blob: ef9fd92d2e56628b9505b4d5e75b8306093e5f65 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000351 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000356 This calling convention attempts to make the code in the caller as
357 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000497.. _namedtypes:
498
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000499Structure Types
500---------------
Sean Silvab084af42012-12-07 10:36:55 +0000501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
503types <t_struct>`. Literal types are uniqued structurally, but identified types
504are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000505to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000506
507An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000508
509.. code-block:: llvm
510
511 %mytype = type { %mytype*, i32 }
512
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000513Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
514literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000515
516.. _globalvars:
517
518Global Variables
519----------------
520
521Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000522instead of run-time.
523
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000524Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525
526Global variables in other translation units can also be declared, in which
527case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000528
Bob Wilson85b24f22014-06-12 20:40:33 +0000529Either global variable definitions or declarations may have an explicit section
530to be placed in and may have an optional explicit alignment specified.
531
Michael Gottesman006039c2013-01-31 05:48:48 +0000532A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000536initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000567Additionally, the global can placed in a comdat if the target has the necessary
568support.
Sean Silvab084af42012-12-07 10:36:55 +0000569
Michael Gottesmane743a302013-02-04 03:22:00 +0000570By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000571variables defined within the module are not modified from their
572initial values before the start of the global initializer. This is
573true even for variables potentially accessible from outside the
574module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000575``@llvm.used`` or dllexported variables. This assumption may be suppressed
576by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000577
Sean Silvab084af42012-12-07 10:36:55 +0000578An explicit alignment may be specified for a global, which must be a
579power of 2. If not present, or if the alignment is set to zero, the
580alignment of the global is set by the target to whatever it feels
581convenient. If an explicit alignment is specified, the global is forced
582to have exactly that alignment. Targets and optimizers are not allowed
583to over-align the global if the global has an assigned section. In this
584case, the extra alignment could be observable: for example, code could
585assume that the globals are densely packed in their section and try to
586iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000587iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000588
Nico Rieck7157bb72014-01-14 15:22:47 +0000589Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
590
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000591Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000592:ref:`Thread Local Storage Model <tls_model>`.
593
Nico Rieck7157bb72014-01-14 15:22:47 +0000594Syntax::
595
596 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000597 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000598 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000599 [, section "name"] [, comdat [($name)]]
600 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000601
Sean Silvab084af42012-12-07 10:36:55 +0000602For example, the following defines a global in a numbered address space
603with an initializer, section, and alignment:
604
605.. code-block:: llvm
606
607 @G = addrspace(5) constant float 1.0, section "foo", align 4
608
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000609The following example just declares a global variable
610
611.. code-block:: llvm
612
613 @G = external global i32
614
Sean Silvab084af42012-12-07 10:36:55 +0000615The following example defines a thread-local global with the
616``initialexec`` TLS model:
617
618.. code-block:: llvm
619
620 @G = thread_local(initialexec) global i32 0, align 4
621
622.. _functionstructure:
623
624Functions
625---------
626
627LLVM function definitions consist of the "``define``" keyword, an
628optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000629style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
630an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000631an optional ``unnamed_addr`` attribute, a return type, an optional
632:ref:`parameter attribute <paramattrs>` for the return type, a function
633name, a (possibly empty) argument list (each with optional :ref:`parameter
634attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000635an optional section, an optional alignment,
636an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000637an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000638an optional :ref:`prologue <prologuedata>`,
639an optional :ref:`personality <personalityfn>`,
640an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000641
642LLVM function declarations consist of the "``declare``" keyword, an
643optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000644style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
645an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000646an optional ``unnamed_addr`` attribute, a return type, an optional
647:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000648name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000649:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
650and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000651
Bill Wendling6822ecb2013-10-27 05:09:12 +0000652A function definition contains a list of basic blocks, forming the CFG (Control
653Flow Graph) for the function. Each basic block may optionally start with a label
654(giving the basic block a symbol table entry), contains a list of instructions,
655and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
656function return). If an explicit label is not provided, a block is assigned an
657implicit numbered label, using the next value from the same counter as used for
658unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
659entry block does not have an explicit label, it will be assigned label "%0",
660then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000661
662The first basic block in a function is special in two ways: it is
663immediately executed on entrance to the function, and it is not allowed
664to have predecessor basic blocks (i.e. there can not be any branches to
665the entry block of a function). Because the block can have no
666predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
667
668LLVM allows an explicit section to be specified for functions. If the
669target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000670Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000671
672An explicit alignment may be specified for a function. If not present,
673or if the alignment is set to zero, the alignment of the function is set
674by the target to whatever it feels convenient. If an explicit alignment
675is specified, the function is forced to have at least that much
676alignment. All alignments must be a power of 2.
677
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000678If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000679be significant and two identical functions can be merged.
680
681Syntax::
682
Nico Rieck7157bb72014-01-14 15:22:47 +0000683 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000684 [cconv] [ret attrs]
685 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000686 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000687 [align N] [gc] [prefix Constant] [prologue Constant]
688 [personality Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000689
Dan Liew2661dfc2014-08-20 15:06:30 +0000690The argument list is a comma seperated sequence of arguments where each
691argument is of the following form
692
693Syntax::
694
695 <type> [parameter Attrs] [name]
696
697
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000698.. _langref_aliases:
699
Sean Silvab084af42012-12-07 10:36:55 +0000700Aliases
701-------
702
Rafael Espindola64c1e182014-06-03 02:41:57 +0000703Aliases, unlike function or variables, don't create any new data. They
704are just a new symbol and metadata for an existing position.
705
706Aliases have a name and an aliasee that is either a global value or a
707constant expression.
708
Nico Rieck7157bb72014-01-14 15:22:47 +0000709Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000710:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
711<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000712
713Syntax::
714
Rafael Espindola464fe022014-07-30 22:51:54 +0000715 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000716
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000717The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000718``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000719might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000720
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000721Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000722the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
723to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000724
Rafael Espindola64c1e182014-06-03 02:41:57 +0000725Since aliases are only a second name, some restrictions apply, of which
726some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728* The expression defining the aliasee must be computable at assembly
729 time. Since it is just a name, no relocations can be used.
730
731* No alias in the expression can be weak as the possibility of the
732 intermediate alias being overridden cannot be represented in an
733 object file.
734
735* No global value in the expression can be a declaration, since that
736 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000737
David Majnemerdad0a642014-06-27 18:19:56 +0000738.. _langref_comdats:
739
740Comdats
741-------
742
743Comdat IR provides access to COFF and ELF object file COMDAT functionality.
744
Richard Smith32dbdf62014-07-31 04:25:36 +0000745Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000746specify this key will only end up in the final object file if the linker chooses
747that key over some other key. Aliases are placed in the same COMDAT that their
748aliasee computes to, if any.
749
750Comdats have a selection kind to provide input on how the linker should
751choose between keys in two different object files.
752
753Syntax::
754
755 $<Name> = comdat SelectionKind
756
757The selection kind must be one of the following:
758
759``any``
760 The linker may choose any COMDAT key, the choice is arbitrary.
761``exactmatch``
762 The linker may choose any COMDAT key but the sections must contain the
763 same data.
764``largest``
765 The linker will choose the section containing the largest COMDAT key.
766``noduplicates``
767 The linker requires that only section with this COMDAT key exist.
768``samesize``
769 The linker may choose any COMDAT key but the sections must contain the
770 same amount of data.
771
772Note that the Mach-O platform doesn't support COMDATs and ELF only supports
773``any`` as a selection kind.
774
775Here is an example of a COMDAT group where a function will only be selected if
776the COMDAT key's section is the largest:
777
778.. code-block:: llvm
779
780 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000781 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000782
Rafael Espindola83a362c2015-01-06 22:55:16 +0000783 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000784 ret void
785 }
786
Rafael Espindola83a362c2015-01-06 22:55:16 +0000787As a syntactic sugar the ``$name`` can be omitted if the name is the same as
788the global name:
789
790.. code-block:: llvm
791
792 $foo = comdat any
793 @foo = global i32 2, comdat
794
795
David Majnemerdad0a642014-06-27 18:19:56 +0000796In a COFF object file, this will create a COMDAT section with selection kind
797``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
798and another COMDAT section with selection kind
799``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000800section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000801
802There are some restrictions on the properties of the global object.
803It, or an alias to it, must have the same name as the COMDAT group when
804targeting COFF.
805The contents and size of this object may be used during link-time to determine
806which COMDAT groups get selected depending on the selection kind.
807Because the name of the object must match the name of the COMDAT group, the
808linkage of the global object must not be local; local symbols can get renamed
809if a collision occurs in the symbol table.
810
811The combined use of COMDATS and section attributes may yield surprising results.
812For example:
813
814.. code-block:: llvm
815
816 $foo = comdat any
817 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000818 @g1 = global i32 42, section "sec", comdat($foo)
819 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000820
821From the object file perspective, this requires the creation of two sections
822with the same name. This is necessary because both globals belong to different
823COMDAT groups and COMDATs, at the object file level, are represented by
824sections.
825
826Note that certain IR constructs like global variables and functions may create
827COMDATs in the object file in addition to any which are specified using COMDAT
828IR. This arises, for example, when a global variable has linkonce_odr linkage.
829
Sean Silvab084af42012-12-07 10:36:55 +0000830.. _namedmetadatastructure:
831
832Named Metadata
833--------------
834
835Named metadata is a collection of metadata. :ref:`Metadata
836nodes <metadata>` (but not metadata strings) are the only valid
837operands for a named metadata.
838
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000839#. Named metadata are represented as a string of characters with the
840 metadata prefix. The rules for metadata names are the same as for
841 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
842 are still valid, which allows any character to be part of a name.
843
Sean Silvab084af42012-12-07 10:36:55 +0000844Syntax::
845
846 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000847 !0 = !{!"zero"}
848 !1 = !{!"one"}
849 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000850 ; A named metadata.
851 !name = !{!0, !1, !2}
852
853.. _paramattrs:
854
855Parameter Attributes
856--------------------
857
858The return type and each parameter of a function type may have a set of
859*parameter attributes* associated with them. Parameter attributes are
860used to communicate additional information about the result or
861parameters of a function. Parameter attributes are considered to be part
862of the function, not of the function type, so functions with different
863parameter attributes can have the same function type.
864
865Parameter attributes are simple keywords that follow the type specified.
866If multiple parameter attributes are needed, they are space separated.
867For example:
868
869.. code-block:: llvm
870
871 declare i32 @printf(i8* noalias nocapture, ...)
872 declare i32 @atoi(i8 zeroext)
873 declare signext i8 @returns_signed_char()
874
875Note that any attributes for the function result (``nounwind``,
876``readonly``) come immediately after the argument list.
877
878Currently, only the following parameter attributes are defined:
879
880``zeroext``
881 This indicates to the code generator that the parameter or return
882 value should be zero-extended to the extent required by the target's
883 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
884 the caller (for a parameter) or the callee (for a return value).
885``signext``
886 This indicates to the code generator that the parameter or return
887 value should be sign-extended to the extent required by the target's
888 ABI (which is usually 32-bits) by the caller (for a parameter) or
889 the callee (for a return value).
890``inreg``
891 This indicates that this parameter or return value should be treated
892 in a special target-dependent fashion during while emitting code for
893 a function call or return (usually, by putting it in a register as
894 opposed to memory, though some targets use it to distinguish between
895 two different kinds of registers). Use of this attribute is
896 target-specific.
897``byval``
898 This indicates that the pointer parameter should really be passed by
899 value to the function. The attribute implies that a hidden copy of
900 the pointee is made between the caller and the callee, so the callee
901 is unable to modify the value in the caller. This attribute is only
902 valid on LLVM pointer arguments. It is generally used to pass
903 structs and arrays by value, but is also valid on pointers to
904 scalars. The copy is considered to belong to the caller not the
905 callee (for example, ``readonly`` functions should not write to
906 ``byval`` parameters). This is not a valid attribute for return
907 values.
908
909 The byval attribute also supports specifying an alignment with the
910 align attribute. It indicates the alignment of the stack slot to
911 form and the known alignment of the pointer specified to the call
912 site. If the alignment is not specified, then the code generator
913 makes a target-specific assumption.
914
Reid Klecknera534a382013-12-19 02:14:12 +0000915.. _attr_inalloca:
916
917``inalloca``
918
Reid Kleckner60d3a832014-01-16 22:59:24 +0000919 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000920 address of outgoing stack arguments. An ``inalloca`` argument must
921 be a pointer to stack memory produced by an ``alloca`` instruction.
922 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000923 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000924 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000925
Reid Kleckner436c42e2014-01-17 23:58:17 +0000926 An argument allocation may be used by a call at most once because
927 the call may deallocate it. The ``inalloca`` attribute cannot be
928 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000929 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
930 ``inalloca`` attribute also disables LLVM's implicit lowering of
931 large aggregate return values, which means that frontend authors
932 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000933
Reid Kleckner60d3a832014-01-16 22:59:24 +0000934 When the call site is reached, the argument allocation must have
935 been the most recent stack allocation that is still live, or the
936 results are undefined. It is possible to allocate additional stack
937 space after an argument allocation and before its call site, but it
938 must be cleared off with :ref:`llvm.stackrestore
939 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000940
941 See :doc:`InAlloca` for more information on how to use this
942 attribute.
943
Sean Silvab084af42012-12-07 10:36:55 +0000944``sret``
945 This indicates that the pointer parameter specifies the address of a
946 structure that is the return value of the function in the source
947 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000948 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000949 not to trap and to be properly aligned. This may only be applied to
950 the first parameter. This is not a valid attribute for return
951 values.
Sean Silva1703e702014-04-08 21:06:22 +0000952
Hal Finkelccc70902014-07-22 16:58:55 +0000953``align <n>``
954 This indicates that the pointer value may be assumed by the optimizer to
955 have the specified alignment.
956
957 Note that this attribute has additional semantics when combined with the
958 ``byval`` attribute.
959
Sean Silva1703e702014-04-08 21:06:22 +0000960.. _noalias:
961
Sean Silvab084af42012-12-07 10:36:55 +0000962``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000963 This indicates that objects accessed via pointer values
964 :ref:`based <pointeraliasing>` on the argument or return value are not also
965 accessed, during the execution of the function, via pointer values not
966 *based* on the argument or return value. The attribute on a return value
967 also has additional semantics described below. The caller shares the
968 responsibility with the callee for ensuring that these requirements are met.
969 For further details, please see the discussion of the NoAlias response in
970 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000971
972 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000973 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000974
975 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000976 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
977 attribute on return values are stronger than the semantics of the attribute
978 when used on function arguments. On function return values, the ``noalias``
979 attribute indicates that the function acts like a system memory allocation
980 function, returning a pointer to allocated storage disjoint from the
981 storage for any other object accessible to the caller.
982
Sean Silvab084af42012-12-07 10:36:55 +0000983``nocapture``
984 This indicates that the callee does not make any copies of the
985 pointer that outlive the callee itself. This is not a valid
986 attribute for return values.
987
988.. _nest:
989
990``nest``
991 This indicates that the pointer parameter can be excised using the
992 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000993 attribute for return values and can only be applied to one parameter.
994
995``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000996 This indicates that the function always returns the argument as its return
997 value. This is an optimization hint to the code generator when generating
998 the caller, allowing tail call optimization and omission of register saves
999 and restores in some cases; it is not checked or enforced when generating
1000 the callee. The parameter and the function return type must be valid
1001 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1002 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001003
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001004``nonnull``
1005 This indicates that the parameter or return pointer is not null. This
1006 attribute may only be applied to pointer typed parameters. This is not
1007 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001008 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001009 is non-null.
1010
Hal Finkelb0407ba2014-07-18 15:51:28 +00001011``dereferenceable(<n>)``
1012 This indicates that the parameter or return pointer is dereferenceable. This
1013 attribute may only be applied to pointer typed parameters. A pointer that
1014 is dereferenceable can be loaded from speculatively without a risk of
1015 trapping. The number of bytes known to be dereferenceable must be provided
1016 in parentheses. It is legal for the number of bytes to be less than the
1017 size of the pointee type. The ``nonnull`` attribute does not imply
1018 dereferenceability (consider a pointer to one element past the end of an
1019 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1020 ``addrspace(0)`` (which is the default address space).
1021
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001022``dereferenceable_or_null(<n>)``
1023 This indicates that the parameter or return value isn't both
1024 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
1025 time. All non-null pointers tagged with
1026 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1027 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1028 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1029 and in other address spaces ``dereferenceable_or_null(<n>)``
1030 implies that a pointer is at least one of ``dereferenceable(<n>)``
1031 or ``null`` (i.e. it may be both ``null`` and
1032 ``dereferenceable(<n>)``). This attribute may only be applied to
1033 pointer typed parameters.
1034
Sean Silvab084af42012-12-07 10:36:55 +00001035.. _gc:
1036
Philip Reamesf80bbff2015-02-25 23:45:20 +00001037Garbage Collector Strategy Names
1038--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001039
Philip Reamesf80bbff2015-02-25 23:45:20 +00001040Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001041string:
1042
1043.. code-block:: llvm
1044
1045 define void @f() gc "name" { ... }
1046
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001047The supported values of *name* includes those :ref:`built in to LLVM
Philip Reamesf80bbff2015-02-25 23:45:20 +00001048<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001049strategy will cause the compiler to alter its output in order to support the
1050named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001051garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001052which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001053
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001054.. _prefixdata:
1055
1056Prefix Data
1057-----------
1058
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001059Prefix data is data associated with a function which the code
1060generator will emit immediately before the function's entrypoint.
1061The purpose of this feature is to allow frontends to associate
1062language-specific runtime metadata with specific functions and make it
1063available through the function pointer while still allowing the
1064function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001065
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001066To access the data for a given function, a program may bitcast the
1067function pointer to a pointer to the constant's type and dereference
1068index -1. This implies that the IR symbol points just past the end of
1069the prefix data. For instance, take the example of a function annotated
1070with a single ``i32``,
1071
1072.. code-block:: llvm
1073
1074 define void @f() prefix i32 123 { ... }
1075
1076The prefix data can be referenced as,
1077
1078.. code-block:: llvm
1079
David Blaikie16a97eb2015-03-04 22:02:58 +00001080 %0 = bitcast void* () @f to i32*
1081 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001082 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001083
1084Prefix data is laid out as if it were an initializer for a global variable
1085of the prefix data's type. The function will be placed such that the
1086beginning of the prefix data is aligned. This means that if the size
1087of the prefix data is not a multiple of the alignment size, the
1088function's entrypoint will not be aligned. If alignment of the
1089function's entrypoint is desired, padding must be added to the prefix
1090data.
1091
1092A function may have prefix data but no body. This has similar semantics
1093to the ``available_externally`` linkage in that the data may be used by the
1094optimizers but will not be emitted in the object file.
1095
1096.. _prologuedata:
1097
1098Prologue Data
1099-------------
1100
1101The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1102be inserted prior to the function body. This can be used for enabling
1103function hot-patching and instrumentation.
1104
1105To maintain the semantics of ordinary function calls, the prologue data must
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001106have a particular format. Specifically, it must begin with a sequence of
1107bytes which decode to a sequence of machine instructions, valid for the
1108module's target, which transfer control to the point immediately succeeding
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001109the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001110the inliner and other passes to reason about the semantics of the function
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001111definition without needing to reason about the prologue data. Obviously this
1112makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001113
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001114A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001115which encodes the ``nop`` instruction:
1116
1117.. code-block:: llvm
1118
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001119 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001120
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001121Generally prologue data can be formed by encoding a relative branch instruction
1122which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001123x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1124
1125.. code-block:: llvm
1126
1127 %0 = type <{ i8, i8, i8* }>
1128
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001129 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001130
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001131A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001132to the ``available_externally`` linkage in that the data may be used by the
1133optimizers but will not be emitted in the object file.
1134
David Majnemer7fddecc2015-06-17 20:52:32 +00001135.. _personalityfn:
1136
1137Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001138--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001139
1140The ``personality`` attribute permits functions to specify what function
1141to use for exception handling.
1142
Bill Wendling63b88192013-02-06 06:52:58 +00001143.. _attrgrp:
1144
1145Attribute Groups
1146----------------
1147
1148Attribute groups are groups of attributes that are referenced by objects within
1149the IR. They are important for keeping ``.ll`` files readable, because a lot of
1150functions will use the same set of attributes. In the degenerative case of a
1151``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1152group will capture the important command line flags used to build that file.
1153
1154An attribute group is a module-level object. To use an attribute group, an
1155object references the attribute group's ID (e.g. ``#37``). An object may refer
1156to more than one attribute group. In that situation, the attributes from the
1157different groups are merged.
1158
1159Here is an example of attribute groups for a function that should always be
1160inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1161
1162.. code-block:: llvm
1163
1164 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001165 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001166
1167 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001168 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001169
1170 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1171 define void @f() #0 #1 { ... }
1172
Sean Silvab084af42012-12-07 10:36:55 +00001173.. _fnattrs:
1174
1175Function Attributes
1176-------------------
1177
1178Function attributes are set to communicate additional information about
1179a function. Function attributes are considered to be part of the
1180function, not of the function type, so functions with different function
1181attributes can have the same function type.
1182
1183Function attributes are simple keywords that follow the type specified.
1184If multiple attributes are needed, they are space separated. For
1185example:
1186
1187.. code-block:: llvm
1188
1189 define void @f() noinline { ... }
1190 define void @f() alwaysinline { ... }
1191 define void @f() alwaysinline optsize { ... }
1192 define void @f() optsize { ... }
1193
Sean Silvab084af42012-12-07 10:36:55 +00001194``alignstack(<n>)``
1195 This attribute indicates that, when emitting the prologue and
1196 epilogue, the backend should forcibly align the stack pointer.
1197 Specify the desired alignment, which must be a power of two, in
1198 parentheses.
1199``alwaysinline``
1200 This attribute indicates that the inliner should attempt to inline
1201 this function into callers whenever possible, ignoring any active
1202 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001203``builtin``
1204 This indicates that the callee function at a call site should be
1205 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001206 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001207 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001208 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001209``cold``
1210 This attribute indicates that this function is rarely called. When
1211 computing edge weights, basic blocks post-dominated by a cold
1212 function call are also considered to be cold; and, thus, given low
1213 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001214``convergent``
1215 This attribute indicates that the callee is dependent on a convergent
1216 thread execution pattern under certain parallel execution models.
1217 Transformations that are execution model agnostic may only move or
1218 tranform this call if the final location is control equivalent to its
1219 original position in the program, where control equivalence is defined as
1220 A dominates B and B post-dominates A, or vice versa.
Sean Silvab084af42012-12-07 10:36:55 +00001221``inlinehint``
1222 This attribute indicates that the source code contained a hint that
1223 inlining this function is desirable (such as the "inline" keyword in
1224 C/C++). It is just a hint; it imposes no requirements on the
1225 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001226``jumptable``
1227 This attribute indicates that the function should be added to a
1228 jump-instruction table at code-generation time, and that all address-taken
1229 references to this function should be replaced with a reference to the
1230 appropriate jump-instruction-table function pointer. Note that this creates
1231 a new pointer for the original function, which means that code that depends
1232 on function-pointer identity can break. So, any function annotated with
1233 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001234``minsize``
1235 This attribute suggests that optimization passes and code generator
1236 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001237 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001238 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001239``naked``
1240 This attribute disables prologue / epilogue emission for the
1241 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001242``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001243 This indicates that the callee function at a call site is not recognized as
1244 a built-in function. LLVM will retain the original call and not replace it
1245 with equivalent code based on the semantics of the built-in function, unless
1246 the call site uses the ``builtin`` attribute. This is valid at call sites
1247 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001248``noduplicate``
1249 This attribute indicates that calls to the function cannot be
1250 duplicated. A call to a ``noduplicate`` function may be moved
1251 within its parent function, but may not be duplicated within
1252 its parent function.
