blob: 25248572ea8aa2a2882b2bf122dc13ebd8cd0217 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
351 arguments into registers but allows them to be dynamcially
352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
356 This calling convention attempts to make the code in the caller as little
357 intrusive as possible. This calling convention behaves identical to the `C`
358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000497.. _namedtypes:
498
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000499Structure Types
500---------------
Sean Silvab084af42012-12-07 10:36:55 +0000501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
503types <t_struct>`. Literal types are uniqued structurally, but identified types
504are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000505to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000506
507An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000508
509.. code-block:: llvm
510
511 %mytype = type { %mytype*, i32 }
512
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000513Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
514literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000515
516.. _globalvars:
517
518Global Variables
519----------------
520
521Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000522instead of run-time.
523
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000524Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525
526Global variables in other translation units can also be declared, in which
527case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000528
Bob Wilson85b24f22014-06-12 20:40:33 +0000529Either global variable definitions or declarations may have an explicit section
530to be placed in and may have an optional explicit alignment specified.
531
Michael Gottesman006039c2013-01-31 05:48:48 +0000532A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000536initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000567Additionally, the global can placed in a comdat if the target has the necessary
568support.
Sean Silvab084af42012-12-07 10:36:55 +0000569
Michael Gottesmane743a302013-02-04 03:22:00 +0000570By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000571variables defined within the module are not modified from their
572initial values before the start of the global initializer. This is
573true even for variables potentially accessible from outside the
574module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000575``@llvm.used`` or dllexported variables. This assumption may be suppressed
576by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000577
Sean Silvab084af42012-12-07 10:36:55 +0000578An explicit alignment may be specified for a global, which must be a
579power of 2. If not present, or if the alignment is set to zero, the
580alignment of the global is set by the target to whatever it feels
581convenient. If an explicit alignment is specified, the global is forced
582to have exactly that alignment. Targets and optimizers are not allowed
583to over-align the global if the global has an assigned section. In this
584case, the extra alignment could be observable: for example, code could
585assume that the globals are densely packed in their section and try to
586iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000587iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000588
Nico Rieck7157bb72014-01-14 15:22:47 +0000589Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
590
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000591Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000592:ref:`Thread Local Storage Model <tls_model>`.
593
Nico Rieck7157bb72014-01-14 15:22:47 +0000594Syntax::
595
596 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000597 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000598 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000599 [, section "name"] [, comdat [($name)]]
600 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000601
Sean Silvab084af42012-12-07 10:36:55 +0000602For example, the following defines a global in a numbered address space
603with an initializer, section, and alignment:
604
605.. code-block:: llvm
606
607 @G = addrspace(5) constant float 1.0, section "foo", align 4
608
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000609The following example just declares a global variable
610
611.. code-block:: llvm
612
613 @G = external global i32
614
Sean Silvab084af42012-12-07 10:36:55 +0000615The following example defines a thread-local global with the
616``initialexec`` TLS model:
617
618.. code-block:: llvm
619
620 @G = thread_local(initialexec) global i32 0, align 4
621
622.. _functionstructure:
623
624Functions
625---------
626
627LLVM function definitions consist of the "``define``" keyword, an
628optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000629style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
630an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000631an optional ``unnamed_addr`` attribute, a return type, an optional
632:ref:`parameter attribute <paramattrs>` for the return type, a function
633name, a (possibly empty) argument list (each with optional :ref:`parameter
634attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000635an optional section, an optional alignment,
636an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000637an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
638an optional :ref:`prologue <prologuedata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000639curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000640
641LLVM function declarations consist of the "``declare``" keyword, an
642optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000643style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
644an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000645an optional ``unnamed_addr`` attribute, a return type, an optional
646:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000647name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000648:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
649and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000650
Bill Wendling6822ecb2013-10-27 05:09:12 +0000651A function definition contains a list of basic blocks, forming the CFG (Control
652Flow Graph) for the function. Each basic block may optionally start with a label
653(giving the basic block a symbol table entry), contains a list of instructions,
654and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
655function return). If an explicit label is not provided, a block is assigned an
656implicit numbered label, using the next value from the same counter as used for
657unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
658entry block does not have an explicit label, it will be assigned label "%0",
659then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000660
661The first basic block in a function is special in two ways: it is
662immediately executed on entrance to the function, and it is not allowed
663to have predecessor basic blocks (i.e. there can not be any branches to
664the entry block of a function). Because the block can have no
665predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
666
667LLVM allows an explicit section to be specified for functions. If the
668target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000669Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000670
671An explicit alignment may be specified for a function. If not present,
672or if the alignment is set to zero, the alignment of the function is set
673by the target to whatever it feels convenient. If an explicit alignment
674is specified, the function is forced to have at least that much
675alignment. All alignments must be a power of 2.
676
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000677If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000678be significant and two identical functions can be merged.
679
680Syntax::
681
Nico Rieck7157bb72014-01-14 15:22:47 +0000682 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000683 [cconv] [ret attrs]
684 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000686 [align N] [gc] [prefix Constant] [prologue Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000687
Dan Liew2661dfc2014-08-20 15:06:30 +0000688The argument list is a comma seperated sequence of arguments where each
689argument is of the following form
690
691Syntax::
692
693 <type> [parameter Attrs] [name]
694
695
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000696.. _langref_aliases:
697
Sean Silvab084af42012-12-07 10:36:55 +0000698Aliases
699-------
700
Rafael Espindola64c1e182014-06-03 02:41:57 +0000701Aliases, unlike function or variables, don't create any new data. They
702are just a new symbol and metadata for an existing position.
703
704Aliases have a name and an aliasee that is either a global value or a
705constant expression.
706
Nico Rieck7157bb72014-01-14 15:22:47 +0000707Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000708:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
709<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000710
711Syntax::
712
Rafael Espindola464fe022014-07-30 22:51:54 +0000713 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000714
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000715The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000716``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000717might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000718
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000719Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000720the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
721to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000722
Rafael Espindola64c1e182014-06-03 02:41:57 +0000723Since aliases are only a second name, some restrictions apply, of which
724some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000725
Rafael Espindola64c1e182014-06-03 02:41:57 +0000726* The expression defining the aliasee must be computable at assembly
727 time. Since it is just a name, no relocations can be used.
728
729* No alias in the expression can be weak as the possibility of the
730 intermediate alias being overridden cannot be represented in an
731 object file.
732
733* No global value in the expression can be a declaration, since that
734 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000735
David Majnemerdad0a642014-06-27 18:19:56 +0000736.. _langref_comdats:
737
738Comdats
739-------
740
741Comdat IR provides access to COFF and ELF object file COMDAT functionality.
742
Richard Smith32dbdf62014-07-31 04:25:36 +0000743Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000744specify this key will only end up in the final object file if the linker chooses
745that key over some other key. Aliases are placed in the same COMDAT that their
746aliasee computes to, if any.
747
748Comdats have a selection kind to provide input on how the linker should
749choose between keys in two different object files.
750
751Syntax::
752
753 $<Name> = comdat SelectionKind
754
755The selection kind must be one of the following:
756
757``any``
758 The linker may choose any COMDAT key, the choice is arbitrary.
759``exactmatch``
760 The linker may choose any COMDAT key but the sections must contain the
761 same data.
762``largest``
763 The linker will choose the section containing the largest COMDAT key.
764``noduplicates``
765 The linker requires that only section with this COMDAT key exist.
766``samesize``
767 The linker may choose any COMDAT key but the sections must contain the
768 same amount of data.
769
770Note that the Mach-O platform doesn't support COMDATs and ELF only supports
771``any`` as a selection kind.
772
773Here is an example of a COMDAT group where a function will only be selected if
774the COMDAT key's section is the largest:
775
776.. code-block:: llvm
777
778 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000779 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000780
Rafael Espindola83a362c2015-01-06 22:55:16 +0000781 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000782 ret void
783 }
784
Rafael Espindola83a362c2015-01-06 22:55:16 +0000785As a syntactic sugar the ``$name`` can be omitted if the name is the same as
786the global name:
787
788.. code-block:: llvm
789
790 $foo = comdat any
791 @foo = global i32 2, comdat
792
793
David Majnemerdad0a642014-06-27 18:19:56 +0000794In a COFF object file, this will create a COMDAT section with selection kind
795``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
796and another COMDAT section with selection kind
797``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000798section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000799
800There are some restrictions on the properties of the global object.
801It, or an alias to it, must have the same name as the COMDAT group when
802targeting COFF.
803The contents and size of this object may be used during link-time to determine
804which COMDAT groups get selected depending on the selection kind.
805Because the name of the object must match the name of the COMDAT group, the
806linkage of the global object must not be local; local symbols can get renamed
807if a collision occurs in the symbol table.
808
809The combined use of COMDATS and section attributes may yield surprising results.
810For example:
811
812.. code-block:: llvm
813
814 $foo = comdat any
815 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000816 @g1 = global i32 42, section "sec", comdat($foo)
817 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000818
819From the object file perspective, this requires the creation of two sections
820with the same name. This is necessary because both globals belong to different
821COMDAT groups and COMDATs, at the object file level, are represented by
822sections.
823
824Note that certain IR constructs like global variables and functions may create
825COMDATs in the object file in addition to any which are specified using COMDAT
826IR. This arises, for example, when a global variable has linkonce_odr linkage.
827
Sean Silvab084af42012-12-07 10:36:55 +0000828.. _namedmetadatastructure:
829
830Named Metadata
831--------------
832
833Named metadata is a collection of metadata. :ref:`Metadata
834nodes <metadata>` (but not metadata strings) are the only valid
835operands for a named metadata.
836
837Syntax::
838
839 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000840 !0 = !{!"zero"}
841 !1 = !{!"one"}
842 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000843 ; A named metadata.
844 !name = !{!0, !1, !2}
845
846.. _paramattrs:
847
848Parameter Attributes
849--------------------
850
851The return type and each parameter of a function type may have a set of
852*parameter attributes* associated with them. Parameter attributes are
853used to communicate additional information about the result or
854parameters of a function. Parameter attributes are considered to be part
855of the function, not of the function type, so functions with different
856parameter attributes can have the same function type.
857
858Parameter attributes are simple keywords that follow the type specified.
859If multiple parameter attributes are needed, they are space separated.
860For example:
861
862.. code-block:: llvm
863
864 declare i32 @printf(i8* noalias nocapture, ...)
865 declare i32 @atoi(i8 zeroext)
866 declare signext i8 @returns_signed_char()
867
868Note that any attributes for the function result (``nounwind``,
869``readonly``) come immediately after the argument list.
870
871Currently, only the following parameter attributes are defined:
872
873``zeroext``
874 This indicates to the code generator that the parameter or return
875 value should be zero-extended to the extent required by the target's
876 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
877 the caller (for a parameter) or the callee (for a return value).
878``signext``
879 This indicates to the code generator that the parameter or return
880 value should be sign-extended to the extent required by the target's
881 ABI (which is usually 32-bits) by the caller (for a parameter) or
882 the callee (for a return value).
883``inreg``
884 This indicates that this parameter or return value should be treated
885 in a special target-dependent fashion during while emitting code for
886 a function call or return (usually, by putting it in a register as
887 opposed to memory, though some targets use it to distinguish between
888 two different kinds of registers). Use of this attribute is
889 target-specific.
890``byval``
891 This indicates that the pointer parameter should really be passed by
892 value to the function. The attribute implies that a hidden copy of
893 the pointee is made between the caller and the callee, so the callee
894 is unable to modify the value in the caller. This attribute is only
895 valid on LLVM pointer arguments. It is generally used to pass
896 structs and arrays by value, but is also valid on pointers to
897 scalars. The copy is considered to belong to the caller not the
898 callee (for example, ``readonly`` functions should not write to
899 ``byval`` parameters). This is not a valid attribute for return
900 values.
901
902 The byval attribute also supports specifying an alignment with the
903 align attribute. It indicates the alignment of the stack slot to
904 form and the known alignment of the pointer specified to the call
905 site. If the alignment is not specified, then the code generator
906 makes a target-specific assumption.
907
Reid Klecknera534a382013-12-19 02:14:12 +0000908.. _attr_inalloca:
909
910``inalloca``
911
Reid Kleckner60d3a832014-01-16 22:59:24 +0000912 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000913 address of outgoing stack arguments. An ``inalloca`` argument must
914 be a pointer to stack memory produced by an ``alloca`` instruction.
915 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000916 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000917 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000918
Reid Kleckner436c42e2014-01-17 23:58:17 +0000919 An argument allocation may be used by a call at most once because
920 the call may deallocate it. The ``inalloca`` attribute cannot be
921 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000922 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
923 ``inalloca`` attribute also disables LLVM's implicit lowering of
924 large aggregate return values, which means that frontend authors
925 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000926
Reid Kleckner60d3a832014-01-16 22:59:24 +0000927 When the call site is reached, the argument allocation must have
928 been the most recent stack allocation that is still live, or the
929 results are undefined. It is possible to allocate additional stack
930 space after an argument allocation and before its call site, but it
931 must be cleared off with :ref:`llvm.stackrestore
932 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000933
934 See :doc:`InAlloca` for more information on how to use this
935 attribute.
936
Sean Silvab084af42012-12-07 10:36:55 +0000937``sret``
938 This indicates that the pointer parameter specifies the address of a
939 structure that is the return value of the function in the source
940 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000941 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000942 not to trap and to be properly aligned. This may only be applied to
943 the first parameter. This is not a valid attribute for return
944 values.
Sean Silva1703e702014-04-08 21:06:22 +0000945
Hal Finkelccc70902014-07-22 16:58:55 +0000946``align <n>``
947 This indicates that the pointer value may be assumed by the optimizer to
948 have the specified alignment.
949
950 Note that this attribute has additional semantics when combined with the
951 ``byval`` attribute.
952
Sean Silva1703e702014-04-08 21:06:22 +0000953.. _noalias:
954
Sean Silvab084af42012-12-07 10:36:55 +0000955``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000956 This indicates that objects accessed via pointer values
957 :ref:`based <pointeraliasing>` on the argument or return value are not also
958 accessed, during the execution of the function, via pointer values not
959 *based* on the argument or return value. The attribute on a return value
960 also has additional semantics described below. The caller shares the
961 responsibility with the callee for ensuring that these requirements are met.
962 For further details, please see the discussion of the NoAlias response in
963 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000964
965 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000966 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000967
968 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000969 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
970 attribute on return values are stronger than the semantics of the attribute
971 when used on function arguments. On function return values, the ``noalias``
972 attribute indicates that the function acts like a system memory allocation
973 function, returning a pointer to allocated storage disjoint from the
974 storage for any other object accessible to the caller.
975
Sean Silvab084af42012-12-07 10:36:55 +0000976``nocapture``
977 This indicates that the callee does not make any copies of the
978 pointer that outlive the callee itself. This is not a valid
979 attribute for return values.
980
981.. _nest:
982
983``nest``
984 This indicates that the pointer parameter can be excised using the
985 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000986 attribute for return values and can only be applied to one parameter.
987
988``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000989 This indicates that the function always returns the argument as its return
990 value. This is an optimization hint to the code generator when generating
991 the caller, allowing tail call optimization and omission of register saves
992 and restores in some cases; it is not checked or enforced when generating
993 the callee. The parameter and the function return type must be valid
994 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
995 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000996
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000997``nonnull``
998 This indicates that the parameter or return pointer is not null. This
999 attribute may only be applied to pointer typed parameters. This is not
1000 checked or enforced by LLVM, the caller must ensure that the pointer
1001 passed in is non-null, or the callee must ensure that the returned pointer
1002 is non-null.
1003
Hal Finkelb0407ba2014-07-18 15:51:28 +00001004``dereferenceable(<n>)``
1005 This indicates that the parameter or return pointer is dereferenceable. This
1006 attribute may only be applied to pointer typed parameters. A pointer that
1007 is dereferenceable can be loaded from speculatively without a risk of
1008 trapping. The number of bytes known to be dereferenceable must be provided
1009 in parentheses. It is legal for the number of bytes to be less than the
1010 size of the pointee type. The ``nonnull`` attribute does not imply
1011 dereferenceability (consider a pointer to one element past the end of an
1012 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1013 ``addrspace(0)`` (which is the default address space).
1014
Sean Silvab084af42012-12-07 10:36:55 +00001015.. _gc:
1016
Philip Reamesf80bbff2015-02-25 23:45:20 +00001017Garbage Collector Strategy Names
1018--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001019
Philip Reamesf80bbff2015-02-25 23:45:20 +00001020Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001021string:
1022
1023.. code-block:: llvm
1024
1025 define void @f() gc "name" { ... }
1026
Philip Reamesf80bbff2015-02-25 23:45:20 +00001027The supported values of *name* includes those :ref:`built in to LLVM
1028<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
1029strategy will cause the compiler to alter its output in order to support the
1030named garbage collection algorithm. Note that LLVM itself does not contain a
1031garbage collector, this functionality is restricted to generating machine code
1032which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001033
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001034.. _prefixdata:
1035
1036Prefix Data
1037-----------
1038
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001039Prefix data is data associated with a function which the code
1040generator will emit immediately before the function's entrypoint.
1041The purpose of this feature is to allow frontends to associate
1042language-specific runtime metadata with specific functions and make it
1043available through the function pointer while still allowing the
1044function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001045
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001046To access the data for a given function, a program may bitcast the
1047function pointer to a pointer to the constant's type and dereference
1048index -1. This implies that the IR symbol points just past the end of
1049the prefix data. For instance, take the example of a function annotated
1050with a single ``i32``,
1051
1052.. code-block:: llvm
1053
1054 define void @f() prefix i32 123 { ... }
1055
1056The prefix data can be referenced as,
1057
1058.. code-block:: llvm
1059
David Blaikie16a97eb2015-03-04 22:02:58 +00001060 %0 = bitcast void* () @f to i32*
1061 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001062 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001063
1064Prefix data is laid out as if it were an initializer for a global variable
1065of the prefix data's type. The function will be placed such that the
1066beginning of the prefix data is aligned. This means that if the size
1067of the prefix data is not a multiple of the alignment size, the
1068function's entrypoint will not be aligned. If alignment of the
1069function's entrypoint is desired, padding must be added to the prefix
1070data.
1071
1072A function may have prefix data but no body. This has similar semantics
1073to the ``available_externally`` linkage in that the data may be used by the
1074optimizers but will not be emitted in the object file.
1075
1076.. _prologuedata:
1077
1078Prologue Data
1079-------------
1080
1081The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1082be inserted prior to the function body. This can be used for enabling
1083function hot-patching and instrumentation.
1084
1085To maintain the semantics of ordinary function calls, the prologue data must
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001086have a particular format. Specifically, it must begin with a sequence of
1087bytes which decode to a sequence of machine instructions, valid for the
1088module's target, which transfer control to the point immediately succeeding
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001089the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001090the inliner and other passes to reason about the semantics of the function
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001091definition without needing to reason about the prologue data. Obviously this
1092makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001093
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001094A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001095which encodes the ``nop`` instruction:
1096
1097.. code-block:: llvm
1098
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001099 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001100
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001101Generally prologue data can be formed by encoding a relative branch instruction
1102which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001103x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1104
1105.. code-block:: llvm
1106
1107 %0 = type <{ i8, i8, i8* }>
1108
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001109 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001110
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001111A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001112to the ``available_externally`` linkage in that the data may be used by the
1113optimizers but will not be emitted in the object file.
1114
Bill Wendling63b88192013-02-06 06:52:58 +00001115.. _attrgrp:
1116
1117Attribute Groups
1118----------------
1119
1120Attribute groups are groups of attributes that are referenced by objects within
1121the IR. They are important for keeping ``.ll`` files readable, because a lot of
1122functions will use the same set of attributes. In the degenerative case of a
1123``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1124group will capture the important command line flags used to build that file.
1125
1126An attribute group is a module-level object. To use an attribute group, an
1127object references the attribute group's ID (e.g. ``#37``). An object may refer
1128to more than one attribute group. In that situation, the attributes from the
1129different groups are merged.
1130
1131Here is an example of attribute groups for a function that should always be
1132inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1133
1134.. code-block:: llvm
1135
1136 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001137 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001138
1139 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001140 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001141
1142 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1143 define void @f() #0 #1 { ... }
1144
Sean Silvab084af42012-12-07 10:36:55 +00001145.. _fnattrs:
1146
1147Function Attributes
1148-------------------
1149
1150Function attributes are set to communicate additional information about
1151a function. Function attributes are considered to be part of the
1152function, not of the function type, so functions with different function
1153attributes can have the same function type.
1154
1155Function attributes are simple keywords that follow the type specified.
1156If multiple attributes are needed, they are space separated. For
1157example:
1158
1159.. code-block:: llvm
1160
1161 define void @f() noinline { ... }
1162 define void @f() alwaysinline { ... }
1163 define void @f() alwaysinline optsize { ... }
1164 define void @f() optsize { ... }
1165
Sean Silvab084af42012-12-07 10:36:55 +00001166``alignstack(<n>)``
1167 This attribute indicates that, when emitting the prologue and
1168 epilogue, the backend should forcibly align the stack pointer.
1169 Specify the desired alignment, which must be a power of two, in
1170 parentheses.
1171``alwaysinline``
1172 This attribute indicates that the inliner should attempt to inline
1173 this function into callers whenever possible, ignoring any active
1174 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001175``builtin``
1176 This indicates that the callee function at a call site should be
1177 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001178 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001179 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001180 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001181``cold``
1182 This attribute indicates that this function is rarely called. When
1183 computing edge weights, basic blocks post-dominated by a cold
1184 function call are also considered to be cold; and, thus, given low
1185 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001186``inlinehint``
1187 This attribute indicates that the source code contained a hint that
1188 inlining this function is desirable (such as the "inline" keyword in
1189 C/C++). It is just a hint; it imposes no requirements on the
1190 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001191``jumptable``
1192 This attribute indicates that the function should be added to a
1193 jump-instruction table at code-generation time, and that all address-taken
1194 references to this function should be replaced with a reference to the
1195 appropriate jump-instruction-table function pointer. Note that this creates
1196 a new pointer for the original function, which means that code that depends
1197 on function-pointer identity can break. So, any function annotated with
1198 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001199``minsize``
1200 This attribute suggests that optimization passes and code generator
1201 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001202 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001203 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001204``naked``
1205 This attribute disables prologue / epilogue emission for the
1206 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001207``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001208 This indicates that the callee function at a call site is not recognized as
1209 a built-in function. LLVM will retain the original call and not replace it
1210 with equivalent code based on the semantics of the built-in function, unless
1211 the call site uses the ``builtin`` attribute. This is valid at call sites
1212 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001213``noduplicate``
1214 This attribute indicates that calls to the function cannot be
1215 duplicated. A call to a ``noduplicate`` function may be moved
1216 within its parent function, but may not be duplicated within
1217 its parent function.
1218
1219 A function containing a ``noduplicate`` call may still
1220 be an inlining candidate, provided that the call is not
1221 duplicated by inlining. That implies that the function has
1222 internal linkage and only has one call site, so the original
1223 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001224``noimplicitfloat``
1225 This attributes disables implicit floating point instructions.
1226``noinline``
1227 This attribute indicates that the inliner should never inline this
1228 function in any situation. This attribute may not be used together
1229 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001230``nonlazybind``
1231 This attribute suppresses lazy symbol binding for the function. This
1232 may make calls to the function faster, at the cost of extra program
1233 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001234``noredzone``
1235 This attribute indicates that the code generator should not use a
1236 red zone, even if the target-specific ABI normally permits it.
1237``noreturn``
1238 This function attribute indicates that the function never returns
1239 normally. This produces undefined behavior at runtime if the
1240 function ever does dynamically return.
1241``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001242 This function attribute indicates that the function never raises an
1243 exception. If the function does raise an exception, its runtime
1244 behavior is undefined. However, functions marked nounwind may still
1245 trap or generate asynchronous exceptions. Exception handling schemes
1246 that are recognized by LLVM to handle asynchronous exceptions, such
1247 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001248``optnone``
1249 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001250 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001251 exception of interprocedural optimization passes.
1252 This attribute cannot be used together with the ``alwaysinline``
1253 attribute; this attribute is also incompatible
1254 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001255
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001256 This attribute requires the ``noinline`` attribute to be specified on
1257 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001258 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001259 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001260``optsize``
1261 This attribute suggests that optimization passes and code generator
1262 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001263 and otherwise do optimizations specifically to reduce code size as
1264 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001265``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001266 On a function, this attribute indicates that the function computes its
1267 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001268 without dereferencing any pointer arguments or otherwise accessing
1269 any mutable state (e.g. memory, control registers, etc) visible to
1270 caller functions. It does not write through any pointer arguments
1271 (including ``byval`` arguments) and never changes any state visible
1272 to callers. This means that it cannot unwind exceptions by calling
1273 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001274
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001275 On an argument, this attribute indicates that the function does not
1276 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001277 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001278``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001279 On a function, this attribute indicates that the function does not write
1280 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001281 modify any state (e.g. memory, control registers, etc) visible to
1282 caller functions. It may dereference pointer arguments and read
1283 state that may be set in the caller. A readonly function always
1284 returns the same value (or unwinds an exception identically) when
1285 called with the same set of arguments and global state. It cannot
1286 unwind an exception by calling the ``C++`` exception throwing
1287 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001288
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001289 On an argument, this attribute indicates that the function does not write
1290 through this pointer argument, even though it may write to the memory that
1291 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001292``returns_twice``
1293 This attribute indicates that this function can return twice. The C
1294 ``setjmp`` is an example of such a function. The compiler disables
1295 some optimizations (like tail calls) in the caller of these
1296 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001297``sanitize_address``
1298 This attribute indicates that AddressSanitizer checks
1299 (dynamic address safety analysis) are enabled for this function.
1300``sanitize_memory``
1301 This attribute indicates that MemorySanitizer checks (dynamic detection
1302 of accesses to uninitialized memory) are enabled for this function.
1303``sanitize_thread``
1304 This attribute indicates that ThreadSanitizer checks
1305 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001306``ssp``
1307 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001308 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001309 placed on the stack before the local variables that's checked upon
1310 return from the function to see if it has been overwritten. A
1311 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001312 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001313
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001314 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1315 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1316 - Calls to alloca() with variable sizes or constant sizes greater than
1317 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001318
Josh Magee24c7f062014-02-01 01:36:16 +00001319 Variables that are identified as requiring a protector will be arranged
1320 on the stack such that they are adjacent to the stack protector guard.
1321
Sean Silvab084af42012-12-07 10:36:55 +00001322 If a function that has an ``ssp`` attribute is inlined into a
1323 function that doesn't have an ``ssp`` attribute, then the resulting
1324 function will have an ``ssp`` attribute.
1325``sspreq``
1326 This attribute indicates that the function should *always* emit a
1327 stack smashing protector. This overrides the ``ssp`` function
1328 attribute.
1329
Josh Magee24c7f062014-02-01 01:36:16 +00001330 Variables that are identified as requiring a protector will be arranged
1331 on the stack such that they are adjacent to the stack protector guard.
1332 The specific layout rules are:
1333
1334 #. Large arrays and structures containing large arrays
1335 (``>= ssp-buffer-size``) are closest to the stack protector.
1336 #. Small arrays and structures containing small arrays
1337 (``< ssp-buffer-size``) are 2nd closest to the protector.
1338 #. Variables that have had their address taken are 3rd closest to the
1339 protector.
1340
Sean Silvab084af42012-12-07 10:36:55 +00001341 If a function that has an ``sspreq`` attribute is inlined into a
1342 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001343 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1344 an ``sspreq`` attribute.
1345``sspstrong``
1346 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001347 protector. This attribute causes a strong heuristic to be used when
1348 determining if a function needs stack protectors. The strong heuristic
1349 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001350
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001351 - Arrays of any size and type
1352 - Aggregates containing an array of any size and type.
1353 - Calls to alloca().
1354 - Local variables that have had their address taken.
1355
Josh Magee24c7f062014-02-01 01:36:16 +00001356 Variables that are identified as requiring a protector will be arranged
1357 on the stack such that they are adjacent to the stack protector guard.
1358 The specific layout rules are:
1359
1360 #. Large arrays and structures containing large arrays
1361 (``>= ssp-buffer-size``) are closest to the stack protector.
1362 #. Small arrays and structures containing small arrays
1363 (``< ssp-buffer-size``) are 2nd closest to the protector.
1364 #. Variables that have had their address taken are 3rd closest to the
1365 protector.
1366
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001367 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001368
1369 If a function that has an ``sspstrong`` attribute is inlined into a
1370 function that doesn't have an ``sspstrong`` attribute, then the
1371 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001372``"thunk"``
1373 This attribute indicates that the function will delegate to some other
1374 function with a tail call. The prototype of a thunk should not be used for
1375 optimization purposes. The caller is expected to cast the thunk prototype to
1376 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001377``uwtable``
1378 This attribute indicates that the ABI being targeted requires that
1379 an unwind table entry be produce for this function even if we can
1380 show that no exceptions passes by it. This is normally the case for
1381 the ELF x86-64 abi, but it can be disabled for some compilation
1382 units.
Sean Silvab084af42012-12-07 10:36:55 +00001383
1384.. _moduleasm:
1385
1386Module-Level Inline Assembly
1387----------------------------
1388
1389Modules may contain "module-level inline asm" blocks, which corresponds
1390to the GCC "file scope inline asm" blocks. These blocks are internally
1391concatenated by LLVM and treated as a single unit, but may be separated
1392in the ``.ll`` file if desired. The syntax is very simple:
1393
1394.. code-block:: llvm
1395
1396 module asm "inline asm code goes here"
1397 module asm "more can go here"
1398
1399The strings can contain any character by escaping non-printable
1400characters. The escape sequence used is simply "\\xx" where "xx" is the
1401two digit hex code for the number.
1402
1403The inline asm code is simply printed to the machine code .s file when
1404assembly code is generated.
1405
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001406.. _langref_datalayout:
1407
Sean Silvab084af42012-12-07 10:36:55 +00001408Data Layout
1409-----------
1410
1411A module may specify a target specific data layout string that specifies
1412how data is to be laid out in memory. The syntax for the data layout is
1413simply:
1414
1415.. code-block:: llvm
1416
1417 target datalayout = "layout specification"
1418
1419The *layout specification* consists of a list of specifications
1420separated by the minus sign character ('-'). Each specification starts
1421with a letter and may include other information after the letter to
1422define some aspect of the data layout. The specifications accepted are
1423as follows:
1424
1425``E``
1426 Specifies that the target lays out data in big-endian form. That is,
1427 the bits with the most significance have the lowest address
1428 location.
1429``e``
1430 Specifies that the target lays out data in little-endian form. That
1431 is, the bits with the least significance have the lowest address
1432 location.
1433``S<size>``
1434 Specifies the natural alignment of the stack in bits. Alignment
1435 promotion of stack variables is limited to the natural stack
1436 alignment to avoid dynamic stack realignment. The stack alignment
1437 must be a multiple of 8-bits. If omitted, the natural stack
1438 alignment defaults to "unspecified", which does not prevent any
1439 alignment promotions.
1440``p[n]:<size>:<abi>:<pref>``
1441 This specifies the *size* of a pointer and its ``<abi>`` and
1442 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001443 bits. The address space, ``n`` is optional, and if not specified,
1444 denotes the default address space 0. The value of ``n`` must be
1445 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001446``i<size>:<abi>:<pref>``
1447 This specifies the alignment for an integer type of a given bit
1448 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1449``v<size>:<abi>:<pref>``
1450 This specifies the alignment for a vector type of a given bit
1451 ``<size>``.
1452``f<size>:<abi>:<pref>``
1453 This specifies the alignment for a floating point type of a given bit
1454 ``<size>``. Only values of ``<size>`` that are supported by the target
1455 will work. 32 (float) and 64 (double) are supported on all targets; 80
1456 or 128 (different flavors of long double) are also supported on some
1457 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001458``a:<abi>:<pref>``
1459 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001460``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001461 If present, specifies that llvm names are mangled in the output. The
1462 options are
1463
1464 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1465 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1466 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1467 symbols get a ``_`` prefix.
1468 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1469 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001470``n<size1>:<size2>:<size3>...``
1471 This specifies a set of native integer widths for the target CPU in
1472 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1473 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1474 this set are considered to support most general arithmetic operations
1475 efficiently.
1476
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001477On every specification that takes a ``<abi>:<pref>``, specifying the
1478``<pref>`` alignment is optional. If omitted, the preceding ``:``
1479should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1480
Sean Silvab084af42012-12-07 10:36:55 +00001481When constructing the data layout for a given target, LLVM starts with a
1482default set of specifications which are then (possibly) overridden by
1483the specifications in the ``datalayout`` keyword. The default
1484specifications are given in this list:
1485
1486- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001487- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1488- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1489 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001490- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001491- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1492- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1493- ``i16:16:16`` - i16 is 16-bit aligned
1494- ``i32:32:32`` - i32 is 32-bit aligned
1495- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1496 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001497- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001498- ``f32:32:32`` - float is 32-bit aligned
1499- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001500- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001501- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1502- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001503- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001504
1505When LLVM is determining the alignment for a given type, it uses the
1506following rules:
1507
1508#. If the type sought is an exact match for one of the specifications,
1509 that specification is used.
1510#. If no match is found, and the type sought is an integer type, then
1511 the smallest integer type that is larger than the bitwidth of the
1512 sought type is used. If none of the specifications are larger than
1513 the bitwidth then the largest integer type is used. For example,
1514 given the default specifications above, the i7 type will use the
1515 alignment of i8 (next largest) while both i65 and i256 will use the
1516 alignment of i64 (largest specified).
1517#. If no match is found, and the type sought is a vector type, then the
1518 largest vector type that is smaller than the sought vector type will
1519 be used as a fall back. This happens because <128 x double> can be
1520 implemented in terms of 64 <2 x double>, for example.
1521
1522The function of the data layout string may not be what you expect.
1523Notably, this is not a specification from the frontend of what alignment
1524the code generator should use.
1525
1526Instead, if specified, the target data layout is required to match what
1527the ultimate *code generator* expects. This string is used by the
1528mid-level optimizers to improve code, and this only works if it matches
1529what the ultimate code generator uses. If you would like to generate IR
1530that does not embed this target-specific detail into the IR, then you
1531don't have to specify the string. This will disable some optimizations
1532that require precise layout information, but this also prevents those
1533optimizations from introducing target specificity into the IR.
1534
Bill Wendling5cc90842013-10-18 23:41:25 +00001535.. _langref_triple:
1536
1537Target Triple
1538-------------
1539
1540A module may specify a target triple string that describes the target
1541host. The syntax for the target triple is simply:
1542
1543.. code-block:: llvm
1544
1545 target triple = "x86_64-apple-macosx10.7.0"
1546
1547The *target triple* string consists of a series of identifiers delimited
1548by the minus sign character ('-'). The canonical forms are:
1549
1550::
1551
1552 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1553 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1554
1555This information is passed along to the backend so that it generates
1556code for the proper architecture. It's possible to override this on the
1557command line with the ``-mtriple`` command line option.
1558
Sean Silvab084af42012-12-07 10:36:55 +00001559.. _pointeraliasing:
1560
1561Pointer Aliasing Rules
1562----------------------
1563
1564Any memory access must be done through a pointer value associated with
1565an address range of the memory access, otherwise the behavior is
1566undefined. Pointer values are associated with address ranges according
1567to the following rules:
1568
1569- A pointer value is associated with the addresses associated with any
1570 value it is *based* on.
1571- An address of a global variable is associated with the address range
1572 of the variable's storage.
1573- The result value of an allocation instruction is associated with the
1574 address range of the allocated storage.
1575- A null pointer in the default address-space is associated with no
1576 address.
