blob: 630b236361a06c60a23193260440374fbcf7fe29 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
351 arguments into registers but allows them to be dynamcially
352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
356 This calling convention attempts to make the code in the caller as little
357 intrusive as possible. This calling convention behaves identical to the `C`
358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000497.. _namedtypes:
498
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000499Structure Types
500---------------
Sean Silvab084af42012-12-07 10:36:55 +0000501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
503types <t_struct>`. Literal types are uniqued structurally, but identified types
504are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000505to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000506
507An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000508
509.. code-block:: llvm
510
511 %mytype = type { %mytype*, i32 }
512
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000513Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
514literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000515
516.. _globalvars:
517
518Global Variables
519----------------
520
521Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000522instead of run-time.
523
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000524Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525
526Global variables in other translation units can also be declared, in which
527case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000528
Bob Wilson85b24f22014-06-12 20:40:33 +0000529Either global variable definitions or declarations may have an explicit section
530to be placed in and may have an optional explicit alignment specified.
531
Michael Gottesman006039c2013-01-31 05:48:48 +0000532A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000536initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000567Additionally, the global can placed in a comdat if the target has the necessary
568support.
Sean Silvab084af42012-12-07 10:36:55 +0000569
Michael Gottesmane743a302013-02-04 03:22:00 +0000570By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000571variables defined within the module are not modified from their
572initial values before the start of the global initializer. This is
573true even for variables potentially accessible from outside the
574module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000575``@llvm.used`` or dllexported variables. This assumption may be suppressed
576by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000577
Sean Silvab084af42012-12-07 10:36:55 +0000578An explicit alignment may be specified for a global, which must be a
579power of 2. If not present, or if the alignment is set to zero, the
580alignment of the global is set by the target to whatever it feels
581convenient. If an explicit alignment is specified, the global is forced
582to have exactly that alignment. Targets and optimizers are not allowed
583to over-align the global if the global has an assigned section. In this
584case, the extra alignment could be observable: for example, code could
585assume that the globals are densely packed in their section and try to
586iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000587iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000588
Nico Rieck7157bb72014-01-14 15:22:47 +0000589Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
590
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000591Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000592:ref:`Thread Local Storage Model <tls_model>`.
593
Nico Rieck7157bb72014-01-14 15:22:47 +0000594Syntax::
595
596 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000597 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000598 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000599 [, section "name"] [, comdat [($name)]]
600 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000601
Sean Silvab084af42012-12-07 10:36:55 +0000602For example, the following defines a global in a numbered address space
603with an initializer, section, and alignment:
604
605.. code-block:: llvm
606
607 @G = addrspace(5) constant float 1.0, section "foo", align 4
608
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000609The following example just declares a global variable
610
611.. code-block:: llvm
612
613 @G = external global i32
614
Sean Silvab084af42012-12-07 10:36:55 +0000615The following example defines a thread-local global with the
616``initialexec`` TLS model:
617
618.. code-block:: llvm
619
620 @G = thread_local(initialexec) global i32 0, align 4
621
622.. _functionstructure:
623
624Functions
625---------
626
627LLVM function definitions consist of the "``define``" keyword, an
628optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000629style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
630an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000631an optional ``unnamed_addr`` attribute, a return type, an optional
632:ref:`parameter attribute <paramattrs>` for the return type, a function
633name, a (possibly empty) argument list (each with optional :ref:`parameter
634attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000635an optional section, an optional alignment,
636an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000637an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
638an optional :ref:`prologue <prologuedata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000639curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000640
641LLVM function declarations consist of the "``declare``" keyword, an
642optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000643style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
644an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000645an optional ``unnamed_addr`` attribute, a return type, an optional
646:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000647name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000648:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
649and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000650
Bill Wendling6822ecb2013-10-27 05:09:12 +0000651A function definition contains a list of basic blocks, forming the CFG (Control
652Flow Graph) for the function. Each basic block may optionally start with a label
653(giving the basic block a symbol table entry), contains a list of instructions,
654and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
655function return). If an explicit label is not provided, a block is assigned an
656implicit numbered label, using the next value from the same counter as used for
657unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
658entry block does not have an explicit label, it will be assigned label "%0",
659then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000660
661The first basic block in a function is special in two ways: it is
662immediately executed on entrance to the function, and it is not allowed
663to have predecessor basic blocks (i.e. there can not be any branches to
664the entry block of a function). Because the block can have no
665predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
666
667LLVM allows an explicit section to be specified for functions. If the
668target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000669Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000670
671An explicit alignment may be specified for a function. If not present,
672or if the alignment is set to zero, the alignment of the function is set
673by the target to whatever it feels convenient. If an explicit alignment
674is specified, the function is forced to have at least that much
675alignment. All alignments must be a power of 2.
676
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000677If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000678be significant and two identical functions can be merged.
679
680Syntax::
681
Nico Rieck7157bb72014-01-14 15:22:47 +0000682 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000683 [cconv] [ret attrs]
684 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000686 [align N] [gc] [prefix Constant] [prologue Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000687
Dan Liew2661dfc2014-08-20 15:06:30 +0000688The argument list is a comma seperated sequence of arguments where each
689argument is of the following form
690
691Syntax::
692
693 <type> [parameter Attrs] [name]
694
695
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000696.. _langref_aliases:
697
Sean Silvab084af42012-12-07 10:36:55 +0000698Aliases
699-------
700
Rafael Espindola64c1e182014-06-03 02:41:57 +0000701Aliases, unlike function or variables, don't create any new data. They
702are just a new symbol and metadata for an existing position.
703
704Aliases have a name and an aliasee that is either a global value or a
705constant expression.
706
Nico Rieck7157bb72014-01-14 15:22:47 +0000707Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000708:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
709<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000710
711Syntax::
712
Rafael Espindola464fe022014-07-30 22:51:54 +0000713 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000714
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000715The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000716``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000717might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000718
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000719Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000720the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
721to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000722
Rafael Espindola64c1e182014-06-03 02:41:57 +0000723Since aliases are only a second name, some restrictions apply, of which
724some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000725
Rafael Espindola64c1e182014-06-03 02:41:57 +0000726* The expression defining the aliasee must be computable at assembly
727 time. Since it is just a name, no relocations can be used.
728
729* No alias in the expression can be weak as the possibility of the
730 intermediate alias being overridden cannot be represented in an
731 object file.
732
733* No global value in the expression can be a declaration, since that
734 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000735
David Majnemerdad0a642014-06-27 18:19:56 +0000736.. _langref_comdats:
737
738Comdats
739-------
740
741Comdat IR provides access to COFF and ELF object file COMDAT functionality.
742
Richard Smith32dbdf62014-07-31 04:25:36 +0000743Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000744specify this key will only end up in the final object file if the linker chooses
745that key over some other key. Aliases are placed in the same COMDAT that their
746aliasee computes to, if any.
747
748Comdats have a selection kind to provide input on how the linker should
749choose between keys in two different object files.
750
751Syntax::
752
753 $<Name> = comdat SelectionKind
754
755The selection kind must be one of the following:
756
757``any``
758 The linker may choose any COMDAT key, the choice is arbitrary.
759``exactmatch``
760 The linker may choose any COMDAT key but the sections must contain the
761 same data.
762``largest``
763 The linker will choose the section containing the largest COMDAT key.
764``noduplicates``
765 The linker requires that only section with this COMDAT key exist.
766``samesize``
767 The linker may choose any COMDAT key but the sections must contain the
768 same amount of data.
769
770Note that the Mach-O platform doesn't support COMDATs and ELF only supports
771``any`` as a selection kind.
772
773Here is an example of a COMDAT group where a function will only be selected if
774the COMDAT key's section is the largest:
775
776.. code-block:: llvm
777
778 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000779 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000780
Rafael Espindola83a362c2015-01-06 22:55:16 +0000781 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000782 ret void
783 }
784
Rafael Espindola83a362c2015-01-06 22:55:16 +0000785As a syntactic sugar the ``$name`` can be omitted if the name is the same as
786the global name:
787
788.. code-block:: llvm
789
790 $foo = comdat any
791 @foo = global i32 2, comdat
792
793
David Majnemerdad0a642014-06-27 18:19:56 +0000794In a COFF object file, this will create a COMDAT section with selection kind
795``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
796and another COMDAT section with selection kind
797``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000798section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000799
800There are some restrictions on the properties of the global object.
801It, or an alias to it, must have the same name as the COMDAT group when
802targeting COFF.
803The contents and size of this object may be used during link-time to determine
804which COMDAT groups get selected depending on the selection kind.
805Because the name of the object must match the name of the COMDAT group, the
806linkage of the global object must not be local; local symbols can get renamed
807if a collision occurs in the symbol table.
808
809The combined use of COMDATS and section attributes may yield surprising results.
810For example:
811
812.. code-block:: llvm
813
814 $foo = comdat any
815 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000816 @g1 = global i32 42, section "sec", comdat($foo)
817 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000818
819From the object file perspective, this requires the creation of two sections
820with the same name. This is necessary because both globals belong to different
821COMDAT groups and COMDATs, at the object file level, are represented by
822sections.
823
824Note that certain IR constructs like global variables and functions may create
825COMDATs in the object file in addition to any which are specified using COMDAT
826IR. This arises, for example, when a global variable has linkonce_odr linkage.
827
Sean Silvab084af42012-12-07 10:36:55 +0000828.. _namedmetadatastructure:
829
830Named Metadata
831--------------
832
833Named metadata is a collection of metadata. :ref:`Metadata
834nodes <metadata>` (but not metadata strings) are the only valid
835operands for a named metadata.
836
837Syntax::
838
839 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000840 !0 = !{!"zero"}
841 !1 = !{!"one"}
842 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000843 ; A named metadata.
844 !name = !{!0, !1, !2}
845
846.. _paramattrs:
847
848Parameter Attributes
849--------------------
850
851The return type and each parameter of a function type may have a set of
852*parameter attributes* associated with them. Parameter attributes are
853used to communicate additional information about the result or
854parameters of a function. Parameter attributes are considered to be part
855of the function, not of the function type, so functions with different
856parameter attributes can have the same function type.
857
858Parameter attributes are simple keywords that follow the type specified.
859If multiple parameter attributes are needed, they are space separated.
860For example:
861
862.. code-block:: llvm
863
864 declare i32 @printf(i8* noalias nocapture, ...)
865 declare i32 @atoi(i8 zeroext)
866 declare signext i8 @returns_signed_char()
867
868Note that any attributes for the function result (``nounwind``,
869``readonly``) come immediately after the argument list.
870
871Currently, only the following parameter attributes are defined:
872
873``zeroext``
874 This indicates to the code generator that the parameter or return
875 value should be zero-extended to the extent required by the target's
876 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
877 the caller (for a parameter) or the callee (for a return value).
878``signext``
879 This indicates to the code generator that the parameter or return
880 value should be sign-extended to the extent required by the target's
881 ABI (which is usually 32-bits) by the caller (for a parameter) or
882 the callee (for a return value).
883``inreg``
884 This indicates that this parameter or return value should be treated
885 in a special target-dependent fashion during while emitting code for
886 a function call or return (usually, by putting it in a register as
887 opposed to memory, though some targets use it to distinguish between
888 two different kinds of registers). Use of this attribute is
889 target-specific.
890``byval``
891 This indicates that the pointer parameter should really be passed by
892 value to the function. The attribute implies that a hidden copy of
893 the pointee is made between the caller and the callee, so the callee
894 is unable to modify the value in the caller. This attribute is only
895 valid on LLVM pointer arguments. It is generally used to pass
896 structs and arrays by value, but is also valid on pointers to
897 scalars. The copy is considered to belong to the caller not the
898 callee (for example, ``readonly`` functions should not write to
899 ``byval`` parameters). This is not a valid attribute for return
900 values.
901
902 The byval attribute also supports specifying an alignment with the
903 align attribute. It indicates the alignment of the stack slot to
904 form and the known alignment of the pointer specified to the call
905 site. If the alignment is not specified, then the code generator
906 makes a target-specific assumption.
907
Reid Klecknera534a382013-12-19 02:14:12 +0000908.. _attr_inalloca:
909
910``inalloca``
911
Reid Kleckner60d3a832014-01-16 22:59:24 +0000912 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000913 address of outgoing stack arguments. An ``inalloca`` argument must
914 be a pointer to stack memory produced by an ``alloca`` instruction.
915 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000916 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000917 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000918
Reid Kleckner436c42e2014-01-17 23:58:17 +0000919 An argument allocation may be used by a call at most once because
920 the call may deallocate it. The ``inalloca`` attribute cannot be
921 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000922 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
923 ``inalloca`` attribute also disables LLVM's implicit lowering of
924 large aggregate return values, which means that frontend authors
925 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000926
Reid Kleckner60d3a832014-01-16 22:59:24 +0000927 When the call site is reached, the argument allocation must have
928 been the most recent stack allocation that is still live, or the
929 results are undefined. It is possible to allocate additional stack
930 space after an argument allocation and before its call site, but it
931 must be cleared off with :ref:`llvm.stackrestore
932 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000933
934 See :doc:`InAlloca` for more information on how to use this
935 attribute.
936
Sean Silvab084af42012-12-07 10:36:55 +0000937``sret``
938 This indicates that the pointer parameter specifies the address of a
939 structure that is the return value of the function in the source
940 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000941 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000942 not to trap and to be properly aligned. This may only be applied to
943 the first parameter. This is not a valid attribute for return
944 values.
Sean Silva1703e702014-04-08 21:06:22 +0000945
Hal Finkelccc70902014-07-22 16:58:55 +0000946``align <n>``
947 This indicates that the pointer value may be assumed by the optimizer to
948 have the specified alignment.
949
950 Note that this attribute has additional semantics when combined with the
951 ``byval`` attribute.
952
Sean Silva1703e702014-04-08 21:06:22 +0000953.. _noalias:
954
Sean Silvab084af42012-12-07 10:36:55 +0000955``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000956 This indicates that objects accessed via pointer values
957 :ref:`based <pointeraliasing>` on the argument or return value are not also
958 accessed, during the execution of the function, via pointer values not
959 *based* on the argument or return value. The attribute on a return value
960 also has additional semantics described below. The caller shares the
961 responsibility with the callee for ensuring that these requirements are met.
962 For further details, please see the discussion of the NoAlias response in
963 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000964
965 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000966 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000967
968 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000969 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
970 attribute on return values are stronger than the semantics of the attribute
971 when used on function arguments. On function return values, the ``noalias``
972 attribute indicates that the function acts like a system memory allocation
973 function, returning a pointer to allocated storage disjoint from the
974 storage for any other object accessible to the caller.
975
Sean Silvab084af42012-12-07 10:36:55 +0000976``nocapture``
977 This indicates that the callee does not make any copies of the
978 pointer that outlive the callee itself. This is not a valid
979 attribute for return values.
980
981.. _nest:
982
983``nest``
984 This indicates that the pointer parameter can be excised using the
985 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000986 attribute for return values and can only be applied to one parameter.
987
988``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000989 This indicates that the function always returns the argument as its return
990 value. This is an optimization hint to the code generator when generating
991 the caller, allowing tail call optimization and omission of register saves
992 and restores in some cases; it is not checked or enforced when generating
993 the callee. The parameter and the function return type must be valid
994 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
995 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000996
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000997``nonnull``
998 This indicates that the parameter or return pointer is not null. This
999 attribute may only be applied to pointer typed parameters. This is not
1000 checked or enforced by LLVM, the caller must ensure that the pointer
1001 passed in is non-null, or the callee must ensure that the returned pointer
1002 is non-null.
1003
Hal Finkelb0407ba2014-07-18 15:51:28 +00001004``dereferenceable(<n>)``
1005 This indicates that the parameter or return pointer is dereferenceable. This
1006 attribute may only be applied to pointer typed parameters. A pointer that
1007 is dereferenceable can be loaded from speculatively without a risk of
1008 trapping. The number of bytes known to be dereferenceable must be provided
1009 in parentheses. It is legal for the number of bytes to be less than the
1010 size of the pointee type. The ``nonnull`` attribute does not imply
1011 dereferenceability (consider a pointer to one element past the end of an
1012 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1013 ``addrspace(0)`` (which is the default address space).
1014
Sean Silvab084af42012-12-07 10:36:55 +00001015.. _gc:
1016
Philip Reamesf80bbff2015-02-25 23:45:20 +00001017Garbage Collector Strategy Names
1018--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001019
Philip Reamesf80bbff2015-02-25 23:45:20 +00001020Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001021string:
1022
1023.. code-block:: llvm
1024
1025 define void @f() gc "name" { ... }
1026
Philip Reamesf80bbff2015-02-25 23:45:20 +00001027The supported values of *name* includes those :ref:`built in to LLVM
1028<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
1029strategy will cause the compiler to alter its output in order to support the
1030named garbage collection algorithm. Note that LLVM itself does not contain a
1031garbage collector, this functionality is restricted to generating machine code
1032which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001033
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001034.. _prefixdata:
1035
1036Prefix Data
1037-----------
1038
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001039Prefix data is data associated with a function which the code
1040generator will emit immediately before the function's entrypoint.
1041The purpose of this feature is to allow frontends to associate
1042language-specific runtime metadata with specific functions and make it
1043available through the function pointer while still allowing the
1044function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001045
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001046To access the data for a given function, a program may bitcast the
1047function pointer to a pointer to the constant's type and dereference
1048index -1. This implies that the IR symbol points just past the end of
1049the prefix data. For instance, take the example of a function annotated
1050with a single ``i32``,
1051
1052.. code-block:: llvm
1053
1054 define void @f() prefix i32 123 { ... }
1055
1056The prefix data can be referenced as,
1057
1058.. code-block:: llvm
1059
David Blaikie16a97eb2015-03-04 22:02:58 +00001060 %0 = bitcast void* () @f to i32*
1061 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001062 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001063
1064Prefix data is laid out as if it were an initializer for a global variable
1065of the prefix data's type. The function will be placed such that the
1066beginning of the prefix data is aligned. This means that if the size
1067of the prefix data is not a multiple of the alignment size, the
1068function's entrypoint will not be aligned. If alignment of the
1069function's entrypoint is desired, padding must be added to the prefix
1070data.
1071
1072A function may have prefix data but no body. This has similar semantics
1073to the ``available_externally`` linkage in that the data may be used by the
1074optimizers but will not be emitted in the object file.
1075
1076.. _prologuedata:
1077
1078Prologue Data
1079-------------
1080
1081The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1082be inserted prior to the function body. This can be used for enabling
1083function hot-patching and instrumentation.
1084
1085To maintain the semantics of ordinary function calls, the prologue data must
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001086have a particular format. Specifically, it must begin with a sequence of
1087bytes which decode to a sequence of machine instructions, valid for the
1088module's target, which transfer control to the point immediately succeeding
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001089the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001090the inliner and other passes to reason about the semantics of the function
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001091definition without needing to reason about the prologue data. Obviously this
1092makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001093
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001094A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001095which encodes the ``nop`` instruction:
1096
1097.. code-block:: llvm
1098
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001099 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001100
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001101Generally prologue data can be formed by encoding a relative branch instruction
1102which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001103x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1104
1105.. code-block:: llvm
1106
1107 %0 = type <{ i8, i8, i8* }>
1108
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001109 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001110
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001111A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001112to the ``available_externally`` linkage in that the data may be used by the
1113optimizers but will not be emitted in the object file.
1114
Bill Wendling63b88192013-02-06 06:52:58 +00001115.. _attrgrp:
1116
1117Attribute Groups
1118----------------
1119
1120Attribute groups are groups of attributes that are referenced by objects within
1121the IR. They are important for keeping ``.ll`` files readable, because a lot of
1122functions will use the same set of attributes. In the degenerative case of a
1123``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1124group will capture the important command line flags used to build that file.
1125
1126An attribute group is a module-level object. To use an attribute group, an
1127object references the attribute group's ID (e.g. ``#37``). An object may refer
1128to more than one attribute group. In that situation, the attributes from the
1129different groups are merged.
1130
1131Here is an example of attribute groups for a function that should always be
1132inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1133
1134.. code-block:: llvm
1135
1136 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001137 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001138
1139 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001140 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001141
1142 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1143 define void @f() #0 #1 { ... }
1144
Sean Silvab084af42012-12-07 10:36:55 +00001145.. _fnattrs:
1146
1147Function Attributes
1148-------------------
1149
1150Function attributes are set to communicate additional information about
1151a function. Function attributes are considered to be part of the
1152function, not of the function type, so functions with different function
1153attributes can have the same function type.
1154
1155Function attributes are simple keywords that follow the type specified.
1156If multiple attributes are needed, they are space separated. For
1157example:
1158
1159.. code-block:: llvm
1160
1161 define void @f() noinline { ... }
1162 define void @f() alwaysinline { ... }
1163 define void @f() alwaysinline optsize { ... }
1164 define void @f() optsize { ... }
1165
Sean Silvab084af42012-12-07 10:36:55 +00001166``alignstack(<n>)``
1167 This attribute indicates that, when emitting the prologue and
1168 epilogue, the backend should forcibly align the stack pointer.
1169 Specify the desired alignment, which must be a power of two, in
1170 parentheses.
1171``alwaysinline``
1172 This attribute indicates that the inliner should attempt to inline
1173 this function into callers whenever possible, ignoring any active
1174 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001175``builtin``
1176 This indicates that the callee function at a call site should be
1177 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001178 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001179 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001180 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001181``cold``
1182 This attribute indicates that this function is rarely called. When
1183 computing edge weights, basic blocks post-dominated by a cold
1184 function call are also considered to be cold; and, thus, given low
1185 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001186``inlinehint``
1187 This attribute indicates that the source code contained a hint that
1188 inlining this function is desirable (such as the "inline" keyword in
1189 C/C++). It is just a hint; it imposes no requirements on the
1190 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001191``jumptable``
1192 This attribute indicates that the function should be added to a
1193 jump-instruction table at code-generation time, and that all address-taken
1194 references to this function should be replaced with a reference to the
1195 appropriate jump-instruction-table function pointer. Note that this creates
1196 a new pointer for the original function, which means that code that depends
1197 on function-pointer identity can break. So, any function annotated with
1198 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001199``minsize``
1200 This attribute suggests that optimization passes and code generator
1201 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001202 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001203 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001204``naked``
1205 This attribute disables prologue / epilogue emission for the
1206 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001207``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001208 This indicates that the callee function at a call site is not recognized as
1209 a built-in function. LLVM will retain the original call and not replace it
1210 with equivalent code based on the semantics of the built-in function, unless
1211 the call site uses the ``builtin`` attribute. This is valid at call sites
1212 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001213``noduplicate``
1214 This attribute indicates that calls to the function cannot be
1215 duplicated. A call to a ``noduplicate`` function may be moved
1216 within its parent function, but may not be duplicated within
1217 its parent function.
1218
1219 A function containing a ``noduplicate`` call may still
1220 be an inlining candidate, provided that the call is not
1221 duplicated by inlining. That implies that the function has
1222 internal linkage and only has one call site, so the original
1223 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001224``noimplicitfloat``
1225 This attributes disables implicit floating point instructions.
1226``noinline``
1227 This attribute indicates that the inliner should never inline this
1228 function in any situation. This attribute may not be used together
1229 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001230``nonlazybind``
1231 This attribute suppresses lazy symbol binding for the function. This
1232 may make calls to the function faster, at the cost of extra program
1233 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001234``noredzone``
1235 This attribute indicates that the code generator should not use a
1236 red zone, even if the target-specific ABI normally permits it.
1237``noreturn``
1238 This function attribute indicates that the function never returns
1239 normally. This produces undefined behavior at runtime if the
1240 function ever does dynamically return.
1241``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001242 This function attribute indicates that the function never raises an
1243 exception. If the function does raise an exception, its runtime
1244 behavior is undefined. However, functions marked nounwind may still
1245 trap or generate asynchronous exceptions. Exception handling schemes
1246 that are recognized by LLVM to handle asynchronous exceptions, such
1247 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001248``optnone``
1249 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001250 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001251 exception of interprocedural optimization passes.
1252 This attribute cannot be used together with the ``alwaysinline``
1253 attribute; this attribute is also incompatible
1254 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001255
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001256 This attribute requires the ``noinline`` attribute to be specified on
1257 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001258 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001259 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001260``optsize``
1261 This attribute suggests that optimization passes and code generator
1262 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001263 and otherwise do optimizations specifically to reduce code size as
1264 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001265``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001266 On a function, this attribute indicates that the function computes its
1267 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001268 without dereferencing any pointer arguments or otherwise accessing
1269 any mutable state (e.g. memory, control registers, etc) visible to
1270 caller functions. It does not write through any pointer arguments
1271 (including ``byval`` arguments) and never changes any state visible
1272 to callers. This means that it cannot unwind exceptions by calling
1273 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001274
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001275 On an argument, this attribute indicates that the function does not
1276 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001277 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001278``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001279 On a function, this attribute indicates that the function does not write
1280 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001281 modify any state (e.g. memory, control registers, etc) visible to
1282 caller functions. It may dereference pointer arguments and read
1283 state that may be set in the caller. A readonly function always
1284 returns the same value (or unwinds an exception identically) when
1285 called with the same set of arguments and global state. It cannot
1286 unwind an exception by calling the ``C++`` exception throwing
1287 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001288
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001289 On an argument, this attribute indicates that the function does not write
1290 through this pointer argument, even though it may write to the memory that
1291 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001292``returns_twice``
1293 This attribute indicates that this function can return twice. The C
1294 ``setjmp`` is an example of such a function. The compiler disables
1295 some optimizations (like tail calls) in the caller of these
1296 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001297``sanitize_address``
1298 This attribute indicates that AddressSanitizer checks
1299 (dynamic address safety analysis) are enabled for this function.
1300``sanitize_memory``
1301 This attribute indicates that MemorySanitizer checks (dynamic detection
1302 of accesses to uninitialized memory) are enabled for this function.
1303``sanitize_thread``
1304 This attribute indicates that ThreadSanitizer checks
1305 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001306``ssp``
1307 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001308 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001309 placed on the stack before the local variables that's checked upon
1310 return from the function to see if it has been overwritten. A
1311 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001312 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001313
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001314 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1315 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1316 - Calls to alloca() with variable sizes or constant sizes greater than
1317 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001318
Josh Magee24c7f062014-02-01 01:36:16 +00001319 Variables that are identified as requiring a protector will be arranged
1320 on the stack such that they are adjacent to the stack protector guard.
1321
Sean Silvab084af42012-12-07 10:36:55 +00001322 If a function that has an ``ssp`` attribute is inlined into a
1323 function that doesn't have an ``ssp`` attribute, then the resulting
1324 function will have an ``ssp`` attribute.
1325``sspreq``
1326 This attribute indicates that the function should *always* emit a
1327 stack smashing protector. This overrides the ``ssp`` function
1328 attribute.
1329
Josh Magee24c7f062014-02-01 01:36:16 +00001330 Variables that are identified as requiring a protector will be arranged
1331 on the stack such that they are adjacent to the stack protector guard.
1332 The specific layout rules are:
1333
1334 #. Large arrays and structures containing large arrays
1335 (``>= ssp-buffer-size``) are closest to the stack protector.
1336 #. Small arrays and structures containing small arrays
1337 (``< ssp-buffer-size``) are 2nd closest to the protector.
1338 #. Variables that have had their address taken are 3rd closest to the
1339 protector.
1340
Sean Silvab084af42012-12-07 10:36:55 +00001341 If a function that has an ``sspreq`` attribute is inlined into a
1342 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001343 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1344 an ``sspreq`` attribute.
1345``sspstrong``
1346 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001347 protector. This attribute causes a strong heuristic to be used when
1348 determining if a function needs stack protectors. The strong heuristic
1349 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001350
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001351 - Arrays of any size and type
1352 - Aggregates containing an array of any size and type.
1353 - Calls to alloca().
1354 - Local variables that have had their address taken.
1355
Josh Magee24c7f062014-02-01 01:36:16 +00001356 Variables that are identified as requiring a protector will be arranged
1357 on the stack such that they are adjacent to the stack protector guard.
1358 The specific layout rules are:
1359
1360 #. Large arrays and structures containing large arrays
1361 (``>= ssp-buffer-size``) are closest to the stack protector.
1362 #. Small arrays and structures containing small arrays
1363 (``< ssp-buffer-size``) are 2nd closest to the protector.
1364 #. Variables that have had their address taken are 3rd closest to the
1365 protector.
1366
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001367 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001368
1369 If a function that has an ``sspstrong`` attribute is inlined into a
1370 function that doesn't have an ``sspstrong`` attribute, then the
1371 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001372``"thunk"``
1373 This attribute indicates that the function will delegate to some other
1374 function with a tail call. The prototype of a thunk should not be used for
1375 optimization purposes. The caller is expected to cast the thunk prototype to
1376 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001377``uwtable``
1378 This attribute indicates that the ABI being targeted requires that
1379 an unwind table entry be produce for this function even if we can
1380 show that no exceptions passes by it. This is normally the case for
1381 the ELF x86-64 abi, but it can be disabled for some compilation
1382 units.
Sean Silvab084af42012-12-07 10:36:55 +00001383
1384.. _moduleasm:
1385
1386Module-Level Inline Assembly
1387----------------------------
1388
1389Modules may contain "module-level inline asm" blocks, which corresponds
1390to the GCC "file scope inline asm" blocks. These blocks are internally
1391concatenated by LLVM and treated as a single unit, but may be separated
1392in the ``.ll`` file if desired. The syntax is very simple:
1393
1394.. code-block:: llvm
1395
1396 module asm "inline asm code goes here"
1397 module asm "more can go here"
1398
1399The strings can contain any character by escaping non-printable
1400characters. The escape sequence used is simply "\\xx" where "xx" is the
1401two digit hex code for the number.
1402
1403The inline asm code is simply printed to the machine code .s file when
1404assembly code is generated.
1405
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001406.. _langref_datalayout:
1407
Sean Silvab084af42012-12-07 10:36:55 +00001408Data Layout
1409-----------
1410
1411A module may specify a target specific data layout string that specifies
1412how data is to be laid out in memory. The syntax for the data layout is
1413simply:
1414
1415.. code-block:: llvm
1416
1417 target datalayout = "layout specification"
1418
1419The *layout specification* consists of a list of specifications
1420separated by the minus sign character ('-'). Each specification starts
1421with a letter and may include other information after the letter to
1422define some aspect of the data layout. The specifications accepted are
1423as follows:
1424
1425``E``
1426 Specifies that the target lays out data in big-endian form. That is,
1427 the bits with the most significance have the lowest address
1428 location.
1429``e``
1430 Specifies that the target lays out data in little-endian form. That
1431 is, the bits with the least significance have the lowest address
1432 location.
1433``S<size>``
1434 Specifies the natural alignment of the stack in bits. Alignment
1435 promotion of stack variables is limited to the natural stack
1436 alignment to avoid dynamic stack realignment. The stack alignment
1437 must be a multiple of 8-bits. If omitted, the natural stack
1438 alignment defaults to "unspecified", which does not prevent any
1439 alignment promotions.
1440``p[n]:<size>:<abi>:<pref>``
1441 This specifies the *size* of a pointer and its ``<abi>`` and
1442 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001443 bits. The address space, ``n`` is optional, and if not specified,
1444 denotes the default address space 0. The value of ``n`` must be
1445 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001446``i<size>:<abi>:<pref>``
1447 This specifies the alignment for an integer type of a given bit
1448 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1449``v<size>:<abi>:<pref>``
1450 This specifies the alignment for a vector type of a given bit
1451 ``<size>``.
1452``f<size>:<abi>:<pref>``
1453 This specifies the alignment for a floating point type of a given bit
1454 ``<size>``. Only values of ``<size>`` that are supported by the target
1455 will work. 32 (float) and 64 (double) are supported on all targets; 80
1456 or 128 (different flavors of long double) are also supported on some
1457 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001458``a:<abi>:<pref>``
1459 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001460``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001461 If present, specifies that llvm names are mangled in the output. The
1462 options are
1463
1464 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1465 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1466 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1467 symbols get a ``_`` prefix.
1468 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1469 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001470``n<size1>:<size2>:<size3>...``
1471 This specifies a set of native integer widths for the target CPU in
1472 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1473 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1474 this set are considered to support most general arithmetic operations
1475 efficiently.
1476
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001477On every specification that takes a ``<abi>:<pref>``, specifying the
1478``<pref>`` alignment is optional. If omitted, the preceding ``:``
1479should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1480
Sean Silvab084af42012-12-07 10:36:55 +00001481When constructing the data layout for a given target, LLVM starts with a
1482default set of specifications which are then (possibly) overridden by
1483the specifications in the ``datalayout`` keyword. The default
1484specifications are given in this list:
1485
1486- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001487- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1488- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1489 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001490- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001491- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1492- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1493- ``i16:16:16`` - i16 is 16-bit aligned
1494- ``i32:32:32`` - i32 is 32-bit aligned
1495- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1496 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001497- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001498- ``f32:32:32`` - float is 32-bit aligned
1499- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001500- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001501- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1502- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001503- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001504
1505When LLVM is determining the alignment for a given type, it uses the
1506following rules:
1507
1508#. If the type sought is an exact match for one of the specifications,
1509 that specification is used.
1510#. If no match is found, and the type sought is an integer type, then
1511 the smallest integer type that is larger than the bitwidth of the
1512 sought type is used. If none of the specifications are larger than
1513 the bitwidth then the largest integer type is used. For example,
1514 given the default specifications above, the i7 type will use the
1515 alignment of i8 (next largest) while both i65 and i256 will use the
1516 alignment of i64 (largest specified).
1517#. If no match is found, and the type sought is a vector type, then the
1518 largest vector type that is smaller than the sought vector type will
1519 be used as a fall back. This happens because <128 x double> can be
1520 implemented in terms of 64 <2 x double>, for example.
1521
1522The function of the data layout string may not be what you expect.
1523Notably, this is not a specification from the frontend of what alignment
1524the code generator should use.
1525
1526Instead, if specified, the target data layout is required to match what
1527the ultimate *code generator* expects. This string is used by the
1528mid-level optimizers to improve code, and this only works if it matches
1529what the ultimate code generator uses. If you would like to generate IR
1530that does not embed this target-specific detail into the IR, then you
1531don't have to specify the string. This will disable some optimizations
1532that require precise layout information, but this also prevents those
1533optimizations from introducing target specificity into the IR.
1534
Bill Wendling5cc90842013-10-18 23:41:25 +00001535.. _langref_triple:
1536
1537Target Triple
1538-------------
1539
1540A module may specify a target triple string that describes the target
1541host. The syntax for the target triple is simply:
1542
1543.. code-block:: llvm
1544
1545 target triple = "x86_64-apple-macosx10.7.0"
1546
1547The *target triple* string consists of a series of identifiers delimited
1548by the minus sign character ('-'). The canonical forms are:
1549
1550::
1551
1552 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1553 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1554
1555This information is passed along to the backend so that it generates
1556code for the proper architecture. It's possible to override this on the
1557command line with the ``-mtriple`` command line option.
1558
Sean Silvab084af42012-12-07 10:36:55 +00001559.. _pointeraliasing:
1560
1561Pointer Aliasing Rules
1562----------------------
1563
1564Any memory access must be done through a pointer value associated with
1565an address range of the memory access, otherwise the behavior is
1566undefined. Pointer values are associated with address ranges according
1567to the following rules:
1568
1569- A pointer value is associated with the addresses associated with any
1570 value it is *based* on.
1571- An address of a global variable is associated with the address range
1572 of the variable's storage.
1573- The result value of an allocation instruction is associated with the
1574 address range of the allocated storage.
1575- A null pointer in the default address-space is associated with no
1576 address.
