.
1750``release``
1751 In addition to the guarantees of ``monotonic``, if this operation
1752 writes a value which is subsequently read by an ``acquire``
1753 operation, it *synchronizes-with* that operation. (This isn't a
1754 complete description; see the C++0x definition of a release
1755 sequence.) This corresponds to the C++0x/C1x
1756 ``memory_order_release``.
1757``acq_rel`` (acquire+release)
1758 Acts as both an ``acquire`` and ``release`` operation on its
1759 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1760``seq_cst`` (sequentially consistent)
1761 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001762 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001763 writes), there is a global total order on all
1764 sequentially-consistent operations on all addresses, which is
1765 consistent with the *happens-before* partial order and with the
1766 modification orders of all the affected addresses. Each
1767 sequentially-consistent read sees the last preceding write to the
1768 same address in this global order. This corresponds to the C++0x/C1x
1769 ``memory_order_seq_cst`` and Java volatile.
1770
1771.. _singlethread:
1772
1773If an atomic operation is marked ``singlethread``, it only *synchronizes
1774with* or participates in modification and seq\_cst total orderings with
1775other operations running in the same thread (for example, in signal
1776handlers).
1777
1778.. _fastmath:
1779
1780Fast-Math Flags
1781---------------
1782
1783LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1784:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Eric Christopher1e61ffd2015-02-19 18:46:25 +00001785:ref:`frem <i_frem>`) have the following flags that can be set to enable
Sean Silvab084af42012-12-07 10:36:55 +00001786otherwise unsafe floating point operations
1787
1788``nnan``
1789 No NaNs - Allow optimizations to assume the arguments and result are not
1790 NaN. Such optimizations are required to retain defined behavior over
1791 NaNs, but the value of the result is undefined.
1792
1793``ninf``
1794 No Infs - Allow optimizations to assume the arguments and result are not
1795 +/-Inf. Such optimizations are required to retain defined behavior over
1796 +/-Inf, but the value of the result is undefined.
1797
1798``nsz``
1799 No Signed Zeros - Allow optimizations to treat the sign of a zero
1800 argument or result as insignificant.
1801
1802``arcp``
1803 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1804 argument rather than perform division.
1805
1806``fast``
1807 Fast - Allow algebraically equivalent transformations that may
1808 dramatically change results in floating point (e.g. reassociate). This
1809 flag implies all the others.
1810
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001811.. _uselistorder:
1812
1813Use-list Order Directives
1814-------------------------
1815
1816Use-list directives encode the in-memory order of each use-list, allowing the
1817order to be recreated. ``<order-indexes>`` is a comma-separated list of
1818indexes that are assigned to the referenced value's uses. The referenced
1819value's use-list is immediately sorted by these indexes.
1820
1821Use-list directives may appear at function scope or global scope. They are not
1822instructions, and have no effect on the semantics of the IR. When they're at
1823function scope, they must appear after the terminator of the final basic block.
1824
1825If basic blocks have their address taken via ``blockaddress()`` expressions,
1826``uselistorder_bb`` can be used to reorder their use-lists from outside their
1827function's scope.
1828
1829:Syntax:
1830
1831::
1832
1833 uselistorder <ty> <value>, { <order-indexes> }
1834 uselistorder_bb @function, %block { <order-indexes> }
1835
1836:Examples:
1837
1838::
1839
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001840 define void @foo(i32 %arg1, i32 %arg2) {
1841 entry:
1842 ; ... instructions ...
1843 bb:
1844 ; ... instructions ...
1845
1846 ; At function scope.
1847 uselistorder i32 %arg1, { 1, 0, 2 }
1848 uselistorder label %bb, { 1, 0 }
1849 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001850
1851 ; At global scope.
1852 uselistorder i32* @global, { 1, 2, 0 }
1853 uselistorder i32 7, { 1, 0 }
1854 uselistorder i32 (i32) @bar, { 1, 0 }
1855 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1856
Sean Silvab084af42012-12-07 10:36:55 +00001857.. _typesystem:
1858
1859Type System
1860===========
1861
1862The LLVM type system is one of the most important features of the
1863intermediate representation. Being typed enables a number of
1864optimizations to be performed on the intermediate representation
1865directly, without having to do extra analyses on the side before the
1866transformation. A strong type system makes it easier to read the
1867generated code and enables novel analyses and transformations that are
1868not feasible to perform on normal three address code representations.
1869
Rafael Espindola08013342013-12-07 19:34:20 +00001870.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001871
Rafael Espindola08013342013-12-07 19:34:20 +00001872Void Type
1873---------
Sean Silvab084af42012-12-07 10:36:55 +00001874
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001875:Overview:
1876
Rafael Espindola08013342013-12-07 19:34:20 +00001877
1878The void type does not represent any value and has no size.
1879
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001880:Syntax:
1881
Rafael Espindola08013342013-12-07 19:34:20 +00001882
1883::
1884
1885 void
Sean Silvab084af42012-12-07 10:36:55 +00001886
1887
Rafael Espindola08013342013-12-07 19:34:20 +00001888.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001889
Rafael Espindola08013342013-12-07 19:34:20 +00001890Function Type
1891-------------
Sean Silvab084af42012-12-07 10:36:55 +00001892
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001893:Overview:
1894
Sean Silvab084af42012-12-07 10:36:55 +00001895
Rafael Espindola08013342013-12-07 19:34:20 +00001896The function type can be thought of as a function signature. It consists of a
1897return type and a list of formal parameter types. The return type of a function
1898type is a void type or first class type --- except for :ref:`label <t_label>`
1899and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001900
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001901:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001902
Rafael Espindola08013342013-12-07 19:34:20 +00001903::
Sean Silvab084af42012-12-07 10:36:55 +00001904
Rafael Espindola08013342013-12-07 19:34:20 +00001905 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001906
Rafael Espindola08013342013-12-07 19:34:20 +00001907...where '``<parameter list>``' is a comma-separated list of type
1908specifiers. Optionally, the parameter list may include a type ``...``, which
1909indicates that the function takes a variable number of arguments. Variable
1910argument functions can access their arguments with the :ref:`variable argument
1911handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1912except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001913
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001914:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001915
Rafael Espindola08013342013-12-07 19:34:20 +00001916+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1917| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1918+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1919| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1920+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1921| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1922+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1923| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1924+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1925
1926.. _t_firstclass:
1927
1928First Class Types
1929-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001930
1931The :ref:`first class <t_firstclass>` types are perhaps the most important.
1932Values of these types are the only ones which can be produced by
1933instructions.
1934
Rafael Espindola08013342013-12-07 19:34:20 +00001935.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001936
Rafael Espindola08013342013-12-07 19:34:20 +00001937Single Value Types
1938^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001939
Rafael Espindola08013342013-12-07 19:34:20 +00001940These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001941
1942.. _t_integer:
1943
1944Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001945""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001946
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001947:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001948
1949The integer type is a very simple type that simply specifies an
1950arbitrary bit width for the integer type desired. Any bit width from 1
1951bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1952
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001953:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001954
1955::
1956
1957 iN
1958
1959The number of bits the integer will occupy is specified by the ``N``
1960value.
1961
1962Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001963*********
Sean Silvab084af42012-12-07 10:36:55 +00001964
1965+----------------+------------------------------------------------+
1966| ``i1`` | a single-bit integer. |
1967+----------------+------------------------------------------------+
1968| ``i32`` | a 32-bit integer. |
1969+----------------+------------------------------------------------+
1970| ``i1942652`` | a really big integer of over 1 million bits. |
1971+----------------+------------------------------------------------+
1972
1973.. _t_floating:
1974
1975Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001976""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001977
1978.. list-table::
1979 :header-rows: 1
1980
1981 * - Type
1982 - Description
1983
1984 * - ``half``
1985 - 16-bit floating point value
1986
1987 * - ``float``
1988 - 32-bit floating point value
1989
1990 * - ``double``
1991 - 64-bit floating point value
1992
1993 * - ``fp128``
1994 - 128-bit floating point value (112-bit mantissa)
1995
1996 * - ``x86_fp80``
1997 - 80-bit floating point value (X87)
1998
1999 * - ``ppc_fp128``
2000 - 128-bit floating point value (two 64-bits)
2001
Reid Kleckner9a16d082014-03-05 02:41:37 +00002002X86_mmx Type
2003""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002004
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002005:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002006
Reid Kleckner9a16d082014-03-05 02:41:37 +00002007The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002008machine. The operations allowed on it are quite limited: parameters and
2009return values, load and store, and bitcast. User-specified MMX
2010instructions are represented as intrinsic or asm calls with arguments
2011and/or results of this type. There are no arrays, vectors or constants
2012of this type.
2013
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002014:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002015
2016::
2017
Reid Kleckner9a16d082014-03-05 02:41:37 +00002018 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002019
Sean Silvab084af42012-12-07 10:36:55 +00002020
Rafael Espindola08013342013-12-07 19:34:20 +00002021.. _t_pointer:
2022
2023Pointer Type
2024""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002025
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002026:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002027
Rafael Espindola08013342013-12-07 19:34:20 +00002028The pointer type is used to specify memory locations. Pointers are
2029commonly used to reference objects in memory.
2030
2031Pointer types may have an optional address space attribute defining the
2032numbered address space where the pointed-to object resides. The default
2033address space is number zero. The semantics of non-zero address spaces
2034are target-specific.
2035
2036Note that LLVM does not permit pointers to void (``void*``) nor does it
2037permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002038
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002039:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002040
2041::
2042
Rafael Espindola08013342013-12-07 19:34:20 +00002043 <type> *
2044
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002045:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002046
2047+-------------------------+--------------------------------------------------------------------------------------------------------------+
2048| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2049+-------------------------+--------------------------------------------------------------------------------------------------------------+
2050| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2051+-------------------------+--------------------------------------------------------------------------------------------------------------+
2052| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2053+-------------------------+--------------------------------------------------------------------------------------------------------------+
2054
2055.. _t_vector:
2056
2057Vector Type
2058"""""""""""
2059
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002060:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002061
2062A vector type is a simple derived type that represents a vector of
2063elements. Vector types are used when multiple primitive data are
2064operated in parallel using a single instruction (SIMD). A vector type
2065requires a size (number of elements) and an underlying primitive data
2066type. Vector types are considered :ref:`first class <t_firstclass>`.
2067
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002068:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002069
2070::
2071
2072 < <# elements> x <elementtype> >
2073
2074The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002075elementtype may be any integer, floating point or pointer type. Vectors
2076of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002077
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002078:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002079
2080+-------------------+--------------------------------------------------+
2081| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2082+-------------------+--------------------------------------------------+
2083| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2084+-------------------+--------------------------------------------------+
2085| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2086+-------------------+--------------------------------------------------+
2087| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2088+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002089
2090.. _t_label:
2091
2092Label Type
2093^^^^^^^^^^
2094
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002095:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002096
2097The label type represents code labels.
2098
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002099:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002100
2101::
2102
2103 label
2104
2105.. _t_metadata:
2106
2107Metadata Type
2108^^^^^^^^^^^^^
2109
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002110:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002111
2112The metadata type represents embedded metadata. No derived types may be
2113created from metadata except for :ref:`function <t_function>` arguments.
2114
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002115:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002116
2117::
2118
2119 metadata
2120
Sean Silvab084af42012-12-07 10:36:55 +00002121.. _t_aggregate:
2122
2123Aggregate Types
2124^^^^^^^^^^^^^^^
2125
2126Aggregate Types are a subset of derived types that can contain multiple
2127member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2128aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2129aggregate types.
2130
2131.. _t_array:
2132
2133Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002134""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002135
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002136:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002137
2138The array type is a very simple derived type that arranges elements
2139sequentially in memory. The array type requires a size (number of
2140elements) and an underlying data type.
2141
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002142:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002143
2144::
2145
2146 [<# elements> x <elementtype>]
2147
2148The number of elements is a constant integer value; ``elementtype`` may
2149be any type with a size.
2150
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002151:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002152
2153+------------------+--------------------------------------+
2154| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2155+------------------+--------------------------------------+
2156| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2157+------------------+--------------------------------------+
2158| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2159+------------------+--------------------------------------+
2160
2161Here are some examples of multidimensional arrays:
2162
2163+-----------------------------+----------------------------------------------------------+
2164| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2165+-----------------------------+----------------------------------------------------------+
2166| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2167+-----------------------------+----------------------------------------------------------+
2168| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2169+-----------------------------+----------------------------------------------------------+
2170
2171There is no restriction on indexing beyond the end of the array implied
2172by a static type (though there are restrictions on indexing beyond the
2173bounds of an allocated object in some cases). This means that
2174single-dimension 'variable sized array' addressing can be implemented in
2175LLVM with a zero length array type. An implementation of 'pascal style
2176arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2177example.
2178
Sean Silvab084af42012-12-07 10:36:55 +00002179.. _t_struct:
2180
2181Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002182""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002183
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002184:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002185
2186The structure type is used to represent a collection of data members
2187together in memory. The elements of a structure may be any type that has
2188a size.
2189
2190Structures in memory are accessed using '``load``' and '``store``' by
2191getting a pointer to a field with the '``getelementptr``' instruction.
2192Structures in registers are accessed using the '``extractvalue``' and
2193'``insertvalue``' instructions.
2194
2195Structures may optionally be "packed" structures, which indicate that
2196the alignment of the struct is one byte, and that there is no padding
2197between the elements. In non-packed structs, padding between field types
2198is inserted as defined by the DataLayout string in the module, which is
2199required to match what the underlying code generator expects.
2200
2201Structures can either be "literal" or "identified". A literal structure
2202is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2203identified types are always defined at the top level with a name.
2204Literal types are uniqued by their contents and can never be recursive
2205or opaque since there is no way to write one. Identified types can be
2206recursive, can be opaqued, and are never uniqued.
2207
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002208:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002209
2210::
2211
2212 %T1 = type { <type list> } ; Identified normal struct type
2213 %T2 = type <{ <type list> }> ; Identified packed struct type
2214
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002215:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002216
2217+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2218| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2219+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002220| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002221+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2222| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2223+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2224
2225.. _t_opaque:
2226
2227Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002228""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002229
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002230:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002231
2232Opaque structure types are used to represent named structure types that
2233do not have a body specified. This corresponds (for example) to the C
2234notion of a forward declared structure.
2235
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002236:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002237
2238::
2239
2240 %X = type opaque
2241 %52 = type opaque
2242
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002243:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002244
2245+--------------+-------------------+
2246| ``opaque`` | An opaque type. |
2247+--------------+-------------------+
2248
Sean Silva1703e702014-04-08 21:06:22 +00002249.. _constants:
2250
Sean Silvab084af42012-12-07 10:36:55 +00002251Constants
2252=========
2253
2254LLVM has several different basic types of constants. This section
2255describes them all and their syntax.
2256
2257Simple Constants
2258----------------
2259
2260**Boolean constants**
2261 The two strings '``true``' and '``false``' are both valid constants
2262 of the ``i1`` type.
2263**Integer constants**
2264 Standard integers (such as '4') are constants of the
2265 :ref:`integer <t_integer>` type. Negative numbers may be used with
2266 integer types.
2267**Floating point constants**
2268 Floating point constants use standard decimal notation (e.g.
2269 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2270 hexadecimal notation (see below). The assembler requires the exact
2271 decimal value of a floating-point constant. For example, the
2272 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2273 decimal in binary. Floating point constants must have a :ref:`floating
2274 point <t_floating>` type.
2275**Null pointer constants**
2276 The identifier '``null``' is recognized as a null pointer constant
2277 and must be of :ref:`pointer type <t_pointer>`.
2278
2279The one non-intuitive notation for constants is the hexadecimal form of
2280floating point constants. For example, the form
2281'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2282than) '``double 4.5e+15``'. The only time hexadecimal floating point
2283constants are required (and the only time that they are generated by the
2284disassembler) is when a floating point constant must be emitted but it
2285cannot be represented as a decimal floating point number in a reasonable
2286number of digits. For example, NaN's, infinities, and other special
2287values are represented in their IEEE hexadecimal format so that assembly
2288and disassembly do not cause any bits to change in the constants.
2289
2290When using the hexadecimal form, constants of types half, float, and
2291double are represented using the 16-digit form shown above (which
2292matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002293must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002294precision, respectively. Hexadecimal format is always used for long
2295double, and there are three forms of long double. The 80-bit format used
2296by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2297128-bit format used by PowerPC (two adjacent doubles) is represented by
2298``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002299represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2300will only work if they match the long double format on your target.
2301The IEEE 16-bit format (half precision) is represented by ``0xH``
2302followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2303(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002304
Reid Kleckner9a16d082014-03-05 02:41:37 +00002305There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002306
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002307.. _complexconstants:
2308
Sean Silvab084af42012-12-07 10:36:55 +00002309Complex Constants
2310-----------------
2311
2312Complex constants are a (potentially recursive) combination of simple
2313constants and smaller complex constants.
2314
2315**Structure constants**
2316 Structure constants are represented with notation similar to
2317 structure type definitions (a comma separated list of elements,
2318 surrounded by braces (``{}``)). For example:
2319 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2320 "``@G = external global i32``". Structure constants must have
2321 :ref:`structure type <t_struct>`, and the number and types of elements
2322 must match those specified by the type.
2323**Array constants**
2324 Array constants are represented with notation similar to array type
2325 definitions (a comma separated list of elements, surrounded by
2326 square brackets (``[]``)). For example:
2327 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2328 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002329 match those specified by the type. As a special case, character array
2330 constants may also be represented as a double-quoted string using the ``c``
2331 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002332**Vector constants**
2333 Vector constants are represented with notation similar to vector
2334 type definitions (a comma separated list of elements, surrounded by
2335 less-than/greater-than's (``<>``)). For example:
2336 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2337 must have :ref:`vector type <t_vector>`, and the number and types of
2338 elements must match those specified by the type.
2339**Zero initialization**
2340 The string '``zeroinitializer``' can be used to zero initialize a
2341 value to zero of *any* type, including scalar and
2342 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2343 having to print large zero initializers (e.g. for large arrays) and
2344 is always exactly equivalent to using explicit zero initializers.
2345**Metadata node**
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002346 A metadata node is a constant tuple without types. For example:
2347 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
2348 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2349 Unlike other typed constants that are meant to be interpreted as part of
2350 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002351 information such as debug info.
2352
2353Global Variable and Function Addresses
2354--------------------------------------
2355
2356The addresses of :ref:`global variables <globalvars>` and
2357:ref:`functions <functionstructure>` are always implicitly valid
2358(link-time) constants. These constants are explicitly referenced when
2359the :ref:`identifier for the global <identifiers>` is used and always have
2360:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2361file:
2362
2363.. code-block:: llvm
2364
2365 @X = global i32 17
2366 @Y = global i32 42
2367 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2368
2369.. _undefvalues:
2370
2371Undefined Values
2372----------------
2373
2374The string '``undef``' can be used anywhere a constant is expected, and
2375indicates that the user of the value may receive an unspecified
2376bit-pattern. Undefined values may be of any type (other than '``label``'
2377or '``void``') and be used anywhere a constant is permitted.
2378
2379Undefined values are useful because they indicate to the compiler that
2380the program is well defined no matter what value is used. This gives the
2381compiler more freedom to optimize. Here are some examples of
2382(potentially surprising) transformations that are valid (in pseudo IR):
2383
2384.. code-block:: llvm
2385
2386 %A = add %X, undef
2387 %B = sub %X, undef
2388 %C = xor %X, undef
2389 Safe:
2390 %A = undef
2391 %B = undef
2392 %C = undef
2393
2394This is safe because all of the output bits are affected by the undef
2395bits. Any output bit can have a zero or one depending on the input bits.
2396
2397.. code-block:: llvm
2398
2399 %A = or %X, undef
2400 %B = and %X, undef
2401 Safe:
2402 %A = -1
2403 %B = 0
2404 Unsafe:
2405 %A = undef
2406 %B = undef
2407
2408These logical operations have bits that are not always affected by the
2409input. For example, if ``%X`` has a zero bit, then the output of the
2410'``and``' operation will always be a zero for that bit, no matter what
2411the corresponding bit from the '``undef``' is. As such, it is unsafe to
2412optimize or assume that the result of the '``and``' is '``undef``'.
2413However, it is safe to assume that all bits of the '``undef``' could be
24140, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2415all the bits of the '``undef``' operand to the '``or``' could be set,
2416allowing the '``or``' to be folded to -1.
2417
2418.. code-block:: llvm
2419
2420 %A = select undef, %X, %Y
2421 %B = select undef, 42, %Y
2422 %C = select %X, %Y, undef
2423 Safe:
2424 %A = %X (or %Y)
2425 %B = 42 (or %Y)
2426 %C = %Y
2427 Unsafe:
2428 %A = undef
2429 %B = undef
2430 %C = undef
2431
2432This set of examples shows that undefined '``select``' (and conditional
2433branch) conditions can go *either way*, but they have to come from one
2434of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2435both known to have a clear low bit, then ``%A`` would have to have a
2436cleared low bit. However, in the ``%C`` example, the optimizer is
2437allowed to assume that the '``undef``' operand could be the same as
2438``%Y``, allowing the whole '``select``' to be eliminated.
2439
2440.. code-block:: llvm
2441
2442 %A = xor undef, undef
2443
2444 %B = undef
2445 %C = xor %B, %B
2446
2447 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002448 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002449 %F = icmp gte %D, 4
2450
2451 Safe:
2452 %A = undef
2453 %B = undef
2454 %C = undef
2455 %D = undef
2456 %E = undef
2457 %F = undef
2458
2459This example points out that two '``undef``' operands are not
2460necessarily the same. This can be surprising to people (and also matches
2461C semantics) where they assume that "``X^X``" is always zero, even if
2462``X`` is undefined. This isn't true for a number of reasons, but the
2463short answer is that an '``undef``' "variable" can arbitrarily change
2464its value over its "live range". This is true because the variable
2465doesn't actually *have a live range*. Instead, the value is logically
2466read from arbitrary registers that happen to be around when needed, so
2467the value is not necessarily consistent over time. In fact, ``%A`` and
2468``%C`` need to have the same semantics or the core LLVM "replace all
2469uses with" concept would not hold.
2470
2471.. code-block:: llvm
2472
2473 %A = fdiv undef, %X
2474 %B = fdiv %X, undef
2475 Safe:
2476 %A = undef
2477 b: unreachable
2478
2479These examples show the crucial difference between an *undefined value*
2480and *undefined behavior*. An undefined value (like '``undef``') is
2481allowed to have an arbitrary bit-pattern. This means that the ``%A``
2482operation can be constant folded to '``undef``', because the '``undef``'
2483could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2484However, in the second example, we can make a more aggressive
2485assumption: because the ``undef`` is allowed to be an arbitrary value,
2486we are allowed to assume that it could be zero. Since a divide by zero
2487has *undefined behavior*, we are allowed to assume that the operation
2488does not execute at all. This allows us to delete the divide and all
2489code after it. Because the undefined operation "can't happen", the
2490optimizer can assume that it occurs in dead code.
2491
2492.. code-block:: llvm
2493
2494 a: store undef -> %X
2495 b: store %X -> undef
2496 Safe:
2497 a: <deleted>
2498 b: unreachable
2499
2500These examples reiterate the ``fdiv`` example: a store *of* an undefined
2501value can be assumed to not have any effect; we can assume that the
2502value is overwritten with bits that happen to match what was already
2503there. However, a store *to* an undefined location could clobber
2504arbitrary memory, therefore, it has undefined behavior.
2505
2506.. _poisonvalues:
2507
2508Poison Values
2509-------------
2510
2511Poison values are similar to :ref:`undef values <undefvalues>`, however
2512they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002513that cannot evoke side effects has nevertheless detected a condition
2514that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002515
2516There is currently no way of representing a poison value in the IR; they
2517only exist when produced by operations such as :ref:`add <i_add>` with
2518the ``nsw`` flag.
2519
2520Poison value behavior is defined in terms of value *dependence*:
2521
2522- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2523- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2524 their dynamic predecessor basic block.
2525- Function arguments depend on the corresponding actual argument values
2526 in the dynamic callers of their functions.
2527- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2528 instructions that dynamically transfer control back to them.
2529- :ref:`Invoke <i_invoke>` instructions depend on the
2530 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2531 call instructions that dynamically transfer control back to them.
2532- Non-volatile loads and stores depend on the most recent stores to all
2533 of the referenced memory addresses, following the order in the IR
2534 (including loads and stores implied by intrinsics such as
2535 :ref:`@llvm.memcpy <int_memcpy>`.)
2536- An instruction with externally visible side effects depends on the
2537 most recent preceding instruction with externally visible side
2538 effects, following the order in the IR. (This includes :ref:`volatile
2539 operations <volatile>`.)
2540- An instruction *control-depends* on a :ref:`terminator
2541 instruction <terminators>` if the terminator instruction has
2542 multiple successors and the instruction is always executed when
2543 control transfers to one of the successors, and may not be executed
2544 when control is transferred to another.
2545- Additionally, an instruction also *control-depends* on a terminator
2546 instruction if the set of instructions it otherwise depends on would
2547 be different if the terminator had transferred control to a different
2548 successor.
2549- Dependence is transitive.
2550
Richard Smith32dbdf62014-07-31 04:25:36 +00002551Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2552with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002553on a poison value has undefined behavior.
2554
2555Here are some examples:
2556
2557.. code-block:: llvm
2558
2559 entry:
2560 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2561 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2562 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2563 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2564
2565 store i32 %poison, i32* @g ; Poison value stored to memory.
2566 %poison2 = load i32* @g ; Poison value loaded back from memory.
2567
2568 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2569
2570 %narrowaddr = bitcast i32* @g to i16*
2571 %wideaddr = bitcast i32* @g to i64*
2572 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2573 %poison4 = load i64* %wideaddr ; Returns a poison value.
2574
2575 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2576 br i1 %cmp, label %true, label %end ; Branch to either destination.
2577
2578 true:
2579 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2580 ; it has undefined behavior.
2581 br label %end
2582
2583 end:
2584 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2585 ; Both edges into this PHI are
2586 ; control-dependent on %cmp, so this
2587 ; always results in a poison value.
2588
2589 store volatile i32 0, i32* @g ; This would depend on the store in %true
2590 ; if %cmp is true, or the store in %entry
2591 ; otherwise, so this is undefined behavior.
2592
2593 br i1 %cmp, label %second_true, label %second_end
2594 ; The same branch again, but this time the
2595 ; true block doesn't have side effects.
2596
2597 second_true:
2598 ; No side effects!
2599 ret void
2600
2601 second_end:
2602 store volatile i32 0, i32* @g ; This time, the instruction always depends
2603 ; on the store in %end. Also, it is
2604 ; control-equivalent to %end, so this is
2605 ; well-defined (ignoring earlier undefined
2606 ; behavior in this example).
2607
2608.. _blockaddress:
2609
2610Addresses of Basic Blocks
2611-------------------------
2612
2613``blockaddress(@function, %block)``
2614
2615The '``blockaddress``' constant computes the address of the specified
2616basic block in the specified function, and always has an ``i8*`` type.
2617Taking the address of the entry block is illegal.
2618
2619This value only has defined behavior when used as an operand to the
2620':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2621against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002622undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002623no label is equal to the null pointer. This may be passed around as an
2624opaque pointer sized value as long as the bits are not inspected. This
2625allows ``ptrtoint`` and arithmetic to be performed on these values so
2626long as the original value is reconstituted before the ``indirectbr``
2627instruction.
2628
2629Finally, some targets may provide defined semantics when using the value
2630as the operand to an inline assembly, but that is target specific.
2631
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002632.. _constantexprs:
2633
Sean Silvab084af42012-12-07 10:36:55 +00002634Constant Expressions
2635--------------------
2636
2637Constant expressions are used to allow expressions involving other
2638constants to be used as constants. Constant expressions may be of any
2639:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2640that does not have side effects (e.g. load and call are not supported).
2641The following is the syntax for constant expressions:
2642
2643``trunc (CST to TYPE)``
2644 Truncate a constant to another type. The bit size of CST must be
2645 larger than the bit size of TYPE. Both types must be integers.
2646``zext (CST to TYPE)``
2647 Zero extend a constant to another type. The bit size of CST must be
2648 smaller than the bit size of TYPE. Both types must be integers.
2649``sext (CST to TYPE)``
2650 Sign extend a constant to another type. The bit size of CST must be
2651 smaller than the bit size of TYPE. Both types must be integers.
2652``fptrunc (CST to TYPE)``
2653 Truncate a floating point constant to another floating point type.
2654 The size of CST must be larger than the size of TYPE. Both types
2655 must be floating point.
2656``fpext (CST to TYPE)``
2657 Floating point extend a constant to another type. The size of CST
2658 must be smaller or equal to the size of TYPE. Both types must be
2659 floating point.