1577- An integer constant other than zero or a pointer value returned from
1578 a function not defined within LLVM may be associated with address
1579 ranges allocated through mechanisms other than those provided by
1580 LLVM. Such ranges shall not overlap with any ranges of addresses
1581 allocated by mechanisms provided by LLVM.
1582
1583A pointer value is *based* on another pointer value according to the
1584following rules:
1585
1586- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001587 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001588- The result value of a ``bitcast`` is *based* on the operand of the
1589 ``bitcast``.
1590- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1591 values that contribute (directly or indirectly) to the computation of
1592 the pointer's value.
1593- The "*based* on" relationship is transitive.
1594
1595Note that this definition of *"based"* is intentionally similar to the
1596definition of *"based"* in C99, though it is slightly weaker.
1597
1598LLVM IR does not associate types with memory. The result type of a
1599``load`` merely indicates the size and alignment of the memory from
1600which to load, as well as the interpretation of the value. The first
1601operand type of a ``store`` similarly only indicates the size and
1602alignment of the store.
1603
1604Consequently, type-based alias analysis, aka TBAA, aka
1605``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1606:ref:`Metadata <metadata>` may be used to encode additional information
1607which specialized optimization passes may use to implement type-based
1608alias analysis.
1609
1610.. _volatile:
1611
1612Volatile Memory Accesses
1613------------------------
1614
1615Certain memory accesses, such as :ref:`load <i_load>`'s,
1616:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1617marked ``volatile``. The optimizers must not change the number of
1618volatile operations or change their order of execution relative to other
1619volatile operations. The optimizers *may* change the order of volatile
1620operations relative to non-volatile operations. This is not Java's
1621"volatile" and has no cross-thread synchronization behavior.
1622
Andrew Trick89fc5a62013-01-30 21:19:35 +00001623IR-level volatile loads and stores cannot safely be optimized into
1624llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1625flagged volatile. Likewise, the backend should never split or merge
1626target-legal volatile load/store instructions.
1627
Andrew Trick7e6f9282013-01-31 00:49:39 +00001628.. admonition:: Rationale
1629
1630 Platforms may rely on volatile loads and stores of natively supported
1631 data width to be executed as single instruction. For example, in C
1632 this holds for an l-value of volatile primitive type with native
1633 hardware support, but not necessarily for aggregate types. The
1634 frontend upholds these expectations, which are intentionally
1635 unspecified in the IR. The rules above ensure that IR transformation
1636 do not violate the frontend's contract with the language.
1637
Sean Silvab084af42012-12-07 10:36:55 +00001638.. _memmodel:
1639
1640Memory Model for Concurrent Operations
1641--------------------------------------
1642
1643The LLVM IR does not define any way to start parallel threads of
1644execution or to register signal handlers. Nonetheless, there are
1645platform-specific ways to create them, and we define LLVM IR's behavior
1646in their presence. This model is inspired by the C++0x memory model.
1647
1648For a more informal introduction to this model, see the :doc:`Atomics`.
1649
1650We define a *happens-before* partial order as the least partial order
1651that
1652
1653- Is a superset of single-thread program order, and
1654- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1655 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1656 techniques, like pthread locks, thread creation, thread joining,
1657 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1658 Constraints <ordering>`).
1659
1660Note that program order does not introduce *happens-before* edges
1661between a thread and signals executing inside that thread.
1662
1663Every (defined) read operation (load instructions, memcpy, atomic
1664loads/read-modify-writes, etc.) R reads a series of bytes written by
1665(defined) write operations (store instructions, atomic
1666stores/read-modify-writes, memcpy, etc.). For the purposes of this
1667section, initialized globals are considered to have a write of the
1668initializer which is atomic and happens before any other read or write
1669of the memory in question. For each byte of a read R, R\ :sub:`byte`
1670may see any write to the same byte, except:
1671
1672- If write\ :sub:`1` happens before write\ :sub:`2`, and
1673 write\ :sub:`2` happens before R\ :sub:`byte`, then
1674 R\ :sub:`byte` does not see write\ :sub:`1`.
1675- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1676 R\ :sub:`byte` does not see write\ :sub:`3`.
1677
1678Given that definition, R\ :sub:`byte` is defined as follows:
1679
1680- If R is volatile, the result is target-dependent. (Volatile is
1681 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001682 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001683 like normal memory. It does not generally provide cross-thread
1684 synchronization.)
1685- Otherwise, if there is no write to the same byte that happens before
1686 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1687- Otherwise, if R\ :sub:`byte` may see exactly one write,
1688 R\ :sub:`byte` returns the value written by that write.
1689- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1690 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1691 Memory Ordering Constraints <ordering>` section for additional
1692 constraints on how the choice is made.
1693- Otherwise R\ :sub:`byte` returns ``undef``.
1694
1695R returns the value composed of the series of bytes it read. This
1696implies that some bytes within the value may be ``undef`` **without**
1697the entire value being ``undef``. Note that this only defines the
1698semantics of the operation; it doesn't mean that targets will emit more
1699than one instruction to read the series of bytes.
1700
1701Note that in cases where none of the atomic intrinsics are used, this
1702model places only one restriction on IR transformations on top of what
1703is required for single-threaded execution: introducing a store to a byte
1704which might not otherwise be stored is not allowed in general.
1705(Specifically, in the case where another thread might write to and read
1706from an address, introducing a store can change a load that may see
1707exactly one write into a load that may see multiple writes.)
1708
1709.. _ordering:
1710
1711Atomic Memory Ordering Constraints
1712----------------------------------
1713
1714Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1715:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1716:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001717ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001718the same address they *synchronize with*. These semantics are borrowed
1719from Java and C++0x, but are somewhat more colloquial. If these
1720descriptions aren't precise enough, check those specs (see spec
1721references in the :doc:`atomics guide <Atomics>`).
1722:ref:`fence <i_fence>` instructions treat these orderings somewhat
1723differently since they don't take an address. See that instruction's
1724documentation for details.
1725
1726For a simpler introduction to the ordering constraints, see the
1727:doc:`Atomics`.
1728
1729``unordered``
1730 The set of values that can be read is governed by the happens-before
1731 partial order. A value cannot be read unless some operation wrote
1732 it. This is intended to provide a guarantee strong enough to model
1733 Java's non-volatile shared variables. This ordering cannot be
1734 specified for read-modify-write operations; it is not strong enough
1735 to make them atomic in any interesting way.
1736``monotonic``
1737 In addition to the guarantees of ``unordered``, there is a single
1738 total order for modifications by ``monotonic`` operations on each
1739 address. All modification orders must be compatible with the
1740 happens-before order. There is no guarantee that the modification
1741 orders can be combined to a global total order for the whole program
1742 (and this often will not be possible). The read in an atomic
1743 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1744 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1745 order immediately before the value it writes. If one atomic read
1746 happens before another atomic read of the same address, the later
1747 read must see the same value or a later value in the address's
1748 modification order. This disallows reordering of ``monotonic`` (or
1749 stronger) operations on the same address. If an address is written
1750 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1751 read that address repeatedly, the other threads must eventually see
1752 the write. This corresponds to the C++0x/C1x
1753 ``memory_order_relaxed``.
1754``acquire``
1755 In addition to the guarantees of ``monotonic``, a
1756 *synchronizes-with* edge may be formed with a ``release`` operation.
1757 This is intended to model C++'s ``memory_order_acquire``.
1758``release``
1759 In addition to the guarantees of ``monotonic``, if this operation
1760 writes a value which is subsequently read by an ``acquire``
1761 operation, it *synchronizes-with* that operation. (This isn't a
1762 complete description; see the C++0x definition of a release
1763 sequence.) This corresponds to the C++0x/C1x
1764 ``memory_order_release``.
1765``acq_rel`` (acquire+release)
1766 Acts as both an ``acquire`` and ``release`` operation on its
1767 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1768``seq_cst`` (sequentially consistent)
1769 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001770 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001771 writes), there is a global total order on all
1772 sequentially-consistent operations on all addresses, which is
1773 consistent with the *happens-before* partial order and with the
1774 modification orders of all the affected addresses. Each
1775 sequentially-consistent read sees the last preceding write to the
1776 same address in this global order. This corresponds to the C++0x/C1x
1777 ``memory_order_seq_cst`` and Java volatile.
1778
1779.. _singlethread:
1780
1781If an atomic operation is marked ``singlethread``, it only *synchronizes
1782with* or participates in modification and seq\_cst total orderings with
1783other operations running in the same thread (for example, in signal
1784handlers).
1785
1786.. _fastmath:
1787
1788Fast-Math Flags
1789---------------
1790
1791LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1792:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Eric Christopher1e61ffd2015-02-19 18:46:25 +00001793:ref:`frem <i_frem>`) have the following flags that can be set to enable
Sean Silvab084af42012-12-07 10:36:55 +00001794otherwise unsafe floating point operations
1795
1796``nnan``
1797 No NaNs - Allow optimizations to assume the arguments and result are not
1798 NaN. Such optimizations are required to retain defined behavior over
1799 NaNs, but the value of the result is undefined.
1800
1801``ninf``
1802 No Infs - Allow optimizations to assume the arguments and result are not
1803 +/-Inf. Such optimizations are required to retain defined behavior over
1804 +/-Inf, but the value of the result is undefined.
1805
1806``nsz``
1807 No Signed Zeros - Allow optimizations to treat the sign of a zero
1808 argument or result as insignificant.
1809
1810``arcp``
1811 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1812 argument rather than perform division.
1813
1814``fast``
1815 Fast - Allow algebraically equivalent transformations that may
1816 dramatically change results in floating point (e.g. reassociate). This
1817 flag implies all the others.
1818
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001819.. _uselistorder:
1820
1821Use-list Order Directives
1822-------------------------
1823
1824Use-list directives encode the in-memory order of each use-list, allowing the
1825order to be recreated. ``<order-indexes>`` is a comma-separated list of
1826indexes that are assigned to the referenced value's uses. The referenced
1827value's use-list is immediately sorted by these indexes.
1828
1829Use-list directives may appear at function scope or global scope. They are not
1830instructions, and have no effect on the semantics of the IR. When they're at
1831function scope, they must appear after the terminator of the final basic block.
1832
1833If basic blocks have their address taken via ``blockaddress()`` expressions,
1834``uselistorder_bb`` can be used to reorder their use-lists from outside their
1835function's scope.
1836
1837:Syntax:
1838
1839::
1840
1841 uselistorder <ty> <value>, { <order-indexes> }
1842 uselistorder_bb @function, %block { <order-indexes> }
1843
1844:Examples:
1845
1846::
1847
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001848 define void @foo(i32 %arg1, i32 %arg2) {
1849 entry:
1850 ; ... instructions ...
1851 bb:
1852 ; ... instructions ...
1853
1854 ; At function scope.
1855 uselistorder i32 %arg1, { 1, 0, 2 }
1856 uselistorder label %bb, { 1, 0 }
1857 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001858
1859 ; At global scope.
1860 uselistorder i32* @global, { 1, 2, 0 }
1861 uselistorder i32 7, { 1, 0 }
1862 uselistorder i32 (i32) @bar, { 1, 0 }
1863 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1864
Sean Silvab084af42012-12-07 10:36:55 +00001865.. _typesystem:
1866
1867Type System
1868===========
1869
1870The LLVM type system is one of the most important features of the
1871intermediate representation. Being typed enables a number of
1872optimizations to be performed on the intermediate representation
1873directly, without having to do extra analyses on the side before the
1874transformation. A strong type system makes it easier to read the
1875generated code and enables novel analyses and transformations that are
1876not feasible to perform on normal three address code representations.
1877
Rafael Espindola08013342013-12-07 19:34:20 +00001878.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001879
Rafael Espindola08013342013-12-07 19:34:20 +00001880Void Type
1881---------
Sean Silvab084af42012-12-07 10:36:55 +00001882
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001883:Overview:
1884
Rafael Espindola08013342013-12-07 19:34:20 +00001885
1886The void type does not represent any value and has no size.
1887
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001888:Syntax:
1889
Rafael Espindola08013342013-12-07 19:34:20 +00001890
1891::
1892
1893 void
Sean Silvab084af42012-12-07 10:36:55 +00001894
1895
Rafael Espindola08013342013-12-07 19:34:20 +00001896.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001897
Rafael Espindola08013342013-12-07 19:34:20 +00001898Function Type
1899-------------
Sean Silvab084af42012-12-07 10:36:55 +00001900
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001901:Overview:
1902
Sean Silvab084af42012-12-07 10:36:55 +00001903
Rafael Espindola08013342013-12-07 19:34:20 +00001904The function type can be thought of as a function signature. It consists of a
1905return type and a list of formal parameter types. The return type of a function
1906type is a void type or first class type --- except for :ref:`label <t_label>`
1907and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001908
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001909:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001910
Rafael Espindola08013342013-12-07 19:34:20 +00001911::
Sean Silvab084af42012-12-07 10:36:55 +00001912
Rafael Espindola08013342013-12-07 19:34:20 +00001913 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001914
Rafael Espindola08013342013-12-07 19:34:20 +00001915...where '``<parameter list>``' is a comma-separated list of type
1916specifiers. Optionally, the parameter list may include a type ``...``, which
1917indicates that the function takes a variable number of arguments. Variable
1918argument functions can access their arguments with the :ref:`variable argument
1919handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1920except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001921
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001922:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001923
Rafael Espindola08013342013-12-07 19:34:20 +00001924+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1925| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1926+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1927| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1928+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1929| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1930+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1931| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1932+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1933
1934.. _t_firstclass:
1935
1936First Class Types
1937-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001938
1939The :ref:`first class <t_firstclass>` types are perhaps the most important.
1940Values of these types are the only ones which can be produced by
1941instructions.
1942
Rafael Espindola08013342013-12-07 19:34:20 +00001943.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001944
Rafael Espindola08013342013-12-07 19:34:20 +00001945Single Value Types
1946^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001947
Rafael Espindola08013342013-12-07 19:34:20 +00001948These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001949
1950.. _t_integer:
1951
1952Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001953""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001954
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001955:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001956
1957The integer type is a very simple type that simply specifies an
1958arbitrary bit width for the integer type desired. Any bit width from 1
1959bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1960
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001961:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001962
1963::
1964
1965 iN
1966
1967The number of bits the integer will occupy is specified by the ``N``
1968value.
1969
1970Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001971*********
Sean Silvab084af42012-12-07 10:36:55 +00001972
1973+----------------+------------------------------------------------+
1974| ``i1`` | a single-bit integer. |
1975+----------------+------------------------------------------------+
1976| ``i32`` | a 32-bit integer. |
1977+----------------+------------------------------------------------+
1978| ``i1942652`` | a really big integer of over 1 million bits. |
1979+----------------+------------------------------------------------+
1980
1981.. _t_floating:
1982
1983Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001984""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001985
1986.. list-table::
1987 :header-rows: 1
1988
1989 * - Type
1990 - Description
1991
1992 * - ``half``
1993 - 16-bit floating point value
1994
1995 * - ``float``
1996 - 32-bit floating point value
1997
1998 * - ``double``
1999 - 64-bit floating point value
2000
2001 * - ``fp128``
2002 - 128-bit floating point value (112-bit mantissa)
2003
2004 * - ``x86_fp80``
2005 - 80-bit floating point value (X87)
2006
2007 * - ``ppc_fp128``
2008 - 128-bit floating point value (two 64-bits)
2009
Reid Kleckner9a16d082014-03-05 02:41:37 +00002010X86_mmx Type
2011""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002012
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002013:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002014
Reid Kleckner9a16d082014-03-05 02:41:37 +00002015The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002016machine. The operations allowed on it are quite limited: parameters and
2017return values, load and store, and bitcast. User-specified MMX
2018instructions are represented as intrinsic or asm calls with arguments
2019and/or results of this type. There are no arrays, vectors or constants
2020of this type.
2021
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002022:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002023
2024::
2025
Reid Kleckner9a16d082014-03-05 02:41:37 +00002026 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002027
Sean Silvab084af42012-12-07 10:36:55 +00002028
Rafael Espindola08013342013-12-07 19:34:20 +00002029.. _t_pointer:
2030
2031Pointer Type
2032""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002033
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002034:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002035
Rafael Espindola08013342013-12-07 19:34:20 +00002036The pointer type is used to specify memory locations. Pointers are
2037commonly used to reference objects in memory.
2038
2039Pointer types may have an optional address space attribute defining the
2040numbered address space where the pointed-to object resides. The default
2041address space is number zero. The semantics of non-zero address spaces
2042are target-specific.
2043
2044Note that LLVM does not permit pointers to void (``void*``) nor does it
2045permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002046
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002047:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002048
2049::
2050
Rafael Espindola08013342013-12-07 19:34:20 +00002051 <type> *
2052
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002053:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002054
2055+-------------------------+--------------------------------------------------------------------------------------------------------------+
2056| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2057+-------------------------+--------------------------------------------------------------------------------------------------------------+
2058| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2059+-------------------------+--------------------------------------------------------------------------------------------------------------+
2060| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2061+-------------------------+--------------------------------------------------------------------------------------------------------------+
2062
2063.. _t_vector:
2064
2065Vector Type
2066"""""""""""
2067
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002068:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002069
2070A vector type is a simple derived type that represents a vector of
2071elements. Vector types are used when multiple primitive data are
2072operated in parallel using a single instruction (SIMD). A vector type
2073requires a size (number of elements) and an underlying primitive data
2074type. Vector types are considered :ref:`first class <t_firstclass>`.
2075
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002076:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002077
2078::
2079
2080 < <# elements> x <elementtype> >
2081
2082The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002083elementtype may be any integer, floating point or pointer type. Vectors
2084of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002085
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002086:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002087
2088+-------------------+--------------------------------------------------+
2089| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2090+-------------------+--------------------------------------------------+
2091| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2092+-------------------+--------------------------------------------------+
2093| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2094+-------------------+--------------------------------------------------+
2095| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2096+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002097
2098.. _t_label:
2099
2100Label Type
2101^^^^^^^^^^
2102
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002103:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002104
2105The label type represents code labels.
2106
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002107:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002108
2109::
2110
2111 label
2112
2113.. _t_metadata:
2114
2115Metadata Type
2116^^^^^^^^^^^^^
2117
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002118:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002119
2120The metadata type represents embedded metadata. No derived types may be
2121created from metadata except for :ref:`function <t_function>` arguments.
2122
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002123:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002124
2125::
2126
2127 metadata
2128
Sean Silvab084af42012-12-07 10:36:55 +00002129.. _t_aggregate:
2130
2131Aggregate Types
2132^^^^^^^^^^^^^^^
2133
2134Aggregate Types are a subset of derived types that can contain multiple
2135member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2136aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2137aggregate types.
2138
2139.. _t_array:
2140
2141Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002142""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002143
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002144:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002145
2146The array type is a very simple derived type that arranges elements
2147sequentially in memory. The array type requires a size (number of
2148elements) and an underlying data type.
2149
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002150:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002151
2152::
2153
2154 [<# elements> x <elementtype>]
2155
2156The number of elements is a constant integer value; ``elementtype`` may
2157be any type with a size.
2158
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002159:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002160
2161+------------------+--------------------------------------+
2162| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2163+------------------+--------------------------------------+
2164| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2165+------------------+--------------------------------------+
2166| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2167+------------------+--------------------------------------+
2168
2169Here are some examples of multidimensional arrays:
2170
2171+-----------------------------+----------------------------------------------------------+
2172| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2173+-----------------------------+----------------------------------------------------------+
2174| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2175+-----------------------------+----------------------------------------------------------+
2176| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2177+-----------------------------+----------------------------------------------------------+
2178
2179There is no restriction on indexing beyond the end of the array implied
2180by a static type (though there are restrictions on indexing beyond the
2181bounds of an allocated object in some cases). This means that
2182single-dimension 'variable sized array' addressing can be implemented in
2183LLVM with a zero length array type. An implementation of 'pascal style
2184arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2185example.
2186
Sean Silvab084af42012-12-07 10:36:55 +00002187.. _t_struct:
2188
2189Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002190""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002191
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002192:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002193
2194The structure type is used to represent a collection of data members
2195together in memory. The elements of a structure may be any type that has
2196a size.
2197
2198Structures in memory are accessed using '``load``' and '``store``' by
2199getting a pointer to a field with the '``getelementptr``' instruction.
2200Structures in registers are accessed using the '``extractvalue``' and
2201'``insertvalue``' instructions.
2202
2203Structures may optionally be "packed" structures, which indicate that
2204the alignment of the struct is one byte, and that there is no padding
2205between the elements. In non-packed structs, padding between field types
2206is inserted as defined by the DataLayout string in the module, which is
2207required to match what the underlying code generator expects.
2208
2209Structures can either be "literal" or "identified". A literal structure
2210is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2211identified types are always defined at the top level with a name.
2212Literal types are uniqued by their contents and can never be recursive
2213or opaque since there is no way to write one. Identified types can be
2214recursive, can be opaqued, and are never uniqued.
2215
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002216:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002217
2218::
2219
2220 %T1 = type { <type list> } ; Identified normal struct type
2221 %T2 = type <{ <type list> }> ; Identified packed struct type
2222
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002223:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002224
2225+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2226| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2227+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002228| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002229+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2230| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2231+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2232
2233.. _t_opaque:
2234
2235Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002236""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002237
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002238:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002239
2240Opaque structure types are used to represent named structure types that
2241do not have a body specified. This corresponds (for example) to the C
2242notion of a forward declared structure.
2243
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002244:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002245
2246::
2247
2248 %X = type opaque
2249 %52 = type opaque
2250
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002251:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002252
2253+--------------+-------------------+
2254| ``opaque`` | An opaque type. |
2255+--------------+-------------------+
2256
Sean Silva1703e702014-04-08 21:06:22 +00002257.. _constants:
2258
Sean Silvab084af42012-12-07 10:36:55 +00002259Constants
2260=========
2261
2262LLVM has several different basic types of constants. This section
2263describes them all and their syntax.
2264
2265Simple Constants
2266----------------
2267
2268**Boolean constants**
2269 The two strings '``true``' and '``false``' are both valid constants
2270 of the ``i1`` type.
2271**Integer constants**
2272 Standard integers (such as '4') are constants of the
2273 :ref:`integer <t_integer>` type. Negative numbers may be used with
2274 integer types.
2275**Floating point constants**
2276 Floating point constants use standard decimal notation (e.g.
2277 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2278 hexadecimal notation (see below). The assembler requires the exact
2279 decimal value of a floating-point constant. For example, the
2280 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2281 decimal in binary. Floating point constants must have a :ref:`floating
2282 point <t_floating>` type.
2283**Null pointer constants**
2284 The identifier '``null``' is recognized as a null pointer constant
2285 and must be of :ref:`pointer type <t_pointer>`.
2286
2287The one non-intuitive notation for constants is the hexadecimal form of
2288floating point constants. For example, the form
2289'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2290than) '``double 4.5e+15``'. The only time hexadecimal floating point
2291constants are required (and the only time that they are generated by the
2292disassembler) is when a floating point constant must be emitted but it
2293cannot be represented as a decimal floating point number in a reasonable
2294number of digits. For example, NaN's, infinities, and other special
2295values are represented in their IEEE hexadecimal format so that assembly
2296and disassembly do not cause any bits to change in the constants.
2297
2298When using the hexadecimal form, constants of types half, float, and
2299double are represented using the 16-digit form shown above (which
2300matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002301must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002302precision, respectively. Hexadecimal format is always used for long
2303double, and there are three forms of long double. The 80-bit format used
2304by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2305128-bit format used by PowerPC (two adjacent doubles) is represented by
2306``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002307represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2308will only work if they match the long double format on your target.
2309The IEEE 16-bit format (half precision) is represented by ``0xH``
2310followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2311(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002312
Reid Kleckner9a16d082014-03-05 02:41:37 +00002313There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002314
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002315.. _complexconstants:
2316
Sean Silvab084af42012-12-07 10:36:55 +00002317Complex Constants
2318-----------------
2319
2320Complex constants are a (potentially recursive) combination of simple
2321constants and smaller complex constants.
2322
2323**Structure constants**
2324 Structure constants are represented with notation similar to
2325 structure type definitions (a comma separated list of elements,
2326 surrounded by braces (``{}``)). For example:
2327 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2328 "``@G = external global i32``". Structure constants must have
2329 :ref:`structure type <t_struct>`, and the number and types of elements
2330 must match those specified by the type.
2331**Array constants**
2332 Array constants are represented with notation similar to array type
2333 definitions (a comma separated list of elements, surrounded by
2334 square brackets (``[]``)). For example:
2335 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2336 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002337 match those specified by the type. As a special case, character array
2338 constants may also be represented as a double-quoted string using the ``c``
2339 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002340**Vector constants**
2341 Vector constants are represented with notation similar to vector
2342 type definitions (a comma separated list of elements, surrounded by
2343 less-than/greater-than's (``<>``)). For example:
2344 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2345 must have :ref:`vector type <t_vector>`, and the number and types of
2346 elements must match those specified by the type.
2347**Zero initialization**
2348 The string '``zeroinitializer``' can be used to zero initialize a
2349 value to zero of *any* type, including scalar and
2350 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2351 having to print large zero initializers (e.g. for large arrays) and
2352 is always exactly equivalent to using explicit zero initializers.
2353**Metadata node**
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002354 A metadata node is a constant tuple without types. For example:
2355 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
2356 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2357 Unlike other typed constants that are meant to be interpreted as part of
2358 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002359 information such as debug info.
2360
2361Global Variable and Function Addresses
2362--------------------------------------
2363
2364The addresses of :ref:`global variables <globalvars>` and
2365:ref:`functions <functionstructure>` are always implicitly valid
2366(link-time) constants. These constants are explicitly referenced when
2367the :ref:`identifier for the global <identifiers>` is used and always have
2368:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2369file:
2370
2371.. code-block:: llvm
2372
2373 @X = global i32 17
2374 @Y = global i32 42
2375 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2376
2377.. _undefvalues:
2378
2379Undefined Values
2380----------------
2381
2382The string '``undef``' can be used anywhere a constant is expected, and
2383indicates that the user of the value may receive an unspecified
2384bit-pattern. Undefined values may be of any type (other than '``label``'
2385or '``void``') and be used anywhere a constant is permitted.
2386
2387Undefined values are useful because they indicate to the compiler that
2388the program is well defined no matter what value is used. This gives the
2389compiler more freedom to optimize. Here are some examples of
2390(potentially surprising) transformations that are valid (in pseudo IR):
2391
2392.. code-block:: llvm
2393
2394 %A = add %X, undef
2395 %B = sub %X, undef
2396 %C = xor %X, undef
2397 Safe:
2398 %A = undef
2399 %B = undef
2400 %C = undef
2401
2402This is safe because all of the output bits are affected by the undef
2403bits. Any output bit can have a zero or one depending on the input bits.
2404
2405.. code-block:: llvm
2406
2407 %A = or %X, undef
2408 %B = and %X, undef
2409 Safe:
2410 %A = -1
2411 %B = 0
2412 Unsafe:
2413 %A = undef
2414 %B = undef
2415
2416These logical operations have bits that are not always affected by the
2417input. For example, if ``%X`` has a zero bit, then the output of the
2418'``and``' operation will always be a zero for that bit, no matter what
2419the corresponding bit from the '``undef``' is. As such, it is unsafe to
2420optimize or assume that the result of the '``and``' is '``undef``'.
2421However, it is safe to assume that all bits of the '``undef``' could be
24220, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2423all the bits of the '``undef``' operand to the '``or``' could be set,
2424allowing the '``or``' to be folded to -1.
2425
2426.. code-block:: llvm
2427
2428 %A = select undef, %X, %Y
2429 %B = select undef, 42, %Y
2430 %C = select %X, %Y, undef
2431 Safe:
2432 %A = %X (or %Y)
2433 %B = 42 (or %Y)
2434 %C = %Y
2435 Unsafe:
2436 %A = undef
2437 %B = undef
2438 %C = undef
2439
2440This set of examples shows that undefined '``select``' (and conditional
2441branch) conditions can go *either way*, but they have to come from one
2442of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2443both known to have a clear low bit, then ``%A`` would have to have a
2444cleared low bit. However, in the ``%C`` example, the optimizer is
2445allowed to assume that the '``undef``' operand could be the same as
2446``%Y``, allowing the whole '``select``' to be eliminated.
2447
2448.. code-block:: llvm
2449
2450 %A = xor undef, undef
2451
2452 %B = undef
2453 %C = xor %B, %B
2454
2455 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002456 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002457 %F = icmp gte %D, 4
2458
2459 Safe:
2460 %A = undef
2461 %B = undef
2462 %C = undef
2463 %D = undef
2464 %E = undef
2465 %F = undef
2466
2467This example points out that two '``undef``' operands are not
2468necessarily the same. This can be surprising to people (and also matches
2469C semantics) where they assume that "``X^X``" is always zero, even if
2470``X`` is undefined. This isn't true for a number of reasons, but the
2471short answer is that an '``undef``' "variable" can arbitrarily change
2472its value over its "live range". This is true because the variable
2473doesn't actually *have a live range*. Instead, the value is logically
2474read from arbitrary registers that happen to be around when needed, so
2475the value is not necessarily consistent over time. In fact, ``%A`` and
2476``%C`` need to have the same semantics or the core LLVM "replace all
2477uses with" concept would not hold.
2478
2479.. code-block:: llvm
2480
2481 %A = fdiv undef, %X
2482 %B = fdiv %X, undef
2483 Safe:
2484 %A = undef
2485 b: unreachable
2486
2487These examples show the crucial difference between an *undefined value*
2488and *undefined behavior*. An undefined value (like '``undef``') is
2489allowed to have an arbitrary bit-pattern. This means that the ``%A``
2490operation can be constant folded to '``undef``', because the '``undef``'
2491could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2492However, in the second example, we can make a more aggressive
2493assumption: because the ``undef`` is allowed to be an arbitrary value,
2494we are allowed to assume that it could be zero. Since a divide by zero
2495has *undefined behavior*, we are allowed to assume that the operation
2496does not execute at all. This allows us to delete the divide and all
2497code after it. Because the undefined operation "can't happen", the
2498optimizer can assume that it occurs in dead code.
2499
2500.. code-block:: llvm
2501
2502 a: store undef -> %X
2503 b: store %X -> undef
2504 Safe:
2505 a: <deleted>
2506 b: unreachable
2507
2508These examples reiterate the ``fdiv`` example: a store *of* an undefined
2509value can be assumed to not have any effect; we can assume that the
2510value is overwritten with bits that happen to match what was already
2511there. However, a store *to* an undefined location could clobber
2512arbitrary memory, therefore, it has undefined behavior.
2513
2514.. _poisonvalues:
2515
2516Poison Values
2517-------------
2518
2519Poison values are similar to :ref:`undef values <undefvalues>`, however
2520they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002521that cannot evoke side effects has nevertheless detected a condition
2522that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002523
2524There is currently no way of representing a poison value in the IR; they
2525only exist when produced by operations such as :ref:`add <i_add>` with
2526the ``nsw`` flag.
2527
2528Poison value behavior is defined in terms of value *dependence*:
2529
2530- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2531- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2532 their dynamic predecessor basic block.
2533- Function arguments depend on the corresponding actual argument values
2534 in the dynamic callers of their functions.
2535- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2536 instructions that dynamically transfer control back to them.
2537- :ref:`Invoke <i_invoke>` instructions depend on the
2538 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2539 call instructions that dynamically transfer control back to them.
2540- Non-volatile loads and stores depend on the most recent stores to all
2541 of the referenced memory addresses, following the order in the IR
2542 (including loads and stores implied by intrinsics such as
2543 :ref:`@llvm.memcpy <int_memcpy>`.)
2544- An instruction with externally visible side effects depends on the
2545 most recent preceding instruction with externally visible side
2546 effects, following the order in the IR. (This includes :ref:`volatile
2547 operations <volatile>`.)
2548- An instruction *control-depends* on a :ref:`terminator
2549 instruction <terminators>` if the terminator instruction has
2550 multiple successors and the instruction is always executed when
2551 control transfers to one of the successors, and may not be executed
2552 when control is transferred to another.
2553- Additionally, an instruction also *control-depends* on a terminator
2554 instruction if the set of instructions it otherwise depends on would
2555 be different if the terminator had transferred control to a different
2556 successor.
2557- Dependence is transitive.
2558
Richard Smith32dbdf62014-07-31 04:25:36 +00002559Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2560with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002561on a poison value has undefined behavior.
2562
2563Here are some examples:
2564
2565.. code-block:: llvm
2566
2567 entry:
2568 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2569 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002570 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002571 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2572
2573 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002574 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002575
2576 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2577
2578 %narrowaddr = bitcast i32* @g to i16*
2579 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002580 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2581 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002582
2583 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2584 br i1 %cmp, label %true, label %end ; Branch to either destination.
2585
2586 true:
2587 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2588 ; it has undefined behavior.
2589 br label %end
2590
2591 end:
2592 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2593 ; Both edges into this PHI are
2594 ; control-dependent on %cmp, so this
2595 ; always results in a poison value.
2596
2597 store volatile i32 0, i32* @g ; This would depend on the store in %true
2598 ; if %cmp is true, or the store in %entry
2599 ; otherwise, so this is undefined behavior.
2600
2601 br i1 %cmp, label %second_true, label %second_end
2602 ; The same branch again, but this time the
2603 ; true block doesn't have side effects.
2604
2605 second_true:
2606 ; No side effects!
2607 ret void
2608
2609 second_end:
2610 store volatile i32 0, i32* @g ; This time, the instruction always depends
2611 ; on the store in %end. Also, it is
2612 ; control-equivalent to %end, so this is
2613 ; well-defined (ignoring earlier undefined
2614 ; behavior in this example).
2615
2616.. _blockaddress:
2617
2618Addresses of Basic Blocks
2619-------------------------
2620
2621``blockaddress(@function, %block)``
2622
2623The '``blockaddress``' constant computes the address of the specified
2624basic block in the specified function, and always has an ``i8*`` type.
2625Taking the address of the entry block is illegal.
2626
2627This value only has defined behavior when used as an operand to the
2628':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2629against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002630undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002631no label is equal to the null pointer. This may be passed around as an
2632opaque pointer sized value as long as the bits are not inspected. This
2633allows ``ptrtoint`` and arithmetic to be performed on these values so
2634long as the original value is reconstituted before the ``indirectbr``
2635instruction.
2636
2637Finally, some targets may provide defined semantics when using the value
2638as the operand to an inline assembly, but that is target specific.
2639
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002640.. _constantexprs:
2641
Sean Silvab084af42012-12-07 10:36:55 +00002642Constant Expressions
2643--------------------
2644
2645Constant expressions are used to allow expressions involving other
2646constants to be used as constants. Constant expressions may be of any
2647:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2648that does not have side effects (e.g. load and call are not supported).
2649The following is the syntax for constant expressions:
2650
2651``trunc (CST to TYPE)``
2652 Truncate a constant to another type. The bit size of CST must be
2653 larger than the bit size of TYPE. Both types must be integers.
2654``zext (CST to TYPE)``
2655 Zero extend a constant to another type. The bit size of CST must be
2656 smaller than the bit size of TYPE. Both types must be integers.
2657``sext (CST to TYPE)``
2658 Sign extend a constant to another type. The bit size of CST must be
2659 smaller than the bit size of TYPE. Both types must be integers.
2660``fptrunc (CST to TYPE)``
2661 Truncate a floating point constant to another floating point type.
2662 The size of CST must be larger than the size of TYPE. Both types
2663 must be floating point.
2664``fpext (CST to TYPE)``
2665 Floating point extend a constant to another type. The size of CST
2666 must be smaller or equal to the size of TYPE. Both types must be
2667 floating point.