1253
1254 A function containing a ``noduplicate`` call may still
1255 be an inlining candidate, provided that the call is not
1256 duplicated by inlining. That implies that the function has
1257 internal linkage and only has one call site, so the original
1258 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001259``noimplicitfloat``
1260 This attributes disables implicit floating point instructions.
1261``noinline``
1262 This attribute indicates that the inliner should never inline this
1263 function in any situation. This attribute may not be used together
1264 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001265``nonlazybind``
1266 This attribute suppresses lazy symbol binding for the function. This
1267 may make calls to the function faster, at the cost of extra program
1268 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001269``noredzone``
1270 This attribute indicates that the code generator should not use a
1271 red zone, even if the target-specific ABI normally permits it.
1272``noreturn``
1273 This function attribute indicates that the function never returns
1274 normally. This produces undefined behavior at runtime if the
1275 function ever does dynamically return.
1276``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001277 This function attribute indicates that the function never raises an
1278 exception. If the function does raise an exception, its runtime
1279 behavior is undefined. However, functions marked nounwind may still
1280 trap or generate asynchronous exceptions. Exception handling schemes
1281 that are recognized by LLVM to handle asynchronous exceptions, such
1282 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001283``optnone``
1284 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001285 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001286 exception of interprocedural optimization passes.
1287 This attribute cannot be used together with the ``alwaysinline``
1288 attribute; this attribute is also incompatible
1289 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001290
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001291 This attribute requires the ``noinline`` attribute to be specified on
1292 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001293 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001294 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001295``optsize``
1296 This attribute suggests that optimization passes and code generator
1297 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001298 and otherwise do optimizations specifically to reduce code size as
1299 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001300``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001301 On a function, this attribute indicates that the function computes its
1302 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001303 without dereferencing any pointer arguments or otherwise accessing
1304 any mutable state (e.g. memory, control registers, etc) visible to
1305 caller functions. It does not write through any pointer arguments
1306 (including ``byval`` arguments) and never changes any state visible
1307 to callers. This means that it cannot unwind exceptions by calling
1308 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001309
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001310 On an argument, this attribute indicates that the function does not
1311 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001312 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001313``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001314 On a function, this attribute indicates that the function does not write
1315 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001316 modify any state (e.g. memory, control registers, etc) visible to
1317 caller functions. It may dereference pointer arguments and read
1318 state that may be set in the caller. A readonly function always
1319 returns the same value (or unwinds an exception identically) when
1320 called with the same set of arguments and global state. It cannot
1321 unwind an exception by calling the ``C++`` exception throwing
1322 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001323
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001324 On an argument, this attribute indicates that the function does not write
1325 through this pointer argument, even though it may write to the memory that
1326 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001327``returns_twice``
1328 This attribute indicates that this function can return twice. The C
1329 ``setjmp`` is an example of such a function. The compiler disables
1330 some optimizations (like tail calls) in the caller of these
1331 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001332``safestack``
1333 This attribute indicates that
1334 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1335 protection is enabled for this function.
1336
1337 If a function that has a ``safestack`` attribute is inlined into a
1338 function that doesn't have a ``safestack`` attribute or which has an
1339 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1340 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001341``sanitize_address``
1342 This attribute indicates that AddressSanitizer checks
1343 (dynamic address safety analysis) are enabled for this function.
1344``sanitize_memory``
1345 This attribute indicates that MemorySanitizer checks (dynamic detection
1346 of accesses to uninitialized memory) are enabled for this function.
1347``sanitize_thread``
1348 This attribute indicates that ThreadSanitizer checks
1349 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001350``ssp``
1351 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001352 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001353 placed on the stack before the local variables that's checked upon
1354 return from the function to see if it has been overwritten. A
1355 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001356 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001357
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001358 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1359 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1360 - Calls to alloca() with variable sizes or constant sizes greater than
1361 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001362
Josh Magee24c7f062014-02-01 01:36:16 +00001363 Variables that are identified as requiring a protector will be arranged
1364 on the stack such that they are adjacent to the stack protector guard.
1365
Sean Silvab084af42012-12-07 10:36:55 +00001366 If a function that has an ``ssp`` attribute is inlined into a
1367 function that doesn't have an ``ssp`` attribute, then the resulting
1368 function will have an ``ssp`` attribute.
1369``sspreq``
1370 This attribute indicates that the function should *always* emit a
1371 stack smashing protector. This overrides the ``ssp`` function
1372 attribute.
1373
Josh Magee24c7f062014-02-01 01:36:16 +00001374 Variables that are identified as requiring a protector will be arranged
1375 on the stack such that they are adjacent to the stack protector guard.
1376 The specific layout rules are:
1377
1378 #. Large arrays and structures containing large arrays
1379 (``>= ssp-buffer-size``) are closest to the stack protector.
1380 #. Small arrays and structures containing small arrays
1381 (``< ssp-buffer-size``) are 2nd closest to the protector.
1382 #. Variables that have had their address taken are 3rd closest to the
1383 protector.
1384
Sean Silvab084af42012-12-07 10:36:55 +00001385 If a function that has an ``sspreq`` attribute is inlined into a
1386 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001387 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1388 an ``sspreq`` attribute.
1389``sspstrong``
1390 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001391 protector. This attribute causes a strong heuristic to be used when
1392 determining if a function needs stack protectors. The strong heuristic
1393 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001394
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001395 - Arrays of any size and type
1396 - Aggregates containing an array of any size and type.
1397 - Calls to alloca().
1398 - Local variables that have had their address taken.
1399
Josh Magee24c7f062014-02-01 01:36:16 +00001400 Variables that are identified as requiring a protector will be arranged
1401 on the stack such that they are adjacent to the stack protector guard.
1402 The specific layout rules are:
1403
1404 #. Large arrays and structures containing large arrays
1405 (``>= ssp-buffer-size``) are closest to the stack protector.
1406 #. Small arrays and structures containing small arrays
1407 (``< ssp-buffer-size``) are 2nd closest to the protector.
1408 #. Variables that have had their address taken are 3rd closest to the
1409 protector.
1410
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001411 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001412
1413 If a function that has an ``sspstrong`` attribute is inlined into a
1414 function that doesn't have an ``sspstrong`` attribute, then the
1415 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001416``"thunk"``
1417 This attribute indicates that the function will delegate to some other
1418 function with a tail call. The prototype of a thunk should not be used for
1419 optimization purposes. The caller is expected to cast the thunk prototype to
1420 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001421``uwtable``
1422 This attribute indicates that the ABI being targeted requires that
1423 an unwind table entry be produce for this function even if we can
1424 show that no exceptions passes by it. This is normally the case for
1425 the ELF x86-64 abi, but it can be disabled for some compilation
1426 units.
Sean Silvab084af42012-12-07 10:36:55 +00001427
1428.. _moduleasm:
1429
1430Module-Level Inline Assembly
1431----------------------------
1432
1433Modules may contain "module-level inline asm" blocks, which corresponds
1434to the GCC "file scope inline asm" blocks. These blocks are internally
1435concatenated by LLVM and treated as a single unit, but may be separated
1436in the ``.ll`` file if desired. The syntax is very simple:
1437
1438.. code-block:: llvm
1439
1440 module asm "inline asm code goes here"
1441 module asm "more can go here"
1442
1443The strings can contain any character by escaping non-printable
1444characters. The escape sequence used is simply "\\xx" where "xx" is the
1445two digit hex code for the number.
1446
1447The inline asm code is simply printed to the machine code .s file when
1448assembly code is generated.
1449
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001450.. _langref_datalayout:
1451
Sean Silvab084af42012-12-07 10:36:55 +00001452Data Layout
1453-----------
1454
1455A module may specify a target specific data layout string that specifies
1456how data is to be laid out in memory. The syntax for the data layout is
1457simply:
1458
1459.. code-block:: llvm
1460
1461 target datalayout = "layout specification"
1462
1463The *layout specification* consists of a list of specifications
1464separated by the minus sign character ('-'). Each specification starts
1465with a letter and may include other information after the letter to
1466define some aspect of the data layout. The specifications accepted are
1467as follows:
1468
1469``E``
1470 Specifies that the target lays out data in big-endian form. That is,
1471 the bits with the most significance have the lowest address
1472 location.
1473``e``
1474 Specifies that the target lays out data in little-endian form. That
1475 is, the bits with the least significance have the lowest address
1476 location.
1477``S<size>``
1478 Specifies the natural alignment of the stack in bits. Alignment
1479 promotion of stack variables is limited to the natural stack
1480 alignment to avoid dynamic stack realignment. The stack alignment
1481 must be a multiple of 8-bits. If omitted, the natural stack
1482 alignment defaults to "unspecified", which does not prevent any
1483 alignment promotions.
1484``p[n]:<size>:<abi>:<pref>``
1485 This specifies the *size* of a pointer and its ``<abi>`` and
1486 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001487 bits. The address space, ``n`` is optional, and if not specified,
1488 denotes the default address space 0. The value of ``n`` must be
1489 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001490``i<size>:<abi>:<pref>``
1491 This specifies the alignment for an integer type of a given bit
1492 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1493``v<size>:<abi>:<pref>``
1494 This specifies the alignment for a vector type of a given bit
1495 ``<size>``.
1496``f<size>:<abi>:<pref>``
1497 This specifies the alignment for a floating point type of a given bit
1498 ``<size>``. Only values of ``<size>`` that are supported by the target
1499 will work. 32 (float) and 64 (double) are supported on all targets; 80
1500 or 128 (different flavors of long double) are also supported on some
1501 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001502``a:<abi>:<pref>``
1503 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001504``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001505 If present, specifies that llvm names are mangled in the output. The
1506 options are
1507
1508 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1509 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1510 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1511 symbols get a ``_`` prefix.
1512 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1513 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001514``n<size1>:<size2>:<size3>...``
1515 This specifies a set of native integer widths for the target CPU in
1516 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1517 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1518 this set are considered to support most general arithmetic operations
1519 efficiently.
1520
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001521On every specification that takes a ``<abi>:<pref>``, specifying the
1522``<pref>`` alignment is optional. If omitted, the preceding ``:``
1523should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1524
Sean Silvab084af42012-12-07 10:36:55 +00001525When constructing the data layout for a given target, LLVM starts with a
1526default set of specifications which are then (possibly) overridden by
1527the specifications in the ``datalayout`` keyword. The default
1528specifications are given in this list:
1529
1530- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001531- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1532- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1533 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001534- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001535- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1536- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1537- ``i16:16:16`` - i16 is 16-bit aligned
1538- ``i32:32:32`` - i32 is 32-bit aligned
1539- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1540 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001541- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001542- ``f32:32:32`` - float is 32-bit aligned
1543- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001544- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001545- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1546- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001547- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001548
1549When LLVM is determining the alignment for a given type, it uses the
1550following rules:
1551
1552#. If the type sought is an exact match for one of the specifications,
1553 that specification is used.
1554#. If no match is found, and the type sought is an integer type, then
1555 the smallest integer type that is larger than the bitwidth of the
1556 sought type is used. If none of the specifications are larger than
1557 the bitwidth then the largest integer type is used. For example,
1558 given the default specifications above, the i7 type will use the
1559 alignment of i8 (next largest) while both i65 and i256 will use the
1560 alignment of i64 (largest specified).
1561#. If no match is found, and the type sought is a vector type, then the
1562 largest vector type that is smaller than the sought vector type will
1563 be used as a fall back. This happens because <128 x double> can be
1564 implemented in terms of 64 <2 x double>, for example.
1565
1566The function of the data layout string may not be what you expect.
1567Notably, this is not a specification from the frontend of what alignment
1568the code generator should use.
1569
1570Instead, if specified, the target data layout is required to match what
1571the ultimate *code generator* expects. This string is used by the
1572mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001573what the ultimate code generator uses. There is no way to generate IR
1574that does not embed this target-specific detail into the IR. If you
1575don't specify the string, the default specifications will be used to
1576generate a Data Layout and the optimization phases will operate
1577accordingly and introduce target specificity into the IR with respect to
1578these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001579
Bill Wendling5cc90842013-10-18 23:41:25 +00001580.. _langref_triple:
1581
1582Target Triple
1583-------------
1584
1585A module may specify a target triple string that describes the target
1586host. The syntax for the target triple is simply:
1587
1588.. code-block:: llvm
1589
1590 target triple = "x86_64-apple-macosx10.7.0"
1591
1592The *target triple* string consists of a series of identifiers delimited
1593by the minus sign character ('-'). The canonical forms are:
1594
1595::
1596
1597 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1598 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1599
1600This information is passed along to the backend so that it generates
1601code for the proper architecture. It's possible to override this on the
1602command line with the ``-mtriple`` command line option.
1603
Sean Silvab084af42012-12-07 10:36:55 +00001604.. _pointeraliasing:
1605
1606Pointer Aliasing Rules
1607----------------------
1608
1609Any memory access must be done through a pointer value associated with
1610an address range of the memory access, otherwise the behavior is
1611undefined. Pointer values are associated with address ranges according
1612to the following rules:
1613
1614- A pointer value is associated with the addresses associated with any
1615 value it is *based* on.
1616- An address of a global variable is associated with the address range
1617 of the variable's storage.
1618- The result value of an allocation instruction is associated with the
1619 address range of the allocated storage.
1620- A null pointer in the default address-space is associated with no
1621 address.
1622- An integer constant other than zero or a pointer value returned from
1623 a function not defined within LLVM may be associated with address
1624 ranges allocated through mechanisms other than those provided by
1625 LLVM. Such ranges shall not overlap with any ranges of addresses
1626 allocated by mechanisms provided by LLVM.
1627
1628A pointer value is *based* on another pointer value according to the
1629following rules:
1630
1631- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001632 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001633- The result value of a ``bitcast`` is *based* on the operand of the
1634 ``bitcast``.
1635- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1636 values that contribute (directly or indirectly) to the computation of
1637 the pointer's value.
1638- The "*based* on" relationship is transitive.
1639
1640Note that this definition of *"based"* is intentionally similar to the
1641definition of *"based"* in C99, though it is slightly weaker.
1642
1643LLVM IR does not associate types with memory. The result type of a
1644``load`` merely indicates the size and alignment of the memory from
1645which to load, as well as the interpretation of the value. The first
1646operand type of a ``store`` similarly only indicates the size and
1647alignment of the store.
1648
1649Consequently, type-based alias analysis, aka TBAA, aka
1650``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1651:ref:`Metadata <metadata>` may be used to encode additional information
1652which specialized optimization passes may use to implement type-based
1653alias analysis.
1654
1655.. _volatile:
1656
1657Volatile Memory Accesses
1658------------------------
1659
1660Certain memory accesses, such as :ref:`load <i_load>`'s,
1661:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1662marked ``volatile``. The optimizers must not change the number of
1663volatile operations or change their order of execution relative to other
1664volatile operations. The optimizers *may* change the order of volatile
1665operations relative to non-volatile operations. This is not Java's
1666"volatile" and has no cross-thread synchronization behavior.
1667
Andrew Trick89fc5a62013-01-30 21:19:35 +00001668IR-level volatile loads and stores cannot safely be optimized into
1669llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1670flagged volatile. Likewise, the backend should never split or merge
1671target-legal volatile load/store instructions.
1672
Andrew Trick7e6f9282013-01-31 00:49:39 +00001673.. admonition:: Rationale
1674
1675 Platforms may rely on volatile loads and stores of natively supported
1676 data width to be executed as single instruction. For example, in C
1677 this holds for an l-value of volatile primitive type with native
1678 hardware support, but not necessarily for aggregate types. The
1679 frontend upholds these expectations, which are intentionally
1680 unspecified in the IR. The rules above ensure that IR transformation
1681 do not violate the frontend's contract with the language.
1682
Sean Silvab084af42012-12-07 10:36:55 +00001683.. _memmodel:
1684
1685Memory Model for Concurrent Operations
1686--------------------------------------
1687
1688The LLVM IR does not define any way to start parallel threads of
1689execution or to register signal handlers. Nonetheless, there are
1690platform-specific ways to create them, and we define LLVM IR's behavior
1691in their presence. This model is inspired by the C++0x memory model.
1692
1693For a more informal introduction to this model, see the :doc:`Atomics`.
1694
1695We define a *happens-before* partial order as the least partial order
1696that
1697
1698- Is a superset of single-thread program order, and
1699- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1700 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1701 techniques, like pthread locks, thread creation, thread joining,
1702 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1703 Constraints <ordering>`).
1704
1705Note that program order does not introduce *happens-before* edges
1706between a thread and signals executing inside that thread.
1707
1708Every (defined) read operation (load instructions, memcpy, atomic
1709loads/read-modify-writes, etc.) R reads a series of bytes written by
1710(defined) write operations (store instructions, atomic
1711stores/read-modify-writes, memcpy, etc.). For the purposes of this
1712section, initialized globals are considered to have a write of the
1713initializer which is atomic and happens before any other read or write
1714of the memory in question. For each byte of a read R, R\ :sub:`byte`
1715may see any write to the same byte, except:
1716
1717- If write\ :sub:`1` happens before write\ :sub:`2`, and
1718 write\ :sub:`2` happens before R\ :sub:`byte`, then
1719 R\ :sub:`byte` does not see write\ :sub:`1`.
1720- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1721 R\ :sub:`byte` does not see write\ :sub:`3`.
1722
1723Given that definition, R\ :sub:`byte` is defined as follows:
1724
1725- If R is volatile, the result is target-dependent. (Volatile is
1726 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001727 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001728 like normal memory. It does not generally provide cross-thread
1729 synchronization.)
1730- Otherwise, if there is no write to the same byte that happens before
1731 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1732- Otherwise, if R\ :sub:`byte` may see exactly one write,
1733 R\ :sub:`byte` returns the value written by that write.
1734- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1735 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1736 Memory Ordering Constraints <ordering>` section for additional
1737 constraints on how the choice is made.
1738- Otherwise R\ :sub:`byte` returns ``undef``.
1739
1740R returns the value composed of the series of bytes it read. This
1741implies that some bytes within the value may be ``undef`` **without**
1742the entire value being ``undef``. Note that this only defines the
1743semantics of the operation; it doesn't mean that targets will emit more
1744than one instruction to read the series of bytes.
1745
1746Note that in cases where none of the atomic intrinsics are used, this
1747model places only one restriction on IR transformations on top of what
1748is required for single-threaded execution: introducing a store to a byte
1749which might not otherwise be stored is not allowed in general.
1750(Specifically, in the case where another thread might write to and read
1751from an address, introducing a store can change a load that may see
1752exactly one write into a load that may see multiple writes.)
1753
1754.. _ordering:
1755
1756Atomic Memory Ordering Constraints
1757----------------------------------
1758
1759Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1760:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1761:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001762ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001763the same address they *synchronize with*. These semantics are borrowed
1764from Java and C++0x, but are somewhat more colloquial. If these
1765descriptions aren't precise enough, check those specs (see spec
1766references in the :doc:`atomics guide <Atomics>`).
1767:ref:`fence <i_fence>` instructions treat these orderings somewhat
1768differently since they don't take an address. See that instruction's
1769documentation for details.
1770
1771For a simpler introduction to the ordering constraints, see the
1772:doc:`Atomics`.
1773
1774``unordered``
1775 The set of values that can be read is governed by the happens-before
1776 partial order. A value cannot be read unless some operation wrote
1777 it. This is intended to provide a guarantee strong enough to model
1778 Java's non-volatile shared variables. This ordering cannot be
1779 specified for read-modify-write operations; it is not strong enough
1780 to make them atomic in any interesting way.
1781``monotonic``
1782 In addition to the guarantees of ``unordered``, there is a single
1783 total order for modifications by ``monotonic`` operations on each
1784 address. All modification orders must be compatible with the
1785 happens-before order. There is no guarantee that the modification
1786 orders can be combined to a global total order for the whole program
1787 (and this often will not be possible). The read in an atomic
1788 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1789 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1790 order immediately before the value it writes. If one atomic read
1791 happens before another atomic read of the same address, the later
1792 read must see the same value or a later value in the address's
1793 modification order. This disallows reordering of ``monotonic`` (or
1794 stronger) operations on the same address. If an address is written
1795 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1796 read that address repeatedly, the other threads must eventually see
1797 the write. This corresponds to the C++0x/C1x
1798 ``memory_order_relaxed``.
1799``acquire``
1800 In addition to the guarantees of ``monotonic``, a
1801 *synchronizes-with* edge may be formed with a ``release`` operation.
1802 This is intended to model C++'s ``memory_order_acquire``.
1803``release``
1804 In addition to the guarantees of ``monotonic``, if this operation
1805 writes a value which is subsequently read by an ``acquire``
1806 operation, it *synchronizes-with* that operation. (This isn't a
1807 complete description; see the C++0x definition of a release
1808 sequence.) This corresponds to the C++0x/C1x
1809 ``memory_order_release``.
1810``acq_rel`` (acquire+release)
1811 Acts as both an ``acquire`` and ``release`` operation on its
1812 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1813``seq_cst`` (sequentially consistent)
1814 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001815 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001816 writes), there is a global total order on all
1817 sequentially-consistent operations on all addresses, which is
1818 consistent with the *happens-before* partial order and with the
1819 modification orders of all the affected addresses. Each
1820 sequentially-consistent read sees the last preceding write to the
1821 same address in this global order. This corresponds to the C++0x/C1x
1822 ``memory_order_seq_cst`` and Java volatile.
1823
1824.. _singlethread:
1825
1826If an atomic operation is marked ``singlethread``, it only *synchronizes
1827with* or participates in modification and seq\_cst total orderings with
1828other operations running in the same thread (for example, in signal
1829handlers).
1830
1831.. _fastmath:
1832
1833Fast-Math Flags
1834---------------
1835
1836LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1837:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Eric Christopher1e61ffd2015-02-19 18:46:25 +00001838:ref:`frem <i_frem>`) have the following flags that can be set to enable
Sean Silvab084af42012-12-07 10:36:55 +00001839otherwise unsafe floating point operations
1840
1841``nnan``
1842 No NaNs - Allow optimizations to assume the arguments and result are not
1843 NaN. Such optimizations are required to retain defined behavior over
1844 NaNs, but the value of the result is undefined.
1845
1846``ninf``
1847 No Infs - Allow optimizations to assume the arguments and result are not
1848 +/-Inf. Such optimizations are required to retain defined behavior over
1849 +/-Inf, but the value of the result is undefined.
1850
1851``nsz``
1852 No Signed Zeros - Allow optimizations to treat the sign of a zero
1853 argument or result as insignificant.
1854
1855``arcp``
1856 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1857 argument rather than perform division.
1858
1859``fast``
1860 Fast - Allow algebraically equivalent transformations that may
1861 dramatically change results in floating point (e.g. reassociate). This
1862 flag implies all the others.
1863
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001864.. _uselistorder:
1865
1866Use-list Order Directives
1867-------------------------
1868
1869Use-list directives encode the in-memory order of each use-list, allowing the
1870order to be recreated. ``<order-indexes>`` is a comma-separated list of
1871indexes that are assigned to the referenced value's uses. The referenced
1872value's use-list is immediately sorted by these indexes.
1873
1874Use-list directives may appear at function scope or global scope. They are not
1875instructions, and have no effect on the semantics of the IR. When they're at
1876function scope, they must appear after the terminator of the final basic block.
1877
1878If basic blocks have their address taken via ``blockaddress()`` expressions,
1879``uselistorder_bb`` can be used to reorder their use-lists from outside their
1880function's scope.
1881
1882:Syntax:
1883
1884::
1885
1886 uselistorder <ty> <value>, { <order-indexes> }
1887 uselistorder_bb @function, %block { <order-indexes> }
1888
1889:Examples:
1890
1891::
1892
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001893 define void @foo(i32 %arg1, i32 %arg2) {
1894 entry:
1895 ; ... instructions ...
1896 bb:
1897 ; ... instructions ...
1898
1899 ; At function scope.
1900 uselistorder i32 %arg1, { 1, 0, 2 }
1901 uselistorder label %bb, { 1, 0 }
1902 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001903
1904 ; At global scope.