2660``fptoui (CST to TYPE)``
2661 Convert a floating point constant to the corresponding unsigned
2662 integer constant. TYPE must be a scalar or vector integer type. CST
2663 must be of scalar or vector floating point type. Both CST and TYPE
2664 must be scalars, or vectors of the same number of elements. If the
2665 value won't fit in the integer type, the results are undefined.
2666``fptosi (CST to TYPE)``
2667 Convert a floating point constant to the corresponding signed
2668 integer constant. TYPE must be a scalar or vector integer type. CST
2669 must be of scalar or vector floating point type. Both CST and TYPE
2670 must be scalars, or vectors of the same number of elements. If the
2671 value won't fit in the integer type, the results are undefined.
2672``uitofp (CST to TYPE)``
2673 Convert an unsigned integer constant to the corresponding floating
2674 point constant. TYPE must be a scalar or vector floating point type.
2675 CST must be of scalar or vector integer type. Both CST and TYPE must
2676 be scalars, or vectors of the same number of elements. If the value
2677 won't fit in the floating point type, the results are undefined.
2678``sitofp (CST to TYPE)``
2679 Convert a signed integer constant to the corresponding floating
2680 point constant. TYPE must be a scalar or vector floating point type.
2681 CST must be of scalar or vector integer type. Both CST and TYPE must
2682 be scalars, or vectors of the same number of elements. If the value
2683 won't fit in the floating point type, the results are undefined.
2684``ptrtoint (CST to TYPE)``
2685 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002686 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002687 pointer type. The ``CST`` value is zero extended, truncated, or
2688 unchanged to make it fit in ``TYPE``.
2689``inttoptr (CST to TYPE)``
2690 Convert an integer constant to a pointer constant. TYPE must be a
2691 pointer type. CST must be of integer type. The CST value is zero
2692 extended, truncated, or unchanged to make it fit in a pointer size.
2693 This one is *really* dangerous!
2694``bitcast (CST to TYPE)``
2695 Convert a constant, CST, to another TYPE. The constraints of the
2696 operands are the same as those for the :ref:`bitcast
2697 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002698``addrspacecast (CST to TYPE)``
2699 Convert a constant pointer or constant vector of pointer, CST, to another
2700 TYPE in a different address space. The constraints of the operands are the
2701 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002702``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2703 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2704 constants. As with the :ref:`getelementptr <i_getelementptr>`
2705 instruction, the index list may have zero or more indexes, which are
2706 required to make sense for the type of "CSTPTR".
2707``select (COND, VAL1, VAL2)``
2708 Perform the :ref:`select operation <i_select>` on constants.
2709``icmp COND (VAL1, VAL2)``
2710 Performs the :ref:`icmp operation <i_icmp>` on constants.
2711``fcmp COND (VAL1, VAL2)``
2712 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2713``extractelement (VAL, IDX)``
2714 Perform the :ref:`extractelement operation <i_extractelement>` on
2715 constants.
2716``insertelement (VAL, ELT, IDX)``
2717 Perform the :ref:`insertelement operation <i_insertelement>` on
2718 constants.
2719``shufflevector (VEC1, VEC2, IDXMASK)``
2720 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2721 constants.
2722``extractvalue (VAL, IDX0, IDX1, ...)``
2723 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2724 constants. The index list is interpreted in a similar manner as
2725 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2726 least one index value must be specified.
2727``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2728 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2729 The index list is interpreted in a similar manner as indices in a
2730 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2731 value must be specified.
2732``OPCODE (LHS, RHS)``
2733 Perform the specified operation of the LHS and RHS constants. OPCODE
2734 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2735 binary <bitwiseops>` operations. The constraints on operands are
2736 the same as those for the corresponding instruction (e.g. no bitwise
2737 operations on floating point values are allowed).
2738
2739Other Values
2740============
2741
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002742.. _inlineasmexprs:
2743
Sean Silvab084af42012-12-07 10:36:55 +00002744Inline Assembler Expressions
2745----------------------------
2746
2747LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2748Inline Assembly <moduleasm>`) through the use of a special value. This
2749value represents the inline assembler as a string (containing the
2750instructions to emit), a list of operand constraints (stored as a
2751string), a flag that indicates whether or not the inline asm expression
2752has side effects, and a flag indicating whether the function containing
2753the asm needs to align its stack conservatively. An example inline
2754assembler expression is:
2755
2756.. code-block:: llvm
2757
2758 i32 (i32) asm "bswap $0", "=r,r"
2759
2760Inline assembler expressions may **only** be used as the callee operand
2761of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2762Thus, typically we have:
2763
2764.. code-block:: llvm
2765
2766 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2767
2768Inline asms with side effects not visible in the constraint list must be
2769marked as having side effects. This is done through the use of the
2770'``sideeffect``' keyword, like so:
2771
2772.. code-block:: llvm
2773
2774 call void asm sideeffect "eieio", ""()
2775
2776In some cases inline asms will contain code that will not work unless
2777the stack is aligned in some way, such as calls or SSE instructions on
2778x86, yet will not contain code that does that alignment within the asm.
2779The compiler should make conservative assumptions about what the asm
2780might contain and should generate its usual stack alignment code in the
2781prologue if the '``alignstack``' keyword is present:
2782
2783.. code-block:: llvm
2784
2785 call void asm alignstack "eieio", ""()
2786
2787Inline asms also support using non-standard assembly dialects. The
2788assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2789the inline asm is using the Intel dialect. Currently, ATT and Intel are
2790the only supported dialects. An example is:
2791
2792.. code-block:: llvm
2793
2794 call void asm inteldialect "eieio", ""()
2795
2796If multiple keywords appear the '``sideeffect``' keyword must come
2797first, the '``alignstack``' keyword second and the '``inteldialect``'
2798keyword last.
2799
2800Inline Asm Metadata
2801^^^^^^^^^^^^^^^^^^^
2802
2803The call instructions that wrap inline asm nodes may have a
2804"``!srcloc``" MDNode attached to it that contains a list of constant
2805integers. If present, the code generator will use the integer as the
2806location cookie value when report errors through the ``LLVMContext``
2807error reporting mechanisms. This allows a front-end to correlate backend
2808errors that occur with inline asm back to the source code that produced
2809it. For example:
2810
2811.. code-block:: llvm
2812
2813 call void asm sideeffect "something bad", ""(), !srcloc !42
2814 ...
2815 !42 = !{ i32 1234567 }
2816
2817It is up to the front-end to make sense of the magic numbers it places
2818in the IR. If the MDNode contains multiple constants, the code generator
2819will use the one that corresponds to the line of the asm that the error
2820occurs on.
2821
2822.. _metadata:
2823
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002824Metadata
2825========
Sean Silvab084af42012-12-07 10:36:55 +00002826
2827LLVM IR allows metadata to be attached to instructions in the program
2828that can convey extra information about the code to the optimizers and
2829code generator. One example application of metadata is source-level
2830debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002831
2832Metadata does not have a type, and is not a value. If referenced from a
2833``call`` instruction, it uses the ``metadata`` type.
2834
2835All metadata are identified in syntax by a exclamation point ('``!``').
2836
2837Metadata Nodes and Metadata Strings
2838-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00002839
2840A metadata string is a string surrounded by double quotes. It can
2841contain any character by escaping non-printable characters with
2842"``\xx``" where "``xx``" is the two digit hex code. For example:
2843"``!"test\00"``".
2844
2845Metadata nodes are represented with notation similar to structure
2846constants (a comma separated list of elements, surrounded by braces and
2847preceded by an exclamation point). Metadata nodes can have any values as
2848their operand. For example:
2849
2850.. code-block:: llvm
2851
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002852 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00002853
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00002854Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
2855
2856.. code-block:: llvm
2857
2858 !0 = distinct !{!"test\00", i32 10}
2859
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00002860``distinct`` nodes are useful when nodes shouldn't be merged based on their
2861content. They can also occur when transformations cause uniquing collisions
2862when metadata operands change.
2863
Sean Silvab084af42012-12-07 10:36:55 +00002864A :ref:`named metadata <namedmetadatastructure>` is a collection of
2865metadata nodes, which can be looked up in the module symbol table. For
2866example:
2867
2868.. code-block:: llvm
2869
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002870 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00002871
2872Metadata can be used as function arguments. Here ``llvm.dbg.value``
2873function is using two metadata arguments:
2874
2875.. code-block:: llvm
2876
2877 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2878
2879Metadata can be attached with an instruction. Here metadata ``!21`` is
2880attached to the ``add`` instruction using the ``!dbg`` identifier:
2881
2882.. code-block:: llvm
2883
2884 %indvar.next = add i64 %indvar, 1, !dbg !21
2885
2886More information about specific metadata nodes recognized by the
2887optimizers and code generator is found below.
2888
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00002889Specialized Metadata Nodes
2890^^^^^^^^^^^^^^^^^^^^^^^^^^
2891
2892Specialized metadata nodes are custom data structures in metadata (as opposed
2893to generic tuples). Their fields are labelled, and can be specified in any
2894order.
2895
2896MDLocation
2897""""""""""
2898
2899``MDLocation`` nodes represent source debug locations. The ``scope:`` field is
2900mandatory.
2901
2902.. code-block:: llvm
2903
2904 !0 = !MDLocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
2905
Sean Silvab084af42012-12-07 10:36:55 +00002906'``tbaa``' Metadata
2907^^^^^^^^^^^^^^^^^^^
2908
2909In LLVM IR, memory does not have types, so LLVM's own type system is not
2910suitable for doing TBAA. Instead, metadata is added to the IR to
2911describe a type system of a higher level language. This can be used to
2912implement typical C/C++ TBAA, but it can also be used to implement
2913custom alias analysis behavior for other languages.
2914
2915The current metadata format is very simple. TBAA metadata nodes have up
2916to three fields, e.g.:
2917
2918.. code-block:: llvm
2919
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002920 !0 = !{ !"an example type tree" }
2921 !1 = !{ !"int", !0 }
2922 !2 = !{ !"float", !0 }
2923 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00002924
2925The first field is an identity field. It can be any value, usually a
2926metadata string, which uniquely identifies the type. The most important
2927name in the tree is the name of the root node. Two trees with different
2928root node names are entirely disjoint, even if they have leaves with
2929common names.
2930
2931The second field identifies the type's parent node in the tree, or is
2932null or omitted for a root node. A type is considered to alias all of
2933its descendants and all of its ancestors in the tree. Also, a type is
2934considered to alias all types in other trees, so that bitcode produced
2935from multiple front-ends is handled conservatively.
2936
2937If the third field is present, it's an integer which if equal to 1
2938indicates that the type is "constant" (meaning
2939``pointsToConstantMemory`` should return true; see `other useful
2940AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2941
2942'``tbaa.struct``' Metadata
2943^^^^^^^^^^^^^^^^^^^^^^^^^^
2944
2945The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2946aggregate assignment operations in C and similar languages, however it
2947is defined to copy a contiguous region of memory, which is more than
2948strictly necessary for aggregate types which contain holes due to
2949padding. Also, it doesn't contain any TBAA information about the fields
2950of the aggregate.
2951
2952``!tbaa.struct`` metadata can describe which memory subregions in a
2953memcpy are padding and what the TBAA tags of the struct are.
2954
2955The current metadata format is very simple. ``!tbaa.struct`` metadata
2956nodes are a list of operands which are in conceptual groups of three.
2957For each group of three, the first operand gives the byte offset of a
2958field in bytes, the second gives its size in bytes, and the third gives
2959its tbaa tag. e.g.:
2960
2961.. code-block:: llvm
2962
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002963 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00002964
2965This describes a struct with two fields. The first is at offset 0 bytes
2966with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2967and has size 4 bytes and has tbaa tag !2.
2968
2969Note that the fields need not be contiguous. In this example, there is a
29704 byte gap between the two fields. This gap represents padding which
2971does not carry useful data and need not be preserved.
2972
Hal Finkel94146652014-07-24 14:25:39 +00002973'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00002974^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00002975
2976``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
2977noalias memory-access sets. This means that some collection of memory access
2978instructions (loads, stores, memory-accessing calls, etc.) that carry
2979``noalias`` metadata can specifically be specified not to alias with some other
2980collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00002981Each type of metadata specifies a list of scopes where each scope has an id and
2982a domain. When evaluating an aliasing query, if for some some domain, the set
2983of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00002984subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00002985instruction's ``noalias`` list, then the two memory accesses are assumed not to
2986alias.
Hal Finkel94146652014-07-24 14:25:39 +00002987
Hal Finkel029cde62014-07-25 15:50:02 +00002988The metadata identifying each domain is itself a list containing one or two
2989entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00002990string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00002991self-reference can be used to create globally unique domain names. A
2992descriptive string may optionally be provided as a second list entry.
2993
2994The metadata identifying each scope is also itself a list containing two or
2995three entries. The first entry is the name of the scope. Note that if the name
2996is a string then it can be combined accross functions and translation units. A
2997self-reference can be used to create globally unique scope names. A metadata
2998reference to the scope's domain is the second entry. A descriptive string may
2999optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00003000
3001For example,
3002
3003.. code-block:: llvm
3004
Hal Finkel029cde62014-07-25 15:50:02 +00003005 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003006 !0 = !{!0}
3007 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00003008
Hal Finkel029cde62014-07-25 15:50:02 +00003009 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003010 !2 = !{!2, !0}
3011 !3 = !{!3, !0}
3012 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00003013
Hal Finkel029cde62014-07-25 15:50:02 +00003014 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003015 !5 = !{!4} ; A list containing only scope !4
3016 !6 = !{!4, !3, !2}
3017 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00003018
3019 ; These two instructions don't alias:
Hal Finkel029cde62014-07-25 15:50:02 +00003020 %0 = load float* %c, align 4, !alias.scope !5
3021 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00003022
Hal Finkel029cde62014-07-25 15:50:02 +00003023 ; These two instructions also don't alias (for domain !1, the set of scopes
3024 ; in the !alias.scope equals that in the !noalias list):
3025 %2 = load float* %c, align 4, !alias.scope !5
3026 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00003027
Hal Finkel029cde62014-07-25 15:50:02 +00003028 ; These two instructions don't alias (for domain !0, the set of scopes in
3029 ; the !noalias list is not a superset of, or equal to, the scopes in the
3030 ; !alias.scope list):
3031 %2 = load float* %c, align 4, !alias.scope !6
3032 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00003033
Sean Silvab084af42012-12-07 10:36:55 +00003034'``fpmath``' Metadata
3035^^^^^^^^^^^^^^^^^^^^^
3036
3037``fpmath`` metadata may be attached to any instruction of floating point
3038type. It can be used to express the maximum acceptable error in the
3039result of that instruction, in ULPs, thus potentially allowing the
3040compiler to use a more efficient but less accurate method of computing
3041it. ULP is defined as follows:
3042
3043 If ``x`` is a real number that lies between two finite consecutive
3044 floating-point numbers ``a`` and ``b``, without being equal to one
3045 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
3046 distance between the two non-equal finite floating-point numbers
3047 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
3048
3049The metadata node shall consist of a single positive floating point
3050number representing the maximum relative error, for example:
3051
3052.. code-block:: llvm
3053
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003054 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00003055
3056'``range``' Metadata
3057^^^^^^^^^^^^^^^^^^^^
3058
Jingyue Wu37fcb592014-06-19 16:50:16 +00003059``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
3060integer types. It expresses the possible ranges the loaded value or the value
3061returned by the called function at this call site is in. The ranges are
3062represented with a flattened list of integers. The loaded value or the value
3063returned is known to be in the union of the ranges defined by each consecutive
3064pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00003065
3066- The type must match the type loaded by the instruction.
3067- The pair ``a,b`` represents the range ``[a,b)``.
3068- Both ``a`` and ``b`` are constants.
3069- The range is allowed to wrap.
3070- The range should not represent the full or empty set. That is,
3071 ``a!=b``.
3072
3073In addition, the pairs must be in signed order of the lower bound and
3074they must be non-contiguous.
3075
3076Examples:
3077
3078.. code-block:: llvm
3079
3080 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
3081 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00003082 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
3083 %d = invoke i8 @bar() to label %cont
3084 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00003085 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003086 !0 = !{ i8 0, i8 2 }
3087 !1 = !{ i8 255, i8 2 }
3088 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
3089 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00003090
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003091'``llvm.loop``'
3092^^^^^^^^^^^^^^^
3093
3094It is sometimes useful to attach information to loop constructs. Currently,
3095loop metadata is implemented as metadata attached to the branch instruction
3096in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00003097guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00003098specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003099
3100The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00003101itself to avoid merging it with any other identifier metadata, e.g.,
3102during module linkage or function inlining. That is, each loop should refer
3103to their own identification metadata even if they reside in separate functions.
3104The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003105constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003106
3107.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00003108
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003109 !0 = !{!0}
3110 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003111
Mark Heffernan893752a2014-07-18 19:24:51 +00003112The loop identifier metadata can be used to specify additional
3113per-loop metadata. Any operands after the first operand can be treated
3114as user-defined metadata. For example the ``llvm.loop.unroll.count``
3115suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003116
Paul Redmond5fdf8362013-05-28 20:00:34 +00003117.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003118
Paul Redmond5fdf8362013-05-28 20:00:34 +00003119 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
3120 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003121 !0 = !{!0, !1}
3122 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003123
Mark Heffernan9d20e422014-07-21 23:11:03 +00003124'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
3125^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00003126
Mark Heffernan9d20e422014-07-21 23:11:03 +00003127Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
3128used to control per-loop vectorization and interleaving parameters such as
3129vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00003130conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00003131``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
3132optimization hints and the optimizer will only interleave and vectorize loops if
3133it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
3134which contains information about loop-carried memory dependencies can be helpful
3135in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00003136
Mark Heffernan9d20e422014-07-21 23:11:03 +00003137'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00003138^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3139
Mark Heffernan9d20e422014-07-21 23:11:03 +00003140This metadata suggests an interleave count to the loop interleaver.
3141The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00003142second operand is an integer specifying the interleave count. For
3143example:
3144
3145.. code-block:: llvm
3146
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003147 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003148
Mark Heffernan9d20e422014-07-21 23:11:03 +00003149Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3150multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
3151then the interleave count will be determined automatically.
3152
3153'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00003154^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00003155
3156This metadata selectively enables or disables vectorization for the loop. The
3157first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3158is a bit. If the bit operand value is 1 vectorization is enabled. A value of
31590 disables vectorization:
3160
3161.. code-block:: llvm
3162
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003163 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
3164 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00003165
3166'``llvm.loop.vectorize.width``' Metadata
3167^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3168
3169This metadata sets the target width of the vectorizer. The first
3170operand is the string ``llvm.loop.vectorize.width`` and the second
3171operand is an integer specifying the width. For example:
3172
3173.. code-block:: llvm
3174
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003175 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003176
3177Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3178vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
31790 or if the loop does not have this metadata the width will be
3180determined automatically.
3181
3182'``llvm.loop.unroll``'
3183^^^^^^^^^^^^^^^^^^^^^^
3184
3185Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3186optimization hints such as the unroll factor. ``llvm.loop.unroll``
3187metadata should be used in conjunction with ``llvm.loop`` loop
3188identification metadata. The ``llvm.loop.unroll`` metadata are only
3189optimization hints and the unrolling will only be performed if the
3190optimizer believes it is safe to do so.
3191
Mark Heffernan893752a2014-07-18 19:24:51 +00003192'``llvm.loop.unroll.count``' Metadata
3193^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3194
3195This metadata suggests an unroll factor to the loop unroller. The
3196first operand is the string ``llvm.loop.unroll.count`` and the second
3197operand is a positive integer specifying the unroll factor. For
3198example:
3199
3200.. code-block:: llvm
3201
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003202 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003203
3204If the trip count of the loop is less than the unroll count the loop
3205will be partially unrolled.
3206
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003207'``llvm.loop.unroll.disable``' Metadata
3208^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3209
3210This metadata either disables loop unrolling. The metadata has a single operand
3211which is the string ``llvm.loop.unroll.disable``. For example:
3212
3213.. code-block:: llvm
3214
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003215 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003216
3217'``llvm.loop.unroll.full``' Metadata
3218^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3219
3220This metadata either suggests that the loop should be unrolled fully. The
3221metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3222For example:
3223
3224.. code-block:: llvm
3225
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003226 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003227
3228'``llvm.mem``'
3229^^^^^^^^^^^^^^^
3230
3231Metadata types used to annotate memory accesses with information helpful
3232for optimizations are prefixed with ``llvm.mem``.
3233
3234'``llvm.mem.parallel_loop_access``' Metadata
3235^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3236
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003237The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3238or metadata containing a list of loop identifiers for nested loops.
3239The metadata is attached to memory accessing instructions and denotes that
3240no loop carried memory dependence exist between it and other instructions denoted
3241with the same loop identifier.
3242
3243Precisely, given two instructions ``m1`` and ``m2`` that both have the
3244``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3245set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00003246carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003247``L2``.
3248
3249As a special case, if all memory accessing instructions in a loop have
3250``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3251loop has no loop carried memory dependences and is considered to be a parallel
3252loop.
3253
3254Note that if not all memory access instructions have such metadata referring to
3255the loop, then the loop is considered not being trivially parallel. Additional
3256memory dependence analysis is required to make that determination. As a fail
3257safe mechanism, this causes loops that were originally parallel to be considered
3258sequential (if optimization passes that are unaware of the parallel semantics
3259insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003260
3261Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003262both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003263metadata types that refer to the same loop identifier metadata.
3264
3265.. code-block:: llvm
3266
3267 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003268 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003269 %val0 = load i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003270 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003271 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003272 ...
3273 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003274
3275 for.end:
3276 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003277 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003278
3279It is also possible to have nested parallel loops. In that case the
3280memory accesses refer to a list of loop identifier metadata nodes instead of
3281the loop identifier metadata node directly:
3282
3283.. code-block:: llvm
3284
3285 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003286 ...
3287 %val1 = load i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
3288 ...
3289 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003290
3291 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003292 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003293 %val0 = load i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003294 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003295 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003296 ...
3297 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003298
3299 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003300 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003301 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003302 ...
3303 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003304
3305 outer.for.end: ; preds = %for.body
3306 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003307 !0 = !{!1, !2} ; a list of loop identifiers
3308 !1 = !{!1} ; an identifier for the inner loop
3309 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003310
Peter Collingbournee6909c82015-02-20 20:30:47 +00003311'``llvm.bitsets``'
3312^^^^^^^^^^^^^^^^^^
3313
3314The ``llvm.bitsets`` global metadata is used to implement
3315:doc:`bitsets <BitSets>`.
3316
Sean Silvab084af42012-12-07 10:36:55 +00003317Module Flags Metadata
3318=====================
3319
3320Information about the module as a whole is difficult to convey to LLVM's
3321subsystems. The LLVM IR isn't sufficient to transmit this information.
3322The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003323this. These flags are in the form of key / value pairs --- much like a
3324dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003325look it up.
3326
3327The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3328Each triplet has the following form:
3329
3330- The first element is a *behavior* flag, which specifies the behavior
3331 when two (or more) modules are merged together, and it encounters two
3332 (or more) metadata with the same ID. The supported behaviors are
3333 described below.
3334- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003335 metadata. Each module may only have one flag entry for each unique ID (not
3336 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003337- The third element is the value of the flag.
3338
3339When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003340``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3341each unique metadata ID string, there will be exactly one entry in the merged
3342modules ``llvm.module.flags`` metadata table, and the value for that entry will
3343be determined by the merge behavior flag, as described below. The only exception
3344is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003345
3346The following behaviors are supported:
3347
3348.. list-table::
3349 :header-rows: 1
3350 :widths: 10 90
3351
3352 * - Value
3353 - Behavior
3354
3355 * - 1
3356 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003357 Emits an error if two values disagree, otherwise the resulting value
3358 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003359
3360 * - 2
3361 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003362 Emits a warning if two values disagree. The result value will be the
3363 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003364
3365 * - 3
3366 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003367 Adds a requirement that another module flag be present and have a
3368 specified value after linking is performed. The value must be a
3369 metadata pair, where the first element of the pair is the ID of the
3370 module flag to be restricted, and the second element of the pair is
3371 the value the module flag should be restricted to. This behavior can
3372 be used to restrict the allowable results (via triggering of an
3373 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003374
3375 * - 4
3376 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003377 Uses the specified value, regardless of the behavior or value of the
3378 other module. If both modules specify **Override**, but the values
3379 differ, an error will be emitted.
3380
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003381 * - 5
3382 - **Append**
3383 Appends the two values, which are required to be metadata nodes.
3384
3385 * - 6
3386 - **AppendUnique**
3387 Appends the two values, which are required to be metadata
3388 nodes. However, duplicate entries in the second list are dropped
3389 during the append operation.
3390
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003391It is an error for a particular unique flag ID to have multiple behaviors,
3392except in the case of **Require** (which adds restrictions on another metadata
3393value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003394
3395An example of module flags:
3396
3397.. code-block:: llvm
3398
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003399 !0 = !{ i32 1, !"foo", i32 1 }
3400 !1 = !{ i32 4, !"bar", i32 37 }
3401 !2 = !{ i32 2, !"qux", i32 42 }
3402 !3 = !{ i32 3, !"qux",
3403 !{
3404 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00003405 }
3406 }
3407 !llvm.module.flags = !{ !0, !1, !2, !3 }
3408
3409- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3410 if two or more ``!"foo"`` flags are seen is to emit an error if their
3411 values are not equal.
3412
3413- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3414 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003415 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003416
3417- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3418 behavior if two or more ``!"qux"`` flags are seen is to emit a
3419 warning if their values are not equal.
3420
3421- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3422
3423 ::
3424
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003425 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003426
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003427 The behavior is to emit an error if the ``llvm.module.flags`` does not
3428 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3429 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003430
3431Objective-C Garbage Collection Module Flags Metadata
3432----------------------------------------------------
3433
3434On the Mach-O platform, Objective-C stores metadata about garbage
3435collection in a special section called "image info". The metadata
3436consists of a version number and a bitmask specifying what types of
3437garbage collection are supported (if any) by the file. If two or more
3438modules are linked together their garbage collection metadata needs to
3439be merged rather than appended together.
3440
3441The Objective-C garbage collection module flags metadata consists of the
3442following key-value pairs:
3443
3444.. list-table::
3445 :header-rows: 1
3446 :widths: 30 70
3447
3448 * - Key
3449 - Value
3450
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003451 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003452 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003453
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003454 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003455 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003456 always 0.
3457
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003458 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003459 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003460 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3461 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3462 Objective-C ABI version 2.
3463
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003464 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003465 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003466 not. Valid values are 0, for no garbage collection, and 2, for garbage
3467 collection supported.
3468
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003469 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003470 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003471 If present, its value must be 6. This flag requires that the
3472 ``Objective-C Garbage Collection`` flag have the value 2.
3473
3474Some important flag interactions:
3475
3476- If a module with ``Objective-C Garbage Collection`` set to 0 is
3477 merged with a module with ``Objective-C Garbage Collection`` set to
3478 2, then the resulting module has the
3479 ``Objective-C Garbage Collection`` flag set to 0.
3480- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3481 merged with a module with ``Objective-C GC Only`` set to 6.
3482
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003483Automatic Linker Flags Module Flags Metadata
3484--------------------------------------------
3485
3486Some targets support embedding flags to the linker inside individual object
3487files. Typically this is used in conjunction with language extensions which
3488allow source files to explicitly declare the libraries they depend on, and have
3489these automatically be transmitted to the linker via object files.
3490
3491These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003492using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003493to be ``AppendUnique``, and the value for the key is expected to be a metadata
3494node which should be a list of other metadata nodes, each of which should be a
3495list of metadata strings defining linker options.
3496
3497For example, the following metadata section specifies two separate sets of
3498linker options, presumably to link against ``libz`` and the ``Cocoa``
3499framework::
3500
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003501 !0 = !{ i32 6, !"Linker Options",
3502 !{
3503 !{ !"-lz" },
3504 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003505 !llvm.module.flags = !{ !0 }
3506
3507The metadata encoding as lists of lists of options, as opposed to a collapsed
3508list of options, is chosen so that the IR encoding can use multiple option
3509strings to specify e.g., a single library, while still having that specifier be
3510preserved as an atomic element that can be recognized by a target specific
3511assembly writer or object file emitter.
3512
3513Each individual option is required to be either a valid option for the target's
3514linker, or an option that is reserved by the target specific assembly writer or
3515object file emitter. No other aspect of these options is defined by the IR.
3516
Oliver Stannard5dc29342014-06-20 10:08:11 +00003517C type width Module Flags Metadata
3518----------------------------------
3519
3520The ARM backend emits a section into each generated object file describing the
3521options that it was compiled with (in a compiler-independent way) to prevent
3522linking incompatible objects, and to allow automatic library selection. Some
3523of these options are not visible at the IR level, namely wchar_t width and enum
3524width.