1577- An integer constant other than zero or a pointer value returned from
1578 a function not defined within LLVM may be associated with address
1579 ranges allocated through mechanisms other than those provided by
1580 LLVM. Such ranges shall not overlap with any ranges of addresses
1581 allocated by mechanisms provided by LLVM.
1582
1583A pointer value is *based* on another pointer value according to the
1584following rules:
1585
1586- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001587 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001588- The result value of a ``bitcast`` is *based* on the operand of the
1589 ``bitcast``.
1590- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1591 values that contribute (directly or indirectly) to the computation of
1592 the pointer's value.
1593- The "*based* on" relationship is transitive.
1594
1595Note that this definition of *"based"* is intentionally similar to the
1596definition of *"based"* in C99, though it is slightly weaker.
1597
1598LLVM IR does not associate types with memory. The result type of a
1599``load`` merely indicates the size and alignment of the memory from
1600which to load, as well as the interpretation of the value. The first
1601operand type of a ``store`` similarly only indicates the size and
1602alignment of the store.
1603
1604Consequently, type-based alias analysis, aka TBAA, aka
1605``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1606:ref:`Metadata <metadata>` may be used to encode additional information
1607which specialized optimization passes may use to implement type-based
1608alias analysis.
1609
1610.. _volatile:
1611
1612Volatile Memory Accesses
1613------------------------
1614
1615Certain memory accesses, such as :ref:`load <i_load>`'s,
1616:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1617marked ``volatile``. The optimizers must not change the number of
1618volatile operations or change their order of execution relative to other
1619volatile operations. The optimizers *may* change the order of volatile
1620operations relative to non-volatile operations. This is not Java's
1621"volatile" and has no cross-thread synchronization behavior.
1622
Andrew Trick89fc5a62013-01-30 21:19:35 +00001623IR-level volatile loads and stores cannot safely be optimized into
1624llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1625flagged volatile. Likewise, the backend should never split or merge
1626target-legal volatile load/store instructions.
1627
Andrew Trick7e6f9282013-01-31 00:49:39 +00001628.. admonition:: Rationale
1629
1630 Platforms may rely on volatile loads and stores of natively supported
1631 data width to be executed as single instruction. For example, in C
1632 this holds for an l-value of volatile primitive type with native
1633 hardware support, but not necessarily for aggregate types. The
1634 frontend upholds these expectations, which are intentionally
1635 unspecified in the IR. The rules above ensure that IR transformation
1636 do not violate the frontend's contract with the language.
1637
Sean Silvab084af42012-12-07 10:36:55 +00001638.. _memmodel:
1639
1640Memory Model for Concurrent Operations
1641--------------------------------------
1642
1643The LLVM IR does not define any way to start parallel threads of
1644execution or to register signal handlers. Nonetheless, there are
1645platform-specific ways to create them, and we define LLVM IR's behavior
1646in their presence. This model is inspired by the C++0x memory model.
1647
1648For a more informal introduction to this model, see the :doc:`Atomics`.
1649
1650We define a *happens-before* partial order as the least partial order
1651that
1652
1653- Is a superset of single-thread program order, and
1654- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1655 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1656 techniques, like pthread locks, thread creation, thread joining,
1657 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1658 Constraints <ordering>`).
1659
1660Note that program order does not introduce *happens-before* edges
1661between a thread and signals executing inside that thread.
1662
1663Every (defined) read operation (load instructions, memcpy, atomic
1664loads/read-modify-writes, etc.) R reads a series of bytes written by
1665(defined) write operations (store instructions, atomic
1666stores/read-modify-writes, memcpy, etc.). For the purposes of this
1667section, initialized globals are considered to have a write of the
1668initializer which is atomic and happens before any other read or write
1669of the memory in question. For each byte of a read R, R\ :sub:`byte`
1670may see any write to the same byte, except:
1671
1672- If write\ :sub:`1` happens before write\ :sub:`2`, and
1673 write\ :sub:`2` happens before R\ :sub:`byte`, then
1674 R\ :sub:`byte` does not see write\ :sub:`1`.
1675- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1676 R\ :sub:`byte` does not see write\ :sub:`3`.
1677
1678Given that definition, R\ :sub:`byte` is defined as follows:
1679
1680- If R is volatile, the result is target-dependent. (Volatile is
1681 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001682 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001683 like normal memory. It does not generally provide cross-thread
1684 synchronization.)
1685- Otherwise, if there is no write to the same byte that happens before
1686 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1687- Otherwise, if R\ :sub:`byte` may see exactly one write,
1688 R\ :sub:`byte` returns the value written by that write.
1689- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1690 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1691 Memory Ordering Constraints <ordering>` section for additional
1692 constraints on how the choice is made.
1693- Otherwise R\ :sub:`byte` returns ``undef``.
1694
1695R returns the value composed of the series of bytes it read. This
1696implies that some bytes within the value may be ``undef`` **without**
1697the entire value being ``undef``. Note that this only defines the
1698semantics of the operation; it doesn't mean that targets will emit more
1699than one instruction to read the series of bytes.
1700
1701Note that in cases where none of the atomic intrinsics are used, this
1702model places only one restriction on IR transformations on top of what
1703is required for single-threaded execution: introducing a store to a byte
1704which might not otherwise be stored is not allowed in general.
1705(Specifically, in the case where another thread might write to and read
1706from an address, introducing a store can change a load that may see
1707exactly one write into a load that may see multiple writes.)
1708
1709.. _ordering:
1710
1711Atomic Memory Ordering Constraints
1712----------------------------------
1713
1714Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1715:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1716:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001717ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001718the same address they *synchronize with*. These semantics are borrowed
1719from Java and C++0x, but are somewhat more colloquial. If these
1720descriptions aren't precise enough, check those specs (see spec
1721references in the :doc:`atomics guide <Atomics>`).
1722:ref:`fence <i_fence>` instructions treat these orderings somewhat
1723differently since they don't take an address. See that instruction's
1724documentation for details.
1725
1726For a simpler introduction to the ordering constraints, see the
1727:doc:`Atomics`.
1728
1729``unordered``
1730 The set of values that can be read is governed by the happens-before
1731 partial order. A value cannot be read unless some operation wrote
1732 it. This is intended to provide a guarantee strong enough to model
1733 Java's non-volatile shared variables. This ordering cannot be
1734 specified for read-modify-write operations; it is not strong enough
1735 to make them atomic in any interesting way.
1736``monotonic``
1737 In addition to the guarantees of ``unordered``, there is a single
1738 total order for modifications by ``monotonic`` operations on each
1739 address. All modification orders must be compatible with the
1740 happens-before order. There is no guarantee that the modification
1741 orders can be combined to a global total order for the whole program
1742 (and this often will not be possible). The read in an atomic
1743 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1744 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1745 order immediately before the value it writes. If one atomic read
1746 happens before another atomic read of the same address, the later
1747 read must see the same value or a later value in the address's
1748 modification order. This disallows reordering of ``monotonic`` (or
1749 stronger) operations on the same address. If an address is written
1750 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1751 read that address repeatedly, the other threads must eventually see
1752 the write. This corresponds to the C++0x/C1x
1753 ``memory_order_relaxed``.
1754``acquire``
1755 In addition to the guarantees of ``monotonic``, a
1756 *synchronizes-with* edge may be formed with a ``release`` operation.
1757 This is intended to model C++'s ``memory_order_acquire``.
1758``release``
1759 In addition to the guarantees of ``monotonic``, if this operation
1760 writes a value which is subsequently read by an ``acquire``
1761 operation, it *synchronizes-with* that operation. (This isn't a
1762 complete description; see the C++0x definition of a release
1763 sequence.) This corresponds to the C++0x/C1x
1764 ``memory_order_release``.
1765``acq_rel`` (acquire+release)
1766 Acts as both an ``acquire`` and ``release`` operation on its
1767 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1768``seq_cst`` (sequentially consistent)
1769 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001770 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001771 writes), there is a global total order on all
1772 sequentially-consistent operations on all addresses, which is
1773 consistent with the *happens-before* partial order and with the
1774 modification orders of all the affected addresses. Each
1775 sequentially-consistent read sees the last preceding write to the
1776 same address in this global order. This corresponds to the C++0x/C1x
1777 ``memory_order_seq_cst`` and Java volatile.
1778
1779.. _singlethread:
1780
1781If an atomic operation is marked ``singlethread``, it only *synchronizes
1782with* or participates in modification and seq\_cst total orderings with
1783other operations running in the same thread (for example, in signal
1784handlers).
1785
1786.. _fastmath:
1787
1788Fast-Math Flags
1789---------------
1790
1791LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1792:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Eric Christopher1e61ffd2015-02-19 18:46:25 +00001793:ref:`frem <i_frem>`) have the following flags that can be set to enable
Sean Silvab084af42012-12-07 10:36:55 +00001794otherwise unsafe floating point operations
1795
1796``nnan``
1797 No NaNs - Allow optimizations to assume the arguments and result are not
1798 NaN. Such optimizations are required to retain defined behavior over
1799 NaNs, but the value of the result is undefined.
1800
1801``ninf``
1802 No Infs - Allow optimizations to assume the arguments and result are not
1803 +/-Inf. Such optimizations are required to retain defined behavior over
1804 +/-Inf, but the value of the result is undefined.
1805
1806``nsz``
1807 No Signed Zeros - Allow optimizations to treat the sign of a zero
1808 argument or result as insignificant.
1809
1810``arcp``
1811 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1812 argument rather than perform division.
1813
1814``fast``
1815 Fast - Allow algebraically equivalent transformations that may
1816 dramatically change results in floating point (e.g. reassociate). This
1817 flag implies all the others.
1818
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001819.. _uselistorder:
1820
1821Use-list Order Directives
1822-------------------------
1823
1824Use-list directives encode the in-memory order of each use-list, allowing the
1825order to be recreated. ``<order-indexes>`` is a comma-separated list of
1826indexes that are assigned to the referenced value's uses. The referenced
1827value's use-list is immediately sorted by these indexes.
1828
1829Use-list directives may appear at function scope or global scope. They are not
1830instructions, and have no effect on the semantics of the IR. When they're at
1831function scope, they must appear after the terminator of the final basic block.
1832
1833If basic blocks have their address taken via ``blockaddress()`` expressions,
1834``uselistorder_bb`` can be used to reorder their use-lists from outside their
1835function's scope.
1836
1837:Syntax:
1838
1839::
1840
1841 uselistorder <ty> <value>, { <order-indexes> }
1842 uselistorder_bb @function, %block { <order-indexes> }
1843
1844:Examples:
1845
1846::
1847
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001848 define void @foo(i32 %arg1, i32 %arg2) {
1849 entry:
1850 ; ... instructions ...
1851 bb:
1852 ; ... instructions ...
1853
1854 ; At function scope.
1855 uselistorder i32 %arg1, { 1, 0, 2 }
1856 uselistorder label %bb, { 1, 0 }
1857 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001858
1859 ; At global scope.
1860 uselistorder i32* @global, { 1, 2, 0 }
1861 uselistorder i32 7, { 1, 0 }
1862 uselistorder i32 (i32) @bar, { 1, 0 }
1863 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1864
Sean Silvab084af42012-12-07 10:36:55 +00001865.. _typesystem:
1866
1867Type System
1868===========
1869
1870The LLVM type system is one of the most important features of the
1871intermediate representation. Being typed enables a number of
1872optimizations to be performed on the intermediate representation
1873directly, without having to do extra analyses on the side before the
1874transformation. A strong type system makes it easier to read the
1875generated code and enables novel analyses and transformations that are
1876not feasible to perform on normal three address code representations.
1877
Rafael Espindola08013342013-12-07 19:34:20 +00001878.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001879
Rafael Espindola08013342013-12-07 19:34:20 +00001880Void Type
1881---------
Sean Silvab084af42012-12-07 10:36:55 +00001882
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001883:Overview:
1884
Rafael Espindola08013342013-12-07 19:34:20 +00001885
1886The void type does not represent any value and has no size.
1887
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001888:Syntax:
1889
Rafael Espindola08013342013-12-07 19:34:20 +00001890
1891::
1892
1893 void
Sean Silvab084af42012-12-07 10:36:55 +00001894
1895
Rafael Espindola08013342013-12-07 19:34:20 +00001896.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001897
Rafael Espindola08013342013-12-07 19:34:20 +00001898Function Type
1899-------------
Sean Silvab084af42012-12-07 10:36:55 +00001900
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001901:Overview:
1902
Sean Silvab084af42012-12-07 10:36:55 +00001903
Rafael Espindola08013342013-12-07 19:34:20 +00001904The function type can be thought of as a function signature. It consists of a
1905return type and a list of formal parameter types. The return type of a function
1906type is a void type or first class type --- except for :ref:`label <t_label>`
1907and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001908
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001909:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001910
Rafael Espindola08013342013-12-07 19:34:20 +00001911::
Sean Silvab084af42012-12-07 10:36:55 +00001912
Rafael Espindola08013342013-12-07 19:34:20 +00001913 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001914
Rafael Espindola08013342013-12-07 19:34:20 +00001915...where '``<parameter list>``' is a comma-separated list of type
1916specifiers. Optionally, the parameter list may include a type ``...``, which
1917indicates that the function takes a variable number of arguments. Variable
1918argument functions can access their arguments with the :ref:`variable argument
1919handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1920except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001921
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001922:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001923
Rafael Espindola08013342013-12-07 19:34:20 +00001924+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1925| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1926+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1927| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1928+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1929| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1930+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1931| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1932+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1933
1934.. _t_firstclass:
1935
1936First Class Types
1937-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001938
1939The :ref:`first class <t_firstclass>` types are perhaps the most important.
1940Values of these types are the only ones which can be produced by
1941instructions.
1942
Rafael Espindola08013342013-12-07 19:34:20 +00001943.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001944
Rafael Espindola08013342013-12-07 19:34:20 +00001945Single Value Types
1946^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001947
Rafael Espindola08013342013-12-07 19:34:20 +00001948These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001949
1950.. _t_integer:
1951
1952Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001953""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001954
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001955:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001956
1957The integer type is a very simple type that simply specifies an
1958arbitrary bit width for the integer type desired. Any bit width from 1
1959bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1960
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001961:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001962
1963::
1964
1965 iN
1966
1967The number of bits the integer will occupy is specified by the ``N``
1968value.
1969
1970Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001971*********
Sean Silvab084af42012-12-07 10:36:55 +00001972
1973+----------------+------------------------------------------------+
1974| ``i1`` | a single-bit integer. |
1975+----------------+------------------------------------------------+
1976| ``i32`` | a 32-bit integer. |
1977+----------------+------------------------------------------------+
1978| ``i1942652`` | a really big integer of over 1 million bits. |
1979+----------------+------------------------------------------------+
1980
1981.. _t_floating:
1982
1983Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001984""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001985
1986.. list-table::
1987 :header-rows: 1
1988
1989 * - Type
1990 - Description
1991
1992 * - ``half``
1993 - 16-bit floating point value
1994
1995 * - ``float``
1996 - 32-bit floating point value
1997
1998 * - ``double``
1999 - 64-bit floating point value
2000
2001 * - ``fp128``
2002 - 128-bit floating point value (112-bit mantissa)
2003
2004 * - ``x86_fp80``
2005 - 80-bit floating point value (X87)
2006
2007 * - ``ppc_fp128``
2008 - 128-bit floating point value (two 64-bits)
2009
Reid Kleckner9a16d082014-03-05 02:41:37 +00002010X86_mmx Type
2011""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002012
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002013:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002014
Reid Kleckner9a16d082014-03-05 02:41:37 +00002015The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002016machine. The operations allowed on it are quite limited: parameters and
2017return values, load and store, and bitcast. User-specified MMX
2018instructions are represented as intrinsic or asm calls with arguments
2019and/or results of this type. There are no arrays, vectors or constants
2020of this type.
2021
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002022:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002023
2024::
2025
Reid Kleckner9a16d082014-03-05 02:41:37 +00002026 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002027
Sean Silvab084af42012-12-07 10:36:55 +00002028
Rafael Espindola08013342013-12-07 19:34:20 +00002029.. _t_pointer:
2030
2031Pointer Type
2032""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002033
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002034:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002035
Rafael Espindola08013342013-12-07 19:34:20 +00002036The pointer type is used to specify memory locations. Pointers are
2037commonly used to reference objects in memory.
2038
2039Pointer types may have an optional address space attribute defining the
2040numbered address space where the pointed-to object resides. The default
2041address space is number zero. The semantics of non-zero address spaces
2042are target-specific.
2043
2044Note that LLVM does not permit pointers to void (``void*``) nor does it
2045permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002046
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002047:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002048
2049::
2050
Rafael Espindola08013342013-12-07 19:34:20 +00002051 <type> *
2052
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002053:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002054
2055+-------------------------+--------------------------------------------------------------------------------------------------------------+
2056| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2057+-------------------------+--------------------------------------------------------------------------------------------------------------+
2058| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2059+-------------------------+--------------------------------------------------------------------------------------------------------------+
2060| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2061+-------------------------+--------------------------------------------------------------------------------------------------------------+
2062
2063.. _t_vector:
2064
2065Vector Type
2066"""""""""""
2067
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002068:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002069
2070A vector type is a simple derived type that represents a vector of
2071elements. Vector types are used when multiple primitive data are
2072operated in parallel using a single instruction (SIMD). A vector type
2073requires a size (number of elements) and an underlying primitive data
2074type. Vector types are considered :ref:`first class <t_firstclass>`.
2075
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002076:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002077
2078::
2079
2080 < <# elements> x <elementtype> >
2081
2082The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002083elementtype may be any integer, floating point or pointer type. Vectors
2084of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002085
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002086:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002087
2088+-------------------+--------------------------------------------------+
2089| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2090+-------------------+--------------------------------------------------+
2091| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2092+-------------------+--------------------------------------------------+
2093| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2094+-------------------+--------------------------------------------------+
2095| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2096+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002097
2098.. _t_label:
2099
2100Label Type
2101^^^^^^^^^^
2102
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002103:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002104
2105The label type represents code labels.
2106
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002107:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002108
2109::
2110
2111 label
2112
2113.. _t_metadata:
2114
2115Metadata Type
2116^^^^^^^^^^^^^
2117
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002118:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002119
2120The metadata type represents embedded metadata. No derived types may be
2121created from metadata except for :ref:`function <t_function>` arguments.
2122
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002123:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002124
2125::
2126
2127 metadata
2128
Sean Silvab084af42012-12-07 10:36:55 +00002129.. _t_aggregate:
2130
2131Aggregate Types
2132^^^^^^^^^^^^^^^
2133
2134Aggregate Types are a subset of derived types that can contain multiple
2135member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2136aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2137aggregate types.
2138
2139.. _t_array:
2140
2141Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002142""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002143
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002144:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002145
2146The array type is a very simple derived type that arranges elements
2147sequentially in memory. The array type requires a size (number of
2148elements) and an underlying data type.
2149
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002150:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002151
2152::
2153
2154 [<# elements> x <elementtype>]
2155
2156The number of elements is a constant integer value; ``elementtype`` may
2157be any type with a size.
2158
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002159:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002160
2161+------------------+--------------------------------------+
2162| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2163+------------------+--------------------------------------+
2164| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2165+------------------+--------------------------------------+
2166| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2167+------------------+--------------------------------------+
2168
2169Here are some examples of multidimensional arrays:
2170
2171+-----------------------------+----------------------------------------------------------+
2172| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2173+-----------------------------+----------------------------------------------------------+
2174| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2175+-----------------------------+----------------------------------------------------------+
2176| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2177+-----------------------------+----------------------------------------------------------+
2178
2179There is no restriction on indexing beyond the end of the array implied
2180by a static type (though there are restrictions on indexing beyond the
2181bounds of an allocated object in some cases). This means that
2182single-dimension 'variable sized array' addressing can be implemented in
2183LLVM with a zero length array type. An implementation of 'pascal style
2184arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2185example.
2186
Sean Silvab084af42012-12-07 10:36:55 +00002187.. _t_struct:
2188
2189Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002190""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002191
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002192:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002193
2194The structure type is used to represent a collection of data members
2195together in memory. The elements of a structure may be any type that has
2196a size.
2197
2198Structures in memory are accessed using '``load``' and '``store``' by
2199getting a pointer to a field with the '``getelementptr``' instruction.
2200Structures in registers are accessed using the '``extractvalue``' and
2201'``insertvalue``' instructions.
2202
2203Structures may optionally be "packed" structures, which indicate that
2204the alignment of the struct is one byte, and that there is no padding
2205between the elements. In non-packed structs, padding between field types
2206is inserted as defined by the DataLayout string in the module, which is
2207required to match what the underlying code generator expects.
2208
2209Structures can either be "literal" or "identified". A literal structure
2210is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2211identified types are always defined at the top level with a name.
2212Literal types are uniqued by their contents and can never be recursive
2213or opaque since there is no way to write one. Identified types can be
2214recursive, can be opaqued, and are never uniqued.
2215
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002216:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002217
2218::
2219
2220 %T1 = type { <type list> } ; Identified normal struct type
2221 %T2 = type <{ <type list> }> ; Identified packed struct type
2222
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002223:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002224
2225+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2226| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2227+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002228| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002229+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2230| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2231+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2232
2233.. _t_opaque:
2234
2235Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002236""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002237
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002238:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002239
2240Opaque structure types are used to represent named structure types that
2241do not have a body specified. This corresponds (for example) to the C
2242notion of a forward declared structure.
2243
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002244:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002245
2246::
2247
2248 %X = type opaque
2249 %52 = type opaque
2250
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002251:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002252
2253+--------------+-------------------+
2254| ``opaque`` | An opaque type. |
2255+--------------+-------------------+
2256
Sean Silva1703e702014-04-08 21:06:22 +00002257.. _constants:
2258
Sean Silvab084af42012-12-07 10:36:55 +00002259Constants
2260=========
2261
2262LLVM has several different basic types of constants. This section
2263describes them all and their syntax.
2264
2265Simple Constants
2266----------------
2267
2268**Boolean constants**
2269 The two strings '``true``' and '``false``' are both valid constants
2270 of the ``i1`` type.
2271**Integer constants**
2272 Standard integers (such as '4') are constants of the
2273 :ref:`integer <t_integer>` type. Negative numbers may be used with
2274 integer types.
2275**Floating point constants**
2276 Floating point constants use standard decimal notation (e.g.
2277 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2278 hexadecimal notation (see below). The assembler requires the exact
2279 decimal value of a floating-point constant. For example, the
2280 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2281 decimal in binary. Floating point constants must have a :ref:`floating
2282 point <t_floating>` type.
2283**Null pointer constants**
2284 The identifier '``null``' is recognized as a null pointer constant
2285 and must be of :ref:`pointer type <t_pointer>`.
2286
2287The one non-intuitive notation for constants is the hexadecimal form of
2288floating point constants. For example, the form
2289'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2290than) '``double 4.5e+15``'. The only time hexadecimal floating point
2291constants are required (and the only time that they are generated by the
2292disassembler) is when a floating point constant must be emitted but it
2293cannot be represented as a decimal floating point number in a reasonable
2294number of digits. For example, NaN's, infinities, and other special
2295values are represented in their IEEE hexadecimal format so that assembly
2296and disassembly do not cause any bits to change in the constants.
2297
2298When using the hexadecimal form, constants of types half, float, and
2299double are represented using the 16-digit form shown above (which
2300matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002301must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002302precision, respectively. Hexadecimal format is always used for long
2303double, and there are three forms of long double. The 80-bit format used
2304by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2305128-bit format used by PowerPC (two adjacent doubles) is represented by
2306``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002307represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2308will only work if they match the long double format on your target.
2309The IEEE 16-bit format (half precision) is represented by ``0xH``
2310followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2311(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002312
Reid Kleckner9a16d082014-03-05 02:41:37 +00002313There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002314
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002315.. _complexconstants:
2316
Sean Silvab084af42012-12-07 10:36:55 +00002317Complex Constants
2318-----------------
2319
2320Complex constants are a (potentially recursive) combination of simple
2321constants and smaller complex constants.
2322
2323**Structure constants**
2324 Structure constants are represented with notation similar to
2325 structure type definitions (a comma separated list of elements,
2326 surrounded by braces (``{}``)). For example:
2327 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2328 "``@G = external global i32``". Structure constants must have
2329 :ref:`structure type <t_struct>`, and the number and types of elements
2330 must match those specified by the type.
2331**Array constants**
2332 Array constants are represented with notation similar to array type
2333 definitions (a comma separated list of elements, surrounded by
2334 square brackets (``[]``)). For example:
2335 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2336 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002337 match those specified by the type. As a special case, character array
2338 constants may also be represented as a double-quoted string using the ``c``
2339 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002340**Vector constants**
2341 Vector constants are represented with notation similar to vector
2342 type definitions (a comma separated list of elements, surrounded by
2343 less-than/greater-than's (``<>``)). For example:
2344 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2345 must have :ref:`vector type <t_vector>`, and the number and types of
2346 elements must match those specified by the type.
2347**Zero initialization**
2348 The string '``zeroinitializer``' can be used to zero initialize a
2349 value to zero of *any* type, including scalar and
2350 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2351 having to print large zero initializers (e.g. for large arrays) and
2352 is always exactly equivalent to using explicit zero initializers.
2353**Metadata node**
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002354 A metadata node is a constant tuple without types. For example:
2355 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
2356 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2357 Unlike other typed constants that are meant to be interpreted as part of
2358 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002359 information such as debug info.
2360
2361Global Variable and Function Addresses
2362--------------------------------------
2363
2364The addresses of :ref:`global variables <globalvars>` and
2365:ref:`functions <functionstructure>` are always implicitly valid
2366(link-time) constants. These constants are explicitly referenced when
2367the :ref:`identifier for the global <identifiers>` is used and always have
2368:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2369file:
2370
2371.. code-block:: llvm
2372
2373 @X = global i32 17
2374 @Y = global i32 42
2375 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2376
2377.. _undefvalues:
2378
2379Undefined Values
2380----------------
2381
2382The string '``undef``' can be used anywhere a constant is expected, and
2383indicates that the user of the value may receive an unspecified
2384bit-pattern. Undefined values may be of any type (other than '``label``'
2385or '``void``') and be used anywhere a constant is permitted.
2386
2387Undefined values are useful because they indicate to the compiler that
2388the program is well defined no matter what value is used. This gives the
2389compiler more freedom to optimize. Here are some examples of
2390(potentially surprising) transformations that are valid (in pseudo IR):
2391
2392.. code-block:: llvm
2393
2394 %A = add %X, undef
2395 %B = sub %X, undef
2396 %C = xor %X, undef
2397 Safe:
2398 %A = undef
2399 %B = undef
2400 %C = undef
2401
2402This is safe because all of the output bits are affected by the undef
2403bits. Any output bit can have a zero or one depending on the input bits.
2404
2405.. code-block:: llvm
2406
2407 %A = or %X, undef
2408 %B = and %X, undef
2409 Safe:
2410 %A = -1
2411 %B = 0
2412 Unsafe:
2413 %A = undef
2414 %B = undef
2415
2416These logical operations have bits that are not always affected by the
2417input. For example, if ``%X`` has a zero bit, then the output of the
2418'``and``' operation will always be a zero for that bit, no matter what
2419the corresponding bit from the '``undef``' is. As such, it is unsafe to
2420optimize or assume that the result of the '``and``' is '``undef``'.
2421However, it is safe to assume that all bits of the '``undef``' could be
24220, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2423all the bits of the '``undef``' operand to the '``or``' could be set,
2424allowing the '``or``' to be folded to -1.
2425
2426.. code-block:: llvm
2427
2428 %A = select undef, %X, %Y
2429 %B = select undef, 42, %Y
2430 %C = select %X, %Y, undef
2431 Safe:
2432 %A = %X (or %Y)
2433 %B = 42 (or %Y)
2434 %C = %Y
2435 Unsafe:
2436 %A = undef
2437 %B = undef
2438 %C = undef
2439
2440This set of examples shows that undefined '``select``' (and conditional
2441branch) conditions can go *either way*, but they have to come from one
2442of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2443both known to have a clear low bit, then ``%A`` would have to have a
2444cleared low bit. However, in the ``%C`` example, the optimizer is
2445allowed to assume that the '``undef``' operand could be the same as
2446``%Y``, allowing the whole '``select``' to be eliminated.
2447
2448.. code-block:: llvm
2449
2450 %A = xor undef, undef
2451
2452 %B = undef
2453 %C = xor %B, %B
2454
2455 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002456 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002457 %F = icmp gte %D, 4
2458
2459 Safe:
2460 %A = undef
2461 %B = undef
2462 %C = undef
2463 %D = undef
2464 %E = undef
2465 %F = undef
2466
2467This example points out that two '``undef``' operands are not
2468necessarily the same. This can be surprising to people (and also matches
2469C semantics) where they assume that "``X^X``" is always zero, even if
2470``X`` is undefined. This isn't true for a number of reasons, but the
2471short answer is that an '``undef``' "variable" can arbitrarily change
2472its value over its "live range". This is true because the variable
2473doesn't actually *have a live range*. Instead, the value is logically
2474read from arbitrary registers that happen to be around when needed, so
2475the value is not necessarily consistent over time. In fact, ``%A`` and
2476``%C`` need to have the same semantics or the core LLVM "replace all
2477uses with" concept would not hold.
2478
2479.. code-block:: llvm
2480
2481 %A = fdiv undef, %X
2482 %B = fdiv %X, undef
2483 Safe:
2484 %A = undef
2485 b: unreachable
2486
2487These examples show the crucial difference between an *undefined value*
2488and *undefined behavior*. An undefined value (like '``undef``') is
2489allowed to have an arbitrary bit-pattern. This means that the ``%A``
2490operation can be constant folded to '``undef``', because the '``undef``'
2491could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2492However, in the second example, we can make a more aggressive
2493assumption: because the ``undef`` is allowed to be an arbitrary value,
2494we are allowed to assume that it could be zero. Since a divide by zero
2495has *undefined behavior*, we are allowed to assume that the operation
2496does not execute at all. This allows us to delete the divide and all
2497code after it. Because the undefined operation "can't happen", the
2498optimizer can assume that it occurs in dead code.
2499
2500.. code-block:: llvm
2501
2502 a: store undef -> %X
2503 b: store %X -> undef
2504 Safe:
2505 a: <deleted>
2506 b: unreachable
2507
2508These examples reiterate the ``fdiv`` example: a store *of* an undefined
2509value can be assumed to not have any effect; we can assume that the
2510value is overwritten with bits that happen to match what was already
2511there. However, a store *to* an undefined location could clobber
2512arbitrary memory, therefore, it has undefined behavior.
2513
2514.. _poisonvalues:
2515
2516Poison Values
2517-------------
2518
2519Poison values are similar to :ref:`undef values <undefvalues>`, however
2520they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002521that cannot evoke side effects has nevertheless detected a condition
2522that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002523
2524There is currently no way of representing a poison value in the IR; they
2525only exist when produced by operations such as :ref:`add <i_add>` with
2526the ``nsw`` flag.
2527
2528Poison value behavior is defined in terms of value *dependence*:
2529
2530- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2531- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2532 their dynamic predecessor basic block.
2533- Function arguments depend on the corresponding actual argument values
2534 in the dynamic callers of their functions.
2535- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2536 instructions that dynamically transfer control back to them.
2537- :ref:`Invoke <i_invoke>` instructions depend on the
2538 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2539 call instructions that dynamically transfer control back to them.
2540- Non-volatile loads and stores depend on the most recent stores to all
2541 of the referenced memory addresses, following the order in the IR
2542 (including loads and stores implied by intrinsics such as
2543 :ref:`@llvm.memcpy <int_memcpy>`.)
2544- An instruction with externally visible side effects depends on the
2545 most recent preceding instruction with externally visible side
2546 effects, following the order in the IR. (This includes :ref:`volatile
2547 operations <volatile>`.)
2548- An instruction *control-depends* on a :ref:`terminator
2549 instruction <terminators>` if the terminator instruction has
2550 multiple successors and the instruction is always executed when
2551 control transfers to one of the successors, and may not be executed
2552 when control is transferred to another.
2553- Additionally, an instruction also *control-depends* on a terminator
2554 instruction if the set of instructions it otherwise depends on would
2555 be different if the terminator had transferred control to a different
2556 successor.
2557- Dependence is transitive.
2558
Richard Smith32dbdf62014-07-31 04:25:36 +00002559Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2560with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002561on a poison value has undefined behavior.
2562
2563Here are some examples:
2564
2565.. code-block:: llvm
2566
2567 entry:
2568 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2569 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002570 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002571 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2572
2573 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002574 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002575
2576 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2577
2578 %narrowaddr = bitcast i32* @g to i16*
2579 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002580 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2581 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002582
2583 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2584 br i1 %cmp, label %true, label %end ; Branch to either destination.
2585
2586 true:
2587 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2588 ; it has undefined behavior.
2589 br label %end
2590
2591 end:
2592 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2593 ; Both edges into this PHI are
2594 ; control-dependent on %cmp, so this
2595 ; always results in a poison value.
2596
2597 store volatile i32 0, i32* @g ; This would depend on the store in %true
2598 ; if %cmp is true, or the store in %entry
2599 ; otherwise, so this is undefined behavior.
2600
2601 br i1 %cmp, label %second_true, label %second_end
2602 ; The same branch again, but this time the
2603 ; true block doesn't have side effects.
2604
2605 second_true:
2606 ; No side effects!
2607 ret void
2608
2609 second_end:
2610 store volatile i32 0, i32* @g ; This time, the instruction always depends
2611 ; on the store in %end. Also, it is
2612 ; control-equivalent to %end, so this is
2613 ; well-defined (ignoring earlier undefined
2614 ; behavior in this example).
2615
2616.. _blockaddress:
2617
2618Addresses of Basic Blocks
2619-------------------------
2620
2621``blockaddress(@function, %block)``
2622
2623The '``blockaddress``' constant computes the address of the specified
2624basic block in the specified function, and always has an ``i8*`` type.
2625Taking the address of the entry block is illegal.
2626
2627This value only has defined behavior when used as an operand to the
2628':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2629against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002630undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002631no label is equal to the null pointer. This may be passed around as an
2632opaque pointer sized value as long as the bits are not inspected. This
2633allows ``ptrtoint`` and arithmetic to be performed on these values so
2634long as the original value is reconstituted before the ``indirectbr``
2635instruction.
2636
2637Finally, some targets may provide defined semantics when using the value
2638as the operand to an inline assembly, but that is target specific.
2639
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002640.. _constantexprs:
2641
Sean Silvab084af42012-12-07 10:36:55 +00002642Constant Expressions
2643--------------------
2644
2645Constant expressions are used to allow expressions involving other
2646constants to be used as constants. Constant expressions may be of any
2647:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2648that does not have side effects (e.g. load and call are not supported).
2649The following is the syntax for constant expressions:
2650
2651``trunc (CST to TYPE)``
2652 Truncate a constant to another type. The bit size of CST must be
2653 larger than the bit size of TYPE. Both types must be integers.
2654``zext (CST to TYPE)``
2655 Zero extend a constant to another type. The bit size of CST must be
2656 smaller than the bit size of TYPE. Both types must be integers.
2657``sext (CST to TYPE)``
2658 Sign extend a constant to another type. The bit size of CST must be
2659 smaller than the bit size of TYPE. Both types must be integers.
2660``fptrunc (CST to TYPE)``
2661 Truncate a floating point constant to another floating point type.
2662 The size of CST must be larger than the size of TYPE. Both types
2663 must be floating point.
2664``fpext (CST to TYPE)``
2665 Floating point extend a constant to another type. The size of CST
2666 must be smaller or equal to the size of TYPE. Both types must be
2667 floating point.