1905 uselistorder i32* @global, { 1, 2, 0 }
1906 uselistorder i32 7, { 1, 0 }
1907 uselistorder i32 (i32) @bar, { 1, 0 }
1908 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1909
Sean Silvab084af42012-12-07 10:36:55 +00001910.. _typesystem:
1911
1912Type System
1913===========
1914
1915The LLVM type system is one of the most important features of the
1916intermediate representation. Being typed enables a number of
1917optimizations to be performed on the intermediate representation
1918directly, without having to do extra analyses on the side before the
1919transformation. A strong type system makes it easier to read the
1920generated code and enables novel analyses and transformations that are
1921not feasible to perform on normal three address code representations.
1922
Rafael Espindola08013342013-12-07 19:34:20 +00001923.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001924
Rafael Espindola08013342013-12-07 19:34:20 +00001925Void Type
1926---------
Sean Silvab084af42012-12-07 10:36:55 +00001927
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001928:Overview:
1929
Rafael Espindola08013342013-12-07 19:34:20 +00001930
1931The void type does not represent any value and has no size.
1932
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001933:Syntax:
1934
Rafael Espindola08013342013-12-07 19:34:20 +00001935
1936::
1937
1938 void
Sean Silvab084af42012-12-07 10:36:55 +00001939
1940
Rafael Espindola08013342013-12-07 19:34:20 +00001941.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001942
Rafael Espindola08013342013-12-07 19:34:20 +00001943Function Type
1944-------------
Sean Silvab084af42012-12-07 10:36:55 +00001945
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001946:Overview:
1947
Sean Silvab084af42012-12-07 10:36:55 +00001948
Rafael Espindola08013342013-12-07 19:34:20 +00001949The function type can be thought of as a function signature. It consists of a
1950return type and a list of formal parameter types. The return type of a function
1951type is a void type or first class type --- except for :ref:`label <t_label>`
1952and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001953
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001954:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001955
Rafael Espindola08013342013-12-07 19:34:20 +00001956::
Sean Silvab084af42012-12-07 10:36:55 +00001957
Rafael Espindola08013342013-12-07 19:34:20 +00001958 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001959
Rafael Espindola08013342013-12-07 19:34:20 +00001960...where '``<parameter list>``' is a comma-separated list of type
1961specifiers. Optionally, the parameter list may include a type ``...``, which
1962indicates that the function takes a variable number of arguments. Variable
1963argument functions can access their arguments with the :ref:`variable argument
1964handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1965except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001966
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001967:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001968
Rafael Espindola08013342013-12-07 19:34:20 +00001969+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1970| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1971+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1972| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1973+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1974| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1975+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1976| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1977+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1978
1979.. _t_firstclass:
1980
1981First Class Types
1982-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001983
1984The :ref:`first class <t_firstclass>` types are perhaps the most important.
1985Values of these types are the only ones which can be produced by
1986instructions.
1987
Rafael Espindola08013342013-12-07 19:34:20 +00001988.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001989
Rafael Espindola08013342013-12-07 19:34:20 +00001990Single Value Types
1991^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001992
Rafael Espindola08013342013-12-07 19:34:20 +00001993These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001994
1995.. _t_integer:
1996
1997Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001998""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001999
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002000:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002001
2002The integer type is a very simple type that simply specifies an
2003arbitrary bit width for the integer type desired. Any bit width from 1
2004bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2005
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002006:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002007
2008::
2009
2010 iN
2011
2012The number of bits the integer will occupy is specified by the ``N``
2013value.
2014
2015Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002016*********
Sean Silvab084af42012-12-07 10:36:55 +00002017
2018+----------------+------------------------------------------------+
2019| ``i1`` | a single-bit integer. |
2020+----------------+------------------------------------------------+
2021| ``i32`` | a 32-bit integer. |
2022+----------------+------------------------------------------------+
2023| ``i1942652`` | a really big integer of over 1 million bits. |
2024+----------------+------------------------------------------------+
2025
2026.. _t_floating:
2027
2028Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002029""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002030
2031.. list-table::
2032 :header-rows: 1
2033
2034 * - Type
2035 - Description
2036
2037 * - ``half``
2038 - 16-bit floating point value
2039
2040 * - ``float``
2041 - 32-bit floating point value
2042
2043 * - ``double``
2044 - 64-bit floating point value
2045
2046 * - ``fp128``
2047 - 128-bit floating point value (112-bit mantissa)
2048
2049 * - ``x86_fp80``
2050 - 80-bit floating point value (X87)
2051
2052 * - ``ppc_fp128``
2053 - 128-bit floating point value (two 64-bits)
2054
Reid Kleckner9a16d082014-03-05 02:41:37 +00002055X86_mmx Type
2056""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002057
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002058:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002059
Reid Kleckner9a16d082014-03-05 02:41:37 +00002060The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002061machine. The operations allowed on it are quite limited: parameters and
2062return values, load and store, and bitcast. User-specified MMX
2063instructions are represented as intrinsic or asm calls with arguments
2064and/or results of this type. There are no arrays, vectors or constants
2065of this type.
2066
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002067:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002068
2069::
2070
Reid Kleckner9a16d082014-03-05 02:41:37 +00002071 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002072
Sean Silvab084af42012-12-07 10:36:55 +00002073
Rafael Espindola08013342013-12-07 19:34:20 +00002074.. _t_pointer:
2075
2076Pointer Type
2077""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002078
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002079:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002080
Rafael Espindola08013342013-12-07 19:34:20 +00002081The pointer type is used to specify memory locations. Pointers are
2082commonly used to reference objects in memory.
2083
2084Pointer types may have an optional address space attribute defining the
2085numbered address space where the pointed-to object resides. The default
2086address space is number zero. The semantics of non-zero address spaces
2087are target-specific.
2088
2089Note that LLVM does not permit pointers to void (``void*``) nor does it
2090permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002091
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002092:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002093
2094::
2095
Rafael Espindola08013342013-12-07 19:34:20 +00002096 <type> *
2097
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002098:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002099
2100+-------------------------+--------------------------------------------------------------------------------------------------------------+
2101| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2102+-------------------------+--------------------------------------------------------------------------------------------------------------+
2103| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2104+-------------------------+--------------------------------------------------------------------------------------------------------------+
2105| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2106+-------------------------+--------------------------------------------------------------------------------------------------------------+
2107
2108.. _t_vector:
2109
2110Vector Type
2111"""""""""""
2112
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002113:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002114
2115A vector type is a simple derived type that represents a vector of
2116elements. Vector types are used when multiple primitive data are
2117operated in parallel using a single instruction (SIMD). A vector type
2118requires a size (number of elements) and an underlying primitive data
2119type. Vector types are considered :ref:`first class <t_firstclass>`.
2120
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002121:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002122
2123::
2124
2125 < <# elements> x <elementtype> >
2126
2127The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002128elementtype may be any integer, floating point or pointer type. Vectors
2129of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002130
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002131:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002132
2133+-------------------+--------------------------------------------------+
2134| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2135+-------------------+--------------------------------------------------+
2136| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2137+-------------------+--------------------------------------------------+
2138| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2139+-------------------+--------------------------------------------------+
2140| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2141+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002142
2143.. _t_label:
2144
2145Label Type
2146^^^^^^^^^^
2147
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002148:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002149
2150The label type represents code labels.
2151
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002152:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002153
2154::
2155
2156 label
2157
2158.. _t_metadata:
2159
2160Metadata Type
2161^^^^^^^^^^^^^
2162
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002163:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002164
2165The metadata type represents embedded metadata. No derived types may be
2166created from metadata except for :ref:`function <t_function>` arguments.
2167
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002168:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002169
2170::
2171
2172 metadata
2173
Sean Silvab084af42012-12-07 10:36:55 +00002174.. _t_aggregate:
2175
2176Aggregate Types
2177^^^^^^^^^^^^^^^
2178
2179Aggregate Types are a subset of derived types that can contain multiple
2180member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2181aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2182aggregate types.
2183
2184.. _t_array:
2185
2186Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002187""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002188
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002189:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002190
2191The array type is a very simple derived type that arranges elements
2192sequentially in memory. The array type requires a size (number of
2193elements) and an underlying data type.
2194
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002195:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002196
2197::
2198
2199 [<# elements> x <elementtype>]
2200
2201The number of elements is a constant integer value; ``elementtype`` may
2202be any type with a size.
2203
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002204:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002205
2206+------------------+--------------------------------------+
2207| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2208+------------------+--------------------------------------+
2209| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2210+------------------+--------------------------------------+
2211| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2212+------------------+--------------------------------------+
2213
2214Here are some examples of multidimensional arrays:
2215
2216+-----------------------------+----------------------------------------------------------+
2217| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2218+-----------------------------+----------------------------------------------------------+
2219| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2220+-----------------------------+----------------------------------------------------------+
2221| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2222+-----------------------------+----------------------------------------------------------+
2223
2224There is no restriction on indexing beyond the end of the array implied
2225by a static type (though there are restrictions on indexing beyond the
2226bounds of an allocated object in some cases). This means that
2227single-dimension 'variable sized array' addressing can be implemented in
2228LLVM with a zero length array type. An implementation of 'pascal style
2229arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2230example.
2231
Sean Silvab084af42012-12-07 10:36:55 +00002232.. _t_struct:
2233
2234Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002235""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002236
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002237:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002238
2239The structure type is used to represent a collection of data members
2240together in memory. The elements of a structure may be any type that has
2241a size.
2242
2243Structures in memory are accessed using '``load``' and '``store``' by
2244getting a pointer to a field with the '``getelementptr``' instruction.
2245Structures in registers are accessed using the '``extractvalue``' and
2246'``insertvalue``' instructions.
2247
2248Structures may optionally be "packed" structures, which indicate that
2249the alignment of the struct is one byte, and that there is no padding
2250between the elements. In non-packed structs, padding between field types
2251is inserted as defined by the DataLayout string in the module, which is
2252required to match what the underlying code generator expects.
2253
2254Structures can either be "literal" or "identified". A literal structure
2255is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2256identified types are always defined at the top level with a name.
2257Literal types are uniqued by their contents and can never be recursive
2258or opaque since there is no way to write one. Identified types can be
2259recursive, can be opaqued, and are never uniqued.
2260
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002261:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002262
2263::
2264
2265 %T1 = type { <type list> } ; Identified normal struct type
2266 %T2 = type <{ <type list> }> ; Identified packed struct type
2267
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002268:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002269
2270+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2271| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2272+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002273| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002274+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2275| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2276+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2277
2278.. _t_opaque:
2279
2280Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002281""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002282
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002283:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002284
2285Opaque structure types are used to represent named structure types that
2286do not have a body specified. This corresponds (for example) to the C
2287notion of a forward declared structure.
2288
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002289:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002290
2291::
2292
2293 %X = type opaque
2294 %52 = type opaque
2295
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002296:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002297
2298+--------------+-------------------+
2299| ``opaque`` | An opaque type. |
2300+--------------+-------------------+
2301
Sean Silva1703e702014-04-08 21:06:22 +00002302.. _constants:
2303
Sean Silvab084af42012-12-07 10:36:55 +00002304Constants
2305=========
2306
2307LLVM has several different basic types of constants. This section
2308describes them all and their syntax.
2309
2310Simple Constants
2311----------------
2312
2313**Boolean constants**
2314 The two strings '``true``' and '``false``' are both valid constants
2315 of the ``i1`` type.
2316**Integer constants**
2317 Standard integers (such as '4') are constants of the
2318 :ref:`integer <t_integer>` type. Negative numbers may be used with
2319 integer types.
2320**Floating point constants**
2321 Floating point constants use standard decimal notation (e.g.
2322 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2323 hexadecimal notation (see below). The assembler requires the exact
2324 decimal value of a floating-point constant. For example, the
2325 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2326 decimal in binary. Floating point constants must have a :ref:`floating
2327 point <t_floating>` type.
2328**Null pointer constants**
2329 The identifier '``null``' is recognized as a null pointer constant
2330 and must be of :ref:`pointer type <t_pointer>`.
2331
2332The one non-intuitive notation for constants is the hexadecimal form of
2333floating point constants. For example, the form
2334'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2335than) '``double 4.5e+15``'. The only time hexadecimal floating point
2336constants are required (and the only time that they are generated by the
2337disassembler) is when a floating point constant must be emitted but it
2338cannot be represented as a decimal floating point number in a reasonable
2339number of digits. For example, NaN's, infinities, and other special
2340values are represented in their IEEE hexadecimal format so that assembly
2341and disassembly do not cause any bits to change in the constants.
2342
2343When using the hexadecimal form, constants of types half, float, and
2344double are represented using the 16-digit form shown above (which
2345matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002346must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002347precision, respectively. Hexadecimal format is always used for long
2348double, and there are three forms of long double. The 80-bit format used
2349by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2350128-bit format used by PowerPC (two adjacent doubles) is represented by
2351``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002352represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2353will only work if they match the long double format on your target.
2354The IEEE 16-bit format (half precision) is represented by ``0xH``
2355followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2356(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002357
Reid Kleckner9a16d082014-03-05 02:41:37 +00002358There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002359
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002360.. _complexconstants:
2361
Sean Silvab084af42012-12-07 10:36:55 +00002362Complex Constants
2363-----------------
2364
2365Complex constants are a (potentially recursive) combination of simple
2366constants and smaller complex constants.
2367
2368**Structure constants**
2369 Structure constants are represented with notation similar to
2370 structure type definitions (a comma separated list of elements,
2371 surrounded by braces (``{}``)). For example:
2372 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2373 "``@G = external global i32``". Structure constants must have
2374 :ref:`structure type <t_struct>`, and the number and types of elements
2375 must match those specified by the type.
2376**Array constants**
2377 Array constants are represented with notation similar to array type
2378 definitions (a comma separated list of elements, surrounded by
2379 square brackets (``[]``)). For example:
2380 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2381 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002382 match those specified by the type. As a special case, character array
2383 constants may also be represented as a double-quoted string using the ``c``
2384 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002385**Vector constants**
2386 Vector constants are represented with notation similar to vector
2387 type definitions (a comma separated list of elements, surrounded by
2388 less-than/greater-than's (``<>``)). For example:
2389 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2390 must have :ref:`vector type <t_vector>`, and the number and types of
2391 elements must match those specified by the type.
2392**Zero initialization**
2393 The string '``zeroinitializer``' can be used to zero initialize a
2394 value to zero of *any* type, including scalar and
2395 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2396 having to print large zero initializers (e.g. for large arrays) and
2397 is always exactly equivalent to using explicit zero initializers.
2398**Metadata node**
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002399 A metadata node is a constant tuple without types. For example:
2400 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
2401 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2402 Unlike other typed constants that are meant to be interpreted as part of
2403 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002404 information such as debug info.
2405
2406Global Variable and Function Addresses
2407--------------------------------------
2408
2409The addresses of :ref:`global variables <globalvars>` and
2410:ref:`functions <functionstructure>` are always implicitly valid
2411(link-time) constants. These constants are explicitly referenced when
2412the :ref:`identifier for the global <identifiers>` is used and always have
2413:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2414file:
2415
2416.. code-block:: llvm
2417
2418 @X = global i32 17
2419 @Y = global i32 42
2420 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2421
2422.. _undefvalues:
2423
2424Undefined Values
2425----------------
2426
2427The string '``undef``' can be used anywhere a constant is expected, and
2428indicates that the user of the value may receive an unspecified
2429bit-pattern. Undefined values may be of any type (other than '``label``'
2430or '``void``') and be used anywhere a constant is permitted.
2431
2432Undefined values are useful because they indicate to the compiler that
2433the program is well defined no matter what value is used. This gives the
2434compiler more freedom to optimize. Here are some examples of
2435(potentially surprising) transformations that are valid (in pseudo IR):
2436
2437.. code-block:: llvm
2438
2439 %A = add %X, undef
2440 %B = sub %X, undef
2441 %C = xor %X, undef
2442 Safe:
2443 %A = undef
2444 %B = undef
2445 %C = undef
2446
2447This is safe because all of the output bits are affected by the undef
2448bits. Any output bit can have a zero or one depending on the input bits.
2449
2450.. code-block:: llvm
2451
2452 %A = or %X, undef
2453 %B = and %X, undef
2454 Safe:
2455 %A = -1
2456 %B = 0
2457 Unsafe:
2458 %A = undef
2459 %B = undef
2460
2461These logical operations have bits that are not always affected by the
2462input. For example, if ``%X`` has a zero bit, then the output of the
2463'``and``' operation will always be a zero for that bit, no matter what
2464the corresponding bit from the '``undef``' is. As such, it is unsafe to
2465optimize or assume that the result of the '``and``' is '``undef``'.
2466However, it is safe to assume that all bits of the '``undef``' could be
24670, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2468all the bits of the '``undef``' operand to the '``or``' could be set,
2469allowing the '``or``' to be folded to -1.
2470
2471.. code-block:: llvm
2472
2473 %A = select undef, %X, %Y
2474 %B = select undef, 42, %Y
2475 %C = select %X, %Y, undef
2476 Safe:
2477 %A = %X (or %Y)
2478 %B = 42 (or %Y)
2479 %C = %Y
2480 Unsafe:
2481 %A = undef
2482 %B = undef
2483 %C = undef
2484
2485This set of examples shows that undefined '``select``' (and conditional
2486branch) conditions can go *either way*, but they have to come from one
2487of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2488both known to have a clear low bit, then ``%A`` would have to have a
2489cleared low bit. However, in the ``%C`` example, the optimizer is
2490allowed to assume that the '``undef``' operand could be the same as
2491``%Y``, allowing the whole '``select``' to be eliminated.
2492
2493.. code-block:: llvm
2494
2495 %A = xor undef, undef
2496
2497 %B = undef
2498 %C = xor %B, %B
2499
2500 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002501 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002502 %F = icmp gte %D, 4
2503
2504 Safe:
2505 %A = undef
2506 %B = undef
2507 %C = undef
2508 %D = undef
2509 %E = undef
2510 %F = undef
2511
2512This example points out that two '``undef``' operands are not
2513necessarily the same. This can be surprising to people (and also matches
2514C semantics) where they assume that "``X^X``" is always zero, even if
2515``X`` is undefined. This isn't true for a number of reasons, but the
2516short answer is that an '``undef``' "variable" can arbitrarily change
2517its value over its "live range". This is true because the variable
2518doesn't actually *have a live range*. Instead, the value is logically
2519read from arbitrary registers that happen to be around when needed, so
2520the value is not necessarily consistent over time. In fact, ``%A`` and
2521``%C`` need to have the same semantics or the core LLVM "replace all
2522uses with" concept would not hold.
2523
2524.. code-block:: llvm
2525
2526 %A = fdiv undef, %X
2527 %B = fdiv %X, undef
2528 Safe:
2529 %A = undef
2530 b: unreachable
2531
2532These examples show the crucial difference between an *undefined value*
2533and *undefined behavior*. An undefined value (like '``undef``') is
2534allowed to have an arbitrary bit-pattern. This means that the ``%A``
2535operation can be constant folded to '``undef``', because the '``undef``'
2536could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2537However, in the second example, we can make a more aggressive
2538assumption: because the ``undef`` is allowed to be an arbitrary value,
2539we are allowed to assume that it could be zero. Since a divide by zero
2540has *undefined behavior*, we are allowed to assume that the operation
2541does not execute at all. This allows us to delete the divide and all
2542code after it. Because the undefined operation "can't happen", the
2543optimizer can assume that it occurs in dead code.
2544
2545.. code-block:: llvm
2546
2547 a: store undef -> %X
2548 b: store %X -> undef
2549 Safe:
2550 a: <deleted>
2551 b: unreachable
2552
2553These examples reiterate the ``fdiv`` example: a store *of* an undefined
2554value can be assumed to not have any effect; we can assume that the
2555value is overwritten with bits that happen to match what was already
2556there. However, a store *to* an undefined location could clobber
2557arbitrary memory, therefore, it has undefined behavior.
2558
2559.. _poisonvalues:
2560
2561Poison Values
2562-------------
2563
2564Poison values are similar to :ref:`undef values <undefvalues>`, however
2565they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002566that cannot evoke side effects has nevertheless detected a condition
2567that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002568
2569There is currently no way of representing a poison value in the IR; they
2570only exist when produced by operations such as :ref:`add <i_add>` with
2571the ``nsw`` flag.
2572
2573Poison value behavior is defined in terms of value *dependence*:
2574
2575- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2576- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2577 their dynamic predecessor basic block.
2578- Function arguments depend on the corresponding actual argument values
2579 in the dynamic callers of their functions.
2580- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2581 instructions that dynamically transfer control back to them.
2582- :ref:`Invoke <i_invoke>` instructions depend on the
2583 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2584 call instructions that dynamically transfer control back to them.
2585- Non-volatile loads and stores depend on the most recent stores to all
2586 of the referenced memory addresses, following the order in the IR
2587 (including loads and stores implied by intrinsics such as
2588 :ref:`@llvm.memcpy <int_memcpy>`.)
2589- An instruction with externally visible side effects depends on the
2590 most recent preceding instruction with externally visible side
2591 effects, following the order in the IR. (This includes :ref:`volatile
2592 operations <volatile>`.)
2593- An instruction *control-depends* on a :ref:`terminator
2594 instruction <terminators>` if the terminator instruction has
2595 multiple successors and the instruction is always executed when
2596 control transfers to one of the successors, and may not be executed
2597 when control is transferred to another.
2598- Additionally, an instruction also *control-depends* on a terminator
2599 instruction if the set of instructions it otherwise depends on would
2600 be different if the terminator had transferred control to a different
2601 successor.
2602- Dependence is transitive.
2603
Richard Smith32dbdf62014-07-31 04:25:36 +00002604Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2605with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002606on a poison value has undefined behavior.
2607
2608Here are some examples:
2609
2610.. code-block:: llvm
2611
2612 entry:
2613 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2614 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002615 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002616 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2617
2618 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002619 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002620
2621 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2622
2623 %narrowaddr = bitcast i32* @g to i16*
2624 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002625 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2626 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002627
2628 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2629 br i1 %cmp, label %true, label %end ; Branch to either destination.
2630
2631 true:
2632 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2633 ; it has undefined behavior.
2634 br label %end
2635
2636 end:
2637 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2638 ; Both edges into this PHI are
2639 ; control-dependent on %cmp, so this
2640 ; always results in a poison value.
2641
2642 store volatile i32 0, i32* @g ; This would depend on the store in %true
2643 ; if %cmp is true, or the store in %entry
2644 ; otherwise, so this is undefined behavior.
2645
2646 br i1 %cmp, label %second_true, label %second_end
2647 ; The same branch again, but this time the
2648 ; true block doesn't have side effects.
2649
2650 second_true:
2651 ; No side effects!
2652 ret void
2653
2654 second_end:
2655 store volatile i32 0, i32* @g ; This time, the instruction always depends
2656 ; on the store in %end. Also, it is
2657 ; control-equivalent to %end, so this is
2658 ; well-defined (ignoring earlier undefined
2659 ; behavior in this example).
2660
2661.. _blockaddress:
2662
2663Addresses of Basic Blocks
2664-------------------------
2665
2666``blockaddress(@function, %block)``
2667
2668The '``blockaddress``' constant computes the address of the specified
2669basic block in the specified function, and always has an ``i8*`` type.
2670Taking the address of the entry block is illegal.
2671
2672This value only has defined behavior when used as an operand to the
2673':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2674against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002675undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002676no label is equal to the null pointer. This may be passed around as an
2677opaque pointer sized value as long as the bits are not inspected. This
2678allows ``ptrtoint`` and arithmetic to be performed on these values so
2679long as the original value is reconstituted before the ``indirectbr``
2680instruction.
2681
2682Finally, some targets may provide defined semantics when using the value
2683as the operand to an inline assembly, but that is target specific.