3525
3526To pass this information to the backend, these options are encoded in module
3527flags metadata, using the following key-value pairs:
3528
3529.. list-table::
3530 :header-rows: 1
3531 :widths: 30 70
3532
3533 * - Key
3534 - Value
3535
3536 * - short_wchar
3537 - * 0 --- sizeof(wchar_t) == 4
3538 * 1 --- sizeof(wchar_t) == 2
3539
3540 * - short_enum
3541 - * 0 --- Enums are at least as large as an ``int``.
3542 * 1 --- Enums are stored in the smallest integer type which can
3543 represent all of its values.
3544
3545For example, the following metadata section specifies that the module was
3546compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3547enum is the smallest type which can represent all of its values::
3548
3549 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003550 !0 = !{i32 1, !"short_wchar", i32 1}
3551 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00003552
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003553.. _intrinsicglobalvariables:
3554
Sean Silvab084af42012-12-07 10:36:55 +00003555Intrinsic Global Variables
3556==========================
3557
3558LLVM has a number of "magic" global variables that contain data that
3559affect code generation or other IR semantics. These are documented here.
3560All globals of this sort should have a section specified as
3561"``llvm.metadata``". This section and all globals that start with
3562"``llvm.``" are reserved for use by LLVM.
3563
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003564.. _gv_llvmused:
3565
Sean Silvab084af42012-12-07 10:36:55 +00003566The '``llvm.used``' Global Variable
3567-----------------------------------
3568
Rafael Espindola74f2e462013-04-22 14:58:02 +00003569The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003570:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003571pointers to named global variables, functions and aliases which may optionally
3572have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003573use of it is:
3574
3575.. code-block:: llvm
3576
3577 @X = global i8 4
3578 @Y = global i32 123
3579
3580 @llvm.used = appending global [2 x i8*] [
3581 i8* @X,
3582 i8* bitcast (i32* @Y to i8*)
3583 ], section "llvm.metadata"
3584
Rafael Espindola74f2e462013-04-22 14:58:02 +00003585If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3586and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003587symbol that it cannot see (which is why they have to be named). For example, if
3588a variable has internal linkage and no references other than that from the
3589``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3590references from inline asms and other things the compiler cannot "see", and
3591corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003592
3593On some targets, the code generator must emit a directive to the
3594assembler or object file to prevent the assembler and linker from
3595molesting the symbol.
3596
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003597.. _gv_llvmcompilerused:
3598
Sean Silvab084af42012-12-07 10:36:55 +00003599The '``llvm.compiler.used``' Global Variable
3600--------------------------------------------
3601
3602The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3603directive, except that it only prevents the compiler from touching the
3604symbol. On targets that support it, this allows an intelligent linker to
3605optimize references to the symbol without being impeded as it would be
3606by ``@llvm.used``.
3607
3608This is a rare construct that should only be used in rare circumstances,
3609and should not be exposed to source languages.
3610
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003611.. _gv_llvmglobalctors:
3612
Sean Silvab084af42012-12-07 10:36:55 +00003613The '``llvm.global_ctors``' Global Variable
3614-------------------------------------------
3615
3616.. code-block:: llvm
3617
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003618 %0 = type { i32, void ()*, i8* }
3619 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003620
3621The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003622functions, priorities, and an optional associated global or function.
3623The functions referenced by this array will be called in ascending order
3624of priority (i.e. lowest first) when the module is loaded. The order of
3625functions with the same priority is not defined.
3626
3627If the third field is present, non-null, and points to a global variable
3628or function, the initializer function will only run if the associated
3629data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003630
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003631.. _llvmglobaldtors:
3632
Sean Silvab084af42012-12-07 10:36:55 +00003633The '``llvm.global_dtors``' Global Variable
3634-------------------------------------------
3635
3636.. code-block:: llvm
3637
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003638 %0 = type { i32, void ()*, i8* }
3639 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003640
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003641The ``@llvm.global_dtors`` array contains a list of destructor
3642functions, priorities, and an optional associated global or function.
3643The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003644order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003645order of functions with the same priority is not defined.
3646
3647If the third field is present, non-null, and points to a global variable
3648or function, the destructor function will only run if the associated
3649data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003650
3651Instruction Reference
3652=====================
3653
3654The LLVM instruction set consists of several different classifications
3655of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3656instructions <binaryops>`, :ref:`bitwise binary
3657instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3658:ref:`other instructions <otherops>`.
3659
3660.. _terminators:
3661
3662Terminator Instructions
3663-----------------------
3664
3665As mentioned :ref:`previously <functionstructure>`, every basic block in a
3666program ends with a "Terminator" instruction, which indicates which
3667block should be executed after the current block is finished. These
3668terminator instructions typically yield a '``void``' value: they produce
3669control flow, not values (the one exception being the
3670':ref:`invoke <i_invoke>`' instruction).
3671
3672The terminator instructions are: ':ref:`ret <i_ret>`',
3673':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3674':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3675':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3676
3677.. _i_ret:
3678
3679'``ret``' Instruction
3680^^^^^^^^^^^^^^^^^^^^^
3681
3682Syntax:
3683"""""""
3684
3685::
3686
3687 ret <type> <value> ; Return a value from a non-void function
3688 ret void ; Return from void function
3689
3690Overview:
3691"""""""""
3692
3693The '``ret``' instruction is used to return control flow (and optionally
3694a value) from a function back to the caller.
3695
3696There are two forms of the '``ret``' instruction: one that returns a
3697value and then causes control flow, and one that just causes control
3698flow to occur.
3699
3700Arguments:
3701""""""""""
3702
3703The '``ret``' instruction optionally accepts a single argument, the
3704return value. The type of the return value must be a ':ref:`first
3705class <t_firstclass>`' type.
3706
3707A function is not :ref:`well formed <wellformed>` if it it has a non-void
3708return type and contains a '``ret``' instruction with no return value or
3709a return value with a type that does not match its type, or if it has a
3710void return type and contains a '``ret``' instruction with a return
3711value.
3712
3713Semantics:
3714""""""""""
3715
3716When the '``ret``' instruction is executed, control flow returns back to
3717the calling function's context. If the caller is a
3718":ref:`call <i_call>`" instruction, execution continues at the
3719instruction after the call. If the caller was an
3720":ref:`invoke <i_invoke>`" instruction, execution continues at the
3721beginning of the "normal" destination block. If the instruction returns
3722a value, that value shall set the call or invoke instruction's return
3723value.
3724
3725Example:
3726""""""""
3727
3728.. code-block:: llvm
3729
3730 ret i32 5 ; Return an integer value of 5
3731 ret void ; Return from a void function
3732 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3733
3734.. _i_br:
3735
3736'``br``' Instruction
3737^^^^^^^^^^^^^^^^^^^^
3738
3739Syntax:
3740"""""""
3741
3742::
3743
3744 br i1 <cond>, label <iftrue>, label <iffalse>
3745 br label <dest> ; Unconditional branch
3746
3747Overview:
3748"""""""""
3749
3750The '``br``' instruction is used to cause control flow to transfer to a
3751different basic block in the current function. There are two forms of
3752this instruction, corresponding to a conditional branch and an
3753unconditional branch.
3754
3755Arguments:
3756""""""""""
3757
3758The conditional branch form of the '``br``' instruction takes a single
3759'``i1``' value and two '``label``' values. The unconditional form of the
3760'``br``' instruction takes a single '``label``' value as a target.
3761
3762Semantics:
3763""""""""""
3764
3765Upon execution of a conditional '``br``' instruction, the '``i1``'
3766argument is evaluated. If the value is ``true``, control flows to the
3767'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3768to the '``iffalse``' ``label`` argument.
3769
3770Example:
3771""""""""
3772
3773.. code-block:: llvm
3774
3775 Test:
3776 %cond = icmp eq i32 %a, %b
3777 br i1 %cond, label %IfEqual, label %IfUnequal
3778 IfEqual:
3779 ret i32 1
3780 IfUnequal:
3781 ret i32 0
3782
3783.. _i_switch:
3784
3785'``switch``' Instruction
3786^^^^^^^^^^^^^^^^^^^^^^^^
3787
3788Syntax:
3789"""""""
3790
3791::
3792
3793 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3794
3795Overview:
3796"""""""""
3797
3798The '``switch``' instruction is used to transfer control flow to one of
3799several different places. It is a generalization of the '``br``'
3800instruction, allowing a branch to occur to one of many possible
3801destinations.
3802
3803Arguments:
3804""""""""""
3805
3806The '``switch``' instruction uses three parameters: an integer
3807comparison value '``value``', a default '``label``' destination, and an
3808array of pairs of comparison value constants and '``label``'s. The table
3809is not allowed to contain duplicate constant entries.
3810
3811Semantics:
3812""""""""""
3813
3814The ``switch`` instruction specifies a table of values and destinations.
3815When the '``switch``' instruction is executed, this table is searched
3816for the given value. If the value is found, control flow is transferred
3817to the corresponding destination; otherwise, control flow is transferred
3818to the default destination.
3819
3820Implementation:
3821"""""""""""""""
3822
3823Depending on properties of the target machine and the particular
3824``switch`` instruction, this instruction may be code generated in
3825different ways. For example, it could be generated as a series of
3826chained conditional branches or with a lookup table.
3827
3828Example:
3829""""""""
3830
3831.. code-block:: llvm
3832
3833 ; Emulate a conditional br instruction
3834 %Val = zext i1 %value to i32
3835 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3836
3837 ; Emulate an unconditional br instruction
3838 switch i32 0, label %dest [ ]
3839
3840 ; Implement a jump table:
3841 switch i32 %val, label %otherwise [ i32 0, label %onzero
3842 i32 1, label %onone
3843 i32 2, label %ontwo ]
3844
3845.. _i_indirectbr:
3846
3847'``indirectbr``' Instruction
3848^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3849
3850Syntax:
3851"""""""
3852
3853::
3854
3855 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3856
3857Overview:
3858"""""""""
3859
3860The '``indirectbr``' instruction implements an indirect branch to a
3861label within the current function, whose address is specified by
3862"``address``". Address must be derived from a
3863:ref:`blockaddress <blockaddress>` constant.
3864
3865Arguments:
3866""""""""""
3867
3868The '``address``' argument is the address of the label to jump to. The
3869rest of the arguments indicate the full set of possible destinations
3870that the address may point to. Blocks are allowed to occur multiple
3871times in the destination list, though this isn't particularly useful.
3872
3873This destination list is required so that dataflow analysis has an
3874accurate understanding of the CFG.
3875
3876Semantics:
3877""""""""""
3878
3879Control transfers to the block specified in the address argument. All
3880possible destination blocks must be listed in the label list, otherwise
3881this instruction has undefined behavior. This implies that jumps to
3882labels defined in other functions have undefined behavior as well.
3883
3884Implementation:
3885"""""""""""""""
3886
3887This is typically implemented with a jump through a register.
3888
3889Example:
3890""""""""
3891
3892.. code-block:: llvm
3893
3894 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3895
3896.. _i_invoke:
3897
3898'``invoke``' Instruction
3899^^^^^^^^^^^^^^^^^^^^^^^^
3900
3901Syntax:
3902"""""""
3903
3904::
3905
3906 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3907 to label <normal label> unwind label <exception label>
3908
3909Overview:
3910"""""""""
3911
3912The '``invoke``' instruction causes control to transfer to a specified
3913function, with the possibility of control flow transfer to either the
3914'``normal``' label or the '``exception``' label. If the callee function
3915returns with the "``ret``" instruction, control flow will return to the
3916"normal" label. If the callee (or any indirect callees) returns via the
3917":ref:`resume <i_resume>`" instruction or other exception handling
3918mechanism, control is interrupted and continued at the dynamically
3919nearest "exception" label.
3920
3921The '``exception``' label is a `landing
3922pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3923'``exception``' label is required to have the
3924":ref:`landingpad <i_landingpad>`" instruction, which contains the
3925information about the behavior of the program after unwinding happens,
3926as its first non-PHI instruction. The restrictions on the
3927"``landingpad``" instruction's tightly couples it to the "``invoke``"
3928instruction, so that the important information contained within the
3929"``landingpad``" instruction can't be lost through normal code motion.
3930
3931Arguments:
3932""""""""""
3933
3934This instruction requires several arguments:
3935
3936#. The optional "cconv" marker indicates which :ref:`calling
3937 convention <callingconv>` the call should use. If none is
3938 specified, the call defaults to using C calling conventions.
3939#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3940 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3941 are valid here.
3942#. '``ptr to function ty``': shall be the signature of the pointer to
3943 function value being invoked. In most cases, this is a direct
3944 function invocation, but indirect ``invoke``'s are just as possible,
3945 branching off an arbitrary pointer to function value.
3946#. '``function ptr val``': An LLVM value containing a pointer to a
3947 function to be invoked.
3948#. '``function args``': argument list whose types match the function
3949 signature argument types and parameter attributes. All arguments must
3950 be of :ref:`first class <t_firstclass>` type. If the function signature
3951 indicates the function accepts a variable number of arguments, the
3952 extra arguments can be specified.
3953#. '``normal label``': the label reached when the called function
3954 executes a '``ret``' instruction.
3955#. '``exception label``': the label reached when a callee returns via
3956 the :ref:`resume <i_resume>` instruction or other exception handling
3957 mechanism.
3958#. The optional :ref:`function attributes <fnattrs>` list. Only
3959 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3960 attributes are valid here.
3961
3962Semantics:
3963""""""""""
3964
3965This instruction is designed to operate as a standard '``call``'
3966instruction in most regards. The primary difference is that it
3967establishes an association with a label, which is used by the runtime
3968library to unwind the stack.
3969
3970This instruction is used in languages with destructors to ensure that
3971proper cleanup is performed in the case of either a ``longjmp`` or a
3972thrown exception. Additionally, this is important for implementation of
3973'``catch``' clauses in high-level languages that support them.
3974
3975For the purposes of the SSA form, the definition of the value returned
3976by the '``invoke``' instruction is deemed to occur on the edge from the
3977current block to the "normal" label. If the callee unwinds then no
3978return value is available.
3979
3980Example:
3981""""""""
3982
3983.. code-block:: llvm
3984
3985 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003986 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003987 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00003988 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00003989
3990.. _i_resume:
3991
3992'``resume``' Instruction
3993^^^^^^^^^^^^^^^^^^^^^^^^
3994
3995Syntax:
3996"""""""
3997
3998::
3999
4000 resume <type> <value>
4001
4002Overview:
4003"""""""""
4004
4005The '``resume``' instruction is a terminator instruction that has no
4006successors.
4007
4008Arguments:
4009""""""""""
4010
4011The '``resume``' instruction requires one argument, which must have the
4012same type as the result of any '``landingpad``' instruction in the same
4013function.
4014
4015Semantics:
4016""""""""""
4017
4018The '``resume``' instruction resumes propagation of an existing
4019(in-flight) exception whose unwinding was interrupted with a
4020:ref:`landingpad <i_landingpad>` instruction.
4021
4022Example:
4023""""""""
4024
4025.. code-block:: llvm
4026
4027 resume { i8*, i32 } %exn
4028
4029.. _i_unreachable:
4030
4031'``unreachable``' Instruction
4032^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4033
4034Syntax:
4035"""""""
4036
4037::
4038
4039 unreachable
4040
4041Overview:
4042"""""""""
4043
4044The '``unreachable``' instruction has no defined semantics. This
4045instruction is used to inform the optimizer that a particular portion of
4046the code is not reachable. This can be used to indicate that the code
4047after a no-return function cannot be reached, and other facts.
4048
4049Semantics:
4050""""""""""
4051
4052The '``unreachable``' instruction has no defined semantics.
4053
4054.. _binaryops:
4055
4056Binary Operations
4057-----------------
4058
4059Binary operators are used to do most of the computation in a program.
4060They require two operands of the same type, execute an operation on
4061them, and produce a single value. The operands might represent multiple
4062data, as is the case with the :ref:`vector <t_vector>` data type. The
4063result value has the same type as its operands.
4064
4065There are several different binary operators:
4066
4067.. _i_add:
4068
4069'``add``' Instruction
4070^^^^^^^^^^^^^^^^^^^^^
4071
4072Syntax:
4073"""""""
4074
4075::
4076
Tim Northover675a0962014-06-13 14:24:23 +00004077 <result> = add <ty> <op1>, <op2> ; yields ty:result
4078 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
4079 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
4080 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004081
4082Overview:
4083"""""""""
4084
4085The '``add``' instruction returns the sum of its two operands.
4086
4087Arguments:
4088""""""""""
4089
4090The two arguments to the '``add``' instruction must be
4091:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4092arguments must have identical types.
4093
4094Semantics:
4095""""""""""
4096
4097The value produced is the integer sum of the two operands.
4098
4099If the sum has unsigned overflow, the result returned is the
4100mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4101the result.
4102
4103Because LLVM integers use a two's complement representation, this
4104instruction is appropriate for both signed and unsigned integers.
4105
4106``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4107respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4108result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
4109unsigned and/or signed overflow, respectively, occurs.
4110
4111Example:
4112""""""""
4113
4114.. code-block:: llvm
4115
Tim Northover675a0962014-06-13 14:24:23 +00004116 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004117
4118.. _i_fadd:
4119
4120'``fadd``' Instruction
4121^^^^^^^^^^^^^^^^^^^^^^
4122
4123Syntax:
4124"""""""
4125
4126::
4127
Tim Northover675a0962014-06-13 14:24:23 +00004128 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004129
4130Overview:
4131"""""""""
4132
4133The '``fadd``' instruction returns the sum of its two operands.
4134
4135Arguments:
4136""""""""""
4137
4138The two arguments to the '``fadd``' instruction must be :ref:`floating
4139point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4140Both arguments must have identical types.
4141
4142Semantics:
4143""""""""""
4144
4145The value produced is the floating point sum of the two operands. This
4146instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4147which are optimization hints to enable otherwise unsafe floating point
4148optimizations:
4149
4150Example:
4151""""""""
4152
4153.. code-block:: llvm
4154
Tim Northover675a0962014-06-13 14:24:23 +00004155 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004156
4157'``sub``' Instruction
4158^^^^^^^^^^^^^^^^^^^^^
4159
4160Syntax:
4161"""""""
4162
4163::
4164
Tim Northover675a0962014-06-13 14:24:23 +00004165 <result> = sub <ty> <op1>, <op2> ; yields ty:result
4166 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
4167 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
4168 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004169
4170Overview:
4171"""""""""
4172
4173The '``sub``' instruction returns the difference of its two operands.
4174
4175Note that the '``sub``' instruction is used to represent the '``neg``'
4176instruction present in most other intermediate representations.
4177
4178Arguments:
4179""""""""""
4180
4181The two arguments to the '``sub``' instruction must be
4182:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4183arguments must have identical types.
4184
4185Semantics:
4186""""""""""
4187
4188The value produced is the integer difference of the two operands.
4189
4190If the difference has unsigned overflow, the result returned is the
4191mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4192the result.
4193
4194Because LLVM integers use a two's complement representation, this
4195instruction is appropriate for both signed and unsigned integers.
4196
4197``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4198respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4199result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4200unsigned and/or signed overflow, respectively, occurs.
4201
4202Example:
4203""""""""
4204
4205.. code-block:: llvm
4206
Tim Northover675a0962014-06-13 14:24:23 +00004207 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
4208 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004209
4210.. _i_fsub:
4211
4212'``fsub``' Instruction
4213^^^^^^^^^^^^^^^^^^^^^^
4214
4215Syntax:
4216"""""""
4217
4218::
4219
Tim Northover675a0962014-06-13 14:24:23 +00004220 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004221
4222Overview:
4223"""""""""
4224
4225The '``fsub``' instruction returns the difference of its two operands.
4226
4227Note that the '``fsub``' instruction is used to represent the '``fneg``'
4228instruction present in most other intermediate representations.
4229
4230Arguments:
4231""""""""""
4232
4233The two arguments to the '``fsub``' instruction must be :ref:`floating
4234point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4235Both arguments must have identical types.
4236
4237Semantics:
4238""""""""""
4239
4240The value produced is the floating point difference of the two operands.
4241This instruction can also take any number of :ref:`fast-math
4242flags <fastmath>`, which are optimization hints to enable otherwise
4243unsafe floating point optimizations:
4244
4245Example:
4246""""""""
4247
4248.. code-block:: llvm
4249
Tim Northover675a0962014-06-13 14:24:23 +00004250 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4251 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004252
4253'``mul``' Instruction
4254^^^^^^^^^^^^^^^^^^^^^
4255
4256Syntax:
4257"""""""
4258
4259::
4260
Tim Northover675a0962014-06-13 14:24:23 +00004261 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4262 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4263 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4264 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004265
4266Overview:
4267"""""""""
4268
4269The '``mul``' instruction returns the product of its two operands.
4270
4271Arguments:
4272""""""""""
4273
4274The two arguments to the '``mul``' instruction must be
4275:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4276arguments must have identical types.
4277
4278Semantics:
4279""""""""""
4280
4281The value produced is the integer product of the two operands.
4282
4283If the result of the multiplication has unsigned overflow, the result
4284returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4285bit width of the result.
4286
4287Because LLVM integers use a two's complement representation, and the
4288result is the same width as the operands, this instruction returns the
4289correct result for both signed and unsigned integers. If a full product
4290(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4291sign-extended or zero-extended as appropriate to the width of the full
4292product.
4293
4294``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4295respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4296result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4297unsigned and/or signed overflow, respectively, occurs.
4298
4299Example:
4300""""""""
4301
4302.. code-block:: llvm
4303
Tim Northover675a0962014-06-13 14:24:23 +00004304 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004305
4306.. _i_fmul:
4307
4308'``fmul``' Instruction
4309^^^^^^^^^^^^^^^^^^^^^^
4310
4311Syntax:
4312"""""""
4313
4314::
4315
Tim Northover675a0962014-06-13 14:24:23 +00004316 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004317
4318Overview:
4319"""""""""
4320
4321The '``fmul``' instruction returns the product of its two operands.
4322
4323Arguments:
4324""""""""""
4325
4326The two arguments to the '``fmul``' instruction must be :ref:`floating
4327point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4328Both arguments must have identical types.
4329
4330Semantics:
4331""""""""""
4332
4333The value produced is the floating point product of the two operands.
4334This instruction can also take any number of :ref:`fast-math
4335flags <fastmath>`, which are optimization hints to enable otherwise
4336unsafe floating point optimizations:
4337
4338Example:
4339""""""""
4340
4341.. code-block:: llvm
4342
Tim Northover675a0962014-06-13 14:24:23 +00004343 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004344
4345'``udiv``' Instruction
4346^^^^^^^^^^^^^^^^^^^^^^
4347
4348Syntax:
4349"""""""
4350
4351::
4352
Tim Northover675a0962014-06-13 14:24:23 +00004353 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4354 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004355
4356Overview:
4357"""""""""
4358
4359The '``udiv``' instruction returns the quotient of its two operands.
4360
4361Arguments:
4362""""""""""
4363
4364The two arguments to the '``udiv``' instruction must be
4365:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4366arguments must have identical types.
4367
4368Semantics:
4369""""""""""
4370
4371The value produced is the unsigned integer quotient of the two operands.
4372
4373Note that unsigned integer division and signed integer division are
4374distinct operations; for signed integer division, use '``sdiv``'.
4375
4376Division by zero leads to undefined behavior.
4377
4378If the ``exact`` keyword is present, the result value of the ``udiv`` is
4379a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4380such, "((a udiv exact b) mul b) == a").
4381
4382Example:
4383""""""""
4384
4385.. code-block:: llvm
4386
Tim Northover675a0962014-06-13 14:24:23 +00004387 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004388
4389'``sdiv``' Instruction
4390^^^^^^^^^^^^^^^^^^^^^^
4391
4392Syntax:
4393"""""""
4394
4395::
4396
Tim Northover675a0962014-06-13 14:24:23 +00004397 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4398 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004399
4400Overview:
4401"""""""""
4402
4403The '``sdiv``' instruction returns the quotient of its two operands.
4404
4405Arguments:
4406""""""""""
4407
4408The two arguments to the '``sdiv``' instruction must be
4409:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4410arguments must have identical types.
4411
4412Semantics:
4413""""""""""
4414
4415The value produced is the signed integer quotient of the two operands
4416rounded towards zero.
4417
4418Note that signed integer division and unsigned integer division are
4419distinct operations; for unsigned integer division, use '``udiv``'.
4420
4421Division by zero leads to undefined behavior. Overflow also leads to
4422undefined behavior; this is a rare case, but can occur, for example, by
4423doing a 32-bit division of -2147483648 by -1.
4424
4425If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4426a :ref:`poison value <poisonvalues>` if the result would be rounded.
4427
4428Example:
4429""""""""
4430
4431.. code-block:: llvm
4432
Tim Northover675a0962014-06-13 14:24:23 +00004433 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004434
4435.. _i_fdiv:
4436
4437'``fdiv``' Instruction
4438^^^^^^^^^^^^^^^^^^^^^^
4439
4440Syntax:
4441"""""""
4442
4443::
4444
Tim Northover675a0962014-06-13 14:24:23 +00004445 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004446
4447Overview:
4448"""""""""
4449
4450The '``fdiv``' instruction returns the quotient of its two operands.
4451
4452Arguments:
4453""""""""""
4454
4455The two arguments to the '``fdiv``' instruction must be :ref:`floating
4456point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4457Both arguments must have identical types.
4458
4459Semantics:
4460""""""""""
4461
4462The value produced is the floating point quotient of the two operands.
4463This instruction can also take any number of :ref:`fast-math
4464flags <fastmath>`, which are optimization hints to enable otherwise
4465unsafe floating point optimizations:
4466
4467Example:
4468""""""""
4469
4470.. code-block:: llvm
4471
Tim Northover675a0962014-06-13 14:24:23 +00004472 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004473
4474'``urem``' Instruction
4475^^^^^^^^^^^^^^^^^^^^^^
4476
4477Syntax:
4478"""""""
4479
4480::
4481
Tim Northover675a0962014-06-13 14:24:23 +00004482 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004483
4484Overview:
4485"""""""""
4486
4487The '``urem``' instruction returns the remainder from the unsigned
4488division of its two arguments.
4489
4490Arguments:
4491""""""""""
4492
4493The two arguments to the '``urem``' instruction must be
4494:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4495arguments must have identical types.
4496
4497Semantics:
4498""""""""""
4499
4500This instruction returns the unsigned integer *remainder* of a division.
4501This instruction always performs an unsigned division to get the
4502remainder.
4503
4504Note that unsigned integer remainder and signed integer remainder are
4505distinct operations; for signed integer remainder, use '``srem``'.
4506
4507Taking the remainder of a division by zero leads to undefined behavior.
4508
4509Example:
4510""""""""
4511
4512.. code-block:: llvm
4513
Tim Northover675a0962014-06-13 14:24:23 +00004514 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004515
4516'``srem``' Instruction
4517^^^^^^^^^^^^^^^^^^^^^^
4518
4519Syntax:
4520"""""""
4521
4522::
4523
Tim Northover675a0962014-06-13 14:24:23 +00004524 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004525
4526Overview:
4527"""""""""
4528
4529The '``srem``' instruction returns the remainder from the signed
4530division of its two operands. This instruction can also take
4531:ref:`vector <t_vector>` versions of the values in which case the elements
4532must be integers.
4533
4534Arguments:
4535""""""""""
4536
4537The two arguments to the '``srem``' instruction must be
4538:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4539arguments must have identical types.
4540
4541Semantics:
4542""""""""""
4543
4544This instruction returns the *remainder* of a division (where the result
4545is either zero or has the same sign as the dividend, ``op1``), not the
4546*modulo* operator (where the result is either zero or has the same sign
4547as the divisor, ``op2``) of a value. For more information about the
4548difference, see `The Math
4549Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4550table of how this is implemented in various languages, please see
4551`Wikipedia: modulo
4552operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4553
4554Note that signed integer remainder and unsigned integer remainder are
4555distinct operations; for unsigned integer remainder, use '``urem``'.
4556
4557Taking the remainder of a division by zero leads to undefined behavior.
4558Overflow also leads to undefined behavior; this is a rare case, but can
4559occur, for example, by taking the remainder of a 32-bit division of
4560-2147483648 by -1. (The remainder doesn't actually overflow, but this
4561rule lets srem be implemented using instructions that return both the
4562result of the division and the remainder.)
4563
4564Example:
4565""""""""
4566
4567.. code-block:: llvm
4568
Tim Northover675a0962014-06-13 14:24:23 +00004569 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004570
4571.. _i_frem:
4572
4573'``frem``' Instruction
4574^^^^^^^^^^^^^^^^^^^^^^
4575
4576Syntax:
4577"""""""
4578
4579::
4580
Tim Northover675a0962014-06-13 14:24:23 +00004581 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004582
4583Overview:
4584"""""""""
4585
4586The '``frem``' instruction returns the remainder from the division of
4587its two operands.
4588
4589Arguments:
4590""""""""""
4591
4592The two arguments to the '``frem``' instruction must be :ref:`floating
4593point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4594Both arguments must have identical types.