2668``fptoui (CST to TYPE)``
2669 Convert a floating point constant to the corresponding unsigned
2670 integer constant. TYPE must be a scalar or vector integer type. CST
2671 must be of scalar or vector floating point type. Both CST and TYPE
2672 must be scalars, or vectors of the same number of elements. If the
2673 value won't fit in the integer type, the results are undefined.
2674``fptosi (CST to TYPE)``
2675 Convert a floating point constant to the corresponding signed
2676 integer constant. TYPE must be a scalar or vector integer type. CST
2677 must be of scalar or vector floating point type. Both CST and TYPE
2678 must be scalars, or vectors of the same number of elements. If the
2679 value won't fit in the integer type, the results are undefined.
2680``uitofp (CST to TYPE)``
2681 Convert an unsigned integer constant to the corresponding floating
2682 point constant. TYPE must be a scalar or vector floating point type.
2683 CST must be of scalar or vector integer type. Both CST and TYPE must
2684 be scalars, or vectors of the same number of elements. If the value
2685 won't fit in the floating point type, the results are undefined.
2686``sitofp (CST to TYPE)``
2687 Convert a signed integer constant to the corresponding floating
2688 point constant. TYPE must be a scalar or vector floating point type.
2689 CST must be of scalar or vector integer type. Both CST and TYPE must
2690 be scalars, or vectors of the same number of elements. If the value
2691 won't fit in the floating point type, the results are undefined.
2692``ptrtoint (CST to TYPE)``
2693 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002694 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002695 pointer type. The ``CST`` value is zero extended, truncated, or
2696 unchanged to make it fit in ``TYPE``.
2697``inttoptr (CST to TYPE)``
2698 Convert an integer constant to a pointer constant. TYPE must be a
2699 pointer type. CST must be of integer type. The CST value is zero
2700 extended, truncated, or unchanged to make it fit in a pointer size.
2701 This one is *really* dangerous!
2702``bitcast (CST to TYPE)``
2703 Convert a constant, CST, to another TYPE. The constraints of the
2704 operands are the same as those for the :ref:`bitcast
2705 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002706``addrspacecast (CST to TYPE)``
2707 Convert a constant pointer or constant vector of pointer, CST, to another
2708 TYPE in a different address space. The constraints of the operands are the
2709 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002710``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002711 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2712 constants. As with the :ref:`getelementptr <i_getelementptr>`
2713 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002714 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002715``select (COND, VAL1, VAL2)``
2716 Perform the :ref:`select operation <i_select>` on constants.
2717``icmp COND (VAL1, VAL2)``
2718 Performs the :ref:`icmp operation <i_icmp>` on constants.
2719``fcmp COND (VAL1, VAL2)``
2720 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2721``extractelement (VAL, IDX)``
2722 Perform the :ref:`extractelement operation <i_extractelement>` on
2723 constants.
2724``insertelement (VAL, ELT, IDX)``
2725 Perform the :ref:`insertelement operation <i_insertelement>` on
2726 constants.
2727``shufflevector (VEC1, VEC2, IDXMASK)``
2728 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2729 constants.
2730``extractvalue (VAL, IDX0, IDX1, ...)``
2731 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2732 constants. The index list is interpreted in a similar manner as
2733 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2734 least one index value must be specified.
2735``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2736 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2737 The index list is interpreted in a similar manner as indices in a
2738 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2739 value must be specified.
2740``OPCODE (LHS, RHS)``
2741 Perform the specified operation of the LHS and RHS constants. OPCODE
2742 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2743 binary <bitwiseops>` operations. The constraints on operands are
2744 the same as those for the corresponding instruction (e.g. no bitwise
2745 operations on floating point values are allowed).
2746
2747Other Values
2748============
2749
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002750.. _inlineasmexprs:
2751
Sean Silvab084af42012-12-07 10:36:55 +00002752Inline Assembler Expressions
2753----------------------------
2754
2755LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2756Inline Assembly <moduleasm>`) through the use of a special value. This
2757value represents the inline assembler as a string (containing the
2758instructions to emit), a list of operand constraints (stored as a
2759string), a flag that indicates whether or not the inline asm expression
2760has side effects, and a flag indicating whether the function containing
2761the asm needs to align its stack conservatively. An example inline
2762assembler expression is:
2763
2764.. code-block:: llvm
2765
2766 i32 (i32) asm "bswap $0", "=r,r"
2767
2768Inline assembler expressions may **only** be used as the callee operand
2769of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2770Thus, typically we have:
2771
2772.. code-block:: llvm
2773
2774 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2775
2776Inline asms with side effects not visible in the constraint list must be
2777marked as having side effects. This is done through the use of the
2778'``sideeffect``' keyword, like so:
2779
2780.. code-block:: llvm
2781
2782 call void asm sideeffect "eieio", ""()
2783
2784In some cases inline asms will contain code that will not work unless
2785the stack is aligned in some way, such as calls or SSE instructions on
2786x86, yet will not contain code that does that alignment within the asm.
2787The compiler should make conservative assumptions about what the asm
2788might contain and should generate its usual stack alignment code in the
2789prologue if the '``alignstack``' keyword is present:
2790
2791.. code-block:: llvm
2792
2793 call void asm alignstack "eieio", ""()
2794
2795Inline asms also support using non-standard assembly dialects. The
2796assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2797the inline asm is using the Intel dialect. Currently, ATT and Intel are
2798the only supported dialects. An example is:
2799
2800.. code-block:: llvm
2801
2802 call void asm inteldialect "eieio", ""()
2803
2804If multiple keywords appear the '``sideeffect``' keyword must come
2805first, the '``alignstack``' keyword second and the '``inteldialect``'
2806keyword last.
2807
2808Inline Asm Metadata
2809^^^^^^^^^^^^^^^^^^^
2810
2811The call instructions that wrap inline asm nodes may have a
2812"``!srcloc``" MDNode attached to it that contains a list of constant
2813integers. If present, the code generator will use the integer as the
2814location cookie value when report errors through the ``LLVMContext``
2815error reporting mechanisms. This allows a front-end to correlate backend
2816errors that occur with inline asm back to the source code that produced
2817it. For example:
2818
2819.. code-block:: llvm
2820
2821 call void asm sideeffect "something bad", ""(), !srcloc !42
2822 ...
2823 !42 = !{ i32 1234567 }
2824
2825It is up to the front-end to make sense of the magic numbers it places
2826in the IR. If the MDNode contains multiple constants, the code generator
2827will use the one that corresponds to the line of the asm that the error
2828occurs on.
2829
2830.. _metadata:
2831
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002832Metadata
2833========
Sean Silvab084af42012-12-07 10:36:55 +00002834
2835LLVM IR allows metadata to be attached to instructions in the program
2836that can convey extra information about the code to the optimizers and
2837code generator. One example application of metadata is source-level
2838debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002839
2840Metadata does not have a type, and is not a value. If referenced from a
2841``call`` instruction, it uses the ``metadata`` type.
2842
2843All metadata are identified in syntax by a exclamation point ('``!``').
2844
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002845.. _metadata-string:
2846
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002847Metadata Nodes and Metadata Strings
2848-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00002849
2850A metadata string is a string surrounded by double quotes. It can
2851contain any character by escaping non-printable characters with
2852"``\xx``" where "``xx``" is the two digit hex code. For example:
2853"``!"test\00"``".
2854
2855Metadata nodes are represented with notation similar to structure
2856constants (a comma separated list of elements, surrounded by braces and
2857preceded by an exclamation point). Metadata nodes can have any values as
2858their operand. For example:
2859
2860.. code-block:: llvm
2861
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002862 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00002863
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00002864Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
2865
2866.. code-block:: llvm
2867
2868 !0 = distinct !{!"test\00", i32 10}
2869
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00002870``distinct`` nodes are useful when nodes shouldn't be merged based on their
2871content. They can also occur when transformations cause uniquing collisions
2872when metadata operands change.
2873
Sean Silvab084af42012-12-07 10:36:55 +00002874A :ref:`named metadata <namedmetadatastructure>` is a collection of
2875metadata nodes, which can be looked up in the module symbol table. For
2876example:
2877
2878.. code-block:: llvm
2879
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002880 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00002881
2882Metadata can be used as function arguments. Here ``llvm.dbg.value``
2883function is using two metadata arguments:
2884
2885.. code-block:: llvm
2886
2887 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2888
2889Metadata can be attached with an instruction. Here metadata ``!21`` is
2890attached to the ``add`` instruction using the ``!dbg`` identifier:
2891
2892.. code-block:: llvm
2893
2894 %indvar.next = add i64 %indvar, 1, !dbg !21
2895
2896More information about specific metadata nodes recognized by the
2897optimizers and code generator is found below.
2898
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00002899Specialized Metadata Nodes
2900^^^^^^^^^^^^^^^^^^^^^^^^^^
2901
2902Specialized metadata nodes are custom data structures in metadata (as opposed
2903to generic tuples). Their fields are labelled, and can be specified in any
2904order.
2905
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002906These aren't inherently debug info centric, but currently all the specialized
2907metadata nodes are related to debug info.
2908
2909MDCompileUnit
2910"""""""""""""
2911
2912``MDCompileUnit`` nodes represent a compile unit. The ``enums:``,
2913``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
2914tuples containing the debug info to be emitted along with the compile unit,
2915regardless of code optimizations (some nodes are only emitted if there are
2916references to them from instructions).
2917
2918.. code-block:: llvm
2919
2920 !0 = !MDCompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
2921 isOptimized: true, flags: "-O2", runtimeVersion: 2,
2922 splitDebugFilename: "abc.debug", emissionKind: 1,
2923 enums: !2, retainedTypes: !3, subprograms: !4,
2924 globals: !5, imports: !6)
2925
2926MDFile
2927""""""
2928
2929``MDFile`` nodes represent files. The ``filename:`` can include slashes.
2930
2931.. code-block:: llvm
2932
2933 !0 = !MDFile(filename: "path/to/file", directory: "/path/to/dir")
2934
2935.. _MDLocation:
2936
2937MDBasicType
2938"""""""""""
2939
2940``MDBasicType`` nodes represent primitive types. ``tag:`` defaults to
2941``DW_TAG_base_type``.
2942
2943.. code-block:: llvm
2944
2945 !0 = !MDBasicType(name: "unsigned char", size: 8, align: 8,
2946 encoding: DW_ATE_unsigned_char)
2947 !1 = !MDBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
2948
2949.. _MDSubroutineType:
2950
2951MDSubroutineType
2952""""""""""""""""
2953
2954``MDSubroutineType`` nodes represent subroutine types. Their ``types:`` field
2955refers to a tuple; the first operand is the return type, while the rest are the
2956types of the formal arguments in order. If the first operand is ``null``, that
2957represents a function with no return value (such as ``void foo() {}`` in C++).
2958
2959.. code-block:: llvm
2960
2961 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
2962 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
2963 !2 = !MDSubroutineType(types: !{null, !0, !1}) ; void (int, char)
2964
2965MDDerivedType
2966"""""""""""""
2967
2968``MDDerivedType`` nodes represent types derived from other types, such as
2969qualified types.
2970
2971.. code-block:: llvm
2972
2973 !0 = !MDBasicType(name: "unsigned char", size: 8, align: 8,
2974 encoding: DW_ATE_unsigned_char)
2975 !1 = !MDDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
2976 align: 32)
2977
2978.. _MDCompositeType:
2979
2980MDCompositeType
2981"""""""""""""""
2982
2983``MDCompositeType`` nodes represent types composed of other types, like
2984structures and unions. ``elements:`` points to a tuple of the composed types.
2985
2986If the source language supports ODR, the ``identifier:`` field gives the unique
2987identifier used for type merging between modules. When specified, other types
2988can refer to composite types indirectly via a :ref:`metadata string
2989<metadata-string>` that matches their identifier.
2990
2991.. code-block:: llvm
2992
2993 !0 = !MDEnumerator(name: "SixKind", value: 7)
2994 !1 = !MDEnumerator(name: "SevenKind", value: 7)
2995 !2 = !MDEnumerator(name: "NegEightKind", value: -8)
2996 !3 = !MDCompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
2997 line: 2, size: 32, align: 32, identifier: "_M4Enum",
2998 elements: !{!0, !1, !2})
2999
3000MDSubrange
3001""""""""""
3002
3003``MDSubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
3004:ref:`MDCompositeType`. ``count: -1`` indicates an empty array.
3005
3006.. code-block:: llvm
3007
3008 !0 = !MDSubrange(count: 5, lowerBound: 0) ; array counting from 0
3009 !1 = !MDSubrange(count: 5, lowerBound: 1) ; array counting from 1
3010 !2 = !MDSubrange(count: -1) ; empty array.
3011
3012MDEnumerator
3013""""""""""""
3014
3015``MDEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3016variants of :ref:`MDCompositeType`.
3017
3018.. code-block:: llvm
3019
3020 !0 = !MDEnumerator(name: "SixKind", value: 7)
3021 !1 = !MDEnumerator(name: "SevenKind", value: 7)
3022 !2 = !MDEnumerator(name: "NegEightKind", value: -8)
3023
3024MDTemplateTypeParameter
3025"""""""""""""""""""""""
3026
3027``MDTemplateTypeParameter`` nodes represent type parameters to generic source
3028language constructs. They are used (optionally) in :ref:`MDCompositeType` and
3029:ref:`MDSubprogram` ``templateParams:`` fields.
3030
3031.. code-block:: llvm
3032
3033 !0 = !MDTemplateTypeParameter(name: "Ty", type: !1)
3034
3035MDTemplateValueParameter
3036""""""""""""""""""""""""
3037
3038``MDTemplateValueParameter`` nodes represent value parameters to generic source
3039language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
3040but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
3041``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
3042:ref:`MDCompositeType` and :ref:`MDSubprogram` ``templateParams:`` fields.
3043
3044.. code-block:: llvm
3045
3046 !0 = !MDTemplateValueParameter(name: "Ty", type: !1, value: i32 7)
3047
3048MDNamespace
3049"""""""""""
3050
3051``MDNamespace`` nodes represent namespaces in the source language.
3052
3053.. code-block:: llvm
3054
3055 !0 = !MDNamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
3056
3057MDGlobalVariable
3058""""""""""""""""
3059
3060``MDGlobalVariable`` nodes represent global variables in the source language.
3061
3062.. code-block:: llvm
3063
3064 !0 = !MDGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
3065 file: !2, line: 7, type: !3, isLocal: true,
3066 isDefinition: false, variable: i32* @foo,
3067 declaration: !4)
3068
3069.. _MDSubprogram:
3070
3071MDSubprogram
3072""""""""""""
3073
3074``MDSubprogram`` nodes represent functions from the source language. The
3075``variables:`` field points at :ref:`variables <MDLocalVariable>` that must be
3076retained, even if their IR counterparts are optimized out of the IR. The
3077``type:`` field must point at an :ref:`MDSubroutineType`.
3078
3079.. code-block:: llvm
3080
3081 !0 = !MDSubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
3082 file: !2, line: 7, type: !3, isLocal: true,
3083 isDefinition: false, scopeLine: 8, containingType: !4,
3084 virtuality: DW_VIRTUALITY_pure_virtual, virtualIndex: 10,
3085 flags: DIFlagPrototyped, isOptimized: true,
3086 function: void ()* @_Z3foov,
3087 templateParams: !5, declaration: !6, variables: !7)
3088
3089.. _MDLexicalBlock:
3090
3091MDLexicalBlock
3092""""""""""""""
3093
3094``MDLexicalBlock`` nodes represent lexical blocks in the source language (a
3095scope).
3096
3097.. code-block:: llvm
3098
3099 !0 = !MDLexicalBlock(scope: !1, file: !2, line: 7, column: 35)
3100
3101.. _MDLexicalBlockFile:
3102
3103MDLexicalBlockFile
3104""""""""""""""""""
3105
3106``MDLexicalBlockFile`` nodes are used to discriminate between sections of a
3107:ref:`lexical block <MDLexicalBlock>`. The ``file:`` field can be changed to
3108indicate textual inclusion, or the ``discriminator:`` field can be used to
3109discriminate between control flow within a single block in the source language.
3110
3111.. code-block:: llvm
3112
3113 !0 = !MDLexicalBlock(scope: !3, file: !4, line: 7, column: 35)
3114 !1 = !MDLexicalBlockFile(scope: !0, file: !4, discriminator: 0)
3115 !2 = !MDLexicalBlockFile(scope: !0, file: !4, discriminator: 1)
3116
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003117MDLocation
3118""""""""""
3119
3120``MDLocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003121mandatory, and points at an :ref:`MDLexicalBlockFile`, an
3122:ref:`MDLexicalBlock`, or an :ref:`MDSubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003123
3124.. code-block:: llvm
3125
3126 !0 = !MDLocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
3127
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003128.. _MDLocalVariable:
3129
3130MDLocalVariable
3131"""""""""""""""
3132
3133``MDLocalVariable`` nodes represent local variables in the source language.
3134Instead of ``DW_TAG_variable``, they use LLVM-specific fake tags to
3135discriminate between local variables (``DW_TAG_auto_variable``) and subprogram
3136arguments (``DW_TAG_arg_variable``). In the latter case, the ``arg:`` field
3137specifies the argument position, and this variable will be included in the
3138``variables:`` field of its :ref:`MDSubprogram`.
3139
3140If set, the ``inlinedAt:`` field points at an :ref:`MDLocation`, and the
3141variable represents an inlined version of a variable (with all other fields
3142duplicated from the non-inlined version).
3143
3144.. code-block:: llvm
3145
3146 !0 = !MDLocalVariable(tag: DW_TAG_arg_variable, name: "this", arg: 0,
3147 scope: !3, file: !2, line: 7, type: !3,
3148 flags: DIFlagArtificial, inlinedAt: !4)
3149 !1 = !MDLocalVariable(tag: DW_TAG_arg_variable, name: "x", arg: 1,
3150 scope: !4, file: !2, line: 7, type: !3,
3151 inlinedAt: !6)
3152 !1 = !MDLocalVariable(tag: DW_TAG_auto_variable, name: "y",
3153 scope: !5, file: !2, line: 7, type: !3,
3154 inlinedAt: !6)
3155
3156MDExpression
3157""""""""""""
3158
3159``MDExpression`` nodes represent DWARF expression sequences. They are used in
3160:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
3161describe how the referenced LLVM variable relates to the source language
3162variable.
3163
3164The current supported vocabulary is limited:
3165
3166- ``DW_OP_deref`` dereferences the working expression.
3167- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
3168- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
3169 here, respectively) of the variable piece from the working expression.
3170
3171.. code-block:: llvm
3172
3173 !0 = !MDExpression(DW_OP_deref)
3174 !1 = !MDExpression(DW_OP_plus, 3)
3175 !2 = !MDExpression(DW_OP_bit_piece, 3, 7)
3176 !3 = !MDExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
3177
3178MDObjCProperty
3179""""""""""""""
3180
3181``MDObjCProperty`` nodes represent Objective-C property nodes.
3182
3183.. code-block:: llvm
3184
3185 !3 = !MDObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
3186 getter: "getFoo", attributes: 7, type: !2)
3187
3188MDImportedEntity
3189""""""""""""""""
3190
3191``MDImportedEntity`` nodes represent entities (such as modules) imported into a
3192compile unit.
3193
3194.. code-block:: llvm
3195
3196 !2 = !MDImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
3197 entity: !1, line: 7)
3198
Sean Silvab084af42012-12-07 10:36:55 +00003199'``tbaa``' Metadata
3200^^^^^^^^^^^^^^^^^^^
3201
3202In LLVM IR, memory does not have types, so LLVM's own type system is not
3203suitable for doing TBAA. Instead, metadata is added to the IR to
3204describe a type system of a higher level language. This can be used to
3205implement typical C/C++ TBAA, but it can also be used to implement
3206custom alias analysis behavior for other languages.
3207
3208The current metadata format is very simple. TBAA metadata nodes have up
3209to three fields, e.g.:
3210
3211.. code-block:: llvm
3212
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003213 !0 = !{ !"an example type tree" }
3214 !1 = !{ !"int", !0 }
3215 !2 = !{ !"float", !0 }
3216 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003217
3218The first field is an identity field. It can be any value, usually a
3219metadata string, which uniquely identifies the type. The most important
3220name in the tree is the name of the root node. Two trees with different
3221root node names are entirely disjoint, even if they have leaves with
3222common names.
3223
3224The second field identifies the type's parent node in the tree, or is
3225null or omitted for a root node. A type is considered to alias all of
3226its descendants and all of its ancestors in the tree. Also, a type is
3227considered to alias all types in other trees, so that bitcode produced
3228from multiple front-ends is handled conservatively.
3229
3230If the third field is present, it's an integer which if equal to 1
3231indicates that the type is "constant" (meaning
3232``pointsToConstantMemory`` should return true; see `other useful
3233AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
3234
3235'``tbaa.struct``' Metadata
3236^^^^^^^^^^^^^^^^^^^^^^^^^^
3237
3238The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
3239aggregate assignment operations in C and similar languages, however it
3240is defined to copy a contiguous region of memory, which is more than
3241strictly necessary for aggregate types which contain holes due to
3242padding. Also, it doesn't contain any TBAA information about the fields
3243of the aggregate.
3244
3245``!tbaa.struct`` metadata can describe which memory subregions in a
3246memcpy are padding and what the TBAA tags of the struct are.
3247
3248The current metadata format is very simple. ``!tbaa.struct`` metadata
3249nodes are a list of operands which are in conceptual groups of three.
3250For each group of three, the first operand gives the byte offset of a
3251field in bytes, the second gives its size in bytes, and the third gives
3252its tbaa tag. e.g.:
3253
3254.. code-block:: llvm
3255
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003256 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00003257
3258This describes a struct with two fields. The first is at offset 0 bytes
3259with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
3260and has size 4 bytes and has tbaa tag !2.
3261
3262Note that the fields need not be contiguous. In this example, there is a
32634 byte gap between the two fields. This gap represents padding which
3264does not carry useful data and need not be preserved.
3265
Hal Finkel94146652014-07-24 14:25:39 +00003266'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00003267^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00003268
3269``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
3270noalias memory-access sets. This means that some collection of memory access
3271instructions (loads, stores, memory-accessing calls, etc.) that carry
3272``noalias`` metadata can specifically be specified not to alias with some other
3273collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00003274Each type of metadata specifies a list of scopes where each scope has an id and
3275a domain. When evaluating an aliasing query, if for some some domain, the set
3276of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00003277subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00003278instruction's ``noalias`` list, then the two memory accesses are assumed not to
3279alias.
Hal Finkel94146652014-07-24 14:25:39 +00003280
Hal Finkel029cde62014-07-25 15:50:02 +00003281The metadata identifying each domain is itself a list containing one or two
3282entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00003283string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00003284self-reference can be used to create globally unique domain names. A
3285descriptive string may optionally be provided as a second list entry.
3286
3287The metadata identifying each scope is also itself a list containing two or
3288three entries. The first entry is the name of the scope. Note that if the name
3289is a string then it can be combined accross functions and translation units. A
3290self-reference can be used to create globally unique scope names. A metadata
3291reference to the scope's domain is the second entry. A descriptive string may
3292optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00003293
3294For example,
3295
3296.. code-block:: llvm
3297
Hal Finkel029cde62014-07-25 15:50:02 +00003298 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003299 !0 = !{!0}
3300 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00003301
Hal Finkel029cde62014-07-25 15:50:02 +00003302 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003303 !2 = !{!2, !0}
3304 !3 = !{!3, !0}
3305 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00003306
Hal Finkel029cde62014-07-25 15:50:02 +00003307 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003308 !5 = !{!4} ; A list containing only scope !4
3309 !6 = !{!4, !3, !2}
3310 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00003311
3312 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00003313 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00003314 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00003315
Hal Finkel029cde62014-07-25 15:50:02 +00003316 ; These two instructions also don't alias (for domain !1, the set of scopes
3317 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00003318 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00003319 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00003320
Hal Finkel029cde62014-07-25 15:50:02 +00003321 ; These two instructions don't alias (for domain !0, the set of scopes in
3322 ; the !noalias list is not a superset of, or equal to, the scopes in the
3323 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00003324 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00003325 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00003326
Sean Silvab084af42012-12-07 10:36:55 +00003327'``fpmath``' Metadata
3328^^^^^^^^^^^^^^^^^^^^^
3329
3330``fpmath`` metadata may be attached to any instruction of floating point
3331type. It can be used to express the maximum acceptable error in the
3332result of that instruction, in ULPs, thus potentially allowing the
3333compiler to use a more efficient but less accurate method of computing
3334it. ULP is defined as follows:
3335
3336 If ``x`` is a real number that lies between two finite consecutive
3337 floating-point numbers ``a`` and ``b``, without being equal to one
3338 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
3339 distance between the two non-equal finite floating-point numbers
3340 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
3341
3342The metadata node shall consist of a single positive floating point
3343number representing the maximum relative error, for example:
3344
3345.. code-block:: llvm
3346
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003347 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00003348
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00003349.. _range-metadata:
3350
Sean Silvab084af42012-12-07 10:36:55 +00003351'``range``' Metadata
3352^^^^^^^^^^^^^^^^^^^^
3353
Jingyue Wu37fcb592014-06-19 16:50:16 +00003354``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
3355integer types. It expresses the possible ranges the loaded value or the value
3356returned by the called function at this call site is in. The ranges are
3357represented with a flattened list of integers. The loaded value or the value
3358returned is known to be in the union of the ranges defined by each consecutive
3359pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00003360
3361- The type must match the type loaded by the instruction.
3362- The pair ``a,b`` represents the range ``[a,b)``.
3363- Both ``a`` and ``b`` are constants.
3364- The range is allowed to wrap.
3365- The range should not represent the full or empty set. That is,
3366 ``a!=b``.
3367
3368In addition, the pairs must be in signed order of the lower bound and
3369they must be non-contiguous.
3370
3371Examples:
3372
3373.. code-block:: llvm
3374
David Blaikiec7aabbb2015-03-04 22:06:14 +00003375 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
3376 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00003377 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
3378 %d = invoke i8 @bar() to label %cont
3379 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00003380 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003381 !0 = !{ i8 0, i8 2 }
3382 !1 = !{ i8 255, i8 2 }
3383 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
3384 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00003385
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003386'``llvm.loop``'
3387^^^^^^^^^^^^^^^
3388
3389It is sometimes useful to attach information to loop constructs. Currently,
3390loop metadata is implemented as metadata attached to the branch instruction
3391in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00003392guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00003393specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003394
3395The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00003396itself to avoid merging it with any other identifier metadata, e.g.,
3397during module linkage or function inlining. That is, each loop should refer
3398to their own identification metadata even if they reside in separate functions.
3399The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003400constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003401
3402.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00003403
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003404 !0 = !{!0}
3405 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003406
Mark Heffernan893752a2014-07-18 19:24:51 +00003407The loop identifier metadata can be used to specify additional
3408per-loop metadata. Any operands after the first operand can be treated
3409as user-defined metadata. For example the ``llvm.loop.unroll.count``
3410suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003411
Paul Redmond5fdf8362013-05-28 20:00:34 +00003412.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003413
Paul Redmond5fdf8362013-05-28 20:00:34 +00003414 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
3415 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003416 !0 = !{!0, !1}
3417 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003418
Mark Heffernan9d20e422014-07-21 23:11:03 +00003419'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
3420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00003421
Mark Heffernan9d20e422014-07-21 23:11:03 +00003422Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
3423used to control per-loop vectorization and interleaving parameters such as
3424vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00003425conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00003426``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
3427optimization hints and the optimizer will only interleave and vectorize loops if
3428it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
3429which contains information about loop-carried memory dependencies can be helpful
3430in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00003431
Mark Heffernan9d20e422014-07-21 23:11:03 +00003432'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00003433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3434
Mark Heffernan9d20e422014-07-21 23:11:03 +00003435This metadata suggests an interleave count to the loop interleaver.
3436The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00003437second operand is an integer specifying the interleave count. For
3438example:
3439
3440.. code-block:: llvm
3441
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003442 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003443
Mark Heffernan9d20e422014-07-21 23:11:03 +00003444Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3445multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
3446then the interleave count will be determined automatically.
3447
3448'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00003449^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00003450
3451This metadata selectively enables or disables vectorization for the loop. The
3452first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3453is a bit. If the bit operand value is 1 vectorization is enabled. A value of
34540 disables vectorization:
3455
3456.. code-block:: llvm
3457
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003458 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
3459 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00003460
3461'``llvm.loop.vectorize.width``' Metadata
3462^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3463
3464This metadata sets the target width of the vectorizer. The first
3465operand is the string ``llvm.loop.vectorize.width`` and the second
3466operand is an integer specifying the width. For example:
3467
3468.. code-block:: llvm
3469
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003470 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003471
3472Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3473vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
34740 or if the loop does not have this metadata the width will be
3475determined automatically.
3476
3477'``llvm.loop.unroll``'
3478^^^^^^^^^^^^^^^^^^^^^^
3479
3480Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3481optimization hints such as the unroll factor. ``llvm.loop.unroll``
3482metadata should be used in conjunction with ``llvm.loop`` loop
3483identification metadata. The ``llvm.loop.unroll`` metadata are only
3484optimization hints and the unrolling will only be performed if the
3485optimizer believes it is safe to do so.
3486
Mark Heffernan893752a2014-07-18 19:24:51 +00003487'``llvm.loop.unroll.count``' Metadata
3488^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3489
3490This metadata suggests an unroll factor to the loop unroller. The
3491first operand is the string ``llvm.loop.unroll.count`` and the second
3492operand is a positive integer specifying the unroll factor. For
3493example:
3494
3495.. code-block:: llvm
3496
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003497 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003498
3499If the trip count of the loop is less than the unroll count the loop
3500will be partially unrolled.
3501
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003502'``llvm.loop.unroll.disable``' Metadata
3503^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3504
3505This metadata either disables loop unrolling. The metadata has a single operand
3506which is the string ``llvm.loop.unroll.disable``. For example:
3507
3508.. code-block:: llvm
3509
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003510 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003511
Kevin Qin715b01e2015-03-09 06:14:18 +00003512'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00003513^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00003514
3515This metadata either disables runtime loop unrolling. The metadata has a single
3516operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
3517
3518.. code-block:: llvm
3519
3520 !0 = !{!"llvm.loop.unroll.runtime.disable"}
3521
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003522'``llvm.loop.unroll.full``' Metadata
3523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3524
3525This metadata either suggests that the loop should be unrolled fully. The
3526metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3527For example:
3528
3529.. code-block:: llvm
3530
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003531 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003532
3533'``llvm.mem``'
3534^^^^^^^^^^^^^^^
3535
3536Metadata types used to annotate memory accesses with information helpful
3537for optimizations are prefixed with ``llvm.mem``.
3538
3539'``llvm.mem.parallel_loop_access``' Metadata
3540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3541
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003542The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3543or metadata containing a list of loop identifiers for nested loops.
3544The metadata is attached to memory accessing instructions and denotes that
3545no loop carried memory dependence exist between it and other instructions denoted
3546with the same loop identifier.
3547
3548Precisely, given two instructions ``m1`` and ``m2`` that both have the
3549``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3550set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00003551carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003552``L2``.
3553
3554As a special case, if all memory accessing instructions in a loop have
3555``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3556loop has no loop carried memory dependences and is considered to be a parallel
3557loop.
3558
3559Note that if not all memory access instructions have such metadata referring to
3560the loop, then the loop is considered not being trivially parallel. Additional
3561memory dependence analysis is required to make that determination. As a fail
3562safe mechanism, this causes loops that were originally parallel to be considered
3563sequential (if optimization passes that are unaware of the parallel semantics
3564insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003565
3566Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003567both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003568metadata types that refer to the same loop identifier metadata.
3569
3570.. code-block:: llvm
3571
3572 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003573 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00003574 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003575 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003576 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003577 ...
3578 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003579
3580 for.end:
3581 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003582 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003583
3584It is also possible to have nested parallel loops. In that case the
3585memory accesses refer to a list of loop identifier metadata nodes instead of
3586the loop identifier metadata node directly:
3587
3588.. code-block:: llvm
3589
3590 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003591 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00003592 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003593 ...
3594 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003595
3596 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003597 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00003598 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003599 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003600 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003601 ...
3602 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003603
3604 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003605 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003606 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003607 ...
3608 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003609
3610 outer.for.end: ; preds = %for.body
3611 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003612 !0 = !{!1, !2} ; a list of loop identifiers
3613 !1 = !{!1} ; an identifier for the inner loop
3614 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003615
Peter Collingbournee6909c82015-02-20 20:30:47 +00003616'``llvm.bitsets``'
3617^^^^^^^^^^^^^^^^^^
3618
3619The ``llvm.bitsets`` global metadata is used to implement
3620:doc:`bitsets <BitSets>`.
3621
Sean Silvab084af42012-12-07 10:36:55 +00003622Module Flags Metadata
3623=====================
3624
3625Information about the module as a whole is difficult to convey to LLVM's
3626subsystems. The LLVM IR isn't sufficient to transmit this information.
3627The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003628this. These flags are in the form of key / value pairs --- much like a
3629dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003630look it up.
3631
3632The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3633Each triplet has the following form:
3634
3635- The first element is a *behavior* flag, which specifies the behavior
3636 when two (or more) modules are merged together, and it encounters two
3637 (or more) metadata with the same ID. The supported behaviors are
3638 described below.
3639- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003640 metadata. Each module may only have one flag entry for each unique ID (not
3641 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003642- The third element is the value of the flag.
3643
3644When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003645``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3646each unique metadata ID string, there will be exactly one entry in the merged
3647modules ``llvm.module.flags`` metadata table, and the value for that entry will
3648be determined by the merge behavior flag, as described below. The only exception
3649is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003650
3651The following behaviors are supported:
3652
3653.. list-table::
3654 :header-rows: 1
3655 :widths: 10 90
3656
3657 * - Value
3658 - Behavior
3659
3660 * - 1
3661 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003662 Emits an error if two values disagree, otherwise the resulting value
3663 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003664
3665 * - 2
3666 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003667 Emits a warning if two values disagree. The result value will be the
3668 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003669
3670 * - 3
3671 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003672 Adds a requirement that another module flag be present and have a
3673 specified value after linking is performed. The value must be a
3674 metadata pair, where the first element of the pair is the ID of the
3675 module flag to be restricted, and the second element of the pair is
3676 the value the module flag should be restricted to. This behavior can
3677 be used to restrict the allowable results (via triggering of an
3678 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003679
3680 * - 4
3681 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003682 Uses the specified value, regardless of the behavior or value of the
3683 other module. If both modules specify **Override**, but the values
3684 differ, an error will be emitted.
3685
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003686 * - 5
3687 - **Append**
3688 Appends the two values, which are required to be metadata nodes.
3689
3690 * - 6
3691 - **AppendUnique**
3692 Appends the two values, which are required to be metadata
3693 nodes. However, duplicate entries in the second list are dropped
3694 during the append operation.
3695
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003696It is an error for a particular unique flag ID to have multiple behaviors,
3697except in the case of **Require** (which adds restrictions on another metadata
3698value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003699
3700An example of module flags:
3701
3702.. code-block:: llvm
3703
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003704 !0 = !{ i32 1, !"foo", i32 1 }
3705 !1 = !{ i32 4, !"bar", i32 37 }
3706 !2 = !{ i32 2, !"qux", i32 42 }
3707 !3 = !{ i32 3, !"qux",
3708 !{
3709 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00003710 }
3711 }
3712 !llvm.module.flags = !{ !0, !1, !2, !3 }
3713
3714- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3715 if two or more ``!"foo"`` flags are seen is to emit an error if their
3716 values are not equal.
3717
3718- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3719 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003720 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003721
3722- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3723 behavior if two or more ``!"qux"`` flags are seen is to emit a
3724 warning if their values are not equal.