2668``fptoui (CST to TYPE)``
2669 Convert a floating point constant to the corresponding unsigned
2670 integer constant. TYPE must be a scalar or vector integer type. CST
2671 must be of scalar or vector floating point type. Both CST and TYPE
2672 must be scalars, or vectors of the same number of elements. If the
2673 value won't fit in the integer type, the results are undefined.
2674``fptosi (CST to TYPE)``
2675 Convert a floating point constant to the corresponding signed
2676 integer constant. TYPE must be a scalar or vector integer type. CST
2677 must be of scalar or vector floating point type. Both CST and TYPE
2678 must be scalars, or vectors of the same number of elements. If the
2679 value won't fit in the integer type, the results are undefined.
2680``uitofp (CST to TYPE)``
2681 Convert an unsigned integer constant to the corresponding floating
2682 point constant. TYPE must be a scalar or vector floating point type.
2683 CST must be of scalar or vector integer type. Both CST and TYPE must
2684 be scalars, or vectors of the same number of elements. If the value
2685 won't fit in the floating point type, the results are undefined.
2686``sitofp (CST to TYPE)``
2687 Convert a signed integer constant to the corresponding floating
2688 point constant. TYPE must be a scalar or vector floating point type.
2689 CST must be of scalar or vector integer type. Both CST and TYPE must
2690 be scalars, or vectors of the same number of elements. If the value
2691 won't fit in the floating point type, the results are undefined.
2692``ptrtoint (CST to TYPE)``
2693 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002694 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002695 pointer type. The ``CST`` value is zero extended, truncated, or
2696 unchanged to make it fit in ``TYPE``.
2697``inttoptr (CST to TYPE)``
2698 Convert an integer constant to a pointer constant. TYPE must be a
2699 pointer type. CST must be of integer type. The CST value is zero
2700 extended, truncated, or unchanged to make it fit in a pointer size.
2701 This one is *really* dangerous!
2702``bitcast (CST to TYPE)``
2703 Convert a constant, CST, to another TYPE. The constraints of the
2704 operands are the same as those for the :ref:`bitcast
2705 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002706``addrspacecast (CST to TYPE)``
2707 Convert a constant pointer or constant vector of pointer, CST, to another
2708 TYPE in a different address space. The constraints of the operands are the
2709 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
Sean Silvab084af42012-12-07 10:36:55 +00002710``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2711 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2712 constants. As with the :ref:`getelementptr <i_getelementptr>`
2713 instruction, the index list may have zero or more indexes, which are
2714 required to make sense for the type of "CSTPTR".
2715``select (COND, VAL1, VAL2)``
2716 Perform the :ref:`select operation <i_select>` on constants.
2717``icmp COND (VAL1, VAL2)``
2718 Performs the :ref:`icmp operation <i_icmp>` on constants.
2719``fcmp COND (VAL1, VAL2)``
2720 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2721``extractelement (VAL, IDX)``
2722 Perform the :ref:`extractelement operation <i_extractelement>` on
2723 constants.
2724``insertelement (VAL, ELT, IDX)``
2725 Perform the :ref:`insertelement operation <i_insertelement>` on
2726 constants.
2727``shufflevector (VEC1, VEC2, IDXMASK)``
2728 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2729 constants.
2730``extractvalue (VAL, IDX0, IDX1, ...)``
2731 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2732 constants. The index list is interpreted in a similar manner as
2733 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2734 least one index value must be specified.
2735``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2736 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2737 The index list is interpreted in a similar manner as indices in a
2738 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2739 value must be specified.
2740``OPCODE (LHS, RHS)``
2741 Perform the specified operation of the LHS and RHS constants. OPCODE
2742 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2743 binary <bitwiseops>` operations. The constraints on operands are
2744 the same as those for the corresponding instruction (e.g. no bitwise
2745 operations on floating point values are allowed).
2746
2747Other Values
2748============
2749
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002750.. _inlineasmexprs:
2751
Sean Silvab084af42012-12-07 10:36:55 +00002752Inline Assembler Expressions
2753----------------------------
2754
2755LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2756Inline Assembly <moduleasm>`) through the use of a special value. This
2757value represents the inline assembler as a string (containing the
2758instructions to emit), a list of operand constraints (stored as a
2759string), a flag that indicates whether or not the inline asm expression
2760has side effects, and a flag indicating whether the function containing
2761the asm needs to align its stack conservatively. An example inline
2762assembler expression is:
2763
2764.. code-block:: llvm
2765
2766 i32 (i32) asm "bswap $0", "=r,r"
2767
2768Inline assembler expressions may **only** be used as the callee operand
2769of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2770Thus, typically we have:
2771
2772.. code-block:: llvm
2773
2774 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2775
2776Inline asms with side effects not visible in the constraint list must be
2777marked as having side effects. This is done through the use of the
2778'``sideeffect``' keyword, like so:
2779
2780.. code-block:: llvm
2781
2782 call void asm sideeffect "eieio", ""()
2783
2784In some cases inline asms will contain code that will not work unless
2785the stack is aligned in some way, such as calls or SSE instructions on
2786x86, yet will not contain code that does that alignment within the asm.
2787The compiler should make conservative assumptions about what the asm
2788might contain and should generate its usual stack alignment code in the
2789prologue if the '``alignstack``' keyword is present:
2790
2791.. code-block:: llvm
2792
2793 call void asm alignstack "eieio", ""()
2794
2795Inline asms also support using non-standard assembly dialects. The
2796assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2797the inline asm is using the Intel dialect. Currently, ATT and Intel are
2798the only supported dialects. An example is:
2799
2800.. code-block:: llvm
2801
2802 call void asm inteldialect "eieio", ""()
2803
2804If multiple keywords appear the '``sideeffect``' keyword must come
2805first, the '``alignstack``' keyword second and the '``inteldialect``'
2806keyword last.
2807
2808Inline Asm Metadata
2809^^^^^^^^^^^^^^^^^^^
2810
2811The call instructions that wrap inline asm nodes may have a
2812"``!srcloc``" MDNode attached to it that contains a list of constant
2813integers. If present, the code generator will use the integer as the
2814location cookie value when report errors through the ``LLVMContext``
2815error reporting mechanisms. This allows a front-end to correlate backend
2816errors that occur with inline asm back to the source code that produced
2817it. For example:
2818
2819.. code-block:: llvm
2820
2821 call void asm sideeffect "something bad", ""(), !srcloc !42
2822 ...
2823 !42 = !{ i32 1234567 }
2824
2825It is up to the front-end to make sense of the magic numbers it places
2826in the IR. If the MDNode contains multiple constants, the code generator
2827will use the one that corresponds to the line of the asm that the error
2828occurs on.
2829
2830.. _metadata:
2831
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002832Metadata
2833========
Sean Silvab084af42012-12-07 10:36:55 +00002834
2835LLVM IR allows metadata to be attached to instructions in the program
2836that can convey extra information about the code to the optimizers and
2837code generator. One example application of metadata is source-level
2838debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002839
2840Metadata does not have a type, and is not a value. If referenced from a
2841``call`` instruction, it uses the ``metadata`` type.
2842
2843All metadata are identified in syntax by a exclamation point ('``!``').
2844
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002845.. _metadata-string:
2846
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002847Metadata Nodes and Metadata Strings
2848-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00002849
2850A metadata string is a string surrounded by double quotes. It can
2851contain any character by escaping non-printable characters with
2852"``\xx``" where "``xx``" is the two digit hex code. For example:
2853"``!"test\00"``".
2854
2855Metadata nodes are represented with notation similar to structure
2856constants (a comma separated list of elements, surrounded by braces and
2857preceded by an exclamation point). Metadata nodes can have any values as
2858their operand. For example:
2859
2860.. code-block:: llvm
2861
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002862 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00002863
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00002864Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
2865
2866.. code-block:: llvm
2867
2868 !0 = distinct !{!"test\00", i32 10}
2869
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00002870``distinct`` nodes are useful when nodes shouldn't be merged based on their
2871content. They can also occur when transformations cause uniquing collisions
2872when metadata operands change.
2873
Sean Silvab084af42012-12-07 10:36:55 +00002874A :ref:`named metadata <namedmetadatastructure>` is a collection of
2875metadata nodes, which can be looked up in the module symbol table. For
2876example:
2877
2878.. code-block:: llvm
2879
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002880 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00002881
2882Metadata can be used as function arguments. Here ``llvm.dbg.value``
2883function is using two metadata arguments:
2884
2885.. code-block:: llvm
2886
2887 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2888
2889Metadata can be attached with an instruction. Here metadata ``!21`` is
2890attached to the ``add`` instruction using the ``!dbg`` identifier:
2891
2892.. code-block:: llvm
2893
2894 %indvar.next = add i64 %indvar, 1, !dbg !21
2895
2896More information about specific metadata nodes recognized by the
2897optimizers and code generator is found below.
2898
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00002899Specialized Metadata Nodes
2900^^^^^^^^^^^^^^^^^^^^^^^^^^
2901
2902Specialized metadata nodes are custom data structures in metadata (as opposed
2903to generic tuples). Their fields are labelled, and can be specified in any
2904order.
2905
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002906These aren't inherently debug info centric, but currently all the specialized
2907metadata nodes are related to debug info.
2908
2909MDCompileUnit
2910"""""""""""""
2911
2912``MDCompileUnit`` nodes represent a compile unit. The ``enums:``,
2913``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
2914tuples containing the debug info to be emitted along with the compile unit,
2915regardless of code optimizations (some nodes are only emitted if there are
2916references to them from instructions).
2917
2918.. code-block:: llvm
2919
2920 !0 = !MDCompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
2921 isOptimized: true, flags: "-O2", runtimeVersion: 2,
2922 splitDebugFilename: "abc.debug", emissionKind: 1,
2923 enums: !2, retainedTypes: !3, subprograms: !4,
2924 globals: !5, imports: !6)
2925
2926MDFile
2927""""""
2928
2929``MDFile`` nodes represent files. The ``filename:`` can include slashes.
2930
2931.. code-block:: llvm
2932
2933 !0 = !MDFile(filename: "path/to/file", directory: "/path/to/dir")
2934
2935.. _MDLocation:
2936
2937MDBasicType
2938"""""""""""
2939
2940``MDBasicType`` nodes represent primitive types. ``tag:`` defaults to
2941``DW_TAG_base_type``.
2942
2943.. code-block:: llvm
2944
2945 !0 = !MDBasicType(name: "unsigned char", size: 8, align: 8,
2946 encoding: DW_ATE_unsigned_char)
2947 !1 = !MDBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
2948
2949.. _MDSubroutineType:
2950
2951MDSubroutineType
2952""""""""""""""""
2953
2954``MDSubroutineType`` nodes represent subroutine types. Their ``types:`` field
2955refers to a tuple; the first operand is the return type, while the rest are the
2956types of the formal arguments in order. If the first operand is ``null``, that
2957represents a function with no return value (such as ``void foo() {}`` in C++).
2958
2959.. code-block:: llvm
2960
2961 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
2962 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
2963 !2 = !MDSubroutineType(types: !{null, !0, !1}) ; void (int, char)
2964
2965MDDerivedType
2966"""""""""""""
2967
2968``MDDerivedType`` nodes represent types derived from other types, such as
2969qualified types.
2970
2971.. code-block:: llvm
2972
2973 !0 = !MDBasicType(name: "unsigned char", size: 8, align: 8,
2974 encoding: DW_ATE_unsigned_char)
2975 !1 = !MDDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
2976 align: 32)
2977
2978.. _MDCompositeType:
2979
2980MDCompositeType
2981"""""""""""""""
2982
2983``MDCompositeType`` nodes represent types composed of other types, like
2984structures and unions. ``elements:`` points to a tuple of the composed types.
2985
2986If the source language supports ODR, the ``identifier:`` field gives the unique
2987identifier used for type merging between modules. When specified, other types
2988can refer to composite types indirectly via a :ref:`metadata string
2989<metadata-string>` that matches their identifier.
2990
2991.. code-block:: llvm
2992
2993 !0 = !MDEnumerator(name: "SixKind", value: 7)
2994 !1 = !MDEnumerator(name: "SevenKind", value: 7)
2995 !2 = !MDEnumerator(name: "NegEightKind", value: -8)
2996 !3 = !MDCompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
2997 line: 2, size: 32, align: 32, identifier: "_M4Enum",
2998 elements: !{!0, !1, !2})
2999
3000MDSubrange
3001""""""""""
3002
3003``MDSubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
3004:ref:`MDCompositeType`. ``count: -1`` indicates an empty array.
3005
3006.. code-block:: llvm
3007
3008 !0 = !MDSubrange(count: 5, lowerBound: 0) ; array counting from 0
3009 !1 = !MDSubrange(count: 5, lowerBound: 1) ; array counting from 1
3010 !2 = !MDSubrange(count: -1) ; empty array.
3011
3012MDEnumerator
3013""""""""""""
3014
3015``MDEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3016variants of :ref:`MDCompositeType`.
3017
3018.. code-block:: llvm
3019
3020 !0 = !MDEnumerator(name: "SixKind", value: 7)
3021 !1 = !MDEnumerator(name: "SevenKind", value: 7)
3022 !2 = !MDEnumerator(name: "NegEightKind", value: -8)
3023
3024MDTemplateTypeParameter
3025"""""""""""""""""""""""
3026
3027``MDTemplateTypeParameter`` nodes represent type parameters to generic source
3028language constructs. They are used (optionally) in :ref:`MDCompositeType` and
3029:ref:`MDSubprogram` ``templateParams:`` fields.
3030
3031.. code-block:: llvm
3032
3033 !0 = !MDTemplateTypeParameter(name: "Ty", type: !1)
3034
3035MDTemplateValueParameter
3036""""""""""""""""""""""""
3037
3038``MDTemplateValueParameter`` nodes represent value parameters to generic source
3039language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
3040but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
3041``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
3042:ref:`MDCompositeType` and :ref:`MDSubprogram` ``templateParams:`` fields.
3043
3044.. code-block:: llvm
3045
3046 !0 = !MDTemplateValueParameter(name: "Ty", type: !1, value: i32 7)
3047
3048MDNamespace
3049"""""""""""
3050
3051``MDNamespace`` nodes represent namespaces in the source language.
3052
3053.. code-block:: llvm
3054
3055 !0 = !MDNamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
3056
3057MDGlobalVariable
3058""""""""""""""""
3059
3060``MDGlobalVariable`` nodes represent global variables in the source language.
3061
3062.. code-block:: llvm
3063
3064 !0 = !MDGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
3065 file: !2, line: 7, type: !3, isLocal: true,
3066 isDefinition: false, variable: i32* @foo,
3067 declaration: !4)
3068
3069.. _MDSubprogram:
3070
3071MDSubprogram
3072""""""""""""
3073
3074``MDSubprogram`` nodes represent functions from the source language. The
3075``variables:`` field points at :ref:`variables <MDLocalVariable>` that must be
3076retained, even if their IR counterparts are optimized out of the IR. The
3077``type:`` field must point at an :ref:`MDSubroutineType`.
3078
3079.. code-block:: llvm
3080
3081 !0 = !MDSubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
3082 file: !2, line: 7, type: !3, isLocal: true,
3083 isDefinition: false, scopeLine: 8, containingType: !4,
3084 virtuality: DW_VIRTUALITY_pure_virtual, virtualIndex: 10,
3085 flags: DIFlagPrototyped, isOptimized: true,
3086 function: void ()* @_Z3foov,
3087 templateParams: !5, declaration: !6, variables: !7)
3088
3089.. _MDLexicalBlock:
3090
3091MDLexicalBlock
3092""""""""""""""
3093
3094``MDLexicalBlock`` nodes represent lexical blocks in the source language (a
3095scope).
3096
3097.. code-block:: llvm
3098
3099 !0 = !MDLexicalBlock(scope: !1, file: !2, line: 7, column: 35)
3100
3101.. _MDLexicalBlockFile:
3102
3103MDLexicalBlockFile
3104""""""""""""""""""
3105
3106``MDLexicalBlockFile`` nodes are used to discriminate between sections of a
3107:ref:`lexical block <MDLexicalBlock>`. The ``file:`` field can be changed to
3108indicate textual inclusion, or the ``discriminator:`` field can be used to
3109discriminate between control flow within a single block in the source language.
3110
3111.. code-block:: llvm
3112
3113 !0 = !MDLexicalBlock(scope: !3, file: !4, line: 7, column: 35)
3114 !1 = !MDLexicalBlockFile(scope: !0, file: !4, discriminator: 0)
3115 !2 = !MDLexicalBlockFile(scope: !0, file: !4, discriminator: 1)
3116
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003117MDLocation
3118""""""""""
3119
3120``MDLocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003121mandatory, and points at an :ref:`MDLexicalBlockFile`, an
3122:ref:`MDLexicalBlock`, or an :ref:`MDSubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003123
3124.. code-block:: llvm
3125
3126 !0 = !MDLocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
3127
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003128.. _MDLocalVariable:
3129
3130MDLocalVariable
3131"""""""""""""""
3132
3133``MDLocalVariable`` nodes represent local variables in the source language.
3134Instead of ``DW_TAG_variable``, they use LLVM-specific fake tags to
3135discriminate between local variables (``DW_TAG_auto_variable``) and subprogram
3136arguments (``DW_TAG_arg_variable``). In the latter case, the ``arg:`` field
3137specifies the argument position, and this variable will be included in the
3138``variables:`` field of its :ref:`MDSubprogram`.
3139
3140If set, the ``inlinedAt:`` field points at an :ref:`MDLocation`, and the
3141variable represents an inlined version of a variable (with all other fields
3142duplicated from the non-inlined version).
3143
3144.. code-block:: llvm
3145
3146 !0 = !MDLocalVariable(tag: DW_TAG_arg_variable, name: "this", arg: 0,
3147 scope: !3, file: !2, line: 7, type: !3,
3148 flags: DIFlagArtificial, inlinedAt: !4)
3149 !1 = !MDLocalVariable(tag: DW_TAG_arg_variable, name: "x", arg: 1,
3150 scope: !4, file: !2, line: 7, type: !3,
3151 inlinedAt: !6)
3152 !1 = !MDLocalVariable(tag: DW_TAG_auto_variable, name: "y",
3153 scope: !5, file: !2, line: 7, type: !3,
3154 inlinedAt: !6)
3155
3156MDExpression
3157""""""""""""
3158
3159``MDExpression`` nodes represent DWARF expression sequences. They are used in
3160:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
3161describe how the referenced LLVM variable relates to the source language
3162variable.
3163
3164The current supported vocabulary is limited:
3165
3166- ``DW_OP_deref`` dereferences the working expression.
3167- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
3168- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
3169 here, respectively) of the variable piece from the working expression.
3170
3171.. code-block:: llvm
3172
3173 !0 = !MDExpression(DW_OP_deref)
3174 !1 = !MDExpression(DW_OP_plus, 3)
3175 !2 = !MDExpression(DW_OP_bit_piece, 3, 7)
3176 !3 = !MDExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
3177
3178MDObjCProperty
3179""""""""""""""
3180
3181``MDObjCProperty`` nodes represent Objective-C property nodes.
3182
3183.. code-block:: llvm
3184
3185 !3 = !MDObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
3186 getter: "getFoo", attributes: 7, type: !2)
3187
3188MDImportedEntity
3189""""""""""""""""
3190
3191``MDImportedEntity`` nodes represent entities (such as modules) imported into a
3192compile unit.
3193
3194.. code-block:: llvm
3195
3196 !2 = !MDImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
3197 entity: !1, line: 7)
3198
Sean Silvab084af42012-12-07 10:36:55 +00003199'``tbaa``' Metadata
3200^^^^^^^^^^^^^^^^^^^
3201
3202In LLVM IR, memory does not have types, so LLVM's own type system is not
3203suitable for doing TBAA. Instead, metadata is added to the IR to
3204describe a type system of a higher level language. This can be used to
3205implement typical C/C++ TBAA, but it can also be used to implement
3206custom alias analysis behavior for other languages.
3207
3208The current metadata format is very simple. TBAA metadata nodes have up
3209to three fields, e.g.:
3210
3211.. code-block:: llvm
3212
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003213 !0 = !{ !"an example type tree" }
3214 !1 = !{ !"int", !0 }
3215 !2 = !{ !"float", !0 }
3216 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003217
3218The first field is an identity field. It can be any value, usually a
3219metadata string, which uniquely identifies the type. The most important
3220name in the tree is the name of the root node. Two trees with different
3221root node names are entirely disjoint, even if they have leaves with
3222common names.
3223
3224The second field identifies the type's parent node in the tree, or is
3225null or omitted for a root node. A type is considered to alias all of
3226its descendants and all of its ancestors in the tree. Also, a type is
3227considered to alias all types in other trees, so that bitcode produced
3228from multiple front-ends is handled conservatively.
3229
3230If the third field is present, it's an integer which if equal to 1
3231indicates that the type is "constant" (meaning
3232``pointsToConstantMemory`` should return true; see `other useful
3233AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
3234
3235'``tbaa.struct``' Metadata
3236^^^^^^^^^^^^^^^^^^^^^^^^^^
3237
3238The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
3239aggregate assignment operations in C and similar languages, however it
3240is defined to copy a contiguous region of memory, which is more than
3241strictly necessary for aggregate types which contain holes due to
3242padding. Also, it doesn't contain any TBAA information about the fields
3243of the aggregate.
3244
3245``!tbaa.struct`` metadata can describe which memory subregions in a
3246memcpy are padding and what the TBAA tags of the struct are.
3247
3248The current metadata format is very simple. ``!tbaa.struct`` metadata
3249nodes are a list of operands which are in conceptual groups of three.
3250For each group of three, the first operand gives the byte offset of a
3251field in bytes, the second gives its size in bytes, and the third gives
3252its tbaa tag. e.g.:
3253
3254.. code-block:: llvm
3255
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003256 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00003257
3258This describes a struct with two fields. The first is at offset 0 bytes
3259with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
3260and has size 4 bytes and has tbaa tag !2.
3261
3262Note that the fields need not be contiguous. In this example, there is a
32634 byte gap between the two fields. This gap represents padding which
3264does not carry useful data and need not be preserved.
3265
Hal Finkel94146652014-07-24 14:25:39 +00003266'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00003267^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00003268
3269``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
3270noalias memory-access sets. This means that some collection of memory access
3271instructions (loads, stores, memory-accessing calls, etc.) that carry
3272``noalias`` metadata can specifically be specified not to alias with some other
3273collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00003274Each type of metadata specifies a list of scopes where each scope has an id and
3275a domain. When evaluating an aliasing query, if for some some domain, the set
3276of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00003277subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00003278instruction's ``noalias`` list, then the two memory accesses are assumed not to
3279alias.
Hal Finkel94146652014-07-24 14:25:39 +00003280
Hal Finkel029cde62014-07-25 15:50:02 +00003281The metadata identifying each domain is itself a list containing one or two
3282entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00003283string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00003284self-reference can be used to create globally unique domain names. A
3285descriptive string may optionally be provided as a second list entry.
3286
3287The metadata identifying each scope is also itself a list containing two or
3288three entries. The first entry is the name of the scope. Note that if the name
3289is a string then it can be combined accross functions and translation units. A
3290self-reference can be used to create globally unique scope names. A metadata
3291reference to the scope's domain is the second entry. A descriptive string may
3292optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00003293
3294For example,
3295
3296.. code-block:: llvm
3297
Hal Finkel029cde62014-07-25 15:50:02 +00003298 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003299 !0 = !{!0}
3300 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00003301
Hal Finkel029cde62014-07-25 15:50:02 +00003302 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003303 !2 = !{!2, !0}
3304 !3 = !{!3, !0}
3305 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00003306
Hal Finkel029cde62014-07-25 15:50:02 +00003307 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003308 !5 = !{!4} ; A list containing only scope !4
3309 !6 = !{!4, !3, !2}
3310 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00003311
3312 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00003313 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00003314 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00003315
Hal Finkel029cde62014-07-25 15:50:02 +00003316 ; These two instructions also don't alias (for domain !1, the set of scopes
3317 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00003318 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00003319 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00003320
Hal Finkel029cde62014-07-25 15:50:02 +00003321 ; These two instructions don't alias (for domain !0, the set of scopes in
3322 ; the !noalias list is not a superset of, or equal to, the scopes in the
3323 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00003324 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00003325 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00003326
Sean Silvab084af42012-12-07 10:36:55 +00003327'``fpmath``' Metadata
3328^^^^^^^^^^^^^^^^^^^^^
3329
3330``fpmath`` metadata may be attached to any instruction of floating point
3331type. It can be used to express the maximum acceptable error in the
3332result of that instruction, in ULPs, thus potentially allowing the
3333compiler to use a more efficient but less accurate method of computing
3334it. ULP is defined as follows:
3335
3336 If ``x`` is a real number that lies between two finite consecutive
3337 floating-point numbers ``a`` and ``b``, without being equal to one
3338 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
3339 distance between the two non-equal finite floating-point numbers
3340 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
3341
3342The metadata node shall consist of a single positive floating point
3343number representing the maximum relative error, for example:
3344
3345.. code-block:: llvm
3346
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003347 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00003348
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00003349.. _range-metadata:
3350
Sean Silvab084af42012-12-07 10:36:55 +00003351'``range``' Metadata
3352^^^^^^^^^^^^^^^^^^^^
3353
Jingyue Wu37fcb592014-06-19 16:50:16 +00003354``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
3355integer types. It expresses the possible ranges the loaded value or the value
3356returned by the called function at this call site is in. The ranges are
3357represented with a flattened list of integers. The loaded value or the value
3358returned is known to be in the union of the ranges defined by each consecutive
3359pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00003360
3361- The type must match the type loaded by the instruction.
3362- The pair ``a,b`` represents the range ``[a,b)``.
3363- Both ``a`` and ``b`` are constants.
3364- The range is allowed to wrap.
3365- The range should not represent the full or empty set. That is,
3366 ``a!=b``.
3367
3368In addition, the pairs must be in signed order of the lower bound and
3369they must be non-contiguous.
3370
3371Examples:
3372
3373.. code-block:: llvm
3374
David Blaikiec7aabbb2015-03-04 22:06:14 +00003375 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
3376 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00003377 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
3378 %d = invoke i8 @bar() to label %cont
3379 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00003380 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003381 !0 = !{ i8 0, i8 2 }
3382 !1 = !{ i8 255, i8 2 }
3383 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
3384 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00003385
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003386'``llvm.loop``'
3387^^^^^^^^^^^^^^^
3388
3389It is sometimes useful to attach information to loop constructs. Currently,
3390loop metadata is implemented as metadata attached to the branch instruction
3391in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00003392guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00003393specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003394
3395The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00003396itself to avoid merging it with any other identifier metadata, e.g.,
3397during module linkage or function inlining. That is, each loop should refer
3398to their own identification metadata even if they reside in separate functions.
3399The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003400constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003401
3402.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00003403
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003404 !0 = !{!0}
3405 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003406
Mark Heffernan893752a2014-07-18 19:24:51 +00003407The loop identifier metadata can be used to specify additional
3408per-loop metadata. Any operands after the first operand can be treated
3409as user-defined metadata. For example the ``llvm.loop.unroll.count``
3410suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003411
Paul Redmond5fdf8362013-05-28 20:00:34 +00003412.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003413
Paul Redmond5fdf8362013-05-28 20:00:34 +00003414 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
3415 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003416 !0 = !{!0, !1}
3417 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003418
Mark Heffernan9d20e422014-07-21 23:11:03 +00003419'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
3420^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00003421
Mark Heffernan9d20e422014-07-21 23:11:03 +00003422Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
3423used to control per-loop vectorization and interleaving parameters such as
3424vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00003425conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00003426``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
3427optimization hints and the optimizer will only interleave and vectorize loops if
3428it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
3429which contains information about loop-carried memory dependencies can be helpful
3430in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00003431
Mark Heffernan9d20e422014-07-21 23:11:03 +00003432'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00003433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3434
Mark Heffernan9d20e422014-07-21 23:11:03 +00003435This metadata suggests an interleave count to the loop interleaver.
3436The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00003437second operand is an integer specifying the interleave count. For
3438example:
3439
3440.. code-block:: llvm
3441
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003442 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003443
Mark Heffernan9d20e422014-07-21 23:11:03 +00003444Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3445multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
3446then the interleave count will be determined automatically.
3447
3448'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00003449^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00003450
3451This metadata selectively enables or disables vectorization for the loop. The
3452first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3453is a bit. If the bit operand value is 1 vectorization is enabled. A value of
34540 disables vectorization:
3455
3456.. code-block:: llvm
3457
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003458 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
3459 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00003460
3461'``llvm.loop.vectorize.width``' Metadata
3462^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3463
3464This metadata sets the target width of the vectorizer. The first
3465operand is the string ``llvm.loop.vectorize.width`` and the second
3466operand is an integer specifying the width. For example:
3467
3468.. code-block:: llvm
3469
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003470 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003471
3472Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3473vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
34740 or if the loop does not have this metadata the width will be
3475determined automatically.
3476
3477'``llvm.loop.unroll``'
3478^^^^^^^^^^^^^^^^^^^^^^
3479
3480Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3481optimization hints such as the unroll factor. ``llvm.loop.unroll``
3482metadata should be used in conjunction with ``llvm.loop`` loop
3483identification metadata. The ``llvm.loop.unroll`` metadata are only
3484optimization hints and the unrolling will only be performed if the
3485optimizer believes it is safe to do so.
3486
Mark Heffernan893752a2014-07-18 19:24:51 +00003487'``llvm.loop.unroll.count``' Metadata
3488^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3489
3490This metadata suggests an unroll factor to the loop unroller. The
3491first operand is the string ``llvm.loop.unroll.count`` and the second
3492operand is a positive integer specifying the unroll factor. For
3493example:
3494
3495.. code-block:: llvm
3496
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003497 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003498
3499If the trip count of the loop is less than the unroll count the loop
3500will be partially unrolled.
3501
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003502'``llvm.loop.unroll.disable``' Metadata
3503^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3504
3505This metadata either disables loop unrolling. The metadata has a single operand
3506which is the string ``llvm.loop.unroll.disable``. For example:
3507
3508.. code-block:: llvm
3509
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003510 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003511
3512'``llvm.loop.unroll.full``' Metadata
3513^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3514
3515This metadata either suggests that the loop should be unrolled fully. The
3516metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3517For example:
3518
3519.. code-block:: llvm
3520
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003521 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003522
3523'``llvm.mem``'
3524^^^^^^^^^^^^^^^
3525
3526Metadata types used to annotate memory accesses with information helpful
3527for optimizations are prefixed with ``llvm.mem``.
3528
3529'``llvm.mem.parallel_loop_access``' Metadata
3530^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3531
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003532The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3533or metadata containing a list of loop identifiers for nested loops.
3534The metadata is attached to memory accessing instructions and denotes that
3535no loop carried memory dependence exist between it and other instructions denoted
3536with the same loop identifier.
3537
3538Precisely, given two instructions ``m1`` and ``m2`` that both have the
3539``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3540set of loops associated with that metadata, respectively, then there is no loop
Pekka Jaaskelainena3044082014-06-06 11:21:44 +00003541carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003542``L2``.
3543
3544As a special case, if all memory accessing instructions in a loop have
3545``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3546loop has no loop carried memory dependences and is considered to be a parallel
3547loop.
3548
3549Note that if not all memory access instructions have such metadata referring to
3550the loop, then the loop is considered not being trivially parallel. Additional
3551memory dependence analysis is required to make that determination. As a fail
3552safe mechanism, this causes loops that were originally parallel to be considered
3553sequential (if optimization passes that are unaware of the parallel semantics
3554insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003555
3556Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003557both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003558metadata types that refer to the same loop identifier metadata.
3559
3560.. code-block:: llvm
3561
3562 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003563 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00003564 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003565 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003566 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003567 ...
3568 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003569
3570 for.end:
3571 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003572 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003573
3574It is also possible to have nested parallel loops. In that case the
3575memory accesses refer to a list of loop identifier metadata nodes instead of
3576the loop identifier metadata node directly:
3577
3578.. code-block:: llvm
3579
3580 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003581 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00003582 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003583 ...
3584 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003585
3586 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003587 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00003588 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003589 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003590 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003591 ...
3592 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003593
3594 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003595 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003596 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003597 ...
3598 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003599
3600 outer.for.end: ; preds = %for.body
3601 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003602 !0 = !{!1, !2} ; a list of loop identifiers
3603 !1 = !{!1} ; an identifier for the inner loop
3604 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003605
Peter Collingbournee6909c82015-02-20 20:30:47 +00003606'``llvm.bitsets``'
3607^^^^^^^^^^^^^^^^^^
3608
3609The ``llvm.bitsets`` global metadata is used to implement
3610:doc:`bitsets <BitSets>`.
3611
Sean Silvab084af42012-12-07 10:36:55 +00003612Module Flags Metadata
3613=====================
3614
3615Information about the module as a whole is difficult to convey to LLVM's
3616subsystems. The LLVM IR isn't sufficient to transmit this information.
3617The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003618this. These flags are in the form of key / value pairs --- much like a
3619dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003620look it up.
3621
3622The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3623Each triplet has the following form:
3624
3625- The first element is a *behavior* flag, which specifies the behavior
3626 when two (or more) modules are merged together, and it encounters two
3627 (or more) metadata with the same ID. The supported behaviors are
3628 described below.
3629- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003630 metadata. Each module may only have one flag entry for each unique ID (not
3631 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003632- The third element is the value of the flag.
3633
3634When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003635``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3636each unique metadata ID string, there will be exactly one entry in the merged
3637modules ``llvm.module.flags`` metadata table, and the value for that entry will
3638be determined by the merge behavior flag, as described below. The only exception
3639is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003640
3641The following behaviors are supported:
3642
3643.. list-table::
3644 :header-rows: 1
3645 :widths: 10 90
3646
3647 * - Value
3648 - Behavior
3649
3650 * - 1
3651 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003652 Emits an error if two values disagree, otherwise the resulting value
3653 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003654
3655 * - 2
3656 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003657 Emits a warning if two values disagree. The result value will be the
3658 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003659
3660 * - 3
3661 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003662 Adds a requirement that another module flag be present and have a
3663 specified value after linking is performed. The value must be a
3664 metadata pair, where the first element of the pair is the ID of the
3665 module flag to be restricted, and the second element of the pair is
3666 the value the module flag should be restricted to. This behavior can
3667 be used to restrict the allowable results (via triggering of an
3668 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003669
3670 * - 4
3671 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003672 Uses the specified value, regardless of the behavior or value of the
3673 other module. If both modules specify **Override**, but the values
3674 differ, an error will be emitted.
3675
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003676 * - 5
3677 - **Append**
3678 Appends the two values, which are required to be metadata nodes.
3679
3680 * - 6
3681 - **AppendUnique**
3682 Appends the two values, which are required to be metadata
3683 nodes. However, duplicate entries in the second list are dropped
3684 during the append operation.
3685
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003686It is an error for a particular unique flag ID to have multiple behaviors,
3687except in the case of **Require** (which adds restrictions on another metadata
3688value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003689
3690An example of module flags:
3691
3692.. code-block:: llvm
3693
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003694 !0 = !{ i32 1, !"foo", i32 1 }
3695 !1 = !{ i32 4, !"bar", i32 37 }
3696 !2 = !{ i32 2, !"qux", i32 42 }
3697 !3 = !{ i32 3, !"qux",
3698 !{
3699 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00003700 }
3701 }
3702 !llvm.module.flags = !{ !0, !1, !2, !3 }
3703
3704- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3705 if two or more ``!"foo"`` flags are seen is to emit an error if their
3706 values are not equal.