4595
4596Semantics:
4597""""""""""
4598
4599This instruction returns the *remainder* of a division. The remainder
4600has the same sign as the dividend. This instruction can also take any
4601number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4602to enable otherwise unsafe floating point optimizations:
4603
4604Example:
4605""""""""
4606
4607.. code-block:: llvm
4608
Tim Northover675a0962014-06-13 14:24:23 +00004609 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004610
4611.. _bitwiseops:
4612
4613Bitwise Binary Operations
4614-------------------------
4615
4616Bitwise binary operators are used to do various forms of bit-twiddling
4617in a program. They are generally very efficient instructions and can
4618commonly be strength reduced from other instructions. They require two
4619operands of the same type, execute an operation on them, and produce a
4620single value. The resulting value is the same type as its operands.
4621
4622'``shl``' Instruction
4623^^^^^^^^^^^^^^^^^^^^^
4624
4625Syntax:
4626"""""""
4627
4628::
4629
Tim Northover675a0962014-06-13 14:24:23 +00004630 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4631 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4632 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4633 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004634
4635Overview:
4636"""""""""
4637
4638The '``shl``' instruction returns the first operand shifted to the left
4639a specified number of bits.
4640
4641Arguments:
4642""""""""""
4643
4644Both arguments to the '``shl``' instruction must be the same
4645:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4646'``op2``' is treated as an unsigned value.
4647
4648Semantics:
4649""""""""""
4650
4651The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4652where ``n`` is the width of the result. If ``op2`` is (statically or
4653dynamically) negative or equal to or larger than the number of bits in
4654``op1``, the result is undefined. If the arguments are vectors, each
4655vector element of ``op1`` is shifted by the corresponding shift amount
4656in ``op2``.
4657
4658If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4659value <poisonvalues>` if it shifts out any non-zero bits. If the
4660``nsw`` keyword is present, then the shift produces a :ref:`poison
4661value <poisonvalues>` if it shifts out any bits that disagree with the
4662resultant sign bit. As such, NUW/NSW have the same semantics as they
4663would if the shift were expressed as a mul instruction with the same
4664nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4665
4666Example:
4667""""""""
4668
4669.. code-block:: llvm
4670
Tim Northover675a0962014-06-13 14:24:23 +00004671 <result> = shl i32 4, %var ; yields i32: 4 << %var
4672 <result> = shl i32 4, 2 ; yields i32: 16
4673 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004674 <result> = shl i32 1, 32 ; undefined
4675 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4676
4677'``lshr``' Instruction
4678^^^^^^^^^^^^^^^^^^^^^^
4679
4680Syntax:
4681"""""""
4682
4683::
4684
Tim Northover675a0962014-06-13 14:24:23 +00004685 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4686 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004687
4688Overview:
4689"""""""""
4690
4691The '``lshr``' instruction (logical shift right) returns the first
4692operand shifted to the right a specified number of bits with zero fill.
4693
4694Arguments:
4695""""""""""
4696
4697Both arguments to the '``lshr``' instruction must be the same
4698:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4699'``op2``' is treated as an unsigned value.
4700
4701Semantics:
4702""""""""""
4703
4704This instruction always performs a logical shift right operation. The
4705most significant bits of the result will be filled with zero bits after
4706the shift. If ``op2`` is (statically or dynamically) equal to or larger
4707than the number of bits in ``op1``, the result is undefined. If the
4708arguments are vectors, each vector element of ``op1`` is shifted by the
4709corresponding shift amount in ``op2``.
4710
4711If the ``exact`` keyword is present, the result value of the ``lshr`` is
4712a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4713non-zero.
4714
4715Example:
4716""""""""
4717
4718.. code-block:: llvm
4719
Tim Northover675a0962014-06-13 14:24:23 +00004720 <result> = lshr i32 4, 1 ; yields i32:result = 2
4721 <result> = lshr i32 4, 2 ; yields i32:result = 1
4722 <result> = lshr i8 4, 3 ; yields i8:result = 0
4723 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00004724 <result> = lshr i32 1, 32 ; undefined
4725 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4726
4727'``ashr``' Instruction
4728^^^^^^^^^^^^^^^^^^^^^^
4729
4730Syntax:
4731"""""""
4732
4733::
4734
Tim Northover675a0962014-06-13 14:24:23 +00004735 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
4736 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004737
4738Overview:
4739"""""""""
4740
4741The '``ashr``' instruction (arithmetic shift right) returns the first
4742operand shifted to the right a specified number of bits with sign
4743extension.
4744
4745Arguments:
4746""""""""""
4747
4748Both arguments to the '``ashr``' instruction must be the same
4749:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4750'``op2``' is treated as an unsigned value.
4751
4752Semantics:
4753""""""""""
4754
4755This instruction always performs an arithmetic shift right operation,
4756The most significant bits of the result will be filled with the sign bit
4757of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4758than the number of bits in ``op1``, the result is undefined. If the
4759arguments are vectors, each vector element of ``op1`` is shifted by the
4760corresponding shift amount in ``op2``.
4761
4762If the ``exact`` keyword is present, the result value of the ``ashr`` is
4763a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4764non-zero.
4765
4766Example:
4767""""""""
4768
4769.. code-block:: llvm
4770
Tim Northover675a0962014-06-13 14:24:23 +00004771 <result> = ashr i32 4, 1 ; yields i32:result = 2
4772 <result> = ashr i32 4, 2 ; yields i32:result = 1
4773 <result> = ashr i8 4, 3 ; yields i8:result = 0
4774 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00004775 <result> = ashr i32 1, 32 ; undefined
4776 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4777
4778'``and``' Instruction
4779^^^^^^^^^^^^^^^^^^^^^
4780
4781Syntax:
4782"""""""
4783
4784::
4785
Tim Northover675a0962014-06-13 14:24:23 +00004786 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004787
4788Overview:
4789"""""""""
4790
4791The '``and``' instruction returns the bitwise logical and of its two
4792operands.
4793
4794Arguments:
4795""""""""""
4796
4797The two arguments to the '``and``' instruction must be
4798:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4799arguments must have identical types.
4800
4801Semantics:
4802""""""""""
4803
4804The truth table used for the '``and``' instruction is:
4805
4806+-----+-----+-----+
4807| In0 | In1 | Out |
4808+-----+-----+-----+
4809| 0 | 0 | 0 |
4810+-----+-----+-----+
4811| 0 | 1 | 0 |
4812+-----+-----+-----+
4813| 1 | 0 | 0 |
4814+-----+-----+-----+
4815| 1 | 1 | 1 |
4816+-----+-----+-----+
4817
4818Example:
4819""""""""
4820
4821.. code-block:: llvm
4822
Tim Northover675a0962014-06-13 14:24:23 +00004823 <result> = and i32 4, %var ; yields i32:result = 4 & %var
4824 <result> = and i32 15, 40 ; yields i32:result = 8
4825 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00004826
4827'``or``' Instruction
4828^^^^^^^^^^^^^^^^^^^^
4829
4830Syntax:
4831"""""""
4832
4833::
4834
Tim Northover675a0962014-06-13 14:24:23 +00004835 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004836
4837Overview:
4838"""""""""
4839
4840The '``or``' instruction returns the bitwise logical inclusive or of its
4841two operands.
4842
4843Arguments:
4844""""""""""
4845
4846The two arguments to the '``or``' instruction must be
4847:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4848arguments must have identical types.
4849
4850Semantics:
4851""""""""""
4852
4853The truth table used for the '``or``' instruction is:
4854
4855+-----+-----+-----+
4856| In0 | In1 | Out |
4857+-----+-----+-----+
4858| 0 | 0 | 0 |
4859+-----+-----+-----+
4860| 0 | 1 | 1 |
4861+-----+-----+-----+
4862| 1 | 0 | 1 |
4863+-----+-----+-----+
4864| 1 | 1 | 1 |
4865+-----+-----+-----+
4866
4867Example:
4868""""""""
4869
4870::
4871
Tim Northover675a0962014-06-13 14:24:23 +00004872 <result> = or i32 4, %var ; yields i32:result = 4 | %var
4873 <result> = or i32 15, 40 ; yields i32:result = 47
4874 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00004875
4876'``xor``' Instruction
4877^^^^^^^^^^^^^^^^^^^^^
4878
4879Syntax:
4880"""""""
4881
4882::
4883
Tim Northover675a0962014-06-13 14:24:23 +00004884 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004885
4886Overview:
4887"""""""""
4888
4889The '``xor``' instruction returns the bitwise logical exclusive or of
4890its two operands. The ``xor`` is used to implement the "one's
4891complement" operation, which is the "~" operator in C.
4892
4893Arguments:
4894""""""""""
4895
4896The two arguments to the '``xor``' instruction must be
4897:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4898arguments must have identical types.
4899
4900Semantics:
4901""""""""""
4902
4903The truth table used for the '``xor``' instruction is:
4904
4905+-----+-----+-----+
4906| In0 | In1 | Out |
4907+-----+-----+-----+
4908| 0 | 0 | 0 |
4909+-----+-----+-----+
4910| 0 | 1 | 1 |
4911+-----+-----+-----+
4912| 1 | 0 | 1 |
4913+-----+-----+-----+
4914| 1 | 1 | 0 |
4915+-----+-----+-----+
4916
4917Example:
4918""""""""
4919
4920.. code-block:: llvm
4921
Tim Northover675a0962014-06-13 14:24:23 +00004922 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
4923 <result> = xor i32 15, 40 ; yields i32:result = 39
4924 <result> = xor i32 4, 8 ; yields i32:result = 12
4925 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00004926
4927Vector Operations
4928-----------------
4929
4930LLVM supports several instructions to represent vector operations in a
4931target-independent manner. These instructions cover the element-access
4932and vector-specific operations needed to process vectors effectively.
4933While LLVM does directly support these vector operations, many
4934sophisticated algorithms will want to use target-specific intrinsics to
4935take full advantage of a specific target.
4936
4937.. _i_extractelement:
4938
4939'``extractelement``' Instruction
4940^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4941
4942Syntax:
4943"""""""
4944
4945::
4946
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004947 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00004948
4949Overview:
4950"""""""""
4951
4952The '``extractelement``' instruction extracts a single scalar element
4953from a vector at a specified index.
4954
4955Arguments:
4956""""""""""
4957
4958The first operand of an '``extractelement``' instruction is a value of
4959:ref:`vector <t_vector>` type. The second operand is an index indicating
4960the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004961variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00004962
4963Semantics:
4964""""""""""
4965
4966The result is a scalar of the same type as the element type of ``val``.
4967Its value is the value at position ``idx`` of ``val``. If ``idx``
4968exceeds the length of ``val``, the results are undefined.
4969
4970Example:
4971""""""""
4972
4973.. code-block:: llvm
4974
4975 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4976
4977.. _i_insertelement:
4978
4979'``insertelement``' Instruction
4980^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4981
4982Syntax:
4983"""""""
4984
4985::
4986
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00004987 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00004988
4989Overview:
4990"""""""""
4991
4992The '``insertelement``' instruction inserts a scalar element into a
4993vector at a specified index.
4994
4995Arguments:
4996""""""""""
4997
4998The first operand of an '``insertelement``' instruction is a value of
4999:ref:`vector <t_vector>` type. The second operand is a scalar value whose
5000type must equal the element type of the first operand. The third operand
5001is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00005002index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00005003
5004Semantics:
5005""""""""""
5006
5007The result is a vector of the same type as ``val``. Its element values
5008are those of ``val`` except at position ``idx``, where it gets the value
5009``elt``. If ``idx`` exceeds the length of ``val``, the results are
5010undefined.
5011
5012Example:
5013""""""""
5014
5015.. code-block:: llvm
5016
5017 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
5018
5019.. _i_shufflevector:
5020
5021'``shufflevector``' Instruction
5022^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5023
5024Syntax:
5025"""""""
5026
5027::
5028
5029 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
5030
5031Overview:
5032"""""""""
5033
5034The '``shufflevector``' instruction constructs a permutation of elements
5035from two input vectors, returning a vector with the same element type as
5036the input and length that is the same as the shuffle mask.
5037
5038Arguments:
5039""""""""""
5040
5041The first two operands of a '``shufflevector``' instruction are vectors
5042with the same type. The third argument is a shuffle mask whose element
5043type is always 'i32'. The result of the instruction is a vector whose
5044length is the same as the shuffle mask and whose element type is the
5045same as the element type of the first two operands.
5046
5047The shuffle mask operand is required to be a constant vector with either
5048constant integer or undef values.
5049
5050Semantics:
5051""""""""""
5052
5053The elements of the two input vectors are numbered from left to right
5054across both of the vectors. The shuffle mask operand specifies, for each
5055element of the result vector, which element of the two input vectors the
5056result element gets. The element selector may be undef (meaning "don't
5057care") and the second operand may be undef if performing a shuffle from
5058only one vector.
5059
5060Example:
5061""""""""
5062
5063.. code-block:: llvm
5064
5065 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5066 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
5067 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
5068 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
5069 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
5070 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
5071 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5072 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
5073
5074Aggregate Operations
5075--------------------
5076
5077LLVM supports several instructions for working with
5078:ref:`aggregate <t_aggregate>` values.
5079
5080.. _i_extractvalue:
5081
5082'``extractvalue``' Instruction
5083^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5084
5085Syntax:
5086"""""""
5087
5088::
5089
5090 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
5091
5092Overview:
5093"""""""""
5094
5095The '``extractvalue``' instruction extracts the value of a member field
5096from an :ref:`aggregate <t_aggregate>` value.
5097
5098Arguments:
5099""""""""""
5100
5101The first operand of an '``extractvalue``' instruction is a value of
5102:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
5103constant indices to specify which value to extract in a similar manner
5104as indices in a '``getelementptr``' instruction.
5105
5106The major differences to ``getelementptr`` indexing are:
5107
5108- Since the value being indexed is not a pointer, the first index is
5109 omitted and assumed to be zero.
5110- At least one index must be specified.
5111- Not only struct indices but also array indices must be in bounds.
5112
5113Semantics:
5114""""""""""
5115
5116The result is the value at the position in the aggregate specified by
5117the index operands.
5118
5119Example:
5120""""""""
5121
5122.. code-block:: llvm
5123
5124 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
5125
5126.. _i_insertvalue:
5127
5128'``insertvalue``' Instruction
5129^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5130
5131Syntax:
5132"""""""
5133
5134::
5135
5136 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
5137
5138Overview:
5139"""""""""
5140
5141The '``insertvalue``' instruction inserts a value into a member field in
5142an :ref:`aggregate <t_aggregate>` value.
5143
5144Arguments:
5145""""""""""
5146
5147The first operand of an '``insertvalue``' instruction is a value of
5148:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5149a first-class value to insert. The following operands are constant
5150indices indicating the position at which to insert the value in a
5151similar manner as indices in a '``extractvalue``' instruction. The value
5152to insert must have the same type as the value identified by the
5153indices.
5154
5155Semantics:
5156""""""""""
5157
5158The result is an aggregate of the same type as ``val``. Its value is
5159that of ``val`` except that the value at the position specified by the
5160indices is that of ``elt``.
5161
5162Example:
5163""""""""
5164
5165.. code-block:: llvm
5166
5167 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
5168 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00005169 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00005170
5171.. _memoryops:
5172
5173Memory Access and Addressing Operations
5174---------------------------------------
5175
5176A key design point of an SSA-based representation is how it represents
5177memory. In LLVM, no memory locations are in SSA form, which makes things
5178very simple. This section describes how to read, write, and allocate
5179memory in LLVM.
5180
5181.. _i_alloca:
5182
5183'``alloca``' Instruction
5184^^^^^^^^^^^^^^^^^^^^^^^^
5185
5186Syntax:
5187"""""""
5188
5189::
5190
Tim Northover675a0962014-06-13 14:24:23 +00005191 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00005192
5193Overview:
5194"""""""""
5195
5196The '``alloca``' instruction allocates memory on the stack frame of the
5197currently executing function, to be automatically released when this
5198function returns to its caller. The object is always allocated in the
5199generic address space (address space zero).
5200
5201Arguments:
5202""""""""""
5203
5204The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5205bytes of memory on the runtime stack, returning a pointer of the
5206appropriate type to the program. If "NumElements" is specified, it is
5207the number of elements allocated, otherwise "NumElements" is defaulted
5208to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005209allocation is guaranteed to be aligned to at least that boundary. The
5210alignment may not be greater than ``1 << 29``. If not specified, or if
5211zero, the target can choose to align the allocation on any convenient
5212boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00005213
5214'``type``' may be any sized type.
5215
5216Semantics:
5217""""""""""
5218
5219Memory is allocated; a pointer is returned. The operation is undefined
5220if there is insufficient stack space for the allocation. '``alloca``'d
5221memory is automatically released when the function returns. The
5222'``alloca``' instruction is commonly used to represent automatic
5223variables that must have an address available. When the function returns
5224(either with the ``ret`` or ``resume`` instructions), the memory is
5225reclaimed. Allocating zero bytes is legal, but the result is undefined.
5226The order in which memory is allocated (ie., which way the stack grows)
5227is not specified.
5228
5229Example:
5230""""""""
5231
5232.. code-block:: llvm
5233
Tim Northover675a0962014-06-13 14:24:23 +00005234 %ptr = alloca i32 ; yields i32*:ptr
5235 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5236 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5237 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005238
5239.. _i_load:
5240
5241'``load``' Instruction
5242^^^^^^^^^^^^^^^^^^^^^^
5243
5244Syntax:
5245"""""""
5246
5247::
5248
Philip Reamescdb72f32014-10-20 22:40:55 +00005249 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00005250 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5251 !<index> = !{ i32 1 }
5252
5253Overview:
5254"""""""""
5255
5256The '``load``' instruction is used to read from memory.
5257
5258Arguments:
5259""""""""""
5260
Eli Bendersky239a78b2013-04-17 20:17:08 +00005261The argument to the ``load`` instruction specifies the memory address
Sean Silvab084af42012-12-07 10:36:55 +00005262from which to load. The pointer must point to a :ref:`first
5263class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5264then the optimizer is not allowed to modify the number or order of
5265execution of this ``load`` with other :ref:`volatile
5266operations <volatile>`.
5267
5268If the ``load`` is marked as ``atomic``, it takes an extra
5269:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5270``release`` and ``acq_rel`` orderings are not valid on ``load``
5271instructions. Atomic loads produce :ref:`defined <memmodel>` results
5272when they may see multiple atomic stores. The type of the pointee must
5273be an integer type whose bit width is a power of two greater than or
5274equal to eight and less than or equal to a target-specific size limit.
5275``align`` must be explicitly specified on atomic loads, and the load has
5276undefined behavior if the alignment is not set to a value which is at
5277least the size in bytes of the pointee. ``!nontemporal`` does not have
5278any defined semantics for atomic loads.
5279
5280The optional constant ``align`` argument specifies the alignment of the
5281operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005282or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005283alignment for the target. It is the responsibility of the code emitter
5284to ensure that the alignment information is correct. Overestimating the
5285alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005286may produce less efficient code. An alignment of 1 is always safe. The
5287maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005288
5289The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005290metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005291``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005292metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005293that this load is not expected to be reused in the cache. The code
5294generator may select special instructions to save cache bandwidth, such
5295as the ``MOVNT`` instruction on x86.
5296
5297The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005298metadata name ``<index>`` corresponding to a metadata node with no
5299entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00005300instruction tells the optimizer and code generator that the address
5301operand to this load points to memory which can be assumed unchanged.
5302Being invariant does not imply that a location is dereferenceable,
5303but it does imply that once the location is known dereferenceable
5304its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00005305
Philip Reamescdb72f32014-10-20 22:40:55 +00005306The optional ``!nonnull`` metadata must reference a single
5307metadata name ``<index>`` corresponding to a metadata node with no
5308entries. The existence of the ``!nonnull`` metadata on the
5309instruction tells the optimizer that the value loaded is known to
5310never be null. This is analogous to the ''nonnull'' attribute
5311on parameters and return values. This metadata can only be applied
5312to loads of a pointer type.
5313
Sean Silvab084af42012-12-07 10:36:55 +00005314Semantics:
5315""""""""""
5316
5317The location of memory pointed to is loaded. If the value being loaded
5318is of scalar type then the number of bytes read does not exceed the
5319minimum number of bytes needed to hold all bits of the type. For
5320example, loading an ``i24`` reads at most three bytes. When loading a
5321value of a type like ``i20`` with a size that is not an integral number
5322of bytes, the result is undefined if the value was not originally
5323written using a store of the same type.
5324
5325Examples:
5326"""""""""
5327
5328.. code-block:: llvm
5329
Tim Northover675a0962014-06-13 14:24:23 +00005330 %ptr = alloca i32 ; yields i32*:ptr
5331 store i32 3, i32* %ptr ; yields void
5332 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005333
5334.. _i_store:
5335
5336'``store``' Instruction
5337^^^^^^^^^^^^^^^^^^^^^^^
5338
5339Syntax:
5340"""""""
5341
5342::
5343
Tim Northover675a0962014-06-13 14:24:23 +00005344 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5345 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005346
5347Overview:
5348"""""""""
5349
5350The '``store``' instruction is used to write to memory.
5351
5352Arguments:
5353""""""""""
5354
Eli Benderskyca380842013-04-17 17:17:20 +00005355There are two arguments to the ``store`` instruction: a value to store
5356and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005357operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005358the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005359then the optimizer is not allowed to modify the number or order of
5360execution of this ``store`` with other :ref:`volatile
5361operations <volatile>`.
5362
5363If the ``store`` is marked as ``atomic``, it takes an extra
5364:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5365``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5366instructions. Atomic loads produce :ref:`defined <memmodel>` results
5367when they may see multiple atomic stores. The type of the pointee must
5368be an integer type whose bit width is a power of two greater than or
5369equal to eight and less than or equal to a target-specific size limit.
5370``align`` must be explicitly specified on atomic stores, and the store
5371has undefined behavior if the alignment is not set to a value which is
5372at least the size in bytes of the pointee. ``!nontemporal`` does not
5373have any defined semantics for atomic stores.
5374
Eli Benderskyca380842013-04-17 17:17:20 +00005375The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005376operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005377or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005378alignment for the target. It is the responsibility of the code emitter
5379to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005380alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005381alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005382safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005383
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005384The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005385name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005386value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005387tells the optimizer and code generator that this load is not expected to
5388be reused in the cache. The code generator may select special
5389instructions to save cache bandwidth, such as the MOVNT instruction on
5390x86.
5391
5392Semantics:
5393""""""""""
5394
Eli Benderskyca380842013-04-17 17:17:20 +00005395The contents of memory are updated to contain ``<value>`` at the
5396location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005397of scalar type then the number of bytes written does not exceed the
5398minimum number of bytes needed to hold all bits of the type. For
5399example, storing an ``i24`` writes at most three bytes. When writing a
5400value of a type like ``i20`` with a size that is not an integral number
5401of bytes, it is unspecified what happens to the extra bits that do not
5402belong to the type, but they will typically be overwritten.
5403
5404Example:
5405""""""""
5406
5407.. code-block:: llvm
5408
Tim Northover675a0962014-06-13 14:24:23 +00005409 %ptr = alloca i32 ; yields i32*:ptr
5410 store i32 3, i32* %ptr ; yields void
5411 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005412
5413.. _i_fence:
5414
5415'``fence``' Instruction
5416^^^^^^^^^^^^^^^^^^^^^^^
5417
5418Syntax:
5419"""""""
5420
5421::
5422
Tim Northover675a0962014-06-13 14:24:23 +00005423 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005424
5425Overview:
5426"""""""""
5427
5428The '``fence``' instruction is used to introduce happens-before edges
5429between operations.
5430
5431Arguments:
5432""""""""""
5433
5434'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5435defines what *synchronizes-with* edges they add. They can only be given
5436``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5437
5438Semantics:
5439""""""""""
5440
5441A fence A which has (at least) ``release`` ordering semantics
5442*synchronizes with* a fence B with (at least) ``acquire`` ordering
5443semantics if and only if there exist atomic operations X and Y, both
5444operating on some atomic object M, such that A is sequenced before X, X
5445modifies M (either directly or through some side effect of a sequence
5446headed by X), Y is sequenced before B, and Y observes M. This provides a
5447*happens-before* dependency between A and B. Rather than an explicit
5448``fence``, one (but not both) of the atomic operations X or Y might
5449provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5450still *synchronize-with* the explicit ``fence`` and establish the
5451*happens-before* edge.
5452
5453A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5454``acquire`` and ``release`` semantics specified above, participates in
5455the global program order of other ``seq_cst`` operations and/or fences.
5456
5457The optional ":ref:`singlethread <singlethread>`" argument specifies
5458that the fence only synchronizes with other fences in the same thread.
5459(This is useful for interacting with signal handlers.)
5460
5461Example:
5462""""""""
5463
5464.. code-block:: llvm
5465
Tim Northover675a0962014-06-13 14:24:23 +00005466 fence acquire ; yields void
5467 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005468
5469.. _i_cmpxchg:
5470
5471'``cmpxchg``' Instruction
5472^^^^^^^^^^^^^^^^^^^^^^^^^
5473
5474Syntax:
5475"""""""
5476
5477::
5478
Tim Northover675a0962014-06-13 14:24:23 +00005479 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005480
5481Overview:
5482"""""""""
5483
5484The '``cmpxchg``' instruction is used to atomically modify memory. It
5485loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005486equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005487
5488Arguments:
5489""""""""""
5490
5491There are three arguments to the '``cmpxchg``' instruction: an address
5492to operate on, a value to compare to the value currently be at that
5493address, and a new value to place at that address if the compared values
5494are equal. The type of '<cmp>' must be an integer type whose bit width
5495is a power of two greater than or equal to eight and less than or equal
5496to a target-specific size limit. '<cmp>' and '<new>' must have the same
5497type, and the type of '<pointer>' must be a pointer to that type. If the
5498``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5499to modify the number or order of execution of this ``cmpxchg`` with
5500other :ref:`volatile operations <volatile>`.
5501
Tim Northovere94a5182014-03-11 10:48:52 +00005502The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005503``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5504must be at least ``monotonic``, the ordering constraint on failure must be no
5505stronger than that on success, and the failure ordering cannot be either
5506``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005507
5508The optional "``singlethread``" argument declares that the ``cmpxchg``
5509is only atomic with respect to code (usually signal handlers) running in
5510the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5511respect to all other code in the system.
5512
5513The pointer passed into cmpxchg must have alignment greater than or
5514equal to the size in memory of the operand.
5515
5516Semantics:
5517""""""""""
5518
Tim Northover420a2162014-06-13 14:24:07 +00005519The contents of memory at the location specified by the '``<pointer>``' operand
5520is read and compared to '``<cmp>``'; if the read value is the equal, the
5521'``<new>``' is written. The original value at the location is returned, together
5522with a flag indicating success (true) or failure (false).
5523
5524If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5525permitted: the operation may not write ``<new>`` even if the comparison
5526matched.
5527
5528If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5529if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005530
Tim Northovere94a5182014-03-11 10:48:52 +00005531A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5532identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5533load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005534
5535Example:
5536""""""""
5537
5538.. code-block:: llvm
5539
5540 entry:
Tim Northover420a2162014-06-13 14:24:07 +00005541 %orig = atomic load i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005542 br label %loop
5543
5544 loop:
5545 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5546 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005547 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005548 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5549 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005550 br i1 %success, label %done, label %loop
5551
5552 done:
5553 ...
5554
5555.. _i_atomicrmw:
5556
5557'``atomicrmw``' Instruction
5558^^^^^^^^^^^^^^^^^^^^^^^^^^^
5559
5560Syntax:
5561"""""""
5562
5563::
5564
Tim Northover675a0962014-06-13 14:24:23 +00005565 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005566
5567Overview:
5568"""""""""
5569
5570The '``atomicrmw``' instruction is used to atomically modify memory.
5571
5572Arguments:
5573""""""""""
5574
5575There are three arguments to the '``atomicrmw``' instruction: an
5576operation to apply, an address whose value to modify, an argument to the
5577operation. The operation must be one of the following keywords:
5578
5579- xchg
5580- add
5581- sub
5582- and
5583- nand
5584- or
5585- xor
5586- max
5587- min
5588- umax
5589- umin
5590
5591The type of '<value>' must be an integer type whose bit width is a power
5592of two greater than or equal to eight and less than or equal to a
5593target-specific size limit. The type of the '``<pointer>``' operand must
5594be a pointer to that type. If the ``atomicrmw`` is marked as
5595``volatile``, then the optimizer is not allowed to modify the number or
5596order of execution of this ``atomicrmw`` with other :ref:`volatile
5597operations <volatile>`.