3725
3726- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3727
3728 ::
3729
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003730 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003731
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003732 The behavior is to emit an error if the ``llvm.module.flags`` does not
3733 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3734 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003735
3736Objective-C Garbage Collection Module Flags Metadata
3737----------------------------------------------------
3738
3739On the Mach-O platform, Objective-C stores metadata about garbage
3740collection in a special section called "image info". The metadata
3741consists of a version number and a bitmask specifying what types of
3742garbage collection are supported (if any) by the file. If two or more
3743modules are linked together their garbage collection metadata needs to
3744be merged rather than appended together.
3745
3746The Objective-C garbage collection module flags metadata consists of the
3747following key-value pairs:
3748
3749.. list-table::
3750 :header-rows: 1
3751 :widths: 30 70
3752
3753 * - Key
3754 - Value
3755
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003756 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003757 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003758
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003759 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003760 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003761 always 0.
3762
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003763 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003764 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003765 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3766 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3767 Objective-C ABI version 2.
3768
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003769 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003770 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003771 not. Valid values are 0, for no garbage collection, and 2, for garbage
3772 collection supported.
3773
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003774 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003775 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003776 If present, its value must be 6. This flag requires that the
3777 ``Objective-C Garbage Collection`` flag have the value 2.
3778
3779Some important flag interactions:
3780
3781- If a module with ``Objective-C Garbage Collection`` set to 0 is
3782 merged with a module with ``Objective-C Garbage Collection`` set to
3783 2, then the resulting module has the
3784 ``Objective-C Garbage Collection`` flag set to 0.
3785- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3786 merged with a module with ``Objective-C GC Only`` set to 6.
3787
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003788Automatic Linker Flags Module Flags Metadata
3789--------------------------------------------
3790
3791Some targets support embedding flags to the linker inside individual object
3792files. Typically this is used in conjunction with language extensions which
3793allow source files to explicitly declare the libraries they depend on, and have
3794these automatically be transmitted to the linker via object files.
3795
3796These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003797using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003798to be ``AppendUnique``, and the value for the key is expected to be a metadata
3799node which should be a list of other metadata nodes, each of which should be a
3800list of metadata strings defining linker options.
3801
3802For example, the following metadata section specifies two separate sets of
3803linker options, presumably to link against ``libz`` and the ``Cocoa``
3804framework::
3805
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003806 !0 = !{ i32 6, !"Linker Options",
3807 !{
3808 !{ !"-lz" },
3809 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003810 !llvm.module.flags = !{ !0 }
3811
3812The metadata encoding as lists of lists of options, as opposed to a collapsed
3813list of options, is chosen so that the IR encoding can use multiple option
3814strings to specify e.g., a single library, while still having that specifier be
3815preserved as an atomic element that can be recognized by a target specific
3816assembly writer or object file emitter.
3817
3818Each individual option is required to be either a valid option for the target's
3819linker, or an option that is reserved by the target specific assembly writer or
3820object file emitter. No other aspect of these options is defined by the IR.
3821
Oliver Stannard5dc29342014-06-20 10:08:11 +00003822C type width Module Flags Metadata
3823----------------------------------
3824
3825The ARM backend emits a section into each generated object file describing the
3826options that it was compiled with (in a compiler-independent way) to prevent
3827linking incompatible objects, and to allow automatic library selection. Some
3828of these options are not visible at the IR level, namely wchar_t width and enum
3829width.
3830
3831To pass this information to the backend, these options are encoded in module
3832flags metadata, using the following key-value pairs:
3833
3834.. list-table::
3835 :header-rows: 1
3836 :widths: 30 70
3837
3838 * - Key
3839 - Value
3840
3841 * - short_wchar
3842 - * 0 --- sizeof(wchar_t) == 4
3843 * 1 --- sizeof(wchar_t) == 2
3844
3845 * - short_enum
3846 - * 0 --- Enums are at least as large as an ``int``.
3847 * 1 --- Enums are stored in the smallest integer type which can
3848 represent all of its values.
3849
3850For example, the following metadata section specifies that the module was
3851compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3852enum is the smallest type which can represent all of its values::
3853
3854 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003855 !0 = !{i32 1, !"short_wchar", i32 1}
3856 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00003857
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003858.. _intrinsicglobalvariables:
3859
Sean Silvab084af42012-12-07 10:36:55 +00003860Intrinsic Global Variables
3861==========================
3862
3863LLVM has a number of "magic" global variables that contain data that
3864affect code generation or other IR semantics. These are documented here.
3865All globals of this sort should have a section specified as
3866"``llvm.metadata``". This section and all globals that start with
3867"``llvm.``" are reserved for use by LLVM.
3868
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003869.. _gv_llvmused:
3870
Sean Silvab084af42012-12-07 10:36:55 +00003871The '``llvm.used``' Global Variable
3872-----------------------------------
3873
Rafael Espindola74f2e462013-04-22 14:58:02 +00003874The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003875:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003876pointers to named global variables, functions and aliases which may optionally
3877have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003878use of it is:
3879
3880.. code-block:: llvm
3881
3882 @X = global i8 4
3883 @Y = global i32 123
3884
3885 @llvm.used = appending global [2 x i8*] [
3886 i8* @X,
3887 i8* bitcast (i32* @Y to i8*)
3888 ], section "llvm.metadata"
3889
Rafael Espindola74f2e462013-04-22 14:58:02 +00003890If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3891and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003892symbol that it cannot see (which is why they have to be named). For example, if
3893a variable has internal linkage and no references other than that from the
3894``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3895references from inline asms and other things the compiler cannot "see", and
3896corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003897
3898On some targets, the code generator must emit a directive to the
3899assembler or object file to prevent the assembler and linker from
3900molesting the symbol.
3901
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003902.. _gv_llvmcompilerused:
3903
Sean Silvab084af42012-12-07 10:36:55 +00003904The '``llvm.compiler.used``' Global Variable
3905--------------------------------------------
3906
3907The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3908directive, except that it only prevents the compiler from touching the
3909symbol. On targets that support it, this allows an intelligent linker to
3910optimize references to the symbol without being impeded as it would be
3911by ``@llvm.used``.
3912
3913This is a rare construct that should only be used in rare circumstances,
3914and should not be exposed to source languages.
3915
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003916.. _gv_llvmglobalctors:
3917
Sean Silvab084af42012-12-07 10:36:55 +00003918The '``llvm.global_ctors``' Global Variable
3919-------------------------------------------
3920
3921.. code-block:: llvm
3922
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003923 %0 = type { i32, void ()*, i8* }
3924 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003925
3926The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003927functions, priorities, and an optional associated global or function.
3928The functions referenced by this array will be called in ascending order
3929of priority (i.e. lowest first) when the module is loaded. The order of
3930functions with the same priority is not defined.
3931
3932If the third field is present, non-null, and points to a global variable
3933or function, the initializer function will only run if the associated
3934data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003935
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003936.. _llvmglobaldtors:
3937
Sean Silvab084af42012-12-07 10:36:55 +00003938The '``llvm.global_dtors``' Global Variable
3939-------------------------------------------
3940
3941.. code-block:: llvm
3942
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003943 %0 = type { i32, void ()*, i8* }
3944 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003945
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003946The ``@llvm.global_dtors`` array contains a list of destructor
3947functions, priorities, and an optional associated global or function.
3948The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003949order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003950order of functions with the same priority is not defined.
3951
3952If the third field is present, non-null, and points to a global variable
3953or function, the destructor function will only run if the associated
3954data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003955
3956Instruction Reference
3957=====================
3958
3959The LLVM instruction set consists of several different classifications
3960of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3961instructions <binaryops>`, :ref:`bitwise binary
3962instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3963:ref:`other instructions <otherops>`.
3964
3965.. _terminators:
3966
3967Terminator Instructions
3968-----------------------
3969
3970As mentioned :ref:`previously <functionstructure>`, every basic block in a
3971program ends with a "Terminator" instruction, which indicates which
3972block should be executed after the current block is finished. These
3973terminator instructions typically yield a '``void``' value: they produce
3974control flow, not values (the one exception being the
3975':ref:`invoke <i_invoke>`' instruction).
3976
3977The terminator instructions are: ':ref:`ret <i_ret>`',
3978':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3979':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3980':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3981
3982.. _i_ret:
3983
3984'``ret``' Instruction
3985^^^^^^^^^^^^^^^^^^^^^
3986
3987Syntax:
3988"""""""
3989
3990::
3991
3992 ret <type> <value> ; Return a value from a non-void function
3993 ret void ; Return from void function
3994
3995Overview:
3996"""""""""
3997
3998The '``ret``' instruction is used to return control flow (and optionally
3999a value) from a function back to the caller.
4000
4001There are two forms of the '``ret``' instruction: one that returns a
4002value and then causes control flow, and one that just causes control
4003flow to occur.
4004
4005Arguments:
4006""""""""""
4007
4008The '``ret``' instruction optionally accepts a single argument, the
4009return value. The type of the return value must be a ':ref:`first
4010class <t_firstclass>`' type.
4011
4012A function is not :ref:`well formed <wellformed>` if it it has a non-void
4013return type and contains a '``ret``' instruction with no return value or
4014a return value with a type that does not match its type, or if it has a
4015void return type and contains a '``ret``' instruction with a return
4016value.
4017
4018Semantics:
4019""""""""""
4020
4021When the '``ret``' instruction is executed, control flow returns back to
4022the calling function's context. If the caller is a
4023":ref:`call <i_call>`" instruction, execution continues at the
4024instruction after the call. If the caller was an
4025":ref:`invoke <i_invoke>`" instruction, execution continues at the
4026beginning of the "normal" destination block. If the instruction returns
4027a value, that value shall set the call or invoke instruction's return
4028value.
4029
4030Example:
4031""""""""
4032
4033.. code-block:: llvm
4034
4035 ret i32 5 ; Return an integer value of 5
4036 ret void ; Return from a void function
4037 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
4038
4039.. _i_br:
4040
4041'``br``' Instruction
4042^^^^^^^^^^^^^^^^^^^^
4043
4044Syntax:
4045"""""""
4046
4047::
4048
4049 br i1 <cond>, label <iftrue>, label <iffalse>
4050 br label <dest> ; Unconditional branch
4051
4052Overview:
4053"""""""""
4054
4055The '``br``' instruction is used to cause control flow to transfer to a
4056different basic block in the current function. There are two forms of
4057this instruction, corresponding to a conditional branch and an
4058unconditional branch.
4059
4060Arguments:
4061""""""""""
4062
4063The conditional branch form of the '``br``' instruction takes a single
4064'``i1``' value and two '``label``' values. The unconditional form of the
4065'``br``' instruction takes a single '``label``' value as a target.
4066
4067Semantics:
4068""""""""""
4069
4070Upon execution of a conditional '``br``' instruction, the '``i1``'
4071argument is evaluated. If the value is ``true``, control flows to the
4072'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
4073to the '``iffalse``' ``label`` argument.
4074
4075Example:
4076""""""""
4077
4078.. code-block:: llvm
4079
4080 Test:
4081 %cond = icmp eq i32 %a, %b
4082 br i1 %cond, label %IfEqual, label %IfUnequal
4083 IfEqual:
4084 ret i32 1
4085 IfUnequal:
4086 ret i32 0
4087
4088.. _i_switch:
4089
4090'``switch``' Instruction
4091^^^^^^^^^^^^^^^^^^^^^^^^
4092
4093Syntax:
4094"""""""
4095
4096::
4097
4098 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
4099
4100Overview:
4101"""""""""
4102
4103The '``switch``' instruction is used to transfer control flow to one of
4104several different places. It is a generalization of the '``br``'
4105instruction, allowing a branch to occur to one of many possible
4106destinations.
4107
4108Arguments:
4109""""""""""
4110
4111The '``switch``' instruction uses three parameters: an integer
4112comparison value '``value``', a default '``label``' destination, and an
4113array of pairs of comparison value constants and '``label``'s. The table
4114is not allowed to contain duplicate constant entries.
4115
4116Semantics:
4117""""""""""
4118
4119The ``switch`` instruction specifies a table of values and destinations.
4120When the '``switch``' instruction is executed, this table is searched
4121for the given value. If the value is found, control flow is transferred
4122to the corresponding destination; otherwise, control flow is transferred
4123to the default destination.
4124
4125Implementation:
4126"""""""""""""""
4127
4128Depending on properties of the target machine and the particular
4129``switch`` instruction, this instruction may be code generated in
4130different ways. For example, it could be generated as a series of
4131chained conditional branches or with a lookup table.
4132
4133Example:
4134""""""""
4135
4136.. code-block:: llvm
4137
4138 ; Emulate a conditional br instruction
4139 %Val = zext i1 %value to i32
4140 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
4141
4142 ; Emulate an unconditional br instruction
4143 switch i32 0, label %dest [ ]
4144
4145 ; Implement a jump table:
4146 switch i32 %val, label %otherwise [ i32 0, label %onzero
4147 i32 1, label %onone
4148 i32 2, label %ontwo ]
4149
4150.. _i_indirectbr:
4151
4152'``indirectbr``' Instruction
4153^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4154
4155Syntax:
4156"""""""
4157
4158::
4159
4160 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
4161
4162Overview:
4163"""""""""
4164
4165The '``indirectbr``' instruction implements an indirect branch to a
4166label within the current function, whose address is specified by
4167"``address``". Address must be derived from a
4168:ref:`blockaddress <blockaddress>` constant.
4169
4170Arguments:
4171""""""""""
4172
4173The '``address``' argument is the address of the label to jump to. The
4174rest of the arguments indicate the full set of possible destinations
4175that the address may point to. Blocks are allowed to occur multiple
4176times in the destination list, though this isn't particularly useful.
4177
4178This destination list is required so that dataflow analysis has an
4179accurate understanding of the CFG.
4180
4181Semantics:
4182""""""""""
4183
4184Control transfers to the block specified in the address argument. All
4185possible destination blocks must be listed in the label list, otherwise
4186this instruction has undefined behavior. This implies that jumps to
4187labels defined in other functions have undefined behavior as well.
4188
4189Implementation:
4190"""""""""""""""
4191
4192This is typically implemented with a jump through a register.
4193
4194Example:
4195""""""""
4196
4197.. code-block:: llvm
4198
4199 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
4200
4201.. _i_invoke:
4202
4203'``invoke``' Instruction
4204^^^^^^^^^^^^^^^^^^^^^^^^
4205
4206Syntax:
4207"""""""
4208
4209::
4210
4211 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
4212 to label <normal label> unwind label <exception label>
4213
4214Overview:
4215"""""""""
4216
4217The '``invoke``' instruction causes control to transfer to a specified
4218function, with the possibility of control flow transfer to either the
4219'``normal``' label or the '``exception``' label. If the callee function
4220returns with the "``ret``" instruction, control flow will return to the
4221"normal" label. If the callee (or any indirect callees) returns via the
4222":ref:`resume <i_resume>`" instruction or other exception handling
4223mechanism, control is interrupted and continued at the dynamically
4224nearest "exception" label.
4225
4226The '``exception``' label is a `landing
4227pad <ExceptionHandling.html#overview>`_ for the exception. As such,
4228'``exception``' label is required to have the
4229":ref:`landingpad <i_landingpad>`" instruction, which contains the
4230information about the behavior of the program after unwinding happens,
4231as its first non-PHI instruction. The restrictions on the
4232"``landingpad``" instruction's tightly couples it to the "``invoke``"
4233instruction, so that the important information contained within the
4234"``landingpad``" instruction can't be lost through normal code motion.
4235
4236Arguments:
4237""""""""""
4238
4239This instruction requires several arguments:
4240
4241#. The optional "cconv" marker indicates which :ref:`calling
4242 convention <callingconv>` the call should use. If none is
4243 specified, the call defaults to using C calling conventions.
4244#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
4245 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
4246 are valid here.
4247#. '``ptr to function ty``': shall be the signature of the pointer to
4248 function value being invoked. In most cases, this is a direct
4249 function invocation, but indirect ``invoke``'s are just as possible,
4250 branching off an arbitrary pointer to function value.
4251#. '``function ptr val``': An LLVM value containing a pointer to a
4252 function to be invoked.
4253#. '``function args``': argument list whose types match the function
4254 signature argument types and parameter attributes. All arguments must
4255 be of :ref:`first class <t_firstclass>` type. If the function signature
4256 indicates the function accepts a variable number of arguments, the
4257 extra arguments can be specified.
4258#. '``normal label``': the label reached when the called function
4259 executes a '``ret``' instruction.
4260#. '``exception label``': the label reached when a callee returns via
4261 the :ref:`resume <i_resume>` instruction or other exception handling
4262 mechanism.
4263#. The optional :ref:`function attributes <fnattrs>` list. Only
4264 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
4265 attributes are valid here.
4266
4267Semantics:
4268""""""""""
4269
4270This instruction is designed to operate as a standard '``call``'
4271instruction in most regards. The primary difference is that it
4272establishes an association with a label, which is used by the runtime
4273library to unwind the stack.
4274
4275This instruction is used in languages with destructors to ensure that
4276proper cleanup is performed in the case of either a ``longjmp`` or a
4277thrown exception. Additionally, this is important for implementation of
4278'``catch``' clauses in high-level languages that support them.
4279
4280For the purposes of the SSA form, the definition of the value returned
4281by the '``invoke``' instruction is deemed to occur on the edge from the
4282current block to the "normal" label. If the callee unwinds then no
4283return value is available.
4284
4285Example:
4286""""""""
4287
4288.. code-block:: llvm
4289
4290 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00004291 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00004292 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00004293 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00004294
4295.. _i_resume:
4296
4297'``resume``' Instruction
4298^^^^^^^^^^^^^^^^^^^^^^^^
4299
4300Syntax:
4301"""""""
4302
4303::
4304
4305 resume <type> <value>
4306
4307Overview:
4308"""""""""
4309
4310The '``resume``' instruction is a terminator instruction that has no
4311successors.
4312
4313Arguments:
4314""""""""""
4315
4316The '``resume``' instruction requires one argument, which must have the
4317same type as the result of any '``landingpad``' instruction in the same
4318function.
4319
4320Semantics:
4321""""""""""
4322
4323The '``resume``' instruction resumes propagation of an existing
4324(in-flight) exception whose unwinding was interrupted with a
4325:ref:`landingpad <i_landingpad>` instruction.
4326
4327Example:
4328""""""""
4329
4330.. code-block:: llvm
4331
4332 resume { i8*, i32 } %exn
4333
4334.. _i_unreachable:
4335
4336'``unreachable``' Instruction
4337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4338
4339Syntax:
4340"""""""
4341
4342::
4343
4344 unreachable
4345
4346Overview:
4347"""""""""
4348
4349The '``unreachable``' instruction has no defined semantics. This
4350instruction is used to inform the optimizer that a particular portion of
4351the code is not reachable. This can be used to indicate that the code
4352after a no-return function cannot be reached, and other facts.
4353
4354Semantics:
4355""""""""""
4356
4357The '``unreachable``' instruction has no defined semantics.
4358
4359.. _binaryops:
4360
4361Binary Operations
4362-----------------
4363
4364Binary operators are used to do most of the computation in a program.
4365They require two operands of the same type, execute an operation on
4366them, and produce a single value. The operands might represent multiple
4367data, as is the case with the :ref:`vector <t_vector>` data type. The
4368result value has the same type as its operands.
4369
4370There are several different binary operators:
4371
4372.. _i_add:
4373
4374'``add``' Instruction
4375^^^^^^^^^^^^^^^^^^^^^
4376
4377Syntax:
4378"""""""
4379
4380::
4381
Tim Northover675a0962014-06-13 14:24:23 +00004382 <result> = add <ty> <op1>, <op2> ; yields ty:result
4383 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
4384 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
4385 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004386
4387Overview:
4388"""""""""
4389
4390The '``add``' instruction returns the sum of its two operands.
4391
4392Arguments:
4393""""""""""
4394
4395The two arguments to the '``add``' instruction must be
4396:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4397arguments must have identical types.
4398
4399Semantics:
4400""""""""""
4401
4402The value produced is the integer sum of the two operands.
4403
4404If the sum has unsigned overflow, the result returned is the
4405mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4406the result.
4407
4408Because LLVM integers use a two's complement representation, this
4409instruction is appropriate for both signed and unsigned integers.
4410
4411``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4412respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4413result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
4414unsigned and/or signed overflow, respectively, occurs.
4415
4416Example:
4417""""""""
4418
4419.. code-block:: llvm
4420
Tim Northover675a0962014-06-13 14:24:23 +00004421 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004422
4423.. _i_fadd:
4424
4425'``fadd``' Instruction
4426^^^^^^^^^^^^^^^^^^^^^^
4427
4428Syntax:
4429"""""""
4430
4431::
4432
Tim Northover675a0962014-06-13 14:24:23 +00004433 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004434
4435Overview:
4436"""""""""
4437
4438The '``fadd``' instruction returns the sum of its two operands.
4439
4440Arguments:
4441""""""""""
4442
4443The two arguments to the '``fadd``' instruction must be :ref:`floating
4444point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4445Both arguments must have identical types.
4446
4447Semantics:
4448""""""""""
4449
4450The value produced is the floating point sum of the two operands. This
4451instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4452which are optimization hints to enable otherwise unsafe floating point
4453optimizations:
4454
4455Example:
4456""""""""
4457
4458.. code-block:: llvm
4459
Tim Northover675a0962014-06-13 14:24:23 +00004460 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004461
4462'``sub``' Instruction
4463^^^^^^^^^^^^^^^^^^^^^
4464
4465Syntax:
4466"""""""
4467
4468::
4469
Tim Northover675a0962014-06-13 14:24:23 +00004470 <result> = sub <ty> <op1>, <op2> ; yields ty:result
4471 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
4472 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
4473 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004474
4475Overview:
4476"""""""""
4477
4478The '``sub``' instruction returns the difference of its two operands.
4479
4480Note that the '``sub``' instruction is used to represent the '``neg``'
4481instruction present in most other intermediate representations.
4482
4483Arguments:
4484""""""""""
4485
4486The two arguments to the '``sub``' instruction must be
4487:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4488arguments must have identical types.
4489
4490Semantics:
4491""""""""""
4492
4493The value produced is the integer difference of the two operands.
4494
4495If the difference has unsigned overflow, the result returned is the
4496mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4497the result.
4498
4499Because LLVM integers use a two's complement representation, this
4500instruction is appropriate for both signed and unsigned integers.
4501
4502``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4503respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4504result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4505unsigned and/or signed overflow, respectively, occurs.
4506
4507Example:
4508""""""""
4509
4510.. code-block:: llvm
4511
Tim Northover675a0962014-06-13 14:24:23 +00004512 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
4513 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004514
4515.. _i_fsub:
4516
4517'``fsub``' Instruction
4518^^^^^^^^^^^^^^^^^^^^^^
4519
4520Syntax:
4521"""""""
4522
4523::
4524
Tim Northover675a0962014-06-13 14:24:23 +00004525 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004526
4527Overview:
4528"""""""""
4529
4530The '``fsub``' instruction returns the difference of its two operands.
4531
4532Note that the '``fsub``' instruction is used to represent the '``fneg``'
4533instruction present in most other intermediate representations.
4534
4535Arguments:
4536""""""""""
4537
4538The two arguments to the '``fsub``' instruction must be :ref:`floating
4539point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4540Both arguments must have identical types.
4541
4542Semantics:
4543""""""""""
4544
4545The value produced is the floating point difference of the two operands.
4546This instruction can also take any number of :ref:`fast-math
4547flags <fastmath>`, which are optimization hints to enable otherwise
4548unsafe floating point optimizations:
4549
4550Example:
4551""""""""
4552
4553.. code-block:: llvm
4554
Tim Northover675a0962014-06-13 14:24:23 +00004555 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4556 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004557
4558'``mul``' Instruction
4559^^^^^^^^^^^^^^^^^^^^^
4560
4561Syntax:
4562"""""""
4563
4564::
4565
Tim Northover675a0962014-06-13 14:24:23 +00004566 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4567 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4568 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4569 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004570
4571Overview:
4572"""""""""
4573
4574The '``mul``' instruction returns the product of its two operands.
4575
4576Arguments:
4577""""""""""
4578
4579The two arguments to the '``mul``' instruction must be
4580:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4581arguments must have identical types.
4582
4583Semantics:
4584""""""""""
4585
4586The value produced is the integer product of the two operands.
4587
4588If the result of the multiplication has unsigned overflow, the result
4589returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4590bit width of the result.
4591
4592Because LLVM integers use a two's complement representation, and the
4593result is the same width as the operands, this instruction returns the
4594correct result for both signed and unsigned integers. If a full product
4595(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4596sign-extended or zero-extended as appropriate to the width of the full
4597product.
4598
4599``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4600respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4601result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4602unsigned and/or signed overflow, respectively, occurs.
4603
4604Example:
4605""""""""
4606
4607.. code-block:: llvm
4608
Tim Northover675a0962014-06-13 14:24:23 +00004609 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004610
4611.. _i_fmul:
4612
4613'``fmul``' Instruction
4614^^^^^^^^^^^^^^^^^^^^^^
4615
4616Syntax:
4617"""""""
4618
4619::
4620
Tim Northover675a0962014-06-13 14:24:23 +00004621 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004622
4623Overview:
4624"""""""""
4625
4626The '``fmul``' instruction returns the product of its two operands.
4627
4628Arguments:
4629""""""""""
4630
4631The two arguments to the '``fmul``' instruction must be :ref:`floating
4632point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4633Both arguments must have identical types.
4634
4635Semantics:
4636""""""""""
4637
4638The value produced is the floating point product of the two operands.
4639This instruction can also take any number of :ref:`fast-math
4640flags <fastmath>`, which are optimization hints to enable otherwise
4641unsafe floating point optimizations:
4642
4643Example:
4644""""""""
4645
4646.. code-block:: llvm
4647
Tim Northover675a0962014-06-13 14:24:23 +00004648 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004649
4650'``udiv``' Instruction
4651^^^^^^^^^^^^^^^^^^^^^^
4652
4653Syntax:
4654"""""""
4655
4656::
4657
Tim Northover675a0962014-06-13 14:24:23 +00004658 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4659 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004660
4661Overview:
4662"""""""""
4663
4664The '``udiv``' instruction returns the quotient of its two operands.
4665
4666Arguments:
4667""""""""""
4668
4669The two arguments to the '``udiv``' instruction must be
4670:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4671arguments must have identical types.
4672
4673Semantics:
4674""""""""""
4675
4676The value produced is the unsigned integer quotient of the two operands.
4677
4678Note that unsigned integer division and signed integer division are
4679distinct operations; for signed integer division, use '``sdiv``'.
4680
4681Division by zero leads to undefined behavior.
4682
4683If the ``exact`` keyword is present, the result value of the ``udiv`` is
4684a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4685such, "((a udiv exact b) mul b) == a").
4686
4687Example:
4688""""""""
4689
4690.. code-block:: llvm
4691
Tim Northover675a0962014-06-13 14:24:23 +00004692 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004693
4694'``sdiv``' Instruction
4695^^^^^^^^^^^^^^^^^^^^^^
4696
4697Syntax:
4698"""""""
4699
4700::
4701
Tim Northover675a0962014-06-13 14:24:23 +00004702 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4703 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004704
4705Overview:
4706"""""""""
4707
4708The '``sdiv``' instruction returns the quotient of its two operands.
4709
4710Arguments:
4711""""""""""
4712
4713The two arguments to the '``sdiv``' instruction must be
4714:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4715arguments must have identical types.
4716
4717Semantics:
4718""""""""""
4719
4720The value produced is the signed integer quotient of the two operands
4721rounded towards zero.
4722
4723Note that signed integer division and unsigned integer division are
4724distinct operations; for unsigned integer division, use '``udiv``'.
4725
4726Division by zero leads to undefined behavior. Overflow also leads to
4727undefined behavior; this is a rare case, but can occur, for example, by
4728doing a 32-bit division of -2147483648 by -1.
4729
4730If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4731a :ref:`poison value <poisonvalues>` if the result would be rounded.
4732
4733Example:
4734""""""""
4735
4736.. code-block:: llvm
4737
Tim Northover675a0962014-06-13 14:24:23 +00004738 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004739
4740.. _i_fdiv:
4741
4742'``fdiv``' Instruction
4743^^^^^^^^^^^^^^^^^^^^^^
4744
4745Syntax:
4746"""""""
4747
4748::
4749
Tim Northover675a0962014-06-13 14:24:23 +00004750 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004751
4752Overview:
4753"""""""""
4754
4755The '``fdiv``' instruction returns the quotient of its two operands.
4756
4757Arguments:
4758""""""""""
4759
4760The two arguments to the '``fdiv``' instruction must be :ref:`floating
4761point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4762Both arguments must have identical types.
4763
4764Semantics:
4765""""""""""
4766
4767The value produced is the floating point quotient of the two operands.
4768This instruction can also take any number of :ref:`fast-math
4769flags <fastmath>`, which are optimization hints to enable otherwise
4770unsafe floating point optimizations:
4771
4772Example:
4773""""""""
4774
4775.. code-block:: llvm
4776
Tim Northover675a0962014-06-13 14:24:23 +00004777 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004778
4779'``urem``' Instruction
4780^^^^^^^^^^^^^^^^^^^^^^
4781
4782Syntax:
4783"""""""
4784
4785::
4786
Tim Northover675a0962014-06-13 14:24:23 +00004787 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004788
4789Overview:
4790"""""""""
4791
4792The '``urem``' instruction returns the remainder from the unsigned
4793division of its two arguments.
4794
4795Arguments:
4796""""""""""
4797
4798The two arguments to the '``urem``' instruction must be
4799:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4800arguments must have identical types.
4801
4802Semantics:
4803""""""""""
4804
4805This instruction returns the unsigned integer *remainder* of a division.
4806This instruction always performs an unsigned division to get the
4807remainder.
4808
4809Note that unsigned integer remainder and signed integer remainder are
4810distinct operations; for signed integer remainder, use '``srem``'.
4811
4812Taking the remainder of a division by zero leads to undefined behavior.
4813
4814Example:
4815""""""""
4816
4817.. code-block:: llvm
4818
Tim Northover675a0962014-06-13 14:24:23 +00004819 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004820
4821'``srem``' Instruction
4822^^^^^^^^^^^^^^^^^^^^^^
4823
4824Syntax:
4825"""""""
4826
4827::
4828
Tim Northover675a0962014-06-13 14:24:23 +00004829 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004830
4831Overview:
4832"""""""""
4833
4834The '``srem``' instruction returns the remainder from the signed
4835division of its two operands. This instruction can also take
4836:ref:`vector <t_vector>` versions of the values in which case the elements
4837must be integers.
4838
4839Arguments:
4840""""""""""
4841
4842The two arguments to the '``srem``' instruction must be
4843:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4844arguments must have identical types.
4845
4846Semantics:
4847""""""""""
4848
4849This instruction returns the *remainder* of a division (where the result
4850is either zero or has the same sign as the dividend, ``op1``), not the
4851*modulo* operator (where the result is either zero or has the same sign
4852as the divisor, ``op2``) of a value. For more information about the
4853difference, see `The Math
4854Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4855table of how this is implemented in various languages, please see
4856`Wikipedia: modulo
4857operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4858
4859Note that signed integer remainder and unsigned integer remainder are
4860distinct operations; for unsigned integer remainder, use '``urem``'.
4861
4862Taking the remainder of a division by zero leads to undefined behavior.
4863Overflow also leads to undefined behavior; this is a rare case, but can
4864occur, for example, by taking the remainder of a 32-bit division of
4865-2147483648 by -1. (The remainder doesn't actually overflow, but this
4866rule lets srem be implemented using instructions that return both the
4867result of the division and the remainder.)
4868
4869Example:
4870""""""""
4871
4872.. code-block:: llvm
4873
Tim Northover675a0962014-06-13 14:24:23 +00004874 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004875
4876.. _i_frem:
4877
4878'``frem``' Instruction
4879^^^^^^^^^^^^^^^^^^^^^^
4880
4881Syntax:
4882"""""""
4883
4884::
4885
Tim Northover675a0962014-06-13 14:24:23 +00004886 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004887
4888Overview:
4889"""""""""
4890
4891The '``frem``' instruction returns the remainder from the division of
4892its two operands.
4893
4894Arguments:
4895""""""""""
4896
4897The two arguments to the '``frem``' instruction must be :ref:`floating
4898point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4899Both arguments must have identical types.
4900
4901Semantics:
4902""""""""""
4903
4904This instruction returns the *remainder* of a division. The remainder
4905has the same sign as the dividend. This instruction can also take any
4906number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4907to enable otherwise unsafe floating point optimizations:
4908
4909Example:
4910""""""""
4911
4912.. code-block:: llvm
4913
Tim Northover675a0962014-06-13 14:24:23 +00004914 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004915
4916.. _bitwiseops:
4917
4918Bitwise Binary Operations
4919-------------------------
4920
4921Bitwise binary operators are used to do various forms of bit-twiddling
4922in a program. They are generally very efficient instructions and can
4923commonly be strength reduced from other instructions. They require two
4924operands of the same type, execute an operation on them, and produce a
4925single value. The resulting value is the same type as its operands.
4926
4927'``shl``' Instruction
4928^^^^^^^^^^^^^^^^^^^^^
4929
4930Syntax:
4931"""""""
4932
4933::
4934
Tim Northover675a0962014-06-13 14:24:23 +00004935 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4936 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4937 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4938 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004939
4940Overview:
4941"""""""""
4942
4943The '``shl``' instruction returns the first operand shifted to the left
4944a specified number of bits.
4945
4946Arguments:
4947""""""""""
4948
4949Both arguments to the '``shl``' instruction must be the same
4950:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4951'``op2``' is treated as an unsigned value.
4952
4953Semantics:
4954""""""""""
4955
4956The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4957where ``n`` is the width of the result. If ``op2`` is (statically or
4958dynamically) negative or equal to or larger than the number of bits in
4959``op1``, the result is undefined. If the arguments are vectors, each
4960vector element of ``op1`` is shifted by the corresponding shift amount
4961in ``op2``.
4962
4963If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4964value <poisonvalues>` if it shifts out any non-zero bits. If the
4965``nsw`` keyword is present, then the shift produces a :ref:`poison
4966value <poisonvalues>` if it shifts out any bits that disagree with the
4967resultant sign bit. As such, NUW/NSW have the same semantics as they
4968would if the shift were expressed as a mul instruction with the same
4969nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4970
4971Example:
4972""""""""
4973
4974.. code-block:: llvm
4975
Tim Northover675a0962014-06-13 14:24:23 +00004976 <result> = shl i32 4, %var ; yields i32: 4 << %var
4977 <result> = shl i32 4, 2 ; yields i32: 16
4978 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004979 <result> = shl i32 1, 32 ; undefined
4980 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4981
4982'``lshr``' Instruction
4983^^^^^^^^^^^^^^^^^^^^^^
4984
4985Syntax:
4986"""""""
4987
4988::
4989
Tim Northover675a0962014-06-13 14:24:23 +00004990 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4991 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004992
4993Overview:
4994"""""""""
4995
4996The '``lshr``' instruction (logical shift right) returns the first
4997operand shifted to the right a specified number of bits with zero fill.
4998
4999Arguments:
5000""""""""""
5001
5002Both arguments to the '``lshr``' instruction must be the same
5003:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5004'``op2``' is treated as an unsigned value.
5005
5006Semantics:
5007""""""""""
5008
5009This instruction always performs a logical shift right operation. The
5010most significant bits of the result will be filled with zero bits after
5011the shift. If ``op2`` is (statically or dynamically) equal to or larger
5012than the number of bits in ``op1``, the result is undefined. If the
5013arguments are vectors, each vector element of ``op1`` is shifted by the
5014corresponding shift amount in ``op2``.