2684
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002685.. _constantexprs:
2686
Sean Silvab084af42012-12-07 10:36:55 +00002687Constant Expressions
2688--------------------
2689
2690Constant expressions are used to allow expressions involving other
2691constants to be used as constants. Constant expressions may be of any
2692:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2693that does not have side effects (e.g. load and call are not supported).
2694The following is the syntax for constant expressions:
2695
2696``trunc (CST to TYPE)``
2697 Truncate a constant to another type. The bit size of CST must be
2698 larger than the bit size of TYPE. Both types must be integers.
2699``zext (CST to TYPE)``
2700 Zero extend a constant to another type. The bit size of CST must be
2701 smaller than the bit size of TYPE. Both types must be integers.
2702``sext (CST to TYPE)``
2703 Sign extend a constant to another type. The bit size of CST must be
2704 smaller than the bit size of TYPE. Both types must be integers.
2705``fptrunc (CST to TYPE)``
2706 Truncate a floating point constant to another floating point type.
2707 The size of CST must be larger than the size of TYPE. Both types
2708 must be floating point.
2709``fpext (CST to TYPE)``
2710 Floating point extend a constant to another type. The size of CST
2711 must be smaller or equal to the size of TYPE. Both types must be
2712 floating point.
2713``fptoui (CST to TYPE)``
2714 Convert a floating point constant to the corresponding unsigned
2715 integer constant. TYPE must be a scalar or vector integer type. CST
2716 must be of scalar or vector floating point type. Both CST and TYPE
2717 must be scalars, or vectors of the same number of elements. If the
2718 value won't fit in the integer type, the results are undefined.
2719``fptosi (CST to TYPE)``
2720 Convert a floating point constant to the corresponding signed
2721 integer constant. TYPE must be a scalar or vector integer type. CST
2722 must be of scalar or vector floating point type. Both CST and TYPE
2723 must be scalars, or vectors of the same number of elements. If the
2724 value won't fit in the integer type, the results are undefined.
2725``uitofp (CST to TYPE)``
2726 Convert an unsigned integer constant to the corresponding floating
2727 point constant. TYPE must be a scalar or vector floating point type.
2728 CST must be of scalar or vector integer type. Both CST and TYPE must
2729 be scalars, or vectors of the same number of elements. If the value
2730 won't fit in the floating point type, the results are undefined.
2731``sitofp (CST to TYPE)``
2732 Convert a signed integer constant to the corresponding floating
2733 point constant. TYPE must be a scalar or vector floating point type.
2734 CST must be of scalar or vector integer type. Both CST and TYPE must
2735 be scalars, or vectors of the same number of elements. If the value
2736 won't fit in the floating point type, the results are undefined.
2737``ptrtoint (CST to TYPE)``
2738 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002739 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002740 pointer type. The ``CST`` value is zero extended, truncated, or
2741 unchanged to make it fit in ``TYPE``.
2742``inttoptr (CST to TYPE)``
2743 Convert an integer constant to a pointer constant. TYPE must be a
2744 pointer type. CST must be of integer type. The CST value is zero
2745 extended, truncated, or unchanged to make it fit in a pointer size.
2746 This one is *really* dangerous!
2747``bitcast (CST to TYPE)``
2748 Convert a constant, CST, to another TYPE. The constraints of the
2749 operands are the same as those for the :ref:`bitcast
2750 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002751``addrspacecast (CST to TYPE)``
2752 Convert a constant pointer or constant vector of pointer, CST, to another
2753 TYPE in a different address space. The constraints of the operands are the
2754 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002755``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002756 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2757 constants. As with the :ref:`getelementptr <i_getelementptr>`
2758 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002759 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002760``select (COND, VAL1, VAL2)``
2761 Perform the :ref:`select operation <i_select>` on constants.
2762``icmp COND (VAL1, VAL2)``
2763 Performs the :ref:`icmp operation <i_icmp>` on constants.
2764``fcmp COND (VAL1, VAL2)``
2765 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2766``extractelement (VAL, IDX)``
2767 Perform the :ref:`extractelement operation <i_extractelement>` on
2768 constants.
2769``insertelement (VAL, ELT, IDX)``
2770 Perform the :ref:`insertelement operation <i_insertelement>` on
2771 constants.
2772``shufflevector (VEC1, VEC2, IDXMASK)``
2773 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2774 constants.
2775``extractvalue (VAL, IDX0, IDX1, ...)``
2776 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2777 constants. The index list is interpreted in a similar manner as
2778 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2779 least one index value must be specified.
2780``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2781 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2782 The index list is interpreted in a similar manner as indices in a
2783 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2784 value must be specified.
2785``OPCODE (LHS, RHS)``
2786 Perform the specified operation of the LHS and RHS constants. OPCODE
2787 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2788 binary <bitwiseops>` operations. The constraints on operands are
2789 the same as those for the corresponding instruction (e.g. no bitwise
2790 operations on floating point values are allowed).
2791
2792Other Values
2793============
2794
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002795.. _inlineasmexprs:
2796
Sean Silvab084af42012-12-07 10:36:55 +00002797Inline Assembler Expressions
2798----------------------------
2799
2800LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2801Inline Assembly <moduleasm>`) through the use of a special value. This
2802value represents the inline assembler as a string (containing the
2803instructions to emit), a list of operand constraints (stored as a
2804string), a flag that indicates whether or not the inline asm expression
2805has side effects, and a flag indicating whether the function containing
2806the asm needs to align its stack conservatively. An example inline
2807assembler expression is:
2808
2809.. code-block:: llvm
2810
2811 i32 (i32) asm "bswap $0", "=r,r"
2812
2813Inline assembler expressions may **only** be used as the callee operand
2814of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2815Thus, typically we have:
2816
2817.. code-block:: llvm
2818
2819 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2820
2821Inline asms with side effects not visible in the constraint list must be
2822marked as having side effects. This is done through the use of the
2823'``sideeffect``' keyword, like so:
2824
2825.. code-block:: llvm
2826
2827 call void asm sideeffect "eieio", ""()
2828
2829In some cases inline asms will contain code that will not work unless
2830the stack is aligned in some way, such as calls or SSE instructions on
2831x86, yet will not contain code that does that alignment within the asm.
2832The compiler should make conservative assumptions about what the asm
2833might contain and should generate its usual stack alignment code in the
2834prologue if the '``alignstack``' keyword is present:
2835
2836.. code-block:: llvm
2837
2838 call void asm alignstack "eieio", ""()
2839
2840Inline asms also support using non-standard assembly dialects. The
2841assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2842the inline asm is using the Intel dialect. Currently, ATT and Intel are
2843the only supported dialects. An example is:
2844
2845.. code-block:: llvm
2846
2847 call void asm inteldialect "eieio", ""()
2848
2849If multiple keywords appear the '``sideeffect``' keyword must come
2850first, the '``alignstack``' keyword second and the '``inteldialect``'
2851keyword last.
2852
2853Inline Asm Metadata
2854^^^^^^^^^^^^^^^^^^^
2855
2856The call instructions that wrap inline asm nodes may have a
2857"``!srcloc``" MDNode attached to it that contains a list of constant
2858integers. If present, the code generator will use the integer as the
2859location cookie value when report errors through the ``LLVMContext``
2860error reporting mechanisms. This allows a front-end to correlate backend
2861errors that occur with inline asm back to the source code that produced
2862it. For example:
2863
2864.. code-block:: llvm
2865
2866 call void asm sideeffect "something bad", ""(), !srcloc !42
2867 ...
2868 !42 = !{ i32 1234567 }
2869
2870It is up to the front-end to make sense of the magic numbers it places
2871in the IR. If the MDNode contains multiple constants, the code generator
2872will use the one that corresponds to the line of the asm that the error
2873occurs on.
2874
2875.. _metadata:
2876
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002877Metadata
2878========
Sean Silvab084af42012-12-07 10:36:55 +00002879
2880LLVM IR allows metadata to be attached to instructions in the program
2881that can convey extra information about the code to the optimizers and
2882code generator. One example application of metadata is source-level
2883debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002884
2885Metadata does not have a type, and is not a value. If referenced from a
2886``call`` instruction, it uses the ``metadata`` type.
2887
2888All metadata are identified in syntax by a exclamation point ('``!``').
2889
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002890.. _metadata-string:
2891
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002892Metadata Nodes and Metadata Strings
2893-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00002894
2895A metadata string is a string surrounded by double quotes. It can
2896contain any character by escaping non-printable characters with
2897"``\xx``" where "``xx``" is the two digit hex code. For example:
2898"``!"test\00"``".
2899
2900Metadata nodes are represented with notation similar to structure
2901constants (a comma separated list of elements, surrounded by braces and
2902preceded by an exclamation point). Metadata nodes can have any values as
2903their operand. For example:
2904
2905.. code-block:: llvm
2906
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002907 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00002908
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00002909Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
2910
2911.. code-block:: llvm
2912
2913 !0 = distinct !{!"test\00", i32 10}
2914
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00002915``distinct`` nodes are useful when nodes shouldn't be merged based on their
2916content. They can also occur when transformations cause uniquing collisions
2917when metadata operands change.
2918
Sean Silvab084af42012-12-07 10:36:55 +00002919A :ref:`named metadata <namedmetadatastructure>` is a collection of
2920metadata nodes, which can be looked up in the module symbol table. For
2921example:
2922
2923.. code-block:: llvm
2924
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002925 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00002926
2927Metadata can be used as function arguments. Here ``llvm.dbg.value``
2928function is using two metadata arguments:
2929
2930.. code-block:: llvm
2931
2932 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2933
2934Metadata can be attached with an instruction. Here metadata ``!21`` is
2935attached to the ``add`` instruction using the ``!dbg`` identifier:
2936
2937.. code-block:: llvm
2938
2939 %indvar.next = add i64 %indvar, 1, !dbg !21
2940
2941More information about specific metadata nodes recognized by the
2942optimizers and code generator is found below.
2943
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00002944.. _specialized-metadata:
2945
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00002946Specialized Metadata Nodes
2947^^^^^^^^^^^^^^^^^^^^^^^^^^
2948
2949Specialized metadata nodes are custom data structures in metadata (as opposed
2950to generic tuples). Their fields are labelled, and can be specified in any
2951order.
2952
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002953These aren't inherently debug info centric, but currently all the specialized
2954metadata nodes are related to debug info.
2955
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00002956.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00002957
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00002958DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002959"""""""""""""
2960
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00002961``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002962``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
2963tuples containing the debug info to be emitted along with the compile unit,
2964regardless of code optimizations (some nodes are only emitted if there are
2965references to them from instructions).
2966
2967.. code-block:: llvm
2968
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00002969 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002970 isOptimized: true, flags: "-O2", runtimeVersion: 2,
2971 splitDebugFilename: "abc.debug", emissionKind: 1,
2972 enums: !2, retainedTypes: !3, subprograms: !4,
2973 globals: !5, imports: !6)
2974
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00002975Compile unit descriptors provide the root scope for objects declared in a
2976specific compilation unit. File descriptors are defined using this scope.
2977These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
2978keep track of subprograms, global variables, type information, and imported
2979entities (declarations and namespaces).
2980
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00002981.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00002982
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00002983DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002984""""""
2985
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00002986``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002987
2988.. code-block:: llvm
2989
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00002990 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002991
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00002992Files are sometimes used in ``scope:`` fields, and are the only valid target
2993for ``file:`` fields.
2994
Michael Kuperstein605308a2015-05-14 10:58:59 +00002995.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002996
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00002997DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002998"""""""""""
2999
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003000``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003001``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003002
3003.. code-block:: llvm
3004
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003005 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003006 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003007 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003008
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003009The ``encoding:`` describes the details of the type. Usually it's one of the
3010following:
3011
3012.. code-block:: llvm
3013
3014 DW_ATE_address = 1
3015 DW_ATE_boolean = 2
3016 DW_ATE_float = 4
3017 DW_ATE_signed = 5
3018 DW_ATE_signed_char = 6
3019 DW_ATE_unsigned = 7
3020 DW_ATE_unsigned_char = 8
3021
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003022.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003023
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003024DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003025""""""""""""""""
3026
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003027``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003028refers to a tuple; the first operand is the return type, while the rest are the
3029types of the formal arguments in order. If the first operand is ``null``, that
3030represents a function with no return value (such as ``void foo() {}`` in C++).
3031
3032.. code-block:: llvm
3033
3034 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3035 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003036 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003037
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003038.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003039
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003040DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003041"""""""""""""
3042
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003043``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003044qualified types.
3045
3046.. code-block:: llvm
3047
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003048 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003049 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003050 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003051 align: 32)
3052
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003053The following ``tag:`` values are valid:
3054
3055.. code-block:: llvm
3056
3057 DW_TAG_formal_parameter = 5
3058 DW_TAG_member = 13
3059 DW_TAG_pointer_type = 15
3060 DW_TAG_reference_type = 16
3061 DW_TAG_typedef = 22
3062 DW_TAG_ptr_to_member_type = 31
3063 DW_TAG_const_type = 38
3064 DW_TAG_volatile_type = 53
3065 DW_TAG_restrict_type = 55
3066
3067``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003068<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003069is the ``baseType:``. The ``offset:`` is the member's bit offset.
3070``DW_TAG_formal_parameter`` is used to define a member which is a formal
3071argument of a subprogram.
3072
3073``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3074
3075``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3076``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3077``baseType:``.
3078
3079Note that the ``void *`` type is expressed as a type derived from NULL.
3080
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003081.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003082
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003083DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003084"""""""""""""""
3085
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003086``DICompositeType`` nodes represent types composed of other types, like
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003087structures and unions. ``elements:`` points to a tuple of the composed types.
3088
3089If the source language supports ODR, the ``identifier:`` field gives the unique
3090identifier used for type merging between modules. When specified, other types
3091can refer to composite types indirectly via a :ref:`metadata string
3092<metadata-string>` that matches their identifier.
3093
3094.. code-block:: llvm
3095
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003096 !0 = !DIEnumerator(name: "SixKind", value: 7)
3097 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3098 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3099 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003100 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3101 elements: !{!0, !1, !2})
3102
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003103The following ``tag:`` values are valid:
3104
3105.. code-block:: llvm
3106
3107 DW_TAG_array_type = 1
3108 DW_TAG_class_type = 2
3109 DW_TAG_enumeration_type = 4
3110 DW_TAG_structure_type = 19
3111 DW_TAG_union_type = 23
3112 DW_TAG_subroutine_type = 21
3113 DW_TAG_inheritance = 28
3114
3115
3116For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003117descriptors <DISubrange>`, each representing the range of subscripts at that
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003118level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
3119array type is a native packed vector.
3120
3121For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003122descriptors <DIEnumerator>`, each representing the definition of an enumeration
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003123value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003124``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003125
3126For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3127``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003128<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003129
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003130.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003131
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003132DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003133""""""""""
3134
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003135``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
3136:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003137
3138.. code-block:: llvm
3139
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003140 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3141 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3142 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003143
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003144.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003145
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003146DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003147""""""""""""
3148
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003149``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3150variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003151
3152.. code-block:: llvm
3153
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003154 !0 = !DIEnumerator(name: "SixKind", value: 7)
3155 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3156 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003157
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003158DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003159"""""""""""""""""""""""
3160
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003161``DITemplateTypeParameter`` nodes represent type parameters to generic source
3162language constructs. They are used (optionally) in :ref:`DICompositeType` and
3163:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003164
3165.. code-block:: llvm
3166
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003167 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003168
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003169DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003170""""""""""""""""""""""""
3171
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003172``DITemplateValueParameter`` nodes represent value parameters to generic source
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003173language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
3174but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
3175``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003176:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003177
3178.. code-block:: llvm
3179
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003180 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003181
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003182DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003183"""""""""""
3184
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003185``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003186
3187.. code-block:: llvm
3188
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003189 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003190
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003191DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003192""""""""""""""""
3193
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003194``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003195
3196.. code-block:: llvm
3197
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003198 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003199 file: !2, line: 7, type: !3, isLocal: true,
3200 isDefinition: false, variable: i32* @foo,
3201 declaration: !4)
3202
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003203All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003204:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003205
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003206.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003207
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003208DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003209""""""""""""
3210
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003211``DISubprogram`` nodes represent functions from the source language. The
3212``variables:`` field points at :ref:`variables <DILocalVariable>` that must be
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003213retained, even if their IR counterparts are optimized out of the IR. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003214``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003215
3216.. code-block:: llvm
3217
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003218 !0 = !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003219 file: !2, line: 7, type: !3, isLocal: true,
3220 isDefinition: false, scopeLine: 8, containingType: !4,
3221 virtuality: DW_VIRTUALITY_pure_virtual, virtualIndex: 10,
3222 flags: DIFlagPrototyped, isOptimized: true,
3223 function: void ()* @_Z3foov,
3224 templateParams: !5, declaration: !6, variables: !7)
3225
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003226.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003227
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003228DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003229""""""""""""""
3230
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003231``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
3232<DISubprogram>`. The line number and column numbers are used to dinstinguish
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003233two lexical blocks at same depth. They are valid targets for ``scope:``
3234fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003235
3236.. code-block:: llvm
3237
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003238 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003239
3240Usually lexical blocks are ``distinct`` to prevent node merging based on
3241operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003242
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003243.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003244
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003245DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003246""""""""""""""""""
3247
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003248``DILexicalBlockFile`` nodes are used to discriminate between sections of a
3249:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003250indicate textual inclusion, or the ``discriminator:`` field can be used to
3251discriminate between control flow within a single block in the source language.
3252
3253.. code-block:: llvm
3254
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003255 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
3256 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
3257 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003258
Michael Kuperstein605308a2015-05-14 10:58:59 +00003259.. _DILocation:
3260
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003261DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003262""""""""""
3263
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003264``DILocation`` nodes represent source debug locations. The ``scope:`` field is
3265mandatory, and points at an :ref:`DILexicalBlockFile`, an
3266:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003267
3268.. code-block:: llvm
3269
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003270 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003271
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003272.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003273
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003274DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003275"""""""""""""""
3276
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003277``DILocalVariable`` nodes represent local variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003278Instead of ``DW_TAG_variable``, they use LLVM-specific fake tags to
3279discriminate between local variables (``DW_TAG_auto_variable``) and subprogram
3280arguments (``DW_TAG_arg_variable``). In the latter case, the ``arg:`` field
3281specifies the argument position, and this variable will be included in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003282``variables:`` field of its :ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003283
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003284.. code-block:: llvm
3285
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003286 !0 = !DILocalVariable(tag: DW_TAG_arg_variable, name: "this", arg: 0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003287 scope: !3, file: !2, line: 7, type: !3,
Duncan P. N. Exon Smith62e0f452015-04-15 22:29:27 +00003288 flags: DIFlagArtificial)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003289 !1 = !DILocalVariable(tag: DW_TAG_arg_variable, name: "x", arg: 1,
Duncan P. N. Exon Smith62e0f452015-04-15 22:29:27 +00003290 scope: !4, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003291 !1 = !DILocalVariable(tag: DW_TAG_auto_variable, name: "y",
Duncan P. N. Exon Smith62e0f452015-04-15 22:29:27 +00003292 scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003293
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003294DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003295""""""""""""
3296
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003297``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003298:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
3299describe how the referenced LLVM variable relates to the source language
3300variable.
3301
3302The current supported vocabulary is limited:
3303
3304- ``DW_OP_deref`` dereferences the working expression.
3305- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
3306- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
3307 here, respectively) of the variable piece from the working expression.
3308
3309.. code-block:: llvm
3310
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003311 !0 = !DIExpression(DW_OP_deref)
3312 !1 = !DIExpression(DW_OP_plus, 3)
3313 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
3314 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003315
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003316DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003317""""""""""""""
3318
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003319``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003320
3321.. code-block:: llvm
3322
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003323 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003324 getter: "getFoo", attributes: 7, type: !2)
3325
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003326DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003327""""""""""""""""
3328
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003329``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003330compile unit.
3331
3332.. code-block:: llvm
3333
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003334 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003335 entity: !1, line: 7)
3336
Sean Silvab084af42012-12-07 10:36:55 +00003337'``tbaa``' Metadata
3338^^^^^^^^^^^^^^^^^^^
3339
3340In LLVM IR, memory does not have types, so LLVM's own type system is not
3341suitable for doing TBAA. Instead, metadata is added to the IR to
3342describe a type system of a higher level language. This can be used to
3343implement typical C/C++ TBAA, but it can also be used to implement
3344custom alias analysis behavior for other languages.
3345
3346The current metadata format is very simple. TBAA metadata nodes have up
3347to three fields, e.g.:
3348
3349.. code-block:: llvm
3350
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003351 !0 = !{ !"an example type tree" }
3352 !1 = !{ !"int", !0 }
3353 !2 = !{ !"float", !0 }
3354 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003355
3356The first field is an identity field. It can be any value, usually a
3357metadata string, which uniquely identifies the type. The most important
3358name in the tree is the name of the root node. Two trees with different
3359root node names are entirely disjoint, even if they have leaves with
3360common names.
3361
3362The second field identifies the type's parent node in the tree, or is
3363null or omitted for a root node. A type is considered to alias all of
3364its descendants and all of its ancestors in the tree. Also, a type is
3365considered to alias all types in other trees, so that bitcode produced
3366from multiple front-ends is handled conservatively.
3367
3368If the third field is present, it's an integer which if equal to 1
3369indicates that the type is "constant" (meaning
3370``pointsToConstantMemory`` should return true; see `other useful
3371AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
3372
3373'``tbaa.struct``' Metadata
3374^^^^^^^^^^^^^^^^^^^^^^^^^^
3375
3376The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
3377aggregate assignment operations in C and similar languages, however it
3378is defined to copy a contiguous region of memory, which is more than
3379strictly necessary for aggregate types which contain holes due to
3380padding. Also, it doesn't contain any TBAA information about the fields
3381of the aggregate.
3382
3383``!tbaa.struct`` metadata can describe which memory subregions in a
3384memcpy are padding and what the TBAA tags of the struct are.
3385
3386The current metadata format is very simple. ``!tbaa.struct`` metadata
3387nodes are a list of operands which are in conceptual groups of three.
3388For each group of three, the first operand gives the byte offset of a
3389field in bytes, the second gives its size in bytes, and the third gives
3390its tbaa tag. e.g.:
3391
3392.. code-block:: llvm
3393
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003394 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00003395
3396This describes a struct with two fields. The first is at offset 0 bytes
3397with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
3398and has size 4 bytes and has tbaa tag !2.
3399
3400Note that the fields need not be contiguous. In this example, there is a
34014 byte gap between the two fields. This gap represents padding which
3402does not carry useful data and need not be preserved.
3403
Hal Finkel94146652014-07-24 14:25:39 +00003404'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00003405^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00003406
3407``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
3408noalias memory-access sets. This means that some collection of memory access
3409instructions (loads, stores, memory-accessing calls, etc.) that carry
3410``noalias`` metadata can specifically be specified not to alias with some other
3411collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00003412Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00003413a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00003414of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00003415subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00003416instruction's ``noalias`` list, then the two memory accesses are assumed not to
3417alias.
Hal Finkel94146652014-07-24 14:25:39 +00003418
Hal Finkel029cde62014-07-25 15:50:02 +00003419The metadata identifying each domain is itself a list containing one or two
3420entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00003421string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00003422self-reference can be used to create globally unique domain names. A
3423descriptive string may optionally be provided as a second list entry.