5598
5599Semantics:
5600""""""""""
5601
5602The contents of memory at the location specified by the '``<pointer>``'
5603operand are atomically read, modified, and written back. The original
5604value at the location is returned. The modification is specified by the
5605operation argument:
5606
5607- xchg: ``*ptr = val``
5608- add: ``*ptr = *ptr + val``
5609- sub: ``*ptr = *ptr - val``
5610- and: ``*ptr = *ptr & val``
5611- nand: ``*ptr = ~(*ptr & val)``
5612- or: ``*ptr = *ptr | val``
5613- xor: ``*ptr = *ptr ^ val``
5614- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5615- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5616- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5617 comparison)
5618- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5619 comparison)
5620
5621Example:
5622""""""""
5623
5624.. code-block:: llvm
5625
Tim Northover675a0962014-06-13 14:24:23 +00005626 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005627
5628.. _i_getelementptr:
5629
5630'``getelementptr``' Instruction
5631^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5632
5633Syntax:
5634"""""""
5635
5636::
5637
5638 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
5639 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
5640 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
5641
5642Overview:
5643"""""""""
5644
5645The '``getelementptr``' instruction is used to get the address of a
5646subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5647address calculation only and does not access memory.
5648
5649Arguments:
5650""""""""""
5651
5652The first argument is always a pointer or a vector of pointers, and
5653forms the basis of the calculation. The remaining arguments are indices
5654that indicate which of the elements of the aggregate object are indexed.
5655The interpretation of each index is dependent on the type being indexed
5656into. The first index always indexes the pointer value given as the
5657first argument, the second index indexes a value of the type pointed to
5658(not necessarily the value directly pointed to, since the first index
5659can be non-zero), etc. The first type indexed into must be a pointer
5660value, subsequent types can be arrays, vectors, and structs. Note that
5661subsequent types being indexed into can never be pointers, since that
5662would require loading the pointer before continuing calculation.
5663
5664The type of each index argument depends on the type it is indexing into.
5665When indexing into a (optionally packed) structure, only ``i32`` integer
5666**constants** are allowed (when using a vector of indices they must all
5667be the **same** ``i32`` integer constant). When indexing into an array,
5668pointer or vector, integers of any width are allowed, and they are not
5669required to be constant. These integers are treated as signed values
5670where relevant.
5671
5672For example, let's consider a C code fragment and how it gets compiled
5673to LLVM:
5674
5675.. code-block:: c
5676
5677 struct RT {
5678 char A;
5679 int B[10][20];
5680 char C;
5681 };
5682 struct ST {
5683 int X;
5684 double Y;
5685 struct RT Z;
5686 };
5687
5688 int *foo(struct ST *s) {
5689 return &s[1].Z.B[5][13];
5690 }
5691
5692The LLVM code generated by Clang is:
5693
5694.. code-block:: llvm
5695
5696 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5697 %struct.ST = type { i32, double, %struct.RT }
5698
5699 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5700 entry:
5701 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
5702 ret i32* %arrayidx
5703 }
5704
5705Semantics:
5706""""""""""
5707
5708In the example above, the first index is indexing into the
5709'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
5710= '``{ i32, double, %struct.RT }``' type, a structure. The second index
5711indexes into the third element of the structure, yielding a
5712'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
5713structure. The third index indexes into the second element of the
5714structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
5715dimensions of the array are subscripted into, yielding an '``i32``'
5716type. The '``getelementptr``' instruction returns a pointer to this
5717element, thus computing a value of '``i32*``' type.
5718
5719Note that it is perfectly legal to index partially through a structure,
5720returning a pointer to an inner element. Because of this, the LLVM code
5721for the given testcase is equivalent to:
5722
5723.. code-block:: llvm
5724
5725 define i32* @foo(%struct.ST* %s) {
5726 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5727 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5728 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5729 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5730 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5731 ret i32* %t5
5732 }
5733
5734If the ``inbounds`` keyword is present, the result value of the
5735``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5736pointer is not an *in bounds* address of an allocated object, or if any
5737of the addresses that would be formed by successive addition of the
5738offsets implied by the indices to the base address with infinitely
5739precise signed arithmetic are not an *in bounds* address of that
5740allocated object. The *in bounds* addresses for an allocated object are
5741all the addresses that point into the object, plus the address one byte
5742past the end. In cases where the base is a vector of pointers the
5743``inbounds`` keyword applies to each of the computations element-wise.
5744
5745If the ``inbounds`` keyword is not present, the offsets are added to the
5746base address with silently-wrapping two's complement arithmetic. If the
5747offsets have a different width from the pointer, they are sign-extended
5748or truncated to the width of the pointer. The result value of the
5749``getelementptr`` may be outside the object pointed to by the base
5750pointer. The result value may not necessarily be used to access memory
5751though, even if it happens to point into allocated storage. See the
5752:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5753information.
5754
5755The getelementptr instruction is often confusing. For some more insight
5756into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5757
5758Example:
5759""""""""
5760
5761.. code-block:: llvm
5762
5763 ; yields [12 x i8]*:aptr
5764 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5765 ; yields i8*:vptr
5766 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5767 ; yields i8*:eptr
5768 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5769 ; yields i32*:iptr
5770 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5771
5772In cases where the pointer argument is a vector of pointers, each index
5773must be a vector with the same number of elements. For example:
5774
5775.. code-block:: llvm
5776
5777 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5778
5779Conversion Operations
5780---------------------
5781
5782The instructions in this category are the conversion instructions
5783(casting) which all take a single operand and a type. They perform
5784various bit conversions on the operand.
5785
5786'``trunc .. to``' Instruction
5787^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5788
5789Syntax:
5790"""""""
5791
5792::
5793
5794 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5795
5796Overview:
5797"""""""""
5798
5799The '``trunc``' instruction truncates its operand to the type ``ty2``.
5800
5801Arguments:
5802""""""""""
5803
5804The '``trunc``' instruction takes a value to trunc, and a type to trunc
5805it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5806of the same number of integers. The bit size of the ``value`` must be
5807larger than the bit size of the destination type, ``ty2``. Equal sized
5808types are not allowed.
5809
5810Semantics:
5811""""""""""
5812
5813The '``trunc``' instruction truncates the high order bits in ``value``
5814and converts the remaining bits to ``ty2``. Since the source size must
5815be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5816It will always truncate bits.
5817
5818Example:
5819""""""""
5820
5821.. code-block:: llvm
5822
5823 %X = trunc i32 257 to i8 ; yields i8:1
5824 %Y = trunc i32 123 to i1 ; yields i1:true
5825 %Z = trunc i32 122 to i1 ; yields i1:false
5826 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5827
5828'``zext .. to``' Instruction
5829^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5830
5831Syntax:
5832"""""""
5833
5834::
5835
5836 <result> = zext <ty> <value> to <ty2> ; yields ty2
5837
5838Overview:
5839"""""""""
5840
5841The '``zext``' instruction zero extends its operand to type ``ty2``.
5842
5843Arguments:
5844""""""""""
5845
5846The '``zext``' instruction takes a value to cast, and a type to cast it
5847to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5848the same number of integers. The bit size of the ``value`` must be
5849smaller than the bit size of the destination type, ``ty2``.
5850
5851Semantics:
5852""""""""""
5853
5854The ``zext`` fills the high order bits of the ``value`` with zero bits
5855until it reaches the size of the destination type, ``ty2``.
5856
5857When zero extending from i1, the result will always be either 0 or 1.
5858
5859Example:
5860""""""""
5861
5862.. code-block:: llvm
5863
5864 %X = zext i32 257 to i64 ; yields i64:257
5865 %Y = zext i1 true to i32 ; yields i32:1
5866 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5867
5868'``sext .. to``' Instruction
5869^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5870
5871Syntax:
5872"""""""
5873
5874::
5875
5876 <result> = sext <ty> <value> to <ty2> ; yields ty2
5877
5878Overview:
5879"""""""""
5880
5881The '``sext``' sign extends ``value`` to the type ``ty2``.
5882
5883Arguments:
5884""""""""""
5885
5886The '``sext``' instruction takes a value to cast, and a type to cast it
5887to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5888the same number of integers. The bit size of the ``value`` must be
5889smaller than the bit size of the destination type, ``ty2``.
5890
5891Semantics:
5892""""""""""
5893
5894The '``sext``' instruction performs a sign extension by copying the sign
5895bit (highest order bit) of the ``value`` until it reaches the bit size
5896of the type ``ty2``.
5897
5898When sign extending from i1, the extension always results in -1 or 0.
5899
5900Example:
5901""""""""
5902
5903.. code-block:: llvm
5904
5905 %X = sext i8 -1 to i16 ; yields i16 :65535
5906 %Y = sext i1 true to i32 ; yields i32:-1
5907 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5908
5909'``fptrunc .. to``' Instruction
5910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5911
5912Syntax:
5913"""""""
5914
5915::
5916
5917 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5918
5919Overview:
5920"""""""""
5921
5922The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5923
5924Arguments:
5925""""""""""
5926
5927The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5928value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5929The size of ``value`` must be larger than the size of ``ty2``. This
5930implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5931
5932Semantics:
5933""""""""""
5934
5935The '``fptrunc``' instruction truncates a ``value`` from a larger
5936:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5937point <t_floating>` type. If the value cannot fit within the
5938destination type, ``ty2``, then the results are undefined.
5939
5940Example:
5941""""""""
5942
5943.. code-block:: llvm
5944
5945 %X = fptrunc double 123.0 to float ; yields float:123.0
5946 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5947
5948'``fpext .. to``' Instruction
5949^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5950
5951Syntax:
5952"""""""
5953
5954::
5955
5956 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5957
5958Overview:
5959"""""""""
5960
5961The '``fpext``' extends a floating point ``value`` to a larger floating
5962point value.
5963
5964Arguments:
5965""""""""""
5966
5967The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5968``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5969to. The source type must be smaller than the destination type.
5970
5971Semantics:
5972""""""""""
5973
5974The '``fpext``' instruction extends the ``value`` from a smaller
5975:ref:`floating point <t_floating>` type to a larger :ref:`floating
5976point <t_floating>` type. The ``fpext`` cannot be used to make a
5977*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5978*no-op cast* for a floating point cast.
5979
5980Example:
5981""""""""
5982
5983.. code-block:: llvm
5984
5985 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5986 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5987
5988'``fptoui .. to``' Instruction
5989^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5990
5991Syntax:
5992"""""""
5993
5994::
5995
5996 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5997
5998Overview:
5999"""""""""
6000
6001The '``fptoui``' converts a floating point ``value`` to its unsigned
6002integer equivalent of type ``ty2``.
6003
6004Arguments:
6005""""""""""
6006
6007The '``fptoui``' instruction takes a value to cast, which must be a
6008scalar or vector :ref:`floating point <t_floating>` value, and a type to
6009cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6010``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6011type with the same number of elements as ``ty``
6012
6013Semantics:
6014""""""""""
6015
6016The '``fptoui``' instruction converts its :ref:`floating
6017point <t_floating>` operand into the nearest (rounding towards zero)
6018unsigned integer value. If the value cannot fit in ``ty2``, the results
6019are undefined.
6020
6021Example:
6022""""""""
6023
6024.. code-block:: llvm
6025
6026 %X = fptoui double 123.0 to i32 ; yields i32:123
6027 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
6028 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
6029
6030'``fptosi .. to``' Instruction
6031^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6032
6033Syntax:
6034"""""""
6035
6036::
6037
6038 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
6039
6040Overview:
6041"""""""""
6042
6043The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
6044``value`` to type ``ty2``.
6045
6046Arguments:
6047""""""""""
6048
6049The '``fptosi``' instruction takes a value to cast, which must be a
6050scalar or vector :ref:`floating point <t_floating>` value, and a type to
6051cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6052``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6053type with the same number of elements as ``ty``
6054
6055Semantics:
6056""""""""""
6057
6058The '``fptosi``' instruction converts its :ref:`floating
6059point <t_floating>` operand into the nearest (rounding towards zero)
6060signed integer value. If the value cannot fit in ``ty2``, the results
6061are undefined.
6062
6063Example:
6064""""""""
6065
6066.. code-block:: llvm
6067
6068 %X = fptosi double -123.0 to i32 ; yields i32:-123
6069 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
6070 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
6071
6072'``uitofp .. to``' Instruction
6073^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6074
6075Syntax:
6076"""""""
6077
6078::
6079
6080 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
6081
6082Overview:
6083"""""""""
6084
6085The '``uitofp``' instruction regards ``value`` as an unsigned integer
6086and converts that value to the ``ty2`` type.
6087
6088Arguments:
6089""""""""""
6090
6091The '``uitofp``' instruction takes a value to cast, which must be a
6092scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6093``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6094``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6095type with the same number of elements as ``ty``
6096
6097Semantics:
6098""""""""""
6099
6100The '``uitofp``' instruction interprets its operand as an unsigned
6101integer quantity and converts it to the corresponding floating point
6102value. If the value cannot fit in the floating point value, the results
6103are undefined.
6104
6105Example:
6106""""""""
6107
6108.. code-block:: llvm
6109
6110 %X = uitofp i32 257 to float ; yields float:257.0
6111 %Y = uitofp i8 -1 to double ; yields double:255.0
6112
6113'``sitofp .. to``' Instruction
6114^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6115
6116Syntax:
6117"""""""
6118
6119::
6120
6121 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
6122
6123Overview:
6124"""""""""
6125
6126The '``sitofp``' instruction regards ``value`` as a signed integer and
6127converts that value to the ``ty2`` type.
6128
6129Arguments:
6130""""""""""
6131
6132The '``sitofp``' instruction takes a value to cast, which must be a
6133scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6134``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6135``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6136type with the same number of elements as ``ty``
6137
6138Semantics:
6139""""""""""
6140
6141The '``sitofp``' instruction interprets its operand as a signed integer
6142quantity and converts it to the corresponding floating point value. If
6143the value cannot fit in the floating point value, the results are
6144undefined.
6145
6146Example:
6147""""""""
6148
6149.. code-block:: llvm
6150
6151 %X = sitofp i32 257 to float ; yields float:257.0
6152 %Y = sitofp i8 -1 to double ; yields double:-1.0
6153
6154.. _i_ptrtoint:
6155
6156'``ptrtoint .. to``' Instruction
6157^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6158
6159Syntax:
6160"""""""
6161
6162::
6163
6164 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
6165
6166Overview:
6167"""""""""
6168
6169The '``ptrtoint``' instruction converts the pointer or a vector of
6170pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6171
6172Arguments:
6173""""""""""
6174
6175The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
6176a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
6177type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6178a vector of integers type.
6179
6180Semantics:
6181""""""""""
6182
6183The '``ptrtoint``' instruction converts ``value`` to integer type
6184``ty2`` by interpreting the pointer value as an integer and either
6185truncating or zero extending that value to the size of the integer type.
6186If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6187``value`` is larger than ``ty2`` then a truncation is done. If they are
6188the same size, then nothing is done (*no-op cast*) other than a type
6189change.
6190
6191Example:
6192""""""""
6193
6194.. code-block:: llvm
6195
6196 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
6197 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
6198 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6199
6200.. _i_inttoptr:
6201
6202'``inttoptr .. to``' Instruction
6203^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6204
6205Syntax:
6206"""""""
6207
6208::
6209
6210 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
6211
6212Overview:
6213"""""""""
6214
6215The '``inttoptr``' instruction converts an integer ``value`` to a
6216pointer type, ``ty2``.
6217
6218Arguments:
6219""""""""""
6220
6221The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6222cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6223type.
6224
6225Semantics:
6226""""""""""
6227
6228The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6229applying either a zero extension or a truncation depending on the size
6230of the integer ``value``. If ``value`` is larger than the size of a
6231pointer then a truncation is done. If ``value`` is smaller than the size
6232of a pointer then a zero extension is done. If they are the same size,
6233nothing is done (*no-op cast*).
6234
6235Example:
6236""""""""
6237
6238.. code-block:: llvm
6239
6240 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6241 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6242 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6243 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6244
6245.. _i_bitcast:
6246
6247'``bitcast .. to``' Instruction
6248^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6249
6250Syntax:
6251"""""""
6252
6253::
6254
6255 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6256
6257Overview:
6258"""""""""
6259
6260The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6261changing any bits.
6262
6263Arguments:
6264""""""""""
6265
6266The '``bitcast``' instruction takes a value to cast, which must be a
6267non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006268also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6269bit sizes of ``value`` and the destination type, ``ty2``, must be
6270identical. If the source type is a pointer, the destination type must
6271also be a pointer of the same size. This instruction supports bitwise
6272conversion of vectors to integers and to vectors of other types (as
6273long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006274
6275Semantics:
6276""""""""""
6277
Matt Arsenault24b49c42013-07-31 17:49:08 +00006278The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6279is always a *no-op cast* because no bits change with this
6280conversion. The conversion is done as if the ``value`` had been stored
6281to memory and read back as type ``ty2``. Pointer (or vector of
6282pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006283pointers) types with the same address space through this instruction.
6284To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6285or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006286
6287Example:
6288""""""""
6289
6290.. code-block:: llvm
6291
6292 %X = bitcast i8 255 to i8 ; yields i8 :-1
6293 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6294 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6295 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6296
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006297.. _i_addrspacecast:
6298
6299'``addrspacecast .. to``' Instruction
6300^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6301
6302Syntax:
6303"""""""
6304
6305::
6306
6307 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6308
6309Overview:
6310"""""""""
6311
6312The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6313address space ``n`` to type ``pty2`` in address space ``m``.
6314
6315Arguments:
6316""""""""""
6317
6318The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6319to cast and a pointer type to cast it to, which must have a different
6320address space.
6321
6322Semantics:
6323""""""""""
6324
6325The '``addrspacecast``' instruction converts the pointer value
6326``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006327value modification, depending on the target and the address space
6328pair. Pointer conversions within the same address space must be
6329performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006330conversion is legal then both result and operand refer to the same memory
6331location.
6332
6333Example:
6334""""""""
6335
6336.. code-block:: llvm
6337
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006338 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6339 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6340 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006341
Sean Silvab084af42012-12-07 10:36:55 +00006342.. _otherops:
6343
6344Other Operations
6345----------------
6346
6347The instructions in this category are the "miscellaneous" instructions,
6348which defy better classification.
6349
6350.. _i_icmp:
6351
6352'``icmp``' Instruction
6353^^^^^^^^^^^^^^^^^^^^^^
6354
6355Syntax:
6356"""""""
6357
6358::
6359
Tim Northover675a0962014-06-13 14:24:23 +00006360 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006361
6362Overview:
6363"""""""""
6364
6365The '``icmp``' instruction returns a boolean value or a vector of
6366boolean values based on comparison of its two integer, integer vector,
6367pointer, or pointer vector operands.
6368
6369Arguments:
6370""""""""""
6371
6372The '``icmp``' instruction takes three operands. The first operand is
6373the condition code indicating the kind of comparison to perform. It is
6374not a value, just a keyword. The possible condition code are:
6375
6376#. ``eq``: equal
6377#. ``ne``: not equal
6378#. ``ugt``: unsigned greater than
6379#. ``uge``: unsigned greater or equal
6380#. ``ult``: unsigned less than
6381#. ``ule``: unsigned less or equal
6382#. ``sgt``: signed greater than
6383#. ``sge``: signed greater or equal
6384#. ``slt``: signed less than
6385#. ``sle``: signed less or equal
6386
6387The remaining two arguments must be :ref:`integer <t_integer>` or
6388:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6389must also be identical types.
6390
6391Semantics:
6392""""""""""
6393
6394The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6395code given as ``cond``. The comparison performed always yields either an
6396:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6397
6398#. ``eq``: yields ``true`` if the operands are equal, ``false``
6399 otherwise. No sign interpretation is necessary or performed.
6400#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6401 otherwise. No sign interpretation is necessary or performed.
6402#. ``ugt``: interprets the operands as unsigned values and yields
6403 ``true`` if ``op1`` is greater than ``op2``.
6404#. ``uge``: interprets the operands as unsigned values and yields
6405 ``true`` if ``op1`` is greater than or equal to ``op2``.
6406#. ``ult``: interprets the operands as unsigned values and yields
6407 ``true`` if ``op1`` is less than ``op2``.
6408#. ``ule``: interprets the operands as unsigned values and yields
6409 ``true`` if ``op1`` is less than or equal to ``op2``.
6410#. ``sgt``: interprets the operands as signed values and yields ``true``
6411 if ``op1`` is greater than ``op2``.
6412#. ``sge``: interprets the operands as signed values and yields ``true``
6413 if ``op1`` is greater than or equal to ``op2``.
6414#. ``slt``: interprets the operands as signed values and yields ``true``
6415 if ``op1`` is less than ``op2``.
6416#. ``sle``: interprets the operands as signed values and yields ``true``
6417 if ``op1`` is less than or equal to ``op2``.
6418
6419If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6420are compared as if they were integers.
6421
6422If the operands are integer vectors, then they are compared element by
6423element. The result is an ``i1`` vector with the same number of elements
6424as the values being compared. Otherwise, the result is an ``i1``.
6425
6426Example:
6427""""""""
6428
6429.. code-block:: llvm
6430
6431 <result> = icmp eq i32 4, 5 ; yields: result=false
6432 <result> = icmp ne float* %X, %X ; yields: result=false
6433 <result> = icmp ult i16 4, 5 ; yields: result=true
6434 <result> = icmp sgt i16 4, 5 ; yields: result=false
6435 <result> = icmp ule i16 -4, 5 ; yields: result=false
6436 <result> = icmp sge i16 4, 5 ; yields: result=false
6437
6438Note that the code generator does not yet support vector types with the
6439``icmp`` instruction.
6440
6441.. _i_fcmp:
6442
6443'``fcmp``' Instruction
6444^^^^^^^^^^^^^^^^^^^^^^
6445
6446Syntax:
6447"""""""
6448
6449::
6450
Tim Northover675a0962014-06-13 14:24:23 +00006451 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006452
6453Overview:
6454"""""""""
6455
6456The '``fcmp``' instruction returns a boolean value or vector of boolean
6457values based on comparison of its operands.
6458
6459If the operands are floating point scalars, then the result type is a
6460boolean (:ref:`i1 <t_integer>`).
6461
6462If the operands are floating point vectors, then the result type is a
6463vector of boolean with the same number of elements as the operands being
6464compared.
6465
6466Arguments:
6467""""""""""
6468
6469The '``fcmp``' instruction takes three operands. The first operand is
6470the condition code indicating the kind of comparison to perform. It is
6471not a value, just a keyword. The possible condition code are:
6472
6473#. ``false``: no comparison, always returns false
6474#. ``oeq``: ordered and equal
6475#. ``ogt``: ordered and greater than
6476#. ``oge``: ordered and greater than or equal
6477#. ``olt``: ordered and less than
6478#. ``ole``: ordered and less than or equal
6479#. ``one``: ordered and not equal
6480#. ``ord``: ordered (no nans)
6481#. ``ueq``: unordered or equal
6482#. ``ugt``: unordered or greater than
6483#. ``uge``: unordered or greater than or equal
6484#. ``ult``: unordered or less than
6485#. ``ule``: unordered or less than or equal
6486#. ``une``: unordered or not equal
6487#. ``uno``: unordered (either nans)
6488#. ``true``: no comparison, always returns true
6489
6490*Ordered* means that neither operand is a QNAN while *unordered* means
6491that either operand may be a QNAN.
6492
6493Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6494point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6495type. They must have identical types.
6496
6497Semantics:
6498""""""""""
6499
6500The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6501condition code given as ``cond``. If the operands are vectors, then the
6502vectors are compared element by element. Each comparison performed
6503always yields an :ref:`i1 <t_integer>` result, as follows:
6504
6505#. ``false``: always yields ``false``, regardless of operands.
6506#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6507 is equal to ``op2``.
6508#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6509 is greater than ``op2``.
6510#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6511 is greater than or equal to ``op2``.
6512#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6513 is less than ``op2``.
6514#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6515 is less than or equal to ``op2``.
6516#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6517 is not equal to ``op2``.
6518#. ``ord``: yields ``true`` if both operands are not a QNAN.
6519#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6520 equal to ``op2``.
6521#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6522 greater than ``op2``.
6523#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6524 greater than or equal to ``op2``.
6525#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6526 less than ``op2``.
6527#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6528 less than or equal to ``op2``.
6529#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6530 not equal to ``op2``.
6531#. ``uno``: yields ``true`` if either operand is a QNAN.
6532#. ``true``: always yields ``true``, regardless of operands.
6533
6534Example:
6535""""""""
6536
6537.. code-block:: llvm
6538
6539 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6540 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6541 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6542 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6543
6544Note that the code generator does not yet support vector types with the
6545``fcmp`` instruction.
6546
6547.. _i_phi:
6548
6549'``phi``' Instruction
6550^^^^^^^^^^^^^^^^^^^^^
6551
6552Syntax:
6553"""""""
6554
6555::
6556
6557 <result> = phi <ty> [ <val0>, <label0>], ...
6558
6559Overview:
6560"""""""""
6561
6562The '``phi``' instruction is used to implement the φ node in the SSA
6563graph representing the function.
6564
6565Arguments:
6566""""""""""
6567
6568The type of the incoming values is specified with the first type field.
6569After this, the '``phi``' instruction takes a list of pairs as
6570arguments, with one pair for each predecessor basic block of the current
6571block. Only values of :ref:`first class <t_firstclass>` type may be used as
6572the value arguments to the PHI node. Only labels may be used as the
6573label arguments.
6574
6575There must be no non-phi instructions between the start of a basic block
6576and the PHI instructions: i.e. PHI instructions must be first in a basic
6577block.
6578
6579For the purposes of the SSA form, the use of each incoming value is
6580deemed to occur on the edge from the corresponding predecessor block to
6581the current block (but after any definition of an '``invoke``'
6582instruction's return value on the same edge).
6583
6584Semantics:
6585""""""""""
6586
6587At runtime, the '``phi``' instruction logically takes on the value
6588specified by the pair corresponding to the predecessor basic block that
6589executed just prior to the current block.
6590
6591Example:
6592""""""""
6593
6594.. code-block:: llvm
6595
6596 Loop: ; Infinite loop that counts from 0 on up...
6597 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6598 %nextindvar = add i32 %indvar, 1
6599 br label %Loop
6600
6601.. _i_select:
6602
6603'``select``' Instruction
6604^^^^^^^^^^^^^^^^^^^^^^^^
6605
6606Syntax:
6607"""""""
6608
6609::
6610
6611 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6612
6613 selty is either i1 or {<N x i1>}
6614
6615Overview:
6616"""""""""
6617
6618The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006619condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006620
6621Arguments:
6622""""""""""
6623
6624The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6625values indicating the condition, and two values of the same :ref:`first
6626class <t_firstclass>` type. If the val1/val2 are vectors and the
6627condition is a scalar, then entire vectors are selected, not individual
6628elements.
6629
6630Semantics:
6631""""""""""
6632
6633If the condition is an i1 and it evaluates to 1, the instruction returns
6634the first value argument; otherwise, it returns the second value
6635argument.
6636
6637If the condition is a vector of i1, then the value arguments must be
6638vectors of the same size, and the selection is done element by element.
6639
6640Example:
6641""""""""
6642
6643.. code-block:: llvm
6644
6645 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6646
6647.. _i_call:
6648
6649'``call``' Instruction
6650^^^^^^^^^^^^^^^^^^^^^^
6651
6652Syntax:
6653"""""""
6654
6655::
6656
Reid Kleckner5772b772014-04-24 20:14:34 +00006657 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006658
6659Overview:
6660"""""""""
6661
6662The '``call``' instruction represents a simple function call.
6663
6664Arguments:
6665""""""""""
6666
6667This instruction requires several arguments:
6668
Reid Kleckner5772b772014-04-24 20:14:34 +00006669#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6670 should perform tail call optimization. The ``tail`` marker is a hint that
6671 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6672 means that the call must be tail call optimized in order for the program to
6673 be correct. The ``musttail`` marker provides these guarantees:
6674
6675 #. The call will not cause unbounded stack growth if it is part of a
6676 recursive cycle in the call graph.
6677 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6678 forwarded in place.
6679
6680 Both markers imply that the callee does not access allocas or varargs from
6681 the caller. Calls marked ``musttail`` must obey the following additional
6682 rules:
6683
6684 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6685 or a pointer bitcast followed by a ret instruction.
6686 - The ret instruction must return the (possibly bitcasted) value
6687 produced by the call or void.
6688 - The caller and callee prototypes must match. Pointer types of
6689 parameters or return types may differ in pointee type, but not
6690 in address space.
6691 - The calling conventions of the caller and callee must match.
6692 - All ABI-impacting function attributes, such as sret, byval, inreg,
6693 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00006694 - The callee must be varargs iff the caller is varargs. Bitcasting a
6695 non-varargs function to the appropriate varargs type is legal so
6696 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00006697
6698 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6699 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006700
6701 - Caller and callee both have the calling convention ``fastcc``.
6702 - The call is in tail position (ret immediately follows call and ret
6703 uses value of call or is void).
6704 - Option ``-tailcallopt`` is enabled, or
6705 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00006706 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00006707 met. <CodeGenerator.html#tailcallopt>`_
6708
6709#. The optional "cconv" marker indicates which :ref:`calling
6710 convention <callingconv>` the call should use. If none is
6711 specified, the call defaults to using C calling conventions. The
6712 calling convention of the call must match the calling convention of
6713 the target function, or else the behavior is undefined.