3707
3708- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3709 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003710 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003711
3712- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3713 behavior if two or more ``!"qux"`` flags are seen is to emit a
3714 warning if their values are not equal.
3715
3716- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3717
3718 ::
3719
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003720 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003721
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003722 The behavior is to emit an error if the ``llvm.module.flags`` does not
3723 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3724 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003725
3726Objective-C Garbage Collection Module Flags Metadata
3727----------------------------------------------------
3728
3729On the Mach-O platform, Objective-C stores metadata about garbage
3730collection in a special section called "image info". The metadata
3731consists of a version number and a bitmask specifying what types of
3732garbage collection are supported (if any) by the file. If two or more
3733modules are linked together their garbage collection metadata needs to
3734be merged rather than appended together.
3735
3736The Objective-C garbage collection module flags metadata consists of the
3737following key-value pairs:
3738
3739.. list-table::
3740 :header-rows: 1
3741 :widths: 30 70
3742
3743 * - Key
3744 - Value
3745
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003746 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003747 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003748
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003749 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003750 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003751 always 0.
3752
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003753 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003754 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003755 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3756 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3757 Objective-C ABI version 2.
3758
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003759 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003760 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003761 not. Valid values are 0, for no garbage collection, and 2, for garbage
3762 collection supported.
3763
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003764 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003765 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003766 If present, its value must be 6. This flag requires that the
3767 ``Objective-C Garbage Collection`` flag have the value 2.
3768
3769Some important flag interactions:
3770
3771- If a module with ``Objective-C Garbage Collection`` set to 0 is
3772 merged with a module with ``Objective-C Garbage Collection`` set to
3773 2, then the resulting module has the
3774 ``Objective-C Garbage Collection`` flag set to 0.
3775- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3776 merged with a module with ``Objective-C GC Only`` set to 6.
3777
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003778Automatic Linker Flags Module Flags Metadata
3779--------------------------------------------
3780
3781Some targets support embedding flags to the linker inside individual object
3782files. Typically this is used in conjunction with language extensions which
3783allow source files to explicitly declare the libraries they depend on, and have
3784these automatically be transmitted to the linker via object files.
3785
3786These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003787using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003788to be ``AppendUnique``, and the value for the key is expected to be a metadata
3789node which should be a list of other metadata nodes, each of which should be a
3790list of metadata strings defining linker options.
3791
3792For example, the following metadata section specifies two separate sets of
3793linker options, presumably to link against ``libz`` and the ``Cocoa``
3794framework::
3795
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003796 !0 = !{ i32 6, !"Linker Options",
3797 !{
3798 !{ !"-lz" },
3799 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003800 !llvm.module.flags = !{ !0 }
3801
3802The metadata encoding as lists of lists of options, as opposed to a collapsed
3803list of options, is chosen so that the IR encoding can use multiple option
3804strings to specify e.g., a single library, while still having that specifier be
3805preserved as an atomic element that can be recognized by a target specific
3806assembly writer or object file emitter.
3807
3808Each individual option is required to be either a valid option for the target's
3809linker, or an option that is reserved by the target specific assembly writer or
3810object file emitter. No other aspect of these options is defined by the IR.
3811
Oliver Stannard5dc29342014-06-20 10:08:11 +00003812C type width Module Flags Metadata
3813----------------------------------
3814
3815The ARM backend emits a section into each generated object file describing the
3816options that it was compiled with (in a compiler-independent way) to prevent
3817linking incompatible objects, and to allow automatic library selection. Some
3818of these options are not visible at the IR level, namely wchar_t width and enum
3819width.
3820
3821To pass this information to the backend, these options are encoded in module
3822flags metadata, using the following key-value pairs:
3823
3824.. list-table::
3825 :header-rows: 1
3826 :widths: 30 70
3827
3828 * - Key
3829 - Value
3830
3831 * - short_wchar
3832 - * 0 --- sizeof(wchar_t) == 4
3833 * 1 --- sizeof(wchar_t) == 2
3834
3835 * - short_enum
3836 - * 0 --- Enums are at least as large as an ``int``.
3837 * 1 --- Enums are stored in the smallest integer type which can
3838 represent all of its values.
3839
3840For example, the following metadata section specifies that the module was
3841compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3842enum is the smallest type which can represent all of its values::
3843
3844 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003845 !0 = !{i32 1, !"short_wchar", i32 1}
3846 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00003847
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003848.. _intrinsicglobalvariables:
3849
Sean Silvab084af42012-12-07 10:36:55 +00003850Intrinsic Global Variables
3851==========================
3852
3853LLVM has a number of "magic" global variables that contain data that
3854affect code generation or other IR semantics. These are documented here.
3855All globals of this sort should have a section specified as
3856"``llvm.metadata``". This section and all globals that start with
3857"``llvm.``" are reserved for use by LLVM.
3858
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003859.. _gv_llvmused:
3860
Sean Silvab084af42012-12-07 10:36:55 +00003861The '``llvm.used``' Global Variable
3862-----------------------------------
3863
Rafael Espindola74f2e462013-04-22 14:58:02 +00003864The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003865:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003866pointers to named global variables, functions and aliases which may optionally
3867have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003868use of it is:
3869
3870.. code-block:: llvm
3871
3872 @X = global i8 4
3873 @Y = global i32 123
3874
3875 @llvm.used = appending global [2 x i8*] [
3876 i8* @X,
3877 i8* bitcast (i32* @Y to i8*)
3878 ], section "llvm.metadata"
3879
Rafael Espindola74f2e462013-04-22 14:58:02 +00003880If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3881and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003882symbol that it cannot see (which is why they have to be named). For example, if
3883a variable has internal linkage and no references other than that from the
3884``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3885references from inline asms and other things the compiler cannot "see", and
3886corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003887
3888On some targets, the code generator must emit a directive to the
3889assembler or object file to prevent the assembler and linker from
3890molesting the symbol.
3891
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003892.. _gv_llvmcompilerused:
3893
Sean Silvab084af42012-12-07 10:36:55 +00003894The '``llvm.compiler.used``' Global Variable
3895--------------------------------------------
3896
3897The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3898directive, except that it only prevents the compiler from touching the
3899symbol. On targets that support it, this allows an intelligent linker to
3900optimize references to the symbol without being impeded as it would be
3901by ``@llvm.used``.
3902
3903This is a rare construct that should only be used in rare circumstances,
3904and should not be exposed to source languages.
3905
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003906.. _gv_llvmglobalctors:
3907
Sean Silvab084af42012-12-07 10:36:55 +00003908The '``llvm.global_ctors``' Global Variable
3909-------------------------------------------
3910
3911.. code-block:: llvm
3912
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003913 %0 = type { i32, void ()*, i8* }
3914 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003915
3916The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003917functions, priorities, and an optional associated global or function.
3918The functions referenced by this array will be called in ascending order
3919of priority (i.e. lowest first) when the module is loaded. The order of
3920functions with the same priority is not defined.
3921
3922If the third field is present, non-null, and points to a global variable
3923or function, the initializer function will only run if the associated
3924data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003925
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003926.. _llvmglobaldtors:
3927
Sean Silvab084af42012-12-07 10:36:55 +00003928The '``llvm.global_dtors``' Global Variable
3929-------------------------------------------
3930
3931.. code-block:: llvm
3932
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003933 %0 = type { i32, void ()*, i8* }
3934 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003935
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003936The ``@llvm.global_dtors`` array contains a list of destructor
3937functions, priorities, and an optional associated global or function.
3938The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003939order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003940order of functions with the same priority is not defined.
3941
3942If the third field is present, non-null, and points to a global variable
3943or function, the destructor function will only run if the associated
3944data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003945
3946Instruction Reference
3947=====================
3948
3949The LLVM instruction set consists of several different classifications
3950of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3951instructions <binaryops>`, :ref:`bitwise binary
3952instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3953:ref:`other instructions <otherops>`.
3954
3955.. _terminators:
3956
3957Terminator Instructions
3958-----------------------
3959
3960As mentioned :ref:`previously <functionstructure>`, every basic block in a
3961program ends with a "Terminator" instruction, which indicates which
3962block should be executed after the current block is finished. These
3963terminator instructions typically yield a '``void``' value: they produce
3964control flow, not values (the one exception being the
3965':ref:`invoke <i_invoke>`' instruction).
3966
3967The terminator instructions are: ':ref:`ret <i_ret>`',
3968':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3969':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3970':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3971
3972.. _i_ret:
3973
3974'``ret``' Instruction
3975^^^^^^^^^^^^^^^^^^^^^
3976
3977Syntax:
3978"""""""
3979
3980::
3981
3982 ret <type> <value> ; Return a value from a non-void function
3983 ret void ; Return from void function
3984
3985Overview:
3986"""""""""
3987
3988The '``ret``' instruction is used to return control flow (and optionally
3989a value) from a function back to the caller.
3990
3991There are two forms of the '``ret``' instruction: one that returns a
3992value and then causes control flow, and one that just causes control
3993flow to occur.
3994
3995Arguments:
3996""""""""""
3997
3998The '``ret``' instruction optionally accepts a single argument, the
3999return value. The type of the return value must be a ':ref:`first
4000class <t_firstclass>`' type.
4001
4002A function is not :ref:`well formed <wellformed>` if it it has a non-void
4003return type and contains a '``ret``' instruction with no return value or
4004a return value with a type that does not match its type, or if it has a
4005void return type and contains a '``ret``' instruction with a return
4006value.
4007
4008Semantics:
4009""""""""""
4010
4011When the '``ret``' instruction is executed, control flow returns back to
4012the calling function's context. If the caller is a
4013":ref:`call <i_call>`" instruction, execution continues at the
4014instruction after the call. If the caller was an
4015":ref:`invoke <i_invoke>`" instruction, execution continues at the
4016beginning of the "normal" destination block. If the instruction returns
4017a value, that value shall set the call or invoke instruction's return
4018value.
4019
4020Example:
4021""""""""
4022
4023.. code-block:: llvm
4024
4025 ret i32 5 ; Return an integer value of 5
4026 ret void ; Return from a void function
4027 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
4028
4029.. _i_br:
4030
4031'``br``' Instruction
4032^^^^^^^^^^^^^^^^^^^^
4033
4034Syntax:
4035"""""""
4036
4037::
4038
4039 br i1 <cond>, label <iftrue>, label <iffalse>
4040 br label <dest> ; Unconditional branch
4041
4042Overview:
4043"""""""""
4044
4045The '``br``' instruction is used to cause control flow to transfer to a
4046different basic block in the current function. There are two forms of
4047this instruction, corresponding to a conditional branch and an
4048unconditional branch.
4049
4050Arguments:
4051""""""""""
4052
4053The conditional branch form of the '``br``' instruction takes a single
4054'``i1``' value and two '``label``' values. The unconditional form of the
4055'``br``' instruction takes a single '``label``' value as a target.
4056
4057Semantics:
4058""""""""""
4059
4060Upon execution of a conditional '``br``' instruction, the '``i1``'
4061argument is evaluated. If the value is ``true``, control flows to the
4062'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
4063to the '``iffalse``' ``label`` argument.
4064
4065Example:
4066""""""""
4067
4068.. code-block:: llvm
4069
4070 Test:
4071 %cond = icmp eq i32 %a, %b
4072 br i1 %cond, label %IfEqual, label %IfUnequal
4073 IfEqual:
4074 ret i32 1
4075 IfUnequal:
4076 ret i32 0
4077
4078.. _i_switch:
4079
4080'``switch``' Instruction
4081^^^^^^^^^^^^^^^^^^^^^^^^
4082
4083Syntax:
4084"""""""
4085
4086::
4087
4088 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
4089
4090Overview:
4091"""""""""
4092
4093The '``switch``' instruction is used to transfer control flow to one of
4094several different places. It is a generalization of the '``br``'
4095instruction, allowing a branch to occur to one of many possible
4096destinations.
4097
4098Arguments:
4099""""""""""
4100
4101The '``switch``' instruction uses three parameters: an integer
4102comparison value '``value``', a default '``label``' destination, and an
4103array of pairs of comparison value constants and '``label``'s. The table
4104is not allowed to contain duplicate constant entries.
4105
4106Semantics:
4107""""""""""
4108
4109The ``switch`` instruction specifies a table of values and destinations.
4110When the '``switch``' instruction is executed, this table is searched
4111for the given value. If the value is found, control flow is transferred
4112to the corresponding destination; otherwise, control flow is transferred
4113to the default destination.
4114
4115Implementation:
4116"""""""""""""""
4117
4118Depending on properties of the target machine and the particular
4119``switch`` instruction, this instruction may be code generated in
4120different ways. For example, it could be generated as a series of
4121chained conditional branches or with a lookup table.
4122
4123Example:
4124""""""""
4125
4126.. code-block:: llvm
4127
4128 ; Emulate a conditional br instruction
4129 %Val = zext i1 %value to i32
4130 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
4131
4132 ; Emulate an unconditional br instruction
4133 switch i32 0, label %dest [ ]
4134
4135 ; Implement a jump table:
4136 switch i32 %val, label %otherwise [ i32 0, label %onzero
4137 i32 1, label %onone
4138 i32 2, label %ontwo ]
4139
4140.. _i_indirectbr:
4141
4142'``indirectbr``' Instruction
4143^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4144
4145Syntax:
4146"""""""
4147
4148::
4149
4150 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
4151
4152Overview:
4153"""""""""
4154
4155The '``indirectbr``' instruction implements an indirect branch to a
4156label within the current function, whose address is specified by
4157"``address``". Address must be derived from a
4158:ref:`blockaddress <blockaddress>` constant.
4159
4160Arguments:
4161""""""""""
4162
4163The '``address``' argument is the address of the label to jump to. The
4164rest of the arguments indicate the full set of possible destinations
4165that the address may point to. Blocks are allowed to occur multiple
4166times in the destination list, though this isn't particularly useful.
4167
4168This destination list is required so that dataflow analysis has an
4169accurate understanding of the CFG.
4170
4171Semantics:
4172""""""""""
4173
4174Control transfers to the block specified in the address argument. All
4175possible destination blocks must be listed in the label list, otherwise
4176this instruction has undefined behavior. This implies that jumps to
4177labels defined in other functions have undefined behavior as well.
4178
4179Implementation:
4180"""""""""""""""
4181
4182This is typically implemented with a jump through a register.
4183
4184Example:
4185""""""""
4186
4187.. code-block:: llvm
4188
4189 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
4190
4191.. _i_invoke:
4192
4193'``invoke``' Instruction
4194^^^^^^^^^^^^^^^^^^^^^^^^
4195
4196Syntax:
4197"""""""
4198
4199::
4200
4201 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
4202 to label <normal label> unwind label <exception label>
4203
4204Overview:
4205"""""""""
4206
4207The '``invoke``' instruction causes control to transfer to a specified
4208function, with the possibility of control flow transfer to either the
4209'``normal``' label or the '``exception``' label. If the callee function
4210returns with the "``ret``" instruction, control flow will return to the
4211"normal" label. If the callee (or any indirect callees) returns via the
4212":ref:`resume <i_resume>`" instruction or other exception handling
4213mechanism, control is interrupted and continued at the dynamically
4214nearest "exception" label.
4215
4216The '``exception``' label is a `landing
4217pad <ExceptionHandling.html#overview>`_ for the exception. As such,
4218'``exception``' label is required to have the
4219":ref:`landingpad <i_landingpad>`" instruction, which contains the
4220information about the behavior of the program after unwinding happens,
4221as its first non-PHI instruction. The restrictions on the
4222"``landingpad``" instruction's tightly couples it to the "``invoke``"
4223instruction, so that the important information contained within the
4224"``landingpad``" instruction can't be lost through normal code motion.
4225
4226Arguments:
4227""""""""""
4228
4229This instruction requires several arguments:
4230
4231#. The optional "cconv" marker indicates which :ref:`calling
4232 convention <callingconv>` the call should use. If none is
4233 specified, the call defaults to using C calling conventions.
4234#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
4235 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
4236 are valid here.
4237#. '``ptr to function ty``': shall be the signature of the pointer to
4238 function value being invoked. In most cases, this is a direct
4239 function invocation, but indirect ``invoke``'s are just as possible,
4240 branching off an arbitrary pointer to function value.
4241#. '``function ptr val``': An LLVM value containing a pointer to a
4242 function to be invoked.
4243#. '``function args``': argument list whose types match the function
4244 signature argument types and parameter attributes. All arguments must
4245 be of :ref:`first class <t_firstclass>` type. If the function signature
4246 indicates the function accepts a variable number of arguments, the
4247 extra arguments can be specified.
4248#. '``normal label``': the label reached when the called function
4249 executes a '``ret``' instruction.
4250#. '``exception label``': the label reached when a callee returns via
4251 the :ref:`resume <i_resume>` instruction or other exception handling
4252 mechanism.
4253#. The optional :ref:`function attributes <fnattrs>` list. Only
4254 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
4255 attributes are valid here.
4256
4257Semantics:
4258""""""""""
4259
4260This instruction is designed to operate as a standard '``call``'
4261instruction in most regards. The primary difference is that it
4262establishes an association with a label, which is used by the runtime
4263library to unwind the stack.
4264
4265This instruction is used in languages with destructors to ensure that
4266proper cleanup is performed in the case of either a ``longjmp`` or a
4267thrown exception. Additionally, this is important for implementation of
4268'``catch``' clauses in high-level languages that support them.
4269
4270For the purposes of the SSA form, the definition of the value returned
4271by the '``invoke``' instruction is deemed to occur on the edge from the
4272current block to the "normal" label. If the callee unwinds then no
4273return value is available.
4274
4275Example:
4276""""""""
4277
4278.. code-block:: llvm
4279
4280 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00004281 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00004282 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00004283 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00004284
4285.. _i_resume:
4286
4287'``resume``' Instruction
4288^^^^^^^^^^^^^^^^^^^^^^^^
4289
4290Syntax:
4291"""""""
4292
4293::
4294
4295 resume <type> <value>
4296
4297Overview:
4298"""""""""
4299
4300The '``resume``' instruction is a terminator instruction that has no
4301successors.
4302
4303Arguments:
4304""""""""""
4305
4306The '``resume``' instruction requires one argument, which must have the
4307same type as the result of any '``landingpad``' instruction in the same
4308function.
4309
4310Semantics:
4311""""""""""
4312
4313The '``resume``' instruction resumes propagation of an existing
4314(in-flight) exception whose unwinding was interrupted with a
4315:ref:`landingpad <i_landingpad>` instruction.
4316
4317Example:
4318""""""""
4319
4320.. code-block:: llvm
4321
4322 resume { i8*, i32 } %exn
4323
4324.. _i_unreachable:
4325
4326'``unreachable``' Instruction
4327^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4328
4329Syntax:
4330"""""""
4331
4332::
4333
4334 unreachable
4335
4336Overview:
4337"""""""""
4338
4339The '``unreachable``' instruction has no defined semantics. This
4340instruction is used to inform the optimizer that a particular portion of
4341the code is not reachable. This can be used to indicate that the code
4342after a no-return function cannot be reached, and other facts.
4343
4344Semantics:
4345""""""""""
4346
4347The '``unreachable``' instruction has no defined semantics.
4348
4349.. _binaryops:
4350
4351Binary Operations
4352-----------------
4353
4354Binary operators are used to do most of the computation in a program.
4355They require two operands of the same type, execute an operation on
4356them, and produce a single value. The operands might represent multiple
4357data, as is the case with the :ref:`vector <t_vector>` data type. The
4358result value has the same type as its operands.
4359
4360There are several different binary operators:
4361
4362.. _i_add:
4363
4364'``add``' Instruction
4365^^^^^^^^^^^^^^^^^^^^^
4366
4367Syntax:
4368"""""""
4369
4370::
4371
Tim Northover675a0962014-06-13 14:24:23 +00004372 <result> = add <ty> <op1>, <op2> ; yields ty:result
4373 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
4374 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
4375 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004376
4377Overview:
4378"""""""""
4379
4380The '``add``' instruction returns the sum of its two operands.
4381
4382Arguments:
4383""""""""""
4384
4385The two arguments to the '``add``' instruction must be
4386:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4387arguments must have identical types.
4388
4389Semantics:
4390""""""""""
4391
4392The value produced is the integer sum of the two operands.
4393
4394If the sum has unsigned overflow, the result returned is the
4395mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4396the result.
4397
4398Because LLVM integers use a two's complement representation, this
4399instruction is appropriate for both signed and unsigned integers.
4400
4401``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4402respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4403result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
4404unsigned and/or signed overflow, respectively, occurs.
4405
4406Example:
4407""""""""
4408
4409.. code-block:: llvm
4410
Tim Northover675a0962014-06-13 14:24:23 +00004411 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004412
4413.. _i_fadd:
4414
4415'``fadd``' Instruction
4416^^^^^^^^^^^^^^^^^^^^^^
4417
4418Syntax:
4419"""""""
4420
4421::
4422
Tim Northover675a0962014-06-13 14:24:23 +00004423 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004424
4425Overview:
4426"""""""""
4427
4428The '``fadd``' instruction returns the sum of its two operands.
4429
4430Arguments:
4431""""""""""
4432
4433The two arguments to the '``fadd``' instruction must be :ref:`floating
4434point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4435Both arguments must have identical types.
4436
4437Semantics:
4438""""""""""
4439
4440The value produced is the floating point sum of the two operands. This
4441instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4442which are optimization hints to enable otherwise unsafe floating point
4443optimizations:
4444
4445Example:
4446""""""""
4447
4448.. code-block:: llvm
4449
Tim Northover675a0962014-06-13 14:24:23 +00004450 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004451
4452'``sub``' Instruction
4453^^^^^^^^^^^^^^^^^^^^^
4454
4455Syntax:
4456"""""""
4457
4458::
4459
Tim Northover675a0962014-06-13 14:24:23 +00004460 <result> = sub <ty> <op1>, <op2> ; yields ty:result
4461 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
4462 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
4463 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004464
4465Overview:
4466"""""""""
4467
4468The '``sub``' instruction returns the difference of its two operands.
4469
4470Note that the '``sub``' instruction is used to represent the '``neg``'
4471instruction present in most other intermediate representations.
4472
4473Arguments:
4474""""""""""
4475
4476The two arguments to the '``sub``' instruction must be
4477:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4478arguments must have identical types.
4479
4480Semantics:
4481""""""""""
4482
4483The value produced is the integer difference of the two operands.
4484
4485If the difference has unsigned overflow, the result returned is the
4486mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4487the result.
4488
4489Because LLVM integers use a two's complement representation, this
4490instruction is appropriate for both signed and unsigned integers.
4491
4492``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4493respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4494result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4495unsigned and/or signed overflow, respectively, occurs.
4496
4497Example:
4498""""""""
4499
4500.. code-block:: llvm
4501
Tim Northover675a0962014-06-13 14:24:23 +00004502 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
4503 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004504
4505.. _i_fsub:
4506
4507'``fsub``' Instruction
4508^^^^^^^^^^^^^^^^^^^^^^
4509
4510Syntax:
4511"""""""
4512
4513::
4514
Tim Northover675a0962014-06-13 14:24:23 +00004515 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004516
4517Overview:
4518"""""""""
4519
4520The '``fsub``' instruction returns the difference of its two operands.
4521
4522Note that the '``fsub``' instruction is used to represent the '``fneg``'
4523instruction present in most other intermediate representations.
4524
4525Arguments:
4526""""""""""
4527
4528The two arguments to the '``fsub``' instruction must be :ref:`floating
4529point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4530Both arguments must have identical types.
4531
4532Semantics:
4533""""""""""
4534
4535The value produced is the floating point difference of the two operands.
4536This instruction can also take any number of :ref:`fast-math
4537flags <fastmath>`, which are optimization hints to enable otherwise
4538unsafe floating point optimizations:
4539
4540Example:
4541""""""""
4542
4543.. code-block:: llvm
4544
Tim Northover675a0962014-06-13 14:24:23 +00004545 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4546 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004547
4548'``mul``' Instruction
4549^^^^^^^^^^^^^^^^^^^^^
4550
4551Syntax:
4552"""""""
4553
4554::
4555
Tim Northover675a0962014-06-13 14:24:23 +00004556 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4557 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4558 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4559 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004560
4561Overview:
4562"""""""""
4563
4564The '``mul``' instruction returns the product of its two operands.
4565
4566Arguments:
4567""""""""""
4568
4569The two arguments to the '``mul``' instruction must be
4570:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4571arguments must have identical types.
4572
4573Semantics:
4574""""""""""
4575
4576The value produced is the integer product of the two operands.
4577
4578If the result of the multiplication has unsigned overflow, the result
4579returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4580bit width of the result.
4581
4582Because LLVM integers use a two's complement representation, and the
4583result is the same width as the operands, this instruction returns the
4584correct result for both signed and unsigned integers. If a full product
4585(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4586sign-extended or zero-extended as appropriate to the width of the full
4587product.
4588
4589``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4590respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4591result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4592unsigned and/or signed overflow, respectively, occurs.
4593
4594Example:
4595""""""""
4596
4597.. code-block:: llvm
4598
Tim Northover675a0962014-06-13 14:24:23 +00004599 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004600
4601.. _i_fmul:
4602
4603'``fmul``' Instruction
4604^^^^^^^^^^^^^^^^^^^^^^
4605
4606Syntax:
4607"""""""
4608
4609::
4610
Tim Northover675a0962014-06-13 14:24:23 +00004611 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004612
4613Overview:
4614"""""""""
4615
4616The '``fmul``' instruction returns the product of its two operands.
4617
4618Arguments:
4619""""""""""
4620
4621The two arguments to the '``fmul``' instruction must be :ref:`floating
4622point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4623Both arguments must have identical types.
4624
4625Semantics:
4626""""""""""
4627
4628The value produced is the floating point product of the two operands.
4629This instruction can also take any number of :ref:`fast-math
4630flags <fastmath>`, which are optimization hints to enable otherwise
4631unsafe floating point optimizations:
4632
4633Example:
4634""""""""
4635
4636.. code-block:: llvm
4637
Tim Northover675a0962014-06-13 14:24:23 +00004638 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004639
4640'``udiv``' Instruction
4641^^^^^^^^^^^^^^^^^^^^^^
4642
4643Syntax:
4644"""""""
4645
4646::
4647
Tim Northover675a0962014-06-13 14:24:23 +00004648 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4649 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004650
4651Overview:
4652"""""""""
4653
4654The '``udiv``' instruction returns the quotient of its two operands.
4655
4656Arguments:
4657""""""""""
4658
4659The two arguments to the '``udiv``' instruction must be
4660:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4661arguments must have identical types.
4662
4663Semantics:
4664""""""""""
4665
4666The value produced is the unsigned integer quotient of the two operands.
4667
4668Note that unsigned integer division and signed integer division are
4669distinct operations; for signed integer division, use '``sdiv``'.
4670
4671Division by zero leads to undefined behavior.
4672
4673If the ``exact`` keyword is present, the result value of the ``udiv`` is
4674a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4675such, "((a udiv exact b) mul b) == a").
4676
4677Example:
4678""""""""
4679
4680.. code-block:: llvm
4681
Tim Northover675a0962014-06-13 14:24:23 +00004682 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004683
4684'``sdiv``' Instruction
4685^^^^^^^^^^^^^^^^^^^^^^
4686
4687Syntax:
4688"""""""
4689
4690::
4691
Tim Northover675a0962014-06-13 14:24:23 +00004692 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4693 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004694
4695Overview:
4696"""""""""
4697
4698The '``sdiv``' instruction returns the quotient of its two operands.
4699
4700Arguments:
4701""""""""""
4702
4703The two arguments to the '``sdiv``' instruction must be
4704:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4705arguments must have identical types.
4706
4707Semantics:
4708""""""""""
4709
4710The value produced is the signed integer quotient of the two operands
4711rounded towards zero.
4712
4713Note that signed integer division and unsigned integer division are
4714distinct operations; for unsigned integer division, use '``udiv``'.
4715
4716Division by zero leads to undefined behavior. Overflow also leads to
4717undefined behavior; this is a rare case, but can occur, for example, by
4718doing a 32-bit division of -2147483648 by -1.
4719
4720If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4721a :ref:`poison value <poisonvalues>` if the result would be rounded.
4722
4723Example:
4724""""""""
4725
4726.. code-block:: llvm
4727
Tim Northover675a0962014-06-13 14:24:23 +00004728 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004729
4730.. _i_fdiv:
4731
4732'``fdiv``' Instruction
4733^^^^^^^^^^^^^^^^^^^^^^
4734
4735Syntax:
4736"""""""
4737
4738::
4739
Tim Northover675a0962014-06-13 14:24:23 +00004740 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004741
4742Overview:
4743"""""""""
4744
4745The '``fdiv``' instruction returns the quotient of its two operands.
4746
4747Arguments:
4748""""""""""
4749
4750The two arguments to the '``fdiv``' instruction must be :ref:`floating
4751point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4752Both arguments must have identical types.
4753
4754Semantics:
4755""""""""""
4756
4757The value produced is the floating point quotient of the two operands.
4758This instruction can also take any number of :ref:`fast-math
4759flags <fastmath>`, which are optimization hints to enable otherwise
4760unsafe floating point optimizations:
4761
4762Example:
4763""""""""
4764
4765.. code-block:: llvm
4766
Tim Northover675a0962014-06-13 14:24:23 +00004767 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004768
4769'``urem``' Instruction
4770^^^^^^^^^^^^^^^^^^^^^^
4771
4772Syntax:
4773"""""""
4774
4775::
4776
Tim Northover675a0962014-06-13 14:24:23 +00004777 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004778
4779Overview:
4780"""""""""
4781
4782The '``urem``' instruction returns the remainder from the unsigned
4783division of its two arguments.
4784
4785Arguments:
4786""""""""""
4787
4788The two arguments to the '``urem``' instruction must be
4789:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4790arguments must have identical types.
4791
4792Semantics:
4793""""""""""
4794
4795This instruction returns the unsigned integer *remainder* of a division.
4796This instruction always performs an unsigned division to get the
4797remainder.
4798
4799Note that unsigned integer remainder and signed integer remainder are
4800distinct operations; for signed integer remainder, use '``srem``'.
4801
4802Taking the remainder of a division by zero leads to undefined behavior.
4803
4804Example:
4805""""""""
4806
4807.. code-block:: llvm
4808
Tim Northover675a0962014-06-13 14:24:23 +00004809 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004810
4811'``srem``' Instruction
4812^^^^^^^^^^^^^^^^^^^^^^
4813
4814Syntax:
4815"""""""
4816
4817::
4818
Tim Northover675a0962014-06-13 14:24:23 +00004819 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004820
4821Overview:
4822"""""""""
4823
4824The '``srem``' instruction returns the remainder from the signed
4825division of its two operands. This instruction can also take
4826:ref:`vector <t_vector>` versions of the values in which case the elements
4827must be integers.
4828
4829Arguments:
4830""""""""""
4831
4832The two arguments to the '``srem``' instruction must be
4833:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4834arguments must have identical types.
4835
4836Semantics:
4837""""""""""
4838
4839This instruction returns the *remainder* of a division (where the result
4840is either zero or has the same sign as the dividend, ``op1``), not the
4841*modulo* operator (where the result is either zero or has the same sign
4842as the divisor, ``op2``) of a value. For more information about the
4843difference, see `The Math
4844Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4845table of how this is implemented in various languages, please see
4846`Wikipedia: modulo
4847operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4848
4849Note that signed integer remainder and unsigned integer remainder are
4850distinct operations; for unsigned integer remainder, use '``urem``'.
4851
4852Taking the remainder of a division by zero leads to undefined behavior.
4853Overflow also leads to undefined behavior; this is a rare case, but can
4854occur, for example, by taking the remainder of a 32-bit division of
4855-2147483648 by -1. (The remainder doesn't actually overflow, but this
4856rule lets srem be implemented using instructions that return both the
4857result of the division and the remainder.)
4858
4859Example:
4860""""""""
4861
4862.. code-block:: llvm
4863
Tim Northover675a0962014-06-13 14:24:23 +00004864 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004865
4866.. _i_frem:
4867
4868'``frem``' Instruction
4869^^^^^^^^^^^^^^^^^^^^^^
4870
4871Syntax:
4872"""""""
4873
4874::
4875
Tim Northover675a0962014-06-13 14:24:23 +00004876 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004877
4878Overview:
4879"""""""""
4880
4881The '``frem``' instruction returns the remainder from the division of
4882its two operands.
4883
4884Arguments:
4885""""""""""
4886
4887The two arguments to the '``frem``' instruction must be :ref:`floating
4888point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4889Both arguments must have identical types.
4890
4891Semantics:
4892""""""""""
4893
4894This instruction returns the *remainder* of a division. The remainder
4895has the same sign as the dividend. This instruction can also take any
4896number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4897to enable otherwise unsafe floating point optimizations:
4898
4899Example:
4900""""""""
4901
4902.. code-block:: llvm
4903
Tim Northover675a0962014-06-13 14:24:23 +00004904 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004905
4906.. _bitwiseops:
4907
4908Bitwise Binary Operations
4909-------------------------
4910
4911Bitwise binary operators are used to do various forms of bit-twiddling
4912in a program. They are generally very efficient instructions and can
4913commonly be strength reduced from other instructions. They require two
4914operands of the same type, execute an operation on them, and produce a
4915single value. The resulting value is the same type as its operands.
4916
4917'``shl``' Instruction
4918^^^^^^^^^^^^^^^^^^^^^
4919
4920Syntax:
4921"""""""
4922
4923::
4924
Tim Northover675a0962014-06-13 14:24:23 +00004925 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4926 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4927 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4928 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004929
4930Overview:
4931"""""""""
4932
4933The '``shl``' instruction returns the first operand shifted to the left
4934a specified number of bits.
4935
4936Arguments:
4937""""""""""
4938
4939Both arguments to the '``shl``' instruction must be the same
4940:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4941'``op2``' is treated as an unsigned value.
4942
4943Semantics:
4944""""""""""
4945
4946The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4947where ``n`` is the width of the result. If ``op2`` is (statically or
4948dynamically) negative or equal to or larger than the number of bits in
4949``op1``, the result is undefined. If the arguments are vectors, each
4950vector element of ``op1`` is shifted by the corresponding shift amount
4951in ``op2``.
4952
4953If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4954value <poisonvalues>` if it shifts out any non-zero bits. If the
4955``nsw`` keyword is present, then the shift produces a :ref:`poison
4956value <poisonvalues>` if it shifts out any bits that disagree with the
4957resultant sign bit. As such, NUW/NSW have the same semantics as they
4958would if the shift were expressed as a mul instruction with the same
4959nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4960
4961Example:
4962""""""""
4963
4964.. code-block:: llvm
4965
Tim Northover675a0962014-06-13 14:24:23 +00004966 <result> = shl i32 4, %var ; yields i32: 4 << %var
4967 <result> = shl i32 4, 2 ; yields i32: 16
4968 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004969 <result> = shl i32 1, 32 ; undefined
4970 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4971
4972'``lshr``' Instruction
4973^^^^^^^^^^^^^^^^^^^^^^
4974
4975Syntax:
4976"""""""
4977
4978::
4979
Tim Northover675a0962014-06-13 14:24:23 +00004980 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4981 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004982
4983Overview:
4984"""""""""
4985
4986The '``lshr``' instruction (logical shift right) returns the first
4987operand shifted to the right a specified number of bits with zero fill.
4988
4989Arguments:
4990""""""""""
4991
4992Both arguments to the '``lshr``' instruction must be the same
4993:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4994'``op2``' is treated as an unsigned value.