3424
3425The metadata identifying each scope is also itself a list containing two or
3426three entries. The first entry is the name of the scope. Note that if the name
3427is a string then it can be combined accross functions and translation units. A
3428self-reference can be used to create globally unique scope names. A metadata
3429reference to the scope's domain is the second entry. A descriptive string may
3430optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00003431
3432For example,
3433
3434.. code-block:: llvm
3435
Hal Finkel029cde62014-07-25 15:50:02 +00003436 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003437 !0 = !{!0}
3438 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00003439
Hal Finkel029cde62014-07-25 15:50:02 +00003440 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003441 !2 = !{!2, !0}
3442 !3 = !{!3, !0}
3443 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00003444
Hal Finkel029cde62014-07-25 15:50:02 +00003445 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003446 !5 = !{!4} ; A list containing only scope !4
3447 !6 = !{!4, !3, !2}
3448 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00003449
3450 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00003451 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00003452 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00003453
Hal Finkel029cde62014-07-25 15:50:02 +00003454 ; These two instructions also don't alias (for domain !1, the set of scopes
3455 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00003456 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00003457 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00003458
Adam Nemet0a8416f2015-05-11 08:30:28 +00003459 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00003460 ; the !noalias list is not a superset of, or equal to, the scopes in the
3461 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00003462 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00003463 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00003464
Sean Silvab084af42012-12-07 10:36:55 +00003465'``fpmath``' Metadata
3466^^^^^^^^^^^^^^^^^^^^^
3467
3468``fpmath`` metadata may be attached to any instruction of floating point
3469type. It can be used to express the maximum acceptable error in the
3470result of that instruction, in ULPs, thus potentially allowing the
3471compiler to use a more efficient but less accurate method of computing
3472it. ULP is defined as follows:
3473
3474 If ``x`` is a real number that lies between two finite consecutive
3475 floating-point numbers ``a`` and ``b``, without being equal to one
3476 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
3477 distance between the two non-equal finite floating-point numbers
3478 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
3479
3480The metadata node shall consist of a single positive floating point
3481number representing the maximum relative error, for example:
3482
3483.. code-block:: llvm
3484
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003485 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00003486
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00003487.. _range-metadata:
3488
Sean Silvab084af42012-12-07 10:36:55 +00003489'``range``' Metadata
3490^^^^^^^^^^^^^^^^^^^^
3491
Jingyue Wu37fcb592014-06-19 16:50:16 +00003492``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
3493integer types. It expresses the possible ranges the loaded value or the value
3494returned by the called function at this call site is in. The ranges are
3495represented with a flattened list of integers. The loaded value or the value
3496returned is known to be in the union of the ranges defined by each consecutive
3497pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00003498
3499- The type must match the type loaded by the instruction.
3500- The pair ``a,b`` represents the range ``[a,b)``.
3501- Both ``a`` and ``b`` are constants.
3502- The range is allowed to wrap.
3503- The range should not represent the full or empty set. That is,
3504 ``a!=b``.
3505
3506In addition, the pairs must be in signed order of the lower bound and
3507they must be non-contiguous.
3508
3509Examples:
3510
3511.. code-block:: llvm
3512
David Blaikiec7aabbb2015-03-04 22:06:14 +00003513 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
3514 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00003515 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
3516 %d = invoke i8 @bar() to label %cont
3517 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00003518 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003519 !0 = !{ i8 0, i8 2 }
3520 !1 = !{ i8 255, i8 2 }
3521 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
3522 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00003523
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003524'``llvm.loop``'
3525^^^^^^^^^^^^^^^
3526
3527It is sometimes useful to attach information to loop constructs. Currently,
3528loop metadata is implemented as metadata attached to the branch instruction
3529in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00003530guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00003531specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003532
3533The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00003534itself to avoid merging it with any other identifier metadata, e.g.,
3535during module linkage or function inlining. That is, each loop should refer
3536to their own identification metadata even if they reside in separate functions.
3537The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003538constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003539
3540.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00003541
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003542 !0 = !{!0}
3543 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003544
Mark Heffernan893752a2014-07-18 19:24:51 +00003545The loop identifier metadata can be used to specify additional
3546per-loop metadata. Any operands after the first operand can be treated
3547as user-defined metadata. For example the ``llvm.loop.unroll.count``
3548suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003549
Paul Redmond5fdf8362013-05-28 20:00:34 +00003550.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003551
Paul Redmond5fdf8362013-05-28 20:00:34 +00003552 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
3553 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003554 !0 = !{!0, !1}
3555 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003556
Mark Heffernan9d20e422014-07-21 23:11:03 +00003557'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
3558^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00003559
Mark Heffernan9d20e422014-07-21 23:11:03 +00003560Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
3561used to control per-loop vectorization and interleaving parameters such as
3562vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00003563conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00003564``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
3565optimization hints and the optimizer will only interleave and vectorize loops if
3566it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
3567which contains information about loop-carried memory dependencies can be helpful
3568in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00003569
Mark Heffernan9d20e422014-07-21 23:11:03 +00003570'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00003571^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3572
Mark Heffernan9d20e422014-07-21 23:11:03 +00003573This metadata suggests an interleave count to the loop interleaver.
3574The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00003575second operand is an integer specifying the interleave count. For
3576example:
3577
3578.. code-block:: llvm
3579
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003580 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003581
Mark Heffernan9d20e422014-07-21 23:11:03 +00003582Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3583multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
3584then the interleave count will be determined automatically.
3585
3586'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00003587^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00003588
3589This metadata selectively enables or disables vectorization for the loop. The
3590first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3591is a bit. If the bit operand value is 1 vectorization is enabled. A value of
35920 disables vectorization:
3593
3594.. code-block:: llvm
3595
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003596 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
3597 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00003598
3599'``llvm.loop.vectorize.width``' Metadata
3600^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3601
3602This metadata sets the target width of the vectorizer. The first
3603operand is the string ``llvm.loop.vectorize.width`` and the second
3604operand is an integer specifying the width. For example:
3605
3606.. code-block:: llvm
3607
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003608 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003609
3610Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3611vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
36120 or if the loop does not have this metadata the width will be
3613determined automatically.
3614
3615'``llvm.loop.unroll``'
3616^^^^^^^^^^^^^^^^^^^^^^
3617
3618Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3619optimization hints such as the unroll factor. ``llvm.loop.unroll``
3620metadata should be used in conjunction with ``llvm.loop`` loop
3621identification metadata. The ``llvm.loop.unroll`` metadata are only
3622optimization hints and the unrolling will only be performed if the
3623optimizer believes it is safe to do so.
3624
Mark Heffernan893752a2014-07-18 19:24:51 +00003625'``llvm.loop.unroll.count``' Metadata
3626^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3627
3628This metadata suggests an unroll factor to the loop unroller. The
3629first operand is the string ``llvm.loop.unroll.count`` and the second
3630operand is a positive integer specifying the unroll factor. For
3631example:
3632
3633.. code-block:: llvm
3634
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003635 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003636
3637If the trip count of the loop is less than the unroll count the loop
3638will be partially unrolled.
3639
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003640'``llvm.loop.unroll.disable``' Metadata
3641^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3642
3643This metadata either disables loop unrolling. The metadata has a single operand
3644which is the string ``llvm.loop.unroll.disable``. For example:
3645
3646.. code-block:: llvm
3647
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003648 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003649
Kevin Qin715b01e2015-03-09 06:14:18 +00003650'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00003651^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00003652
3653This metadata either disables runtime loop unrolling. The metadata has a single
3654operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
3655
3656.. code-block:: llvm
3657
3658 !0 = !{!"llvm.loop.unroll.runtime.disable"}
3659
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003660'``llvm.loop.unroll.full``' Metadata
3661^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3662
3663This metadata either suggests that the loop should be unrolled fully. The
3664metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3665For example:
3666
3667.. code-block:: llvm
3668
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003669 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003670
3671'``llvm.mem``'
3672^^^^^^^^^^^^^^^
3673
3674Metadata types used to annotate memory accesses with information helpful
3675for optimizations are prefixed with ``llvm.mem``.
3676
3677'``llvm.mem.parallel_loop_access``' Metadata
3678^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3679
Mehdi Amini4a121fa2015-03-14 22:04:06 +00003680The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3681or metadata containing a list of loop identifiers for nested loops.
3682The metadata is attached to memory accessing instructions and denotes that
3683no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003684with the same loop identifier.
3685
Mehdi Amini4a121fa2015-03-14 22:04:06 +00003686Precisely, given two instructions ``m1`` and ``m2`` that both have the
3687``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3688set of loops associated with that metadata, respectively, then there is no loop
3689carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003690``L2``.
3691
Mehdi Amini4a121fa2015-03-14 22:04:06 +00003692As a special case, if all memory accessing instructions in a loop have
3693``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3694loop has no loop carried memory dependences and is considered to be a parallel
3695loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003696
Mehdi Amini4a121fa2015-03-14 22:04:06 +00003697Note that if not all memory access instructions have such metadata referring to
3698the loop, then the loop is considered not being trivially parallel. Additional
3699memory dependence analysis is required to make that determination. As a fail
3700safe mechanism, this causes loops that were originally parallel to be considered
3701sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003702insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003703
3704Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003705both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003706metadata types that refer to the same loop identifier metadata.
3707
3708.. code-block:: llvm
3709
3710 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003711 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00003712 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003713 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003714 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003715 ...
3716 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003717
3718 for.end:
3719 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003720 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003721
3722It is also possible to have nested parallel loops. In that case the
3723memory accesses refer to a list of loop identifier metadata nodes instead of
3724the loop identifier metadata node directly:
3725
3726.. code-block:: llvm
3727
3728 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003729 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00003730 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003731 ...
3732 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003733
3734 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003735 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00003736 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003737 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003738 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003739 ...
3740 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003741
3742 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003743 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003744 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003745 ...
3746 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003747
3748 outer.for.end: ; preds = %for.body
3749 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003750 !0 = !{!1, !2} ; a list of loop identifiers
3751 !1 = !{!1} ; an identifier for the inner loop
3752 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003753
Peter Collingbournee6909c82015-02-20 20:30:47 +00003754'``llvm.bitsets``'
3755^^^^^^^^^^^^^^^^^^
3756
3757The ``llvm.bitsets`` global metadata is used to implement
3758:doc:`bitsets <BitSets>`.
3759
Sean Silvab084af42012-12-07 10:36:55 +00003760Module Flags Metadata
3761=====================
3762
3763Information about the module as a whole is difficult to convey to LLVM's
3764subsystems. The LLVM IR isn't sufficient to transmit this information.
3765The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003766this. These flags are in the form of key / value pairs --- much like a
3767dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003768look it up.
3769
3770The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3771Each triplet has the following form:
3772
3773- The first element is a *behavior* flag, which specifies the behavior
3774 when two (or more) modules are merged together, and it encounters two
3775 (or more) metadata with the same ID. The supported behaviors are
3776 described below.
3777- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003778 metadata. Each module may only have one flag entry for each unique ID (not
3779 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003780- The third element is the value of the flag.
3781
3782When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003783``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3784each unique metadata ID string, there will be exactly one entry in the merged
3785modules ``llvm.module.flags`` metadata table, and the value for that entry will
3786be determined by the merge behavior flag, as described below. The only exception
3787is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003788
3789The following behaviors are supported:
3790
3791.. list-table::
3792 :header-rows: 1
3793 :widths: 10 90
3794
3795 * - Value
3796 - Behavior
3797
3798 * - 1
3799 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003800 Emits an error if two values disagree, otherwise the resulting value
3801 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003802
3803 * - 2
3804 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003805 Emits a warning if two values disagree. The result value will be the
3806 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003807
3808 * - 3
3809 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003810 Adds a requirement that another module flag be present and have a
3811 specified value after linking is performed. The value must be a
3812 metadata pair, where the first element of the pair is the ID of the
3813 module flag to be restricted, and the second element of the pair is
3814 the value the module flag should be restricted to. This behavior can
3815 be used to restrict the allowable results (via triggering of an
3816 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003817
3818 * - 4
3819 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003820 Uses the specified value, regardless of the behavior or value of the
3821 other module. If both modules specify **Override**, but the values
3822 differ, an error will be emitted.
3823
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003824 * - 5
3825 - **Append**
3826 Appends the two values, which are required to be metadata nodes.
3827
3828 * - 6
3829 - **AppendUnique**
3830 Appends the two values, which are required to be metadata
3831 nodes. However, duplicate entries in the second list are dropped
3832 during the append operation.
3833
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003834It is an error for a particular unique flag ID to have multiple behaviors,
3835except in the case of **Require** (which adds restrictions on another metadata
3836value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003837
3838An example of module flags:
3839
3840.. code-block:: llvm
3841
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003842 !0 = !{ i32 1, !"foo", i32 1 }
3843 !1 = !{ i32 4, !"bar", i32 37 }
3844 !2 = !{ i32 2, !"qux", i32 42 }
3845 !3 = !{ i32 3, !"qux",
3846 !{
3847 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00003848 }
3849 }
3850 !llvm.module.flags = !{ !0, !1, !2, !3 }
3851
3852- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3853 if two or more ``!"foo"`` flags are seen is to emit an error if their
3854 values are not equal.
3855
3856- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3857 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003858 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003859
3860- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3861 behavior if two or more ``!"qux"`` flags are seen is to emit a
3862 warning if their values are not equal.
3863
3864- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3865
3866 ::
3867
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003868 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003869
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003870 The behavior is to emit an error if the ``llvm.module.flags`` does not
3871 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3872 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003873
3874Objective-C Garbage Collection Module Flags Metadata
3875----------------------------------------------------
3876
3877On the Mach-O platform, Objective-C stores metadata about garbage
3878collection in a special section called "image info". The metadata
3879consists of a version number and a bitmask specifying what types of
3880garbage collection are supported (if any) by the file. If two or more
3881modules are linked together their garbage collection metadata needs to
3882be merged rather than appended together.
3883
3884The Objective-C garbage collection module flags metadata consists of the
3885following key-value pairs:
3886
3887.. list-table::
3888 :header-rows: 1
3889 :widths: 30 70
3890
3891 * - Key
3892 - Value
3893
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003894 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003895 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003896
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003897 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003898 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003899 always 0.
3900
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003901 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003902 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003903 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3904 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3905 Objective-C ABI version 2.
3906
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003907 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003908 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003909 not. Valid values are 0, for no garbage collection, and 2, for garbage
3910 collection supported.
3911
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003912 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003913 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003914 If present, its value must be 6. This flag requires that the
3915 ``Objective-C Garbage Collection`` flag have the value 2.
3916
3917Some important flag interactions:
3918
3919- If a module with ``Objective-C Garbage Collection`` set to 0 is
3920 merged with a module with ``Objective-C Garbage Collection`` set to
3921 2, then the resulting module has the
3922 ``Objective-C Garbage Collection`` flag set to 0.
3923- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3924 merged with a module with ``Objective-C GC Only`` set to 6.
3925
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003926Automatic Linker Flags Module Flags Metadata
3927--------------------------------------------
3928
3929Some targets support embedding flags to the linker inside individual object
3930files. Typically this is used in conjunction with language extensions which
3931allow source files to explicitly declare the libraries they depend on, and have
3932these automatically be transmitted to the linker via object files.
3933
3934These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003935using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003936to be ``AppendUnique``, and the value for the key is expected to be a metadata
3937node which should be a list of other metadata nodes, each of which should be a
3938list of metadata strings defining linker options.
3939
3940For example, the following metadata section specifies two separate sets of
3941linker options, presumably to link against ``libz`` and the ``Cocoa``
3942framework::
3943
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003944 !0 = !{ i32 6, !"Linker Options",
3945 !{
3946 !{ !"-lz" },
3947 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003948 !llvm.module.flags = !{ !0 }
3949
3950The metadata encoding as lists of lists of options, as opposed to a collapsed
3951list of options, is chosen so that the IR encoding can use multiple option
3952strings to specify e.g., a single library, while still having that specifier be
3953preserved as an atomic element that can be recognized by a target specific
3954assembly writer or object file emitter.
3955
3956Each individual option is required to be either a valid option for the target's
3957linker, or an option that is reserved by the target specific assembly writer or
3958object file emitter. No other aspect of these options is defined by the IR.
3959
Oliver Stannard5dc29342014-06-20 10:08:11 +00003960C type width Module Flags Metadata
3961----------------------------------
3962
3963The ARM backend emits a section into each generated object file describing the
3964options that it was compiled with (in a compiler-independent way) to prevent
3965linking incompatible objects, and to allow automatic library selection. Some
3966of these options are not visible at the IR level, namely wchar_t width and enum
3967width.
3968
3969To pass this information to the backend, these options are encoded in module
3970flags metadata, using the following key-value pairs:
3971
3972.. list-table::
3973 :header-rows: 1
3974 :widths: 30 70
3975
3976 * - Key
3977 - Value
3978
3979 * - short_wchar
3980 - * 0 --- sizeof(wchar_t) == 4
3981 * 1 --- sizeof(wchar_t) == 2
3982
3983 * - short_enum
3984 - * 0 --- Enums are at least as large as an ``int``.
3985 * 1 --- Enums are stored in the smallest integer type which can
3986 represent all of its values.
3987
3988For example, the following metadata section specifies that the module was
3989compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3990enum is the smallest type which can represent all of its values::
3991
3992 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003993 !0 = !{i32 1, !"short_wchar", i32 1}
3994 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00003995
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003996.. _intrinsicglobalvariables:
3997
Sean Silvab084af42012-12-07 10:36:55 +00003998Intrinsic Global Variables
3999==========================
4000
4001LLVM has a number of "magic" global variables that contain data that
4002affect code generation or other IR semantics. These are documented here.
4003All globals of this sort should have a section specified as
4004"``llvm.metadata``". This section and all globals that start with
4005"``llvm.``" are reserved for use by LLVM.
4006
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004007.. _gv_llvmused:
4008
Sean Silvab084af42012-12-07 10:36:55 +00004009The '``llvm.used``' Global Variable
4010-----------------------------------
4011
Rafael Espindola74f2e462013-04-22 14:58:02 +00004012The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004013:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004014pointers to named global variables, functions and aliases which may optionally
4015have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004016use of it is:
4017
4018.. code-block:: llvm
4019
4020 @X = global i8 4
4021 @Y = global i32 123
4022
4023 @llvm.used = appending global [2 x i8*] [
4024 i8* @X,
4025 i8* bitcast (i32* @Y to i8*)
4026 ], section "llvm.metadata"
4027
Rafael Espindola74f2e462013-04-22 14:58:02 +00004028If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4029and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004030symbol that it cannot see (which is why they have to be named). For example, if
4031a variable has internal linkage and no references other than that from the
4032``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4033references from inline asms and other things the compiler cannot "see", and
4034corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004035
4036On some targets, the code generator must emit a directive to the
4037assembler or object file to prevent the assembler and linker from
4038molesting the symbol.
4039
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004040.. _gv_llvmcompilerused:
4041
Sean Silvab084af42012-12-07 10:36:55 +00004042The '``llvm.compiler.used``' Global Variable
4043--------------------------------------------
4044
4045The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4046directive, except that it only prevents the compiler from touching the
4047symbol. On targets that support it, this allows an intelligent linker to
4048optimize references to the symbol without being impeded as it would be
4049by ``@llvm.used``.
4050
4051This is a rare construct that should only be used in rare circumstances,
4052and should not be exposed to source languages.
4053
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004054.. _gv_llvmglobalctors:
4055
Sean Silvab084af42012-12-07 10:36:55 +00004056The '``llvm.global_ctors``' Global Variable
4057-------------------------------------------
4058
4059.. code-block:: llvm
4060
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004061 %0 = type { i32, void ()*, i8* }
4062 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004063
4064The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004065functions, priorities, and an optional associated global or function.
4066The functions referenced by this array will be called in ascending order
4067of priority (i.e. lowest first) when the module is loaded. The order of
4068functions with the same priority is not defined.
4069
4070If the third field is present, non-null, and points to a global variable
4071or function, the initializer function will only run if the associated
4072data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004073
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004074.. _llvmglobaldtors:
4075
Sean Silvab084af42012-12-07 10:36:55 +00004076The '``llvm.global_dtors``' Global Variable
4077-------------------------------------------
4078
4079.. code-block:: llvm
4080
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004081 %0 = type { i32, void ()*, i8* }
4082 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004083
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004084The ``@llvm.global_dtors`` array contains a list of destructor
4085functions, priorities, and an optional associated global or function.
4086The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004087order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004088order of functions with the same priority is not defined.
4089
4090If the third field is present, non-null, and points to a global variable
4091or function, the destructor function will only run if the associated
4092data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004093
4094Instruction Reference
4095=====================
4096
4097The LLVM instruction set consists of several different classifications
4098of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4099instructions <binaryops>`, :ref:`bitwise binary
4100instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4101:ref:`other instructions <otherops>`.
4102
4103.. _terminators:
4104
4105Terminator Instructions
4106-----------------------
4107
4108As mentioned :ref:`previously <functionstructure>`, every basic block in a
4109program ends with a "Terminator" instruction, which indicates which
4110block should be executed after the current block is finished. These
4111terminator instructions typically yield a '``void``' value: they produce
4112control flow, not values (the one exception being the
4113':ref:`invoke <i_invoke>`' instruction).
4114
4115The terminator instructions are: ':ref:`ret <i_ret>`',
4116':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
4117':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
4118':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
4119
4120.. _i_ret:
4121
4122'``ret``' Instruction
4123^^^^^^^^^^^^^^^^^^^^^
4124
4125Syntax:
4126"""""""
4127
4128::
4129
4130 ret <type> <value> ; Return a value from a non-void function
4131 ret void ; Return from void function
4132
4133Overview:
4134"""""""""
4135
4136The '``ret``' instruction is used to return control flow (and optionally
4137a value) from a function back to the caller.
4138
4139There are two forms of the '``ret``' instruction: one that returns a
4140value and then causes control flow, and one that just causes control
4141flow to occur.
4142
4143Arguments:
4144""""""""""
4145
4146The '``ret``' instruction optionally accepts a single argument, the
4147return value. The type of the return value must be a ':ref:`first
4148class <t_firstclass>`' type.
4149
4150A function is not :ref:`well formed <wellformed>` if it it has a non-void
4151return type and contains a '``ret``' instruction with no return value or
4152a return value with a type that does not match its type, or if it has a
4153void return type and contains a '``ret``' instruction with a return
4154value.
4155
4156Semantics:
4157""""""""""
4158
4159When the '``ret``' instruction is executed, control flow returns back to
4160the calling function's context. If the caller is a
4161":ref:`call <i_call>`" instruction, execution continues at the
4162instruction after the call. If the caller was an
4163":ref:`invoke <i_invoke>`" instruction, execution continues at the
4164beginning of the "normal" destination block. If the instruction returns
4165a value, that value shall set the call or invoke instruction's return
4166value.
4167
4168Example:
4169""""""""
4170
4171.. code-block:: llvm
4172
4173 ret i32 5 ; Return an integer value of 5
4174 ret void ; Return from a void function
4175 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
4176
4177.. _i_br:
4178
4179'``br``' Instruction
4180^^^^^^^^^^^^^^^^^^^^
4181
4182Syntax:
4183"""""""
4184
4185::
4186
4187 br i1 <cond>, label <iftrue>, label <iffalse>
4188 br label <dest> ; Unconditional branch
4189
4190Overview:
4191"""""""""
4192
4193The '``br``' instruction is used to cause control flow to transfer to a
4194different basic block in the current function. There are two forms of
4195this instruction, corresponding to a conditional branch and an
4196unconditional branch.
4197
4198Arguments:
4199""""""""""
4200
4201The conditional branch form of the '``br``' instruction takes a single
4202'``i1``' value and two '``label``' values. The unconditional form of the
4203'``br``' instruction takes a single '``label``' value as a target.
4204
4205Semantics:
4206""""""""""
4207
4208Upon execution of a conditional '``br``' instruction, the '``i1``'
4209argument is evaluated. If the value is ``true``, control flows to the
4210'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
4211to the '``iffalse``' ``label`` argument.
4212
4213Example:
4214""""""""
4215
4216.. code-block:: llvm
4217
4218 Test:
4219 %cond = icmp eq i32 %a, %b
4220 br i1 %cond, label %IfEqual, label %IfUnequal
4221 IfEqual:
4222 ret i32 1
4223 IfUnequal:
4224 ret i32 0
4225
4226.. _i_switch:
4227
4228'``switch``' Instruction
4229^^^^^^^^^^^^^^^^^^^^^^^^
4230
4231Syntax:
4232"""""""
4233
4234::
4235
4236 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
4237
4238Overview:
4239"""""""""
4240
4241The '``switch``' instruction is used to transfer control flow to one of
4242several different places. It is a generalization of the '``br``'
4243instruction, allowing a branch to occur to one of many possible
4244destinations.