6714#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
6715 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
6716 are valid here.
6717#. '``ty``': the type of the call instruction itself which is also the
6718 type of the return value. Functions that return no value are marked
6719 ``void``.
6720#. '``fnty``': shall be the signature of the pointer to function value
6721 being invoked. The argument types must match the types implied by
6722 this signature. This type can be omitted if the function is not
6723 varargs and if the function type does not return a pointer to a
6724 function.
6725#. '``fnptrval``': An LLVM value containing a pointer to a function to
6726 be invoked. In most cases, this is a direct function invocation, but
6727 indirect ``call``'s are just as possible, calling an arbitrary pointer
6728 to function value.
6729#. '``function args``': argument list whose types match the function
6730 signature argument types and parameter attributes. All arguments must
6731 be of :ref:`first class <t_firstclass>` type. If the function signature
6732 indicates the function accepts a variable number of arguments, the
6733 extra arguments can be specified.
6734#. The optional :ref:`function attributes <fnattrs>` list. Only
6735 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
6736 attributes are valid here.
6737
6738Semantics:
6739""""""""""
6740
6741The '``call``' instruction is used to cause control flow to transfer to
6742a specified function, with its incoming arguments bound to the specified
6743values. Upon a '``ret``' instruction in the called function, control
6744flow continues with the instruction after the function call, and the
6745return value of the function is bound to the result argument.
6746
6747Example:
6748""""""""
6749
6750.. code-block:: llvm
6751
6752 %retval = call i32 @test(i32 %argc)
6753 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
6754 %X = tail call i32 @foo() ; yields i32
6755 %Y = tail call fastcc i32 @foo() ; yields i32
6756 call void %foo(i8 97 signext)
6757
6758 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00006759 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00006760 %gr = extractvalue %struct.A %r, 0 ; yields i32
6761 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
6762 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
6763 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
6764
6765llvm treats calls to some functions with names and arguments that match
6766the standard C99 library as being the C99 library functions, and may
6767perform optimizations or generate code for them under that assumption.
6768This is something we'd like to change in the future to provide better
6769support for freestanding environments and non-C-based languages.
6770
6771.. _i_va_arg:
6772
6773'``va_arg``' Instruction
6774^^^^^^^^^^^^^^^^^^^^^^^^
6775
6776Syntax:
6777"""""""
6778
6779::
6780
6781 <resultval> = va_arg <va_list*> <arglist>, <argty>
6782
6783Overview:
6784"""""""""
6785
6786The '``va_arg``' instruction is used to access arguments passed through
6787the "variable argument" area of a function call. It is used to implement
6788the ``va_arg`` macro in C.
6789
6790Arguments:
6791""""""""""
6792
6793This instruction takes a ``va_list*`` value and the type of the
6794argument. It returns a value of the specified argument type and
6795increments the ``va_list`` to point to the next argument. The actual
6796type of ``va_list`` is target specific.
6797
6798Semantics:
6799""""""""""
6800
6801The '``va_arg``' instruction loads an argument of the specified type
6802from the specified ``va_list`` and causes the ``va_list`` to point to
6803the next argument. For more information, see the variable argument
6804handling :ref:`Intrinsic Functions <int_varargs>`.
6805
6806It is legal for this instruction to be called in a function which does
6807not take a variable number of arguments, for example, the ``vfprintf``
6808function.
6809
6810``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6811function <intrinsics>` because it takes a type as an argument.
6812
6813Example:
6814""""""""
6815
6816See the :ref:`variable argument processing <int_varargs>` section.
6817
6818Note that the code generator does not yet fully support va\_arg on many
6819targets. Also, it does not currently support va\_arg with aggregate
6820types on any target.
6821
6822.. _i_landingpad:
6823
6824'``landingpad``' Instruction
6825^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6826
6827Syntax:
6828"""""""
6829
6830::
6831
6832 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6833 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6834
6835 <clause> := catch <type> <value>
6836 <clause> := filter <array constant type> <array constant>
6837
6838Overview:
6839"""""""""
6840
6841The '``landingpad``' instruction is used by `LLVM's exception handling
6842system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006843is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00006844code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6845defines values supplied by the personality function (``pers_fn``) upon
6846re-entry to the function. The ``resultval`` has the type ``resultty``.
6847
6848Arguments:
6849""""""""""
6850
6851This instruction takes a ``pers_fn`` value. This is the personality
6852function associated with the unwinding mechanism. The optional
6853``cleanup`` flag indicates that the landing pad block is a cleanup.
6854
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00006855A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00006856contains the global variable representing the "type" that may be caught
6857or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6858clause takes an array constant as its argument. Use
6859"``[0 x i8**] undef``" for a filter which cannot throw. The
6860'``landingpad``' instruction must contain *at least* one ``clause`` or
6861the ``cleanup`` flag.
6862
6863Semantics:
6864""""""""""
6865
6866The '``landingpad``' instruction defines the values which are set by the
6867personality function (``pers_fn``) upon re-entry to the function, and
6868therefore the "result type" of the ``landingpad`` instruction. As with
6869calling conventions, how the personality function results are
6870represented in LLVM IR is target specific.
6871
6872The clauses are applied in order from top to bottom. If two
6873``landingpad`` instructions are merged together through inlining, the
6874clauses from the calling function are appended to the list of clauses.
6875When the call stack is being unwound due to an exception being thrown,
6876the exception is compared against each ``clause`` in turn. If it doesn't
6877match any of the clauses, and the ``cleanup`` flag is not set, then
6878unwinding continues further up the call stack.
6879
6880The ``landingpad`` instruction has several restrictions:
6881
6882- A landing pad block is a basic block which is the unwind destination
6883 of an '``invoke``' instruction.
6884- A landing pad block must have a '``landingpad``' instruction as its
6885 first non-PHI instruction.
6886- There can be only one '``landingpad``' instruction within the landing
6887 pad block.
6888- A basic block that is not a landing pad block may not include a
6889 '``landingpad``' instruction.
6890- All '``landingpad``' instructions in a function must have the same
6891 personality function.
6892
6893Example:
6894""""""""
6895
6896.. code-block:: llvm
6897
6898 ;; A landing pad which can catch an integer.
6899 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6900 catch i8** @_ZTIi
6901 ;; A landing pad that is a cleanup.
6902 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6903 cleanup
6904 ;; A landing pad which can catch an integer and can only throw a double.
6905 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6906 catch i8** @_ZTIi
6907 filter [1 x i8**] [@_ZTId]
6908
6909.. _intrinsics:
6910
6911Intrinsic Functions
6912===================
6913
6914LLVM supports the notion of an "intrinsic function". These functions
6915have well known names and semantics and are required to follow certain
6916restrictions. Overall, these intrinsics represent an extension mechanism
6917for the LLVM language that does not require changing all of the
6918transformations in LLVM when adding to the language (or the bitcode
6919reader/writer, the parser, etc...).
6920
6921Intrinsic function names must all start with an "``llvm.``" prefix. This
6922prefix is reserved in LLVM for intrinsic names; thus, function names may
6923not begin with this prefix. Intrinsic functions must always be external
6924functions: you cannot define the body of intrinsic functions. Intrinsic
6925functions may only be used in call or invoke instructions: it is illegal
6926to take the address of an intrinsic function. Additionally, because
6927intrinsic functions are part of the LLVM language, it is required if any
6928are added that they be documented here.
6929
6930Some intrinsic functions can be overloaded, i.e., the intrinsic
6931represents a family of functions that perform the same operation but on
6932different data types. Because LLVM can represent over 8 million
6933different integer types, overloading is used commonly to allow an
6934intrinsic function to operate on any integer type. One or more of the
6935argument types or the result type can be overloaded to accept any
6936integer type. Argument types may also be defined as exactly matching a
6937previous argument's type or the result type. This allows an intrinsic
6938function which accepts multiple arguments, but needs all of them to be
6939of the same type, to only be overloaded with respect to a single
6940argument or the result.
6941
6942Overloaded intrinsics will have the names of its overloaded argument
6943types encoded into its function name, each preceded by a period. Only
6944those types which are overloaded result in a name suffix. Arguments
6945whose type is matched against another type do not. For example, the
6946``llvm.ctpop`` function can take an integer of any width and returns an
6947integer of exactly the same integer width. This leads to a family of
6948functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6949``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6950overloaded, and only one type suffix is required. Because the argument's
6951type is matched against the return type, it does not require its own
6952name suffix.
6953
6954To learn how to add an intrinsic function, please see the `Extending
6955LLVM Guide <ExtendingLLVM.html>`_.
6956
6957.. _int_varargs:
6958
6959Variable Argument Handling Intrinsics
6960-------------------------------------
6961
6962Variable argument support is defined in LLVM with the
6963:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6964functions. These functions are related to the similarly named macros
6965defined in the ``<stdarg.h>`` header file.
6966
6967All of these functions operate on arguments that use a target-specific
6968value type "``va_list``". The LLVM assembly language reference manual
6969does not define what this type is, so all transformations should be
6970prepared to handle these functions regardless of the type used.
6971
6972This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6973variable argument handling intrinsic functions are used.
6974
6975.. code-block:: llvm
6976
Tim Northoverab60bb92014-11-02 01:21:51 +00006977 ; This struct is different for every platform. For most platforms,
6978 ; it is merely an i8*.
6979 %struct.va_list = type { i8* }
6980
6981 ; For Unix x86_64 platforms, va_list is the following struct:
6982 ; %struct.va_list = type { i32, i32, i8*, i8* }
6983
Sean Silvab084af42012-12-07 10:36:55 +00006984 define i32 @test(i32 %X, ...) {
6985 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00006986 %ap = alloca %struct.va_list
6987 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00006988 call void @llvm.va_start(i8* %ap2)
6989
6990 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00006991 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00006992
6993 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6994 %aq = alloca i8*
6995 %aq2 = bitcast i8** %aq to i8*
6996 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6997 call void @llvm.va_end(i8* %aq2)
6998
6999 ; Stop processing of arguments.
7000 call void @llvm.va_end(i8* %ap2)
7001 ret i32 %tmp
7002 }
7003
7004 declare void @llvm.va_start(i8*)
7005 declare void @llvm.va_copy(i8*, i8*)
7006 declare void @llvm.va_end(i8*)
7007
7008.. _int_va_start:
7009
7010'``llvm.va_start``' Intrinsic
7011^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7012
7013Syntax:
7014"""""""
7015
7016::
7017
Nick Lewycky04f6de02013-09-11 22:04:52 +00007018 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00007019
7020Overview:
7021"""""""""
7022
7023The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
7024subsequent use by ``va_arg``.
7025
7026Arguments:
7027""""""""""
7028
7029The argument is a pointer to a ``va_list`` element to initialize.
7030
7031Semantics:
7032""""""""""
7033
7034The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
7035available in C. In a target-dependent way, it initializes the
7036``va_list`` element to which the argument points, so that the next call
7037to ``va_arg`` will produce the first variable argument passed to the
7038function. Unlike the C ``va_start`` macro, this intrinsic does not need
7039to know the last argument of the function as the compiler can figure
7040that out.
7041
7042'``llvm.va_end``' Intrinsic
7043^^^^^^^^^^^^^^^^^^^^^^^^^^^
7044
7045Syntax:
7046"""""""
7047
7048::
7049
7050 declare void @llvm.va_end(i8* <arglist>)
7051
7052Overview:
7053"""""""""
7054
7055The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
7056initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
7057
7058Arguments:
7059""""""""""
7060
7061The argument is a pointer to a ``va_list`` to destroy.
7062
7063Semantics:
7064""""""""""
7065
7066The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
7067available in C. In a target-dependent way, it destroys the ``va_list``
7068element to which the argument points. Calls to
7069:ref:`llvm.va_start <int_va_start>` and
7070:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
7071``llvm.va_end``.
7072
7073.. _int_va_copy:
7074
7075'``llvm.va_copy``' Intrinsic
7076^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7077
7078Syntax:
7079"""""""
7080
7081::
7082
7083 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
7084
7085Overview:
7086"""""""""
7087
7088The '``llvm.va_copy``' intrinsic copies the current argument position
7089from the source argument list to the destination argument list.
7090
7091Arguments:
7092""""""""""
7093
7094The first argument is a pointer to a ``va_list`` element to initialize.
7095The second argument is a pointer to a ``va_list`` element to copy from.
7096
7097Semantics:
7098""""""""""
7099
7100The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
7101available in C. In a target-dependent way, it copies the source
7102``va_list`` element into the destination ``va_list`` element. This
7103intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
7104arbitrarily complex and require, for example, memory allocation.
7105
7106Accurate Garbage Collection Intrinsics
7107--------------------------------------
7108
7109LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
7110(GC) requires the implementation and generation of these intrinsics.
7111These intrinsics allow identification of :ref:`GC roots on the
7112stack <int_gcroot>`, as well as garbage collector implementations that
7113require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
7114Front-ends for type-safe garbage collected languages should generate
7115these intrinsics to make use of the LLVM garbage collectors. For more
7116details, see `Accurate Garbage Collection with
7117LLVM <GarbageCollection.html>`_.
7118
7119The garbage collection intrinsics only operate on objects in the generic
7120address space (address space zero).
7121
7122.. _int_gcroot:
7123
7124'``llvm.gcroot``' Intrinsic
7125^^^^^^^^^^^^^^^^^^^^^^^^^^^
7126
7127Syntax:
7128"""""""
7129
7130::
7131
7132 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
7133
7134Overview:
7135"""""""""
7136
7137The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
7138the code generator, and allows some metadata to be associated with it.
7139
7140Arguments:
7141""""""""""
7142
7143The first argument specifies the address of a stack object that contains
7144the root pointer. The second pointer (which must be either a constant or
7145a global value address) contains the meta-data to be associated with the
7146root.
7147
7148Semantics:
7149""""""""""
7150
7151At runtime, a call to this intrinsic stores a null pointer into the
7152"ptrloc" location. At compile-time, the code generator generates
7153information to allow the runtime to find the pointer at GC safe points.
7154The '``llvm.gcroot``' intrinsic may only be used in a function which
7155:ref:`specifies a GC algorithm <gc>`.
7156
7157.. _int_gcread:
7158
7159'``llvm.gcread``' Intrinsic
7160^^^^^^^^^^^^^^^^^^^^^^^^^^^
7161
7162Syntax:
7163"""""""
7164
7165::
7166
7167 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7168
7169Overview:
7170"""""""""
7171
7172The '``llvm.gcread``' intrinsic identifies reads of references from heap
7173locations, allowing garbage collector implementations that require read
7174barriers.
7175
7176Arguments:
7177""""""""""
7178
7179The second argument is the address to read from, which should be an
7180address allocated from the garbage collector. The first object is a
7181pointer to the start of the referenced object, if needed by the language
7182runtime (otherwise null).
7183
7184Semantics:
7185""""""""""
7186
7187The '``llvm.gcread``' intrinsic has the same semantics as a load
7188instruction, but may be replaced with substantially more complex code by
7189the garbage collector runtime, as needed. The '``llvm.gcread``'
7190intrinsic may only be used in a function which :ref:`specifies a GC
7191algorithm <gc>`.
7192
7193.. _int_gcwrite:
7194
7195'``llvm.gcwrite``' Intrinsic
7196^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7197
7198Syntax:
7199"""""""
7200
7201::
7202
7203 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7204
7205Overview:
7206"""""""""
7207
7208The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7209locations, allowing garbage collector implementations that require write
7210barriers (such as generational or reference counting collectors).
7211
7212Arguments:
7213""""""""""
7214
7215The first argument is the reference to store, the second is the start of
7216the object to store it to, and the third is the address of the field of
7217Obj to store to. If the runtime does not require a pointer to the
7218object, Obj may be null.
7219
7220Semantics:
7221""""""""""
7222
7223The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7224instruction, but may be replaced with substantially more complex code by
7225the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7226intrinsic may only be used in a function which :ref:`specifies a GC
7227algorithm <gc>`.
7228
7229Code Generator Intrinsics
7230-------------------------
7231
7232These intrinsics are provided by LLVM to expose special features that
7233may only be implemented with code generator support.
7234
7235'``llvm.returnaddress``' Intrinsic
7236^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7237
7238Syntax:
7239"""""""
7240
7241::
7242
7243 declare i8 *@llvm.returnaddress(i32 <level>)
7244
7245Overview:
7246"""""""""
7247
7248The '``llvm.returnaddress``' intrinsic attempts to compute a
7249target-specific value indicating the return address of the current
7250function or one of its callers.
7251
7252Arguments:
7253""""""""""
7254
7255The argument to this intrinsic indicates which function to return the
7256address for. Zero indicates the calling function, one indicates its
7257caller, etc. The argument is **required** to be a constant integer
7258value.
7259
7260Semantics:
7261""""""""""
7262
7263The '``llvm.returnaddress``' intrinsic either returns a pointer
7264indicating the return address of the specified call frame, or zero if it
7265cannot be identified. The value returned by this intrinsic is likely to
7266be incorrect or 0 for arguments other than zero, so it should only be
7267used for debugging purposes.
7268
7269Note that calling this intrinsic does not prevent function inlining or
7270other aggressive transformations, so the value returned may not be that
7271of the obvious source-language caller.
7272
7273'``llvm.frameaddress``' Intrinsic
7274^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7275
7276Syntax:
7277"""""""
7278
7279::
7280
7281 declare i8* @llvm.frameaddress(i32 <level>)
7282
7283Overview:
7284"""""""""
7285
7286The '``llvm.frameaddress``' intrinsic attempts to return the
7287target-specific frame pointer value for the specified stack frame.
7288
7289Arguments:
7290""""""""""
7291
7292The argument to this intrinsic indicates which function to return the
7293frame pointer for. Zero indicates the calling function, one indicates
7294its caller, etc. The argument is **required** to be a constant integer
7295value.
7296
7297Semantics:
7298""""""""""
7299
7300The '``llvm.frameaddress``' intrinsic either returns a pointer
7301indicating the frame address of the specified call frame, or zero if it
7302cannot be identified. The value returned by this intrinsic is likely to
7303be incorrect or 0 for arguments other than zero, so it should only be
7304used for debugging purposes.
7305
7306Note that calling this intrinsic does not prevent function inlining or
7307other aggressive transformations, so the value returned may not be that
7308of the obvious source-language caller.
7309
Reid Kleckner3542ace2015-01-13 01:51:34 +00007310'``llvm.frameallocate``' and '``llvm.framerecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00007311^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7312
7313Syntax:
7314"""""""
7315
7316::
7317
7318 declare i8* @llvm.frameallocate(i32 %size)
Reid Kleckner3542ace2015-01-13 01:51:34 +00007319 declare i8* @llvm.framerecover(i8* %func, i8* %fp)
Reid Klecknere9b89312015-01-13 00:48:10 +00007320
7321Overview:
7322"""""""""
7323
7324The '``llvm.frameallocate``' intrinsic allocates stack memory at some fixed
Reid Kleckner3542ace2015-01-13 01:51:34 +00007325offset from the frame pointer, and the '``llvm.framerecover``'
Reid Klecknere9b89312015-01-13 00:48:10 +00007326intrinsic applies that offset to a live frame pointer to recover the address of
7327the allocation. The offset is computed during frame layout of the caller of
7328``llvm.frameallocate``.
7329
7330Arguments:
7331""""""""""
7332
7333The ``size`` argument to '``llvm.frameallocate``' must be a constant integer
7334indicating the amount of stack memory to allocate. As with allocas, allocating
7335zero bytes is legal, but the result is undefined.
7336
Reid Kleckner3542ace2015-01-13 01:51:34 +00007337The ``func`` argument to '``llvm.framerecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00007338bitcasted pointer to a function defined in the current module. The code
7339generator cannot determine the frame allocation offset of functions defined in
7340other modules.
7341
Reid Kleckner3542ace2015-01-13 01:51:34 +00007342The ``fp`` argument to '``llvm.framerecover``' must be a frame
Reid Klecknere9b89312015-01-13 00:48:10 +00007343pointer of a call frame that is currently live. The return value of
7344'``llvm.frameaddress``' is one way to produce such a value, but most platforms
7345also expose the frame pointer through stack unwinding mechanisms.
7346
7347Semantics:
7348""""""""""
7349
7350These intrinsics allow a group of functions to access one stack memory
7351allocation in an ancestor stack frame. The memory returned from
7352'``llvm.frameallocate``' may be allocated prior to stack realignment, so the
7353memory is only aligned to the ABI-required stack alignment. Each function may
7354only call '``llvm.frameallocate``' one or zero times from the function entry
7355block. The frame allocation intrinsic inhibits inlining, as any frame
7356allocations in the inlined function frame are likely to be at a different
Reid Kleckner3542ace2015-01-13 01:51:34 +00007357offset from the one used by '``llvm.framerecover``' called with the
Reid Klecknere9b89312015-01-13 00:48:10 +00007358uninlined function.
7359
Renato Golinc7aea402014-05-06 16:51:25 +00007360.. _int_read_register:
7361.. _int_write_register:
7362
7363'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7364^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7365
7366Syntax:
7367"""""""
7368
7369::
7370
7371 declare i32 @llvm.read_register.i32(metadata)
7372 declare i64 @llvm.read_register.i64(metadata)
7373 declare void @llvm.write_register.i32(metadata, i32 @value)
7374 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00007375 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00007376
7377Overview:
7378"""""""""
7379
7380The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7381provides access to the named register. The register must be valid on
7382the architecture being compiled to. The type needs to be compatible
7383with the register being read.
7384
7385Semantics:
7386""""""""""
7387
7388The '``llvm.read_register``' intrinsic returns the current value of the
7389register, where possible. The '``llvm.write_register``' intrinsic sets
7390the current value of the register, where possible.
7391
7392This is useful to implement named register global variables that need
7393to always be mapped to a specific register, as is common practice on
7394bare-metal programs including OS kernels.
7395
7396The compiler doesn't check for register availability or use of the used
7397register in surrounding code, including inline assembly. Because of that,
7398allocatable registers are not supported.
7399
7400Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007401architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007402work is needed to support other registers and even more so, allocatable
7403registers.
7404
Sean Silvab084af42012-12-07 10:36:55 +00007405.. _int_stacksave:
7406
7407'``llvm.stacksave``' Intrinsic
7408^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7409
7410Syntax:
7411"""""""
7412
7413::
7414
7415 declare i8* @llvm.stacksave()
7416
7417Overview:
7418"""""""""
7419
7420The '``llvm.stacksave``' intrinsic is used to remember the current state
7421of the function stack, for use with
7422:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7423implementing language features like scoped automatic variable sized
7424arrays in C99.
7425
7426Semantics:
7427""""""""""
7428
7429This intrinsic returns a opaque pointer value that can be passed to
7430:ref:`llvm.stackrestore <int_stackrestore>`. When an
7431``llvm.stackrestore`` intrinsic is executed with a value saved from
7432``llvm.stacksave``, it effectively restores the state of the stack to
7433the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7434practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7435were allocated after the ``llvm.stacksave`` was executed.
7436
7437.. _int_stackrestore:
7438
7439'``llvm.stackrestore``' Intrinsic
7440^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7441
7442Syntax:
7443"""""""
7444
7445::
7446
7447 declare void @llvm.stackrestore(i8* %ptr)
7448
7449Overview:
7450"""""""""
7451
7452The '``llvm.stackrestore``' intrinsic is used to restore the state of
7453the function stack to the state it was in when the corresponding
7454:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7455useful for implementing language features like scoped automatic variable
7456sized arrays in C99.
7457
7458Semantics:
7459""""""""""
7460
7461See the description for :ref:`llvm.stacksave <int_stacksave>`.
7462
7463'``llvm.prefetch``' Intrinsic
7464^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7465
7466Syntax:
7467"""""""
7468
7469::
7470
7471 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7472
7473Overview:
7474"""""""""
7475
7476The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7477insert a prefetch instruction if supported; otherwise, it is a noop.
7478Prefetches have no effect on the behavior of the program but can change
7479its performance characteristics.
7480
7481Arguments:
7482""""""""""
7483
7484``address`` is the address to be prefetched, ``rw`` is the specifier
7485determining if the fetch should be for a read (0) or write (1), and
7486``locality`` is a temporal locality specifier ranging from (0) - no
7487locality, to (3) - extremely local keep in cache. The ``cache type``
7488specifies whether the prefetch is performed on the data (1) or
7489instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7490arguments must be constant integers.
7491
7492Semantics:
7493""""""""""
7494
7495This intrinsic does not modify the behavior of the program. In
7496particular, prefetches cannot trap and do not produce a value. On
7497targets that support this intrinsic, the prefetch can provide hints to
7498the processor cache for better performance.
7499
7500'``llvm.pcmarker``' Intrinsic
7501^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7502
7503Syntax:
7504"""""""
7505
7506::
7507
7508 declare void @llvm.pcmarker(i32 <id>)
7509
7510Overview:
7511"""""""""
7512
7513The '``llvm.pcmarker``' intrinsic is a method to export a Program
7514Counter (PC) in a region of code to simulators and other tools. The
7515method is target specific, but it is expected that the marker will use
7516exported symbols to transmit the PC of the marker. The marker makes no
7517guarantees that it will remain with any specific instruction after
7518optimizations. It is possible that the presence of a marker will inhibit
7519optimizations. The intended use is to be inserted after optimizations to
7520allow correlations of simulation runs.
7521
7522Arguments:
7523""""""""""
7524
7525``id`` is a numerical id identifying the marker.
7526
7527Semantics:
7528""""""""""
7529
7530This intrinsic does not modify the behavior of the program. Backends
7531that do not support this intrinsic may ignore it.
7532
7533'``llvm.readcyclecounter``' Intrinsic
7534^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7535
7536Syntax:
7537"""""""
7538
7539::
7540
7541 declare i64 @llvm.readcyclecounter()
7542
7543Overview:
7544"""""""""
7545
7546The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7547counter register (or similar low latency, high accuracy clocks) on those
7548targets that support it. On X86, it should map to RDTSC. On Alpha, it
7549should map to RPCC. As the backing counters overflow quickly (on the
7550order of 9 seconds on alpha), this should only be used for small
7551timings.
7552
7553Semantics:
7554""""""""""
7555
7556When directly supported, reading the cycle counter should not modify any
7557memory. Implementations are allowed to either return a application
7558specific value or a system wide value. On backends without support, this
7559is lowered to a constant 0.
7560
Tim Northoverbc933082013-05-23 19:11:20 +00007561Note that runtime support may be conditional on the privilege-level code is
7562running at and the host platform.
7563
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007564'``llvm.clear_cache``' Intrinsic
7565^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7566
7567Syntax:
7568"""""""
7569
7570::
7571
7572 declare void @llvm.clear_cache(i8*, i8*)
7573
7574Overview:
7575"""""""""
7576
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007577The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7578in the specified range to the execution unit of the processor. On
7579targets with non-unified instruction and data cache, the implementation
7580flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007581
7582Semantics:
7583""""""""""
7584
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007585On platforms with coherent instruction and data caches (e.g. x86), this
7586intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007587cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007588instructions or a system call, if cache flushing requires special
7589privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007590
Sean Silvad02bf3e2014-04-07 22:29:53 +00007591The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007592time library.
Renato Golin93010e62014-03-26 14:01:32 +00007593
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007594This instrinsic does *not* empty the instruction pipeline. Modifications
7595of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007596
Justin Bogner61ba2e32014-12-08 18:02:35 +00007597'``llvm.instrprof_increment``' Intrinsic
7598^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7599
7600Syntax:
7601"""""""
7602
7603::
7604
7605 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
7606 i32 <num-counters>, i32 <index>)
7607
7608Overview:
7609"""""""""
7610
7611The '``llvm.instrprof_increment``' intrinsic can be emitted by a
7612frontend for use with instrumentation based profiling. These will be
7613lowered by the ``-instrprof`` pass to generate execution counts of a
7614program at runtime.
7615
7616Arguments:
7617""""""""""
7618
7619The first argument is a pointer to a global variable containing the
7620name of the entity being instrumented. This should generally be the
7621(mangled) function name for a set of counters.
7622
7623The second argument is a hash value that can be used by the consumer
7624of the profile data to detect changes to the instrumented source, and
7625the third is the number of counters associated with ``name``. It is an
7626error if ``hash`` or ``num-counters`` differ between two instances of
7627``instrprof_increment`` that refer to the same name.
7628
7629The last argument refers to which of the counters for ``name`` should
7630be incremented. It should be a value between 0 and ``num-counters``.
7631
7632Semantics:
7633""""""""""
7634
7635This intrinsic represents an increment of a profiling counter. It will
7636cause the ``-instrprof`` pass to generate the appropriate data
7637structures and the code to increment the appropriate value, in a
7638format that can be written out by a compiler runtime and consumed via
7639the ``llvm-profdata`` tool.