5015
5016If the ``exact`` keyword is present, the result value of the ``lshr`` is
5017a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
5018non-zero.
5019
5020Example:
5021""""""""
5022
5023.. code-block:: llvm
5024
Tim Northover675a0962014-06-13 14:24:23 +00005025 <result> = lshr i32 4, 1 ; yields i32:result = 2
5026 <result> = lshr i32 4, 2 ; yields i32:result = 1
5027 <result> = lshr i8 4, 3 ; yields i8:result = 0
5028 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00005029 <result> = lshr i32 1, 32 ; undefined
5030 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
5031
5032'``ashr``' Instruction
5033^^^^^^^^^^^^^^^^^^^^^^
5034
5035Syntax:
5036"""""""
5037
5038::
5039
Tim Northover675a0962014-06-13 14:24:23 +00005040 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
5041 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005042
5043Overview:
5044"""""""""
5045
5046The '``ashr``' instruction (arithmetic shift right) returns the first
5047operand shifted to the right a specified number of bits with sign
5048extension.
5049
5050Arguments:
5051""""""""""
5052
5053Both arguments to the '``ashr``' instruction must be the same
5054:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5055'``op2``' is treated as an unsigned value.
5056
5057Semantics:
5058""""""""""
5059
5060This instruction always performs an arithmetic shift right operation,
5061The most significant bits of the result will be filled with the sign bit
5062of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
5063than the number of bits in ``op1``, the result is undefined. If the
5064arguments are vectors, each vector element of ``op1`` is shifted by the
5065corresponding shift amount in ``op2``.
5066
5067If the ``exact`` keyword is present, the result value of the ``ashr`` is
5068a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
5069non-zero.
5070
5071Example:
5072""""""""
5073
5074.. code-block:: llvm
5075
Tim Northover675a0962014-06-13 14:24:23 +00005076 <result> = ashr i32 4, 1 ; yields i32:result = 2
5077 <result> = ashr i32 4, 2 ; yields i32:result = 1
5078 <result> = ashr i8 4, 3 ; yields i8:result = 0
5079 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00005080 <result> = ashr i32 1, 32 ; undefined
5081 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
5082
5083'``and``' Instruction
5084^^^^^^^^^^^^^^^^^^^^^
5085
5086Syntax:
5087"""""""
5088
5089::
5090
Tim Northover675a0962014-06-13 14:24:23 +00005091 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005092
5093Overview:
5094"""""""""
5095
5096The '``and``' instruction returns the bitwise logical and of its two
5097operands.
5098
5099Arguments:
5100""""""""""
5101
5102The two arguments to the '``and``' instruction must be
5103:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5104arguments must have identical types.
5105
5106Semantics:
5107""""""""""
5108
5109The truth table used for the '``and``' instruction is:
5110
5111+-----+-----+-----+
5112| In0 | In1 | Out |
5113+-----+-----+-----+
5114| 0 | 0 | 0 |
5115+-----+-----+-----+
5116| 0 | 1 | 0 |
5117+-----+-----+-----+
5118| 1 | 0 | 0 |
5119+-----+-----+-----+
5120| 1 | 1 | 1 |
5121+-----+-----+-----+
5122
5123Example:
5124""""""""
5125
5126.. code-block:: llvm
5127
Tim Northover675a0962014-06-13 14:24:23 +00005128 <result> = and i32 4, %var ; yields i32:result = 4 & %var
5129 <result> = and i32 15, 40 ; yields i32:result = 8
5130 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00005131
5132'``or``' Instruction
5133^^^^^^^^^^^^^^^^^^^^
5134
5135Syntax:
5136"""""""
5137
5138::
5139
Tim Northover675a0962014-06-13 14:24:23 +00005140 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005141
5142Overview:
5143"""""""""
5144
5145The '``or``' instruction returns the bitwise logical inclusive or of its
5146two operands.
5147
5148Arguments:
5149""""""""""
5150
5151The two arguments to the '``or``' instruction must be
5152:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5153arguments must have identical types.
5154
5155Semantics:
5156""""""""""
5157
5158The truth table used for the '``or``' instruction is:
5159
5160+-----+-----+-----+
5161| In0 | In1 | Out |
5162+-----+-----+-----+
5163| 0 | 0 | 0 |
5164+-----+-----+-----+
5165| 0 | 1 | 1 |
5166+-----+-----+-----+
5167| 1 | 0 | 1 |
5168+-----+-----+-----+
5169| 1 | 1 | 1 |
5170+-----+-----+-----+
5171
5172Example:
5173""""""""
5174
5175::
5176
Tim Northover675a0962014-06-13 14:24:23 +00005177 <result> = or i32 4, %var ; yields i32:result = 4 | %var
5178 <result> = or i32 15, 40 ; yields i32:result = 47
5179 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00005180
5181'``xor``' Instruction
5182^^^^^^^^^^^^^^^^^^^^^
5183
5184Syntax:
5185"""""""
5186
5187::
5188
Tim Northover675a0962014-06-13 14:24:23 +00005189 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005190
5191Overview:
5192"""""""""
5193
5194The '``xor``' instruction returns the bitwise logical exclusive or of
5195its two operands. The ``xor`` is used to implement the "one's
5196complement" operation, which is the "~" operator in C.
5197
5198Arguments:
5199""""""""""
5200
5201The two arguments to the '``xor``' instruction must be
5202:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5203arguments must have identical types.
5204
5205Semantics:
5206""""""""""
5207
5208The truth table used for the '``xor``' instruction is:
5209
5210+-----+-----+-----+
5211| In0 | In1 | Out |
5212+-----+-----+-----+
5213| 0 | 0 | 0 |
5214+-----+-----+-----+
5215| 0 | 1 | 1 |
5216+-----+-----+-----+
5217| 1 | 0 | 1 |
5218+-----+-----+-----+
5219| 1 | 1 | 0 |
5220+-----+-----+-----+
5221
5222Example:
5223""""""""
5224
5225.. code-block:: llvm
5226
Tim Northover675a0962014-06-13 14:24:23 +00005227 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
5228 <result> = xor i32 15, 40 ; yields i32:result = 39
5229 <result> = xor i32 4, 8 ; yields i32:result = 12
5230 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00005231
5232Vector Operations
5233-----------------
5234
5235LLVM supports several instructions to represent vector operations in a
5236target-independent manner. These instructions cover the element-access
5237and vector-specific operations needed to process vectors effectively.
5238While LLVM does directly support these vector operations, many
5239sophisticated algorithms will want to use target-specific intrinsics to
5240take full advantage of a specific target.
5241
5242.. _i_extractelement:
5243
5244'``extractelement``' Instruction
5245^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5246
5247Syntax:
5248"""""""
5249
5250::
5251
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00005252 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00005253
5254Overview:
5255"""""""""
5256
5257The '``extractelement``' instruction extracts a single scalar element
5258from a vector at a specified index.
5259
5260Arguments:
5261""""""""""
5262
5263The first operand of an '``extractelement``' instruction is a value of
5264:ref:`vector <t_vector>` type. The second operand is an index indicating
5265the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00005266variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00005267
5268Semantics:
5269""""""""""
5270
5271The result is a scalar of the same type as the element type of ``val``.
5272Its value is the value at position ``idx`` of ``val``. If ``idx``
5273exceeds the length of ``val``, the results are undefined.
5274
5275Example:
5276""""""""
5277
5278.. code-block:: llvm
5279
5280 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
5281
5282.. _i_insertelement:
5283
5284'``insertelement``' Instruction
5285^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5286
5287Syntax:
5288"""""""
5289
5290::
5291
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00005292 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00005293
5294Overview:
5295"""""""""
5296
5297The '``insertelement``' instruction inserts a scalar element into a
5298vector at a specified index.
5299
5300Arguments:
5301""""""""""
5302
5303The first operand of an '``insertelement``' instruction is a value of
5304:ref:`vector <t_vector>` type. The second operand is a scalar value whose
5305type must equal the element type of the first operand. The third operand
5306is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00005307index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00005308
5309Semantics:
5310""""""""""
5311
5312The result is a vector of the same type as ``val``. Its element values
5313are those of ``val`` except at position ``idx``, where it gets the value
5314``elt``. If ``idx`` exceeds the length of ``val``, the results are
5315undefined.
5316
5317Example:
5318""""""""
5319
5320.. code-block:: llvm
5321
5322 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
5323
5324.. _i_shufflevector:
5325
5326'``shufflevector``' Instruction
5327^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5328
5329Syntax:
5330"""""""
5331
5332::
5333
5334 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
5335
5336Overview:
5337"""""""""
5338
5339The '``shufflevector``' instruction constructs a permutation of elements
5340from two input vectors, returning a vector with the same element type as
5341the input and length that is the same as the shuffle mask.
5342
5343Arguments:
5344""""""""""
5345
5346The first two operands of a '``shufflevector``' instruction are vectors
5347with the same type. The third argument is a shuffle mask whose element
5348type is always 'i32'. The result of the instruction is a vector whose
5349length is the same as the shuffle mask and whose element type is the
5350same as the element type of the first two operands.
5351
5352The shuffle mask operand is required to be a constant vector with either
5353constant integer or undef values.
5354
5355Semantics:
5356""""""""""
5357
5358The elements of the two input vectors are numbered from left to right
5359across both of the vectors. The shuffle mask operand specifies, for each
5360element of the result vector, which element of the two input vectors the
5361result element gets. The element selector may be undef (meaning "don't
5362care") and the second operand may be undef if performing a shuffle from
5363only one vector.
5364
5365Example:
5366""""""""
5367
5368.. code-block:: llvm
5369
5370 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5371 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
5372 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
5373 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
5374 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
5375 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
5376 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5377 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
5378
5379Aggregate Operations
5380--------------------
5381
5382LLVM supports several instructions for working with
5383:ref:`aggregate <t_aggregate>` values.
5384
5385.. _i_extractvalue:
5386
5387'``extractvalue``' Instruction
5388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5389
5390Syntax:
5391"""""""
5392
5393::
5394
5395 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
5396
5397Overview:
5398"""""""""
5399
5400The '``extractvalue``' instruction extracts the value of a member field
5401from an :ref:`aggregate <t_aggregate>` value.
5402
5403Arguments:
5404""""""""""
5405
5406The first operand of an '``extractvalue``' instruction is a value of
5407:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
5408constant indices to specify which value to extract in a similar manner
5409as indices in a '``getelementptr``' instruction.
5410
5411The major differences to ``getelementptr`` indexing are:
5412
5413- Since the value being indexed is not a pointer, the first index is
5414 omitted and assumed to be zero.
5415- At least one index must be specified.
5416- Not only struct indices but also array indices must be in bounds.
5417
5418Semantics:
5419""""""""""
5420
5421The result is the value at the position in the aggregate specified by
5422the index operands.
5423
5424Example:
5425""""""""
5426
5427.. code-block:: llvm
5428
5429 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
5430
5431.. _i_insertvalue:
5432
5433'``insertvalue``' Instruction
5434^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5435
5436Syntax:
5437"""""""
5438
5439::
5440
5441 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
5442
5443Overview:
5444"""""""""
5445
5446The '``insertvalue``' instruction inserts a value into a member field in
5447an :ref:`aggregate <t_aggregate>` value.
5448
5449Arguments:
5450""""""""""
5451
5452The first operand of an '``insertvalue``' instruction is a value of
5453:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5454a first-class value to insert. The following operands are constant
5455indices indicating the position at which to insert the value in a
5456similar manner as indices in a '``extractvalue``' instruction. The value
5457to insert must have the same type as the value identified by the
5458indices.
5459
5460Semantics:
5461""""""""""
5462
5463The result is an aggregate of the same type as ``val``. Its value is
5464that of ``val`` except that the value at the position specified by the
5465indices is that of ``elt``.
5466
5467Example:
5468""""""""
5469
5470.. code-block:: llvm
5471
5472 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
5473 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00005474 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00005475
5476.. _memoryops:
5477
5478Memory Access and Addressing Operations
5479---------------------------------------
5480
5481A key design point of an SSA-based representation is how it represents
5482memory. In LLVM, no memory locations are in SSA form, which makes things
5483very simple. This section describes how to read, write, and allocate
5484memory in LLVM.
5485
5486.. _i_alloca:
5487
5488'``alloca``' Instruction
5489^^^^^^^^^^^^^^^^^^^^^^^^
5490
5491Syntax:
5492"""""""
5493
5494::
5495
Tim Northover675a0962014-06-13 14:24:23 +00005496 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00005497
5498Overview:
5499"""""""""
5500
5501The '``alloca``' instruction allocates memory on the stack frame of the
5502currently executing function, to be automatically released when this
5503function returns to its caller. The object is always allocated in the
5504generic address space (address space zero).
5505
5506Arguments:
5507""""""""""
5508
5509The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5510bytes of memory on the runtime stack, returning a pointer of the
5511appropriate type to the program. If "NumElements" is specified, it is
5512the number of elements allocated, otherwise "NumElements" is defaulted
5513to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005514allocation is guaranteed to be aligned to at least that boundary. The
5515alignment may not be greater than ``1 << 29``. If not specified, or if
5516zero, the target can choose to align the allocation on any convenient
5517boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00005518
5519'``type``' may be any sized type.
5520
5521Semantics:
5522""""""""""
5523
5524Memory is allocated; a pointer is returned. The operation is undefined
5525if there is insufficient stack space for the allocation. '``alloca``'d
5526memory is automatically released when the function returns. The
5527'``alloca``' instruction is commonly used to represent automatic
5528variables that must have an address available. When the function returns
5529(either with the ``ret`` or ``resume`` instructions), the memory is
5530reclaimed. Allocating zero bytes is legal, but the result is undefined.
5531The order in which memory is allocated (ie., which way the stack grows)
5532is not specified.
5533
5534Example:
5535""""""""
5536
5537.. code-block:: llvm
5538
Tim Northover675a0962014-06-13 14:24:23 +00005539 %ptr = alloca i32 ; yields i32*:ptr
5540 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5541 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5542 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005543
5544.. _i_load:
5545
5546'``load``' Instruction
5547^^^^^^^^^^^^^^^^^^^^^^
5548
5549Syntax:
5550"""""""
5551
5552::
5553
David Blaikiec7aabbb2015-03-04 22:06:14 +00005554 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00005555 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5556 !<index> = !{ i32 1 }
5557
5558Overview:
5559"""""""""
5560
5561The '``load``' instruction is used to read from memory.
5562
5563Arguments:
5564""""""""""
5565
Eli Bendersky239a78b2013-04-17 20:17:08 +00005566The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00005567from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00005568class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5569then the optimizer is not allowed to modify the number or order of
5570execution of this ``load`` with other :ref:`volatile
5571operations <volatile>`.
5572
5573If the ``load`` is marked as ``atomic``, it takes an extra
5574:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5575``release`` and ``acq_rel`` orderings are not valid on ``load``
5576instructions. Atomic loads produce :ref:`defined <memmodel>` results
5577when they may see multiple atomic stores. The type of the pointee must
5578be an integer type whose bit width is a power of two greater than or
5579equal to eight and less than or equal to a target-specific size limit.
5580``align`` must be explicitly specified on atomic loads, and the load has
5581undefined behavior if the alignment is not set to a value which is at
5582least the size in bytes of the pointee. ``!nontemporal`` does not have
5583any defined semantics for atomic loads.
5584
5585The optional constant ``align`` argument specifies the alignment of the
5586operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005587or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005588alignment for the target. It is the responsibility of the code emitter
5589to ensure that the alignment information is correct. Overestimating the
5590alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005591may produce less efficient code. An alignment of 1 is always safe. The
5592maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005593
5594The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005595metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005596``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005597metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005598that this load is not expected to be reused in the cache. The code
5599generator may select special instructions to save cache bandwidth, such
5600as the ``MOVNT`` instruction on x86.
5601
5602The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005603metadata name ``<index>`` corresponding to a metadata node with no
5604entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00005605instruction tells the optimizer and code generator that the address
5606operand to this load points to memory which can be assumed unchanged.
5607Being invariant does not imply that a location is dereferenceable,
5608but it does imply that once the location is known dereferenceable
5609its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00005610
Philip Reamescdb72f32014-10-20 22:40:55 +00005611The optional ``!nonnull`` metadata must reference a single
5612metadata name ``<index>`` corresponding to a metadata node with no
5613entries. The existence of the ``!nonnull`` metadata on the
5614instruction tells the optimizer that the value loaded is known to
5615never be null. This is analogous to the ''nonnull'' attribute
5616on parameters and return values. This metadata can only be applied
5617to loads of a pointer type.
5618
Sean Silvab084af42012-12-07 10:36:55 +00005619Semantics:
5620""""""""""
5621
5622The location of memory pointed to is loaded. If the value being loaded
5623is of scalar type then the number of bytes read does not exceed the
5624minimum number of bytes needed to hold all bits of the type. For
5625example, loading an ``i24`` reads at most three bytes. When loading a
5626value of a type like ``i20`` with a size that is not an integral number
5627of bytes, the result is undefined if the value was not originally
5628written using a store of the same type.
5629
5630Examples:
5631"""""""""
5632
5633.. code-block:: llvm
5634
Tim Northover675a0962014-06-13 14:24:23 +00005635 %ptr = alloca i32 ; yields i32*:ptr
5636 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00005637 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005638
5639.. _i_store:
5640
5641'``store``' Instruction
5642^^^^^^^^^^^^^^^^^^^^^^^
5643
5644Syntax:
5645"""""""
5646
5647::
5648
Tim Northover675a0962014-06-13 14:24:23 +00005649 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5650 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005651
5652Overview:
5653"""""""""
5654
5655The '``store``' instruction is used to write to memory.
5656
5657Arguments:
5658""""""""""
5659
Eli Benderskyca380842013-04-17 17:17:20 +00005660There are two arguments to the ``store`` instruction: a value to store
5661and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005662operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005663the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005664then the optimizer is not allowed to modify the number or order of
5665execution of this ``store`` with other :ref:`volatile
5666operations <volatile>`.
5667
5668If the ``store`` is marked as ``atomic``, it takes an extra
5669:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5670``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5671instructions. Atomic loads produce :ref:`defined <memmodel>` results
5672when they may see multiple atomic stores. The type of the pointee must
5673be an integer type whose bit width is a power of two greater than or
5674equal to eight and less than or equal to a target-specific size limit.
5675``align`` must be explicitly specified on atomic stores, and the store
5676has undefined behavior if the alignment is not set to a value which is
5677at least the size in bytes of the pointee. ``!nontemporal`` does not
5678have any defined semantics for atomic stores.
5679
Eli Benderskyca380842013-04-17 17:17:20 +00005680The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005681operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005682or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005683alignment for the target. It is the responsibility of the code emitter
5684to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005685alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005686alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005687safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005688
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005689The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005690name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005691value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005692tells the optimizer and code generator that this load is not expected to
5693be reused in the cache. The code generator may select special
5694instructions to save cache bandwidth, such as the MOVNT instruction on
5695x86.
5696
5697Semantics:
5698""""""""""
5699
Eli Benderskyca380842013-04-17 17:17:20 +00005700The contents of memory are updated to contain ``<value>`` at the
5701location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005702of scalar type then the number of bytes written does not exceed the
5703minimum number of bytes needed to hold all bits of the type. For
5704example, storing an ``i24`` writes at most three bytes. When writing a
5705value of a type like ``i20`` with a size that is not an integral number
5706of bytes, it is unspecified what happens to the extra bits that do not
5707belong to the type, but they will typically be overwritten.
5708
5709Example:
5710""""""""
5711
5712.. code-block:: llvm
5713
Tim Northover675a0962014-06-13 14:24:23 +00005714 %ptr = alloca i32 ; yields i32*:ptr
5715 store i32 3, i32* %ptr ; yields void
5716 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005717
5718.. _i_fence:
5719
5720'``fence``' Instruction
5721^^^^^^^^^^^^^^^^^^^^^^^
5722
5723Syntax:
5724"""""""
5725
5726::
5727
Tim Northover675a0962014-06-13 14:24:23 +00005728 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005729
5730Overview:
5731"""""""""
5732
5733The '``fence``' instruction is used to introduce happens-before edges
5734between operations.
5735
5736Arguments:
5737""""""""""
5738
5739'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5740defines what *synchronizes-with* edges they add. They can only be given
5741``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5742
5743Semantics:
5744""""""""""
5745
5746A fence A which has (at least) ``release`` ordering semantics
5747*synchronizes with* a fence B with (at least) ``acquire`` ordering
5748semantics if and only if there exist atomic operations X and Y, both
5749operating on some atomic object M, such that A is sequenced before X, X
5750modifies M (either directly or through some side effect of a sequence
5751headed by X), Y is sequenced before B, and Y observes M. This provides a
5752*happens-before* dependency between A and B. Rather than an explicit
5753``fence``, one (but not both) of the atomic operations X or Y might
5754provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5755still *synchronize-with* the explicit ``fence`` and establish the
5756*happens-before* edge.
5757
5758A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5759``acquire`` and ``release`` semantics specified above, participates in
5760the global program order of other ``seq_cst`` operations and/or fences.
5761
5762The optional ":ref:`singlethread <singlethread>`" argument specifies
5763that the fence only synchronizes with other fences in the same thread.
5764(This is useful for interacting with signal handlers.)
5765
5766Example:
5767""""""""
5768
5769.. code-block:: llvm
5770
Tim Northover675a0962014-06-13 14:24:23 +00005771 fence acquire ; yields void
5772 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005773
5774.. _i_cmpxchg:
5775
5776'``cmpxchg``' Instruction
5777^^^^^^^^^^^^^^^^^^^^^^^^^
5778
5779Syntax:
5780"""""""
5781
5782::
5783
Tim Northover675a0962014-06-13 14:24:23 +00005784 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005785
5786Overview:
5787"""""""""
5788
5789The '``cmpxchg``' instruction is used to atomically modify memory. It
5790loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005791equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005792
5793Arguments:
5794""""""""""
5795
5796There are three arguments to the '``cmpxchg``' instruction: an address
5797to operate on, a value to compare to the value currently be at that
5798address, and a new value to place at that address if the compared values
5799are equal. The type of '<cmp>' must be an integer type whose bit width
5800is a power of two greater than or equal to eight and less than or equal
5801to a target-specific size limit. '<cmp>' and '<new>' must have the same
5802type, and the type of '<pointer>' must be a pointer to that type. If the
5803``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5804to modify the number or order of execution of this ``cmpxchg`` with
5805other :ref:`volatile operations <volatile>`.
5806
Tim Northovere94a5182014-03-11 10:48:52 +00005807The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005808``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5809must be at least ``monotonic``, the ordering constraint on failure must be no
5810stronger than that on success, and the failure ordering cannot be either
5811``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005812
5813The optional "``singlethread``" argument declares that the ``cmpxchg``
5814is only atomic with respect to code (usually signal handlers) running in
5815the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5816respect to all other code in the system.
5817
5818The pointer passed into cmpxchg must have alignment greater than or
5819equal to the size in memory of the operand.
5820
5821Semantics:
5822""""""""""
5823
Tim Northover420a2162014-06-13 14:24:07 +00005824The contents of memory at the location specified by the '``<pointer>``' operand
5825is read and compared to '``<cmp>``'; if the read value is the equal, the
5826'``<new>``' is written. The original value at the location is returned, together
5827with a flag indicating success (true) or failure (false).
5828
5829If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5830permitted: the operation may not write ``<new>`` even if the comparison
5831matched.
5832
5833If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5834if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005835
Tim Northovere94a5182014-03-11 10:48:52 +00005836A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5837identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5838load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005839
5840Example:
5841""""""""
5842
5843.. code-block:: llvm
5844
5845 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00005846 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005847 br label %loop
5848
5849 loop:
5850 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5851 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005852 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005853 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5854 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005855 br i1 %success, label %done, label %loop
5856
5857 done:
5858 ...
5859
5860.. _i_atomicrmw:
5861
5862'``atomicrmw``' Instruction
5863^^^^^^^^^^^^^^^^^^^^^^^^^^^
5864
5865Syntax:
5866"""""""
5867
5868::
5869
Tim Northover675a0962014-06-13 14:24:23 +00005870 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005871
5872Overview:
5873"""""""""
5874
5875The '``atomicrmw``' instruction is used to atomically modify memory.
5876
5877Arguments:
5878""""""""""
5879
5880There are three arguments to the '``atomicrmw``' instruction: an
5881operation to apply, an address whose value to modify, an argument to the
5882operation. The operation must be one of the following keywords:
5883
5884- xchg
5885- add
5886- sub
5887- and
5888- nand
5889- or
5890- xor
5891- max
5892- min
5893- umax
5894- umin
5895
5896The type of '<value>' must be an integer type whose bit width is a power
5897of two greater than or equal to eight and less than or equal to a
5898target-specific size limit. The type of the '``<pointer>``' operand must
5899be a pointer to that type. If the ``atomicrmw`` is marked as
5900``volatile``, then the optimizer is not allowed to modify the number or
5901order of execution of this ``atomicrmw`` with other :ref:`volatile
5902operations <volatile>`.
5903
5904Semantics:
5905""""""""""
5906
5907The contents of memory at the location specified by the '``<pointer>``'
5908operand are atomically read, modified, and written back. The original
5909value at the location is returned. The modification is specified by the
5910operation argument:
5911
5912- xchg: ``*ptr = val``
5913- add: ``*ptr = *ptr + val``
5914- sub: ``*ptr = *ptr - val``
5915- and: ``*ptr = *ptr & val``
5916- nand: ``*ptr = ~(*ptr & val)``
5917- or: ``*ptr = *ptr | val``
5918- xor: ``*ptr = *ptr ^ val``
5919- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5920- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5921- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5922 comparison)
5923- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5924 comparison)
5925
5926Example:
5927""""""""
5928
5929.. code-block:: llvm
5930
Tim Northover675a0962014-06-13 14:24:23 +00005931 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005932
5933.. _i_getelementptr:
5934
5935'``getelementptr``' Instruction
5936^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5937
5938Syntax:
5939"""""""
5940
5941::
5942
David Blaikie16a97eb2015-03-04 22:02:58 +00005943 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
5944 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
5945 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00005946
5947Overview:
5948"""""""""
5949
5950The '``getelementptr``' instruction is used to get the address of a
5951subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5952address calculation only and does not access memory.
5953
5954Arguments:
5955""""""""""
5956
David Blaikie16a97eb2015-03-04 22:02:58 +00005957The first argument is always a type used as the basis for the calculations.
5958The second argument is always a pointer or a vector of pointers, and is the
5959base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00005960that indicate which of the elements of the aggregate object are indexed.
5961The interpretation of each index is dependent on the type being indexed
5962into. The first index always indexes the pointer value given as the
5963first argument, the second index indexes a value of the type pointed to
5964(not necessarily the value directly pointed to, since the first index
5965can be non-zero), etc. The first type indexed into must be a pointer
5966value, subsequent types can be arrays, vectors, and structs. Note that
5967subsequent types being indexed into can never be pointers, since that
5968would require loading the pointer before continuing calculation.
5969
5970The type of each index argument depends on the type it is indexing into.
5971When indexing into a (optionally packed) structure, only ``i32`` integer
5972**constants** are allowed (when using a vector of indices they must all
5973be the **same** ``i32`` integer constant). When indexing into an array,
5974pointer or vector, integers of any width are allowed, and they are not
5975required to be constant. These integers are treated as signed values
5976where relevant.
5977
5978For example, let's consider a C code fragment and how it gets compiled
5979to LLVM:
5980
5981.. code-block:: c
5982
5983 struct RT {
5984 char A;
5985 int B[10][20];
5986 char C;
5987 };
5988 struct ST {
5989 int X;
5990 double Y;
5991 struct RT Z;
5992 };
5993
5994 int *foo(struct ST *s) {
5995 return &s[1].Z.B[5][13];
5996 }
5997
5998The LLVM code generated by Clang is:
5999
6000.. code-block:: llvm
6001
6002 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
6003 %struct.ST = type { i32, double, %struct.RT }
6004
6005 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
6006 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00006007 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00006008 ret i32* %arrayidx
6009 }
6010
6011Semantics:
6012""""""""""
6013
6014In the example above, the first index is indexing into the
6015'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
6016= '``{ i32, double, %struct.RT }``' type, a structure. The second index
6017indexes into the third element of the structure, yielding a
6018'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
6019structure. The third index indexes into the second element of the
6020structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
6021dimensions of the array are subscripted into, yielding an '``i32``'
6022type. The '``getelementptr``' instruction returns a pointer to this
6023element, thus computing a value of '``i32*``' type.
6024
6025Note that it is perfectly legal to index partially through a structure,
6026returning a pointer to an inner element. Because of this, the LLVM code
6027for the given testcase is equivalent to:
6028
6029.. code-block:: llvm
6030
6031 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00006032 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
6033 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
6034 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
6035 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
6036 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00006037 ret i32* %t5
6038 }
6039
6040If the ``inbounds`` keyword is present, the result value of the
6041``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
6042pointer is not an *in bounds* address of an allocated object, or if any
6043of the addresses that would be formed by successive addition of the
6044offsets implied by the indices to the base address with infinitely
6045precise signed arithmetic are not an *in bounds* address of that
6046allocated object. The *in bounds* addresses for an allocated object are
6047all the addresses that point into the object, plus the address one byte
6048past the end. In cases where the base is a vector of pointers the
6049``inbounds`` keyword applies to each of the computations element-wise.
6050
6051If the ``inbounds`` keyword is not present, the offsets are added to the
6052base address with silently-wrapping two's complement arithmetic. If the
6053offsets have a different width from the pointer, they are sign-extended
6054or truncated to the width of the pointer. The result value of the
6055``getelementptr`` may be outside the object pointed to by the base
6056pointer. The result value may not necessarily be used to access memory
6057though, even if it happens to point into allocated storage. See the
6058:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
6059information.
6060
6061The getelementptr instruction is often confusing. For some more insight
6062into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
6063
6064Example:
6065""""""""
6066
6067.. code-block:: llvm
6068
6069 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006070 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006071 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006072 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006073 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006074 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006075 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006076 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00006077
6078In cases where the pointer argument is a vector of pointers, each index
6079must be a vector with the same number of elements. For example:
6080
6081.. code-block:: llvm
6082
David Blaikie16a97eb2015-03-04 22:02:58 +00006083 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets,
Sean Silvab084af42012-12-07 10:36:55 +00006084
6085Conversion Operations
6086---------------------
6087
6088The instructions in this category are the conversion instructions
6089(casting) which all take a single operand and a type. They perform
6090various bit conversions on the operand.
6091
6092'``trunc .. to``' Instruction
6093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6094
6095Syntax:
6096"""""""
6097
6098::
6099
6100 <result> = trunc <ty> <value> to <ty2> ; yields ty2
6101
6102Overview:
6103"""""""""
6104
6105The '``trunc``' instruction truncates its operand to the type ``ty2``.
6106
6107Arguments:
6108""""""""""
6109
6110The '``trunc``' instruction takes a value to trunc, and a type to trunc
6111it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
6112of the same number of integers. The bit size of the ``value`` must be
6113larger than the bit size of the destination type, ``ty2``. Equal sized
6114types are not allowed.
6115
6116Semantics:
6117""""""""""
6118
6119The '``trunc``' instruction truncates the high order bits in ``value``
6120and converts the remaining bits to ``ty2``. Since the source size must
6121be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
6122It will always truncate bits.
6123
6124Example:
6125""""""""
6126
6127.. code-block:: llvm
6128
6129 %X = trunc i32 257 to i8 ; yields i8:1
6130 %Y = trunc i32 123 to i1 ; yields i1:true
6131 %Z = trunc i32 122 to i1 ; yields i1:false
6132 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
6133
6134'``zext .. to``' Instruction
6135^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6136
6137Syntax:
6138"""""""
6139
6140::
6141
6142 <result> = zext <ty> <value> to <ty2> ; yields ty2
6143
6144Overview:
6145"""""""""
6146
6147The '``zext``' instruction zero extends its operand to type ``ty2``.
6148
6149Arguments:
6150""""""""""
6151
6152The '``zext``' instruction takes a value to cast, and a type to cast it
6153to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
6154the same number of integers. The bit size of the ``value`` must be
6155smaller than the bit size of the destination type, ``ty2``.
6156
6157Semantics:
6158""""""""""
6159
6160The ``zext`` fills the high order bits of the ``value`` with zero bits
6161until it reaches the size of the destination type, ``ty2``.
6162
6163When zero extending from i1, the result will always be either 0 or 1.
6164
6165Example:
6166""""""""
6167
6168.. code-block:: llvm
6169
6170 %X = zext i32 257 to i64 ; yields i64:257
6171 %Y = zext i1 true to i32 ; yields i32:1
6172 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
6173
6174'``sext .. to``' Instruction
6175^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6176
6177Syntax:
6178"""""""
6179
6180::
6181
6182 <result> = sext <ty> <value> to <ty2> ; yields ty2
6183
6184Overview:
6185"""""""""
6186
6187The '``sext``' sign extends ``value`` to the type ``ty2``.
6188
6189Arguments:
6190""""""""""
6191
6192The '``sext``' instruction takes a value to cast, and a type to cast it
6193to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
6194the same number of integers. The bit size of the ``value`` must be
6195smaller than the bit size of the destination type, ``ty2``.
6196
6197Semantics:
6198""""""""""
6199
6200The '``sext``' instruction performs a sign extension by copying the sign
6201bit (highest order bit) of the ``value`` until it reaches the bit size
6202of the type ``ty2``.
6203
6204When sign extending from i1, the extension always results in -1 or 0.
6205
6206Example:
6207""""""""
6208
6209.. code-block:: llvm
6210
6211 %X = sext i8 -1 to i16 ; yields i16 :65535
6212 %Y = sext i1 true to i32 ; yields i32:-1
6213 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
6214
6215'``fptrunc .. to``' Instruction
6216^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6217
6218Syntax:
6219"""""""
6220
6221::
6222
6223 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
6224
6225Overview:
6226"""""""""
6227
6228The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
6229
6230Arguments:
6231""""""""""
6232
6233The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
6234value to cast and a :ref:`floating point <t_floating>` type to cast it to.
6235The size of ``value`` must be larger than the size of ``ty2``. This
6236implies that ``fptrunc`` cannot be used to make a *no-op cast*.
6237
6238Semantics:
6239""""""""""
6240
6241The '``fptrunc``' instruction truncates a ``value`` from a larger
6242:ref:`floating point <t_floating>` type to a smaller :ref:`floating
6243point <t_floating>` type. If the value cannot fit within the
6244destination type, ``ty2``, then the results are undefined.
6245
6246Example:
6247""""""""
6248
6249.. code-block:: llvm
6250
6251 %X = fptrunc double 123.0 to float ; yields float:123.0
6252 %Y = fptrunc double 1.0E+300 to float ; yields undefined
6253
6254'``fpext .. to``' Instruction
6255^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6256
6257Syntax:
6258"""""""
6259
6260::
6261
6262 <result> = fpext <ty> <value> to <ty2> ; yields ty2
6263
6264Overview:
6265"""""""""
6266
6267The '``fpext``' extends a floating point ``value`` to a larger floating
6268point value.
6269
6270Arguments:
6271""""""""""
6272
6273The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
6274``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
6275to. The source type must be smaller than the destination type.
6276
6277Semantics:
6278""""""""""
6279
6280The '``fpext``' instruction extends the ``value`` from a smaller
6281:ref:`floating point <t_floating>` type to a larger :ref:`floating
6282point <t_floating>` type. The ``fpext`` cannot be used to make a
6283*no-op cast* because it always changes bits. Use ``bitcast`` to make a
6284*no-op cast* for a floating point cast.