4245
4246Arguments:
4247""""""""""
4248
4249The '``switch``' instruction uses three parameters: an integer
4250comparison value '``value``', a default '``label``' destination, and an
4251array of pairs of comparison value constants and '``label``'s. The table
4252is not allowed to contain duplicate constant entries.
4253
4254Semantics:
4255""""""""""
4256
4257The ``switch`` instruction specifies a table of values and destinations.
4258When the '``switch``' instruction is executed, this table is searched
4259for the given value. If the value is found, control flow is transferred
4260to the corresponding destination; otherwise, control flow is transferred
4261to the default destination.
4262
4263Implementation:
4264"""""""""""""""
4265
4266Depending on properties of the target machine and the particular
4267``switch`` instruction, this instruction may be code generated in
4268different ways. For example, it could be generated as a series of
4269chained conditional branches or with a lookup table.
4270
4271Example:
4272""""""""
4273
4274.. code-block:: llvm
4275
4276 ; Emulate a conditional br instruction
4277 %Val = zext i1 %value to i32
4278 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
4279
4280 ; Emulate an unconditional br instruction
4281 switch i32 0, label %dest [ ]
4282
4283 ; Implement a jump table:
4284 switch i32 %val, label %otherwise [ i32 0, label %onzero
4285 i32 1, label %onone
4286 i32 2, label %ontwo ]
4287
4288.. _i_indirectbr:
4289
4290'``indirectbr``' Instruction
4291^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4292
4293Syntax:
4294"""""""
4295
4296::
4297
4298 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
4299
4300Overview:
4301"""""""""
4302
4303The '``indirectbr``' instruction implements an indirect branch to a
4304label within the current function, whose address is specified by
4305"``address``". Address must be derived from a
4306:ref:`blockaddress <blockaddress>` constant.
4307
4308Arguments:
4309""""""""""
4310
4311The '``address``' argument is the address of the label to jump to. The
4312rest of the arguments indicate the full set of possible destinations
4313that the address may point to. Blocks are allowed to occur multiple
4314times in the destination list, though this isn't particularly useful.
4315
4316This destination list is required so that dataflow analysis has an
4317accurate understanding of the CFG.
4318
4319Semantics:
4320""""""""""
4321
4322Control transfers to the block specified in the address argument. All
4323possible destination blocks must be listed in the label list, otherwise
4324this instruction has undefined behavior. This implies that jumps to
4325labels defined in other functions have undefined behavior as well.
4326
4327Implementation:
4328"""""""""""""""
4329
4330This is typically implemented with a jump through a register.
4331
4332Example:
4333""""""""
4334
4335.. code-block:: llvm
4336
4337 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
4338
4339.. _i_invoke:
4340
4341'``invoke``' Instruction
4342^^^^^^^^^^^^^^^^^^^^^^^^
4343
4344Syntax:
4345"""""""
4346
4347::
4348
4349 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
4350 to label <normal label> unwind label <exception label>
4351
4352Overview:
4353"""""""""
4354
4355The '``invoke``' instruction causes control to transfer to a specified
4356function, with the possibility of control flow transfer to either the
4357'``normal``' label or the '``exception``' label. If the callee function
4358returns with the "``ret``" instruction, control flow will return to the
4359"normal" label. If the callee (or any indirect callees) returns via the
4360":ref:`resume <i_resume>`" instruction or other exception handling
4361mechanism, control is interrupted and continued at the dynamically
4362nearest "exception" label.
4363
4364The '``exception``' label is a `landing
4365pad <ExceptionHandling.html#overview>`_ for the exception. As such,
4366'``exception``' label is required to have the
4367":ref:`landingpad <i_landingpad>`" instruction, which contains the
4368information about the behavior of the program after unwinding happens,
4369as its first non-PHI instruction. The restrictions on the
4370"``landingpad``" instruction's tightly couples it to the "``invoke``"
4371instruction, so that the important information contained within the
4372"``landingpad``" instruction can't be lost through normal code motion.
4373
4374Arguments:
4375""""""""""
4376
4377This instruction requires several arguments:
4378
4379#. The optional "cconv" marker indicates which :ref:`calling
4380 convention <callingconv>` the call should use. If none is
4381 specified, the call defaults to using C calling conventions.
4382#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
4383 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
4384 are valid here.
4385#. '``ptr to function ty``': shall be the signature of the pointer to
4386 function value being invoked. In most cases, this is a direct
4387 function invocation, but indirect ``invoke``'s are just as possible,
4388 branching off an arbitrary pointer to function value.
4389#. '``function ptr val``': An LLVM value containing a pointer to a
4390 function to be invoked.
4391#. '``function args``': argument list whose types match the function
4392 signature argument types and parameter attributes. All arguments must
4393 be of :ref:`first class <t_firstclass>` type. If the function signature
4394 indicates the function accepts a variable number of arguments, the
4395 extra arguments can be specified.
4396#. '``normal label``': the label reached when the called function
4397 executes a '``ret``' instruction.
4398#. '``exception label``': the label reached when a callee returns via
4399 the :ref:`resume <i_resume>` instruction or other exception handling
4400 mechanism.
4401#. The optional :ref:`function attributes <fnattrs>` list. Only
4402 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
4403 attributes are valid here.
4404
4405Semantics:
4406""""""""""
4407
4408This instruction is designed to operate as a standard '``call``'
4409instruction in most regards. The primary difference is that it
4410establishes an association with a label, which is used by the runtime
4411library to unwind the stack.
4412
4413This instruction is used in languages with destructors to ensure that
4414proper cleanup is performed in the case of either a ``longjmp`` or a
4415thrown exception. Additionally, this is important for implementation of
4416'``catch``' clauses in high-level languages that support them.
4417
4418For the purposes of the SSA form, the definition of the value returned
4419by the '``invoke``' instruction is deemed to occur on the edge from the
4420current block to the "normal" label. If the callee unwinds then no
4421return value is available.
4422
4423Example:
4424""""""""
4425
4426.. code-block:: llvm
4427
4428 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00004429 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00004430 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00004431 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00004432
4433.. _i_resume:
4434
4435'``resume``' Instruction
4436^^^^^^^^^^^^^^^^^^^^^^^^
4437
4438Syntax:
4439"""""""
4440
4441::
4442
4443 resume <type> <value>
4444
4445Overview:
4446"""""""""
4447
4448The '``resume``' instruction is a terminator instruction that has no
4449successors.
4450
4451Arguments:
4452""""""""""
4453
4454The '``resume``' instruction requires one argument, which must have the
4455same type as the result of any '``landingpad``' instruction in the same
4456function.
4457
4458Semantics:
4459""""""""""
4460
4461The '``resume``' instruction resumes propagation of an existing
4462(in-flight) exception whose unwinding was interrupted with a
4463:ref:`landingpad <i_landingpad>` instruction.
4464
4465Example:
4466""""""""
4467
4468.. code-block:: llvm
4469
4470 resume { i8*, i32 } %exn
4471
4472.. _i_unreachable:
4473
4474'``unreachable``' Instruction
4475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4476
4477Syntax:
4478"""""""
4479
4480::
4481
4482 unreachable
4483
4484Overview:
4485"""""""""
4486
4487The '``unreachable``' instruction has no defined semantics. This
4488instruction is used to inform the optimizer that a particular portion of
4489the code is not reachable. This can be used to indicate that the code
4490after a no-return function cannot be reached, and other facts.
4491
4492Semantics:
4493""""""""""
4494
4495The '``unreachable``' instruction has no defined semantics.
4496
4497.. _binaryops:
4498
4499Binary Operations
4500-----------------
4501
4502Binary operators are used to do most of the computation in a program.
4503They require two operands of the same type, execute an operation on
4504them, and produce a single value. The operands might represent multiple
4505data, as is the case with the :ref:`vector <t_vector>` data type. The
4506result value has the same type as its operands.
4507
4508There are several different binary operators:
4509
4510.. _i_add:
4511
4512'``add``' Instruction
4513^^^^^^^^^^^^^^^^^^^^^
4514
4515Syntax:
4516"""""""
4517
4518::
4519
Tim Northover675a0962014-06-13 14:24:23 +00004520 <result> = add <ty> <op1>, <op2> ; yields ty:result
4521 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
4522 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
4523 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004524
4525Overview:
4526"""""""""
4527
4528The '``add``' instruction returns the sum of its two operands.
4529
4530Arguments:
4531""""""""""
4532
4533The two arguments to the '``add``' instruction must be
4534:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4535arguments must have identical types.
4536
4537Semantics:
4538""""""""""
4539
4540The value produced is the integer sum of the two operands.
4541
4542If the sum has unsigned overflow, the result returned is the
4543mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4544the result.
4545
4546Because LLVM integers use a two's complement representation, this
4547instruction is appropriate for both signed and unsigned integers.
4548
4549``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4550respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4551result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
4552unsigned and/or signed overflow, respectively, occurs.
4553
4554Example:
4555""""""""
4556
4557.. code-block:: llvm
4558
Tim Northover675a0962014-06-13 14:24:23 +00004559 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004560
4561.. _i_fadd:
4562
4563'``fadd``' Instruction
4564^^^^^^^^^^^^^^^^^^^^^^
4565
4566Syntax:
4567"""""""
4568
4569::
4570
Tim Northover675a0962014-06-13 14:24:23 +00004571 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004572
4573Overview:
4574"""""""""
4575
4576The '``fadd``' instruction returns the sum of its two operands.
4577
4578Arguments:
4579""""""""""
4580
4581The two arguments to the '``fadd``' instruction must be :ref:`floating
4582point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4583Both arguments must have identical types.
4584
4585Semantics:
4586""""""""""
4587
4588The value produced is the floating point sum of the two operands. This
4589instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4590which are optimization hints to enable otherwise unsafe floating point
4591optimizations:
4592
4593Example:
4594""""""""
4595
4596.. code-block:: llvm
4597
Tim Northover675a0962014-06-13 14:24:23 +00004598 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004599
4600'``sub``' Instruction
4601^^^^^^^^^^^^^^^^^^^^^
4602
4603Syntax:
4604"""""""
4605
4606::
4607
Tim Northover675a0962014-06-13 14:24:23 +00004608 <result> = sub <ty> <op1>, <op2> ; yields ty:result
4609 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
4610 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
4611 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004612
4613Overview:
4614"""""""""
4615
4616The '``sub``' instruction returns the difference of its two operands.
4617
4618Note that the '``sub``' instruction is used to represent the '``neg``'
4619instruction present in most other intermediate representations.
4620
4621Arguments:
4622""""""""""
4623
4624The two arguments to the '``sub``' instruction must be
4625:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4626arguments must have identical types.
4627
4628Semantics:
4629""""""""""
4630
4631The value produced is the integer difference of the two operands.
4632
4633If the difference has unsigned overflow, the result returned is the
4634mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4635the result.
4636
4637Because LLVM integers use a two's complement representation, this
4638instruction is appropriate for both signed and unsigned integers.
4639
4640``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4641respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4642result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4643unsigned and/or signed overflow, respectively, occurs.
4644
4645Example:
4646""""""""
4647
4648.. code-block:: llvm
4649
Tim Northover675a0962014-06-13 14:24:23 +00004650 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
4651 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004652
4653.. _i_fsub:
4654
4655'``fsub``' Instruction
4656^^^^^^^^^^^^^^^^^^^^^^
4657
4658Syntax:
4659"""""""
4660
4661::
4662
Tim Northover675a0962014-06-13 14:24:23 +00004663 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004664
4665Overview:
4666"""""""""
4667
4668The '``fsub``' instruction returns the difference of its two operands.
4669
4670Note that the '``fsub``' instruction is used to represent the '``fneg``'
4671instruction present in most other intermediate representations.
4672
4673Arguments:
4674""""""""""
4675
4676The two arguments to the '``fsub``' instruction must be :ref:`floating
4677point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4678Both arguments must have identical types.
4679
4680Semantics:
4681""""""""""
4682
4683The value produced is the floating point difference of the two operands.
4684This instruction can also take any number of :ref:`fast-math
4685flags <fastmath>`, which are optimization hints to enable otherwise
4686unsafe floating point optimizations:
4687
4688Example:
4689""""""""
4690
4691.. code-block:: llvm
4692
Tim Northover675a0962014-06-13 14:24:23 +00004693 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4694 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004695
4696'``mul``' Instruction
4697^^^^^^^^^^^^^^^^^^^^^
4698
4699Syntax:
4700"""""""
4701
4702::
4703
Tim Northover675a0962014-06-13 14:24:23 +00004704 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4705 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4706 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4707 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004708
4709Overview:
4710"""""""""
4711
4712The '``mul``' instruction returns the product of its two operands.
4713
4714Arguments:
4715""""""""""
4716
4717The two arguments to the '``mul``' instruction must be
4718:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4719arguments must have identical types.
4720
4721Semantics:
4722""""""""""
4723
4724The value produced is the integer product of the two operands.
4725
4726If the result of the multiplication has unsigned overflow, the result
4727returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4728bit width of the result.
4729
4730Because LLVM integers use a two's complement representation, and the
4731result is the same width as the operands, this instruction returns the
4732correct result for both signed and unsigned integers. If a full product
4733(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4734sign-extended or zero-extended as appropriate to the width of the full
4735product.
4736
4737``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4738respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4739result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4740unsigned and/or signed overflow, respectively, occurs.
4741
4742Example:
4743""""""""
4744
4745.. code-block:: llvm
4746
Tim Northover675a0962014-06-13 14:24:23 +00004747 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004748
4749.. _i_fmul:
4750
4751'``fmul``' Instruction
4752^^^^^^^^^^^^^^^^^^^^^^
4753
4754Syntax:
4755"""""""
4756
4757::
4758
Tim Northover675a0962014-06-13 14:24:23 +00004759 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004760
4761Overview:
4762"""""""""
4763
4764The '``fmul``' instruction returns the product of its two operands.
4765
4766Arguments:
4767""""""""""
4768
4769The two arguments to the '``fmul``' instruction must be :ref:`floating
4770point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4771Both arguments must have identical types.
4772
4773Semantics:
4774""""""""""
4775
4776The value produced is the floating point product of the two operands.
4777This instruction can also take any number of :ref:`fast-math
4778flags <fastmath>`, which are optimization hints to enable otherwise
4779unsafe floating point optimizations:
4780
4781Example:
4782""""""""
4783
4784.. code-block:: llvm
4785
Tim Northover675a0962014-06-13 14:24:23 +00004786 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004787
4788'``udiv``' Instruction
4789^^^^^^^^^^^^^^^^^^^^^^
4790
4791Syntax:
4792"""""""
4793
4794::
4795
Tim Northover675a0962014-06-13 14:24:23 +00004796 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4797 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004798
4799Overview:
4800"""""""""
4801
4802The '``udiv``' instruction returns the quotient of its two operands.
4803
4804Arguments:
4805""""""""""
4806
4807The two arguments to the '``udiv``' instruction must be
4808:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4809arguments must have identical types.
4810
4811Semantics:
4812""""""""""
4813
4814The value produced is the unsigned integer quotient of the two operands.
4815
4816Note that unsigned integer division and signed integer division are
4817distinct operations; for signed integer division, use '``sdiv``'.
4818
4819Division by zero leads to undefined behavior.
4820
4821If the ``exact`` keyword is present, the result value of the ``udiv`` is
4822a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4823such, "((a udiv exact b) mul b) == a").
4824
4825Example:
4826""""""""
4827
4828.. code-block:: llvm
4829
Tim Northover675a0962014-06-13 14:24:23 +00004830 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004831
4832'``sdiv``' Instruction
4833^^^^^^^^^^^^^^^^^^^^^^
4834
4835Syntax:
4836"""""""
4837
4838::
4839
Tim Northover675a0962014-06-13 14:24:23 +00004840 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4841 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004842
4843Overview:
4844"""""""""
4845
4846The '``sdiv``' instruction returns the quotient of its two operands.
4847
4848Arguments:
4849""""""""""
4850
4851The two arguments to the '``sdiv``' instruction must be
4852:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4853arguments must have identical types.
4854
4855Semantics:
4856""""""""""
4857
4858The value produced is the signed integer quotient of the two operands
4859rounded towards zero.
4860
4861Note that signed integer division and unsigned integer division are
4862distinct operations; for unsigned integer division, use '``udiv``'.
4863
4864Division by zero leads to undefined behavior. Overflow also leads to
4865undefined behavior; this is a rare case, but can occur, for example, by
4866doing a 32-bit division of -2147483648 by -1.
4867
4868If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4869a :ref:`poison value <poisonvalues>` if the result would be rounded.
4870
4871Example:
4872""""""""
4873
4874.. code-block:: llvm
4875
Tim Northover675a0962014-06-13 14:24:23 +00004876 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004877
4878.. _i_fdiv:
4879
4880'``fdiv``' Instruction
4881^^^^^^^^^^^^^^^^^^^^^^
4882
4883Syntax:
4884"""""""
4885
4886::
4887
Tim Northover675a0962014-06-13 14:24:23 +00004888 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004889
4890Overview:
4891"""""""""
4892
4893The '``fdiv``' instruction returns the quotient of its two operands.
4894
4895Arguments:
4896""""""""""
4897
4898The two arguments to the '``fdiv``' instruction must be :ref:`floating
4899point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4900Both arguments must have identical types.
4901
4902Semantics:
4903""""""""""
4904
4905The value produced is the floating point quotient of the two operands.
4906This instruction can also take any number of :ref:`fast-math
4907flags <fastmath>`, which are optimization hints to enable otherwise
4908unsafe floating point optimizations:
4909
4910Example:
4911""""""""
4912
4913.. code-block:: llvm
4914
Tim Northover675a0962014-06-13 14:24:23 +00004915 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004916
4917'``urem``' Instruction
4918^^^^^^^^^^^^^^^^^^^^^^
4919
4920Syntax:
4921"""""""
4922
4923::
4924
Tim Northover675a0962014-06-13 14:24:23 +00004925 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004926
4927Overview:
4928"""""""""
4929
4930The '``urem``' instruction returns the remainder from the unsigned
4931division of its two arguments.
4932
4933Arguments:
4934""""""""""
4935
4936The two arguments to the '``urem``' instruction must be
4937:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4938arguments must have identical types.
4939
4940Semantics:
4941""""""""""
4942
4943This instruction returns the unsigned integer *remainder* of a division.
4944This instruction always performs an unsigned division to get the
4945remainder.
4946
4947Note that unsigned integer remainder and signed integer remainder are
4948distinct operations; for signed integer remainder, use '``srem``'.
4949
4950Taking the remainder of a division by zero leads to undefined behavior.
4951
4952Example:
4953""""""""
4954
4955.. code-block:: llvm
4956
Tim Northover675a0962014-06-13 14:24:23 +00004957 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004958
4959'``srem``' Instruction
4960^^^^^^^^^^^^^^^^^^^^^^
4961
4962Syntax:
4963"""""""
4964
4965::
4966
Tim Northover675a0962014-06-13 14:24:23 +00004967 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004968
4969Overview:
4970"""""""""
4971
4972The '``srem``' instruction returns the remainder from the signed
4973division of its two operands. This instruction can also take
4974:ref:`vector <t_vector>` versions of the values in which case the elements
4975must be integers.
4976
4977Arguments:
4978""""""""""
4979
4980The two arguments to the '``srem``' instruction must be
4981:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4982arguments must have identical types.
4983
4984Semantics:
4985""""""""""
4986
4987This instruction returns the *remainder* of a division (where the result
4988is either zero or has the same sign as the dividend, ``op1``), not the
4989*modulo* operator (where the result is either zero or has the same sign
4990as the divisor, ``op2``) of a value. For more information about the
4991difference, see `The Math
4992Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4993table of how this is implemented in various languages, please see
4994`Wikipedia: modulo
4995operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4996
4997Note that signed integer remainder and unsigned integer remainder are
4998distinct operations; for unsigned integer remainder, use '``urem``'.
4999
5000Taking the remainder of a division by zero leads to undefined behavior.
5001Overflow also leads to undefined behavior; this is a rare case, but can
5002occur, for example, by taking the remainder of a 32-bit division of
5003-2147483648 by -1. (The remainder doesn't actually overflow, but this
5004rule lets srem be implemented using instructions that return both the
5005result of the division and the remainder.)
5006
5007Example:
5008""""""""
5009
5010.. code-block:: llvm
5011
Tim Northover675a0962014-06-13 14:24:23 +00005012 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005013
5014.. _i_frem:
5015
5016'``frem``' Instruction
5017^^^^^^^^^^^^^^^^^^^^^^
5018
5019Syntax:
5020"""""""
5021
5022::
5023
Tim Northover675a0962014-06-13 14:24:23 +00005024 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005025
5026Overview:
5027"""""""""
5028
5029The '``frem``' instruction returns the remainder from the division of
5030its two operands.
5031
5032Arguments:
5033""""""""""
5034
5035The two arguments to the '``frem``' instruction must be :ref:`floating
5036point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5037Both arguments must have identical types.
5038
5039Semantics:
5040""""""""""
5041
5042This instruction returns the *remainder* of a division. The remainder
5043has the same sign as the dividend. This instruction can also take any
5044number of :ref:`fast-math flags <fastmath>`, which are optimization hints
5045to enable otherwise unsafe floating point optimizations:
5046
5047Example:
5048""""""""
5049
5050.. code-block:: llvm
5051
Tim Northover675a0962014-06-13 14:24:23 +00005052 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005053
5054.. _bitwiseops:
5055
5056Bitwise Binary Operations
5057-------------------------
5058
5059Bitwise binary operators are used to do various forms of bit-twiddling
5060in a program. They are generally very efficient instructions and can
5061commonly be strength reduced from other instructions. They require two
5062operands of the same type, execute an operation on them, and produce a
5063single value. The resulting value is the same type as its operands.
5064
5065'``shl``' Instruction
5066^^^^^^^^^^^^^^^^^^^^^
5067
5068Syntax:
5069"""""""
5070
5071::
5072
Tim Northover675a0962014-06-13 14:24:23 +00005073 <result> = shl <ty> <op1>, <op2> ; yields ty:result
5074 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
5075 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
5076 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005077
5078Overview:
5079"""""""""
5080
5081The '``shl``' instruction returns the first operand shifted to the left
5082a specified number of bits.
5083
5084Arguments:
5085""""""""""
5086
5087Both arguments to the '``shl``' instruction must be the same
5088:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5089'``op2``' is treated as an unsigned value.
5090
5091Semantics:
5092""""""""""
5093
5094The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
5095where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00005096dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00005097``op1``, the result is undefined. If the arguments are vectors, each
5098vector element of ``op1`` is shifted by the corresponding shift amount
5099in ``op2``.
5100
5101If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
5102value <poisonvalues>` if it shifts out any non-zero bits. If the
5103``nsw`` keyword is present, then the shift produces a :ref:`poison
5104value <poisonvalues>` if it shifts out any bits that disagree with the
5105resultant sign bit. As such, NUW/NSW have the same semantics as they
5106would if the shift were expressed as a mul instruction with the same
5107nsw/nuw bits in (mul %op1, (shl 1, %op2)).
5108
5109Example:
5110""""""""
5111
5112.. code-block:: llvm
5113
Tim Northover675a0962014-06-13 14:24:23 +00005114 <result> = shl i32 4, %var ; yields i32: 4 << %var
5115 <result> = shl i32 4, 2 ; yields i32: 16
5116 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00005117 <result> = shl i32 1, 32 ; undefined
5118 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
5119
5120'``lshr``' Instruction
5121^^^^^^^^^^^^^^^^^^^^^^
5122
5123Syntax:
5124"""""""
5125
5126::
5127
Tim Northover675a0962014-06-13 14:24:23 +00005128 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
5129 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005130
5131Overview:
5132"""""""""
5133
5134The '``lshr``' instruction (logical shift right) returns the first
5135operand shifted to the right a specified number of bits with zero fill.