7640
Sean Silvab084af42012-12-07 10:36:55 +00007641Standard C Library Intrinsics
7642-----------------------------
7643
7644LLVM provides intrinsics for a few important standard C library
7645functions. These intrinsics allow source-language front-ends to pass
7646information about the alignment of the pointer arguments to the code
7647generator, providing opportunity for more efficient code generation.
7648
7649.. _int_memcpy:
7650
7651'``llvm.memcpy``' Intrinsic
7652^^^^^^^^^^^^^^^^^^^^^^^^^^^
7653
7654Syntax:
7655"""""""
7656
7657This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7658integer bit width and for different address spaces. Not all targets
7659support all bit widths however.
7660
7661::
7662
7663 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7664 i32 <len>, i32 <align>, i1 <isvolatile>)
7665 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7666 i64 <len>, i32 <align>, i1 <isvolatile>)
7667
7668Overview:
7669"""""""""
7670
7671The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7672source location to the destination location.
7673
7674Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7675intrinsics do not return a value, takes extra alignment/isvolatile
7676arguments and the pointers can be in specified address spaces.
7677
7678Arguments:
7679""""""""""
7680
7681The first argument is a pointer to the destination, the second is a
7682pointer to the source. The third argument is an integer argument
7683specifying the number of bytes to copy, the fourth argument is the
7684alignment of the source and destination locations, and the fifth is a
7685boolean indicating a volatile access.
7686
7687If the call to this intrinsic has an alignment value that is not 0 or 1,
7688then the caller guarantees that both the source and destination pointers
7689are aligned to that boundary.
7690
7691If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7692a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7693very cleanly specified and it is unwise to depend on it.
7694
7695Semantics:
7696""""""""""
7697
7698The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7699source location to the destination location, which are not allowed to
7700overlap. It copies "len" bytes of memory over. If the argument is known
7701to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00007702argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007703
7704'``llvm.memmove``' Intrinsic
7705^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7706
7707Syntax:
7708"""""""
7709
7710This is an overloaded intrinsic. You can use llvm.memmove on any integer
7711bit width and for different address space. Not all targets support all
7712bit widths however.
7713
7714::
7715
7716 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7717 i32 <len>, i32 <align>, i1 <isvolatile>)
7718 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7719 i64 <len>, i32 <align>, i1 <isvolatile>)
7720
7721Overview:
7722"""""""""
7723
7724The '``llvm.memmove.*``' intrinsics move a block of memory from the
7725source location to the destination location. It is similar to the
7726'``llvm.memcpy``' intrinsic but allows the two memory locations to
7727overlap.
7728
7729Note that, unlike the standard libc function, the ``llvm.memmove.*``
7730intrinsics do not return a value, takes extra alignment/isvolatile
7731arguments and the pointers can be in specified address spaces.
7732
7733Arguments:
7734""""""""""
7735
7736The first argument is a pointer to the destination, the second is a
7737pointer to the source. The third argument is an integer argument
7738specifying the number of bytes to copy, the fourth argument is the
7739alignment of the source and destination locations, and the fifth is a
7740boolean indicating a volatile access.
7741
7742If the call to this intrinsic has an alignment value that is not 0 or 1,
7743then the caller guarantees that the source and destination pointers are
7744aligned to that boundary.
7745
7746If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
7747is a :ref:`volatile operation <volatile>`. The detailed access behavior is
7748not very cleanly specified and it is unwise to depend on it.
7749
7750Semantics:
7751""""""""""
7752
7753The '``llvm.memmove.*``' intrinsics copy a block of memory from the
7754source location to the destination location, which may overlap. It
7755copies "len" bytes of memory over. If the argument is known to be
7756aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00007757otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007758
7759'``llvm.memset.*``' Intrinsics
7760^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7761
7762Syntax:
7763"""""""
7764
7765This is an overloaded intrinsic. You can use llvm.memset on any integer
7766bit width and for different address spaces. However, not all targets
7767support all bit widths.
7768
7769::
7770
7771 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
7772 i32 <len>, i32 <align>, i1 <isvolatile>)
7773 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
7774 i64 <len>, i32 <align>, i1 <isvolatile>)
7775
7776Overview:
7777"""""""""
7778
7779The '``llvm.memset.*``' intrinsics fill a block of memory with a
7780particular byte value.
7781
7782Note that, unlike the standard libc function, the ``llvm.memset``
7783intrinsic does not return a value and takes extra alignment/volatile
7784arguments. Also, the destination can be in an arbitrary address space.
7785
7786Arguments:
7787""""""""""
7788
7789The first argument is a pointer to the destination to fill, the second
7790is the byte value with which to fill it, the third argument is an
7791integer argument specifying the number of bytes to fill, and the fourth
7792argument is the known alignment of the destination location.
7793
7794If the call to this intrinsic has an alignment value that is not 0 or 1,
7795then the caller guarantees that the destination pointer is aligned to
7796that boundary.
7797
7798If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
7799a :ref:`volatile operation <volatile>`. The detailed access behavior is not
7800very cleanly specified and it is unwise to depend on it.
7801
7802Semantics:
7803""""""""""
7804
7805The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
7806at the destination location. If the argument is known to be aligned to
7807some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00007808it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00007809
7810'``llvm.sqrt.*``' Intrinsic
7811^^^^^^^^^^^^^^^^^^^^^^^^^^^
7812
7813Syntax:
7814"""""""
7815
7816This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
7817floating point or vector of floating point type. Not all targets support
7818all types however.
7819
7820::
7821
7822 declare float @llvm.sqrt.f32(float %Val)
7823 declare double @llvm.sqrt.f64(double %Val)
7824 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
7825 declare fp128 @llvm.sqrt.f128(fp128 %Val)
7826 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
7827
7828Overview:
7829"""""""""
7830
7831The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
7832returning the same value as the libm '``sqrt``' functions would. Unlike
7833``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
7834negative numbers other than -0.0 (which allows for better optimization,
7835because there is no need to worry about errno being set).
7836``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
7837
7838Arguments:
7839""""""""""
7840
7841The argument and return value are floating point numbers of the same
7842type.
7843
7844Semantics:
7845""""""""""
7846
7847This function returns the sqrt of the specified operand if it is a
7848nonnegative floating point number.
7849
7850'``llvm.powi.*``' Intrinsic
7851^^^^^^^^^^^^^^^^^^^^^^^^^^^
7852
7853Syntax:
7854"""""""
7855
7856This is an overloaded intrinsic. You can use ``llvm.powi`` on any
7857floating point or vector of floating point type. Not all targets support
7858all types however.
7859
7860::
7861
7862 declare float @llvm.powi.f32(float %Val, i32 %power)
7863 declare double @llvm.powi.f64(double %Val, i32 %power)
7864 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
7865 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
7866 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
7867
7868Overview:
7869"""""""""
7870
7871The '``llvm.powi.*``' intrinsics return the first operand raised to the
7872specified (positive or negative) power. The order of evaluation of
7873multiplications is not defined. When a vector of floating point type is
7874used, the second argument remains a scalar integer value.
7875
7876Arguments:
7877""""""""""
7878
7879The second argument is an integer power, and the first is a value to
7880raise to that power.
7881
7882Semantics:
7883""""""""""
7884
7885This function returns the first value raised to the second power with an
7886unspecified sequence of rounding operations.
7887
7888'``llvm.sin.*``' Intrinsic
7889^^^^^^^^^^^^^^^^^^^^^^^^^^
7890
7891Syntax:
7892"""""""
7893
7894This is an overloaded intrinsic. You can use ``llvm.sin`` on any
7895floating point or vector of floating point type. Not all targets support
7896all types however.
7897
7898::
7899
7900 declare float @llvm.sin.f32(float %Val)
7901 declare double @llvm.sin.f64(double %Val)
7902 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
7903 declare fp128 @llvm.sin.f128(fp128 %Val)
7904 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
7905
7906Overview:
7907"""""""""
7908
7909The '``llvm.sin.*``' intrinsics return the sine of the operand.
7910
7911Arguments:
7912""""""""""
7913
7914The argument and return value are floating point numbers of the same
7915type.
7916
7917Semantics:
7918""""""""""
7919
7920This function returns the sine of the specified operand, returning the
7921same values as the libm ``sin`` functions would, and handles error
7922conditions in the same way.
7923
7924'``llvm.cos.*``' Intrinsic
7925^^^^^^^^^^^^^^^^^^^^^^^^^^
7926
7927Syntax:
7928"""""""
7929
7930This is an overloaded intrinsic. You can use ``llvm.cos`` on any
7931floating point or vector of floating point type. Not all targets support
7932all types however.
7933
7934::
7935
7936 declare float @llvm.cos.f32(float %Val)
7937 declare double @llvm.cos.f64(double %Val)
7938 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
7939 declare fp128 @llvm.cos.f128(fp128 %Val)
7940 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
7941
7942Overview:
7943"""""""""
7944
7945The '``llvm.cos.*``' intrinsics return the cosine of the operand.
7946
7947Arguments:
7948""""""""""
7949
7950The argument and return value are floating point numbers of the same
7951type.
7952
7953Semantics:
7954""""""""""
7955
7956This function returns the cosine of the specified operand, returning the
7957same values as the libm ``cos`` functions would, and handles error
7958conditions in the same way.
7959
7960'``llvm.pow.*``' Intrinsic
7961^^^^^^^^^^^^^^^^^^^^^^^^^^
7962
7963Syntax:
7964"""""""
7965
7966This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7967floating point or vector of floating point type. Not all targets support
7968all types however.
7969
7970::
7971
7972 declare float @llvm.pow.f32(float %Val, float %Power)
7973 declare double @llvm.pow.f64(double %Val, double %Power)
7974 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7975 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7976 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7977
7978Overview:
7979"""""""""
7980
7981The '``llvm.pow.*``' intrinsics return the first operand raised to the
7982specified (positive or negative) power.
7983
7984Arguments:
7985""""""""""
7986
7987The second argument is a floating point power, and the first is a value
7988to raise to that power.
7989
7990Semantics:
7991""""""""""
7992
7993This function returns the first value raised to the second power,
7994returning the same values as the libm ``pow`` functions would, and
7995handles error conditions in the same way.
7996
7997'``llvm.exp.*``' Intrinsic
7998^^^^^^^^^^^^^^^^^^^^^^^^^^
7999
8000Syntax:
8001"""""""
8002
8003This is an overloaded intrinsic. You can use ``llvm.exp`` on any
8004floating point or vector of floating point type. Not all targets support
8005all types however.
8006
8007::
8008
8009 declare float @llvm.exp.f32(float %Val)
8010 declare double @llvm.exp.f64(double %Val)
8011 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
8012 declare fp128 @llvm.exp.f128(fp128 %Val)
8013 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
8014
8015Overview:
8016"""""""""
8017
8018The '``llvm.exp.*``' intrinsics perform the exp function.
8019
8020Arguments:
8021""""""""""
8022
8023The argument and return value are floating point numbers of the same
8024type.
8025
8026Semantics:
8027""""""""""
8028
8029This function returns the same values as the libm ``exp`` functions
8030would, and handles error conditions in the same way.
8031
8032'``llvm.exp2.*``' Intrinsic
8033^^^^^^^^^^^^^^^^^^^^^^^^^^^
8034
8035Syntax:
8036"""""""
8037
8038This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
8039floating point or vector of floating point type. Not all targets support
8040all types however.
8041
8042::
8043
8044 declare float @llvm.exp2.f32(float %Val)
8045 declare double @llvm.exp2.f64(double %Val)
8046 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
8047 declare fp128 @llvm.exp2.f128(fp128 %Val)
8048 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
8049
8050Overview:
8051"""""""""
8052
8053The '``llvm.exp2.*``' intrinsics perform the exp2 function.
8054
8055Arguments:
8056""""""""""
8057
8058The argument and return value are floating point numbers of the same
8059type.
8060
8061Semantics:
8062""""""""""
8063
8064This function returns the same values as the libm ``exp2`` functions
8065would, and handles error conditions in the same way.
8066
8067'``llvm.log.*``' Intrinsic
8068^^^^^^^^^^^^^^^^^^^^^^^^^^
8069
8070Syntax:
8071"""""""
8072
8073This is an overloaded intrinsic. You can use ``llvm.log`` on any
8074floating point or vector of floating point type. Not all targets support
8075all types however.
8076
8077::
8078
8079 declare float @llvm.log.f32(float %Val)
8080 declare double @llvm.log.f64(double %Val)
8081 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
8082 declare fp128 @llvm.log.f128(fp128 %Val)
8083 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
8084
8085Overview:
8086"""""""""
8087
8088The '``llvm.log.*``' intrinsics perform the log function.
8089
8090Arguments:
8091""""""""""
8092
8093The argument and return value are floating point numbers of the same
8094type.
8095
8096Semantics:
8097""""""""""
8098
8099This function returns the same values as the libm ``log`` functions
8100would, and handles error conditions in the same way.
8101
8102'``llvm.log10.*``' Intrinsic
8103^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8104
8105Syntax:
8106"""""""
8107
8108This is an overloaded intrinsic. You can use ``llvm.log10`` on any
8109floating point or vector of floating point type. Not all targets support
8110all types however.
8111
8112::
8113
8114 declare float @llvm.log10.f32(float %Val)
8115 declare double @llvm.log10.f64(double %Val)
8116 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
8117 declare fp128 @llvm.log10.f128(fp128 %Val)
8118 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
8119
8120Overview:
8121"""""""""
8122
8123The '``llvm.log10.*``' intrinsics perform the log10 function.
8124
8125Arguments:
8126""""""""""
8127
8128The argument and return value are floating point numbers of the same
8129type.
8130
8131Semantics:
8132""""""""""
8133
8134This function returns the same values as the libm ``log10`` functions
8135would, and handles error conditions in the same way.
8136
8137'``llvm.log2.*``' Intrinsic
8138^^^^^^^^^^^^^^^^^^^^^^^^^^^
8139
8140Syntax:
8141"""""""
8142
8143This is an overloaded intrinsic. You can use ``llvm.log2`` on any
8144floating point or vector of floating point type. Not all targets support
8145all types however.
8146
8147::
8148
8149 declare float @llvm.log2.f32(float %Val)
8150 declare double @llvm.log2.f64(double %Val)
8151 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
8152 declare fp128 @llvm.log2.f128(fp128 %Val)
8153 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
8154
8155Overview:
8156"""""""""
8157
8158The '``llvm.log2.*``' intrinsics perform the log2 function.
8159
8160Arguments:
8161""""""""""
8162
8163The argument and return value are floating point numbers of the same
8164type.
8165
8166Semantics:
8167""""""""""
8168
8169This function returns the same values as the libm ``log2`` functions
8170would, and handles error conditions in the same way.
8171
8172'``llvm.fma.*``' Intrinsic
8173^^^^^^^^^^^^^^^^^^^^^^^^^^
8174
8175Syntax:
8176"""""""
8177
8178This is an overloaded intrinsic. You can use ``llvm.fma`` on any
8179floating point or vector of floating point type. Not all targets support
8180all types however.
8181
8182::
8183
8184 declare float @llvm.fma.f32(float %a, float %b, float %c)
8185 declare double @llvm.fma.f64(double %a, double %b, double %c)
8186 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
8187 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
8188 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
8189
8190Overview:
8191"""""""""
8192
8193The '``llvm.fma.*``' intrinsics perform the fused multiply-add
8194operation.
8195
8196Arguments:
8197""""""""""
8198
8199The argument and return value are floating point numbers of the same
8200type.
8201
8202Semantics:
8203""""""""""
8204
8205This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008206would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00008207
8208'``llvm.fabs.*``' Intrinsic
8209^^^^^^^^^^^^^^^^^^^^^^^^^^^
8210
8211Syntax:
8212"""""""
8213
8214This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
8215floating point or vector of floating point type. Not all targets support
8216all types however.
8217
8218::
8219
8220 declare float @llvm.fabs.f32(float %Val)
8221 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008222 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008223 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008224 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008225
8226Overview:
8227"""""""""
8228
8229The '``llvm.fabs.*``' intrinsics return the absolute value of the
8230operand.
8231
8232Arguments:
8233""""""""""
8234
8235The argument and return value are floating point numbers of the same
8236type.
8237
8238Semantics:
8239""""""""""
8240
8241This function returns the same values as the libm ``fabs`` functions
8242would, and handles error conditions in the same way.
8243
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008244'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008245^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008246
8247Syntax:
8248"""""""
8249
8250This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
8251floating point or vector of floating point type. Not all targets support
8252all types however.
8253
8254::
8255
Matt Arsenault64313c92014-10-22 18:25:02 +00008256 declare float @llvm.minnum.f32(float %Val0, float %Val1)
8257 declare double @llvm.minnum.f64(double %Val0, double %Val1)
8258 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8259 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
8260 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008261
8262Overview:
8263"""""""""
8264
8265The '``llvm.minnum.*``' intrinsics return the minimum of the two
8266arguments.
8267
8268
8269Arguments:
8270""""""""""
8271
8272The arguments and return value are floating point numbers of the same
8273type.
8274
8275Semantics:
8276""""""""""
8277
8278Follows the IEEE-754 semantics for minNum, which also match for libm's
8279fmin.
8280
8281If either operand is a NaN, returns the other non-NaN operand. Returns
8282NaN only if both operands are NaN. If the operands compare equal,
8283returns a value that compares equal to both operands. This means that
8284fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8285
8286'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008287^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008288
8289Syntax:
8290"""""""
8291
8292This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
8293floating point or vector of floating point type. Not all targets support
8294all types however.
8295
8296::
8297
Matt Arsenault64313c92014-10-22 18:25:02 +00008298 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
8299 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
8300 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8301 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
8302 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008303
8304Overview:
8305"""""""""
8306
8307The '``llvm.maxnum.*``' intrinsics return the maximum of the two
8308arguments.
8309
8310
8311Arguments:
8312""""""""""
8313
8314The arguments and return value are floating point numbers of the same
8315type.
8316
8317Semantics:
8318""""""""""
8319Follows the IEEE-754 semantics for maxNum, which also match for libm's
8320fmax.
8321
8322If either operand is a NaN, returns the other non-NaN operand. Returns
8323NaN only if both operands are NaN. If the operands compare equal,
8324returns a value that compares equal to both operands. This means that
8325fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8326
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00008327'``llvm.copysign.*``' Intrinsic
8328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8329
8330Syntax:
8331"""""""
8332
8333This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
8334floating point or vector of floating point type. Not all targets support
8335all types however.
8336
8337::
8338
8339 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
8340 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
8341 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
8342 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8343 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
8344
8345Overview:
8346"""""""""
8347
8348The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8349first operand and the sign of the second operand.
8350
8351Arguments:
8352""""""""""
8353
8354The arguments and return value are floating point numbers of the same
8355type.
8356
8357Semantics:
8358""""""""""
8359
8360This function returns the same values as the libm ``copysign``
8361functions would, and handles error conditions in the same way.
8362
Sean Silvab084af42012-12-07 10:36:55 +00008363'``llvm.floor.*``' Intrinsic
8364^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8365
8366Syntax:
8367"""""""
8368
8369This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8370floating point or vector of floating point type. Not all targets support
8371all types however.
8372
8373::
8374
8375 declare float @llvm.floor.f32(float %Val)
8376 declare double @llvm.floor.f64(double %Val)
8377 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
8378 declare fp128 @llvm.floor.f128(fp128 %Val)
8379 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
8380
8381Overview:
8382"""""""""
8383
8384The '``llvm.floor.*``' intrinsics return the floor of the operand.
8385
8386Arguments:
8387""""""""""
8388
8389The argument and return value are floating point numbers of the same
8390type.
8391
8392Semantics:
8393""""""""""
8394
8395This function returns the same values as the libm ``floor`` functions
8396would, and handles error conditions in the same way.
8397
8398'``llvm.ceil.*``' Intrinsic
8399^^^^^^^^^^^^^^^^^^^^^^^^^^^
8400
8401Syntax:
8402"""""""
8403
8404This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8405floating point or vector of floating point type. Not all targets support
8406all types however.
8407
8408::
8409
8410 declare float @llvm.ceil.f32(float %Val)
8411 declare double @llvm.ceil.f64(double %Val)
8412 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8413 declare fp128 @llvm.ceil.f128(fp128 %Val)
8414 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8415
8416Overview:
8417"""""""""
8418
8419The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8420
8421Arguments:
8422""""""""""
8423
8424The argument and return value are floating point numbers of the same
8425type.
8426
8427Semantics:
8428""""""""""
8429
8430This function returns the same values as the libm ``ceil`` functions
8431would, and handles error conditions in the same way.
8432
8433'``llvm.trunc.*``' Intrinsic
8434^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8435
8436Syntax:
8437"""""""
8438
8439This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8440floating point or vector of floating point type. Not all targets support
8441all types however.
8442
8443::
8444
8445 declare float @llvm.trunc.f32(float %Val)
8446 declare double @llvm.trunc.f64(double %Val)
8447 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8448 declare fp128 @llvm.trunc.f128(fp128 %Val)
8449 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8450
8451Overview:
8452"""""""""
8453
8454The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8455nearest integer not larger in magnitude than the operand.
8456
8457Arguments:
8458""""""""""
8459
8460The argument and return value are floating point numbers of the same
8461type.
8462
8463Semantics:
8464""""""""""
8465
8466This function returns the same values as the libm ``trunc`` functions
8467would, and handles error conditions in the same way.
8468
8469'``llvm.rint.*``' Intrinsic
8470^^^^^^^^^^^^^^^^^^^^^^^^^^^
8471
8472Syntax:
8473"""""""
8474
8475This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8476floating point or vector of floating point type. Not all targets support
8477all types however.
8478
8479::
8480
8481 declare float @llvm.rint.f32(float %Val)
8482 declare double @llvm.rint.f64(double %Val)
8483 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8484 declare fp128 @llvm.rint.f128(fp128 %Val)
8485 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8486
8487Overview:
8488"""""""""
8489
8490The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8491nearest integer. It may raise an inexact floating-point exception if the
8492operand isn't an integer.
8493
8494Arguments:
8495""""""""""
8496
8497The argument and return value are floating point numbers of the same
8498type.
8499
8500Semantics:
8501""""""""""
8502
8503This function returns the same values as the libm ``rint`` functions
8504would, and handles error conditions in the same way.
8505
8506'``llvm.nearbyint.*``' Intrinsic
8507^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8508
8509Syntax:
8510"""""""
8511
8512This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8513floating point or vector of floating point type. Not all targets support
8514all types however.
8515
8516::
8517
8518 declare float @llvm.nearbyint.f32(float %Val)
8519 declare double @llvm.nearbyint.f64(double %Val)
8520 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8521 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8522 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8523
8524Overview:
8525"""""""""
8526
8527The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8528nearest integer.
8529
8530Arguments:
8531""""""""""
8532
8533The argument and return value are floating point numbers of the same
8534type.
8535
8536Semantics:
8537""""""""""
8538
8539This function returns the same values as the libm ``nearbyint``
8540functions would, and handles error conditions in the same way.
8541
Hal Finkel171817e2013-08-07 22:49:12 +00008542'``llvm.round.*``' Intrinsic
8543^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8544
8545Syntax:
8546"""""""
8547
8548This is an overloaded intrinsic. You can use ``llvm.round`` on any
8549floating point or vector of floating point type. Not all targets support
8550all types however.
8551
8552::
8553
8554 declare float @llvm.round.f32(float %Val)
8555 declare double @llvm.round.f64(double %Val)
8556 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8557 declare fp128 @llvm.round.f128(fp128 %Val)
8558 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8559
8560Overview:
8561"""""""""
8562
8563The '``llvm.round.*``' intrinsics returns the operand rounded to the
8564nearest integer.
8565
8566Arguments:
8567""""""""""
8568
8569The argument and return value are floating point numbers of the same
8570type.
8571
8572Semantics:
8573""""""""""
8574
8575This function returns the same values as the libm ``round``
8576functions would, and handles error conditions in the same way.
8577
Sean Silvab084af42012-12-07 10:36:55 +00008578Bit Manipulation Intrinsics
8579---------------------------
8580
8581LLVM provides intrinsics for a few important bit manipulation
8582operations. These allow efficient code generation for some algorithms.
8583
8584'``llvm.bswap.*``' Intrinsics
8585^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8586
8587Syntax:
8588"""""""
8589
8590This is an overloaded intrinsic function. You can use bswap on any
8591integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8592
8593::
8594
8595 declare i16 @llvm.bswap.i16(i16 <id>)
8596 declare i32 @llvm.bswap.i32(i32 <id>)
8597 declare i64 @llvm.bswap.i64(i64 <id>)
8598
8599Overview:
8600"""""""""
8601
8602The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8603values with an even number of bytes (positive multiple of 16 bits).
8604These are useful for performing operations on data that is not in the
8605target's native byte order.
8606
8607Semantics:
8608""""""""""
8609
8610The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8611and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8612intrinsic returns an i32 value that has the four bytes of the input i32
8613swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8614returned i32 will have its bytes in 3, 2, 1, 0 order. The
8615``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8616concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8617respectively).
8618
8619'``llvm.ctpop.*``' Intrinsic
8620^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8621
8622Syntax:
8623"""""""
8624
8625This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8626bit width, or on any vector with integer elements. Not all targets
8627support all bit widths or vector types, however.
8628
8629::
8630
8631 declare i8 @llvm.ctpop.i8(i8 <src>)
8632 declare i16 @llvm.ctpop.i16(i16 <src>)
8633 declare i32 @llvm.ctpop.i32(i32 <src>)
8634 declare i64 @llvm.ctpop.i64(i64 <src>)
8635 declare i256 @llvm.ctpop.i256(i256 <src>)
8636 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8637
8638Overview:
8639"""""""""
8640
8641The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8642in a value.
8643
8644Arguments:
8645""""""""""
8646
8647The only argument is the value to be counted. The argument may be of any
8648integer type, or a vector with integer elements. The return type must
8649match the argument type.
8650
8651Semantics:
8652""""""""""
8653
8654The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8655each element of a vector.
8656
8657'``llvm.ctlz.*``' Intrinsic
8658^^^^^^^^^^^^^^^^^^^^^^^^^^^
8659
8660Syntax:
8661"""""""
8662
8663This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8664integer bit width, or any vector whose elements are integers. Not all
8665targets support all bit widths or vector types, however.
8666
8667::
8668
8669 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8670 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8671 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8672 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8673 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8674 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8675
8676Overview:
8677"""""""""
8678
8679The '``llvm.ctlz``' family of intrinsic functions counts the number of
8680leading zeros in a variable.
8681
8682Arguments:
8683""""""""""
8684
8685The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00008686any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00008687type must match the first argument type.
8688
8689The second argument must be a constant and is a flag to indicate whether
8690the intrinsic should ensure that a zero as the first argument produces a
8691defined result. Historically some architectures did not provide a
8692defined result for zero values as efficiently, and many algorithms are
8693now predicated on avoiding zero-value inputs.
8694
8695Semantics:
8696""""""""""
8697
8698The '``llvm.ctlz``' intrinsic counts the leading (most significant)
8699zeros in a variable, or within each element of the vector. If
8700``src == 0`` then the result is the size in bits of the type of ``src``
8701if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8702``llvm.ctlz(i32 2) = 30``.
8703
8704'``llvm.cttz.*``' Intrinsic
8705^^^^^^^^^^^^^^^^^^^^^^^^^^^
8706
8707Syntax:
8708"""""""
8709
8710This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
8711integer bit width, or any vector of integer elements. Not all targets
8712support all bit widths or vector types, however.
8713
8714::
8715
8716 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
8717 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
8718 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
8719 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
8720 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
8721 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8722
8723Overview:
8724"""""""""
8725
8726The '``llvm.cttz``' family of intrinsic functions counts the number of
8727trailing zeros.
8728
8729Arguments:
8730""""""""""
8731
8732The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00008733any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00008734type must match the first argument type.
8735
8736The second argument must be a constant and is a flag to indicate whether
8737the intrinsic should ensure that a zero as the first argument produces a
8738defined result. Historically some architectures did not provide a
8739defined result for zero values as efficiently, and many algorithms are
8740now predicated on avoiding zero-value inputs.
8741
8742Semantics:
8743""""""""""
8744
8745The '``llvm.cttz``' intrinsic counts the trailing (least significant)
8746zeros in a variable, or within each element of a vector. If ``src == 0``
8747then the result is the size in bits of the type of ``src`` if
8748``is_zero_undef == 0`` and ``undef`` otherwise. For example,
8749``llvm.cttz(2) = 1``.
8750
8751Arithmetic with Overflow Intrinsics
8752-----------------------------------
8753
8754LLVM provides intrinsics for some arithmetic with overflow operations.
8755
8756'``llvm.sadd.with.overflow.*``' Intrinsics
8757^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8758
8759Syntax:
8760"""""""
8761
8762This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
8763on any integer bit width.