4995
4996Semantics:
4997""""""""""
4998
4999This instruction always performs a logical shift right operation. The
5000most significant bits of the result will be filled with zero bits after
5001the shift. If ``op2`` is (statically or dynamically) equal to or larger
5002than the number of bits in ``op1``, the result is undefined. If the
5003arguments are vectors, each vector element of ``op1`` is shifted by the
5004corresponding shift amount in ``op2``.
5005
5006If the ``exact`` keyword is present, the result value of the ``lshr`` is
5007a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
5008non-zero.
5009
5010Example:
5011""""""""
5012
5013.. code-block:: llvm
5014
Tim Northover675a0962014-06-13 14:24:23 +00005015 <result> = lshr i32 4, 1 ; yields i32:result = 2
5016 <result> = lshr i32 4, 2 ; yields i32:result = 1
5017 <result> = lshr i8 4, 3 ; yields i8:result = 0
5018 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00005019 <result> = lshr i32 1, 32 ; undefined
5020 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
5021
5022'``ashr``' Instruction
5023^^^^^^^^^^^^^^^^^^^^^^
5024
5025Syntax:
5026"""""""
5027
5028::
5029
Tim Northover675a0962014-06-13 14:24:23 +00005030 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
5031 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005032
5033Overview:
5034"""""""""
5035
5036The '``ashr``' instruction (arithmetic shift right) returns the first
5037operand shifted to the right a specified number of bits with sign
5038extension.
5039
5040Arguments:
5041""""""""""
5042
5043Both arguments to the '``ashr``' instruction must be the same
5044:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5045'``op2``' is treated as an unsigned value.
5046
5047Semantics:
5048""""""""""
5049
5050This instruction always performs an arithmetic shift right operation,
5051The most significant bits of the result will be filled with the sign bit
5052of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
5053than the number of bits in ``op1``, the result is undefined. If the
5054arguments are vectors, each vector element of ``op1`` is shifted by the
5055corresponding shift amount in ``op2``.
5056
5057If the ``exact`` keyword is present, the result value of the ``ashr`` is
5058a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
5059non-zero.
5060
5061Example:
5062""""""""
5063
5064.. code-block:: llvm
5065
Tim Northover675a0962014-06-13 14:24:23 +00005066 <result> = ashr i32 4, 1 ; yields i32:result = 2
5067 <result> = ashr i32 4, 2 ; yields i32:result = 1
5068 <result> = ashr i8 4, 3 ; yields i8:result = 0
5069 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00005070 <result> = ashr i32 1, 32 ; undefined
5071 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
5072
5073'``and``' Instruction
5074^^^^^^^^^^^^^^^^^^^^^
5075
5076Syntax:
5077"""""""
5078
5079::
5080
Tim Northover675a0962014-06-13 14:24:23 +00005081 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005082
5083Overview:
5084"""""""""
5085
5086The '``and``' instruction returns the bitwise logical and of its two
5087operands.
5088
5089Arguments:
5090""""""""""
5091
5092The two arguments to the '``and``' instruction must be
5093:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5094arguments must have identical types.
5095
5096Semantics:
5097""""""""""
5098
5099The truth table used for the '``and``' instruction is:
5100
5101+-----+-----+-----+
5102| In0 | In1 | Out |
5103+-----+-----+-----+
5104| 0 | 0 | 0 |
5105+-----+-----+-----+
5106| 0 | 1 | 0 |
5107+-----+-----+-----+
5108| 1 | 0 | 0 |
5109+-----+-----+-----+
5110| 1 | 1 | 1 |
5111+-----+-----+-----+
5112
5113Example:
5114""""""""
5115
5116.. code-block:: llvm
5117
Tim Northover675a0962014-06-13 14:24:23 +00005118 <result> = and i32 4, %var ; yields i32:result = 4 & %var
5119 <result> = and i32 15, 40 ; yields i32:result = 8
5120 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00005121
5122'``or``' Instruction
5123^^^^^^^^^^^^^^^^^^^^
5124
5125Syntax:
5126"""""""
5127
5128::
5129
Tim Northover675a0962014-06-13 14:24:23 +00005130 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005131
5132Overview:
5133"""""""""
5134
5135The '``or``' instruction returns the bitwise logical inclusive or of its
5136two operands.
5137
5138Arguments:
5139""""""""""
5140
5141The two arguments to the '``or``' instruction must be
5142:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5143arguments must have identical types.
5144
5145Semantics:
5146""""""""""
5147
5148The truth table used for the '``or``' instruction is:
5149
5150+-----+-----+-----+
5151| In0 | In1 | Out |
5152+-----+-----+-----+
5153| 0 | 0 | 0 |
5154+-----+-----+-----+
5155| 0 | 1 | 1 |
5156+-----+-----+-----+
5157| 1 | 0 | 1 |
5158+-----+-----+-----+
5159| 1 | 1 | 1 |
5160+-----+-----+-----+
5161
5162Example:
5163""""""""
5164
5165::
5166
Tim Northover675a0962014-06-13 14:24:23 +00005167 <result> = or i32 4, %var ; yields i32:result = 4 | %var
5168 <result> = or i32 15, 40 ; yields i32:result = 47
5169 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00005170
5171'``xor``' Instruction
5172^^^^^^^^^^^^^^^^^^^^^
5173
5174Syntax:
5175"""""""
5176
5177::
5178
Tim Northover675a0962014-06-13 14:24:23 +00005179 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005180
5181Overview:
5182"""""""""
5183
5184The '``xor``' instruction returns the bitwise logical exclusive or of
5185its two operands. The ``xor`` is used to implement the "one's
5186complement" operation, which is the "~" operator in C.
5187
5188Arguments:
5189""""""""""
5190
5191The two arguments to the '``xor``' instruction must be
5192:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5193arguments must have identical types.
5194
5195Semantics:
5196""""""""""
5197
5198The truth table used for the '``xor``' instruction is:
5199
5200+-----+-----+-----+
5201| In0 | In1 | Out |
5202+-----+-----+-----+
5203| 0 | 0 | 0 |
5204+-----+-----+-----+
5205| 0 | 1 | 1 |
5206+-----+-----+-----+
5207| 1 | 0 | 1 |
5208+-----+-----+-----+
5209| 1 | 1 | 0 |
5210+-----+-----+-----+
5211
5212Example:
5213""""""""
5214
5215.. code-block:: llvm
5216
Tim Northover675a0962014-06-13 14:24:23 +00005217 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
5218 <result> = xor i32 15, 40 ; yields i32:result = 39
5219 <result> = xor i32 4, 8 ; yields i32:result = 12
5220 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00005221
5222Vector Operations
5223-----------------
5224
5225LLVM supports several instructions to represent vector operations in a
5226target-independent manner. These instructions cover the element-access
5227and vector-specific operations needed to process vectors effectively.
5228While LLVM does directly support these vector operations, many
5229sophisticated algorithms will want to use target-specific intrinsics to
5230take full advantage of a specific target.
5231
5232.. _i_extractelement:
5233
5234'``extractelement``' Instruction
5235^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5236
5237Syntax:
5238"""""""
5239
5240::
5241
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00005242 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00005243
5244Overview:
5245"""""""""
5246
5247The '``extractelement``' instruction extracts a single scalar element
5248from a vector at a specified index.
5249
5250Arguments:
5251""""""""""
5252
5253The first operand of an '``extractelement``' instruction is a value of
5254:ref:`vector <t_vector>` type. The second operand is an index indicating
5255the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00005256variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00005257
5258Semantics:
5259""""""""""
5260
5261The result is a scalar of the same type as the element type of ``val``.
5262Its value is the value at position ``idx`` of ``val``. If ``idx``
5263exceeds the length of ``val``, the results are undefined.
5264
5265Example:
5266""""""""
5267
5268.. code-block:: llvm
5269
5270 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
5271
5272.. _i_insertelement:
5273
5274'``insertelement``' Instruction
5275^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5276
5277Syntax:
5278"""""""
5279
5280::
5281
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00005282 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00005283
5284Overview:
5285"""""""""
5286
5287The '``insertelement``' instruction inserts a scalar element into a
5288vector at a specified index.
5289
5290Arguments:
5291""""""""""
5292
5293The first operand of an '``insertelement``' instruction is a value of
5294:ref:`vector <t_vector>` type. The second operand is a scalar value whose
5295type must equal the element type of the first operand. The third operand
5296is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00005297index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00005298
5299Semantics:
5300""""""""""
5301
5302The result is a vector of the same type as ``val``. Its element values
5303are those of ``val`` except at position ``idx``, where it gets the value
5304``elt``. If ``idx`` exceeds the length of ``val``, the results are
5305undefined.
5306
5307Example:
5308""""""""
5309
5310.. code-block:: llvm
5311
5312 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
5313
5314.. _i_shufflevector:
5315
5316'``shufflevector``' Instruction
5317^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5318
5319Syntax:
5320"""""""
5321
5322::
5323
5324 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
5325
5326Overview:
5327"""""""""
5328
5329The '``shufflevector``' instruction constructs a permutation of elements
5330from two input vectors, returning a vector with the same element type as
5331the input and length that is the same as the shuffle mask.
5332
5333Arguments:
5334""""""""""
5335
5336The first two operands of a '``shufflevector``' instruction are vectors
5337with the same type. The third argument is a shuffle mask whose element
5338type is always 'i32'. The result of the instruction is a vector whose
5339length is the same as the shuffle mask and whose element type is the
5340same as the element type of the first two operands.
5341
5342The shuffle mask operand is required to be a constant vector with either
5343constant integer or undef values.
5344
5345Semantics:
5346""""""""""
5347
5348The elements of the two input vectors are numbered from left to right
5349across both of the vectors. The shuffle mask operand specifies, for each
5350element of the result vector, which element of the two input vectors the
5351result element gets. The element selector may be undef (meaning "don't
5352care") and the second operand may be undef if performing a shuffle from
5353only one vector.
5354
5355Example:
5356""""""""
5357
5358.. code-block:: llvm
5359
5360 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5361 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
5362 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
5363 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
5364 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
5365 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
5366 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5367 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
5368
5369Aggregate Operations
5370--------------------
5371
5372LLVM supports several instructions for working with
5373:ref:`aggregate <t_aggregate>` values.
5374
5375.. _i_extractvalue:
5376
5377'``extractvalue``' Instruction
5378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5379
5380Syntax:
5381"""""""
5382
5383::
5384
5385 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
5386
5387Overview:
5388"""""""""
5389
5390The '``extractvalue``' instruction extracts the value of a member field
5391from an :ref:`aggregate <t_aggregate>` value.
5392
5393Arguments:
5394""""""""""
5395
5396The first operand of an '``extractvalue``' instruction is a value of
5397:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
5398constant indices to specify which value to extract in a similar manner
5399as indices in a '``getelementptr``' instruction.
5400
5401The major differences to ``getelementptr`` indexing are:
5402
5403- Since the value being indexed is not a pointer, the first index is
5404 omitted and assumed to be zero.
5405- At least one index must be specified.
5406- Not only struct indices but also array indices must be in bounds.
5407
5408Semantics:
5409""""""""""
5410
5411The result is the value at the position in the aggregate specified by
5412the index operands.
5413
5414Example:
5415""""""""
5416
5417.. code-block:: llvm
5418
5419 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
5420
5421.. _i_insertvalue:
5422
5423'``insertvalue``' Instruction
5424^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5425
5426Syntax:
5427"""""""
5428
5429::
5430
5431 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
5432
5433Overview:
5434"""""""""
5435
5436The '``insertvalue``' instruction inserts a value into a member field in
5437an :ref:`aggregate <t_aggregate>` value.
5438
5439Arguments:
5440""""""""""
5441
5442The first operand of an '``insertvalue``' instruction is a value of
5443:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5444a first-class value to insert. The following operands are constant
5445indices indicating the position at which to insert the value in a
5446similar manner as indices in a '``extractvalue``' instruction. The value
5447to insert must have the same type as the value identified by the
5448indices.
5449
5450Semantics:
5451""""""""""
5452
5453The result is an aggregate of the same type as ``val``. Its value is
5454that of ``val`` except that the value at the position specified by the
5455indices is that of ``elt``.
5456
5457Example:
5458""""""""
5459
5460.. code-block:: llvm
5461
5462 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
5463 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00005464 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00005465
5466.. _memoryops:
5467
5468Memory Access and Addressing Operations
5469---------------------------------------
5470
5471A key design point of an SSA-based representation is how it represents
5472memory. In LLVM, no memory locations are in SSA form, which makes things
5473very simple. This section describes how to read, write, and allocate
5474memory in LLVM.
5475
5476.. _i_alloca:
5477
5478'``alloca``' Instruction
5479^^^^^^^^^^^^^^^^^^^^^^^^
5480
5481Syntax:
5482"""""""
5483
5484::
5485
Tim Northover675a0962014-06-13 14:24:23 +00005486 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00005487
5488Overview:
5489"""""""""
5490
5491The '``alloca``' instruction allocates memory on the stack frame of the
5492currently executing function, to be automatically released when this
5493function returns to its caller. The object is always allocated in the
5494generic address space (address space zero).
5495
5496Arguments:
5497""""""""""
5498
5499The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5500bytes of memory on the runtime stack, returning a pointer of the
5501appropriate type to the program. If "NumElements" is specified, it is
5502the number of elements allocated, otherwise "NumElements" is defaulted
5503to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005504allocation is guaranteed to be aligned to at least that boundary. The
5505alignment may not be greater than ``1 << 29``. If not specified, or if
5506zero, the target can choose to align the allocation on any convenient
5507boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00005508
5509'``type``' may be any sized type.
5510
5511Semantics:
5512""""""""""
5513
5514Memory is allocated; a pointer is returned. The operation is undefined
5515if there is insufficient stack space for the allocation. '``alloca``'d
5516memory is automatically released when the function returns. The
5517'``alloca``' instruction is commonly used to represent automatic
5518variables that must have an address available. When the function returns
5519(either with the ``ret`` or ``resume`` instructions), the memory is
5520reclaimed. Allocating zero bytes is legal, but the result is undefined.
5521The order in which memory is allocated (ie., which way the stack grows)
5522is not specified.
5523
5524Example:
5525""""""""
5526
5527.. code-block:: llvm
5528
Tim Northover675a0962014-06-13 14:24:23 +00005529 %ptr = alloca i32 ; yields i32*:ptr
5530 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5531 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5532 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005533
5534.. _i_load:
5535
5536'``load``' Instruction
5537^^^^^^^^^^^^^^^^^^^^^^
5538
5539Syntax:
5540"""""""
5541
5542::
5543
David Blaikiec7aabbb2015-03-04 22:06:14 +00005544 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00005545 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5546 !<index> = !{ i32 1 }
5547
5548Overview:
5549"""""""""
5550
5551The '``load``' instruction is used to read from memory.
5552
5553Arguments:
5554""""""""""
5555
Eli Bendersky239a78b2013-04-17 20:17:08 +00005556The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00005557from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00005558class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5559then the optimizer is not allowed to modify the number or order of
5560execution of this ``load`` with other :ref:`volatile
5561operations <volatile>`.
5562
5563If the ``load`` is marked as ``atomic``, it takes an extra
5564:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5565``release`` and ``acq_rel`` orderings are not valid on ``load``
5566instructions. Atomic loads produce :ref:`defined <memmodel>` results
5567when they may see multiple atomic stores. The type of the pointee must
5568be an integer type whose bit width is a power of two greater than or
5569equal to eight and less than or equal to a target-specific size limit.
5570``align`` must be explicitly specified on atomic loads, and the load has
5571undefined behavior if the alignment is not set to a value which is at
5572least the size in bytes of the pointee. ``!nontemporal`` does not have
5573any defined semantics for atomic loads.
5574
5575The optional constant ``align`` argument specifies the alignment of the
5576operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005577or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005578alignment for the target. It is the responsibility of the code emitter
5579to ensure that the alignment information is correct. Overestimating the
5580alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005581may produce less efficient code. An alignment of 1 is always safe. The
5582maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005583
5584The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005585metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005586``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005587metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005588that this load is not expected to be reused in the cache. The code
5589generator may select special instructions to save cache bandwidth, such
5590as the ``MOVNT`` instruction on x86.
5591
5592The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005593metadata name ``<index>`` corresponding to a metadata node with no
5594entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00005595instruction tells the optimizer and code generator that the address
5596operand to this load points to memory which can be assumed unchanged.
5597Being invariant does not imply that a location is dereferenceable,
5598but it does imply that once the location is known dereferenceable
5599its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00005600
Philip Reamescdb72f32014-10-20 22:40:55 +00005601The optional ``!nonnull`` metadata must reference a single
5602metadata name ``<index>`` corresponding to a metadata node with no
5603entries. The existence of the ``!nonnull`` metadata on the
5604instruction tells the optimizer that the value loaded is known to
5605never be null. This is analogous to the ''nonnull'' attribute
5606on parameters and return values. This metadata can only be applied
5607to loads of a pointer type.
5608
Sean Silvab084af42012-12-07 10:36:55 +00005609Semantics:
5610""""""""""
5611
5612The location of memory pointed to is loaded. If the value being loaded
5613is of scalar type then the number of bytes read does not exceed the
5614minimum number of bytes needed to hold all bits of the type. For
5615example, loading an ``i24`` reads at most three bytes. When loading a
5616value of a type like ``i20`` with a size that is not an integral number
5617of bytes, the result is undefined if the value was not originally
5618written using a store of the same type.
5619
5620Examples:
5621"""""""""
5622
5623.. code-block:: llvm
5624
Tim Northover675a0962014-06-13 14:24:23 +00005625 %ptr = alloca i32 ; yields i32*:ptr
5626 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00005627 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005628
5629.. _i_store:
5630
5631'``store``' Instruction
5632^^^^^^^^^^^^^^^^^^^^^^^
5633
5634Syntax:
5635"""""""
5636
5637::
5638
Tim Northover675a0962014-06-13 14:24:23 +00005639 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5640 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005641
5642Overview:
5643"""""""""
5644
5645The '``store``' instruction is used to write to memory.
5646
5647Arguments:
5648""""""""""
5649
Eli Benderskyca380842013-04-17 17:17:20 +00005650There are two arguments to the ``store`` instruction: a value to store
5651and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005652operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005653the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005654then the optimizer is not allowed to modify the number or order of
5655execution of this ``store`` with other :ref:`volatile
5656operations <volatile>`.
5657
5658If the ``store`` is marked as ``atomic``, it takes an extra
5659:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5660``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5661instructions. Atomic loads produce :ref:`defined <memmodel>` results
5662when they may see multiple atomic stores. The type of the pointee must
5663be an integer type whose bit width is a power of two greater than or
5664equal to eight and less than or equal to a target-specific size limit.
5665``align`` must be explicitly specified on atomic stores, and the store
5666has undefined behavior if the alignment is not set to a value which is
5667at least the size in bytes of the pointee. ``!nontemporal`` does not
5668have any defined semantics for atomic stores.
5669
Eli Benderskyca380842013-04-17 17:17:20 +00005670The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005671operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005672or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005673alignment for the target. It is the responsibility of the code emitter
5674to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005675alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005676alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005677safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005678
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005679The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005680name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005681value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005682tells the optimizer and code generator that this load is not expected to
5683be reused in the cache. The code generator may select special
5684instructions to save cache bandwidth, such as the MOVNT instruction on
5685x86.
5686
5687Semantics:
5688""""""""""
5689
Eli Benderskyca380842013-04-17 17:17:20 +00005690The contents of memory are updated to contain ``<value>`` at the
5691location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005692of scalar type then the number of bytes written does not exceed the
5693minimum number of bytes needed to hold all bits of the type. For
5694example, storing an ``i24`` writes at most three bytes. When writing a
5695value of a type like ``i20`` with a size that is not an integral number
5696of bytes, it is unspecified what happens to the extra bits that do not
5697belong to the type, but they will typically be overwritten.
5698
5699Example:
5700""""""""
5701
5702.. code-block:: llvm
5703
Tim Northover675a0962014-06-13 14:24:23 +00005704 %ptr = alloca i32 ; yields i32*:ptr
5705 store i32 3, i32* %ptr ; yields void
5706 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005707
5708.. _i_fence:
5709
5710'``fence``' Instruction
5711^^^^^^^^^^^^^^^^^^^^^^^
5712
5713Syntax:
5714"""""""
5715
5716::
5717
Tim Northover675a0962014-06-13 14:24:23 +00005718 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005719
5720Overview:
5721"""""""""
5722
5723The '``fence``' instruction is used to introduce happens-before edges
5724between operations.
5725
5726Arguments:
5727""""""""""
5728
5729'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5730defines what *synchronizes-with* edges they add. They can only be given
5731``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5732
5733Semantics:
5734""""""""""
5735
5736A fence A which has (at least) ``release`` ordering semantics
5737*synchronizes with* a fence B with (at least) ``acquire`` ordering
5738semantics if and only if there exist atomic operations X and Y, both
5739operating on some atomic object M, such that A is sequenced before X, X
5740modifies M (either directly or through some side effect of a sequence
5741headed by X), Y is sequenced before B, and Y observes M. This provides a
5742*happens-before* dependency between A and B. Rather than an explicit
5743``fence``, one (but not both) of the atomic operations X or Y might
5744provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5745still *synchronize-with* the explicit ``fence`` and establish the
5746*happens-before* edge.
5747
5748A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5749``acquire`` and ``release`` semantics specified above, participates in
5750the global program order of other ``seq_cst`` operations and/or fences.
5751
5752The optional ":ref:`singlethread <singlethread>`" argument specifies
5753that the fence only synchronizes with other fences in the same thread.
5754(This is useful for interacting with signal handlers.)
5755
5756Example:
5757""""""""
5758
5759.. code-block:: llvm
5760
Tim Northover675a0962014-06-13 14:24:23 +00005761 fence acquire ; yields void
5762 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005763
5764.. _i_cmpxchg:
5765
5766'``cmpxchg``' Instruction
5767^^^^^^^^^^^^^^^^^^^^^^^^^
5768
5769Syntax:
5770"""""""
5771
5772::
5773
Tim Northover675a0962014-06-13 14:24:23 +00005774 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005775
5776Overview:
5777"""""""""
5778
5779The '``cmpxchg``' instruction is used to atomically modify memory. It
5780loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005781equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005782
5783Arguments:
5784""""""""""
5785
5786There are three arguments to the '``cmpxchg``' instruction: an address
5787to operate on, a value to compare to the value currently be at that
5788address, and a new value to place at that address if the compared values
5789are equal. The type of '<cmp>' must be an integer type whose bit width
5790is a power of two greater than or equal to eight and less than or equal
5791to a target-specific size limit. '<cmp>' and '<new>' must have the same
5792type, and the type of '<pointer>' must be a pointer to that type. If the
5793``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5794to modify the number or order of execution of this ``cmpxchg`` with
5795other :ref:`volatile operations <volatile>`.
5796
Tim Northovere94a5182014-03-11 10:48:52 +00005797The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005798``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5799must be at least ``monotonic``, the ordering constraint on failure must be no
5800stronger than that on success, and the failure ordering cannot be either
5801``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005802
5803The optional "``singlethread``" argument declares that the ``cmpxchg``
5804is only atomic with respect to code (usually signal handlers) running in
5805the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5806respect to all other code in the system.
5807
5808The pointer passed into cmpxchg must have alignment greater than or
5809equal to the size in memory of the operand.
5810
5811Semantics:
5812""""""""""
5813
Tim Northover420a2162014-06-13 14:24:07 +00005814The contents of memory at the location specified by the '``<pointer>``' operand
5815is read and compared to '``<cmp>``'; if the read value is the equal, the
5816'``<new>``' is written. The original value at the location is returned, together
5817with a flag indicating success (true) or failure (false).
5818
5819If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5820permitted: the operation may not write ``<new>`` even if the comparison
5821matched.
5822
5823If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5824if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005825
Tim Northovere94a5182014-03-11 10:48:52 +00005826A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5827identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5828load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005829
5830Example:
5831""""""""
5832
5833.. code-block:: llvm
5834
5835 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00005836 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005837 br label %loop
5838
5839 loop:
5840 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5841 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005842 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005843 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5844 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005845 br i1 %success, label %done, label %loop
5846
5847 done:
5848 ...
5849
5850.. _i_atomicrmw:
5851
5852'``atomicrmw``' Instruction
5853^^^^^^^^^^^^^^^^^^^^^^^^^^^
5854
5855Syntax:
5856"""""""
5857
5858::
5859
Tim Northover675a0962014-06-13 14:24:23 +00005860 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005861
5862Overview:
5863"""""""""
5864
5865The '``atomicrmw``' instruction is used to atomically modify memory.
5866
5867Arguments:
5868""""""""""
5869
5870There are three arguments to the '``atomicrmw``' instruction: an
5871operation to apply, an address whose value to modify, an argument to the
5872operation. The operation must be one of the following keywords:
5873
5874- xchg
5875- add
5876- sub
5877- and
5878- nand
5879- or
5880- xor
5881- max
5882- min
5883- umax
5884- umin
5885
5886The type of '<value>' must be an integer type whose bit width is a power
5887of two greater than or equal to eight and less than or equal to a
5888target-specific size limit. The type of the '``<pointer>``' operand must
5889be a pointer to that type. If the ``atomicrmw`` is marked as
5890``volatile``, then the optimizer is not allowed to modify the number or
5891order of execution of this ``atomicrmw`` with other :ref:`volatile
5892operations <volatile>`.
5893
5894Semantics:
5895""""""""""
5896
5897The contents of memory at the location specified by the '``<pointer>``'
5898operand are atomically read, modified, and written back. The original
5899value at the location is returned. The modification is specified by the
5900operation argument:
5901
5902- xchg: ``*ptr = val``
5903- add: ``*ptr = *ptr + val``
5904- sub: ``*ptr = *ptr - val``
5905- and: ``*ptr = *ptr & val``
5906- nand: ``*ptr = ~(*ptr & val)``
5907- or: ``*ptr = *ptr | val``
5908- xor: ``*ptr = *ptr ^ val``
5909- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5910- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5911- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5912 comparison)
5913- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5914 comparison)
5915
5916Example:
5917""""""""
5918
5919.. code-block:: llvm
5920
Tim Northover675a0962014-06-13 14:24:23 +00005921 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005922
5923.. _i_getelementptr:
5924
5925'``getelementptr``' Instruction
5926^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5927
5928Syntax:
5929"""""""
5930
5931::
5932
David Blaikie16a97eb2015-03-04 22:02:58 +00005933 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
5934 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
5935 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00005936
5937Overview:
5938"""""""""
5939
5940The '``getelementptr``' instruction is used to get the address of a
5941subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5942address calculation only and does not access memory.
5943
5944Arguments:
5945""""""""""
5946
David Blaikie16a97eb2015-03-04 22:02:58 +00005947The first argument is always a type used as the basis for the calculations.
5948The second argument is always a pointer or a vector of pointers, and is the
5949base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00005950that indicate which of the elements of the aggregate object are indexed.
5951The interpretation of each index is dependent on the type being indexed
5952into. The first index always indexes the pointer value given as the
5953first argument, the second index indexes a value of the type pointed to
5954(not necessarily the value directly pointed to, since the first index
5955can be non-zero), etc. The first type indexed into must be a pointer
5956value, subsequent types can be arrays, vectors, and structs. Note that
5957subsequent types being indexed into can never be pointers, since that
5958would require loading the pointer before continuing calculation.
5959
5960The type of each index argument depends on the type it is indexing into.
5961When indexing into a (optionally packed) structure, only ``i32`` integer
5962**constants** are allowed (when using a vector of indices they must all
5963be the **same** ``i32`` integer constant). When indexing into an array,
5964pointer or vector, integers of any width are allowed, and they are not
5965required to be constant. These integers are treated as signed values
5966where relevant.
5967
5968For example, let's consider a C code fragment and how it gets compiled
5969to LLVM:
5970
5971.. code-block:: c
5972
5973 struct RT {
5974 char A;
5975 int B[10][20];
5976 char C;
5977 };
5978 struct ST {
5979 int X;
5980 double Y;
5981 struct RT Z;
5982 };
5983
5984 int *foo(struct ST *s) {
5985 return &s[1].Z.B[5][13];
5986 }
5987
5988The LLVM code generated by Clang is:
5989
5990.. code-block:: llvm
5991
5992 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
5993 %struct.ST = type { i32, double, %struct.RT }
5994
5995 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
5996 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00005997 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00005998 ret i32* %arrayidx
5999 }
6000
6001Semantics:
6002""""""""""
6003
6004In the example above, the first index is indexing into the
6005'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
6006= '``{ i32, double, %struct.RT }``' type, a structure. The second index
6007indexes into the third element of the structure, yielding a
6008'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
6009structure. The third index indexes into the second element of the
6010structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
6011dimensions of the array are subscripted into, yielding an '``i32``'
6012type. The '``getelementptr``' instruction returns a pointer to this
6013element, thus computing a value of '``i32*``' type.
6014
6015Note that it is perfectly legal to index partially through a structure,
6016returning a pointer to an inner element. Because of this, the LLVM code
6017for the given testcase is equivalent to:
6018
6019.. code-block:: llvm
6020
6021 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00006022 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
6023 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
6024 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
6025 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
6026 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00006027 ret i32* %t5
6028 }
6029
6030If the ``inbounds`` keyword is present, the result value of the
6031``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
6032pointer is not an *in bounds* address of an allocated object, or if any
6033of the addresses that would be formed by successive addition of the
6034offsets implied by the indices to the base address with infinitely
6035precise signed arithmetic are not an *in bounds* address of that
6036allocated object. The *in bounds* addresses for an allocated object are
6037all the addresses that point into the object, plus the address one byte
6038past the end. In cases where the base is a vector of pointers the
6039``inbounds`` keyword applies to each of the computations element-wise.
6040
6041If the ``inbounds`` keyword is not present, the offsets are added to the
6042base address with silently-wrapping two's complement arithmetic. If the
6043offsets have a different width from the pointer, they are sign-extended
6044or truncated to the width of the pointer. The result value of the
6045``getelementptr`` may be outside the object pointed to by the base
6046pointer. The result value may not necessarily be used to access memory
6047though, even if it happens to point into allocated storage. See the
6048:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
6049information.
6050
6051The getelementptr instruction is often confusing. For some more insight
6052into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
6053
6054Example:
6055""""""""
6056
6057.. code-block:: llvm
6058
6059 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006060 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006061 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006062 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006063 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006064 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006065 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006066 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00006067
6068In cases where the pointer argument is a vector of pointers, each index
6069must be a vector with the same number of elements. For example:
6070
6071.. code-block:: llvm
6072
David Blaikie16a97eb2015-03-04 22:02:58 +00006073 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets,
Sean Silvab084af42012-12-07 10:36:55 +00006074
6075Conversion Operations
6076---------------------
6077
6078The instructions in this category are the conversion instructions
6079(casting) which all take a single operand and a type. They perform
6080various bit conversions on the operand.
6081
6082'``trunc .. to``' Instruction
6083^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6084
6085Syntax:
6086"""""""
6087
6088::
6089
6090 <result> = trunc <ty> <value> to <ty2> ; yields ty2
6091
6092Overview:
6093"""""""""
6094
6095The '``trunc``' instruction truncates its operand to the type ``ty2``.
6096
6097Arguments:
6098""""""""""
6099
6100The '``trunc``' instruction takes a value to trunc, and a type to trunc
6101it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
6102of the same number of integers. The bit size of the ``value`` must be
6103larger than the bit size of the destination type, ``ty2``. Equal sized
6104types are not allowed.
6105
6106Semantics:
6107""""""""""
6108
6109The '``trunc``' instruction truncates the high order bits in ``value``
6110and converts the remaining bits to ``ty2``. Since the source size must
6111be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
6112It will always truncate bits.
6113
6114Example:
6115""""""""
6116
6117.. code-block:: llvm
6118
6119 %X = trunc i32 257 to i8 ; yields i8:1
6120 %Y = trunc i32 123 to i1 ; yields i1:true
6121 %Z = trunc i32 122 to i1 ; yields i1:false
6122 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
6123
6124'``zext .. to``' Instruction
6125^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6126
6127Syntax:
6128"""""""
6129
6130::
6131
6132 <result> = zext <ty> <value> to <ty2> ; yields ty2
6133
6134Overview:
6135"""""""""
6136
6137The '``zext``' instruction zero extends its operand to type ``ty2``.
6138
6139Arguments:
6140""""""""""
6141
6142The '``zext``' instruction takes a value to cast, and a type to cast it
6143to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
6144the same number of integers. The bit size of the ``value`` must be
6145smaller than the bit size of the destination type, ``ty2``.
6146
6147Semantics:
6148""""""""""
6149
6150The ``zext`` fills the high order bits of the ``value`` with zero bits
6151until it reaches the size of the destination type, ``ty2``.
6152
6153When zero extending from i1, the result will always be either 0 or 1.
6154
6155Example:
6156""""""""
6157
6158.. code-block:: llvm
6159
6160 %X = zext i32 257 to i64 ; yields i64:257
6161 %Y = zext i1 true to i32 ; yields i32:1
6162 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
6163
6164'``sext .. to``' Instruction
6165^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6166
6167Syntax:
6168"""""""
6169
6170::
6171
6172 <result> = sext <ty> <value> to <ty2> ; yields ty2
6173
6174Overview:
6175"""""""""
6176
6177The '``sext``' sign extends ``value`` to the type ``ty2``.
6178
6179Arguments:
6180""""""""""
6181
6182The '``sext``' instruction takes a value to cast, and a type to cast it
6183to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
6184the same number of integers. The bit size of the ``value`` must be
6185smaller than the bit size of the destination type, ``ty2``.
6186
6187Semantics:
6188""""""""""
6189
6190The '``sext``' instruction performs a sign extension by copying the sign
6191bit (highest order bit) of the ``value`` until it reaches the bit size
6192of the type ``ty2``.
6193
6194When sign extending from i1, the extension always results in -1 or 0.
6195
6196Example:
6197""""""""
6198
6199.. code-block:: llvm
6200
6201 %X = sext i8 -1 to i16 ; yields i16 :65535
6202 %Y = sext i1 true to i32 ; yields i32:-1
6203 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
6204
6205'``fptrunc .. to``' Instruction
6206^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6207
6208Syntax:
6209"""""""
6210
6211::
6212
6213 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
6214
6215Overview:
6216"""""""""
6217
6218The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
6219
6220Arguments:
6221""""""""""
6222
6223The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
6224value to cast and a :ref:`floating point <t_floating>` type to cast it to.
6225The size of ``value`` must be larger than the size of ``ty2``. This
6226implies that ``fptrunc`` cannot be used to make a *no-op cast*.
6227
6228Semantics:
6229""""""""""
6230
6231The '``fptrunc``' instruction truncates a ``value`` from a larger
6232:ref:`floating point <t_floating>` type to a smaller :ref:`floating
6233point <t_floating>` type. If the value cannot fit within the
6234destination type, ``ty2``, then the results are undefined.
6235
6236Example:
6237""""""""
6238
6239.. code-block:: llvm
6240
6241 %X = fptrunc double 123.0 to float ; yields float:123.0
6242 %Y = fptrunc double 1.0E+300 to float ; yields undefined
6243
6244'``fpext .. to``' Instruction
6245^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6246
6247Syntax:
6248"""""""
6249
6250::
6251
6252 <result> = fpext <ty> <value> to <ty2> ; yields ty2
6253
6254Overview:
6255"""""""""
6256
6257The '``fpext``' extends a floating point ``value`` to a larger floating
6258point value.
6259
6260Arguments:
6261""""""""""
6262
6263The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
6264``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
6265to. The source type must be smaller than the destination type.