5136
5137Arguments:
5138""""""""""
5139
5140Both arguments to the '``lshr``' instruction must be the same
5141:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5142'``op2``' is treated as an unsigned value.
5143
5144Semantics:
5145""""""""""
5146
5147This instruction always performs a logical shift right operation. The
5148most significant bits of the result will be filled with zero bits after
5149the shift. If ``op2`` is (statically or dynamically) equal to or larger
5150than the number of bits in ``op1``, the result is undefined. If the
5151arguments are vectors, each vector element of ``op1`` is shifted by the
5152corresponding shift amount in ``op2``.
5153
5154If the ``exact`` keyword is present, the result value of the ``lshr`` is
5155a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
5156non-zero.
5157
5158Example:
5159""""""""
5160
5161.. code-block:: llvm
5162
Tim Northover675a0962014-06-13 14:24:23 +00005163 <result> = lshr i32 4, 1 ; yields i32:result = 2
5164 <result> = lshr i32 4, 2 ; yields i32:result = 1
5165 <result> = lshr i8 4, 3 ; yields i8:result = 0
5166 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00005167 <result> = lshr i32 1, 32 ; undefined
5168 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
5169
5170'``ashr``' Instruction
5171^^^^^^^^^^^^^^^^^^^^^^
5172
5173Syntax:
5174"""""""
5175
5176::
5177
Tim Northover675a0962014-06-13 14:24:23 +00005178 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
5179 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005180
5181Overview:
5182"""""""""
5183
5184The '``ashr``' instruction (arithmetic shift right) returns the first
5185operand shifted to the right a specified number of bits with sign
5186extension.
5187
5188Arguments:
5189""""""""""
5190
5191Both arguments to the '``ashr``' instruction must be the same
5192:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5193'``op2``' is treated as an unsigned value.
5194
5195Semantics:
5196""""""""""
5197
5198This instruction always performs an arithmetic shift right operation,
5199The most significant bits of the result will be filled with the sign bit
5200of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
5201than the number of bits in ``op1``, the result is undefined. If the
5202arguments are vectors, each vector element of ``op1`` is shifted by the
5203corresponding shift amount in ``op2``.
5204
5205If the ``exact`` keyword is present, the result value of the ``ashr`` is
5206a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
5207non-zero.
5208
5209Example:
5210""""""""
5211
5212.. code-block:: llvm
5213
Tim Northover675a0962014-06-13 14:24:23 +00005214 <result> = ashr i32 4, 1 ; yields i32:result = 2
5215 <result> = ashr i32 4, 2 ; yields i32:result = 1
5216 <result> = ashr i8 4, 3 ; yields i8:result = 0
5217 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00005218 <result> = ashr i32 1, 32 ; undefined
5219 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
5220
5221'``and``' Instruction
5222^^^^^^^^^^^^^^^^^^^^^
5223
5224Syntax:
5225"""""""
5226
5227::
5228
Tim Northover675a0962014-06-13 14:24:23 +00005229 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005230
5231Overview:
5232"""""""""
5233
5234The '``and``' instruction returns the bitwise logical and of its two
5235operands.
5236
5237Arguments:
5238""""""""""
5239
5240The two arguments to the '``and``' instruction must be
5241:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5242arguments must have identical types.
5243
5244Semantics:
5245""""""""""
5246
5247The truth table used for the '``and``' instruction is:
5248
5249+-----+-----+-----+
5250| In0 | In1 | Out |
5251+-----+-----+-----+
5252| 0 | 0 | 0 |
5253+-----+-----+-----+
5254| 0 | 1 | 0 |
5255+-----+-----+-----+
5256| 1 | 0 | 0 |
5257+-----+-----+-----+
5258| 1 | 1 | 1 |
5259+-----+-----+-----+
5260
5261Example:
5262""""""""
5263
5264.. code-block:: llvm
5265
Tim Northover675a0962014-06-13 14:24:23 +00005266 <result> = and i32 4, %var ; yields i32:result = 4 & %var
5267 <result> = and i32 15, 40 ; yields i32:result = 8
5268 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00005269
5270'``or``' Instruction
5271^^^^^^^^^^^^^^^^^^^^
5272
5273Syntax:
5274"""""""
5275
5276::
5277
Tim Northover675a0962014-06-13 14:24:23 +00005278 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005279
5280Overview:
5281"""""""""
5282
5283The '``or``' instruction returns the bitwise logical inclusive or of its
5284two operands.
5285
5286Arguments:
5287""""""""""
5288
5289The two arguments to the '``or``' instruction must be
5290:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5291arguments must have identical types.
5292
5293Semantics:
5294""""""""""
5295
5296The truth table used for the '``or``' instruction is:
5297
5298+-----+-----+-----+
5299| In0 | In1 | Out |
5300+-----+-----+-----+
5301| 0 | 0 | 0 |
5302+-----+-----+-----+
5303| 0 | 1 | 1 |
5304+-----+-----+-----+
5305| 1 | 0 | 1 |
5306+-----+-----+-----+
5307| 1 | 1 | 1 |
5308+-----+-----+-----+
5309
5310Example:
5311""""""""
5312
5313::
5314
Tim Northover675a0962014-06-13 14:24:23 +00005315 <result> = or i32 4, %var ; yields i32:result = 4 | %var
5316 <result> = or i32 15, 40 ; yields i32:result = 47
5317 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00005318
5319'``xor``' Instruction
5320^^^^^^^^^^^^^^^^^^^^^
5321
5322Syntax:
5323"""""""
5324
5325::
5326
Tim Northover675a0962014-06-13 14:24:23 +00005327 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005328
5329Overview:
5330"""""""""
5331
5332The '``xor``' instruction returns the bitwise logical exclusive or of
5333its two operands. The ``xor`` is used to implement the "one's
5334complement" operation, which is the "~" operator in C.
5335
5336Arguments:
5337""""""""""
5338
5339The two arguments to the '``xor``' instruction must be
5340:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5341arguments must have identical types.
5342
5343Semantics:
5344""""""""""
5345
5346The truth table used for the '``xor``' instruction is:
5347
5348+-----+-----+-----+
5349| In0 | In1 | Out |
5350+-----+-----+-----+
5351| 0 | 0 | 0 |
5352+-----+-----+-----+
5353| 0 | 1 | 1 |
5354+-----+-----+-----+
5355| 1 | 0 | 1 |
5356+-----+-----+-----+
5357| 1 | 1 | 0 |
5358+-----+-----+-----+
5359
5360Example:
5361""""""""
5362
5363.. code-block:: llvm
5364
Tim Northover675a0962014-06-13 14:24:23 +00005365 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
5366 <result> = xor i32 15, 40 ; yields i32:result = 39
5367 <result> = xor i32 4, 8 ; yields i32:result = 12
5368 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00005369
5370Vector Operations
5371-----------------
5372
5373LLVM supports several instructions to represent vector operations in a
5374target-independent manner. These instructions cover the element-access
5375and vector-specific operations needed to process vectors effectively.
5376While LLVM does directly support these vector operations, many
5377sophisticated algorithms will want to use target-specific intrinsics to
5378take full advantage of a specific target.
5379
5380.. _i_extractelement:
5381
5382'``extractelement``' Instruction
5383^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5384
5385Syntax:
5386"""""""
5387
5388::
5389
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00005390 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00005391
5392Overview:
5393"""""""""
5394
5395The '``extractelement``' instruction extracts a single scalar element
5396from a vector at a specified index.
5397
5398Arguments:
5399""""""""""
5400
5401The first operand of an '``extractelement``' instruction is a value of
5402:ref:`vector <t_vector>` type. The second operand is an index indicating
5403the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00005404variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00005405
5406Semantics:
5407""""""""""
5408
5409The result is a scalar of the same type as the element type of ``val``.
5410Its value is the value at position ``idx`` of ``val``. If ``idx``
5411exceeds the length of ``val``, the results are undefined.
5412
5413Example:
5414""""""""
5415
5416.. code-block:: llvm
5417
5418 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
5419
5420.. _i_insertelement:
5421
5422'``insertelement``' Instruction
5423^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5424
5425Syntax:
5426"""""""
5427
5428::
5429
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00005430 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00005431
5432Overview:
5433"""""""""
5434
5435The '``insertelement``' instruction inserts a scalar element into a
5436vector at a specified index.
5437
5438Arguments:
5439""""""""""
5440
5441The first operand of an '``insertelement``' instruction is a value of
5442:ref:`vector <t_vector>` type. The second operand is a scalar value whose
5443type must equal the element type of the first operand. The third operand
5444is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00005445index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00005446
5447Semantics:
5448""""""""""
5449
5450The result is a vector of the same type as ``val``. Its element values
5451are those of ``val`` except at position ``idx``, where it gets the value
5452``elt``. If ``idx`` exceeds the length of ``val``, the results are
5453undefined.
5454
5455Example:
5456""""""""
5457
5458.. code-block:: llvm
5459
5460 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
5461
5462.. _i_shufflevector:
5463
5464'``shufflevector``' Instruction
5465^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5466
5467Syntax:
5468"""""""
5469
5470::
5471
5472 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
5473
5474Overview:
5475"""""""""
5476
5477The '``shufflevector``' instruction constructs a permutation of elements
5478from two input vectors, returning a vector with the same element type as
5479the input and length that is the same as the shuffle mask.
5480
5481Arguments:
5482""""""""""
5483
5484The first two operands of a '``shufflevector``' instruction are vectors
5485with the same type. The third argument is a shuffle mask whose element
5486type is always 'i32'. The result of the instruction is a vector whose
5487length is the same as the shuffle mask and whose element type is the
5488same as the element type of the first two operands.
5489
5490The shuffle mask operand is required to be a constant vector with either
5491constant integer or undef values.
5492
5493Semantics:
5494""""""""""
5495
5496The elements of the two input vectors are numbered from left to right
5497across both of the vectors. The shuffle mask operand specifies, for each
5498element of the result vector, which element of the two input vectors the
5499result element gets. The element selector may be undef (meaning "don't
5500care") and the second operand may be undef if performing a shuffle from
5501only one vector.
5502
5503Example:
5504""""""""
5505
5506.. code-block:: llvm
5507
5508 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5509 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
5510 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
5511 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
5512 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
5513 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
5514 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5515 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
5516
5517Aggregate Operations
5518--------------------
5519
5520LLVM supports several instructions for working with
5521:ref:`aggregate <t_aggregate>` values.
5522
5523.. _i_extractvalue:
5524
5525'``extractvalue``' Instruction
5526^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5527
5528Syntax:
5529"""""""
5530
5531::
5532
5533 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
5534
5535Overview:
5536"""""""""
5537
5538The '``extractvalue``' instruction extracts the value of a member field
5539from an :ref:`aggregate <t_aggregate>` value.
5540
5541Arguments:
5542""""""""""
5543
5544The first operand of an '``extractvalue``' instruction is a value of
5545:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
5546constant indices to specify which value to extract in a similar manner
5547as indices in a '``getelementptr``' instruction.
5548
5549The major differences to ``getelementptr`` indexing are:
5550
5551- Since the value being indexed is not a pointer, the first index is
5552 omitted and assumed to be zero.
5553- At least one index must be specified.
5554- Not only struct indices but also array indices must be in bounds.
5555
5556Semantics:
5557""""""""""
5558
5559The result is the value at the position in the aggregate specified by
5560the index operands.
5561
5562Example:
5563""""""""
5564
5565.. code-block:: llvm
5566
5567 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
5568
5569.. _i_insertvalue:
5570
5571'``insertvalue``' Instruction
5572^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5573
5574Syntax:
5575"""""""
5576
5577::
5578
5579 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
5580
5581Overview:
5582"""""""""
5583
5584The '``insertvalue``' instruction inserts a value into a member field in
5585an :ref:`aggregate <t_aggregate>` value.
5586
5587Arguments:
5588""""""""""
5589
5590The first operand of an '``insertvalue``' instruction is a value of
5591:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5592a first-class value to insert. The following operands are constant
5593indices indicating the position at which to insert the value in a
5594similar manner as indices in a '``extractvalue``' instruction. The value
5595to insert must have the same type as the value identified by the
5596indices.
5597
5598Semantics:
5599""""""""""
5600
5601The result is an aggregate of the same type as ``val``. Its value is
5602that of ``val`` except that the value at the position specified by the
5603indices is that of ``elt``.
5604
5605Example:
5606""""""""
5607
5608.. code-block:: llvm
5609
5610 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
5611 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00005612 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00005613
5614.. _memoryops:
5615
5616Memory Access and Addressing Operations
5617---------------------------------------
5618
5619A key design point of an SSA-based representation is how it represents
5620memory. In LLVM, no memory locations are in SSA form, which makes things
5621very simple. This section describes how to read, write, and allocate
5622memory in LLVM.
5623
5624.. _i_alloca:
5625
5626'``alloca``' Instruction
5627^^^^^^^^^^^^^^^^^^^^^^^^
5628
5629Syntax:
5630"""""""
5631
5632::
5633
Tim Northover675a0962014-06-13 14:24:23 +00005634 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00005635
5636Overview:
5637"""""""""
5638
5639The '``alloca``' instruction allocates memory on the stack frame of the
5640currently executing function, to be automatically released when this
5641function returns to its caller. The object is always allocated in the
5642generic address space (address space zero).
5643
5644Arguments:
5645""""""""""
5646
5647The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5648bytes of memory on the runtime stack, returning a pointer of the
5649appropriate type to the program. If "NumElements" is specified, it is
5650the number of elements allocated, otherwise "NumElements" is defaulted
5651to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005652allocation is guaranteed to be aligned to at least that boundary. The
5653alignment may not be greater than ``1 << 29``. If not specified, or if
5654zero, the target can choose to align the allocation on any convenient
5655boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00005656
5657'``type``' may be any sized type.
5658
5659Semantics:
5660""""""""""
5661
5662Memory is allocated; a pointer is returned. The operation is undefined
5663if there is insufficient stack space for the allocation. '``alloca``'d
5664memory is automatically released when the function returns. The
5665'``alloca``' instruction is commonly used to represent automatic
5666variables that must have an address available. When the function returns
5667(either with the ``ret`` or ``resume`` instructions), the memory is
5668reclaimed. Allocating zero bytes is legal, but the result is undefined.
5669The order in which memory is allocated (ie., which way the stack grows)
5670is not specified.
5671
5672Example:
5673""""""""
5674
5675.. code-block:: llvm
5676
Tim Northover675a0962014-06-13 14:24:23 +00005677 %ptr = alloca i32 ; yields i32*:ptr
5678 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5679 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5680 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005681
5682.. _i_load:
5683
5684'``load``' Instruction
5685^^^^^^^^^^^^^^^^^^^^^^
5686
5687Syntax:
5688"""""""
5689
5690::
5691
Sanjoy Dasf9995472015-05-19 20:10:19 +00005692 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>][, !dereferenceable !<index>][, !dereferenceable_or_null !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00005693 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5694 !<index> = !{ i32 1 }
5695
5696Overview:
5697"""""""""
5698
5699The '``load``' instruction is used to read from memory.
5700
5701Arguments:
5702""""""""""
5703
Eli Bendersky239a78b2013-04-17 20:17:08 +00005704The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00005705from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00005706class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5707then the optimizer is not allowed to modify the number or order of
5708execution of this ``load`` with other :ref:`volatile
5709operations <volatile>`.
5710
5711If the ``load`` is marked as ``atomic``, it takes an extra
5712:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5713``release`` and ``acq_rel`` orderings are not valid on ``load``
5714instructions. Atomic loads produce :ref:`defined <memmodel>` results
5715when they may see multiple atomic stores. The type of the pointee must
5716be an integer type whose bit width is a power of two greater than or
5717equal to eight and less than or equal to a target-specific size limit.
5718``align`` must be explicitly specified on atomic loads, and the load has
5719undefined behavior if the alignment is not set to a value which is at
5720least the size in bytes of the pointee. ``!nontemporal`` does not have
5721any defined semantics for atomic loads.
5722
5723The optional constant ``align`` argument specifies the alignment of the
5724operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005725or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005726alignment for the target. It is the responsibility of the code emitter
5727to ensure that the alignment information is correct. Overestimating the
5728alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005729may produce less efficient code. An alignment of 1 is always safe. The
5730maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005731
5732The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005733metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005734``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005735metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005736that this load is not expected to be reused in the cache. The code
5737generator may select special instructions to save cache bandwidth, such
5738as the ``MOVNT`` instruction on x86.
5739
5740The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005741metadata name ``<index>`` corresponding to a metadata node with no
5742entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00005743instruction tells the optimizer and code generator that the address
5744operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005745Being invariant does not imply that a location is dereferenceable,
5746but it does imply that once the location is known dereferenceable
5747its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00005748
Philip Reamescdb72f32014-10-20 22:40:55 +00005749The optional ``!nonnull`` metadata must reference a single
5750metadata name ``<index>`` corresponding to a metadata node with no
5751entries. The existence of the ``!nonnull`` metadata on the
5752instruction tells the optimizer that the value loaded is known to
5753never be null. This is analogous to the ''nonnull'' attribute
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005754on parameters and return values. This metadata can only be applied
5755to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00005756
Sanjoy Dasf9995472015-05-19 20:10:19 +00005757The optional ``!dereferenceable`` metadata must reference a single
5758metadata name ``<index>`` corresponding to a metadata node with one ``i64``
5759entry. The existence of the ``!dereferenceable`` metadata on the instruction
5760tells the optimizer that the value loaded is known to be dereferenceable.
5761The number of bytes known to be dereferenceable is specified by the integer
5762value in the metadata node. This is analogous to the ''dereferenceable''
5763attribute on parameters and return values. This metadata can only be applied
5764to loads of a pointer type.
5765
5766The optional ``!dereferenceable_or_null`` metadata must reference a single
5767metadata name ``<index>`` corresponding to a metadata node with one ``i64``
5768entry. The existence of the ``!dereferenceable_or_null`` metadata on the
5769instruction tells the optimizer that the value loaded is known to be either
5770dereferenceable or null.
5771The number of bytes known to be dereferenceable is specified by the integer
5772value in the metadata node. This is analogous to the ''dereferenceable_or_null''
5773attribute on parameters and return values. This metadata can only be applied
5774to loads of a pointer type.
5775
Sean Silvab084af42012-12-07 10:36:55 +00005776Semantics:
5777""""""""""
5778
5779The location of memory pointed to is loaded. If the value being loaded
5780is of scalar type then the number of bytes read does not exceed the
5781minimum number of bytes needed to hold all bits of the type. For
5782example, loading an ``i24`` reads at most three bytes. When loading a
5783value of a type like ``i20`` with a size that is not an integral number
5784of bytes, the result is undefined if the value was not originally
5785written using a store of the same type.
5786
5787Examples:
5788"""""""""
5789
5790.. code-block:: llvm
5791
Tim Northover675a0962014-06-13 14:24:23 +00005792 %ptr = alloca i32 ; yields i32*:ptr
5793 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00005794 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005795
5796.. _i_store:
5797
5798'``store``' Instruction
5799^^^^^^^^^^^^^^^^^^^^^^^
5800
5801Syntax:
5802"""""""
5803
5804::
5805
Tim Northover675a0962014-06-13 14:24:23 +00005806 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5807 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005808
5809Overview:
5810"""""""""
5811
5812The '``store``' instruction is used to write to memory.
5813
5814Arguments:
5815""""""""""
5816
Eli Benderskyca380842013-04-17 17:17:20 +00005817There are two arguments to the ``store`` instruction: a value to store
5818and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005819operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005820the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005821then the optimizer is not allowed to modify the number or order of
5822execution of this ``store`` with other :ref:`volatile
5823operations <volatile>`.
5824
5825If the ``store`` is marked as ``atomic``, it takes an extra
5826:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5827``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5828instructions. Atomic loads produce :ref:`defined <memmodel>` results
5829when they may see multiple atomic stores. The type of the pointee must
5830be an integer type whose bit width is a power of two greater than or
5831equal to eight and less than or equal to a target-specific size limit.
5832``align`` must be explicitly specified on atomic stores, and the store
5833has undefined behavior if the alignment is not set to a value which is
5834at least the size in bytes of the pointee. ``!nontemporal`` does not
5835have any defined semantics for atomic stores.
5836
Eli Benderskyca380842013-04-17 17:17:20 +00005837The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005838operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005839or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005840alignment for the target. It is the responsibility of the code emitter
5841to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005842alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005843alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005844safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005845
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005846The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005847name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005848value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005849tells the optimizer and code generator that this load is not expected to
5850be reused in the cache. The code generator may select special
5851instructions to save cache bandwidth, such as the MOVNT instruction on
5852x86.
5853
5854Semantics:
5855""""""""""
5856
Eli Benderskyca380842013-04-17 17:17:20 +00005857The contents of memory are updated to contain ``<value>`` at the
5858location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005859of scalar type then the number of bytes written does not exceed the
5860minimum number of bytes needed to hold all bits of the type. For
5861example, storing an ``i24`` writes at most three bytes. When writing a
5862value of a type like ``i20`` with a size that is not an integral number
5863of bytes, it is unspecified what happens to the extra bits that do not
5864belong to the type, but they will typically be overwritten.
5865
5866Example:
5867""""""""
5868
5869.. code-block:: llvm
5870
Tim Northover675a0962014-06-13 14:24:23 +00005871 %ptr = alloca i32 ; yields i32*:ptr
5872 store i32 3, i32* %ptr ; yields void
5873 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005874
5875.. _i_fence:
5876
5877'``fence``' Instruction
5878^^^^^^^^^^^^^^^^^^^^^^^
5879
5880Syntax:
5881"""""""
5882
5883::
5884
Tim Northover675a0962014-06-13 14:24:23 +00005885 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005886
5887Overview:
5888"""""""""
5889
5890The '``fence``' instruction is used to introduce happens-before edges
5891between operations.
5892
5893Arguments:
5894""""""""""
5895
5896'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5897defines what *synchronizes-with* edges they add. They can only be given
5898``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5899
5900Semantics:
5901""""""""""
5902
5903A fence A which has (at least) ``release`` ordering semantics
5904*synchronizes with* a fence B with (at least) ``acquire`` ordering
5905semantics if and only if there exist atomic operations X and Y, both
5906operating on some atomic object M, such that A is sequenced before X, X
5907modifies M (either directly or through some side effect of a sequence
5908headed by X), Y is sequenced before B, and Y observes M. This provides a
5909*happens-before* dependency between A and B. Rather than an explicit
5910``fence``, one (but not both) of the atomic operations X or Y might
5911provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5912still *synchronize-with* the explicit ``fence`` and establish the
5913*happens-before* edge.
5914
5915A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5916``acquire`` and ``release`` semantics specified above, participates in
5917the global program order of other ``seq_cst`` operations and/or fences.
5918
5919The optional ":ref:`singlethread <singlethread>`" argument specifies
5920that the fence only synchronizes with other fences in the same thread.
5921(This is useful for interacting with signal handlers.)
5922
5923Example:
5924""""""""
5925
5926.. code-block:: llvm
5927
Tim Northover675a0962014-06-13 14:24:23 +00005928 fence acquire ; yields void
5929 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005930
5931.. _i_cmpxchg:
5932
5933'``cmpxchg``' Instruction
5934^^^^^^^^^^^^^^^^^^^^^^^^^
5935
5936Syntax:
5937"""""""
5938
5939::
5940
Tim Northover675a0962014-06-13 14:24:23 +00005941 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005942
5943Overview:
5944"""""""""
5945
5946The '``cmpxchg``' instruction is used to atomically modify memory. It
5947loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005948equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005949
5950Arguments:
5951""""""""""
5952
5953There are three arguments to the '``cmpxchg``' instruction: an address
5954to operate on, a value to compare to the value currently be at that
5955address, and a new value to place at that address if the compared values
5956are equal. The type of '<cmp>' must be an integer type whose bit width
5957is a power of two greater than or equal to eight and less than or equal
5958to a target-specific size limit. '<cmp>' and '<new>' must have the same
5959type, and the type of '<pointer>' must be a pointer to that type. If the
5960``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5961to modify the number or order of execution of this ``cmpxchg`` with
5962other :ref:`volatile operations <volatile>`.