8764
8765::
8766
8767 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
8768 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8769 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
8770
8771Overview:
8772"""""""""
8773
8774The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
8775a signed addition of the two arguments, and indicate whether an overflow
8776occurred during the signed summation.
8777
8778Arguments:
8779""""""""""
8780
8781The arguments (%a and %b) and the first element of the result structure
8782may be of integer types of any bit width, but they must have the same
8783bit width. The second element of the result structure must be of type
8784``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8785addition.
8786
8787Semantics:
8788""""""""""
8789
8790The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008791a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008792first element of which is the signed summation, and the second element
8793of which is a bit specifying if the signed summation resulted in an
8794overflow.
8795
8796Examples:
8797"""""""""
8798
8799.. code-block:: llvm
8800
8801 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
8802 %sum = extractvalue {i32, i1} %res, 0
8803 %obit = extractvalue {i32, i1} %res, 1
8804 br i1 %obit, label %overflow, label %normal
8805
8806'``llvm.uadd.with.overflow.*``' Intrinsics
8807^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8808
8809Syntax:
8810"""""""
8811
8812This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
8813on any integer bit width.
8814
8815::
8816
8817 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
8818 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8819 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
8820
8821Overview:
8822"""""""""
8823
8824The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
8825an unsigned addition of the two arguments, and indicate whether a carry
8826occurred during the unsigned summation.
8827
8828Arguments:
8829""""""""""
8830
8831The arguments (%a and %b) and the first element of the result structure
8832may be of integer types of any bit width, but they must have the same
8833bit width. The second element of the result structure must be of type
8834``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8835addition.
8836
8837Semantics:
8838""""""""""
8839
8840The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008841an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008842first element of which is the sum, and the second element of which is a
8843bit specifying if the unsigned summation resulted in a carry.
8844
8845Examples:
8846"""""""""
8847
8848.. code-block:: llvm
8849
8850 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
8851 %sum = extractvalue {i32, i1} %res, 0
8852 %obit = extractvalue {i32, i1} %res, 1
8853 br i1 %obit, label %carry, label %normal
8854
8855'``llvm.ssub.with.overflow.*``' Intrinsics
8856^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8857
8858Syntax:
8859"""""""
8860
8861This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
8862on any integer bit width.
8863
8864::
8865
8866 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
8867 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8868 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
8869
8870Overview:
8871"""""""""
8872
8873The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
8874a signed subtraction of the two arguments, and indicate whether an
8875overflow occurred during the signed subtraction.
8876
8877Arguments:
8878""""""""""
8879
8880The arguments (%a and %b) and the first element of the result structure
8881may be of integer types of any bit width, but they must have the same
8882bit width. The second element of the result structure must be of type
8883``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8884subtraction.
8885
8886Semantics:
8887""""""""""
8888
8889The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008890a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00008891first element of which is the subtraction, and the second element of
8892which is a bit specifying if the signed subtraction resulted in an
8893overflow.
8894
8895Examples:
8896"""""""""
8897
8898.. code-block:: llvm
8899
8900 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
8901 %sum = extractvalue {i32, i1} %res, 0
8902 %obit = extractvalue {i32, i1} %res, 1
8903 br i1 %obit, label %overflow, label %normal
8904
8905'``llvm.usub.with.overflow.*``' Intrinsics
8906^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8907
8908Syntax:
8909"""""""
8910
8911This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
8912on any integer bit width.
8913
8914::
8915
8916 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
8917 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8918 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
8919
8920Overview:
8921"""""""""
8922
8923The '``llvm.usub.with.overflow``' family of intrinsic functions perform
8924an unsigned subtraction of the two arguments, and indicate whether an
8925overflow occurred during the unsigned subtraction.
8926
8927Arguments:
8928""""""""""
8929
8930The arguments (%a and %b) and the first element of the result structure
8931may be of integer types of any bit width, but they must have the same
8932bit width. The second element of the result structure must be of type
8933``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
8934subtraction.
8935
8936Semantics:
8937""""""""""
8938
8939The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008940an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008941the first element of which is the subtraction, and the second element of
8942which is a bit specifying if the unsigned subtraction resulted in an
8943overflow.
8944
8945Examples:
8946"""""""""
8947
8948.. code-block:: llvm
8949
8950 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
8951 %sum = extractvalue {i32, i1} %res, 0
8952 %obit = extractvalue {i32, i1} %res, 1
8953 br i1 %obit, label %overflow, label %normal
8954
8955'``llvm.smul.with.overflow.*``' Intrinsics
8956^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8957
8958Syntax:
8959"""""""
8960
8961This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
8962on any integer bit width.
8963
8964::
8965
8966 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
8967 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
8968 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
8969
8970Overview:
8971"""""""""
8972
8973The '``llvm.smul.with.overflow``' family of intrinsic functions perform
8974a signed multiplication of the two arguments, and indicate whether an
8975overflow occurred during the signed multiplication.
8976
8977Arguments:
8978""""""""""
8979
8980The arguments (%a and %b) and the first element of the result structure
8981may be of integer types of any bit width, but they must have the same
8982bit width. The second element of the result structure must be of type
8983``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
8984multiplication.
8985
8986Semantics:
8987""""""""""
8988
8989The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008990a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00008991the first element of which is the multiplication, and the second element
8992of which is a bit specifying if the signed multiplication resulted in an
8993overflow.
8994
8995Examples:
8996"""""""""
8997
8998.. code-block:: llvm
8999
9000 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
9001 %sum = extractvalue {i32, i1} %res, 0
9002 %obit = extractvalue {i32, i1} %res, 1
9003 br i1 %obit, label %overflow, label %normal
9004
9005'``llvm.umul.with.overflow.*``' Intrinsics
9006^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9007
9008Syntax:
9009"""""""
9010
9011This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
9012on any integer bit width.
9013
9014::
9015
9016 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
9017 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
9018 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
9019
9020Overview:
9021"""""""""
9022
9023The '``llvm.umul.with.overflow``' family of intrinsic functions perform
9024a unsigned multiplication of the two arguments, and indicate whether an
9025overflow occurred during the unsigned multiplication.
9026
9027Arguments:
9028""""""""""
9029
9030The arguments (%a and %b) and the first element of the result structure
9031may be of integer types of any bit width, but they must have the same
9032bit width. The second element of the result structure must be of type
9033``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9034multiplication.
9035
9036Semantics:
9037""""""""""
9038
9039The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009040an unsigned multiplication of the two arguments. They return a structure ---
9041the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00009042element of which is a bit specifying if the unsigned multiplication
9043resulted in an overflow.
9044
9045Examples:
9046"""""""""
9047
9048.. code-block:: llvm
9049
9050 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
9051 %sum = extractvalue {i32, i1} %res, 0
9052 %obit = extractvalue {i32, i1} %res, 1
9053 br i1 %obit, label %overflow, label %normal
9054
9055Specialised Arithmetic Intrinsics
9056---------------------------------
9057
9058'``llvm.fmuladd.*``' Intrinsic
9059^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9060
9061Syntax:
9062"""""""
9063
9064::
9065
9066 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
9067 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
9068
9069Overview:
9070"""""""""
9071
9072The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00009073expressions that can be fused if the code generator determines that (a) the
9074target instruction set has support for a fused operation, and (b) that the
9075fused operation is more efficient than the equivalent, separate pair of mul
9076and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00009077
9078Arguments:
9079""""""""""
9080
9081The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
9082multiplicands, a and b, and an addend c.
9083
9084Semantics:
9085""""""""""
9086
9087The expression:
9088
9089::
9090
9091 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
9092
9093is equivalent to the expression a \* b + c, except that rounding will
9094not be performed between the multiplication and addition steps if the
9095code generator fuses the operations. Fusion is not guaranteed, even if
9096the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009097corresponding llvm.fma.\* intrinsic function should be used
9098instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00009099
9100Examples:
9101"""""""""
9102
9103.. code-block:: llvm
9104
Tim Northover675a0962014-06-13 14:24:23 +00009105 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00009106
9107Half Precision Floating Point Intrinsics
9108----------------------------------------
9109
9110For most target platforms, half precision floating point is a
9111storage-only format. This means that it is a dense encoding (in memory)
9112but does not support computation in the format.
9113
9114This means that code must first load the half-precision floating point
9115value as an i16, then convert it to float with
9116:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
9117then be performed on the float value (including extending to double
9118etc). To store the value back to memory, it is first converted to float
9119if needed, then converted to i16 with
9120:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
9121i16 value.
9122
9123.. _int_convert_to_fp16:
9124
9125'``llvm.convert.to.fp16``' Intrinsic
9126^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9127
9128Syntax:
9129"""""""
9130
9131::
9132
Tim Northoverfd7e4242014-07-17 10:51:23 +00009133 declare i16 @llvm.convert.to.fp16.f32(float %a)
9134 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00009135
9136Overview:
9137"""""""""
9138
Tim Northoverfd7e4242014-07-17 10:51:23 +00009139The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9140conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00009141
9142Arguments:
9143""""""""""
9144
9145The intrinsic function contains single argument - the value to be
9146converted.
9147
9148Semantics:
9149""""""""""
9150
Tim Northoverfd7e4242014-07-17 10:51:23 +00009151The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9152conventional floating point format to half precision floating point format. The
9153return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00009154
9155Examples:
9156"""""""""
9157
9158.. code-block:: llvm
9159
Tim Northoverfd7e4242014-07-17 10:51:23 +00009160 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00009161 store i16 %res, i16* @x, align 2
9162
9163.. _int_convert_from_fp16:
9164
9165'``llvm.convert.from.fp16``' Intrinsic
9166^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9167
9168Syntax:
9169"""""""
9170
9171::
9172
Tim Northoverfd7e4242014-07-17 10:51:23 +00009173 declare float @llvm.convert.from.fp16.f32(i16 %a)
9174 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009175
9176Overview:
9177"""""""""
9178
9179The '``llvm.convert.from.fp16``' intrinsic function performs a
9180conversion from half precision floating point format to single precision
9181floating point format.
9182
9183Arguments:
9184""""""""""
9185
9186The intrinsic function contains single argument - the value to be
9187converted.
9188
9189Semantics:
9190""""""""""
9191
9192The '``llvm.convert.from.fp16``' intrinsic function performs a
9193conversion from half single precision floating point format to single
9194precision floating point format. The input half-float value is
9195represented by an ``i16`` value.
9196
9197Examples:
9198"""""""""
9199
9200.. code-block:: llvm
9201
9202 %a = load i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00009203 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009204
9205Debugger Intrinsics
9206-------------------
9207
9208The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
9209prefix), are described in the `LLVM Source Level
9210Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
9211document.
9212
9213Exception Handling Intrinsics
9214-----------------------------
9215
9216The LLVM exception handling intrinsics (which all start with
9217``llvm.eh.`` prefix), are described in the `LLVM Exception
9218Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
9219
9220.. _int_trampoline:
9221
9222Trampoline Intrinsics
9223---------------------
9224
9225These intrinsics make it possible to excise one parameter, marked with
9226the :ref:`nest <nest>` attribute, from a function. The result is a
9227callable function pointer lacking the nest parameter - the caller does
9228not need to provide a value for it. Instead, the value to use is stored
9229in advance in a "trampoline", a block of memory usually allocated on the
9230stack, which also contains code to splice the nest value into the
9231argument list. This is used to implement the GCC nested function address
9232extension.
9233
9234For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
9235then the resulting function pointer has signature ``i32 (i32, i32)*``.
9236It can be created as follows:
9237
9238.. code-block:: llvm
9239
9240 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
9241 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
9242 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
9243 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
9244 %fp = bitcast i8* %p to i32 (i32, i32)*
9245
9246The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
9247``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
9248
9249.. _int_it:
9250
9251'``llvm.init.trampoline``' Intrinsic
9252^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9253
9254Syntax:
9255"""""""
9256
9257::
9258
9259 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
9260
9261Overview:
9262"""""""""
9263
9264This fills the memory pointed to by ``tramp`` with executable code,
9265turning it into a trampoline.
9266
9267Arguments:
9268""""""""""
9269
9270The ``llvm.init.trampoline`` intrinsic takes three arguments, all
9271pointers. The ``tramp`` argument must point to a sufficiently large and
9272sufficiently aligned block of memory; this memory is written to by the
9273intrinsic. Note that the size and the alignment are target-specific -
9274LLVM currently provides no portable way of determining them, so a
9275front-end that generates this intrinsic needs to have some
9276target-specific knowledge. The ``func`` argument must hold a function
9277bitcast to an ``i8*``.
9278
9279Semantics:
9280""""""""""
9281
9282The block of memory pointed to by ``tramp`` is filled with target
9283dependent code, turning it into a function. Then ``tramp`` needs to be
9284passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
9285be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
9286function's signature is the same as that of ``func`` with any arguments
9287marked with the ``nest`` attribute removed. At most one such ``nest``
9288argument is allowed, and it must be of pointer type. Calling the new
9289function is equivalent to calling ``func`` with the same argument list,
9290but with ``nval`` used for the missing ``nest`` argument. If, after
9291calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
9292modified, then the effect of any later call to the returned function
9293pointer is undefined.
9294
9295.. _int_at:
9296
9297'``llvm.adjust.trampoline``' Intrinsic
9298^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9299
9300Syntax:
9301"""""""
9302
9303::
9304
9305 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
9306
9307Overview:
9308"""""""""
9309
9310This performs any required machine-specific adjustment to the address of
9311a trampoline (passed as ``tramp``).
9312
9313Arguments:
9314""""""""""
9315
9316``tramp`` must point to a block of memory which already has trampoline
9317code filled in by a previous call to
9318:ref:`llvm.init.trampoline <int_it>`.
9319
9320Semantics:
9321""""""""""
9322
9323On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009324different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00009325intrinsic returns the executable address corresponding to ``tramp``
9326after performing the required machine specific adjustments. The pointer
9327returned can then be :ref:`bitcast and executed <int_trampoline>`.
9328
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009329Masked Vector Load and Store Intrinsics
9330---------------------------------------
9331
9332LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
9333
9334.. _int_mload:
9335
9336'``llvm.masked.load.*``' Intrinsics
9337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9338
9339Syntax:
9340"""""""
9341This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
9342
9343::
9344
9345 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
9346 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
9347
9348Overview:
9349"""""""""
9350
9351Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes in the passthru operand.
9352
9353
9354Arguments:
9355""""""""""
9356
9357The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean 'i1' values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of passthru operand are the same vector types.
9358
9359
9360Semantics:
9361""""""""""
9362
9363The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
9364The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
9365
9366
9367::
9368
9369 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
9370
9371 ;; The result of the two following instructions is identical aside from potential memory access exception
9372 %loadlal = load <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009373 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009374
9375.. _int_mstore:
9376
9377'``llvm.masked.store.*``' Intrinsics
9378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9379
9380Syntax:
9381"""""""
9382This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
9383
9384::
9385
9386 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
9387 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
9388
9389Overview:
9390"""""""""
9391
9392Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
9393
9394Arguments:
9395""""""""""
9396
9397The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
9398
9399
9400Semantics:
9401""""""""""
9402
9403The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
9404The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
9405
9406::
9407
9408 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
9409
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009410 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009411 %oldval = load <16 x float>* %ptr, align 4
9412 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
9413 store <16 x float> %res, <16 x float>* %ptr, align 4
9414
9415
Sean Silvab084af42012-12-07 10:36:55 +00009416Memory Use Markers
9417------------------
9418
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009419This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00009420memory objects and ranges where variables are immutable.
9421
Reid Klecknera534a382013-12-19 02:14:12 +00009422.. _int_lifestart:
9423
Sean Silvab084af42012-12-07 10:36:55 +00009424'``llvm.lifetime.start``' Intrinsic
9425^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9426
9427Syntax:
9428"""""""
9429
9430::
9431
9432 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
9433
9434Overview:
9435"""""""""
9436
9437The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
9438object's lifetime.
9439
9440Arguments:
9441""""""""""
9442
9443The first argument is a constant integer representing the size of the
9444object, or -1 if it is variable sized. The second argument is a pointer
9445to the object.
9446
9447Semantics:
9448""""""""""
9449
9450This intrinsic indicates that before this point in the code, the value
9451of the memory pointed to by ``ptr`` is dead. This means that it is known
9452to never be used and has an undefined value. A load from the pointer
9453that precedes this intrinsic can be replaced with ``'undef'``.
9454
Reid Klecknera534a382013-12-19 02:14:12 +00009455.. _int_lifeend:
9456
Sean Silvab084af42012-12-07 10:36:55 +00009457'``llvm.lifetime.end``' Intrinsic
9458^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9459
9460Syntax:
9461"""""""
9462
9463::
9464
9465 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
9466
9467Overview:
9468"""""""""
9469
9470The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
9471object's lifetime.
9472
9473Arguments:
9474""""""""""
9475
9476The first argument is a constant integer representing the size of the
9477object, or -1 if it is variable sized. The second argument is a pointer
9478to the object.
9479
9480Semantics:
9481""""""""""
9482
9483This intrinsic indicates that after this point in the code, the value of
9484the memory pointed to by ``ptr`` is dead. This means that it is known to
9485never be used and has an undefined value. Any stores into the memory
9486object following this intrinsic may be removed as dead.
9487
9488'``llvm.invariant.start``' Intrinsic
9489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9490
9491Syntax:
9492"""""""
9493
9494::
9495
9496 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9497
9498Overview:
9499"""""""""
9500
9501The '``llvm.invariant.start``' intrinsic specifies that the contents of
9502a memory object will not change.
9503
9504Arguments:
9505""""""""""
9506
9507The first argument is a constant integer representing the size of the
9508object, or -1 if it is variable sized. The second argument is a pointer
9509to the object.
9510
9511Semantics:
9512""""""""""
9513
9514This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9515the return value, the referenced memory location is constant and
9516unchanging.
9517
9518'``llvm.invariant.end``' Intrinsic
9519^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9520
9521Syntax:
9522"""""""
9523
9524::
9525
9526 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9527
9528Overview:
9529"""""""""
9530
9531The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9532memory object are mutable.
9533
9534Arguments:
9535""""""""""
9536
9537The first argument is the matching ``llvm.invariant.start`` intrinsic.
9538The second argument is a constant integer representing the size of the
9539object, or -1 if it is variable sized and the third argument is a
9540pointer to the object.
9541
9542Semantics:
9543""""""""""
9544
9545This intrinsic indicates that the memory is mutable again.
9546
9547General Intrinsics
9548------------------
9549
9550This class of intrinsics is designed to be generic and has no specific
9551purpose.
9552
9553'``llvm.var.annotation``' Intrinsic
9554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9555
9556Syntax:
9557"""""""
9558
9559::
9560
9561 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9562
9563Overview:
9564"""""""""
9565
9566The '``llvm.var.annotation``' intrinsic.
9567
9568Arguments:
9569""""""""""
9570
9571The first argument is a pointer to a value, the second is a pointer to a
9572global string, the third is a pointer to a global string which is the
9573source file name, and the last argument is the line number.
9574
9575Semantics:
9576""""""""""
9577
9578This intrinsic allows annotation of local variables with arbitrary
9579strings. This can be useful for special purpose optimizations that want
9580to look for these annotations. These have no other defined use; they are
9581ignored by code generation and optimization.
9582
Michael Gottesman88d18832013-03-26 00:34:27 +00009583'``llvm.ptr.annotation.*``' Intrinsic
9584^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9585
9586Syntax:
9587"""""""
9588
9589This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9590pointer to an integer of any width. *NOTE* you must specify an address space for
9591the pointer. The identifier for the default address space is the integer
9592'``0``'.
9593
9594::
9595
9596 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9597 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9598 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9599 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9600 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9601
9602Overview:
9603"""""""""
9604
9605The '``llvm.ptr.annotation``' intrinsic.
9606
9607Arguments:
9608""""""""""
9609
9610The first argument is a pointer to an integer value of arbitrary bitwidth
9611(result of some expression), the second is a pointer to a global string, the
9612third is a pointer to a global string which is the source file name, and the
9613last argument is the line number. It returns the value of the first argument.
9614
9615Semantics:
9616""""""""""
9617
9618This intrinsic allows annotation of a pointer to an integer with arbitrary
9619strings. This can be useful for special purpose optimizations that want to look
9620for these annotations. These have no other defined use; they are ignored by code
9621generation and optimization.
9622
Sean Silvab084af42012-12-07 10:36:55 +00009623'``llvm.annotation.*``' Intrinsic
9624^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9625
9626Syntax:
9627"""""""
9628
9629This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9630any integer bit width.
9631
9632::
9633
9634 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9635 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9636 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9637 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9638 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9639
9640Overview:
9641"""""""""
9642
9643The '``llvm.annotation``' intrinsic.
9644
9645Arguments:
9646""""""""""
9647
9648The first argument is an integer value (result of some expression), the
9649second is a pointer to a global string, the third is a pointer to a
9650global string which is the source file name, and the last argument is
9651the line number. It returns the value of the first argument.
9652
9653Semantics:
9654""""""""""
9655
9656This intrinsic allows annotations to be put on arbitrary expressions
9657with arbitrary strings. This can be useful for special purpose
9658optimizations that want to look for these annotations. These have no
9659other defined use; they are ignored by code generation and optimization.
9660
9661'``llvm.trap``' Intrinsic
9662^^^^^^^^^^^^^^^^^^^^^^^^^
9663
9664Syntax:
9665"""""""
9666
9667::
9668
9669 declare void @llvm.trap() noreturn nounwind
9670
9671Overview:
9672"""""""""
9673
9674The '``llvm.trap``' intrinsic.
9675
9676Arguments:
9677""""""""""
9678
9679None.
9680
9681Semantics:
9682""""""""""
9683
9684This intrinsic is lowered to the target dependent trap instruction. If
9685the target does not have a trap instruction, this intrinsic will be
9686lowered to a call of the ``abort()`` function.
9687
9688'``llvm.debugtrap``' Intrinsic
9689^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9690
9691Syntax:
9692"""""""
9693
9694::
9695
9696 declare void @llvm.debugtrap() nounwind
9697
9698Overview:
9699"""""""""
9700
9701The '``llvm.debugtrap``' intrinsic.
9702
9703Arguments:
9704""""""""""
9705
9706None.
9707
9708Semantics:
9709""""""""""
9710
9711This intrinsic is lowered to code which is intended to cause an
9712execution trap with the intention of requesting the attention of a
9713debugger.
9714
9715'``llvm.stackprotector``' Intrinsic
9716^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9717
9718Syntax:
9719"""""""
9720
9721::
9722
9723 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
9724
9725Overview:
9726"""""""""
9727
9728The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
9729onto the stack at ``slot``. The stack slot is adjusted to ensure that it
9730is placed on the stack before local variables.
9731
9732Arguments:
9733""""""""""
9734
9735The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
9736The first argument is the value loaded from the stack guard
9737``@__stack_chk_guard``. The second variable is an ``alloca`` that has
9738enough space to hold the value of the guard.
9739
9740Semantics:
9741""""""""""
9742
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009743This intrinsic causes the prologue/epilogue inserter to force the position of
9744the ``AllocaInst`` stack slot to be before local variables on the stack. This is
9745to ensure that if a local variable on the stack is overwritten, it will destroy
9746the value of the guard. When the function exits, the guard on the stack is
9747checked against the original guard by ``llvm.stackprotectorcheck``. If they are
9748different, then ``llvm.stackprotectorcheck`` causes the program to abort by
9749calling the ``__stack_chk_fail()`` function.
9750
9751'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +00009752^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009753
9754Syntax:
9755"""""""
9756
9757::
9758
9759 declare void @llvm.stackprotectorcheck(i8** <guard>)
9760
9761Overview:
9762"""""""""
9763
9764The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +00009765created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +00009766``__stack_chk_fail()`` function.
9767
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009768Arguments:
9769""""""""""
9770
9771The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
9772the variable ``@__stack_chk_guard``.
9773
9774Semantics:
9775""""""""""
9776
9777This intrinsic is provided to perform the stack protector check by comparing
9778``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
9779values do not match call the ``__stack_chk_fail()`` function.
9780
9781The reason to provide this as an IR level intrinsic instead of implementing it
9782via other IR operations is that in order to perform this operation at the IR
9783level without an intrinsic, one would need to create additional basic blocks to
9784handle the success/failure cases. This makes it difficult to stop the stack
9785protector check from disrupting sibling tail calls in Codegen. With this
9786intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +00009787codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +00009788
Sean Silvab084af42012-12-07 10:36:55 +00009789'``llvm.objectsize``' Intrinsic
9790^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9791
9792Syntax:
9793"""""""
9794
9795::
9796
9797 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
9798 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
9799
9800Overview:
9801"""""""""
9802
9803The ``llvm.objectsize`` intrinsic is designed to provide information to
9804the optimizers to determine at compile time whether a) an operation
9805(like memcpy) will overflow a buffer that corresponds to an object, or
9806b) that a runtime check for overflow isn't necessary. An object in this
9807context means an allocation of a specific class, structure, array, or
9808other object.
9809
9810Arguments:
9811""""""""""
9812
9813The ``llvm.objectsize`` intrinsic takes two arguments. The first
9814argument is a pointer to or into the ``object``. The second argument is
9815a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
9816or -1 (if false) when the object size is unknown. The second argument
9817only accepts constants.
9818
9819Semantics:
9820""""""""""
9821
9822The ``llvm.objectsize`` intrinsic is lowered to a constant representing
9823the size of the object concerned. If the size cannot be determined at
9824compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
9825on the ``min`` argument).
9826
9827'``llvm.expect``' Intrinsic
9828^^^^^^^^^^^^^^^^^^^^^^^^^^^
9829
9830Syntax:
9831"""""""
9832
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009833This is an overloaded intrinsic. You can use ``llvm.expect`` on any
9834integer bit width.
9835
Sean Silvab084af42012-12-07 10:36:55 +00009836::
9837
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +00009838 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +00009839 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
9840 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
9841
9842Overview:
9843"""""""""
9844
9845The ``llvm.expect`` intrinsic provides information about expected (the
9846most probable) value of ``val``, which can be used by optimizers.
9847
9848Arguments:
9849""""""""""
9850
9851The ``llvm.expect`` intrinsic takes two arguments. The first argument is
9852a value. The second argument is an expected value, this needs to be a
9853constant value, variables are not allowed.
9854
9855Semantics:
9856""""""""""
9857
9858This intrinsic is lowered to the ``val``.
9859
Hal Finkel93046912014-07-25 21:13:35 +00009860'``llvm.assume``' Intrinsic
9861^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9862
9863Syntax:
9864"""""""
9865
9866::
9867
9868 declare void @llvm.assume(i1 %cond)
9869
9870Overview:
9871"""""""""
9872
9873The ``llvm.assume`` allows the optimizer to assume that the provided
9874condition is true. This information can then be used in simplifying other parts
9875of the code.
9876
9877Arguments:
9878""""""""""
9879
9880The condition which the optimizer may assume is always true.
9881
9882Semantics:
9883""""""""""
9884
9885The intrinsic allows the optimizer to assume that the provided condition is
9886always true whenever the control flow reaches the intrinsic call. No code is
9887generated for this intrinsic, and instructions that contribute only to the
9888provided condition are not used for code generation. If the condition is
9889violated during execution, the behavior is undefined.
9890
Sanjay Patel1ed2bb52015-01-14 16:03:58 +00009891Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +00009892used by the ``llvm.assume`` intrinsic in order to preserve the instructions
9893only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +00009894if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +00009895sufficient overall improvement in code quality. For this reason,
9896``llvm.assume`` should not be used to document basic mathematical invariants
9897that the optimizer can otherwise deduce or facts that are of little use to the
9898optimizer.
9899
Peter Collingbournee6909c82015-02-20 20:30:47 +00009900.. _bitset.test:
9901
9902'``llvm.bitset.test``' Intrinsic
9903^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9904
9905Syntax:
9906"""""""
9907
9908::
9909
9910 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
9911
9912
9913Arguments:
9914""""""""""
9915
9916The first argument is a pointer to be tested. The second argument is a
9917metadata string containing the name of a :doc:`bitset <BitSets>`.
9918
9919Overview:
9920"""""""""
9921
9922The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
9923member of the given bitset.
9924
Sean Silvab084af42012-12-07 10:36:55 +00009925'``llvm.donothing``' Intrinsic
9926^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9927
9928Syntax:
9929"""""""
9930
9931::
9932
9933 declare void @llvm.donothing() nounwind readnone
9934
9935Overview:
9936"""""""""
9937
Juergen Ributzkac9161192014-10-23 22:36:13 +00009938The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
9939two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
9940with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +00009941
9942Arguments:
9943""""""""""
9944
9945None.
9946
9947Semantics:
9948""""""""""
9949
9950This intrinsic does nothing, and it's removed by optimizers and ignored
9951by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +00009952
9953Stack Map Intrinsics
9954--------------------
9955
9956LLVM provides experimental intrinsics to support runtime patching
9957mechanisms commonly desired in dynamic language JITs. These intrinsics
9958are described in :doc:`StackMaps`.