6285
6286Example:
6287""""""""
6288
6289.. code-block:: llvm
6290
6291 %X = fpext float 3.125 to double ; yields double:3.125000e+00
6292 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
6293
6294'``fptoui .. to``' Instruction
6295^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6296
6297Syntax:
6298"""""""
6299
6300::
6301
6302 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
6303
6304Overview:
6305"""""""""
6306
6307The '``fptoui``' converts a floating point ``value`` to its unsigned
6308integer equivalent of type ``ty2``.
6309
6310Arguments:
6311""""""""""
6312
6313The '``fptoui``' instruction takes a value to cast, which must be a
6314scalar or vector :ref:`floating point <t_floating>` value, and a type to
6315cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6316``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6317type with the same number of elements as ``ty``
6318
6319Semantics:
6320""""""""""
6321
6322The '``fptoui``' instruction converts its :ref:`floating
6323point <t_floating>` operand into the nearest (rounding towards zero)
6324unsigned integer value. If the value cannot fit in ``ty2``, the results
6325are undefined.
6326
6327Example:
6328""""""""
6329
6330.. code-block:: llvm
6331
6332 %X = fptoui double 123.0 to i32 ; yields i32:123
6333 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
6334 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
6335
6336'``fptosi .. to``' Instruction
6337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6338
6339Syntax:
6340"""""""
6341
6342::
6343
6344 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
6345
6346Overview:
6347"""""""""
6348
6349The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
6350``value`` to type ``ty2``.
6351
6352Arguments:
6353""""""""""
6354
6355The '``fptosi``' instruction takes a value to cast, which must be a
6356scalar or vector :ref:`floating point <t_floating>` value, and a type to
6357cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6358``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6359type with the same number of elements as ``ty``
6360
6361Semantics:
6362""""""""""
6363
6364The '``fptosi``' instruction converts its :ref:`floating
6365point <t_floating>` operand into the nearest (rounding towards zero)
6366signed integer value. If the value cannot fit in ``ty2``, the results
6367are undefined.
6368
6369Example:
6370""""""""
6371
6372.. code-block:: llvm
6373
6374 %X = fptosi double -123.0 to i32 ; yields i32:-123
6375 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
6376 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
6377
6378'``uitofp .. to``' Instruction
6379^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6380
6381Syntax:
6382"""""""
6383
6384::
6385
6386 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
6387
6388Overview:
6389"""""""""
6390
6391The '``uitofp``' instruction regards ``value`` as an unsigned integer
6392and converts that value to the ``ty2`` type.
6393
6394Arguments:
6395""""""""""
6396
6397The '``uitofp``' instruction takes a value to cast, which must be a
6398scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6399``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6400``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6401type with the same number of elements as ``ty``
6402
6403Semantics:
6404""""""""""
6405
6406The '``uitofp``' instruction interprets its operand as an unsigned
6407integer quantity and converts it to the corresponding floating point
6408value. If the value cannot fit in the floating point value, the results
6409are undefined.
6410
6411Example:
6412""""""""
6413
6414.. code-block:: llvm
6415
6416 %X = uitofp i32 257 to float ; yields float:257.0
6417 %Y = uitofp i8 -1 to double ; yields double:255.0
6418
6419'``sitofp .. to``' Instruction
6420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6421
6422Syntax:
6423"""""""
6424
6425::
6426
6427 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
6428
6429Overview:
6430"""""""""
6431
6432The '``sitofp``' instruction regards ``value`` as a signed integer and
6433converts that value to the ``ty2`` type.
6434
6435Arguments:
6436""""""""""
6437
6438The '``sitofp``' instruction takes a value to cast, which must be a
6439scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6440``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6441``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6442type with the same number of elements as ``ty``
6443
6444Semantics:
6445""""""""""
6446
6447The '``sitofp``' instruction interprets its operand as a signed integer
6448quantity and converts it to the corresponding floating point value. If
6449the value cannot fit in the floating point value, the results are
6450undefined.
6451
6452Example:
6453""""""""
6454
6455.. code-block:: llvm
6456
6457 %X = sitofp i32 257 to float ; yields float:257.0
6458 %Y = sitofp i8 -1 to double ; yields double:-1.0
6459
6460.. _i_ptrtoint:
6461
6462'``ptrtoint .. to``' Instruction
6463^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6464
6465Syntax:
6466"""""""
6467
6468::
6469
6470 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
6471
6472Overview:
6473"""""""""
6474
6475The '``ptrtoint``' instruction converts the pointer or a vector of
6476pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6477
6478Arguments:
6479""""""""""
6480
6481The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
6482a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
6483type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6484a vector of integers type.
6485
6486Semantics:
6487""""""""""
6488
6489The '``ptrtoint``' instruction converts ``value`` to integer type
6490``ty2`` by interpreting the pointer value as an integer and either
6491truncating or zero extending that value to the size of the integer type.
6492If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6493``value`` is larger than ``ty2`` then a truncation is done. If they are
6494the same size, then nothing is done (*no-op cast*) other than a type
6495change.
6496
6497Example:
6498""""""""
6499
6500.. code-block:: llvm
6501
6502 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
6503 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
6504 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6505
6506.. _i_inttoptr:
6507
6508'``inttoptr .. to``' Instruction
6509^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6510
6511Syntax:
6512"""""""
6513
6514::
6515
6516 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
6517
6518Overview:
6519"""""""""
6520
6521The '``inttoptr``' instruction converts an integer ``value`` to a
6522pointer type, ``ty2``.
6523
6524Arguments:
6525""""""""""
6526
6527The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6528cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6529type.
6530
6531Semantics:
6532""""""""""
6533
6534The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6535applying either a zero extension or a truncation depending on the size
6536of the integer ``value``. If ``value`` is larger than the size of a
6537pointer then a truncation is done. If ``value`` is smaller than the size
6538of a pointer then a zero extension is done. If they are the same size,
6539nothing is done (*no-op cast*).
6540
6541Example:
6542""""""""
6543
6544.. code-block:: llvm
6545
6546 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6547 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6548 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6549 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6550
6551.. _i_bitcast:
6552
6553'``bitcast .. to``' Instruction
6554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6555
6556Syntax:
6557"""""""
6558
6559::
6560
6561 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6562
6563Overview:
6564"""""""""
6565
6566The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6567changing any bits.
6568
6569Arguments:
6570""""""""""
6571
6572The '``bitcast``' instruction takes a value to cast, which must be a
6573non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006574also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6575bit sizes of ``value`` and the destination type, ``ty2``, must be
6576identical. If the source type is a pointer, the destination type must
6577also be a pointer of the same size. This instruction supports bitwise
6578conversion of vectors to integers and to vectors of other types (as
6579long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006580
6581Semantics:
6582""""""""""
6583
Matt Arsenault24b49c42013-07-31 17:49:08 +00006584The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6585is always a *no-op cast* because no bits change with this
6586conversion. The conversion is done as if the ``value`` had been stored
6587to memory and read back as type ``ty2``. Pointer (or vector of
6588pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006589pointers) types with the same address space through this instruction.
6590To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6591or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006592
6593Example:
6594""""""""
6595
6596.. code-block:: llvm
6597
6598 %X = bitcast i8 255 to i8 ; yields i8 :-1
6599 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6600 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6601 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6602
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006603.. _i_addrspacecast:
6604
6605'``addrspacecast .. to``' Instruction
6606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6607
6608Syntax:
6609"""""""
6610
6611::
6612
6613 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6614
6615Overview:
6616"""""""""
6617
6618The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6619address space ``n`` to type ``pty2`` in address space ``m``.
6620
6621Arguments:
6622""""""""""
6623
6624The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6625to cast and a pointer type to cast it to, which must have a different
6626address space.
6627
6628Semantics:
6629""""""""""
6630
6631The '``addrspacecast``' instruction converts the pointer value
6632``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006633value modification, depending on the target and the address space
6634pair. Pointer conversions within the same address space must be
6635performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006636conversion is legal then both result and operand refer to the same memory
6637location.
6638
6639Example:
6640""""""""
6641
6642.. code-block:: llvm
6643
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006644 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6645 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6646 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006647
Sean Silvab084af42012-12-07 10:36:55 +00006648.. _otherops:
6649
6650Other Operations
6651----------------
6652
6653The instructions in this category are the "miscellaneous" instructions,
6654which defy better classification.
6655
6656.. _i_icmp:
6657
6658'``icmp``' Instruction
6659^^^^^^^^^^^^^^^^^^^^^^
6660
6661Syntax:
6662"""""""
6663
6664::
6665
Tim Northover675a0962014-06-13 14:24:23 +00006666 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006667
6668Overview:
6669"""""""""
6670
6671The '``icmp``' instruction returns a boolean value or a vector of
6672boolean values based on comparison of its two integer, integer vector,
6673pointer, or pointer vector operands.
6674
6675Arguments:
6676""""""""""
6677
6678The '``icmp``' instruction takes three operands. The first operand is
6679the condition code indicating the kind of comparison to perform. It is
6680not a value, just a keyword. The possible condition code are:
6681
6682#. ``eq``: equal
6683#. ``ne``: not equal
6684#. ``ugt``: unsigned greater than
6685#. ``uge``: unsigned greater or equal
6686#. ``ult``: unsigned less than
6687#. ``ule``: unsigned less or equal
6688#. ``sgt``: signed greater than
6689#. ``sge``: signed greater or equal
6690#. ``slt``: signed less than
6691#. ``sle``: signed less or equal
6692
6693The remaining two arguments must be :ref:`integer <t_integer>` or
6694:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6695must also be identical types.
6696
6697Semantics:
6698""""""""""
6699
6700The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6701code given as ``cond``. The comparison performed always yields either an
6702:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6703
6704#. ``eq``: yields ``true`` if the operands are equal, ``false``
6705 otherwise. No sign interpretation is necessary or performed.
6706#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6707 otherwise. No sign interpretation is necessary or performed.
6708#. ``ugt``: interprets the operands as unsigned values and yields
6709 ``true`` if ``op1`` is greater than ``op2``.
6710#. ``uge``: interprets the operands as unsigned values and yields
6711 ``true`` if ``op1`` is greater than or equal to ``op2``.
6712#. ``ult``: interprets the operands as unsigned values and yields
6713 ``true`` if ``op1`` is less than ``op2``.
6714#. ``ule``: interprets the operands as unsigned values and yields
6715 ``true`` if ``op1`` is less than or equal to ``op2``.
6716#. ``sgt``: interprets the operands as signed values and yields ``true``
6717 if ``op1`` is greater than ``op2``.
6718#. ``sge``: interprets the operands as signed values and yields ``true``
6719 if ``op1`` is greater than or equal to ``op2``.
6720#. ``slt``: interprets the operands as signed values and yields ``true``
6721 if ``op1`` is less than ``op2``.
6722#. ``sle``: interprets the operands as signed values and yields ``true``
6723 if ``op1`` is less than or equal to ``op2``.
6724
6725If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6726are compared as if they were integers.
6727
6728If the operands are integer vectors, then they are compared element by
6729element. The result is an ``i1`` vector with the same number of elements
6730as the values being compared. Otherwise, the result is an ``i1``.
6731
6732Example:
6733""""""""
6734
6735.. code-block:: llvm
6736
6737 <result> = icmp eq i32 4, 5 ; yields: result=false
6738 <result> = icmp ne float* %X, %X ; yields: result=false
6739 <result> = icmp ult i16 4, 5 ; yields: result=true
6740 <result> = icmp sgt i16 4, 5 ; yields: result=false
6741 <result> = icmp ule i16 -4, 5 ; yields: result=false
6742 <result> = icmp sge i16 4, 5 ; yields: result=false
6743
6744Note that the code generator does not yet support vector types with the
6745``icmp`` instruction.
6746
6747.. _i_fcmp:
6748
6749'``fcmp``' Instruction
6750^^^^^^^^^^^^^^^^^^^^^^
6751
6752Syntax:
6753"""""""
6754
6755::
6756
Tim Northover675a0962014-06-13 14:24:23 +00006757 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006758
6759Overview:
6760"""""""""
6761
6762The '``fcmp``' instruction returns a boolean value or vector of boolean
6763values based on comparison of its operands.
6764
6765If the operands are floating point scalars, then the result type is a
6766boolean (:ref:`i1 <t_integer>`).
6767
6768If the operands are floating point vectors, then the result type is a
6769vector of boolean with the same number of elements as the operands being
6770compared.
6771
6772Arguments:
6773""""""""""
6774
6775The '``fcmp``' instruction takes three operands. The first operand is
6776the condition code indicating the kind of comparison to perform. It is
6777not a value, just a keyword. The possible condition code are:
6778
6779#. ``false``: no comparison, always returns false
6780#. ``oeq``: ordered and equal
6781#. ``ogt``: ordered and greater than
6782#. ``oge``: ordered and greater than or equal
6783#. ``olt``: ordered and less than
6784#. ``ole``: ordered and less than or equal
6785#. ``one``: ordered and not equal
6786#. ``ord``: ordered (no nans)
6787#. ``ueq``: unordered or equal
6788#. ``ugt``: unordered or greater than
6789#. ``uge``: unordered or greater than or equal
6790#. ``ult``: unordered or less than
6791#. ``ule``: unordered or less than or equal
6792#. ``une``: unordered or not equal
6793#. ``uno``: unordered (either nans)
6794#. ``true``: no comparison, always returns true
6795
6796*Ordered* means that neither operand is a QNAN while *unordered* means
6797that either operand may be a QNAN.
6798
6799Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6800point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6801type. They must have identical types.
6802
6803Semantics:
6804""""""""""
6805
6806The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6807condition code given as ``cond``. If the operands are vectors, then the
6808vectors are compared element by element. Each comparison performed
6809always yields an :ref:`i1 <t_integer>` result, as follows:
6810
6811#. ``false``: always yields ``false``, regardless of operands.
6812#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6813 is equal to ``op2``.
6814#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6815 is greater than ``op2``.
6816#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6817 is greater than or equal to ``op2``.
6818#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6819 is less than ``op2``.
6820#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6821 is less than or equal to ``op2``.
6822#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6823 is not equal to ``op2``.
6824#. ``ord``: yields ``true`` if both operands are not a QNAN.
6825#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6826 equal to ``op2``.
6827#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6828 greater than ``op2``.
6829#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6830 greater than or equal to ``op2``.
6831#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6832 less than ``op2``.
6833#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6834 less than or equal to ``op2``.
6835#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6836 not equal to ``op2``.
6837#. ``uno``: yields ``true`` if either operand is a QNAN.
6838#. ``true``: always yields ``true``, regardless of operands.
6839
6840Example:
6841""""""""
6842
6843.. code-block:: llvm
6844
6845 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6846 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6847 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6848 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6849
6850Note that the code generator does not yet support vector types with the
6851``fcmp`` instruction.
6852
6853.. _i_phi:
6854
6855'``phi``' Instruction
6856^^^^^^^^^^^^^^^^^^^^^
6857
6858Syntax:
6859"""""""
6860
6861::
6862
6863 <result> = phi <ty> [ <val0>, <label0>], ...
6864
6865Overview:
6866"""""""""
6867
6868The '``phi``' instruction is used to implement the φ node in the SSA
6869graph representing the function.
6870
6871Arguments:
6872""""""""""
6873
6874The type of the incoming values is specified with the first type field.
6875After this, the '``phi``' instruction takes a list of pairs as
6876arguments, with one pair for each predecessor basic block of the current
6877block. Only values of :ref:`first class <t_firstclass>` type may be used as
6878the value arguments to the PHI node. Only labels may be used as the
6879label arguments.
6880
6881There must be no non-phi instructions between the start of a basic block
6882and the PHI instructions: i.e. PHI instructions must be first in a basic
6883block.
6884
6885For the purposes of the SSA form, the use of each incoming value is
6886deemed to occur on the edge from the corresponding predecessor block to
6887the current block (but after any definition of an '``invoke``'
6888instruction's return value on the same edge).
6889
6890Semantics:
6891""""""""""
6892
6893At runtime, the '``phi``' instruction logically takes on the value
6894specified by the pair corresponding to the predecessor basic block that
6895executed just prior to the current block.
6896
6897Example:
6898""""""""
6899
6900.. code-block:: llvm
6901
6902 Loop: ; Infinite loop that counts from 0 on up...
6903 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6904 %nextindvar = add i32 %indvar, 1
6905 br label %Loop
6906
6907.. _i_select:
6908
6909'``select``' Instruction
6910^^^^^^^^^^^^^^^^^^^^^^^^
6911
6912Syntax:
6913"""""""
6914
6915::
6916
6917 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6918
6919 selty is either i1 or {<N x i1>}
6920
6921Overview:
6922"""""""""
6923
6924The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006925condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006926
6927Arguments:
6928""""""""""
6929
6930The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6931values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00006932class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00006933
6934Semantics:
6935""""""""""
6936
6937If the condition is an i1 and it evaluates to 1, the instruction returns
6938the first value argument; otherwise, it returns the second value
6939argument.
6940
6941If the condition is a vector of i1, then the value arguments must be
6942vectors of the same size, and the selection is done element by element.
6943
David Majnemer40a0b592015-03-03 22:45:47 +00006944If the condition is an i1 and the value arguments are vectors of the
6945same size, then an entire vector is selected.
6946
Sean Silvab084af42012-12-07 10:36:55 +00006947Example:
6948""""""""
6949
6950.. code-block:: llvm
6951
6952 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6953
6954.. _i_call:
6955
6956'``call``' Instruction
6957^^^^^^^^^^^^^^^^^^^^^^
6958
6959Syntax:
6960"""""""
6961
6962::
6963
Reid Kleckner5772b772014-04-24 20:14:34 +00006964 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006965
6966Overview:
6967"""""""""
6968
6969The '``call``' instruction represents a simple function call.
6970
6971Arguments:
6972""""""""""
6973
6974This instruction requires several arguments:
6975
Reid Kleckner5772b772014-04-24 20:14:34 +00006976#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6977 should perform tail call optimization. The ``tail`` marker is a hint that
6978 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6979 means that the call must be tail call optimized in order for the program to
6980 be correct. The ``musttail`` marker provides these guarantees:
6981
6982 #. The call will not cause unbounded stack growth if it is part of a
6983 recursive cycle in the call graph.
6984 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6985 forwarded in place.
6986
6987 Both markers imply that the callee does not access allocas or varargs from
6988 the caller. Calls marked ``musttail`` must obey the following additional
6989 rules:
6990
6991 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6992 or a pointer bitcast followed by a ret instruction.
6993 - The ret instruction must return the (possibly bitcasted) value
6994 produced by the call or void.
6995 - The caller and callee prototypes must match. Pointer types of
6996 parameters or return types may differ in pointee type, but not
6997 in address space.
6998 - The calling conventions of the caller and callee must match.
6999 - All ABI-impacting function attributes, such as sret, byval, inreg,
7000 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00007001 - The callee must be varargs iff the caller is varargs. Bitcasting a
7002 non-varargs function to the appropriate varargs type is legal so
7003 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00007004
7005 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
7006 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00007007
7008 - Caller and callee both have the calling convention ``fastcc``.
7009 - The call is in tail position (ret immediately follows call and ret
7010 uses value of call or is void).
7011 - Option ``-tailcallopt`` is enabled, or
7012 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00007013 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00007014 met. <CodeGenerator.html#tailcallopt>`_
7015
7016#. The optional "cconv" marker indicates which :ref:`calling
7017 convention <callingconv>` the call should use. If none is
7018 specified, the call defaults to using C calling conventions. The
7019 calling convention of the call must match the calling convention of
7020 the target function, or else the behavior is undefined.
7021#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
7022 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
7023 are valid here.
7024#. '``ty``': the type of the call instruction itself which is also the
7025 type of the return value. Functions that return no value are marked
7026 ``void``.
7027#. '``fnty``': shall be the signature of the pointer to function value
7028 being invoked. The argument types must match the types implied by
7029 this signature. This type can be omitted if the function is not
7030 varargs and if the function type does not return a pointer to a
7031 function.
7032#. '``fnptrval``': An LLVM value containing a pointer to a function to
7033 be invoked. In most cases, this is a direct function invocation, but
7034 indirect ``call``'s are just as possible, calling an arbitrary pointer
7035 to function value.
7036#. '``function args``': argument list whose types match the function
7037 signature argument types and parameter attributes. All arguments must
7038 be of :ref:`first class <t_firstclass>` type. If the function signature
7039 indicates the function accepts a variable number of arguments, the
7040 extra arguments can be specified.
7041#. The optional :ref:`function attributes <fnattrs>` list. Only
7042 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
7043 attributes are valid here.
7044
7045Semantics:
7046""""""""""
7047
7048The '``call``' instruction is used to cause control flow to transfer to
7049a specified function, with its incoming arguments bound to the specified
7050values. Upon a '``ret``' instruction in the called function, control
7051flow continues with the instruction after the function call, and the
7052return value of the function is bound to the result argument.
7053
7054Example:
7055""""""""
7056
7057.. code-block:: llvm
7058
7059 %retval = call i32 @test(i32 %argc)
7060 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
7061 %X = tail call i32 @foo() ; yields i32
7062 %Y = tail call fastcc i32 @foo() ; yields i32
7063 call void %foo(i8 97 signext)
7064
7065 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00007066 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00007067 %gr = extractvalue %struct.A %r, 0 ; yields i32
7068 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
7069 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
7070 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
7071
7072llvm treats calls to some functions with names and arguments that match
7073the standard C99 library as being the C99 library functions, and may
7074perform optimizations or generate code for them under that assumption.
7075This is something we'd like to change in the future to provide better
7076support for freestanding environments and non-C-based languages.
7077
7078.. _i_va_arg:
7079
7080'``va_arg``' Instruction
7081^^^^^^^^^^^^^^^^^^^^^^^^
7082
7083Syntax:
7084"""""""
7085
7086::
7087
7088 <resultval> = va_arg <va_list*> <arglist>, <argty>
7089
7090Overview:
7091"""""""""
7092
7093The '``va_arg``' instruction is used to access arguments passed through
7094the "variable argument" area of a function call. It is used to implement
7095the ``va_arg`` macro in C.
7096
7097Arguments:
7098""""""""""
7099
7100This instruction takes a ``va_list*`` value and the type of the
7101argument. It returns a value of the specified argument type and
7102increments the ``va_list`` to point to the next argument. The actual
7103type of ``va_list`` is target specific.
7104
7105Semantics:
7106""""""""""
7107
7108The '``va_arg``' instruction loads an argument of the specified type
7109from the specified ``va_list`` and causes the ``va_list`` to point to
7110the next argument. For more information, see the variable argument
7111handling :ref:`Intrinsic Functions <int_varargs>`.
7112
7113It is legal for this instruction to be called in a function which does
7114not take a variable number of arguments, for example, the ``vfprintf``
7115function.
7116
7117``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
7118function <intrinsics>` because it takes a type as an argument.
7119
7120Example:
7121""""""""
7122
7123See the :ref:`variable argument processing <int_varargs>` section.
7124
7125Note that the code generator does not yet fully support va\_arg on many
7126targets. Also, it does not currently support va\_arg with aggregate
7127types on any target.
7128
7129.. _i_landingpad:
7130
7131'``landingpad``' Instruction
7132^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7133
7134Syntax:
7135"""""""
7136
7137::
7138
7139 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
7140 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
7141
7142 <clause> := catch <type> <value>
7143 <clause> := filter <array constant type> <array constant>
7144
7145Overview:
7146"""""""""
7147
7148The '``landingpad``' instruction is used by `LLVM's exception handling
7149system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007150is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00007151code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
7152defines values supplied by the personality function (``pers_fn``) upon
7153re-entry to the function. The ``resultval`` has the type ``resultty``.
7154
7155Arguments:
7156""""""""""
7157
7158This instruction takes a ``pers_fn`` value. This is the personality
7159function associated with the unwinding mechanism. The optional
7160``cleanup`` flag indicates that the landing pad block is a cleanup.
7161
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007162A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00007163contains the global variable representing the "type" that may be caught
7164or filtered respectively. Unlike the ``catch`` clause, the ``filter``
7165clause takes an array constant as its argument. Use
7166"``[0 x i8**] undef``" for a filter which cannot throw. The
7167'``landingpad``' instruction must contain *at least* one ``clause`` or
7168the ``cleanup`` flag.
7169
7170Semantics:
7171""""""""""
7172
7173The '``landingpad``' instruction defines the values which are set by the
7174personality function (``pers_fn``) upon re-entry to the function, and
7175therefore the "result type" of the ``landingpad`` instruction. As with
7176calling conventions, how the personality function results are
7177represented in LLVM IR is target specific.
7178
7179The clauses are applied in order from top to bottom. If two
7180``landingpad`` instructions are merged together through inlining, the
7181clauses from the calling function are appended to the list of clauses.
7182When the call stack is being unwound due to an exception being thrown,
7183the exception is compared against each ``clause`` in turn. If it doesn't
7184match any of the clauses, and the ``cleanup`` flag is not set, then
7185unwinding continues further up the call stack.
7186
7187The ``landingpad`` instruction has several restrictions:
7188
7189- A landing pad block is a basic block which is the unwind destination
7190 of an '``invoke``' instruction.
7191- A landing pad block must have a '``landingpad``' instruction as its
7192 first non-PHI instruction.
7193- There can be only one '``landingpad``' instruction within the landing
7194 pad block.
7195- A basic block that is not a landing pad block may not include a
7196 '``landingpad``' instruction.
7197- All '``landingpad``' instructions in a function must have the same
7198 personality function.
7199
7200Example:
7201""""""""
7202
7203.. code-block:: llvm
7204
7205 ;; A landing pad which can catch an integer.
7206 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
7207 catch i8** @_ZTIi
7208 ;; A landing pad that is a cleanup.
7209 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
7210 cleanup
7211 ;; A landing pad which can catch an integer and can only throw a double.
7212 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
7213 catch i8** @_ZTIi
7214 filter [1 x i8**] [@_ZTId]
7215
7216.. _intrinsics:
7217
7218Intrinsic Functions
7219===================
7220
7221LLVM supports the notion of an "intrinsic function". These functions
7222have well known names and semantics and are required to follow certain
7223restrictions. Overall, these intrinsics represent an extension mechanism
7224for the LLVM language that does not require changing all of the
7225transformations in LLVM when adding to the language (or the bitcode
7226reader/writer, the parser, etc...).
7227
7228Intrinsic function names must all start with an "``llvm.``" prefix. This
7229prefix is reserved in LLVM for intrinsic names; thus, function names may
7230not begin with this prefix. Intrinsic functions must always be external
7231functions: you cannot define the body of intrinsic functions. Intrinsic
7232functions may only be used in call or invoke instructions: it is illegal
7233to take the address of an intrinsic function. Additionally, because
7234intrinsic functions are part of the LLVM language, it is required if any
7235are added that they be documented here.
7236
7237Some intrinsic functions can be overloaded, i.e., the intrinsic
7238represents a family of functions that perform the same operation but on
7239different data types. Because LLVM can represent over 8 million
7240different integer types, overloading is used commonly to allow an
7241intrinsic function to operate on any integer type. One or more of the
7242argument types or the result type can be overloaded to accept any
7243integer type. Argument types may also be defined as exactly matching a
7244previous argument's type or the result type. This allows an intrinsic
7245function which accepts multiple arguments, but needs all of them to be
7246of the same type, to only be overloaded with respect to a single
7247argument or the result.
7248
7249Overloaded intrinsics will have the names of its overloaded argument
7250types encoded into its function name, each preceded by a period. Only
7251those types which are overloaded result in a name suffix. Arguments
7252whose type is matched against another type do not. For example, the
7253``llvm.ctpop`` function can take an integer of any width and returns an
7254integer of exactly the same integer width. This leads to a family of
7255functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
7256``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
7257overloaded, and only one type suffix is required. Because the argument's
7258type is matched against the return type, it does not require its own
7259name suffix.
7260
7261To learn how to add an intrinsic function, please see the `Extending
7262LLVM Guide <ExtendingLLVM.html>`_.
7263
7264.. _int_varargs:
7265
7266Variable Argument Handling Intrinsics
7267-------------------------------------
7268
7269Variable argument support is defined in LLVM with the
7270:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
7271functions. These functions are related to the similarly named macros
7272defined in the ``<stdarg.h>`` header file.
7273
7274All of these functions operate on arguments that use a target-specific
7275value type "``va_list``". The LLVM assembly language reference manual
7276does not define what this type is, so all transformations should be
7277prepared to handle these functions regardless of the type used.
7278
7279This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
7280variable argument handling intrinsic functions are used.
7281
7282.. code-block:: llvm
7283
Tim Northoverab60bb92014-11-02 01:21:51 +00007284 ; This struct is different for every platform. For most platforms,
7285 ; it is merely an i8*.
7286 %struct.va_list = type { i8* }
7287
7288 ; For Unix x86_64 platforms, va_list is the following struct:
7289 ; %struct.va_list = type { i32, i32, i8*, i8* }
7290
Sean Silvab084af42012-12-07 10:36:55 +00007291 define i32 @test(i32 %X, ...) {
7292 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00007293 %ap = alloca %struct.va_list
7294 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00007295 call void @llvm.va_start(i8* %ap2)
7296
7297 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00007298 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00007299
7300 ; Demonstrate usage of llvm.va_copy and llvm.va_end
7301 %aq = alloca i8*
7302 %aq2 = bitcast i8** %aq to i8*
7303 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
7304 call void @llvm.va_end(i8* %aq2)
7305
7306 ; Stop processing of arguments.
7307 call void @llvm.va_end(i8* %ap2)
7308 ret i32 %tmp
7309 }
7310
7311 declare void @llvm.va_start(i8*)
7312 declare void @llvm.va_copy(i8*, i8*)
7313 declare void @llvm.va_end(i8*)
7314
7315.. _int_va_start:
7316
7317'``llvm.va_start``' Intrinsic
7318^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7319
7320Syntax:
7321"""""""
7322
7323::
7324
Nick Lewycky04f6de02013-09-11 22:04:52 +00007325 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00007326
7327Overview:
7328"""""""""
7329
7330The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
7331subsequent use by ``va_arg``.
7332
7333Arguments:
7334""""""""""
7335
7336The argument is a pointer to a ``va_list`` element to initialize.
7337
7338Semantics:
7339""""""""""
7340
7341The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
7342available in C. In a target-dependent way, it initializes the
7343``va_list`` element to which the argument points, so that the next call
7344to ``va_arg`` will produce the first variable argument passed to the
7345function. Unlike the C ``va_start`` macro, this intrinsic does not need
7346to know the last argument of the function as the compiler can figure
7347that out.
7348
7349'``llvm.va_end``' Intrinsic
7350^^^^^^^^^^^^^^^^^^^^^^^^^^^
7351
7352Syntax:
7353"""""""
7354
7355::
7356
7357 declare void @llvm.va_end(i8* <arglist>)
7358
7359Overview:
7360"""""""""
7361
7362The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
7363initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
7364
7365Arguments:
7366""""""""""
7367
7368The argument is a pointer to a ``va_list`` to destroy.
7369
7370Semantics:
7371""""""""""
7372
7373The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
7374available in C. In a target-dependent way, it destroys the ``va_list``
7375element to which the argument points. Calls to
7376:ref:`llvm.va_start <int_va_start>` and
7377:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
7378``llvm.va_end``.
7379
7380.. _int_va_copy:
7381
7382'``llvm.va_copy``' Intrinsic
7383^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7384
7385Syntax:
7386"""""""
7387
7388::
7389
7390 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
7391
7392Overview:
7393"""""""""
7394
7395The '``llvm.va_copy``' intrinsic copies the current argument position
7396from the source argument list to the destination argument list.
7397
7398Arguments:
7399""""""""""
7400
7401The first argument is a pointer to a ``va_list`` element to initialize.
7402The second argument is a pointer to a ``va_list`` element to copy from.
7403
7404Semantics:
7405""""""""""
7406
7407The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
7408available in C. In a target-dependent way, it copies the source
7409``va_list`` element into the destination ``va_list`` element. This
7410intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
7411arbitrarily complex and require, for example, memory allocation.
7412
7413Accurate Garbage Collection Intrinsics
7414--------------------------------------
7415
Philip Reamesc5b0f562015-02-25 23:52:06 +00007416LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
7417(GC) requires the frontend to generate code containing appropriate intrinsic
7418calls and select an appropriate GC strategy which knows how to lower these
7419intrinsics in a manner which is appropriate for the target collector.
7420
Sean Silvab084af42012-12-07 10:36:55 +00007421These intrinsics allow identification of :ref:`GC roots on the
7422stack <int_gcroot>`, as well as garbage collector implementations that
7423require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00007424Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00007425these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00007426details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00007427
Philip Reamesf80bbff2015-02-25 23:45:20 +00007428Experimental Statepoint Intrinsics
7429^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7430
7431LLVM provides an second experimental set of intrinsics for describing garbage
7432collection safepoints in compiled code. These intrinsics are an alternative
7433to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
7434:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
7435differences in approach are covered in the `Garbage Collection with LLVM
7436<GarbageCollection.html>`_ documentation. The intrinsics themselves are
7437described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00007438
7439.. _int_gcroot:
7440
7441'``llvm.gcroot``' Intrinsic
7442^^^^^^^^^^^^^^^^^^^^^^^^^^^
7443
7444Syntax:
7445"""""""
7446
7447::
7448
7449 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
7450
7451Overview:
7452"""""""""
7453
7454The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
7455the code generator, and allows some metadata to be associated with it.
7456
7457Arguments:
7458""""""""""
7459
7460The first argument specifies the address of a stack object that contains
7461the root pointer. The second pointer (which must be either a constant or
7462a global value address) contains the meta-data to be associated with the
7463root.
7464
7465Semantics:
7466""""""""""
7467
7468At runtime, a call to this intrinsic stores a null pointer into the
7469"ptrloc" location. At compile-time, the code generator generates
7470information to allow the runtime to find the pointer at GC safe points.
7471The '``llvm.gcroot``' intrinsic may only be used in a function which
7472:ref:`specifies a GC algorithm <gc>`.
7473
7474.. _int_gcread:
7475
7476'``llvm.gcread``' Intrinsic
7477^^^^^^^^^^^^^^^^^^^^^^^^^^^
7478
7479Syntax:
7480"""""""
7481
7482::
7483
7484 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7485
7486Overview:
7487"""""""""
7488
7489The '``llvm.gcread``' intrinsic identifies reads of references from heap
7490locations, allowing garbage collector implementations that require read
7491barriers.
7492
7493Arguments:
7494""""""""""
7495
7496The second argument is the address to read from, which should be an
7497address allocated from the garbage collector. The first object is a
7498pointer to the start of the referenced object, if needed by the language
7499runtime (otherwise null).
7500
7501Semantics:
7502""""""""""
7503
7504The '``llvm.gcread``' intrinsic has the same semantics as a load
7505instruction, but may be replaced with substantially more complex code by
7506the garbage collector runtime, as needed. The '``llvm.gcread``'
7507intrinsic may only be used in a function which :ref:`specifies a GC
7508algorithm <gc>`.
7509
7510.. _int_gcwrite:
7511
7512'``llvm.gcwrite``' Intrinsic
7513^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7514
7515Syntax:
7516"""""""
7517
7518::
7519
7520 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7521
7522Overview:
7523"""""""""
7524
7525The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7526locations, allowing garbage collector implementations that require write
7527barriers (such as generational or reference counting collectors).
7528
7529Arguments:
7530""""""""""
7531
7532The first argument is the reference to store, the second is the start of
7533the object to store it to, and the third is the address of the field of
7534Obj to store to. If the runtime does not require a pointer to the
7535object, Obj may be null.