6266
6267Semantics:
6268""""""""""
6269
6270The '``fpext``' instruction extends the ``value`` from a smaller
6271:ref:`floating point <t_floating>` type to a larger :ref:`floating
6272point <t_floating>` type. The ``fpext`` cannot be used to make a
6273*no-op cast* because it always changes bits. Use ``bitcast`` to make a
6274*no-op cast* for a floating point cast.
6275
6276Example:
6277""""""""
6278
6279.. code-block:: llvm
6280
6281 %X = fpext float 3.125 to double ; yields double:3.125000e+00
6282 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
6283
6284'``fptoui .. to``' Instruction
6285^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6286
6287Syntax:
6288"""""""
6289
6290::
6291
6292 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
6293
6294Overview:
6295"""""""""
6296
6297The '``fptoui``' converts a floating point ``value`` to its unsigned
6298integer equivalent of type ``ty2``.
6299
6300Arguments:
6301""""""""""
6302
6303The '``fptoui``' instruction takes a value to cast, which must be a
6304scalar or vector :ref:`floating point <t_floating>` value, and a type to
6305cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6306``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6307type with the same number of elements as ``ty``
6308
6309Semantics:
6310""""""""""
6311
6312The '``fptoui``' instruction converts its :ref:`floating
6313point <t_floating>` operand into the nearest (rounding towards zero)
6314unsigned integer value. If the value cannot fit in ``ty2``, the results
6315are undefined.
6316
6317Example:
6318""""""""
6319
6320.. code-block:: llvm
6321
6322 %X = fptoui double 123.0 to i32 ; yields i32:123
6323 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
6324 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
6325
6326'``fptosi .. to``' Instruction
6327^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6328
6329Syntax:
6330"""""""
6331
6332::
6333
6334 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
6335
6336Overview:
6337"""""""""
6338
6339The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
6340``value`` to type ``ty2``.
6341
6342Arguments:
6343""""""""""
6344
6345The '``fptosi``' instruction takes a value to cast, which must be a
6346scalar or vector :ref:`floating point <t_floating>` value, and a type to
6347cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6348``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6349type with the same number of elements as ``ty``
6350
6351Semantics:
6352""""""""""
6353
6354The '``fptosi``' instruction converts its :ref:`floating
6355point <t_floating>` operand into the nearest (rounding towards zero)
6356signed integer value. If the value cannot fit in ``ty2``, the results
6357are undefined.
6358
6359Example:
6360""""""""
6361
6362.. code-block:: llvm
6363
6364 %X = fptosi double -123.0 to i32 ; yields i32:-123
6365 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
6366 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
6367
6368'``uitofp .. to``' Instruction
6369^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6370
6371Syntax:
6372"""""""
6373
6374::
6375
6376 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
6377
6378Overview:
6379"""""""""
6380
6381The '``uitofp``' instruction regards ``value`` as an unsigned integer
6382and converts that value to the ``ty2`` type.
6383
6384Arguments:
6385""""""""""
6386
6387The '``uitofp``' instruction takes a value to cast, which must be a
6388scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6389``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6390``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6391type with the same number of elements as ``ty``
6392
6393Semantics:
6394""""""""""
6395
6396The '``uitofp``' instruction interprets its operand as an unsigned
6397integer quantity and converts it to the corresponding floating point
6398value. If the value cannot fit in the floating point value, the results
6399are undefined.
6400
6401Example:
6402""""""""
6403
6404.. code-block:: llvm
6405
6406 %X = uitofp i32 257 to float ; yields float:257.0
6407 %Y = uitofp i8 -1 to double ; yields double:255.0
6408
6409'``sitofp .. to``' Instruction
6410^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6411
6412Syntax:
6413"""""""
6414
6415::
6416
6417 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
6418
6419Overview:
6420"""""""""
6421
6422The '``sitofp``' instruction regards ``value`` as a signed integer and
6423converts that value to the ``ty2`` type.
6424
6425Arguments:
6426""""""""""
6427
6428The '``sitofp``' instruction takes a value to cast, which must be a
6429scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6430``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6431``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6432type with the same number of elements as ``ty``
6433
6434Semantics:
6435""""""""""
6436
6437The '``sitofp``' instruction interprets its operand as a signed integer
6438quantity and converts it to the corresponding floating point value. If
6439the value cannot fit in the floating point value, the results are
6440undefined.
6441
6442Example:
6443""""""""
6444
6445.. code-block:: llvm
6446
6447 %X = sitofp i32 257 to float ; yields float:257.0
6448 %Y = sitofp i8 -1 to double ; yields double:-1.0
6449
6450.. _i_ptrtoint:
6451
6452'``ptrtoint .. to``' Instruction
6453^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6454
6455Syntax:
6456"""""""
6457
6458::
6459
6460 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
6461
6462Overview:
6463"""""""""
6464
6465The '``ptrtoint``' instruction converts the pointer or a vector of
6466pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6467
6468Arguments:
6469""""""""""
6470
6471The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
6472a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
6473type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6474a vector of integers type.
6475
6476Semantics:
6477""""""""""
6478
6479The '``ptrtoint``' instruction converts ``value`` to integer type
6480``ty2`` by interpreting the pointer value as an integer and either
6481truncating or zero extending that value to the size of the integer type.
6482If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6483``value`` is larger than ``ty2`` then a truncation is done. If they are
6484the same size, then nothing is done (*no-op cast*) other than a type
6485change.
6486
6487Example:
6488""""""""
6489
6490.. code-block:: llvm
6491
6492 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
6493 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
6494 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6495
6496.. _i_inttoptr:
6497
6498'``inttoptr .. to``' Instruction
6499^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6500
6501Syntax:
6502"""""""
6503
6504::
6505
6506 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
6507
6508Overview:
6509"""""""""
6510
6511The '``inttoptr``' instruction converts an integer ``value`` to a
6512pointer type, ``ty2``.
6513
6514Arguments:
6515""""""""""
6516
6517The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6518cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6519type.
6520
6521Semantics:
6522""""""""""
6523
6524The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6525applying either a zero extension or a truncation depending on the size
6526of the integer ``value``. If ``value`` is larger than the size of a
6527pointer then a truncation is done. If ``value`` is smaller than the size
6528of a pointer then a zero extension is done. If they are the same size,
6529nothing is done (*no-op cast*).
6530
6531Example:
6532""""""""
6533
6534.. code-block:: llvm
6535
6536 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6537 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6538 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6539 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6540
6541.. _i_bitcast:
6542
6543'``bitcast .. to``' Instruction
6544^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6545
6546Syntax:
6547"""""""
6548
6549::
6550
6551 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6552
6553Overview:
6554"""""""""
6555
6556The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6557changing any bits.
6558
6559Arguments:
6560""""""""""
6561
6562The '``bitcast``' instruction takes a value to cast, which must be a
6563non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006564also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6565bit sizes of ``value`` and the destination type, ``ty2``, must be
6566identical. If the source type is a pointer, the destination type must
6567also be a pointer of the same size. This instruction supports bitwise
6568conversion of vectors to integers and to vectors of other types (as
6569long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006570
6571Semantics:
6572""""""""""
6573
Matt Arsenault24b49c42013-07-31 17:49:08 +00006574The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6575is always a *no-op cast* because no bits change with this
6576conversion. The conversion is done as if the ``value`` had been stored
6577to memory and read back as type ``ty2``. Pointer (or vector of
6578pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006579pointers) types with the same address space through this instruction.
6580To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6581or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006582
6583Example:
6584""""""""
6585
6586.. code-block:: llvm
6587
6588 %X = bitcast i8 255 to i8 ; yields i8 :-1
6589 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6590 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6591 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6592
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006593.. _i_addrspacecast:
6594
6595'``addrspacecast .. to``' Instruction
6596^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6597
6598Syntax:
6599"""""""
6600
6601::
6602
6603 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6604
6605Overview:
6606"""""""""
6607
6608The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6609address space ``n`` to type ``pty2`` in address space ``m``.
6610
6611Arguments:
6612""""""""""
6613
6614The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6615to cast and a pointer type to cast it to, which must have a different
6616address space.
6617
6618Semantics:
6619""""""""""
6620
6621The '``addrspacecast``' instruction converts the pointer value
6622``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006623value modification, depending on the target and the address space
6624pair. Pointer conversions within the same address space must be
6625performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006626conversion is legal then both result and operand refer to the same memory
6627location.
6628
6629Example:
6630""""""""
6631
6632.. code-block:: llvm
6633
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006634 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6635 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6636 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006637
Sean Silvab084af42012-12-07 10:36:55 +00006638.. _otherops:
6639
6640Other Operations
6641----------------
6642
6643The instructions in this category are the "miscellaneous" instructions,
6644which defy better classification.
6645
6646.. _i_icmp:
6647
6648'``icmp``' Instruction
6649^^^^^^^^^^^^^^^^^^^^^^
6650
6651Syntax:
6652"""""""
6653
6654::
6655
Tim Northover675a0962014-06-13 14:24:23 +00006656 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006657
6658Overview:
6659"""""""""
6660
6661The '``icmp``' instruction returns a boolean value or a vector of
6662boolean values based on comparison of its two integer, integer vector,
6663pointer, or pointer vector operands.
6664
6665Arguments:
6666""""""""""
6667
6668The '``icmp``' instruction takes three operands. The first operand is
6669the condition code indicating the kind of comparison to perform. It is
6670not a value, just a keyword. The possible condition code are:
6671
6672#. ``eq``: equal
6673#. ``ne``: not equal
6674#. ``ugt``: unsigned greater than
6675#. ``uge``: unsigned greater or equal
6676#. ``ult``: unsigned less than
6677#. ``ule``: unsigned less or equal
6678#. ``sgt``: signed greater than
6679#. ``sge``: signed greater or equal
6680#. ``slt``: signed less than
6681#. ``sle``: signed less or equal
6682
6683The remaining two arguments must be :ref:`integer <t_integer>` or
6684:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6685must also be identical types.
6686
6687Semantics:
6688""""""""""
6689
6690The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6691code given as ``cond``. The comparison performed always yields either an
6692:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6693
6694#. ``eq``: yields ``true`` if the operands are equal, ``false``
6695 otherwise. No sign interpretation is necessary or performed.
6696#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6697 otherwise. No sign interpretation is necessary or performed.
6698#. ``ugt``: interprets the operands as unsigned values and yields
6699 ``true`` if ``op1`` is greater than ``op2``.
6700#. ``uge``: interprets the operands as unsigned values and yields
6701 ``true`` if ``op1`` is greater than or equal to ``op2``.
6702#. ``ult``: interprets the operands as unsigned values and yields
6703 ``true`` if ``op1`` is less than ``op2``.
6704#. ``ule``: interprets the operands as unsigned values and yields
6705 ``true`` if ``op1`` is less than or equal to ``op2``.
6706#. ``sgt``: interprets the operands as signed values and yields ``true``
6707 if ``op1`` is greater than ``op2``.
6708#. ``sge``: interprets the operands as signed values and yields ``true``
6709 if ``op1`` is greater than or equal to ``op2``.
6710#. ``slt``: interprets the operands as signed values and yields ``true``
6711 if ``op1`` is less than ``op2``.
6712#. ``sle``: interprets the operands as signed values and yields ``true``
6713 if ``op1`` is less than or equal to ``op2``.
6714
6715If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6716are compared as if they were integers.
6717
6718If the operands are integer vectors, then they are compared element by
6719element. The result is an ``i1`` vector with the same number of elements
6720as the values being compared. Otherwise, the result is an ``i1``.
6721
6722Example:
6723""""""""
6724
6725.. code-block:: llvm
6726
6727 <result> = icmp eq i32 4, 5 ; yields: result=false
6728 <result> = icmp ne float* %X, %X ; yields: result=false
6729 <result> = icmp ult i16 4, 5 ; yields: result=true
6730 <result> = icmp sgt i16 4, 5 ; yields: result=false
6731 <result> = icmp ule i16 -4, 5 ; yields: result=false
6732 <result> = icmp sge i16 4, 5 ; yields: result=false
6733
6734Note that the code generator does not yet support vector types with the
6735``icmp`` instruction.
6736
6737.. _i_fcmp:
6738
6739'``fcmp``' Instruction
6740^^^^^^^^^^^^^^^^^^^^^^
6741
6742Syntax:
6743"""""""
6744
6745::
6746
Tim Northover675a0962014-06-13 14:24:23 +00006747 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006748
6749Overview:
6750"""""""""
6751
6752The '``fcmp``' instruction returns a boolean value or vector of boolean
6753values based on comparison of its operands.
6754
6755If the operands are floating point scalars, then the result type is a
6756boolean (:ref:`i1 <t_integer>`).
6757
6758If the operands are floating point vectors, then the result type is a
6759vector of boolean with the same number of elements as the operands being
6760compared.
6761
6762Arguments:
6763""""""""""
6764
6765The '``fcmp``' instruction takes three operands. The first operand is
6766the condition code indicating the kind of comparison to perform. It is
6767not a value, just a keyword. The possible condition code are:
6768
6769#. ``false``: no comparison, always returns false
6770#. ``oeq``: ordered and equal
6771#. ``ogt``: ordered and greater than
6772#. ``oge``: ordered and greater than or equal
6773#. ``olt``: ordered and less than
6774#. ``ole``: ordered and less than or equal
6775#. ``one``: ordered and not equal
6776#. ``ord``: ordered (no nans)
6777#. ``ueq``: unordered or equal
6778#. ``ugt``: unordered or greater than
6779#. ``uge``: unordered or greater than or equal
6780#. ``ult``: unordered or less than
6781#. ``ule``: unordered or less than or equal
6782#. ``une``: unordered or not equal
6783#. ``uno``: unordered (either nans)
6784#. ``true``: no comparison, always returns true
6785
6786*Ordered* means that neither operand is a QNAN while *unordered* means
6787that either operand may be a QNAN.
6788
6789Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6790point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6791type. They must have identical types.
6792
6793Semantics:
6794""""""""""
6795
6796The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6797condition code given as ``cond``. If the operands are vectors, then the
6798vectors are compared element by element. Each comparison performed
6799always yields an :ref:`i1 <t_integer>` result, as follows:
6800
6801#. ``false``: always yields ``false``, regardless of operands.
6802#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6803 is equal to ``op2``.
6804#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6805 is greater than ``op2``.
6806#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6807 is greater than or equal to ``op2``.
6808#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6809 is less than ``op2``.
6810#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6811 is less than or equal to ``op2``.
6812#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6813 is not equal to ``op2``.
6814#. ``ord``: yields ``true`` if both operands are not a QNAN.
6815#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6816 equal to ``op2``.
6817#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6818 greater than ``op2``.
6819#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6820 greater than or equal to ``op2``.
6821#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6822 less than ``op2``.
6823#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6824 less than or equal to ``op2``.
6825#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6826 not equal to ``op2``.
6827#. ``uno``: yields ``true`` if either operand is a QNAN.
6828#. ``true``: always yields ``true``, regardless of operands.
6829
6830Example:
6831""""""""
6832
6833.. code-block:: llvm
6834
6835 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6836 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6837 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6838 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6839
6840Note that the code generator does not yet support vector types with the
6841``fcmp`` instruction.
6842
6843.. _i_phi:
6844
6845'``phi``' Instruction
6846^^^^^^^^^^^^^^^^^^^^^
6847
6848Syntax:
6849"""""""
6850
6851::
6852
6853 <result> = phi <ty> [ <val0>, <label0>], ...
6854
6855Overview:
6856"""""""""
6857
6858The '``phi``' instruction is used to implement the φ node in the SSA
6859graph representing the function.
6860
6861Arguments:
6862""""""""""
6863
6864The type of the incoming values is specified with the first type field.
6865After this, the '``phi``' instruction takes a list of pairs as
6866arguments, with one pair for each predecessor basic block of the current
6867block. Only values of :ref:`first class <t_firstclass>` type may be used as
6868the value arguments to the PHI node. Only labels may be used as the
6869label arguments.
6870
6871There must be no non-phi instructions between the start of a basic block
6872and the PHI instructions: i.e. PHI instructions must be first in a basic
6873block.
6874
6875For the purposes of the SSA form, the use of each incoming value is
6876deemed to occur on the edge from the corresponding predecessor block to
6877the current block (but after any definition of an '``invoke``'
6878instruction's return value on the same edge).
6879
6880Semantics:
6881""""""""""
6882
6883At runtime, the '``phi``' instruction logically takes on the value
6884specified by the pair corresponding to the predecessor basic block that
6885executed just prior to the current block.
6886
6887Example:
6888""""""""
6889
6890.. code-block:: llvm
6891
6892 Loop: ; Infinite loop that counts from 0 on up...
6893 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6894 %nextindvar = add i32 %indvar, 1
6895 br label %Loop
6896
6897.. _i_select:
6898
6899'``select``' Instruction
6900^^^^^^^^^^^^^^^^^^^^^^^^
6901
6902Syntax:
6903"""""""
6904
6905::
6906
6907 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6908
6909 selty is either i1 or {<N x i1>}
6910
6911Overview:
6912"""""""""
6913
6914The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006915condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006916
6917Arguments:
6918""""""""""
6919
6920The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6921values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00006922class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00006923
6924Semantics:
6925""""""""""
6926
6927If the condition is an i1 and it evaluates to 1, the instruction returns
6928the first value argument; otherwise, it returns the second value
6929argument.
6930
6931If the condition is a vector of i1, then the value arguments must be
6932vectors of the same size, and the selection is done element by element.
6933
David Majnemer40a0b592015-03-03 22:45:47 +00006934If the condition is an i1 and the value arguments are vectors of the
6935same size, then an entire vector is selected.
6936
Sean Silvab084af42012-12-07 10:36:55 +00006937Example:
6938""""""""
6939
6940.. code-block:: llvm
6941
6942 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6943
6944.. _i_call:
6945
6946'``call``' Instruction
6947^^^^^^^^^^^^^^^^^^^^^^
6948
6949Syntax:
6950"""""""
6951
6952::
6953
Reid Kleckner5772b772014-04-24 20:14:34 +00006954 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006955
6956Overview:
6957"""""""""
6958
6959The '``call``' instruction represents a simple function call.
6960
6961Arguments:
6962""""""""""
6963
6964This instruction requires several arguments:
6965
Reid Kleckner5772b772014-04-24 20:14:34 +00006966#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6967 should perform tail call optimization. The ``tail`` marker is a hint that
6968 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6969 means that the call must be tail call optimized in order for the program to
6970 be correct. The ``musttail`` marker provides these guarantees:
6971
6972 #. The call will not cause unbounded stack growth if it is part of a
6973 recursive cycle in the call graph.
6974 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6975 forwarded in place.
6976
6977 Both markers imply that the callee does not access allocas or varargs from
6978 the caller. Calls marked ``musttail`` must obey the following additional
6979 rules:
6980
6981 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6982 or a pointer bitcast followed by a ret instruction.
6983 - The ret instruction must return the (possibly bitcasted) value
6984 produced by the call or void.
6985 - The caller and callee prototypes must match. Pointer types of
6986 parameters or return types may differ in pointee type, but not
6987 in address space.
6988 - The calling conventions of the caller and callee must match.
6989 - All ABI-impacting function attributes, such as sret, byval, inreg,
6990 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00006991 - The callee must be varargs iff the caller is varargs. Bitcasting a
6992 non-varargs function to the appropriate varargs type is legal so
6993 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00006994
6995 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
6996 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00006997
6998 - Caller and callee both have the calling convention ``fastcc``.
6999 - The call is in tail position (ret immediately follows call and ret
7000 uses value of call or is void).
7001 - Option ``-tailcallopt`` is enabled, or
7002 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00007003 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00007004 met. <CodeGenerator.html#tailcallopt>`_
7005
7006#. The optional "cconv" marker indicates which :ref:`calling
7007 convention <callingconv>` the call should use. If none is
7008 specified, the call defaults to using C calling conventions. The
7009 calling convention of the call must match the calling convention of
7010 the target function, or else the behavior is undefined.
7011#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
7012 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
7013 are valid here.
7014#. '``ty``': the type of the call instruction itself which is also the
7015 type of the return value. Functions that return no value are marked
7016 ``void``.
7017#. '``fnty``': shall be the signature of the pointer to function value
7018 being invoked. The argument types must match the types implied by
7019 this signature. This type can be omitted if the function is not
7020 varargs and if the function type does not return a pointer to a
7021 function.
7022#. '``fnptrval``': An LLVM value containing a pointer to a function to
7023 be invoked. In most cases, this is a direct function invocation, but
7024 indirect ``call``'s are just as possible, calling an arbitrary pointer
7025 to function value.
7026#. '``function args``': argument list whose types match the function
7027 signature argument types and parameter attributes. All arguments must
7028 be of :ref:`first class <t_firstclass>` type. If the function signature
7029 indicates the function accepts a variable number of arguments, the
7030 extra arguments can be specified.
7031#. The optional :ref:`function attributes <fnattrs>` list. Only
7032 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
7033 attributes are valid here.
7034
7035Semantics:
7036""""""""""
7037
7038The '``call``' instruction is used to cause control flow to transfer to
7039a specified function, with its incoming arguments bound to the specified
7040values. Upon a '``ret``' instruction in the called function, control
7041flow continues with the instruction after the function call, and the
7042return value of the function is bound to the result argument.
7043
7044Example:
7045""""""""
7046
7047.. code-block:: llvm
7048
7049 %retval = call i32 @test(i32 %argc)
7050 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
7051 %X = tail call i32 @foo() ; yields i32
7052 %Y = tail call fastcc i32 @foo() ; yields i32
7053 call void %foo(i8 97 signext)
7054
7055 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00007056 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00007057 %gr = extractvalue %struct.A %r, 0 ; yields i32
7058 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
7059 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
7060 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
7061
7062llvm treats calls to some functions with names and arguments that match
7063the standard C99 library as being the C99 library functions, and may
7064perform optimizations or generate code for them under that assumption.
7065This is something we'd like to change in the future to provide better
7066support for freestanding environments and non-C-based languages.
7067
7068.. _i_va_arg:
7069
7070'``va_arg``' Instruction
7071^^^^^^^^^^^^^^^^^^^^^^^^
7072
7073Syntax:
7074"""""""
7075
7076::
7077
7078 <resultval> = va_arg <va_list*> <arglist>, <argty>
7079
7080Overview:
7081"""""""""
7082
7083The '``va_arg``' instruction is used to access arguments passed through
7084the "variable argument" area of a function call. It is used to implement
7085the ``va_arg`` macro in C.
7086
7087Arguments:
7088""""""""""
7089
7090This instruction takes a ``va_list*`` value and the type of the
7091argument. It returns a value of the specified argument type and
7092increments the ``va_list`` to point to the next argument. The actual
7093type of ``va_list`` is target specific.
7094
7095Semantics:
7096""""""""""
7097
7098The '``va_arg``' instruction loads an argument of the specified type
7099from the specified ``va_list`` and causes the ``va_list`` to point to
7100the next argument. For more information, see the variable argument
7101handling :ref:`Intrinsic Functions <int_varargs>`.
7102
7103It is legal for this instruction to be called in a function which does
7104not take a variable number of arguments, for example, the ``vfprintf``
7105function.
7106
7107``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
7108function <intrinsics>` because it takes a type as an argument.
7109
7110Example:
7111""""""""
7112
7113See the :ref:`variable argument processing <int_varargs>` section.
7114
7115Note that the code generator does not yet fully support va\_arg on many
7116targets. Also, it does not currently support va\_arg with aggregate
7117types on any target.
7118
7119.. _i_landingpad:
7120
7121'``landingpad``' Instruction
7122^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7123
7124Syntax:
7125"""""""
7126
7127::
7128
7129 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
7130 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
7131
7132 <clause> := catch <type> <value>
7133 <clause> := filter <array constant type> <array constant>
7134
7135Overview:
7136"""""""""
7137
7138The '``landingpad``' instruction is used by `LLVM's exception handling
7139system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007140is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00007141code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
7142defines values supplied by the personality function (``pers_fn``) upon
7143re-entry to the function. The ``resultval`` has the type ``resultty``.
7144
7145Arguments:
7146""""""""""
7147
7148This instruction takes a ``pers_fn`` value. This is the personality
7149function associated with the unwinding mechanism. The optional
7150``cleanup`` flag indicates that the landing pad block is a cleanup.
7151
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007152A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00007153contains the global variable representing the "type" that may be caught
7154or filtered respectively. Unlike the ``catch`` clause, the ``filter``
7155clause takes an array constant as its argument. Use
7156"``[0 x i8**] undef``" for a filter which cannot throw. The
7157'``landingpad``' instruction must contain *at least* one ``clause`` or
7158the ``cleanup`` flag.
7159
7160Semantics:
7161""""""""""
7162
7163The '``landingpad``' instruction defines the values which are set by the
7164personality function (``pers_fn``) upon re-entry to the function, and
7165therefore the "result type" of the ``landingpad`` instruction. As with
7166calling conventions, how the personality function results are
7167represented in LLVM IR is target specific.
7168
7169The clauses are applied in order from top to bottom. If two
7170``landingpad`` instructions are merged together through inlining, the
7171clauses from the calling function are appended to the list of clauses.
7172When the call stack is being unwound due to an exception being thrown,
7173the exception is compared against each ``clause`` in turn. If it doesn't
7174match any of the clauses, and the ``cleanup`` flag is not set, then
7175unwinding continues further up the call stack.
7176
7177The ``landingpad`` instruction has several restrictions:
7178
7179- A landing pad block is a basic block which is the unwind destination
7180 of an '``invoke``' instruction.
7181- A landing pad block must have a '``landingpad``' instruction as its
7182 first non-PHI instruction.
7183- There can be only one '``landingpad``' instruction within the landing
7184 pad block.
7185- A basic block that is not a landing pad block may not include a
7186 '``landingpad``' instruction.
7187- All '``landingpad``' instructions in a function must have the same
7188 personality function.
7189
7190Example:
7191""""""""
7192
7193.. code-block:: llvm
7194
7195 ;; A landing pad which can catch an integer.
7196 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
7197 catch i8** @_ZTIi
7198 ;; A landing pad that is a cleanup.
7199 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
7200 cleanup
7201 ;; A landing pad which can catch an integer and can only throw a double.
7202 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
7203 catch i8** @_ZTIi
7204 filter [1 x i8**] [@_ZTId]
7205
7206.. _intrinsics:
7207
7208Intrinsic Functions
7209===================
7210
7211LLVM supports the notion of an "intrinsic function". These functions
7212have well known names and semantics and are required to follow certain
7213restrictions. Overall, these intrinsics represent an extension mechanism
7214for the LLVM language that does not require changing all of the
7215transformations in LLVM when adding to the language (or the bitcode
7216reader/writer, the parser, etc...).
7217
7218Intrinsic function names must all start with an "``llvm.``" prefix. This
7219prefix is reserved in LLVM for intrinsic names; thus, function names may
7220not begin with this prefix. Intrinsic functions must always be external
7221functions: you cannot define the body of intrinsic functions. Intrinsic
7222functions may only be used in call or invoke instructions: it is illegal
7223to take the address of an intrinsic function. Additionally, because
7224intrinsic functions are part of the LLVM language, it is required if any
7225are added that they be documented here.
7226
7227Some intrinsic functions can be overloaded, i.e., the intrinsic
7228represents a family of functions that perform the same operation but on
7229different data types. Because LLVM can represent over 8 million
7230different integer types, overloading is used commonly to allow an
7231intrinsic function to operate on any integer type. One or more of the
7232argument types or the result type can be overloaded to accept any
7233integer type. Argument types may also be defined as exactly matching a
7234previous argument's type or the result type. This allows an intrinsic
7235function which accepts multiple arguments, but needs all of them to be
7236of the same type, to only be overloaded with respect to a single
7237argument or the result.
7238
7239Overloaded intrinsics will have the names of its overloaded argument
7240types encoded into its function name, each preceded by a period. Only
7241those types which are overloaded result in a name suffix. Arguments
7242whose type is matched against another type do not. For example, the
7243``llvm.ctpop`` function can take an integer of any width and returns an
7244integer of exactly the same integer width. This leads to a family of
7245functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
7246``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
7247overloaded, and only one type suffix is required. Because the argument's
7248type is matched against the return type, it does not require its own
7249name suffix.
7250
7251To learn how to add an intrinsic function, please see the `Extending
7252LLVM Guide <ExtendingLLVM.html>`_.
7253
7254.. _int_varargs:
7255
7256Variable Argument Handling Intrinsics
7257-------------------------------------
7258
7259Variable argument support is defined in LLVM with the
7260:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
7261functions. These functions are related to the similarly named macros
7262defined in the ``<stdarg.h>`` header file.
7263
7264All of these functions operate on arguments that use a target-specific
7265value type "``va_list``". The LLVM assembly language reference manual
7266does not define what this type is, so all transformations should be
7267prepared to handle these functions regardless of the type used.
7268
7269This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
7270variable argument handling intrinsic functions are used.
7271
7272.. code-block:: llvm
7273
Tim Northoverab60bb92014-11-02 01:21:51 +00007274 ; This struct is different for every platform. For most platforms,
7275 ; it is merely an i8*.
7276 %struct.va_list = type { i8* }
7277
7278 ; For Unix x86_64 platforms, va_list is the following struct:
7279 ; %struct.va_list = type { i32, i32, i8*, i8* }
7280
Sean Silvab084af42012-12-07 10:36:55 +00007281 define i32 @test(i32 %X, ...) {
7282 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00007283 %ap = alloca %struct.va_list
7284 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00007285 call void @llvm.va_start(i8* %ap2)
7286
7287 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00007288 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00007289
7290 ; Demonstrate usage of llvm.va_copy and llvm.va_end
7291 %aq = alloca i8*
7292 %aq2 = bitcast i8** %aq to i8*
7293 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
7294 call void @llvm.va_end(i8* %aq2)
7295
7296 ; Stop processing of arguments.
7297 call void @llvm.va_end(i8* %ap2)
7298 ret i32 %tmp
7299 }
7300
7301 declare void @llvm.va_start(i8*)
7302 declare void @llvm.va_copy(i8*, i8*)
7303 declare void @llvm.va_end(i8*)
7304
7305.. _int_va_start:
7306
7307'``llvm.va_start``' Intrinsic
7308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7309
7310Syntax:
7311"""""""
7312
7313::
7314
Nick Lewycky04f6de02013-09-11 22:04:52 +00007315 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00007316
7317Overview:
7318"""""""""
7319
7320The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
7321subsequent use by ``va_arg``.
7322
7323Arguments:
7324""""""""""
7325
7326The argument is a pointer to a ``va_list`` element to initialize.
7327
7328Semantics:
7329""""""""""
7330
7331The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
7332available in C. In a target-dependent way, it initializes the
7333``va_list`` element to which the argument points, so that the next call
7334to ``va_arg`` will produce the first variable argument passed to the
7335function. Unlike the C ``va_start`` macro, this intrinsic does not need
7336to know the last argument of the function as the compiler can figure
7337that out.
7338
7339'``llvm.va_end``' Intrinsic
7340^^^^^^^^^^^^^^^^^^^^^^^^^^^
7341
7342Syntax:
7343"""""""
7344
7345::
7346
7347 declare void @llvm.va_end(i8* <arglist>)
7348
7349Overview:
7350"""""""""
7351
7352The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
7353initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
7354
7355Arguments:
7356""""""""""
7357
7358The argument is a pointer to a ``va_list`` to destroy.
7359
7360Semantics:
7361""""""""""
7362
7363The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
7364available in C. In a target-dependent way, it destroys the ``va_list``
7365element to which the argument points. Calls to
7366:ref:`llvm.va_start <int_va_start>` and
7367:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
7368``llvm.va_end``.
7369
7370.. _int_va_copy:
7371
7372'``llvm.va_copy``' Intrinsic
7373^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7374
7375Syntax:
7376"""""""
7377
7378::
7379
7380 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
7381
7382Overview:
7383"""""""""
7384
7385The '``llvm.va_copy``' intrinsic copies the current argument position
7386from the source argument list to the destination argument list.
7387
7388Arguments:
7389""""""""""
7390
7391The first argument is a pointer to a ``va_list`` element to initialize.
7392The second argument is a pointer to a ``va_list`` element to copy from.
7393
7394Semantics:
7395""""""""""
7396
7397The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
7398available in C. In a target-dependent way, it copies the source
7399``va_list`` element into the destination ``va_list`` element. This
7400intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
7401arbitrarily complex and require, for example, memory allocation.
7402
7403Accurate Garbage Collection Intrinsics
7404--------------------------------------
7405
Philip Reamesc5b0f562015-02-25 23:52:06 +00007406LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
7407(GC) requires the frontend to generate code containing appropriate intrinsic
7408calls and select an appropriate GC strategy which knows how to lower these
7409intrinsics in a manner which is appropriate for the target collector.
7410
Sean Silvab084af42012-12-07 10:36:55 +00007411These intrinsics allow identification of :ref:`GC roots on the
7412stack <int_gcroot>`, as well as garbage collector implementations that
7413require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00007414Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00007415these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00007416details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00007417
Philip Reamesf80bbff2015-02-25 23:45:20 +00007418Experimental Statepoint Intrinsics
7419^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7420
7421LLVM provides an second experimental set of intrinsics for describing garbage
7422collection safepoints in compiled code. These intrinsics are an alternative
7423to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
7424:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
7425differences in approach are covered in the `Garbage Collection with LLVM
7426<GarbageCollection.html>`_ documentation. The intrinsics themselves are
7427described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00007428
7429.. _int_gcroot:
7430
7431'``llvm.gcroot``' Intrinsic
7432^^^^^^^^^^^^^^^^^^^^^^^^^^^
7433
7434Syntax:
7435"""""""
7436
7437::
7438
7439 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
7440
7441Overview:
7442"""""""""
7443
7444The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
7445the code generator, and allows some metadata to be associated with it.
7446
7447Arguments:
7448""""""""""
7449
7450The first argument specifies the address of a stack object that contains
7451the root pointer. The second pointer (which must be either a constant or
7452a global value address) contains the meta-data to be associated with the
7453root.
7454
7455Semantics:
7456""""""""""
7457
7458At runtime, a call to this intrinsic stores a null pointer into the
7459"ptrloc" location. At compile-time, the code generator generates
7460information to allow the runtime to find the pointer at GC safe points.
7461The '``llvm.gcroot``' intrinsic may only be used in a function which
7462:ref:`specifies a GC algorithm <gc>`.
7463
7464.. _int_gcread:
7465
7466'``llvm.gcread``' Intrinsic
7467^^^^^^^^^^^^^^^^^^^^^^^^^^^
7468
7469Syntax:
7470"""""""
7471
7472::
7473
7474 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7475
7476Overview:
7477"""""""""
7478
7479The '``llvm.gcread``' intrinsic identifies reads of references from heap
7480locations, allowing garbage collector implementations that require read
7481barriers.
7482
7483Arguments:
7484""""""""""
7485
7486The second argument is the address to read from, which should be an
7487address allocated from the garbage collector. The first object is a
7488pointer to the start of the referenced object, if needed by the language
7489runtime (otherwise null).
7490
7491Semantics:
7492""""""""""
7493
7494The '``llvm.gcread``' intrinsic has the same semantics as a load
7495instruction, but may be replaced with substantially more complex code by
7496the garbage collector runtime, as needed. The '``llvm.gcread``'
7497intrinsic may only be used in a function which :ref:`specifies a GC
7498algorithm <gc>`.
7499
7500.. _int_gcwrite:
7501
7502'``llvm.gcwrite``' Intrinsic
7503^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7504
7505Syntax:
7506"""""""
7507
7508::
7509
7510 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7511
7512Overview:
7513"""""""""
7514
7515The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7516locations, allowing garbage collector implementations that require write
7517barriers (such as generational or reference counting collectors).