7536
7537Semantics:
7538""""""""""
7539
7540The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7541instruction, but may be replaced with substantially more complex code by
7542the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7543intrinsic may only be used in a function which :ref:`specifies a GC
7544algorithm <gc>`.
7545
7546Code Generator Intrinsics
7547-------------------------
7548
7549These intrinsics are provided by LLVM to expose special features that
7550may only be implemented with code generator support.
7551
7552'``llvm.returnaddress``' Intrinsic
7553^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7554
7555Syntax:
7556"""""""
7557
7558::
7559
7560 declare i8 *@llvm.returnaddress(i32 <level>)
7561
7562Overview:
7563"""""""""
7564
7565The '``llvm.returnaddress``' intrinsic attempts to compute a
7566target-specific value indicating the return address of the current
7567function or one of its callers.
7568
7569Arguments:
7570""""""""""
7571
7572The argument to this intrinsic indicates which function to return the
7573address for. Zero indicates the calling function, one indicates its
7574caller, etc. The argument is **required** to be a constant integer
7575value.
7576
7577Semantics:
7578""""""""""
7579
7580The '``llvm.returnaddress``' intrinsic either returns a pointer
7581indicating the return address of the specified call frame, or zero if it
7582cannot be identified. The value returned by this intrinsic is likely to
7583be incorrect or 0 for arguments other than zero, so it should only be
7584used for debugging purposes.
7585
7586Note that calling this intrinsic does not prevent function inlining or
7587other aggressive transformations, so the value returned may not be that
7588of the obvious source-language caller.
7589
7590'``llvm.frameaddress``' Intrinsic
7591^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7592
7593Syntax:
7594"""""""
7595
7596::
7597
7598 declare i8* @llvm.frameaddress(i32 <level>)
7599
7600Overview:
7601"""""""""
7602
7603The '``llvm.frameaddress``' intrinsic attempts to return the
7604target-specific frame pointer value for the specified stack frame.
7605
7606Arguments:
7607""""""""""
7608
7609The argument to this intrinsic indicates which function to return the
7610frame pointer for. Zero indicates the calling function, one indicates
7611its caller, etc. The argument is **required** to be a constant integer
7612value.
7613
7614Semantics:
7615""""""""""
7616
7617The '``llvm.frameaddress``' intrinsic either returns a pointer
7618indicating the frame address of the specified call frame, or zero if it
7619cannot be identified. The value returned by this intrinsic is likely to
7620be incorrect or 0 for arguments other than zero, so it should only be
7621used for debugging purposes.
7622
7623Note that calling this intrinsic does not prevent function inlining or
7624other aggressive transformations, so the value returned may not be that
7625of the obvious source-language caller.
7626
Reid Klecknercfb9ce52015-03-05 18:26:34 +00007627'``llvm.frameescape``' and '``llvm.framerecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00007628^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7629
7630Syntax:
7631"""""""
7632
7633::
7634
Reid Klecknercfb9ce52015-03-05 18:26:34 +00007635 declare void @llvm.frameescape(...)
7636 declare i8* @llvm.framerecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00007637
7638Overview:
7639"""""""""
7640
Reid Klecknercfb9ce52015-03-05 18:26:34 +00007641The '``llvm.frameescape``' intrinsic escapes offsets of a collection of static
7642allocas, and the '``llvm.framerecover``' intrinsic applies those offsets to a
7643live frame pointer to recover the address of the allocation. The offset is
7644computed during frame layout of the caller of ``llvm.frameescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00007645
7646Arguments:
7647""""""""""
7648
Reid Klecknercfb9ce52015-03-05 18:26:34 +00007649All arguments to '``llvm.frameescape``' must be pointers to static allocas or
7650casts of static allocas. Each function can only call '``llvm.frameescape``'
7651once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00007652
Reid Kleckner3542ace2015-01-13 01:51:34 +00007653The ``func`` argument to '``llvm.framerecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00007654bitcasted pointer to a function defined in the current module. The code
7655generator cannot determine the frame allocation offset of functions defined in
7656other modules.
7657
Reid Kleckner3542ace2015-01-13 01:51:34 +00007658The ``fp`` argument to '``llvm.framerecover``' must be a frame
Reid Klecknere9b89312015-01-13 00:48:10 +00007659pointer of a call frame that is currently live. The return value of
7660'``llvm.frameaddress``' is one way to produce such a value, but most platforms
7661also expose the frame pointer through stack unwinding mechanisms.
7662
Reid Klecknercfb9ce52015-03-05 18:26:34 +00007663The ``idx`` argument to '``llvm.framerecover``' indicates which alloca passed to
7664'``llvm.frameescape``' to recover. It is zero-indexed.
7665
Reid Klecknere9b89312015-01-13 00:48:10 +00007666Semantics:
7667""""""""""
7668
7669These intrinsics allow a group of functions to access one stack memory
7670allocation in an ancestor stack frame. The memory returned from
7671'``llvm.frameallocate``' may be allocated prior to stack realignment, so the
7672memory is only aligned to the ABI-required stack alignment. Each function may
7673only call '``llvm.frameallocate``' one or zero times from the function entry
7674block. The frame allocation intrinsic inhibits inlining, as any frame
7675allocations in the inlined function frame are likely to be at a different
Reid Kleckner3542ace2015-01-13 01:51:34 +00007676offset from the one used by '``llvm.framerecover``' called with the
Reid Klecknere9b89312015-01-13 00:48:10 +00007677uninlined function.
7678
Renato Golinc7aea402014-05-06 16:51:25 +00007679.. _int_read_register:
7680.. _int_write_register:
7681
7682'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7683^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7684
7685Syntax:
7686"""""""
7687
7688::
7689
7690 declare i32 @llvm.read_register.i32(metadata)
7691 declare i64 @llvm.read_register.i64(metadata)
7692 declare void @llvm.write_register.i32(metadata, i32 @value)
7693 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00007694 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00007695
7696Overview:
7697"""""""""
7698
7699The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7700provides access to the named register. The register must be valid on
7701the architecture being compiled to. The type needs to be compatible
7702with the register being read.
7703
7704Semantics:
7705""""""""""
7706
7707The '``llvm.read_register``' intrinsic returns the current value of the
7708register, where possible. The '``llvm.write_register``' intrinsic sets
7709the current value of the register, where possible.
7710
7711This is useful to implement named register global variables that need
7712to always be mapped to a specific register, as is common practice on
7713bare-metal programs including OS kernels.
7714
7715The compiler doesn't check for register availability or use of the used
7716register in surrounding code, including inline assembly. Because of that,
7717allocatable registers are not supported.
7718
7719Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007720architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007721work is needed to support other registers and even more so, allocatable
7722registers.
7723
Sean Silvab084af42012-12-07 10:36:55 +00007724.. _int_stacksave:
7725
7726'``llvm.stacksave``' Intrinsic
7727^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7728
7729Syntax:
7730"""""""
7731
7732::
7733
7734 declare i8* @llvm.stacksave()
7735
7736Overview:
7737"""""""""
7738
7739The '``llvm.stacksave``' intrinsic is used to remember the current state
7740of the function stack, for use with
7741:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7742implementing language features like scoped automatic variable sized
7743arrays in C99.
7744
7745Semantics:
7746""""""""""
7747
7748This intrinsic returns a opaque pointer value that can be passed to
7749:ref:`llvm.stackrestore <int_stackrestore>`. When an
7750``llvm.stackrestore`` intrinsic is executed with a value saved from
7751``llvm.stacksave``, it effectively restores the state of the stack to
7752the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7753practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7754were allocated after the ``llvm.stacksave`` was executed.
7755
7756.. _int_stackrestore:
7757
7758'``llvm.stackrestore``' Intrinsic
7759^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7760
7761Syntax:
7762"""""""
7763
7764::
7765
7766 declare void @llvm.stackrestore(i8* %ptr)
7767
7768Overview:
7769"""""""""
7770
7771The '``llvm.stackrestore``' intrinsic is used to restore the state of
7772the function stack to the state it was in when the corresponding
7773:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7774useful for implementing language features like scoped automatic variable
7775sized arrays in C99.
7776
7777Semantics:
7778""""""""""
7779
7780See the description for :ref:`llvm.stacksave <int_stacksave>`.
7781
7782'``llvm.prefetch``' Intrinsic
7783^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7784
7785Syntax:
7786"""""""
7787
7788::
7789
7790 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7791
7792Overview:
7793"""""""""
7794
7795The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7796insert a prefetch instruction if supported; otherwise, it is a noop.
7797Prefetches have no effect on the behavior of the program but can change
7798its performance characteristics.
7799
7800Arguments:
7801""""""""""
7802
7803``address`` is the address to be prefetched, ``rw`` is the specifier
7804determining if the fetch should be for a read (0) or write (1), and
7805``locality`` is a temporal locality specifier ranging from (0) - no
7806locality, to (3) - extremely local keep in cache. The ``cache type``
7807specifies whether the prefetch is performed on the data (1) or
7808instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7809arguments must be constant integers.
7810
7811Semantics:
7812""""""""""
7813
7814This intrinsic does not modify the behavior of the program. In
7815particular, prefetches cannot trap and do not produce a value. On
7816targets that support this intrinsic, the prefetch can provide hints to
7817the processor cache for better performance.
7818
7819'``llvm.pcmarker``' Intrinsic
7820^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7821
7822Syntax:
7823"""""""
7824
7825::
7826
7827 declare void @llvm.pcmarker(i32 <id>)
7828
7829Overview:
7830"""""""""
7831
7832The '``llvm.pcmarker``' intrinsic is a method to export a Program
7833Counter (PC) in a region of code to simulators and other tools. The
7834method is target specific, but it is expected that the marker will use
7835exported symbols to transmit the PC of the marker. The marker makes no
7836guarantees that it will remain with any specific instruction after
7837optimizations. It is possible that the presence of a marker will inhibit
7838optimizations. The intended use is to be inserted after optimizations to
7839allow correlations of simulation runs.
7840
7841Arguments:
7842""""""""""
7843
7844``id`` is a numerical id identifying the marker.
7845
7846Semantics:
7847""""""""""
7848
7849This intrinsic does not modify the behavior of the program. Backends
7850that do not support this intrinsic may ignore it.
7851
7852'``llvm.readcyclecounter``' Intrinsic
7853^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7854
7855Syntax:
7856"""""""
7857
7858::
7859
7860 declare i64 @llvm.readcyclecounter()
7861
7862Overview:
7863"""""""""
7864
7865The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7866counter register (or similar low latency, high accuracy clocks) on those
7867targets that support it. On X86, it should map to RDTSC. On Alpha, it
7868should map to RPCC. As the backing counters overflow quickly (on the
7869order of 9 seconds on alpha), this should only be used for small
7870timings.
7871
7872Semantics:
7873""""""""""
7874
7875When directly supported, reading the cycle counter should not modify any
7876memory. Implementations are allowed to either return a application
7877specific value or a system wide value. On backends without support, this
7878is lowered to a constant 0.
7879
Tim Northoverbc933082013-05-23 19:11:20 +00007880Note that runtime support may be conditional on the privilege-level code is
7881running at and the host platform.
7882
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007883'``llvm.clear_cache``' Intrinsic
7884^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7885
7886Syntax:
7887"""""""
7888
7889::
7890
7891 declare void @llvm.clear_cache(i8*, i8*)
7892
7893Overview:
7894"""""""""
7895
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007896The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7897in the specified range to the execution unit of the processor. On
7898targets with non-unified instruction and data cache, the implementation
7899flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007900
7901Semantics:
7902""""""""""
7903
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007904On platforms with coherent instruction and data caches (e.g. x86), this
7905intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007906cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007907instructions or a system call, if cache flushing requires special
7908privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007909
Sean Silvad02bf3e2014-04-07 22:29:53 +00007910The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007911time library.
Renato Golin93010e62014-03-26 14:01:32 +00007912
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007913This instrinsic does *not* empty the instruction pipeline. Modifications
7914of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007915
Justin Bogner61ba2e32014-12-08 18:02:35 +00007916'``llvm.instrprof_increment``' Intrinsic
7917^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7918
7919Syntax:
7920"""""""
7921
7922::
7923
7924 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
7925 i32 <num-counters>, i32 <index>)
7926
7927Overview:
7928"""""""""
7929
7930The '``llvm.instrprof_increment``' intrinsic can be emitted by a
7931frontend for use with instrumentation based profiling. These will be
7932lowered by the ``-instrprof`` pass to generate execution counts of a
7933program at runtime.
7934
7935Arguments:
7936""""""""""
7937
7938The first argument is a pointer to a global variable containing the
7939name of the entity being instrumented. This should generally be the
7940(mangled) function name for a set of counters.
7941
7942The second argument is a hash value that can be used by the consumer
7943of the profile data to detect changes to the instrumented source, and
7944the third is the number of counters associated with ``name``. It is an
7945error if ``hash`` or ``num-counters`` differ between two instances of
7946``instrprof_increment`` that refer to the same name.
7947
7948The last argument refers to which of the counters for ``name`` should
7949be incremented. It should be a value between 0 and ``num-counters``.
7950
7951Semantics:
7952""""""""""
7953
7954This intrinsic represents an increment of a profiling counter. It will
7955cause the ``-instrprof`` pass to generate the appropriate data
7956structures and the code to increment the appropriate value, in a
7957format that can be written out by a compiler runtime and consumed via
7958the ``llvm-profdata`` tool.
7959
Sean Silvab084af42012-12-07 10:36:55 +00007960Standard C Library Intrinsics
7961-----------------------------
7962
7963LLVM provides intrinsics for a few important standard C library
7964functions. These intrinsics allow source-language front-ends to pass
7965information about the alignment of the pointer arguments to the code
7966generator, providing opportunity for more efficient code generation.
7967
7968.. _int_memcpy:
7969
7970'``llvm.memcpy``' Intrinsic
7971^^^^^^^^^^^^^^^^^^^^^^^^^^^
7972
7973Syntax:
7974"""""""
7975
7976This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7977integer bit width and for different address spaces. Not all targets
7978support all bit widths however.
7979
7980::
7981
7982 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7983 i32 <len>, i32 <align>, i1 <isvolatile>)
7984 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7985 i64 <len>, i32 <align>, i1 <isvolatile>)
7986
7987Overview:
7988"""""""""
7989
7990The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7991source location to the destination location.
7992
7993Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7994intrinsics do not return a value, takes extra alignment/isvolatile
7995arguments and the pointers can be in specified address spaces.
7996
7997Arguments:
7998""""""""""
7999
8000The first argument is a pointer to the destination, the second is a
8001pointer to the source. The third argument is an integer argument
8002specifying the number of bytes to copy, the fourth argument is the
8003alignment of the source and destination locations, and the fifth is a
8004boolean indicating a volatile access.
8005
8006If the call to this intrinsic has an alignment value that is not 0 or 1,
8007then the caller guarantees that both the source and destination pointers
8008are aligned to that boundary.
8009
8010If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
8011a :ref:`volatile operation <volatile>`. The detailed access behavior is not
8012very cleanly specified and it is unwise to depend on it.
8013
8014Semantics:
8015""""""""""
8016
8017The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
8018source location to the destination location, which are not allowed to
8019overlap. It copies "len" bytes of memory over. If the argument is known
8020to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00008021argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008022
8023'``llvm.memmove``' Intrinsic
8024^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8025
8026Syntax:
8027"""""""
8028
8029This is an overloaded intrinsic. You can use llvm.memmove on any integer
8030bit width and for different address space. Not all targets support all
8031bit widths however.
8032
8033::
8034
8035 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
8036 i32 <len>, i32 <align>, i1 <isvolatile>)
8037 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
8038 i64 <len>, i32 <align>, i1 <isvolatile>)
8039
8040Overview:
8041"""""""""
8042
8043The '``llvm.memmove.*``' intrinsics move a block of memory from the
8044source location to the destination location. It is similar to the
8045'``llvm.memcpy``' intrinsic but allows the two memory locations to
8046overlap.
8047
8048Note that, unlike the standard libc function, the ``llvm.memmove.*``
8049intrinsics do not return a value, takes extra alignment/isvolatile
8050arguments and the pointers can be in specified address spaces.
8051
8052Arguments:
8053""""""""""
8054
8055The first argument is a pointer to the destination, the second is a
8056pointer to the source. The third argument is an integer argument
8057specifying the number of bytes to copy, the fourth argument is the
8058alignment of the source and destination locations, and the fifth is a
8059boolean indicating a volatile access.
8060
8061If the call to this intrinsic has an alignment value that is not 0 or 1,
8062then the caller guarantees that the source and destination pointers are
8063aligned to that boundary.
8064
8065If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
8066is a :ref:`volatile operation <volatile>`. The detailed access behavior is
8067not very cleanly specified and it is unwise to depend on it.
8068
8069Semantics:
8070""""""""""
8071
8072The '``llvm.memmove.*``' intrinsics copy a block of memory from the
8073source location to the destination location, which may overlap. It
8074copies "len" bytes of memory over. If the argument is known to be
8075aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00008076otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008077
8078'``llvm.memset.*``' Intrinsics
8079^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8080
8081Syntax:
8082"""""""
8083
8084This is an overloaded intrinsic. You can use llvm.memset on any integer
8085bit width and for different address spaces. However, not all targets
8086support all bit widths.
8087
8088::
8089
8090 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
8091 i32 <len>, i32 <align>, i1 <isvolatile>)
8092 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
8093 i64 <len>, i32 <align>, i1 <isvolatile>)
8094
8095Overview:
8096"""""""""
8097
8098The '``llvm.memset.*``' intrinsics fill a block of memory with a
8099particular byte value.
8100
8101Note that, unlike the standard libc function, the ``llvm.memset``
8102intrinsic does not return a value and takes extra alignment/volatile
8103arguments. Also, the destination can be in an arbitrary address space.
8104
8105Arguments:
8106""""""""""
8107
8108The first argument is a pointer to the destination to fill, the second
8109is the byte value with which to fill it, the third argument is an
8110integer argument specifying the number of bytes to fill, and the fourth
8111argument is the known alignment of the destination location.
8112
8113If the call to this intrinsic has an alignment value that is not 0 or 1,
8114then the caller guarantees that the destination pointer is aligned to
8115that boundary.
8116
8117If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
8118a :ref:`volatile operation <volatile>`. The detailed access behavior is not
8119very cleanly specified and it is unwise to depend on it.
8120
8121Semantics:
8122""""""""""
8123
8124The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
8125at the destination location. If the argument is known to be aligned to
8126some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00008127it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008128
8129'``llvm.sqrt.*``' Intrinsic
8130^^^^^^^^^^^^^^^^^^^^^^^^^^^
8131
8132Syntax:
8133"""""""
8134
8135This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
8136floating point or vector of floating point type. Not all targets support
8137all types however.
8138
8139::
8140
8141 declare float @llvm.sqrt.f32(float %Val)
8142 declare double @llvm.sqrt.f64(double %Val)
8143 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
8144 declare fp128 @llvm.sqrt.f128(fp128 %Val)
8145 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
8146
8147Overview:
8148"""""""""
8149
8150The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
8151returning the same value as the libm '``sqrt``' functions would. Unlike
8152``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
8153negative numbers other than -0.0 (which allows for better optimization,
8154because there is no need to worry about errno being set).
8155``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
8156
8157Arguments:
8158""""""""""
8159
8160The argument and return value are floating point numbers of the same
8161type.
8162
8163Semantics:
8164""""""""""
8165
8166This function returns the sqrt of the specified operand if it is a
8167nonnegative floating point number.
8168
8169'``llvm.powi.*``' Intrinsic
8170^^^^^^^^^^^^^^^^^^^^^^^^^^^
8171
8172Syntax:
8173"""""""
8174
8175This is an overloaded intrinsic. You can use ``llvm.powi`` on any
8176floating point or vector of floating point type. Not all targets support
8177all types however.
8178
8179::
8180
8181 declare float @llvm.powi.f32(float %Val, i32 %power)
8182 declare double @llvm.powi.f64(double %Val, i32 %power)
8183 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
8184 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
8185 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
8186
8187Overview:
8188"""""""""
8189
8190The '``llvm.powi.*``' intrinsics return the first operand raised to the
8191specified (positive or negative) power. The order of evaluation of
8192multiplications is not defined. When a vector of floating point type is
8193used, the second argument remains a scalar integer value.
8194
8195Arguments:
8196""""""""""
8197
8198The second argument is an integer power, and the first is a value to
8199raise to that power.
8200
8201Semantics:
8202""""""""""
8203
8204This function returns the first value raised to the second power with an
8205unspecified sequence of rounding operations.
8206
8207'``llvm.sin.*``' Intrinsic
8208^^^^^^^^^^^^^^^^^^^^^^^^^^
8209
8210Syntax:
8211"""""""
8212
8213This is an overloaded intrinsic. You can use ``llvm.sin`` on any
8214floating point or vector of floating point type. Not all targets support
8215all types however.
8216
8217::
8218
8219 declare float @llvm.sin.f32(float %Val)
8220 declare double @llvm.sin.f64(double %Val)
8221 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
8222 declare fp128 @llvm.sin.f128(fp128 %Val)
8223 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
8224
8225Overview:
8226"""""""""
8227
8228The '``llvm.sin.*``' intrinsics return the sine of the operand.
8229
8230Arguments:
8231""""""""""
8232
8233The argument and return value are floating point numbers of the same
8234type.
8235
8236Semantics:
8237""""""""""
8238
8239This function returns the sine of the specified operand, returning the
8240same values as the libm ``sin`` functions would, and handles error
8241conditions in the same way.
8242
8243'``llvm.cos.*``' Intrinsic
8244^^^^^^^^^^^^^^^^^^^^^^^^^^
8245
8246Syntax:
8247"""""""
8248
8249This is an overloaded intrinsic. You can use ``llvm.cos`` on any
8250floating point or vector of floating point type. Not all targets support
8251all types however.
8252
8253::
8254
8255 declare float @llvm.cos.f32(float %Val)
8256 declare double @llvm.cos.f64(double %Val)
8257 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
8258 declare fp128 @llvm.cos.f128(fp128 %Val)
8259 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
8260
8261Overview:
8262"""""""""
8263
8264The '``llvm.cos.*``' intrinsics return the cosine of the operand.
8265
8266Arguments:
8267""""""""""
8268
8269The argument and return value are floating point numbers of the same
8270type.
8271
8272Semantics:
8273""""""""""
8274
8275This function returns the cosine of the specified operand, returning the
8276same values as the libm ``cos`` functions would, and handles error
8277conditions in the same way.
8278
8279'``llvm.pow.*``' Intrinsic
8280^^^^^^^^^^^^^^^^^^^^^^^^^^
8281
8282Syntax:
8283"""""""
8284
8285This is an overloaded intrinsic. You can use ``llvm.pow`` on any
8286floating point or vector of floating point type. Not all targets support
8287all types however.
8288
8289::
8290
8291 declare float @llvm.pow.f32(float %Val, float %Power)
8292 declare double @llvm.pow.f64(double %Val, double %Power)
8293 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
8294 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
8295 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
8296
8297Overview:
8298"""""""""
8299
8300The '``llvm.pow.*``' intrinsics return the first operand raised to the
8301specified (positive or negative) power.
8302
8303Arguments:
8304""""""""""
8305
8306The second argument is a floating point power, and the first is a value
8307to raise to that power.
8308
8309Semantics:
8310""""""""""
8311
8312This function returns the first value raised to the second power,
8313returning the same values as the libm ``pow`` functions would, and
8314handles error conditions in the same way.
8315
8316'``llvm.exp.*``' Intrinsic
8317^^^^^^^^^^^^^^^^^^^^^^^^^^
8318
8319Syntax:
8320"""""""
8321
8322This is an overloaded intrinsic. You can use ``llvm.exp`` on any
8323floating point or vector of floating point type. Not all targets support
8324all types however.
8325
8326::
8327
8328 declare float @llvm.exp.f32(float %Val)
8329 declare double @llvm.exp.f64(double %Val)
8330 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
8331 declare fp128 @llvm.exp.f128(fp128 %Val)
8332 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
8333
8334Overview:
8335"""""""""
8336
8337The '``llvm.exp.*``' intrinsics perform the exp function.
8338
8339Arguments:
8340""""""""""
8341
8342The argument and return value are floating point numbers of the same
8343type.
8344
8345Semantics:
8346""""""""""
8347
8348This function returns the same values as the libm ``exp`` functions
8349would, and handles error conditions in the same way.
8350
8351'``llvm.exp2.*``' Intrinsic
8352^^^^^^^^^^^^^^^^^^^^^^^^^^^
8353
8354Syntax:
8355"""""""
8356
8357This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
8358floating point or vector of floating point type. Not all targets support
8359all types however.
8360
8361::
8362
8363 declare float @llvm.exp2.f32(float %Val)
8364 declare double @llvm.exp2.f64(double %Val)
8365 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
8366 declare fp128 @llvm.exp2.f128(fp128 %Val)
8367 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
8368
8369Overview:
8370"""""""""
8371
8372The '``llvm.exp2.*``' intrinsics perform the exp2 function.
8373
8374Arguments:
8375""""""""""
8376
8377The argument and return value are floating point numbers of the same
8378type.
8379
8380Semantics:
8381""""""""""
8382
8383This function returns the same values as the libm ``exp2`` functions
8384would, and handles error conditions in the same way.
8385
8386'``llvm.log.*``' Intrinsic
8387^^^^^^^^^^^^^^^^^^^^^^^^^^
8388
8389Syntax:
8390"""""""
8391
8392This is an overloaded intrinsic. You can use ``llvm.log`` on any
8393floating point or vector of floating point type. Not all targets support
8394all types however.
8395
8396::
8397
8398 declare float @llvm.log.f32(float %Val)
8399 declare double @llvm.log.f64(double %Val)
8400 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
8401 declare fp128 @llvm.log.f128(fp128 %Val)
8402 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
8403
8404Overview:
8405"""""""""
8406
8407The '``llvm.log.*``' intrinsics perform the log function.
8408
8409Arguments:
8410""""""""""
8411
8412The argument and return value are floating point numbers of the same
8413type.
8414
8415Semantics:
8416""""""""""
8417
8418This function returns the same values as the libm ``log`` functions
8419would, and handles error conditions in the same way.
8420
8421'``llvm.log10.*``' Intrinsic
8422^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8423
8424Syntax:
8425"""""""
8426
8427This is an overloaded intrinsic. You can use ``llvm.log10`` on any
8428floating point or vector of floating point type. Not all targets support
8429all types however.
8430
8431::
8432
8433 declare float @llvm.log10.f32(float %Val)
8434 declare double @llvm.log10.f64(double %Val)
8435 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
8436 declare fp128 @llvm.log10.f128(fp128 %Val)
8437 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
8438
8439Overview:
8440"""""""""
8441
8442The '``llvm.log10.*``' intrinsics perform the log10 function.
8443
8444Arguments:
8445""""""""""
8446
8447The argument and return value are floating point numbers of the same
8448type.
8449
8450Semantics:
8451""""""""""
8452
8453This function returns the same values as the libm ``log10`` functions
8454would, and handles error conditions in the same way.
8455
8456'``llvm.log2.*``' Intrinsic
8457^^^^^^^^^^^^^^^^^^^^^^^^^^^
8458
8459Syntax:
8460"""""""
8461
8462This is an overloaded intrinsic. You can use ``llvm.log2`` on any
8463floating point or vector of floating point type. Not all targets support
8464all types however.
8465
8466::
8467
8468 declare float @llvm.log2.f32(float %Val)
8469 declare double @llvm.log2.f64(double %Val)
8470 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
8471 declare fp128 @llvm.log2.f128(fp128 %Val)
8472 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
8473
8474Overview:
8475"""""""""
8476
8477The '``llvm.log2.*``' intrinsics perform the log2 function.
8478
8479Arguments:
8480""""""""""
8481
8482The argument and return value are floating point numbers of the same
8483type.
8484
8485Semantics:
8486""""""""""
8487
8488This function returns the same values as the libm ``log2`` functions
8489would, and handles error conditions in the same way.
8490
8491'``llvm.fma.*``' Intrinsic
8492^^^^^^^^^^^^^^^^^^^^^^^^^^
8493
8494Syntax:
8495"""""""
8496
8497This is an overloaded intrinsic. You can use ``llvm.fma`` on any
8498floating point or vector of floating point type. Not all targets support
8499all types however.
8500
8501::
8502
8503 declare float @llvm.fma.f32(float %a, float %b, float %c)
8504 declare double @llvm.fma.f64(double %a, double %b, double %c)
8505 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
8506 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
8507 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
8508
8509Overview:
8510"""""""""
8511
8512The '``llvm.fma.*``' intrinsics perform the fused multiply-add
8513operation.
8514
8515Arguments:
8516""""""""""
8517
8518The argument and return value are floating point numbers of the same
8519type.
8520
8521Semantics:
8522""""""""""
8523
8524This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008525would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00008526
8527'``llvm.fabs.*``' Intrinsic
8528^^^^^^^^^^^^^^^^^^^^^^^^^^^
8529
8530Syntax:
8531"""""""
8532
8533This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
8534floating point or vector of floating point type. Not all targets support
8535all types however.
8536
8537::
8538
8539 declare float @llvm.fabs.f32(float %Val)
8540 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008541 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008542 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008543 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008544
8545Overview:
8546"""""""""
8547
8548The '``llvm.fabs.*``' intrinsics return the absolute value of the
8549operand.
8550
8551Arguments:
8552""""""""""
8553
8554The argument and return value are floating point numbers of the same
8555type.
8556
8557Semantics:
8558""""""""""
8559
8560This function returns the same values as the libm ``fabs`` functions
8561would, and handles error conditions in the same way.
8562
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008563'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008564^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008565
8566Syntax:
8567"""""""
8568
8569This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
8570floating point or vector of floating point type. Not all targets support
8571all types however.
8572
8573::
8574
Matt Arsenault64313c92014-10-22 18:25:02 +00008575 declare float @llvm.minnum.f32(float %Val0, float %Val1)
8576 declare double @llvm.minnum.f64(double %Val0, double %Val1)
8577 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8578 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
8579 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008580
8581Overview:
8582"""""""""
8583
8584The '``llvm.minnum.*``' intrinsics return the minimum of the two
8585arguments.
8586
8587
8588Arguments:
8589""""""""""
8590
8591The arguments and return value are floating point numbers of the same
8592type.
8593
8594Semantics:
8595""""""""""
8596
8597Follows the IEEE-754 semantics for minNum, which also match for libm's
8598fmin.
8599
8600If either operand is a NaN, returns the other non-NaN operand. Returns
8601NaN only if both operands are NaN. If the operands compare equal,
8602returns a value that compares equal to both operands. This means that
8603fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8604
8605'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008607
8608Syntax:
8609"""""""
8610
8611This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
8612floating point or vector of floating point type. Not all targets support
8613all types however.
8614
8615::
8616
Matt Arsenault64313c92014-10-22 18:25:02 +00008617 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
8618 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
8619 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8620 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
8621 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008622
8623Overview:
8624"""""""""
8625
8626The '``llvm.maxnum.*``' intrinsics return the maximum of the two
8627arguments.
8628
8629
8630Arguments:
8631""""""""""
8632
8633The arguments and return value are floating point numbers of the same
8634type.
8635
8636Semantics:
8637""""""""""
8638Follows the IEEE-754 semantics for maxNum, which also match for libm's
8639fmax.
8640
8641If either operand is a NaN, returns the other non-NaN operand. Returns
8642NaN only if both operands are NaN. If the operands compare equal,
8643returns a value that compares equal to both operands. This means that
8644fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8645
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00008646'``llvm.copysign.*``' Intrinsic
8647^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8648
8649Syntax:
8650"""""""
8651
8652This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
8653floating point or vector of floating point type. Not all targets support
8654all types however.
8655
8656::
8657
8658 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
8659 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
8660 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
8661 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8662 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
8663
8664Overview:
8665"""""""""
8666
8667The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8668first operand and the sign of the second operand.
8669
8670Arguments:
8671""""""""""
8672
8673The arguments and return value are floating point numbers of the same
8674type.
8675
8676Semantics:
8677""""""""""
8678
8679This function returns the same values as the libm ``copysign``
8680functions would, and handles error conditions in the same way.
8681
Sean Silvab084af42012-12-07 10:36:55 +00008682'``llvm.floor.*``' Intrinsic
8683^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8684
8685Syntax:
8686"""""""
8687
8688This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8689floating point or vector of floating point type. Not all targets support
8690all types however.
8691
8692::
8693
8694 declare float @llvm.floor.f32(float %Val)
8695 declare double @llvm.floor.f64(double %Val)
8696 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
8697 declare fp128 @llvm.floor.f128(fp128 %Val)
8698 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
8699
8700Overview:
8701"""""""""
8702
8703The '``llvm.floor.*``' intrinsics return the floor of the operand.
8704
8705Arguments:
8706""""""""""
8707
8708The argument and return value are floating point numbers of the same
8709type.
8710
8711Semantics:
8712""""""""""
8713
8714This function returns the same values as the libm ``floor`` functions
8715would, and handles error conditions in the same way.
8716
8717'``llvm.ceil.*``' Intrinsic
8718^^^^^^^^^^^^^^^^^^^^^^^^^^^
8719
8720Syntax:
8721"""""""
8722
8723This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8724floating point or vector of floating point type. Not all targets support
8725all types however.
8726
8727::
8728
8729 declare float @llvm.ceil.f32(float %Val)
8730 declare double @llvm.ceil.f64(double %Val)
8731 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8732 declare fp128 @llvm.ceil.f128(fp128 %Val)
8733 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8734
8735Overview:
8736"""""""""
8737
8738The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8739
8740Arguments:
8741""""""""""
8742
8743The argument and return value are floating point numbers of the same
8744type.
8745
8746Semantics:
8747""""""""""
8748
8749This function returns the same values as the libm ``ceil`` functions
8750would, and handles error conditions in the same way.
8751
8752'``llvm.trunc.*``' Intrinsic
8753^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8754
8755Syntax:
8756"""""""
8757
8758This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8759floating point or vector of floating point type. Not all targets support
8760all types however.
8761
8762::
8763
8764 declare float @llvm.trunc.f32(float %Val)
8765 declare double @llvm.trunc.f64(double %Val)
8766 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8767 declare fp128 @llvm.trunc.f128(fp128 %Val)
8768 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8769
8770Overview:
8771"""""""""
8772
8773The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8774nearest integer not larger in magnitude than the operand.
8775
8776Arguments:
8777""""""""""
8778
8779The argument and return value are floating point numbers of the same
8780type.
8781
8782Semantics:
8783""""""""""
8784
8785This function returns the same values as the libm ``trunc`` functions
8786would, and handles error conditions in the same way.
8787
8788'``llvm.rint.*``' Intrinsic
8789^^^^^^^^^^^^^^^^^^^^^^^^^^^
8790
8791Syntax:
8792"""""""
8793
8794This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8795floating point or vector of floating point type. Not all targets support
8796all types however.
8797
8798::
8799
8800 declare float @llvm.rint.f32(float %Val)
8801 declare double @llvm.rint.f64(double %Val)
8802 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8803 declare fp128 @llvm.rint.f128(fp128 %Val)
8804 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8805
8806Overview:
8807"""""""""
8808
8809The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8810nearest integer. It may raise an inexact floating-point exception if the
8811operand isn't an integer.
8812
8813Arguments:
8814""""""""""
8815
8816The argument and return value are floating point numbers of the same
8817type.
8818
8819Semantics:
8820""""""""""
8821
8822This function returns the same values as the libm ``rint`` functions
8823would, and handles error conditions in the same way.
8824
8825'``llvm.nearbyint.*``' Intrinsic
8826^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8827
8828Syntax:
8829"""""""
8830
8831This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8832floating point or vector of floating point type. Not all targets support
8833all types however.
8834
8835::
8836
8837 declare float @llvm.nearbyint.f32(float %Val)
8838 declare double @llvm.nearbyint.f64(double %Val)
8839 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8840 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8841 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8842
8843Overview:
8844"""""""""
8845
8846The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8847nearest integer.
8848
8849Arguments:
8850""""""""""
8851
8852The argument and return value are floating point numbers of the same
8853type.
8854
8855Semantics:
8856""""""""""
8857
8858This function returns the same values as the libm ``nearbyint``
8859functions would, and handles error conditions in the same way.
8860
Hal Finkel171817e2013-08-07 22:49:12 +00008861'``llvm.round.*``' Intrinsic
8862^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8863
8864Syntax:
8865"""""""
8866
8867This is an overloaded intrinsic. You can use ``llvm.round`` on any
8868floating point or vector of floating point type. Not all targets support
8869all types however.
8870
8871::
8872
8873 declare float @llvm.round.f32(float %Val)
8874 declare double @llvm.round.f64(double %Val)
8875 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8876 declare fp128 @llvm.round.f128(fp128 %Val)
8877 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8878
8879Overview:
8880"""""""""
8881
8882The '``llvm.round.*``' intrinsics returns the operand rounded to the
8883nearest integer.
8884
8885Arguments:
8886""""""""""
8887
8888The argument and return value are floating point numbers of the same
8889type.
8890
8891Semantics:
8892""""""""""
8893
8894This function returns the same values as the libm ``round``
8895functions would, and handles error conditions in the same way.
8896
Sean Silvab084af42012-12-07 10:36:55 +00008897Bit Manipulation Intrinsics
8898---------------------------
8899
8900LLVM provides intrinsics for a few important bit manipulation
8901operations. These allow efficient code generation for some algorithms.
8902
8903'``llvm.bswap.*``' Intrinsics
8904^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8905
8906Syntax:
8907"""""""
8908
8909This is an overloaded intrinsic function. You can use bswap on any
8910integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8911
8912::
8913
8914 declare i16 @llvm.bswap.i16(i16 <id>)
8915 declare i32 @llvm.bswap.i32(i32 <id>)
8916 declare i64 @llvm.bswap.i64(i64 <id>)
8917
8918Overview:
8919"""""""""
8920
8921The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8922values with an even number of bytes (positive multiple of 16 bits).
8923These are useful for performing operations on data that is not in the
8924target's native byte order.
8925
8926Semantics:
8927""""""""""
8928
8929The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8930and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8931intrinsic returns an i32 value that has the four bytes of the input i32
8932swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8933returned i32 will have its bytes in 3, 2, 1, 0 order. The
8934``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8935concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8936respectively).
8937
8938'``llvm.ctpop.*``' Intrinsic
8939^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8940
8941Syntax:
8942"""""""
8943
8944This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8945bit width, or on any vector with integer elements. Not all targets
8946support all bit widths or vector types, however.
8947
8948::
8949
8950 declare i8 @llvm.ctpop.i8(i8 <src>)
8951 declare i16 @llvm.ctpop.i16(i16 <src>)
8952 declare i32 @llvm.ctpop.i32(i32 <src>)
8953 declare i64 @llvm.ctpop.i64(i64 <src>)
8954 declare i256 @llvm.ctpop.i256(i256 <src>)
8955 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8956
8957Overview:
8958"""""""""
8959
8960The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8961in a value.
8962
8963Arguments:
8964""""""""""
8965
8966The only argument is the value to be counted. The argument may be of any
8967integer type, or a vector with integer elements. The return type must
8968match the argument type.
8969
8970Semantics:
8971""""""""""
8972
8973The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8974each element of a vector.
8975
8976'``llvm.ctlz.*``' Intrinsic
8977^^^^^^^^^^^^^^^^^^^^^^^^^^^
8978
8979Syntax:
8980"""""""
8981
8982This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8983integer bit width, or any vector whose elements are integers. Not all
8984targets support all bit widths or vector types, however.
8985
8986::
8987
8988 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8989 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8990 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8991 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8992 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8993 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8994
8995Overview:
8996"""""""""
8997
8998The '``llvm.ctlz``' family of intrinsic functions counts the number of
8999leading zeros in a variable.
9000
9001Arguments:
9002""""""""""
9003
9004The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00009005any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00009006type must match the first argument type.
9007
9008The second argument must be a constant and is a flag to indicate whether
9009the intrinsic should ensure that a zero as the first argument produces a
9010defined result. Historically some architectures did not provide a
9011defined result for zero values as efficiently, and many algorithms are
9012now predicated on avoiding zero-value inputs.
9013
9014Semantics:
9015""""""""""
9016
9017The '``llvm.ctlz``' intrinsic counts the leading (most significant)
9018zeros in a variable, or within each element of the vector. If
9019``src == 0`` then the result is the size in bits of the type of ``src``
9020if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
9021``llvm.ctlz(i32 2) = 30``.
9022
9023'``llvm.cttz.*``' Intrinsic
9024^^^^^^^^^^^^^^^^^^^^^^^^^^^
9025
9026Syntax:
9027"""""""
9028
9029This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
9030integer bit width, or any vector of integer elements. Not all targets
9031support all bit widths or vector types, however.
9032
9033::
9034
9035 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
9036 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
9037 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
9038 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
9039 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
9040 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
9041
9042Overview:
9043"""""""""
9044
9045The '``llvm.cttz``' family of intrinsic functions counts the number of
9046trailing zeros.
9047
9048Arguments:
9049""""""""""
9050
9051The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00009052any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00009053type must match the first argument type.
9054
9055The second argument must be a constant and is a flag to indicate whether
9056the intrinsic should ensure that a zero as the first argument produces a
9057defined result. Historically some architectures did not provide a
9058defined result for zero values as efficiently, and many algorithms are
9059now predicated on avoiding zero-value inputs.
9060
9061Semantics:
9062""""""""""
9063
9064The '``llvm.cttz``' intrinsic counts the trailing (least significant)
9065zeros in a variable, or within each element of a vector. If ``src == 0``
9066then the result is the size in bits of the type of ``src`` if
9067``is_zero_undef == 0`` and ``undef`` otherwise. For example,
9068``llvm.cttz(2) = 1``.
9069
Philip Reames34843ae2015-03-05 05:55:55 +00009070.. _int_overflow:
9071
Sean Silvab084af42012-12-07 10:36:55 +00009072Arithmetic with Overflow Intrinsics
9073-----------------------------------
9074
9075LLVM provides intrinsics for some arithmetic with overflow operations.
9076
9077'``llvm.sadd.with.overflow.*``' Intrinsics
9078^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9079
9080Syntax:
9081"""""""
9082
9083This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
9084on any integer bit width.
9085
9086::
9087
9088 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
9089 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
9090 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
9091
9092Overview:
9093"""""""""
9094
9095The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
9096a signed addition of the two arguments, and indicate whether an overflow
9097occurred during the signed summation.
9098
9099Arguments:
9100""""""""""
9101
9102The arguments (%a and %b) and the first element of the result structure
9103may be of integer types of any bit width, but they must have the same
9104bit width. The second element of the result structure must be of type
9105``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
9106addition.
9107
9108Semantics:
9109""""""""""
9110
9111The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009112a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00009113first element of which is the signed summation, and the second element
9114of which is a bit specifying if the signed summation resulted in an
9115overflow.
9116
9117Examples:
9118"""""""""
9119
9120.. code-block:: llvm
9121
9122 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
9123 %sum = extractvalue {i32, i1} %res, 0
9124 %obit = extractvalue {i32, i1} %res, 1
9125 br i1 %obit, label %overflow, label %normal
9126
9127'``llvm.uadd.with.overflow.*``' Intrinsics
9128^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9129
9130Syntax:
9131"""""""
9132
9133This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
9134on any integer bit width.
9135
9136::
9137
9138 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
9139 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
9140 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
9141
9142Overview:
9143"""""""""
9144
9145The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
9146an unsigned addition of the two arguments, and indicate whether a carry
9147occurred during the unsigned summation.
9148
9149Arguments:
9150""""""""""
9151
9152The arguments (%a and %b) and the first element of the result structure
9153may be of integer types of any bit width, but they must have the same
9154bit width. The second element of the result structure must be of type
9155``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9156addition.
9157
9158Semantics:
9159""""""""""
9160
9161The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009162an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00009163first element of which is the sum, and the second element of which is a
9164bit specifying if the unsigned summation resulted in a carry.
9165
9166Examples:
9167"""""""""
9168
9169.. code-block:: llvm
9170
9171 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
9172 %sum = extractvalue {i32, i1} %res, 0
9173 %obit = extractvalue {i32, i1} %res, 1
9174 br i1 %obit, label %carry, label %normal
9175
9176'``llvm.ssub.with.overflow.*``' Intrinsics
9177^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9178
9179Syntax:
9180"""""""
9181
9182This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
9183on any integer bit width.
9184
9185::
9186
9187 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
9188 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
9189 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
9190
9191Overview:
9192"""""""""
9193
9194The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
9195a signed subtraction of the two arguments, and indicate whether an
9196overflow occurred during the signed subtraction.
9197
9198Arguments:
9199""""""""""
9200
9201The arguments (%a and %b) and the first element of the result structure
9202may be of integer types of any bit width, but they must have the same
9203bit width. The second element of the result structure must be of type
9204``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
9205subtraction.
9206
9207Semantics:
9208""""""""""
9209
9210The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009211a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00009212first element of which is the subtraction, and the second element of
9213which is a bit specifying if the signed subtraction resulted in an
9214overflow.
9215
9216Examples:
9217"""""""""
9218
9219.. code-block:: llvm
9220
9221 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
9222 %sum = extractvalue {i32, i1} %res, 0
9223 %obit = extractvalue {i32, i1} %res, 1
9224 br i1 %obit, label %overflow, label %normal
9225
9226'``llvm.usub.with.overflow.*``' Intrinsics
9227^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9228
9229Syntax:
9230"""""""
9231
9232This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
9233on any integer bit width.
9234
9235::
9236
9237 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
9238 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
9239 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
9240
9241Overview:
9242"""""""""
9243
9244The '``llvm.usub.with.overflow``' family of intrinsic functions perform
9245an unsigned subtraction of the two arguments, and indicate whether an
9246overflow occurred during the unsigned subtraction.
9247
9248Arguments:
9249""""""""""
9250
9251The arguments (%a and %b) and the first element of the result structure
9252may be of integer types of any bit width, but they must have the same
9253bit width. The second element of the result structure must be of type
9254``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9255subtraction.
9256
9257Semantics:
9258""""""""""
9259
9260The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009261an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00009262the first element of which is the subtraction, and the second element of
9263which is a bit specifying if the unsigned subtraction resulted in an
9264overflow.
9265
9266Examples:
9267"""""""""
9268
9269.. code-block:: llvm
9270
9271 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
9272 %sum = extractvalue {i32, i1} %res, 0
9273 %obit = extractvalue {i32, i1} %res, 1
9274 br i1 %obit, label %overflow, label %normal
9275
9276'``llvm.smul.with.overflow.*``' Intrinsics
9277^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9278
9279Syntax:
9280"""""""
9281
9282This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
9283on any integer bit width.
9284
9285::
9286
9287 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
9288 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
9289 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
9290
9291Overview:
9292"""""""""
9293
9294The '``llvm.smul.with.overflow``' family of intrinsic functions perform
9295a signed multiplication of the two arguments, and indicate whether an
9296overflow occurred during the signed multiplication.
9297
9298Arguments:
9299""""""""""
9300
9301The arguments (%a and %b) and the first element of the result structure
9302may be of integer types of any bit width, but they must have the same
9303bit width. The second element of the result structure must be of type
9304``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
9305multiplication.
9306
9307Semantics:
9308""""""""""
9309
9310The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009311a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00009312the first element of which is the multiplication, and the second element
9313of which is a bit specifying if the signed multiplication resulted in an
9314overflow.
9315
9316Examples:
9317"""""""""
9318
9319.. code-block:: llvm
9320
9321 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
9322 %sum = extractvalue {i32, i1} %res, 0
9323 %obit = extractvalue {i32, i1} %res, 1
9324 br i1 %obit, label %overflow, label %normal
9325
9326'``llvm.umul.with.overflow.*``' Intrinsics
9327^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9328
9329Syntax:
9330"""""""
9331
9332This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
9333on any integer bit width.
9334
9335::
9336
9337 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
9338 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
9339 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
9340
9341Overview:
9342"""""""""
9343
9344The '``llvm.umul.with.overflow``' family of intrinsic functions perform
9345a unsigned multiplication of the two arguments, and indicate whether an
9346overflow occurred during the unsigned multiplication.
9347
9348Arguments:
9349""""""""""
9350
9351The arguments (%a and %b) and the first element of the result structure
9352may be of integer types of any bit width, but they must have the same
9353bit width. The second element of the result structure must be of type
9354``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9355multiplication.
9356
9357Semantics:
9358""""""""""
9359
9360The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009361an unsigned multiplication of the two arguments. They return a structure ---
9362the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00009363element of which is a bit specifying if the unsigned multiplication
9364resulted in an overflow.
9365
9366Examples:
9367"""""""""
9368
9369.. code-block:: llvm
9370
9371 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
9372 %sum = extractvalue {i32, i1} %res, 0
9373 %obit = extractvalue {i32, i1} %res, 1
9374 br i1 %obit, label %overflow, label %normal
9375
9376Specialised Arithmetic Intrinsics
9377---------------------------------
9378
9379'``llvm.fmuladd.*``' Intrinsic
9380^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9381
9382Syntax:
9383"""""""
9384
9385::
9386
9387 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
9388 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
9389
9390Overview:
9391"""""""""
9392
9393The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00009394expressions that can be fused if the code generator determines that (a) the
9395target instruction set has support for a fused operation, and (b) that the
9396fused operation is more efficient than the equivalent, separate pair of mul
9397and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00009398
9399Arguments:
9400""""""""""
9401
9402The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
9403multiplicands, a and b, and an addend c.
9404
9405Semantics:
9406""""""""""
9407
9408The expression:
9409
9410::
9411
9412 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
9413
9414is equivalent to the expression a \* b + c, except that rounding will
9415not be performed between the multiplication and addition steps if the
9416code generator fuses the operations. Fusion is not guaranteed, even if
9417the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009418corresponding llvm.fma.\* intrinsic function should be used
9419instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00009420
9421Examples:
9422"""""""""
9423
9424.. code-block:: llvm
9425
Tim Northover675a0962014-06-13 14:24:23 +00009426 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00009427
9428Half Precision Floating Point Intrinsics
9429----------------------------------------
9430
9431For most target platforms, half precision floating point is a
9432storage-only format. This means that it is a dense encoding (in memory)
9433but does not support computation in the format.
9434
9435This means that code must first load the half-precision floating point
9436value as an i16, then convert it to float with
9437:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
9438then be performed on the float value (including extending to double
9439etc). To store the value back to memory, it is first converted to float
9440if needed, then converted to i16 with
9441:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
9442i16 value.
9443
9444.. _int_convert_to_fp16:
9445
9446'``llvm.convert.to.fp16``' Intrinsic
9447^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9448
9449Syntax:
9450"""""""
9451
9452::
9453
Tim Northoverfd7e4242014-07-17 10:51:23 +00009454 declare i16 @llvm.convert.to.fp16.f32(float %a)
9455 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00009456
9457Overview:
9458"""""""""
9459
Tim Northoverfd7e4242014-07-17 10:51:23 +00009460The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9461conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00009462
9463Arguments:
9464""""""""""
9465
9466The intrinsic function contains single argument - the value to be
9467converted.
9468
9469Semantics:
9470""""""""""
9471
Tim Northoverfd7e4242014-07-17 10:51:23 +00009472The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9473conventional floating point format to half precision floating point format. The
9474return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00009475
9476Examples:
9477"""""""""
9478
9479.. code-block:: llvm
9480
Tim Northoverfd7e4242014-07-17 10:51:23 +00009481 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00009482 store i16 %res, i16* @x, align 2
9483
9484.. _int_convert_from_fp16:
9485
9486'``llvm.convert.from.fp16``' Intrinsic
9487^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9488
9489Syntax:
9490"""""""
9491
9492::
9493
Tim Northoverfd7e4242014-07-17 10:51:23 +00009494 declare float @llvm.convert.from.fp16.f32(i16 %a)
9495 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009496
9497Overview:
9498"""""""""
9499
9500The '``llvm.convert.from.fp16``' intrinsic function performs a
9501conversion from half precision floating point format to single precision
9502floating point format.
9503
9504Arguments:
9505""""""""""
9506
9507The intrinsic function contains single argument - the value to be
9508converted.
9509
9510Semantics:
9511""""""""""
9512
9513The '``llvm.convert.from.fp16``' intrinsic function performs a
9514conversion from half single precision floating point format to single
9515precision floating point format. The input half-float value is
9516represented by an ``i16`` value.
9517
9518Examples:
9519"""""""""
9520
9521.. code-block:: llvm
9522
David Blaikiec7aabbb2015-03-04 22:06:14 +00009523 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00009524 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009525
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00009526.. _dbg_intrinsics:
9527
Sean Silvab084af42012-12-07 10:36:55 +00009528Debugger Intrinsics
9529-------------------
9530
9531The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
9532prefix), are described in the `LLVM Source Level
9533Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
9534document.
9535
9536Exception Handling Intrinsics
9537-----------------------------
9538
9539The LLVM exception handling intrinsics (which all start with
9540``llvm.eh.`` prefix), are described in the `LLVM Exception
9541Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
9542
9543.. _int_trampoline:
9544
9545Trampoline Intrinsics
9546---------------------
9547
9548These intrinsics make it possible to excise one parameter, marked with
9549the :ref:`nest <nest>` attribute, from a function. The result is a
9550callable function pointer lacking the nest parameter - the caller does
9551not need to provide a value for it. Instead, the value to use is stored
9552in advance in a "trampoline", a block of memory usually allocated on the
9553stack, which also contains code to splice the nest value into the
9554argument list. This is used to implement the GCC nested function address
9555extension.
9556
9557For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
9558then the resulting function pointer has signature ``i32 (i32, i32)*``.
9559It can be created as follows:
9560
9561.. code-block:: llvm
9562
9563 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +00009564 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +00009565 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
9566 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
9567 %fp = bitcast i8* %p to i32 (i32, i32)*
9568
9569The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
9570``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
9571
9572.. _int_it:
9573
9574'``llvm.init.trampoline``' Intrinsic
9575^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9576
9577Syntax:
9578"""""""
9579
9580::
9581
9582 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
9583
9584Overview:
9585"""""""""
9586
9587This fills the memory pointed to by ``tramp`` with executable code,
9588turning it into a trampoline.
9589
9590Arguments:
9591""""""""""
9592
9593The ``llvm.init.trampoline`` intrinsic takes three arguments, all
9594pointers. The ``tramp`` argument must point to a sufficiently large and
9595sufficiently aligned block of memory; this memory is written to by the
9596intrinsic. Note that the size and the alignment are target-specific -
9597LLVM currently provides no portable way of determining them, so a
9598front-end that generates this intrinsic needs to have some
9599target-specific knowledge. The ``func`` argument must hold a function
9600bitcast to an ``i8*``.
9601
9602Semantics:
9603""""""""""
9604
9605The block of memory pointed to by ``tramp`` is filled with target
9606dependent code, turning it into a function. Then ``tramp`` needs to be
9607passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
9608be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
9609function's signature is the same as that of ``func`` with any arguments
9610marked with the ``nest`` attribute removed. At most one such ``nest``
9611argument is allowed, and it must be of pointer type. Calling the new
9612function is equivalent to calling ``func`` with the same argument list,
9613but with ``nval`` used for the missing ``nest`` argument. If, after
9614calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
9615modified, then the effect of any later call to the returned function
9616pointer is undefined.
9617
9618.. _int_at:
9619
9620'``llvm.adjust.trampoline``' Intrinsic
9621^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9622
9623Syntax:
9624"""""""
9625
9626::
9627
9628 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
9629
9630Overview:
9631"""""""""
9632
9633This performs any required machine-specific adjustment to the address of
9634a trampoline (passed as ``tramp``).
9635
9636Arguments:
9637""""""""""
9638
9639``tramp`` must point to a block of memory which already has trampoline
9640code filled in by a previous call to
9641:ref:`llvm.init.trampoline <int_it>`.
9642
9643Semantics:
9644""""""""""
9645
9646On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009647different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00009648intrinsic returns the executable address corresponding to ``tramp``
9649after performing the required machine specific adjustments. The pointer
9650returned can then be :ref:`bitcast and executed <int_trampoline>`.
9651
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009652Masked Vector Load and Store Intrinsics
9653---------------------------------------
9654
9655LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
9656
9657.. _int_mload:
9658
9659'``llvm.masked.load.*``' Intrinsics
9660^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9661
9662Syntax:
9663"""""""
9664This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
9665
9666::
9667
9668 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
9669 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
9670
9671Overview:
9672"""""""""
9673
9674Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes in the passthru operand.
9675
9676
9677Arguments:
9678""""""""""
9679
9680The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean 'i1' values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of passthru operand are the same vector types.
9681
9682
9683Semantics:
9684""""""""""
9685
9686The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
9687The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
9688
9689
9690::
9691
9692 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
9693
9694 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +00009695 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009696 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009697
9698.. _int_mstore:
9699
9700'``llvm.masked.store.*``' Intrinsics
9701^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9702
9703Syntax:
9704"""""""
9705This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
9706
9707::
9708
9709 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
9710 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
9711
9712Overview:
9713"""""""""
9714
9715Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
9716
9717Arguments:
9718""""""""""
9719
9720The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
9721
9722
9723Semantics:
9724""""""""""
9725
9726The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
9727The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
9728
9729::
9730
9731 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
9732
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009733 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +00009734 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009735 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
9736 store <16 x float> %res, <16 x float>* %ptr, align 4
9737
9738
Sean Silvab084af42012-12-07 10:36:55 +00009739Memory Use Markers
9740------------------
9741
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009742This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00009743memory objects and ranges where variables are immutable.
9744
Reid Klecknera534a382013-12-19 02:14:12 +00009745.. _int_lifestart:
9746
Sean Silvab084af42012-12-07 10:36:55 +00009747'``llvm.lifetime.start``' Intrinsic
9748^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9749
9750Syntax:
9751"""""""
9752
9753::
9754
9755 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
9756
9757Overview:
9758"""""""""
9759
9760The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
9761object's lifetime.
9762
9763Arguments:
9764""""""""""
9765
9766The first argument is a constant integer representing the size of the
9767object, or -1 if it is variable sized. The second argument is a pointer
9768to the object.
9769
9770Semantics:
9771""""""""""
9772
9773This intrinsic indicates that before this point in the code, the value
9774of the memory pointed to by ``ptr`` is dead. This means that it is known
9775to never be used and has an undefined value. A load from the pointer
9776that precedes this intrinsic can be replaced with ``'undef'``.
9777
Reid Klecknera534a382013-12-19 02:14:12 +00009778.. _int_lifeend:
9779
Sean Silvab084af42012-12-07 10:36:55 +00009780'``llvm.lifetime.end``' Intrinsic
9781^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9782
9783Syntax:
9784"""""""
9785
9786::
9787
9788 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
9789
9790Overview:
9791"""""""""
9792
9793The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
9794object's lifetime.
9795
9796Arguments:
9797""""""""""
9798
9799The first argument is a constant integer representing the size of the
9800object, or -1 if it is variable sized. The second argument is a pointer
9801to the object.
9802
9803Semantics:
9804""""""""""
9805
9806This intrinsic indicates that after this point in the code, the value of
9807the memory pointed to by ``ptr`` is dead. This means that it is known to
9808never be used and has an undefined value. Any stores into the memory
9809object following this intrinsic may be removed as dead.
9810
9811'``llvm.invariant.start``' Intrinsic
9812^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9813
9814Syntax:
9815"""""""
9816
9817::
9818
9819 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9820
9821Overview:
9822"""""""""
9823
9824The '``llvm.invariant.start``' intrinsic specifies that the contents of
9825a memory object will not change.
9826
9827Arguments:
9828""""""""""
9829
9830The first argument is a constant integer representing the size of the
9831object, or -1 if it is variable sized. The second argument is a pointer
9832to the object.
9833
9834Semantics:
9835""""""""""
9836
9837This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9838the return value, the referenced memory location is constant and
9839unchanging.
9840
9841'``llvm.invariant.end``' Intrinsic
9842^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9843
9844Syntax:
9845"""""""
9846
9847::
9848
9849 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9850
9851Overview:
9852"""""""""
9853
9854The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9855memory object are mutable.
9856
9857Arguments:
9858""""""""""
9859
9860The first argument is the matching ``llvm.invariant.start`` intrinsic.
9861The second argument is a constant integer representing the size of the
9862object, or -1 if it is variable sized and the third argument is a
9863pointer to the object.
9864
9865Semantics:
9866""""""""""
9867
9868This intrinsic indicates that the memory is mutable again.
9869
9870General Intrinsics
9871------------------
9872
9873This class of intrinsics is designed to be generic and has no specific
9874purpose.
9875
9876'``llvm.var.annotation``' Intrinsic
9877^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9878
9879Syntax:
9880"""""""
9881
9882::
9883
9884 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9885
9886Overview:
9887"""""""""
9888
9889The '``llvm.var.annotation``' intrinsic.
9890
9891Arguments:
9892""""""""""
9893
9894The first argument is a pointer to a value, the second is a pointer to a
9895global string, the third is a pointer to a global string which is the
9896source file name, and the last argument is the line number.
9897
9898Semantics:
9899""""""""""
9900
9901This intrinsic allows annotation of local variables with arbitrary
9902strings. This can be useful for special purpose optimizations that want
9903to look for these annotations. These have no other defined use; they are
9904ignored by code generation and optimization.
9905
Michael Gottesman88d18832013-03-26 00:34:27 +00009906'``llvm.ptr.annotation.*``' Intrinsic
9907^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9908
9909Syntax:
9910"""""""
9911
9912This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9913pointer to an integer of any width. *NOTE* you must specify an address space for
9914the pointer. The identifier for the default address space is the integer
9915'``0``'.
9916
9917::
9918
9919 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9920 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9921 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9922 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9923 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9924
9925Overview:
9926"""""""""
9927
9928The '``llvm.ptr.annotation``' intrinsic.
9929
9930Arguments:
9931""""""""""
9932
9933The first argument is a pointer to an integer value of arbitrary bitwidth
9934(result of some expression), the second is a pointer to a global string, the
9935third is a pointer to a global string which is the source file name, and the
9936last argument is the line number. It returns the value of the first argument.
9937
9938Semantics:
9939""""""""""
9940
9941This intrinsic allows annotation of a pointer to an integer with arbitrary
9942strings. This can be useful for special purpose optimizations that want to look
9943for these annotations. These have no other defined use; they are ignored by code
9944generation and optimization.
9945
Sean Silvab084af42012-12-07 10:36:55 +00009946'``llvm.annotation.*``' Intrinsic
9947^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9948
9949Syntax:
9950"""""""
9951
9952This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9953any integer bit width.
9954
9955::
9956
9957 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9958 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9959 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9960 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9961 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9962
9963Overview:
9964"""""""""
9965
9966The '``llvm.annotation``' intrinsic.
9967
9968Arguments:
9969""""""""""
9970
9971The first argument is an integer value (result of some expression), the
9972second is a pointer to a global string, the third is a pointer to a
9973global string which is the source file name, and the last argument is
9974the line number. It returns the value of the first argument.
9975
9976Semantics:
9977""""""""""
9978
9979This intrinsic allows annotations to be put on arbitrary expressions
9980with arbitrary strings. This can be useful for special purpose
9981optimizations that want to look for these annotations. These have no
9982other defined use; they are ignored by code generation and optimization.
9983
9984'``llvm.trap``' Intrinsic
9985^^^^^^^^^^^^^^^^^^^^^^^^^
9986
9987Syntax:
9988"""""""
9989
9990::
9991
9992 declare void @llvm.trap() noreturn nounwind
9993
9994Overview:
9995"""""""""
9996
9997The '``llvm.trap``' intrinsic.
9998
9999Arguments:
10000""""""""""
10001
10002None.
10003
10004Semantics:
10005""""""""""
10006
10007This intrinsic is lowered to the target dependent trap instruction. If
10008the target does not have a trap instruction, this intrinsic will be
10009lowered to a call of the ``abort()`` function.
10010
10011'``llvm.debugtrap``' Intrinsic
10012^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10013
10014Syntax:
10015"""""""
10016
10017::
10018
10019 declare void @llvm.debugtrap() nounwind
10020
10021Overview:
10022"""""""""
10023
10024The '``llvm.debugtrap``' intrinsic.
10025
10026Arguments:
10027""""""""""
10028
10029None.
10030
10031Semantics:
10032""""""""""
10033
10034This intrinsic is lowered to code which is intended to cause an
10035execution trap with the intention of requesting the attention of a
10036debugger.
10037
10038'``llvm.stackprotector``' Intrinsic
10039^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10040
10041Syntax:
10042"""""""
10043
10044::
10045
10046 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
10047
10048Overview:
10049"""""""""
10050
10051The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
10052onto the stack at ``slot``. The stack slot is adjusted to ensure that it
10053is placed on the stack before local variables.
10054
10055Arguments:
10056""""""""""
10057
10058The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
10059The first argument is the value loaded from the stack guard
10060``@__stack_chk_guard``. The second variable is an ``alloca`` that has
10061enough space to hold the value of the guard.
10062
10063Semantics:
10064""""""""""
10065
Michael Gottesmandafc7d92013-08-12 18:35:32 +000010066This intrinsic causes the prologue/epilogue inserter to force the position of
10067the ``AllocaInst`` stack slot to be before local variables on the stack. This is
10068to ensure that if a local variable on the stack is overwritten, it will destroy
10069the value of the guard. When the function exits, the guard on the stack is
10070checked against the original guard by ``llvm.stackprotectorcheck``. If they are
10071different, then ``llvm.stackprotectorcheck`` causes the program to abort by
10072calling the ``__stack_chk_fail()`` function.
10073
10074'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000010075^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000010076
10077Syntax:
10078"""""""
10079
10080::
10081
10082 declare void @llvm.stackprotectorcheck(i8** <guard>)
10083
10084Overview:
10085"""""""""
10086
10087The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000010088created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000010089``__stack_chk_fail()`` function.
10090
Michael Gottesmandafc7d92013-08-12 18:35:32 +000010091Arguments:
10092""""""""""
10093
10094The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
10095the variable ``@__stack_chk_guard``.
10096
10097Semantics:
10098""""""""""
10099
10100This intrinsic is provided to perform the stack protector check by comparing
10101``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
10102values do not match call the ``__stack_chk_fail()`` function.
10103
10104The reason to provide this as an IR level intrinsic instead of implementing it
10105via other IR operations is that in order to perform this operation at the IR
10106level without an intrinsic, one would need to create additional basic blocks to
10107handle the success/failure cases. This makes it difficult to stop the stack
10108protector check from disrupting sibling tail calls in Codegen. With this
10109intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000010110codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000010111
Sean Silvab084af42012-12-07 10:36:55 +000010112'``llvm.objectsize``' Intrinsic
10113^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10114
10115Syntax:
10116"""""""
10117
10118::
10119
10120 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
10121 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
10122
10123Overview:
10124"""""""""
10125
10126The ``llvm.objectsize`` intrinsic is designed to provide information to
10127the optimizers to determine at compile time whether a) an operation
10128(like memcpy) will overflow a buffer that corresponds to an object, or
10129b) that a runtime check for overflow isn't necessary. An object in this
10130context means an allocation of a specific class, structure, array, or
10131other object.
10132
10133Arguments:
10134""""""""""
10135
10136The ``llvm.objectsize`` intrinsic takes two arguments. The first
10137argument is a pointer to or into the ``object``. The second argument is
10138a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
10139or -1 (if false) when the object size is unknown. The second argument
10140only accepts constants.
10141
10142Semantics:
10143""""""""""
10144
10145The ``llvm.objectsize`` intrinsic is lowered to a constant representing
10146the size of the object concerned. If the size cannot be determined at
10147compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
10148on the ``min`` argument).
10149
10150'``llvm.expect``' Intrinsic
10151^^^^^^^^^^^^^^^^^^^^^^^^^^^
10152
10153Syntax:
10154"""""""
10155
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000010156This is an overloaded intrinsic. You can use ``llvm.expect`` on any
10157integer bit width.
10158
Sean Silvab084af42012-12-07 10:36:55 +000010159::
10160
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000010161 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000010162 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
10163 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
10164
10165Overview:
10166"""""""""
10167
10168The ``llvm.expect`` intrinsic provides information about expected (the
10169most probable) value of ``val``, which can be used by optimizers.
10170
10171Arguments:
10172""""""""""
10173
10174The ``llvm.expect`` intrinsic takes two arguments. The first argument is
10175a value. The second argument is an expected value, this needs to be a
10176constant value, variables are not allowed.
10177
10178Semantics:
10179""""""""""
10180
10181This intrinsic is lowered to the ``val``.
10182
Hal Finkel93046912014-07-25 21:13:35 +000010183'``llvm.assume``' Intrinsic
10184^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10185
10186Syntax:
10187"""""""
10188
10189::
10190
10191 declare void @llvm.assume(i1 %cond)
10192
10193Overview:
10194"""""""""
10195
10196The ``llvm.assume`` allows the optimizer to assume that the provided
10197condition is true. This information can then be used in simplifying other parts
10198of the code.
10199
10200Arguments:
10201""""""""""
10202
10203The condition which the optimizer may assume is always true.
10204
10205Semantics:
10206""""""""""
10207
10208The intrinsic allows the optimizer to assume that the provided condition is
10209always true whenever the control flow reaches the intrinsic call. No code is
10210generated for this intrinsic, and instructions that contribute only to the
10211provided condition are not used for code generation. If the condition is
10212violated during execution, the behavior is undefined.
10213
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000010214Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000010215used by the ``llvm.assume`` intrinsic in order to preserve the instructions
10216only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000010217if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000010218sufficient overall improvement in code quality. For this reason,
10219``llvm.assume`` should not be used to document basic mathematical invariants
10220that the optimizer can otherwise deduce or facts that are of little use to the
10221optimizer.
10222
Peter Collingbournee6909c82015-02-20 20:30:47 +000010223.. _bitset.test:
10224
10225'``llvm.bitset.test``' Intrinsic
10226^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10227
10228Syntax:
10229"""""""
10230
10231::
10232
10233 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
10234
10235
10236Arguments:
10237""""""""""
10238
10239The first argument is a pointer to be tested. The second argument is a
10240metadata string containing the name of a :doc:`bitset <BitSets>`.
10241
10242Overview:
10243"""""""""
10244
10245The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
10246member of the given bitset.
10247
Sean Silvab084af42012-12-07 10:36:55 +000010248'``llvm.donothing``' Intrinsic
10249^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10250
10251Syntax:
10252"""""""
10253
10254::
10255
10256 declare void @llvm.donothing() nounwind readnone
10257
10258Overview:
10259"""""""""
10260
Juergen Ributzkac9161192014-10-23 22:36:13 +000010261The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
10262two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
10263with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000010264
10265Arguments:
10266""""""""""
10267
10268None.
10269
10270Semantics:
10271""""""""""
10272
10273This intrinsic does nothing, and it's removed by optimizers and ignored
10274by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000010275
10276Stack Map Intrinsics
10277--------------------
10278
10279LLVM provides experimental intrinsics to support runtime patching
10280mechanisms commonly desired in dynamic language JITs. These intrinsics
10281are described in :doc:`StackMaps`.