7518
7519Arguments:
7520""""""""""
7521
7522The first argument is the reference to store, the second is the start of
7523the object to store it to, and the third is the address of the field of
7524Obj to store to. If the runtime does not require a pointer to the
7525object, Obj may be null.
7526
7527Semantics:
7528""""""""""
7529
7530The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7531instruction, but may be replaced with substantially more complex code by
7532the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7533intrinsic may only be used in a function which :ref:`specifies a GC
7534algorithm <gc>`.
7535
7536Code Generator Intrinsics
7537-------------------------
7538
7539These intrinsics are provided by LLVM to expose special features that
7540may only be implemented with code generator support.
7541
7542'``llvm.returnaddress``' Intrinsic
7543^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7544
7545Syntax:
7546"""""""
7547
7548::
7549
7550 declare i8 *@llvm.returnaddress(i32 <level>)
7551
7552Overview:
7553"""""""""
7554
7555The '``llvm.returnaddress``' intrinsic attempts to compute a
7556target-specific value indicating the return address of the current
7557function or one of its callers.
7558
7559Arguments:
7560""""""""""
7561
7562The argument to this intrinsic indicates which function to return the
7563address for. Zero indicates the calling function, one indicates its
7564caller, etc. The argument is **required** to be a constant integer
7565value.
7566
7567Semantics:
7568""""""""""
7569
7570The '``llvm.returnaddress``' intrinsic either returns a pointer
7571indicating the return address of the specified call frame, or zero if it
7572cannot be identified. The value returned by this intrinsic is likely to
7573be incorrect or 0 for arguments other than zero, so it should only be
7574used for debugging purposes.
7575
7576Note that calling this intrinsic does not prevent function inlining or
7577other aggressive transformations, so the value returned may not be that
7578of the obvious source-language caller.
7579
7580'``llvm.frameaddress``' Intrinsic
7581^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7582
7583Syntax:
7584"""""""
7585
7586::
7587
7588 declare i8* @llvm.frameaddress(i32 <level>)
7589
7590Overview:
7591"""""""""
7592
7593The '``llvm.frameaddress``' intrinsic attempts to return the
7594target-specific frame pointer value for the specified stack frame.
7595
7596Arguments:
7597""""""""""
7598
7599The argument to this intrinsic indicates which function to return the
7600frame pointer for. Zero indicates the calling function, one indicates
7601its caller, etc. The argument is **required** to be a constant integer
7602value.
7603
7604Semantics:
7605""""""""""
7606
7607The '``llvm.frameaddress``' intrinsic either returns a pointer
7608indicating the frame address of the specified call frame, or zero if it
7609cannot be identified. The value returned by this intrinsic is likely to
7610be incorrect or 0 for arguments other than zero, so it should only be
7611used for debugging purposes.
7612
7613Note that calling this intrinsic does not prevent function inlining or
7614other aggressive transformations, so the value returned may not be that
7615of the obvious source-language caller.
7616
Reid Kleckner3542ace2015-01-13 01:51:34 +00007617'``llvm.frameallocate``' and '``llvm.framerecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00007618^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7619
7620Syntax:
7621"""""""
7622
7623::
7624
7625 declare i8* @llvm.frameallocate(i32 %size)
Reid Kleckner3542ace2015-01-13 01:51:34 +00007626 declare i8* @llvm.framerecover(i8* %func, i8* %fp)
Reid Klecknere9b89312015-01-13 00:48:10 +00007627
7628Overview:
7629"""""""""
7630
7631The '``llvm.frameallocate``' intrinsic allocates stack memory at some fixed
Reid Kleckner3542ace2015-01-13 01:51:34 +00007632offset from the frame pointer, and the '``llvm.framerecover``'
Reid Klecknere9b89312015-01-13 00:48:10 +00007633intrinsic applies that offset to a live frame pointer to recover the address of
7634the allocation. The offset is computed during frame layout of the caller of
7635``llvm.frameallocate``.
7636
7637Arguments:
7638""""""""""
7639
7640The ``size`` argument to '``llvm.frameallocate``' must be a constant integer
7641indicating the amount of stack memory to allocate. As with allocas, allocating
7642zero bytes is legal, but the result is undefined.
7643
Reid Kleckner3542ace2015-01-13 01:51:34 +00007644The ``func`` argument to '``llvm.framerecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00007645bitcasted pointer to a function defined in the current module. The code
7646generator cannot determine the frame allocation offset of functions defined in
7647other modules.
7648
Reid Kleckner3542ace2015-01-13 01:51:34 +00007649The ``fp`` argument to '``llvm.framerecover``' must be a frame
Reid Klecknere9b89312015-01-13 00:48:10 +00007650pointer of a call frame that is currently live. The return value of
7651'``llvm.frameaddress``' is one way to produce such a value, but most platforms
7652also expose the frame pointer through stack unwinding mechanisms.
7653
7654Semantics:
7655""""""""""
7656
7657These intrinsics allow a group of functions to access one stack memory
7658allocation in an ancestor stack frame. The memory returned from
7659'``llvm.frameallocate``' may be allocated prior to stack realignment, so the
7660memory is only aligned to the ABI-required stack alignment. Each function may
7661only call '``llvm.frameallocate``' one or zero times from the function entry
7662block. The frame allocation intrinsic inhibits inlining, as any frame
7663allocations in the inlined function frame are likely to be at a different
Reid Kleckner3542ace2015-01-13 01:51:34 +00007664offset from the one used by '``llvm.framerecover``' called with the
Reid Klecknere9b89312015-01-13 00:48:10 +00007665uninlined function.
7666
Renato Golinc7aea402014-05-06 16:51:25 +00007667.. _int_read_register:
7668.. _int_write_register:
7669
7670'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7671^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7672
7673Syntax:
7674"""""""
7675
7676::
7677
7678 declare i32 @llvm.read_register.i32(metadata)
7679 declare i64 @llvm.read_register.i64(metadata)
7680 declare void @llvm.write_register.i32(metadata, i32 @value)
7681 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00007682 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00007683
7684Overview:
7685"""""""""
7686
7687The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7688provides access to the named register. The register must be valid on
7689the architecture being compiled to. The type needs to be compatible
7690with the register being read.
7691
7692Semantics:
7693""""""""""
7694
7695The '``llvm.read_register``' intrinsic returns the current value of the
7696register, where possible. The '``llvm.write_register``' intrinsic sets
7697the current value of the register, where possible.
7698
7699This is useful to implement named register global variables that need
7700to always be mapped to a specific register, as is common practice on
7701bare-metal programs including OS kernels.
7702
7703The compiler doesn't check for register availability or use of the used
7704register in surrounding code, including inline assembly. Because of that,
7705allocatable registers are not supported.
7706
7707Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007708architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007709work is needed to support other registers and even more so, allocatable
7710registers.
7711
Sean Silvab084af42012-12-07 10:36:55 +00007712.. _int_stacksave:
7713
7714'``llvm.stacksave``' Intrinsic
7715^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7716
7717Syntax:
7718"""""""
7719
7720::
7721
7722 declare i8* @llvm.stacksave()
7723
7724Overview:
7725"""""""""
7726
7727The '``llvm.stacksave``' intrinsic is used to remember the current state
7728of the function stack, for use with
7729:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7730implementing language features like scoped automatic variable sized
7731arrays in C99.
7732
7733Semantics:
7734""""""""""
7735
7736This intrinsic returns a opaque pointer value that can be passed to
7737:ref:`llvm.stackrestore <int_stackrestore>`. When an
7738``llvm.stackrestore`` intrinsic is executed with a value saved from
7739``llvm.stacksave``, it effectively restores the state of the stack to
7740the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7741practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7742were allocated after the ``llvm.stacksave`` was executed.
7743
7744.. _int_stackrestore:
7745
7746'``llvm.stackrestore``' Intrinsic
7747^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7748
7749Syntax:
7750"""""""
7751
7752::
7753
7754 declare void @llvm.stackrestore(i8* %ptr)
7755
7756Overview:
7757"""""""""
7758
7759The '``llvm.stackrestore``' intrinsic is used to restore the state of
7760the function stack to the state it was in when the corresponding
7761:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7762useful for implementing language features like scoped automatic variable
7763sized arrays in C99.
7764
7765Semantics:
7766""""""""""
7767
7768See the description for :ref:`llvm.stacksave <int_stacksave>`.
7769
7770'``llvm.prefetch``' Intrinsic
7771^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7772
7773Syntax:
7774"""""""
7775
7776::
7777
7778 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7779
7780Overview:
7781"""""""""
7782
7783The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7784insert a prefetch instruction if supported; otherwise, it is a noop.
7785Prefetches have no effect on the behavior of the program but can change
7786its performance characteristics.
7787
7788Arguments:
7789""""""""""
7790
7791``address`` is the address to be prefetched, ``rw`` is the specifier
7792determining if the fetch should be for a read (0) or write (1), and
7793``locality`` is a temporal locality specifier ranging from (0) - no
7794locality, to (3) - extremely local keep in cache. The ``cache type``
7795specifies whether the prefetch is performed on the data (1) or
7796instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7797arguments must be constant integers.
7798
7799Semantics:
7800""""""""""
7801
7802This intrinsic does not modify the behavior of the program. In
7803particular, prefetches cannot trap and do not produce a value. On
7804targets that support this intrinsic, the prefetch can provide hints to
7805the processor cache for better performance.
7806
7807'``llvm.pcmarker``' Intrinsic
7808^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7809
7810Syntax:
7811"""""""
7812
7813::
7814
7815 declare void @llvm.pcmarker(i32 <id>)
7816
7817Overview:
7818"""""""""
7819
7820The '``llvm.pcmarker``' intrinsic is a method to export a Program
7821Counter (PC) in a region of code to simulators and other tools. The
7822method is target specific, but it is expected that the marker will use
7823exported symbols to transmit the PC of the marker. The marker makes no
7824guarantees that it will remain with any specific instruction after
7825optimizations. It is possible that the presence of a marker will inhibit
7826optimizations. The intended use is to be inserted after optimizations to
7827allow correlations of simulation runs.
7828
7829Arguments:
7830""""""""""
7831
7832``id`` is a numerical id identifying the marker.
7833
7834Semantics:
7835""""""""""
7836
7837This intrinsic does not modify the behavior of the program. Backends
7838that do not support this intrinsic may ignore it.
7839
7840'``llvm.readcyclecounter``' Intrinsic
7841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7842
7843Syntax:
7844"""""""
7845
7846::
7847
7848 declare i64 @llvm.readcyclecounter()
7849
7850Overview:
7851"""""""""
7852
7853The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7854counter register (or similar low latency, high accuracy clocks) on those
7855targets that support it. On X86, it should map to RDTSC. On Alpha, it
7856should map to RPCC. As the backing counters overflow quickly (on the
7857order of 9 seconds on alpha), this should only be used for small
7858timings.
7859
7860Semantics:
7861""""""""""
7862
7863When directly supported, reading the cycle counter should not modify any
7864memory. Implementations are allowed to either return a application
7865specific value or a system wide value. On backends without support, this
7866is lowered to a constant 0.
7867
Tim Northoverbc933082013-05-23 19:11:20 +00007868Note that runtime support may be conditional on the privilege-level code is
7869running at and the host platform.
7870
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007871'``llvm.clear_cache``' Intrinsic
7872^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7873
7874Syntax:
7875"""""""
7876
7877::
7878
7879 declare void @llvm.clear_cache(i8*, i8*)
7880
7881Overview:
7882"""""""""
7883
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007884The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7885in the specified range to the execution unit of the processor. On
7886targets with non-unified instruction and data cache, the implementation
7887flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007888
7889Semantics:
7890""""""""""
7891
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007892On platforms with coherent instruction and data caches (e.g. x86), this
7893intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007894cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007895instructions or a system call, if cache flushing requires special
7896privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007897
Sean Silvad02bf3e2014-04-07 22:29:53 +00007898The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007899time library.
Renato Golin93010e62014-03-26 14:01:32 +00007900
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007901This instrinsic does *not* empty the instruction pipeline. Modifications
7902of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007903
Justin Bogner61ba2e32014-12-08 18:02:35 +00007904'``llvm.instrprof_increment``' Intrinsic
7905^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7906
7907Syntax:
7908"""""""
7909
7910::
7911
7912 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
7913 i32 <num-counters>, i32 <index>)
7914
7915Overview:
7916"""""""""
7917
7918The '``llvm.instrprof_increment``' intrinsic can be emitted by a
7919frontend for use with instrumentation based profiling. These will be
7920lowered by the ``-instrprof`` pass to generate execution counts of a
7921program at runtime.
7922
7923Arguments:
7924""""""""""
7925
7926The first argument is a pointer to a global variable containing the
7927name of the entity being instrumented. This should generally be the
7928(mangled) function name for a set of counters.
7929
7930The second argument is a hash value that can be used by the consumer
7931of the profile data to detect changes to the instrumented source, and
7932the third is the number of counters associated with ``name``. It is an
7933error if ``hash`` or ``num-counters`` differ between two instances of
7934``instrprof_increment`` that refer to the same name.
7935
7936The last argument refers to which of the counters for ``name`` should
7937be incremented. It should be a value between 0 and ``num-counters``.
7938
7939Semantics:
7940""""""""""
7941
7942This intrinsic represents an increment of a profiling counter. It will
7943cause the ``-instrprof`` pass to generate the appropriate data
7944structures and the code to increment the appropriate value, in a
7945format that can be written out by a compiler runtime and consumed via
7946the ``llvm-profdata`` tool.
7947
Sean Silvab084af42012-12-07 10:36:55 +00007948Standard C Library Intrinsics
7949-----------------------------
7950
7951LLVM provides intrinsics for a few important standard C library
7952functions. These intrinsics allow source-language front-ends to pass
7953information about the alignment of the pointer arguments to the code
7954generator, providing opportunity for more efficient code generation.
7955
7956.. _int_memcpy:
7957
7958'``llvm.memcpy``' Intrinsic
7959^^^^^^^^^^^^^^^^^^^^^^^^^^^
7960
7961Syntax:
7962"""""""
7963
7964This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7965integer bit width and for different address spaces. Not all targets
7966support all bit widths however.
7967
7968::
7969
7970 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7971 i32 <len>, i32 <align>, i1 <isvolatile>)
7972 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7973 i64 <len>, i32 <align>, i1 <isvolatile>)
7974
7975Overview:
7976"""""""""
7977
7978The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7979source location to the destination location.
7980
7981Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7982intrinsics do not return a value, takes extra alignment/isvolatile
7983arguments and the pointers can be in specified address spaces.
7984
7985Arguments:
7986""""""""""
7987
7988The first argument is a pointer to the destination, the second is a
7989pointer to the source. The third argument is an integer argument
7990specifying the number of bytes to copy, the fourth argument is the
7991alignment of the source and destination locations, and the fifth is a
7992boolean indicating a volatile access.
7993
7994If the call to this intrinsic has an alignment value that is not 0 or 1,
7995then the caller guarantees that both the source and destination pointers
7996are aligned to that boundary.
7997
7998If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
7999a :ref:`volatile operation <volatile>`. The detailed access behavior is not
8000very cleanly specified and it is unwise to depend on it.
8001
8002Semantics:
8003""""""""""
8004
8005The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
8006source location to the destination location, which are not allowed to
8007overlap. It copies "len" bytes of memory over. If the argument is known
8008to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00008009argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008010
8011'``llvm.memmove``' Intrinsic
8012^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8013
8014Syntax:
8015"""""""
8016
8017This is an overloaded intrinsic. You can use llvm.memmove on any integer
8018bit width and for different address space. Not all targets support all
8019bit widths however.
8020
8021::
8022
8023 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
8024 i32 <len>, i32 <align>, i1 <isvolatile>)
8025 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
8026 i64 <len>, i32 <align>, i1 <isvolatile>)
8027
8028Overview:
8029"""""""""
8030
8031The '``llvm.memmove.*``' intrinsics move a block of memory from the
8032source location to the destination location. It is similar to the
8033'``llvm.memcpy``' intrinsic but allows the two memory locations to
8034overlap.
8035
8036Note that, unlike the standard libc function, the ``llvm.memmove.*``
8037intrinsics do not return a value, takes extra alignment/isvolatile
8038arguments and the pointers can be in specified address spaces.
8039
8040Arguments:
8041""""""""""
8042
8043The first argument is a pointer to the destination, the second is a
8044pointer to the source. The third argument is an integer argument
8045specifying the number of bytes to copy, the fourth argument is the
8046alignment of the source and destination locations, and the fifth is a
8047boolean indicating a volatile access.
8048
8049If the call to this intrinsic has an alignment value that is not 0 or 1,
8050then the caller guarantees that the source and destination pointers are
8051aligned to that boundary.
8052
8053If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
8054is a :ref:`volatile operation <volatile>`. The detailed access behavior is
8055not very cleanly specified and it is unwise to depend on it.
8056
8057Semantics:
8058""""""""""
8059
8060The '``llvm.memmove.*``' intrinsics copy a block of memory from the
8061source location to the destination location, which may overlap. It
8062copies "len" bytes of memory over. If the argument is known to be
8063aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00008064otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008065
8066'``llvm.memset.*``' Intrinsics
8067^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8068
8069Syntax:
8070"""""""
8071
8072This is an overloaded intrinsic. You can use llvm.memset on any integer
8073bit width and for different address spaces. However, not all targets
8074support all bit widths.
8075
8076::
8077
8078 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
8079 i32 <len>, i32 <align>, i1 <isvolatile>)
8080 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
8081 i64 <len>, i32 <align>, i1 <isvolatile>)
8082
8083Overview:
8084"""""""""
8085
8086The '``llvm.memset.*``' intrinsics fill a block of memory with a
8087particular byte value.
8088
8089Note that, unlike the standard libc function, the ``llvm.memset``
8090intrinsic does not return a value and takes extra alignment/volatile
8091arguments. Also, the destination can be in an arbitrary address space.
8092
8093Arguments:
8094""""""""""
8095
8096The first argument is a pointer to the destination to fill, the second
8097is the byte value with which to fill it, the third argument is an
8098integer argument specifying the number of bytes to fill, and the fourth
8099argument is the known alignment of the destination location.
8100
8101If the call to this intrinsic has an alignment value that is not 0 or 1,
8102then the caller guarantees that the destination pointer is aligned to
8103that boundary.
8104
8105If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
8106a :ref:`volatile operation <volatile>`. The detailed access behavior is not
8107very cleanly specified and it is unwise to depend on it.
8108
8109Semantics:
8110""""""""""
8111
8112The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
8113at the destination location. If the argument is known to be aligned to
8114some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00008115it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008116
8117'``llvm.sqrt.*``' Intrinsic
8118^^^^^^^^^^^^^^^^^^^^^^^^^^^
8119
8120Syntax:
8121"""""""
8122
8123This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
8124floating point or vector of floating point type. Not all targets support
8125all types however.
8126
8127::
8128
8129 declare float @llvm.sqrt.f32(float %Val)
8130 declare double @llvm.sqrt.f64(double %Val)
8131 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
8132 declare fp128 @llvm.sqrt.f128(fp128 %Val)
8133 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
8134
8135Overview:
8136"""""""""
8137
8138The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
8139returning the same value as the libm '``sqrt``' functions would. Unlike
8140``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
8141negative numbers other than -0.0 (which allows for better optimization,
8142because there is no need to worry about errno being set).
8143``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
8144
8145Arguments:
8146""""""""""
8147
8148The argument and return value are floating point numbers of the same
8149type.
8150
8151Semantics:
8152""""""""""
8153
8154This function returns the sqrt of the specified operand if it is a
8155nonnegative floating point number.
8156
8157'``llvm.powi.*``' Intrinsic
8158^^^^^^^^^^^^^^^^^^^^^^^^^^^
8159
8160Syntax:
8161"""""""
8162
8163This is an overloaded intrinsic. You can use ``llvm.powi`` on any
8164floating point or vector of floating point type. Not all targets support
8165all types however.
8166
8167::
8168
8169 declare float @llvm.powi.f32(float %Val, i32 %power)
8170 declare double @llvm.powi.f64(double %Val, i32 %power)
8171 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
8172 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
8173 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
8174
8175Overview:
8176"""""""""
8177
8178The '``llvm.powi.*``' intrinsics return the first operand raised to the
8179specified (positive or negative) power. The order of evaluation of
8180multiplications is not defined. When a vector of floating point type is
8181used, the second argument remains a scalar integer value.
8182
8183Arguments:
8184""""""""""
8185
8186The second argument is an integer power, and the first is a value to
8187raise to that power.
8188
8189Semantics:
8190""""""""""
8191
8192This function returns the first value raised to the second power with an
8193unspecified sequence of rounding operations.
8194
8195'``llvm.sin.*``' Intrinsic
8196^^^^^^^^^^^^^^^^^^^^^^^^^^
8197
8198Syntax:
8199"""""""
8200
8201This is an overloaded intrinsic. You can use ``llvm.sin`` on any
8202floating point or vector of floating point type. Not all targets support
8203all types however.
8204
8205::
8206
8207 declare float @llvm.sin.f32(float %Val)
8208 declare double @llvm.sin.f64(double %Val)
8209 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
8210 declare fp128 @llvm.sin.f128(fp128 %Val)
8211 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
8212
8213Overview:
8214"""""""""
8215
8216The '``llvm.sin.*``' intrinsics return the sine of the operand.
8217
8218Arguments:
8219""""""""""
8220
8221The argument and return value are floating point numbers of the same
8222type.
8223
8224Semantics:
8225""""""""""
8226
8227This function returns the sine of the specified operand, returning the
8228same values as the libm ``sin`` functions would, and handles error
8229conditions in the same way.
8230
8231'``llvm.cos.*``' Intrinsic
8232^^^^^^^^^^^^^^^^^^^^^^^^^^
8233
8234Syntax:
8235"""""""
8236
8237This is an overloaded intrinsic. You can use ``llvm.cos`` on any
8238floating point or vector of floating point type. Not all targets support
8239all types however.
8240
8241::
8242
8243 declare float @llvm.cos.f32(float %Val)
8244 declare double @llvm.cos.f64(double %Val)
8245 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
8246 declare fp128 @llvm.cos.f128(fp128 %Val)
8247 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
8248
8249Overview:
8250"""""""""
8251
8252The '``llvm.cos.*``' intrinsics return the cosine of the operand.
8253
8254Arguments:
8255""""""""""
8256
8257The argument and return value are floating point numbers of the same
8258type.
8259
8260Semantics:
8261""""""""""
8262
8263This function returns the cosine of the specified operand, returning the
8264same values as the libm ``cos`` functions would, and handles error
8265conditions in the same way.
8266
8267'``llvm.pow.*``' Intrinsic
8268^^^^^^^^^^^^^^^^^^^^^^^^^^
8269
8270Syntax:
8271"""""""
8272
8273This is an overloaded intrinsic. You can use ``llvm.pow`` on any
8274floating point or vector of floating point type. Not all targets support
8275all types however.
8276
8277::
8278
8279 declare float @llvm.pow.f32(float %Val, float %Power)
8280 declare double @llvm.pow.f64(double %Val, double %Power)
8281 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
8282 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
8283 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
8284
8285Overview:
8286"""""""""
8287
8288The '``llvm.pow.*``' intrinsics return the first operand raised to the
8289specified (positive or negative) power.
8290
8291Arguments:
8292""""""""""
8293
8294The second argument is a floating point power, and the first is a value
8295to raise to that power.
8296
8297Semantics:
8298""""""""""
8299
8300This function returns the first value raised to the second power,
8301returning the same values as the libm ``pow`` functions would, and
8302handles error conditions in the same way.
8303
8304'``llvm.exp.*``' Intrinsic
8305^^^^^^^^^^^^^^^^^^^^^^^^^^
8306
8307Syntax:
8308"""""""
8309
8310This is an overloaded intrinsic. You can use ``llvm.exp`` on any
8311floating point or vector of floating point type. Not all targets support
8312all types however.
8313
8314::
8315
8316 declare float @llvm.exp.f32(float %Val)
8317 declare double @llvm.exp.f64(double %Val)
8318 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
8319 declare fp128 @llvm.exp.f128(fp128 %Val)
8320 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
8321
8322Overview:
8323"""""""""
8324
8325The '``llvm.exp.*``' intrinsics perform the exp function.
8326
8327Arguments:
8328""""""""""
8329
8330The argument and return value are floating point numbers of the same
8331type.
8332
8333Semantics:
8334""""""""""
8335
8336This function returns the same values as the libm ``exp`` functions
8337would, and handles error conditions in the same way.
8338
8339'``llvm.exp2.*``' Intrinsic
8340^^^^^^^^^^^^^^^^^^^^^^^^^^^
8341
8342Syntax:
8343"""""""
8344
8345This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
8346floating point or vector of floating point type. Not all targets support
8347all types however.
8348
8349::
8350
8351 declare float @llvm.exp2.f32(float %Val)
8352 declare double @llvm.exp2.f64(double %Val)
8353 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
8354 declare fp128 @llvm.exp2.f128(fp128 %Val)
8355 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
8356
8357Overview:
8358"""""""""
8359
8360The '``llvm.exp2.*``' intrinsics perform the exp2 function.
8361
8362Arguments:
8363""""""""""
8364
8365The argument and return value are floating point numbers of the same
8366type.
8367
8368Semantics:
8369""""""""""
8370
8371This function returns the same values as the libm ``exp2`` functions
8372would, and handles error conditions in the same way.
8373
8374'``llvm.log.*``' Intrinsic
8375^^^^^^^^^^^^^^^^^^^^^^^^^^
8376
8377Syntax:
8378"""""""
8379
8380This is an overloaded intrinsic. You can use ``llvm.log`` on any
8381floating point or vector of floating point type. Not all targets support
8382all types however.
8383
8384::
8385
8386 declare float @llvm.log.f32(float %Val)
8387 declare double @llvm.log.f64(double %Val)
8388 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
8389 declare fp128 @llvm.log.f128(fp128 %Val)
8390 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
8391
8392Overview:
8393"""""""""
8394
8395The '``llvm.log.*``' intrinsics perform the log function.
8396
8397Arguments:
8398""""""""""
8399
8400The argument and return value are floating point numbers of the same
8401type.
8402
8403Semantics:
8404""""""""""
8405
8406This function returns the same values as the libm ``log`` functions
8407would, and handles error conditions in the same way.
8408
8409'``llvm.log10.*``' Intrinsic
8410^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8411
8412Syntax:
8413"""""""
8414
8415This is an overloaded intrinsic. You can use ``llvm.log10`` on any
8416floating point or vector of floating point type. Not all targets support
8417all types however.
8418
8419::
8420
8421 declare float @llvm.log10.f32(float %Val)
8422 declare double @llvm.log10.f64(double %Val)
8423 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
8424 declare fp128 @llvm.log10.f128(fp128 %Val)
8425 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
8426
8427Overview:
8428"""""""""
8429
8430The '``llvm.log10.*``' intrinsics perform the log10 function.
8431
8432Arguments:
8433""""""""""
8434
8435The argument and return value are floating point numbers of the same
8436type.
8437
8438Semantics:
8439""""""""""
8440
8441This function returns the same values as the libm ``log10`` functions
8442would, and handles error conditions in the same way.
8443
8444'``llvm.log2.*``' Intrinsic
8445^^^^^^^^^^^^^^^^^^^^^^^^^^^
8446
8447Syntax:
8448"""""""
8449
8450This is an overloaded intrinsic. You can use ``llvm.log2`` on any
8451floating point or vector of floating point type. Not all targets support
8452all types however.
8453
8454::
8455
8456 declare float @llvm.log2.f32(float %Val)
8457 declare double @llvm.log2.f64(double %Val)
8458 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
8459 declare fp128 @llvm.log2.f128(fp128 %Val)
8460 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
8461
8462Overview:
8463"""""""""
8464
8465The '``llvm.log2.*``' intrinsics perform the log2 function.
8466
8467Arguments:
8468""""""""""
8469
8470The argument and return value are floating point numbers of the same
8471type.
8472
8473Semantics:
8474""""""""""
8475
8476This function returns the same values as the libm ``log2`` functions
8477would, and handles error conditions in the same way.
8478
8479'``llvm.fma.*``' Intrinsic
8480^^^^^^^^^^^^^^^^^^^^^^^^^^
8481
8482Syntax:
8483"""""""
8484
8485This is an overloaded intrinsic. You can use ``llvm.fma`` on any
8486floating point or vector of floating point type. Not all targets support
8487all types however.
8488
8489::
8490
8491 declare float @llvm.fma.f32(float %a, float %b, float %c)
8492 declare double @llvm.fma.f64(double %a, double %b, double %c)
8493 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
8494 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
8495 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
8496
8497Overview:
8498"""""""""
8499
8500The '``llvm.fma.*``' intrinsics perform the fused multiply-add
8501operation.
8502
8503Arguments:
8504""""""""""
8505
8506The argument and return value are floating point numbers of the same
8507type.
8508
8509Semantics:
8510""""""""""
8511
8512This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008513would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00008514
8515'``llvm.fabs.*``' Intrinsic
8516^^^^^^^^^^^^^^^^^^^^^^^^^^^
8517
8518Syntax:
8519"""""""
8520
8521This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
8522floating point or vector of floating point type. Not all targets support
8523all types however.
8524
8525::
8526
8527 declare float @llvm.fabs.f32(float %Val)
8528 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008529 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008530 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008531 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008532
8533Overview:
8534"""""""""
8535
8536The '``llvm.fabs.*``' intrinsics return the absolute value of the
8537operand.
8538
8539Arguments:
8540""""""""""
8541
8542The argument and return value are floating point numbers of the same
8543type.
8544
8545Semantics:
8546""""""""""
8547
8548This function returns the same values as the libm ``fabs`` functions
8549would, and handles error conditions in the same way.
8550
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008551'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008552^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008553
8554Syntax:
8555"""""""
8556
8557This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
8558floating point or vector of floating point type. Not all targets support
8559all types however.
8560
8561::
8562
Matt Arsenault64313c92014-10-22 18:25:02 +00008563 declare float @llvm.minnum.f32(float %Val0, float %Val1)
8564 declare double @llvm.minnum.f64(double %Val0, double %Val1)
8565 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8566 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
8567 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008568
8569Overview:
8570"""""""""
8571
8572The '``llvm.minnum.*``' intrinsics return the minimum of the two
8573arguments.
8574
8575
8576Arguments:
8577""""""""""
8578
8579The arguments and return value are floating point numbers of the same
8580type.
8581
8582Semantics:
8583""""""""""
8584
8585Follows the IEEE-754 semantics for minNum, which also match for libm's
8586fmin.
8587
8588If either operand is a NaN, returns the other non-NaN operand. Returns
8589NaN only if both operands are NaN. If the operands compare equal,
8590returns a value that compares equal to both operands. This means that
8591fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8592
8593'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008594^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008595
8596Syntax:
8597"""""""
8598
8599This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
8600floating point or vector of floating point type. Not all targets support
8601all types however.
8602
8603::
8604
Matt Arsenault64313c92014-10-22 18:25:02 +00008605 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
8606 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
8607 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8608 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
8609 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008610
8611Overview:
8612"""""""""
8613
8614The '``llvm.maxnum.*``' intrinsics return the maximum of the two
8615arguments.
8616
8617
8618Arguments:
8619""""""""""
8620
8621The arguments and return value are floating point numbers of the same
8622type.
8623
8624Semantics:
8625""""""""""
8626Follows the IEEE-754 semantics for maxNum, which also match for libm's
8627fmax.
8628
8629If either operand is a NaN, returns the other non-NaN operand. Returns
8630NaN only if both operands are NaN. If the operands compare equal,
8631returns a value that compares equal to both operands. This means that
8632fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8633
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00008634'``llvm.copysign.*``' Intrinsic
8635^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8636
8637Syntax:
8638"""""""
8639
8640This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
8641floating point or vector of floating point type. Not all targets support
8642all types however.
8643
8644::
8645
8646 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
8647 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
8648 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
8649 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8650 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
8651
8652Overview:
8653"""""""""
8654
8655The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8656first operand and the sign of the second operand.
8657
8658Arguments:
8659""""""""""
8660
8661The arguments and return value are floating point numbers of the same
8662type.
8663
8664Semantics:
8665""""""""""
8666
8667This function returns the same values as the libm ``copysign``
8668functions would, and handles error conditions in the same way.
8669
Sean Silvab084af42012-12-07 10:36:55 +00008670'``llvm.floor.*``' Intrinsic
8671^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8672
8673Syntax:
8674"""""""
8675
8676This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8677floating point or vector of floating point type. Not all targets support
8678all types however.
8679
8680::
8681
8682 declare float @llvm.floor.f32(float %Val)
8683 declare double @llvm.floor.f64(double %Val)
8684 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
8685 declare fp128 @llvm.floor.f128(fp128 %Val)
8686 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
8687
8688Overview:
8689"""""""""
8690
8691The '``llvm.floor.*``' intrinsics return the floor of the operand.
8692
8693Arguments:
8694""""""""""
8695
8696The argument and return value are floating point numbers of the same
8697type.
8698
8699Semantics:
8700""""""""""
8701
8702This function returns the same values as the libm ``floor`` functions
8703would, and handles error conditions in the same way.
8704
8705'``llvm.ceil.*``' Intrinsic
8706^^^^^^^^^^^^^^^^^^^^^^^^^^^
8707
8708Syntax:
8709"""""""
8710
8711This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8712floating point or vector of floating point type. Not all targets support
8713all types however.
8714
8715::
8716
8717 declare float @llvm.ceil.f32(float %Val)
8718 declare double @llvm.ceil.f64(double %Val)
8719 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8720 declare fp128 @llvm.ceil.f128(fp128 %Val)
8721 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8722
8723Overview:
8724"""""""""
8725
8726The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8727
8728Arguments:
8729""""""""""
8730
8731The argument and return value are floating point numbers of the same
8732type.
8733
8734Semantics:
8735""""""""""
8736
8737This function returns the same values as the libm ``ceil`` functions
8738would, and handles error conditions in the same way.
8739
8740'``llvm.trunc.*``' Intrinsic
8741^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8742
8743Syntax:
8744"""""""
8745
8746This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8747floating point or vector of floating point type. Not all targets support
8748all types however.
8749
8750::
8751
8752 declare float @llvm.trunc.f32(float %Val)
8753 declare double @llvm.trunc.f64(double %Val)
8754 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8755 declare fp128 @llvm.trunc.f128(fp128 %Val)
8756 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8757
8758Overview:
8759"""""""""
8760
8761The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8762nearest integer not larger in magnitude than the operand.
8763
8764Arguments:
8765""""""""""
8766
8767The argument and return value are floating point numbers of the same
8768type.
8769
8770Semantics:
8771""""""""""
8772
8773This function returns the same values as the libm ``trunc`` functions
8774would, and handles error conditions in the same way.
8775
8776'``llvm.rint.*``' Intrinsic
8777^^^^^^^^^^^^^^^^^^^^^^^^^^^
8778
8779Syntax:
8780"""""""
8781
8782This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8783floating point or vector of floating point type. Not all targets support
8784all types however.
8785
8786::
8787
8788 declare float @llvm.rint.f32(float %Val)
8789 declare double @llvm.rint.f64(double %Val)
8790 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8791 declare fp128 @llvm.rint.f128(fp128 %Val)
8792 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8793
8794Overview:
8795"""""""""
8796
8797The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8798nearest integer. It may raise an inexact floating-point exception if the
8799operand isn't an integer.
8800
8801Arguments:
8802""""""""""
8803
8804The argument and return value are floating point numbers of the same
8805type.
8806
8807Semantics:
8808""""""""""
8809
8810This function returns the same values as the libm ``rint`` functions
8811would, and handles error conditions in the same way.
8812
8813'``llvm.nearbyint.*``' Intrinsic
8814^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8815
8816Syntax:
8817"""""""
8818
8819This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8820floating point or vector of floating point type. Not all targets support
8821all types however.
8822
8823::
8824
8825 declare float @llvm.nearbyint.f32(float %Val)
8826 declare double @llvm.nearbyint.f64(double %Val)
8827 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8828 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8829 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8830
8831Overview:
8832"""""""""
8833
8834The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8835nearest integer.
8836
8837Arguments:
8838""""""""""
8839
8840The argument and return value are floating point numbers of the same
8841type.
8842
8843Semantics:
8844""""""""""
8845
8846This function returns the same values as the libm ``nearbyint``
8847functions would, and handles error conditions in the same way.
8848
Hal Finkel171817e2013-08-07 22:49:12 +00008849'``llvm.round.*``' Intrinsic
8850^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8851
8852Syntax:
8853"""""""
8854
8855This is an overloaded intrinsic. You can use ``llvm.round`` on any
8856floating point or vector of floating point type. Not all targets support
8857all types however.
8858
8859::
8860
8861 declare float @llvm.round.f32(float %Val)
8862 declare double @llvm.round.f64(double %Val)
8863 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8864 declare fp128 @llvm.round.f128(fp128 %Val)
8865 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8866
8867Overview:
8868"""""""""
8869
8870The '``llvm.round.*``' intrinsics returns the operand rounded to the
8871nearest integer.
8872
8873Arguments:
8874""""""""""
8875
8876The argument and return value are floating point numbers of the same
8877type.
8878
8879Semantics:
8880""""""""""
8881
8882This function returns the same values as the libm ``round``
8883functions would, and handles error conditions in the same way.
8884
Sean Silvab084af42012-12-07 10:36:55 +00008885Bit Manipulation Intrinsics
8886---------------------------
8887
8888LLVM provides intrinsics for a few important bit manipulation
8889operations. These allow efficient code generation for some algorithms.
8890
8891'``llvm.bswap.*``' Intrinsics
8892^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8893
8894Syntax:
8895"""""""
8896
8897This is an overloaded intrinsic function. You can use bswap on any
8898integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8899
8900::
8901
8902 declare i16 @llvm.bswap.i16(i16 <id>)
8903 declare i32 @llvm.bswap.i32(i32 <id>)
8904 declare i64 @llvm.bswap.i64(i64 <id>)
8905
8906Overview:
8907"""""""""
8908
8909The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8910values with an even number of bytes (positive multiple of 16 bits).
8911These are useful for performing operations on data that is not in the
8912target's native byte order.
8913
8914Semantics:
8915""""""""""
8916
8917The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8918and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8919intrinsic returns an i32 value that has the four bytes of the input i32
8920swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8921returned i32 will have its bytes in 3, 2, 1, 0 order. The
8922``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8923concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8924respectively).
8925
8926'``llvm.ctpop.*``' Intrinsic
8927^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8928
8929Syntax:
8930"""""""
8931
8932This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8933bit width, or on any vector with integer elements. Not all targets
8934support all bit widths or vector types, however.
8935
8936::
8937
8938 declare i8 @llvm.ctpop.i8(i8 <src>)
8939 declare i16 @llvm.ctpop.i16(i16 <src>)
8940 declare i32 @llvm.ctpop.i32(i32 <src>)
8941 declare i64 @llvm.ctpop.i64(i64 <src>)
8942 declare i256 @llvm.ctpop.i256(i256 <src>)
8943 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8944
8945Overview:
8946"""""""""
8947
8948The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8949in a value.
8950
8951Arguments:
8952""""""""""
8953
8954The only argument is the value to be counted. The argument may be of any
8955integer type, or a vector with integer elements. The return type must
8956match the argument type.
8957
8958Semantics:
8959""""""""""
8960
8961The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8962each element of a vector.
8963
8964'``llvm.ctlz.*``' Intrinsic
8965^^^^^^^^^^^^^^^^^^^^^^^^^^^
8966
8967Syntax:
8968"""""""
8969
8970This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8971integer bit width, or any vector whose elements are integers. Not all
8972targets support all bit widths or vector types, however.
8973
8974::
8975
8976 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8977 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8978 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8979 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8980 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8981 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8982
8983Overview:
8984"""""""""
8985
8986The '``llvm.ctlz``' family of intrinsic functions counts the number of
8987leading zeros in a variable.
8988
8989Arguments:
8990""""""""""
8991
8992The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00008993any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00008994type must match the first argument type.
8995
8996The second argument must be a constant and is a flag to indicate whether
8997the intrinsic should ensure that a zero as the first argument produces a
8998defined result. Historically some architectures did not provide a
8999defined result for zero values as efficiently, and many algorithms are
9000now predicated on avoiding zero-value inputs.
9001
9002Semantics:
9003""""""""""
9004
9005The '``llvm.ctlz``' intrinsic counts the leading (most significant)
9006zeros in a variable, or within each element of the vector. If
9007``src == 0`` then the result is the size in bits of the type of ``src``
9008if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
9009``llvm.ctlz(i32 2) = 30``.
9010
9011'``llvm.cttz.*``' Intrinsic
9012^^^^^^^^^^^^^^^^^^^^^^^^^^^
9013
9014Syntax:
9015"""""""
9016
9017This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
9018integer bit width, or any vector of integer elements. Not all targets
9019support all bit widths or vector types, however.
9020
9021::
9022
9023 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
9024 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
9025 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
9026 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
9027 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
9028 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
9029
9030Overview:
9031"""""""""
9032
9033The '``llvm.cttz``' family of intrinsic functions counts the number of
9034trailing zeros.
9035
9036Arguments:
9037""""""""""
9038
9039The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00009040any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00009041type must match the first argument type.
9042
9043The second argument must be a constant and is a flag to indicate whether
9044the intrinsic should ensure that a zero as the first argument produces a
9045defined result. Historically some architectures did not provide a
9046defined result for zero values as efficiently, and many algorithms are
9047now predicated on avoiding zero-value inputs.
9048
9049Semantics:
9050""""""""""
9051
9052The '``llvm.cttz``' intrinsic counts the trailing (least significant)
9053zeros in a variable, or within each element of a vector. If ``src == 0``
9054then the result is the size in bits of the type of ``src`` if
9055``is_zero_undef == 0`` and ``undef`` otherwise. For example,
9056``llvm.cttz(2) = 1``.
9057
9058Arithmetic with Overflow Intrinsics
9059-----------------------------------
9060
9061LLVM provides intrinsics for some arithmetic with overflow operations.
9062
9063'``llvm.sadd.with.overflow.*``' Intrinsics
9064^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9065
9066Syntax:
9067"""""""
9068
9069This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
9070on any integer bit width.
9071
9072::
9073
9074 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
9075 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
9076 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
9077
9078Overview:
9079"""""""""
9080
9081The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
9082a signed addition of the two arguments, and indicate whether an overflow
9083occurred during the signed summation.
9084
9085Arguments:
9086""""""""""
9087
9088The arguments (%a and %b) and the first element of the result structure
9089may be of integer types of any bit width, but they must have the same
9090bit width. The second element of the result structure must be of type
9091``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
9092addition.
9093
9094Semantics:
9095""""""""""
9096
9097The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009098a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00009099first element of which is the signed summation, and the second element
9100of which is a bit specifying if the signed summation resulted in an
9101overflow.
9102
9103Examples:
9104"""""""""
9105
9106.. code-block:: llvm
9107
9108 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
9109 %sum = extractvalue {i32, i1} %res, 0
9110 %obit = extractvalue {i32, i1} %res, 1
9111 br i1 %obit, label %overflow, label %normal
9112
9113'``llvm.uadd.with.overflow.*``' Intrinsics
9114^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9115
9116Syntax:
9117"""""""
9118
9119This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
9120on any integer bit width.
9121
9122::
9123
9124 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
9125 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
9126 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
9127
9128Overview:
9129"""""""""
9130
9131The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
9132an unsigned addition of the two arguments, and indicate whether a carry
9133occurred during the unsigned summation.
9134
9135Arguments:
9136""""""""""
9137
9138The arguments (%a and %b) and the first element of the result structure
9139may be of integer types of any bit width, but they must have the same
9140bit width. The second element of the result structure must be of type
9141``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9142addition.
9143
9144Semantics:
9145""""""""""
9146
9147The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009148an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00009149first element of which is the sum, and the second element of which is a
9150bit specifying if the unsigned summation resulted in a carry.
9151
9152Examples:
9153"""""""""
9154
9155.. code-block:: llvm
9156
9157 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
9158 %sum = extractvalue {i32, i1} %res, 0
9159 %obit = extractvalue {i32, i1} %res, 1
9160 br i1 %obit, label %carry, label %normal
9161
9162'``llvm.ssub.with.overflow.*``' Intrinsics
9163^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9164
9165Syntax:
9166"""""""
9167
9168This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
9169on any integer bit width.
9170
9171::
9172
9173 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
9174 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
9175 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
9176
9177Overview:
9178"""""""""
9179
9180The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
9181a signed subtraction of the two arguments, and indicate whether an
9182overflow occurred during the signed subtraction.
9183
9184Arguments:
9185""""""""""
9186
9187The arguments (%a and %b) and the first element of the result structure
9188may be of integer types of any bit width, but they must have the same
9189bit width. The second element of the result structure must be of type
9190``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
9191subtraction.
9192
9193Semantics:
9194""""""""""
9195
9196The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009197a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00009198first element of which is the subtraction, and the second element of
9199which is a bit specifying if the signed subtraction resulted in an
9200overflow.
9201
9202Examples:
9203"""""""""
9204
9205.. code-block:: llvm
9206
9207 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
9208 %sum = extractvalue {i32, i1} %res, 0
9209 %obit = extractvalue {i32, i1} %res, 1
9210 br i1 %obit, label %overflow, label %normal
9211
9212'``llvm.usub.with.overflow.*``' Intrinsics
9213^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9214
9215Syntax:
9216"""""""
9217
9218This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
9219on any integer bit width.
9220
9221::
9222
9223 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
9224 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
9225 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
9226
9227Overview:
9228"""""""""
9229
9230The '``llvm.usub.with.overflow``' family of intrinsic functions perform
9231an unsigned subtraction of the two arguments, and indicate whether an
9232overflow occurred during the unsigned subtraction.
9233
9234Arguments:
9235""""""""""
9236
9237The arguments (%a and %b) and the first element of the result structure
9238may be of integer types of any bit width, but they must have the same
9239bit width. The second element of the result structure must be of type
9240``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9241subtraction.
9242
9243Semantics:
9244""""""""""
9245
9246The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009247an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00009248the first element of which is the subtraction, and the second element of
9249which is a bit specifying if the unsigned subtraction resulted in an
9250overflow.
9251
9252Examples:
9253"""""""""
9254
9255.. code-block:: llvm
9256
9257 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
9258 %sum = extractvalue {i32, i1} %res, 0
9259 %obit = extractvalue {i32, i1} %res, 1
9260 br i1 %obit, label %overflow, label %normal
9261
9262'``llvm.smul.with.overflow.*``' Intrinsics
9263^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9264
9265Syntax:
9266"""""""
9267
9268This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
9269on any integer bit width.
9270
9271::
9272
9273 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
9274 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
9275 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
9276
9277Overview:
9278"""""""""
9279
9280The '``llvm.smul.with.overflow``' family of intrinsic functions perform
9281a signed multiplication of the two arguments, and indicate whether an
9282overflow occurred during the signed multiplication.
9283
9284Arguments:
9285""""""""""
9286
9287The arguments (%a and %b) and the first element of the result structure
9288may be of integer types of any bit width, but they must have the same
9289bit width. The second element of the result structure must be of type
9290``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
9291multiplication.
9292
9293Semantics:
9294""""""""""
9295
9296The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009297a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00009298the first element of which is the multiplication, and the second element
9299of which is a bit specifying if the signed multiplication resulted in an
9300overflow.
9301
9302Examples:
9303"""""""""
9304
9305.. code-block:: llvm
9306
9307 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
9308 %sum = extractvalue {i32, i1} %res, 0
9309 %obit = extractvalue {i32, i1} %res, 1
9310 br i1 %obit, label %overflow, label %normal
9311
9312'``llvm.umul.with.overflow.*``' Intrinsics
9313^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9314
9315Syntax:
9316"""""""
9317
9318This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
9319on any integer bit width.
9320
9321::
9322
9323 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
9324 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
9325 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
9326
9327Overview:
9328"""""""""
9329
9330The '``llvm.umul.with.overflow``' family of intrinsic functions perform
9331a unsigned multiplication of the two arguments, and indicate whether an
9332overflow occurred during the unsigned multiplication.
9333
9334Arguments:
9335""""""""""
9336
9337The arguments (%a and %b) and the first element of the result structure
9338may be of integer types of any bit width, but they must have the same
9339bit width. The second element of the result structure must be of type
9340``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9341multiplication.
9342
9343Semantics:
9344""""""""""
9345
9346The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009347an unsigned multiplication of the two arguments. They return a structure ---
9348the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00009349element of which is a bit specifying if the unsigned multiplication
9350resulted in an overflow.
9351
9352Examples:
9353"""""""""
9354
9355.. code-block:: llvm
9356
9357 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
9358 %sum = extractvalue {i32, i1} %res, 0
9359 %obit = extractvalue {i32, i1} %res, 1
9360 br i1 %obit, label %overflow, label %normal
9361
9362Specialised Arithmetic Intrinsics
9363---------------------------------
9364
9365'``llvm.fmuladd.*``' Intrinsic
9366^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9367
9368Syntax:
9369"""""""
9370
9371::
9372
9373 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
9374 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
9375
9376Overview:
9377"""""""""
9378
9379The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00009380expressions that can be fused if the code generator determines that (a) the
9381target instruction set has support for a fused operation, and (b) that the
9382fused operation is more efficient than the equivalent, separate pair of mul
9383and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00009384
9385Arguments:
9386""""""""""
9387
9388The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
9389multiplicands, a and b, and an addend c.
9390
9391Semantics:
9392""""""""""
9393
9394The expression:
9395
9396::
9397
9398 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
9399
9400is equivalent to the expression a \* b + c, except that rounding will
9401not be performed between the multiplication and addition steps if the
9402code generator fuses the operations. Fusion is not guaranteed, even if
9403the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009404corresponding llvm.fma.\* intrinsic function should be used
9405instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00009406
9407Examples:
9408"""""""""
9409
9410.. code-block:: llvm
9411
Tim Northover675a0962014-06-13 14:24:23 +00009412 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00009413
9414Half Precision Floating Point Intrinsics
9415----------------------------------------
9416
9417For most target platforms, half precision floating point is a
9418storage-only format. This means that it is a dense encoding (in memory)
9419but does not support computation in the format.
9420
9421This means that code must first load the half-precision floating point
9422value as an i16, then convert it to float with
9423:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
9424then be performed on the float value (including extending to double
9425etc). To store the value back to memory, it is first converted to float
9426if needed, then converted to i16 with
9427:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
9428i16 value.
9429
9430.. _int_convert_to_fp16:
9431
9432'``llvm.convert.to.fp16``' Intrinsic
9433^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9434
9435Syntax:
9436"""""""
9437
9438::
9439
Tim Northoverfd7e4242014-07-17 10:51:23 +00009440 declare i16 @llvm.convert.to.fp16.f32(float %a)
9441 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00009442
9443Overview:
9444"""""""""
9445
Tim Northoverfd7e4242014-07-17 10:51:23 +00009446The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9447conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00009448
9449Arguments:
9450""""""""""
9451
9452The intrinsic function contains single argument - the value to be
9453converted.
9454
9455Semantics:
9456""""""""""
9457
Tim Northoverfd7e4242014-07-17 10:51:23 +00009458The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9459conventional floating point format to half precision floating point format. The
9460return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00009461
9462Examples:
9463"""""""""
9464
9465.. code-block:: llvm
9466
Tim Northoverfd7e4242014-07-17 10:51:23 +00009467 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00009468 store i16 %res, i16* @x, align 2
9469
9470.. _int_convert_from_fp16:
9471
9472'``llvm.convert.from.fp16``' Intrinsic
9473^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9474
9475Syntax:
9476"""""""
9477
9478::
9479
Tim Northoverfd7e4242014-07-17 10:51:23 +00009480 declare float @llvm.convert.from.fp16.f32(i16 %a)
9481 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009482
9483Overview:
9484"""""""""
9485
9486The '``llvm.convert.from.fp16``' intrinsic function performs a
9487conversion from half precision floating point format to single precision
9488floating point format.
9489
9490Arguments:
9491""""""""""
9492
9493The intrinsic function contains single argument - the value to be
9494converted.
9495
9496Semantics:
9497""""""""""
9498
9499The '``llvm.convert.from.fp16``' intrinsic function performs a
9500conversion from half single precision floating point format to single
9501precision floating point format. The input half-float value is
9502represented by an ``i16`` value.
9503
9504Examples:
9505"""""""""
9506
9507.. code-block:: llvm
9508
David Blaikiec7aabbb2015-03-04 22:06:14 +00009509 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00009510 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009511
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00009512.. _dbg_intrinsics:
9513
Sean Silvab084af42012-12-07 10:36:55 +00009514Debugger Intrinsics
9515-------------------
9516
9517The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
9518prefix), are described in the `LLVM Source Level
9519Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
9520document.
9521
9522Exception Handling Intrinsics
9523-----------------------------
9524
9525The LLVM exception handling intrinsics (which all start with
9526``llvm.eh.`` prefix), are described in the `LLVM Exception
9527Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
9528
9529.. _int_trampoline:
9530
9531Trampoline Intrinsics
9532---------------------
9533
9534These intrinsics make it possible to excise one parameter, marked with
9535the :ref:`nest <nest>` attribute, from a function. The result is a
9536callable function pointer lacking the nest parameter - the caller does
9537not need to provide a value for it. Instead, the value to use is stored
9538in advance in a "trampoline", a block of memory usually allocated on the
9539stack, which also contains code to splice the nest value into the
9540argument list. This is used to implement the GCC nested function address
9541extension.
9542
9543For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
9544then the resulting function pointer has signature ``i32 (i32, i32)*``.
9545It can be created as follows:
9546
9547.. code-block:: llvm
9548
9549 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +00009550 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +00009551 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
9552 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
9553 %fp = bitcast i8* %p to i32 (i32, i32)*
9554
9555The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
9556``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
9557
9558.. _int_it:
9559
9560'``llvm.init.trampoline``' Intrinsic
9561^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9562
9563Syntax:
9564"""""""
9565
9566::
9567
9568 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
9569
9570Overview:
9571"""""""""
9572
9573This fills the memory pointed to by ``tramp`` with executable code,
9574turning it into a trampoline.
9575
9576Arguments:
9577""""""""""
9578
9579The ``llvm.init.trampoline`` intrinsic takes three arguments, all
9580pointers. The ``tramp`` argument must point to a sufficiently large and
9581sufficiently aligned block of memory; this memory is written to by the
9582intrinsic. Note that the size and the alignment are target-specific -
9583LLVM currently provides no portable way of determining them, so a
9584front-end that generates this intrinsic needs to have some
9585target-specific knowledge. The ``func`` argument must hold a function
9586bitcast to an ``i8*``.
9587
9588Semantics:
9589""""""""""
9590
9591The block of memory pointed to by ``tramp`` is filled with target
9592dependent code, turning it into a function. Then ``tramp`` needs to be
9593passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
9594be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
9595function's signature is the same as that of ``func`` with any arguments
9596marked with the ``nest`` attribute removed. At most one such ``nest``
9597argument is allowed, and it must be of pointer type. Calling the new
9598function is equivalent to calling ``func`` with the same argument list,
9599but with ``nval`` used for the missing ``nest`` argument. If, after
9600calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
9601modified, then the effect of any later call to the returned function
9602pointer is undefined.
9603
9604.. _int_at:
9605
9606'``llvm.adjust.trampoline``' Intrinsic
9607^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9608
9609Syntax:
9610"""""""
9611
9612::
9613
9614 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
9615
9616Overview:
9617"""""""""
9618
9619This performs any required machine-specific adjustment to the address of
9620a trampoline (passed as ``tramp``).
9621
9622Arguments:
9623""""""""""
9624
9625``tramp`` must point to a block of memory which already has trampoline
9626code filled in by a previous call to
9627:ref:`llvm.init.trampoline <int_it>`.
9628
9629Semantics:
9630""""""""""
9631
9632On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009633different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00009634intrinsic returns the executable address corresponding to ``tramp``
9635after performing the required machine specific adjustments. The pointer
9636returned can then be :ref:`bitcast and executed <int_trampoline>`.
9637
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009638Masked Vector Load and Store Intrinsics
9639---------------------------------------
9640
9641LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
9642
9643.. _int_mload:
9644
9645'``llvm.masked.load.*``' Intrinsics
9646^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9647
9648Syntax:
9649"""""""
9650This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
9651
9652::
9653
9654 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
9655 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
9656
9657Overview:
9658"""""""""
9659
9660Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes in the passthru operand.
9661
9662
9663Arguments:
9664""""""""""
9665
9666The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean 'i1' values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of passthru operand are the same vector types.
9667
9668
9669Semantics:
9670""""""""""
9671
9672The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
9673The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
9674
9675
9676::
9677
9678 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
9679
9680 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +00009681 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009682 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009683
9684.. _int_mstore:
9685
9686'``llvm.masked.store.*``' Intrinsics
9687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9688
9689Syntax:
9690"""""""
9691This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
9692
9693::
9694
9695 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
9696 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
9697
9698Overview:
9699"""""""""
9700
9701Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
9702
9703Arguments:
9704""""""""""
9705
9706The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
9707
9708
9709Semantics:
9710""""""""""
9711
9712The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
9713The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
9714
9715::
9716
9717 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
9718
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009719 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +00009720 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009721 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
9722 store <16 x float> %res, <16 x float>* %ptr, align 4
9723
9724
Sean Silvab084af42012-12-07 10:36:55 +00009725Memory Use Markers
9726------------------
9727
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009728This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00009729memory objects and ranges where variables are immutable.
9730
Reid Klecknera534a382013-12-19 02:14:12 +00009731.. _int_lifestart:
9732
Sean Silvab084af42012-12-07 10:36:55 +00009733'``llvm.lifetime.start``' Intrinsic
9734^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9735
9736Syntax:
9737"""""""
9738
9739::
9740
9741 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
9742
9743Overview:
9744"""""""""
9745
9746The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
9747object's lifetime.
9748
9749Arguments:
9750""""""""""
9751
9752The first argument is a constant integer representing the size of the
9753object, or -1 if it is variable sized. The second argument is a pointer
9754to the object.
9755
9756Semantics:
9757""""""""""
9758
9759This intrinsic indicates that before this point in the code, the value
9760of the memory pointed to by ``ptr`` is dead. This means that it is known
9761to never be used and has an undefined value. A load from the pointer
9762that precedes this intrinsic can be replaced with ``'undef'``.
9763
Reid Klecknera534a382013-12-19 02:14:12 +00009764.. _int_lifeend:
9765
Sean Silvab084af42012-12-07 10:36:55 +00009766'``llvm.lifetime.end``' Intrinsic
9767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9768
9769Syntax:
9770"""""""
9771
9772::
9773
9774 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
9775
9776Overview:
9777"""""""""
9778
9779The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
9780object's lifetime.
9781
9782Arguments:
9783""""""""""
9784
9785The first argument is a constant integer representing the size of the
9786object, or -1 if it is variable sized. The second argument is a pointer
9787to the object.
9788
9789Semantics:
9790""""""""""
9791
9792This intrinsic indicates that after this point in the code, the value of
9793the memory pointed to by ``ptr`` is dead. This means that it is known to
9794never be used and has an undefined value. Any stores into the memory
9795object following this intrinsic may be removed as dead.
9796
9797'``llvm.invariant.start``' Intrinsic
9798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9799
9800Syntax:
9801"""""""
9802
9803::
9804
9805 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9806
9807Overview:
9808"""""""""
9809
9810The '``llvm.invariant.start``' intrinsic specifies that the contents of
9811a memory object will not change.
9812
9813Arguments:
9814""""""""""
9815
9816The first argument is a constant integer representing the size of the
9817object, or -1 if it is variable sized. The second argument is a pointer
9818to the object.
9819
9820Semantics:
9821""""""""""
9822
9823This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9824the return value, the referenced memory location is constant and
9825unchanging.
9826
9827'``llvm.invariant.end``' Intrinsic
9828^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9829
9830Syntax:
9831"""""""
9832
9833::
9834
9835 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9836
9837Overview:
9838"""""""""
9839
9840The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9841memory object are mutable.
9842
9843Arguments:
9844""""""""""
9845
9846The first argument is the matching ``llvm.invariant.start`` intrinsic.
9847The second argument is a constant integer representing the size of the
9848object, or -1 if it is variable sized and the third argument is a
9849pointer to the object.
9850
9851Semantics:
9852""""""""""
9853
9854This intrinsic indicates that the memory is mutable again.
9855
9856General Intrinsics
9857------------------
9858
9859This class of intrinsics is designed to be generic and has no specific
9860purpose.
9861
9862'``llvm.var.annotation``' Intrinsic
9863^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9864
9865Syntax:
9866"""""""
9867
9868::
9869
9870 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9871
9872Overview:
9873"""""""""
9874
9875The '``llvm.var.annotation``' intrinsic.
9876
9877Arguments:
9878""""""""""
9879
9880The first argument is a pointer to a value, the second is a pointer to a
9881global string, the third is a pointer to a global string which is the
9882source file name, and the last argument is the line number.
9883
9884Semantics:
9885""""""""""
9886
9887This intrinsic allows annotation of local variables with arbitrary
9888strings. This can be useful for special purpose optimizations that want
9889to look for these annotations. These have no other defined use; they are
9890ignored by code generation and optimization.
9891
Michael Gottesman88d18832013-03-26 00:34:27 +00009892'``llvm.ptr.annotation.*``' Intrinsic
9893^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9894
9895Syntax:
9896"""""""
9897
9898This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9899pointer to an integer of any width. *NOTE* you must specify an address space for
9900the pointer. The identifier for the default address space is the integer
9901'``0``'.
9902
9903::
9904
9905 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9906 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9907 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9908 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9909 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9910
9911Overview:
9912"""""""""
9913
9914The '``llvm.ptr.annotation``' intrinsic.
9915
9916Arguments:
9917""""""""""
9918
9919The first argument is a pointer to an integer value of arbitrary bitwidth
9920(result of some expression), the second is a pointer to a global string, the
9921third is a pointer to a global string which is the source file name, and the
9922last argument is the line number. It returns the value of the first argument.
9923
9924Semantics:
9925""""""""""
9926
9927This intrinsic allows annotation of a pointer to an integer with arbitrary
9928strings. This can be useful for special purpose optimizations that want to look
9929for these annotations. These have no other defined use; they are ignored by code
9930generation and optimization.
9931
Sean Silvab084af42012-12-07 10:36:55 +00009932'``llvm.annotation.*``' Intrinsic
9933^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9934
9935Syntax:
9936"""""""
9937
9938This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9939any integer bit width.
9940
9941::
9942
9943 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9944 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9945 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9946 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9947 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9948
9949Overview:
9950"""""""""
9951
9952The '``llvm.annotation``' intrinsic.
9953
9954Arguments:
9955""""""""""
9956
9957The first argument is an integer value (result of some expression), the
9958second is a pointer to a global string, the third is a pointer to a
9959global string which is the source file name, and the last argument is
9960the line number. It returns the value of the first argument.
9961
9962Semantics:
9963""""""""""
9964
9965This intrinsic allows annotations to be put on arbitrary expressions
9966with arbitrary strings. This can be useful for special purpose
9967optimizations that want to look for these annotations. These have no
9968other defined use; they are ignored by code generation and optimization.
9969
9970'``llvm.trap``' Intrinsic
9971^^^^^^^^^^^^^^^^^^^^^^^^^
9972
9973Syntax:
9974"""""""
9975
9976::
9977
9978 declare void @llvm.trap() noreturn nounwind
9979
9980Overview:
9981"""""""""
9982
9983The '``llvm.trap``' intrinsic.
9984
9985Arguments:
9986""""""""""
9987
9988None.
9989
9990Semantics:
9991""""""""""
9992
9993This intrinsic is lowered to the target dependent trap instruction. If
9994the target does not have a trap instruction, this intrinsic will be
9995lowered to a call of the ``abort()`` function.
9996
9997'``llvm.debugtrap``' Intrinsic
9998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9999
10000Syntax:
10001"""""""
10002
10003::
10004
10005 declare void @llvm.debugtrap() nounwind
10006
10007Overview:
10008"""""""""
10009
10010The '``llvm.debugtrap``' intrinsic.
10011
10012Arguments:
10013""""""""""
10014
10015None.
10016
10017Semantics:
10018""""""""""
10019
10020This intrinsic is lowered to code which is intended to cause an
10021execution trap with the intention of requesting the attention of a
10022debugger.
10023
10024'``llvm.stackprotector``' Intrinsic
10025^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10026
10027Syntax:
10028"""""""
10029
10030::
10031
10032 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
10033
10034Overview:
10035"""""""""
10036
10037The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
10038onto the stack at ``slot``. The stack slot is adjusted to ensure that it
10039is placed on the stack before local variables.
10040
10041Arguments:
10042""""""""""
10043
10044The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
10045The first argument is the value loaded from the stack guard
10046``@__stack_chk_guard``. The second variable is an ``alloca`` that has
10047enough space to hold the value of the guard.
10048
10049Semantics:
10050""""""""""
10051
Michael Gottesmandafc7d92013-08-12 18:35:32 +000010052This intrinsic causes the prologue/epilogue inserter to force the position of
10053the ``AllocaInst`` stack slot to be before local variables on the stack. This is
10054to ensure that if a local variable on the stack is overwritten, it will destroy
10055the value of the guard. When the function exits, the guard on the stack is
10056checked against the original guard by ``llvm.stackprotectorcheck``. If they are
10057different, then ``llvm.stackprotectorcheck`` causes the program to abort by
10058calling the ``__stack_chk_fail()`` function.
10059
10060'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000010061^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000010062
10063Syntax:
10064"""""""
10065
10066::
10067
10068 declare void @llvm.stackprotectorcheck(i8** <guard>)
10069
10070Overview:
10071"""""""""
10072
10073The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000010074created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000010075``__stack_chk_fail()`` function.
10076
Michael Gottesmandafc7d92013-08-12 18:35:32 +000010077Arguments:
10078""""""""""
10079
10080The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
10081the variable ``@__stack_chk_guard``.
10082
10083Semantics:
10084""""""""""
10085
10086This intrinsic is provided to perform the stack protector check by comparing
10087``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
10088values do not match call the ``__stack_chk_fail()`` function.
10089
10090The reason to provide this as an IR level intrinsic instead of implementing it
10091via other IR operations is that in order to perform this operation at the IR
10092level without an intrinsic, one would need to create additional basic blocks to
10093handle the success/failure cases. This makes it difficult to stop the stack
10094protector check from disrupting sibling tail calls in Codegen. With this
10095intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000010096codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000010097
Sean Silvab084af42012-12-07 10:36:55 +000010098'``llvm.objectsize``' Intrinsic
10099^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10100
10101Syntax:
10102"""""""
10103
10104::
10105
10106 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
10107 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
10108
10109Overview:
10110"""""""""
10111
10112The ``llvm.objectsize`` intrinsic is designed to provide information to
10113the optimizers to determine at compile time whether a) an operation
10114(like memcpy) will overflow a buffer that corresponds to an object, or
10115b) that a runtime check for overflow isn't necessary. An object in this
10116context means an allocation of a specific class, structure, array, or
10117other object.
10118
10119Arguments:
10120""""""""""
10121
10122The ``llvm.objectsize`` intrinsic takes two arguments. The first
10123argument is a pointer to or into the ``object``. The second argument is
10124a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
10125or -1 (if false) when the object size is unknown. The second argument
10126only accepts constants.
10127
10128Semantics:
10129""""""""""
10130
10131The ``llvm.objectsize`` intrinsic is lowered to a constant representing
10132the size of the object concerned. If the size cannot be determined at
10133compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
10134on the ``min`` argument).
10135
10136'``llvm.expect``' Intrinsic
10137^^^^^^^^^^^^^^^^^^^^^^^^^^^
10138
10139Syntax:
10140"""""""
10141
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000010142This is an overloaded intrinsic. You can use ``llvm.expect`` on any
10143integer bit width.
10144
Sean Silvab084af42012-12-07 10:36:55 +000010145::
10146
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000010147 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000010148 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
10149 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
10150
10151Overview:
10152"""""""""
10153
10154The ``llvm.expect`` intrinsic provides information about expected (the
10155most probable) value of ``val``, which can be used by optimizers.
10156
10157Arguments:
10158""""""""""
10159
10160The ``llvm.expect`` intrinsic takes two arguments. The first argument is
10161a value. The second argument is an expected value, this needs to be a
10162constant value, variables are not allowed.
10163
10164Semantics:
10165""""""""""
10166
10167This intrinsic is lowered to the ``val``.
10168
Hal Finkel93046912014-07-25 21:13:35 +000010169'``llvm.assume``' Intrinsic
10170^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10171
10172Syntax:
10173"""""""
10174
10175::
10176
10177 declare void @llvm.assume(i1 %cond)
10178
10179Overview:
10180"""""""""
10181
10182The ``llvm.assume`` allows the optimizer to assume that the provided
10183condition is true. This information can then be used in simplifying other parts
10184of the code.
10185
10186Arguments:
10187""""""""""
10188
10189The condition which the optimizer may assume is always true.
10190
10191Semantics:
10192""""""""""
10193
10194The intrinsic allows the optimizer to assume that the provided condition is
10195always true whenever the control flow reaches the intrinsic call. No code is
10196generated for this intrinsic, and instructions that contribute only to the
10197provided condition are not used for code generation. If the condition is
10198violated during execution, the behavior is undefined.
10199
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000010200Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000010201used by the ``llvm.assume`` intrinsic in order to preserve the instructions
10202only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000010203if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000010204sufficient overall improvement in code quality. For this reason,
10205``llvm.assume`` should not be used to document basic mathematical invariants
10206that the optimizer can otherwise deduce or facts that are of little use to the
10207optimizer.
10208
Peter Collingbournee6909c82015-02-20 20:30:47 +000010209.. _bitset.test:
10210
10211'``llvm.bitset.test``' Intrinsic
10212^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10213
10214Syntax:
10215"""""""
10216
10217::
10218
10219 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
10220
10221
10222Arguments:
10223""""""""""
10224
10225The first argument is a pointer to be tested. The second argument is a
10226metadata string containing the name of a :doc:`bitset <BitSets>`.
10227
10228Overview:
10229"""""""""
10230
10231The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
10232member of the given bitset.
10233
Sean Silvab084af42012-12-07 10:36:55 +000010234'``llvm.donothing``' Intrinsic
10235^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10236
10237Syntax:
10238"""""""
10239
10240::
10241
10242 declare void @llvm.donothing() nounwind readnone
10243
10244Overview:
10245"""""""""
10246
Juergen Ributzkac9161192014-10-23 22:36:13 +000010247The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
10248two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
10249with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000010250
10251Arguments:
10252""""""""""
10253
10254None.
10255
10256Semantics:
10257""""""""""
10258
10259This intrinsic does nothing, and it's removed by optimizers and ignored
10260by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000010261
10262Stack Map Intrinsics
10263--------------------
10264
10265LLVM provides experimental intrinsics to support runtime patching
10266mechanisms commonly desired in dynamic language JITs. These intrinsics
10267are described in :doc:`StackMaps`.