5963
Tim Northovere94a5182014-03-11 10:48:52 +00005964The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005965``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5966must be at least ``monotonic``, the ordering constraint on failure must be no
5967stronger than that on success, and the failure ordering cannot be either
5968``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005969
5970The optional "``singlethread``" argument declares that the ``cmpxchg``
5971is only atomic with respect to code (usually signal handlers) running in
5972the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5973respect to all other code in the system.
5974
5975The pointer passed into cmpxchg must have alignment greater than or
5976equal to the size in memory of the operand.
5977
5978Semantics:
5979""""""""""
5980
Tim Northover420a2162014-06-13 14:24:07 +00005981The contents of memory at the location specified by the '``<pointer>``' operand
5982is read and compared to '``<cmp>``'; if the read value is the equal, the
5983'``<new>``' is written. The original value at the location is returned, together
5984with a flag indicating success (true) or failure (false).
5985
5986If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5987permitted: the operation may not write ``<new>`` even if the comparison
5988matched.
5989
5990If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5991if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005992
Tim Northovere94a5182014-03-11 10:48:52 +00005993A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5994identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5995load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005996
5997Example:
5998""""""""
5999
6000.. code-block:: llvm
6001
6002 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00006003 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00006004 br label %loop
6005
6006 loop:
6007 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
6008 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00006009 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00006010 %value_loaded = extractvalue { i32, i1 } %val_success, 0
6011 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00006012 br i1 %success, label %done, label %loop
6013
6014 done:
6015 ...
6016
6017.. _i_atomicrmw:
6018
6019'``atomicrmw``' Instruction
6020^^^^^^^^^^^^^^^^^^^^^^^^^^^
6021
6022Syntax:
6023"""""""
6024
6025::
6026
Tim Northover675a0962014-06-13 14:24:23 +00006027 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00006028
6029Overview:
6030"""""""""
6031
6032The '``atomicrmw``' instruction is used to atomically modify memory.
6033
6034Arguments:
6035""""""""""
6036
6037There are three arguments to the '``atomicrmw``' instruction: an
6038operation to apply, an address whose value to modify, an argument to the
6039operation. The operation must be one of the following keywords:
6040
6041- xchg
6042- add
6043- sub
6044- and
6045- nand
6046- or
6047- xor
6048- max
6049- min
6050- umax
6051- umin
6052
6053The type of '<value>' must be an integer type whose bit width is a power
6054of two greater than or equal to eight and less than or equal to a
6055target-specific size limit. The type of the '``<pointer>``' operand must
6056be a pointer to that type. If the ``atomicrmw`` is marked as
6057``volatile``, then the optimizer is not allowed to modify the number or
6058order of execution of this ``atomicrmw`` with other :ref:`volatile
6059operations <volatile>`.
6060
6061Semantics:
6062""""""""""
6063
6064The contents of memory at the location specified by the '``<pointer>``'
6065operand are atomically read, modified, and written back. The original
6066value at the location is returned. The modification is specified by the
6067operation argument:
6068
6069- xchg: ``*ptr = val``
6070- add: ``*ptr = *ptr + val``
6071- sub: ``*ptr = *ptr - val``
6072- and: ``*ptr = *ptr & val``
6073- nand: ``*ptr = ~(*ptr & val)``
6074- or: ``*ptr = *ptr | val``
6075- xor: ``*ptr = *ptr ^ val``
6076- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
6077- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
6078- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
6079 comparison)
6080- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
6081 comparison)
6082
6083Example:
6084""""""""
6085
6086.. code-block:: llvm
6087
Tim Northover675a0962014-06-13 14:24:23 +00006088 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00006089
6090.. _i_getelementptr:
6091
6092'``getelementptr``' Instruction
6093^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6094
6095Syntax:
6096"""""""
6097
6098::
6099
David Blaikie16a97eb2015-03-04 22:02:58 +00006100 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
6101 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
6102 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00006103
6104Overview:
6105"""""""""
6106
6107The '``getelementptr``' instruction is used to get the address of a
6108subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
6109address calculation only and does not access memory.
6110
6111Arguments:
6112""""""""""
6113
David Blaikie16a97eb2015-03-04 22:02:58 +00006114The first argument is always a type used as the basis for the calculations.
6115The second argument is always a pointer or a vector of pointers, and is the
6116base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00006117that indicate which of the elements of the aggregate object are indexed.
6118The interpretation of each index is dependent on the type being indexed
6119into. The first index always indexes the pointer value given as the
6120first argument, the second index indexes a value of the type pointed to
6121(not necessarily the value directly pointed to, since the first index
6122can be non-zero), etc. The first type indexed into must be a pointer
6123value, subsequent types can be arrays, vectors, and structs. Note that
6124subsequent types being indexed into can never be pointers, since that
6125would require loading the pointer before continuing calculation.
6126
6127The type of each index argument depends on the type it is indexing into.
6128When indexing into a (optionally packed) structure, only ``i32`` integer
6129**constants** are allowed (when using a vector of indices they must all
6130be the **same** ``i32`` integer constant). When indexing into an array,
6131pointer or vector, integers of any width are allowed, and they are not
6132required to be constant. These integers are treated as signed values
6133where relevant.
6134
6135For example, let's consider a C code fragment and how it gets compiled
6136to LLVM:
6137
6138.. code-block:: c
6139
6140 struct RT {
6141 char A;
6142 int B[10][20];
6143 char C;
6144 };
6145 struct ST {
6146 int X;
6147 double Y;
6148 struct RT Z;
6149 };
6150
6151 int *foo(struct ST *s) {
6152 return &s[1].Z.B[5][13];
6153 }
6154
6155The LLVM code generated by Clang is:
6156
6157.. code-block:: llvm
6158
6159 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
6160 %struct.ST = type { i32, double, %struct.RT }
6161
6162 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
6163 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00006164 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00006165 ret i32* %arrayidx
6166 }
6167
6168Semantics:
6169""""""""""
6170
6171In the example above, the first index is indexing into the
6172'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
6173= '``{ i32, double, %struct.RT }``' type, a structure. The second index
6174indexes into the third element of the structure, yielding a
6175'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
6176structure. The third index indexes into the second element of the
6177structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
6178dimensions of the array are subscripted into, yielding an '``i32``'
6179type. The '``getelementptr``' instruction returns a pointer to this
6180element, thus computing a value of '``i32*``' type.
6181
6182Note that it is perfectly legal to index partially through a structure,
6183returning a pointer to an inner element. Because of this, the LLVM code
6184for the given testcase is equivalent to:
6185
6186.. code-block:: llvm
6187
6188 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00006189 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
6190 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
6191 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
6192 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
6193 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00006194 ret i32* %t5
6195 }
6196
6197If the ``inbounds`` keyword is present, the result value of the
6198``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
6199pointer is not an *in bounds* address of an allocated object, or if any
6200of the addresses that would be formed by successive addition of the
6201offsets implied by the indices to the base address with infinitely
6202precise signed arithmetic are not an *in bounds* address of that
6203allocated object. The *in bounds* addresses for an allocated object are
6204all the addresses that point into the object, plus the address one byte
6205past the end. In cases where the base is a vector of pointers the
6206``inbounds`` keyword applies to each of the computations element-wise.
6207
6208If the ``inbounds`` keyword is not present, the offsets are added to the
6209base address with silently-wrapping two's complement arithmetic. If the
6210offsets have a different width from the pointer, they are sign-extended
6211or truncated to the width of the pointer. The result value of the
6212``getelementptr`` may be outside the object pointed to by the base
6213pointer. The result value may not necessarily be used to access memory
6214though, even if it happens to point into allocated storage. See the
6215:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
6216information.
6217
6218The getelementptr instruction is often confusing. For some more insight
6219into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
6220
6221Example:
6222""""""""
6223
6224.. code-block:: llvm
6225
6226 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006227 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006228 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006229 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006230 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006231 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006232 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006233 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00006234
6235In cases where the pointer argument is a vector of pointers, each index
6236must be a vector with the same number of elements. For example:
6237
6238.. code-block:: llvm
6239
David Blaikie16a97eb2015-03-04 22:02:58 +00006240 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets,
Sean Silvab084af42012-12-07 10:36:55 +00006241
6242Conversion Operations
6243---------------------
6244
6245The instructions in this category are the conversion instructions
6246(casting) which all take a single operand and a type. They perform
6247various bit conversions on the operand.
6248
6249'``trunc .. to``' Instruction
6250^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6251
6252Syntax:
6253"""""""
6254
6255::
6256
6257 <result> = trunc <ty> <value> to <ty2> ; yields ty2
6258
6259Overview:
6260"""""""""
6261
6262The '``trunc``' instruction truncates its operand to the type ``ty2``.
6263
6264Arguments:
6265""""""""""
6266
6267The '``trunc``' instruction takes a value to trunc, and a type to trunc
6268it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
6269of the same number of integers. The bit size of the ``value`` must be
6270larger than the bit size of the destination type, ``ty2``. Equal sized
6271types are not allowed.
6272
6273Semantics:
6274""""""""""
6275
6276The '``trunc``' instruction truncates the high order bits in ``value``
6277and converts the remaining bits to ``ty2``. Since the source size must
6278be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
6279It will always truncate bits.
6280
6281Example:
6282""""""""
6283
6284.. code-block:: llvm
6285
6286 %X = trunc i32 257 to i8 ; yields i8:1
6287 %Y = trunc i32 123 to i1 ; yields i1:true
6288 %Z = trunc i32 122 to i1 ; yields i1:false
6289 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
6290
6291'``zext .. to``' Instruction
6292^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6293
6294Syntax:
6295"""""""
6296
6297::
6298
6299 <result> = zext <ty> <value> to <ty2> ; yields ty2
6300
6301Overview:
6302"""""""""
6303
6304The '``zext``' instruction zero extends its operand to type ``ty2``.
6305
6306Arguments:
6307""""""""""
6308
6309The '``zext``' instruction takes a value to cast, and a type to cast it
6310to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
6311the same number of integers. The bit size of the ``value`` must be
6312smaller than the bit size of the destination type, ``ty2``.
6313
6314Semantics:
6315""""""""""
6316
6317The ``zext`` fills the high order bits of the ``value`` with zero bits
6318until it reaches the size of the destination type, ``ty2``.
6319
6320When zero extending from i1, the result will always be either 0 or 1.
6321
6322Example:
6323""""""""
6324
6325.. code-block:: llvm
6326
6327 %X = zext i32 257 to i64 ; yields i64:257
6328 %Y = zext i1 true to i32 ; yields i32:1
6329 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
6330
6331'``sext .. to``' Instruction
6332^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6333
6334Syntax:
6335"""""""
6336
6337::
6338
6339 <result> = sext <ty> <value> to <ty2> ; yields ty2
6340
6341Overview:
6342"""""""""
6343
6344The '``sext``' sign extends ``value`` to the type ``ty2``.
6345
6346Arguments:
6347""""""""""
6348
6349The '``sext``' instruction takes a value to cast, and a type to cast it
6350to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
6351the same number of integers. The bit size of the ``value`` must be
6352smaller than the bit size of the destination type, ``ty2``.
6353
6354Semantics:
6355""""""""""
6356
6357The '``sext``' instruction performs a sign extension by copying the sign
6358bit (highest order bit) of the ``value`` until it reaches the bit size
6359of the type ``ty2``.
6360
6361When sign extending from i1, the extension always results in -1 or 0.
6362
6363Example:
6364""""""""
6365
6366.. code-block:: llvm
6367
6368 %X = sext i8 -1 to i16 ; yields i16 :65535
6369 %Y = sext i1 true to i32 ; yields i32:-1
6370 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
6371
6372'``fptrunc .. to``' Instruction
6373^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6374
6375Syntax:
6376"""""""
6377
6378::
6379
6380 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
6381
6382Overview:
6383"""""""""
6384
6385The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
6386
6387Arguments:
6388""""""""""
6389
6390The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
6391value to cast and a :ref:`floating point <t_floating>` type to cast it to.
6392The size of ``value`` must be larger than the size of ``ty2``. This
6393implies that ``fptrunc`` cannot be used to make a *no-op cast*.
6394
6395Semantics:
6396""""""""""
6397
6398The '``fptrunc``' instruction truncates a ``value`` from a larger
6399:ref:`floating point <t_floating>` type to a smaller :ref:`floating
6400point <t_floating>` type. If the value cannot fit within the
6401destination type, ``ty2``, then the results are undefined.
6402
6403Example:
6404""""""""
6405
6406.. code-block:: llvm
6407
6408 %X = fptrunc double 123.0 to float ; yields float:123.0
6409 %Y = fptrunc double 1.0E+300 to float ; yields undefined
6410
6411'``fpext .. to``' Instruction
6412^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6413
6414Syntax:
6415"""""""
6416
6417::
6418
6419 <result> = fpext <ty> <value> to <ty2> ; yields ty2
6420
6421Overview:
6422"""""""""
6423
6424The '``fpext``' extends a floating point ``value`` to a larger floating
6425point value.
6426
6427Arguments:
6428""""""""""
6429
6430The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
6431``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
6432to. The source type must be smaller than the destination type.
6433
6434Semantics:
6435""""""""""
6436
6437The '``fpext``' instruction extends the ``value`` from a smaller
6438:ref:`floating point <t_floating>` type to a larger :ref:`floating
6439point <t_floating>` type. The ``fpext`` cannot be used to make a
6440*no-op cast* because it always changes bits. Use ``bitcast`` to make a
6441*no-op cast* for a floating point cast.
6442
6443Example:
6444""""""""
6445
6446.. code-block:: llvm
6447
6448 %X = fpext float 3.125 to double ; yields double:3.125000e+00
6449 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
6450
6451'``fptoui .. to``' Instruction
6452^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6453
6454Syntax:
6455"""""""
6456
6457::
6458
6459 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
6460
6461Overview:
6462"""""""""
6463
6464The '``fptoui``' converts a floating point ``value`` to its unsigned
6465integer equivalent of type ``ty2``.
6466
6467Arguments:
6468""""""""""
6469
6470The '``fptoui``' instruction takes a value to cast, which must be a
6471scalar or vector :ref:`floating point <t_floating>` value, and a type to
6472cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6473``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6474type with the same number of elements as ``ty``
6475
6476Semantics:
6477""""""""""
6478
6479The '``fptoui``' instruction converts its :ref:`floating
6480point <t_floating>` operand into the nearest (rounding towards zero)
6481unsigned integer value. If the value cannot fit in ``ty2``, the results
6482are undefined.
6483
6484Example:
6485""""""""
6486
6487.. code-block:: llvm
6488
6489 %X = fptoui double 123.0 to i32 ; yields i32:123
6490 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
6491 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
6492
6493'``fptosi .. to``' Instruction
6494^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6495
6496Syntax:
6497"""""""
6498
6499::
6500
6501 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
6502
6503Overview:
6504"""""""""
6505
6506The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
6507``value`` to type ``ty2``.
6508
6509Arguments:
6510""""""""""
6511
6512The '``fptosi``' instruction takes a value to cast, which must be a
6513scalar or vector :ref:`floating point <t_floating>` value, and a type to
6514cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6515``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6516type with the same number of elements as ``ty``
6517
6518Semantics:
6519""""""""""
6520
6521The '``fptosi``' instruction converts its :ref:`floating
6522point <t_floating>` operand into the nearest (rounding towards zero)
6523signed integer value. If the value cannot fit in ``ty2``, the results
6524are undefined.
6525
6526Example:
6527""""""""
6528
6529.. code-block:: llvm
6530
6531 %X = fptosi double -123.0 to i32 ; yields i32:-123
6532 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
6533 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
6534
6535'``uitofp .. to``' Instruction
6536^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6537
6538Syntax:
6539"""""""
6540
6541::
6542
6543 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
6544
6545Overview:
6546"""""""""
6547
6548The '``uitofp``' instruction regards ``value`` as an unsigned integer
6549and converts that value to the ``ty2`` type.
6550
6551Arguments:
6552""""""""""
6553
6554The '``uitofp``' instruction takes a value to cast, which must be a
6555scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6556``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6557``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6558type with the same number of elements as ``ty``
6559
6560Semantics:
6561""""""""""
6562
6563The '``uitofp``' instruction interprets its operand as an unsigned
6564integer quantity and converts it to the corresponding floating point
6565value. If the value cannot fit in the floating point value, the results
6566are undefined.
6567
6568Example:
6569""""""""
6570
6571.. code-block:: llvm
6572
6573 %X = uitofp i32 257 to float ; yields float:257.0
6574 %Y = uitofp i8 -1 to double ; yields double:255.0
6575
6576'``sitofp .. to``' Instruction
6577^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6578
6579Syntax:
6580"""""""
6581
6582::
6583
6584 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
6585
6586Overview:
6587"""""""""
6588
6589The '``sitofp``' instruction regards ``value`` as a signed integer and
6590converts that value to the ``ty2`` type.
6591
6592Arguments:
6593""""""""""
6594
6595The '``sitofp``' instruction takes a value to cast, which must be a
6596scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6597``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6598``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6599type with the same number of elements as ``ty``
6600
6601Semantics:
6602""""""""""
6603
6604The '``sitofp``' instruction interprets its operand as a signed integer
6605quantity and converts it to the corresponding floating point value. If
6606the value cannot fit in the floating point value, the results are
6607undefined.
6608
6609Example:
6610""""""""
6611
6612.. code-block:: llvm
6613
6614 %X = sitofp i32 257 to float ; yields float:257.0
6615 %Y = sitofp i8 -1 to double ; yields double:-1.0
6616
6617.. _i_ptrtoint:
6618
6619'``ptrtoint .. to``' Instruction
6620^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6621
6622Syntax:
6623"""""""
6624
6625::
6626
6627 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
6628
6629Overview:
6630"""""""""
6631
6632The '``ptrtoint``' instruction converts the pointer or a vector of
6633pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6634
6635Arguments:
6636""""""""""
6637
6638The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00006639a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00006640type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6641a vector of integers type.
6642
6643Semantics:
6644""""""""""
6645
6646The '``ptrtoint``' instruction converts ``value`` to integer type
6647``ty2`` by interpreting the pointer value as an integer and either
6648truncating or zero extending that value to the size of the integer type.
6649If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6650``value`` is larger than ``ty2`` then a truncation is done. If they are
6651the same size, then nothing is done (*no-op cast*) other than a type
6652change.
6653
6654Example:
6655""""""""
6656
6657.. code-block:: llvm
6658
6659 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
6660 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
6661 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6662
6663.. _i_inttoptr:
6664
6665'``inttoptr .. to``' Instruction
6666^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6667
6668Syntax:
6669"""""""
6670
6671::
6672
6673 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
6674
6675Overview:
6676"""""""""
6677
6678The '``inttoptr``' instruction converts an integer ``value`` to a
6679pointer type, ``ty2``.
6680
6681Arguments:
6682""""""""""
6683
6684The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6685cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6686type.
6687
6688Semantics:
6689""""""""""
6690
6691The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6692applying either a zero extension or a truncation depending on the size
6693of the integer ``value``. If ``value`` is larger than the size of a
6694pointer then a truncation is done. If ``value`` is smaller than the size
6695of a pointer then a zero extension is done. If they are the same size,
6696nothing is done (*no-op cast*).
6697
6698Example:
6699""""""""
6700
6701.. code-block:: llvm
6702
6703 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6704 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6705 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6706 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6707
6708.. _i_bitcast:
6709
6710'``bitcast .. to``' Instruction
6711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6712
6713Syntax:
6714"""""""
6715
6716::
6717
6718 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6719
6720Overview:
6721"""""""""
6722
6723The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6724changing any bits.
6725
6726Arguments:
6727""""""""""
6728
6729The '``bitcast``' instruction takes a value to cast, which must be a
6730non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006731also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6732bit sizes of ``value`` and the destination type, ``ty2``, must be
6733identical. If the source type is a pointer, the destination type must
6734also be a pointer of the same size. This instruction supports bitwise
6735conversion of vectors to integers and to vectors of other types (as
6736long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006737
6738Semantics:
6739""""""""""
6740
Matt Arsenault24b49c42013-07-31 17:49:08 +00006741The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6742is always a *no-op cast* because no bits change with this
6743conversion. The conversion is done as if the ``value`` had been stored
6744to memory and read back as type ``ty2``. Pointer (or vector of
6745pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006746pointers) types with the same address space through this instruction.
6747To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6748or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006749
6750Example:
6751""""""""
6752
6753.. code-block:: llvm
6754
6755 %X = bitcast i8 255 to i8 ; yields i8 :-1
6756 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6757 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6758 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6759
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006760.. _i_addrspacecast:
6761
6762'``addrspacecast .. to``' Instruction
6763^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6764
6765Syntax:
6766"""""""
6767
6768::
6769
6770 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6771
6772Overview:
6773"""""""""
6774
6775The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6776address space ``n`` to type ``pty2`` in address space ``m``.
6777
6778Arguments:
6779""""""""""
6780
6781The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6782to cast and a pointer type to cast it to, which must have a different
6783address space.
6784
6785Semantics:
6786""""""""""
6787
6788The '``addrspacecast``' instruction converts the pointer value
6789``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006790value modification, depending on the target and the address space
6791pair. Pointer conversions within the same address space must be
6792performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006793conversion is legal then both result and operand refer to the same memory
6794location.
6795
6796Example:
6797""""""""
6798
6799.. code-block:: llvm
6800
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006801 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6802 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6803 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006804
Sean Silvab084af42012-12-07 10:36:55 +00006805.. _otherops:
6806
6807Other Operations
6808----------------
6809
6810The instructions in this category are the "miscellaneous" instructions,
6811which defy better classification.
6812
6813.. _i_icmp:
6814
6815'``icmp``' Instruction
6816^^^^^^^^^^^^^^^^^^^^^^
6817
6818Syntax:
6819"""""""
6820
6821::
6822
Tim Northover675a0962014-06-13 14:24:23 +00006823 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006824
6825Overview:
6826"""""""""
6827
6828The '``icmp``' instruction returns a boolean value or a vector of
6829boolean values based on comparison of its two integer, integer vector,
6830pointer, or pointer vector operands.
6831
6832Arguments:
6833""""""""""
6834
6835The '``icmp``' instruction takes three operands. The first operand is
6836the condition code indicating the kind of comparison to perform. It is
6837not a value, just a keyword. The possible condition code are:
6838
6839#. ``eq``: equal
6840#. ``ne``: not equal
6841#. ``ugt``: unsigned greater than
6842#. ``uge``: unsigned greater or equal
6843#. ``ult``: unsigned less than
6844#. ``ule``: unsigned less or equal
6845#. ``sgt``: signed greater than
6846#. ``sge``: signed greater or equal
6847#. ``slt``: signed less than
6848#. ``sle``: signed less or equal
6849
6850The remaining two arguments must be :ref:`integer <t_integer>` or
6851:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6852must also be identical types.
6853
6854Semantics:
6855""""""""""
6856
6857The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6858code given as ``cond``. The comparison performed always yields either an
6859:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6860
6861#. ``eq``: yields ``true`` if the operands are equal, ``false``
6862 otherwise. No sign interpretation is necessary or performed.
6863#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6864 otherwise. No sign interpretation is necessary or performed.
6865#. ``ugt``: interprets the operands as unsigned values and yields
6866 ``true`` if ``op1`` is greater than ``op2``.
6867#. ``uge``: interprets the operands as unsigned values and yields
6868 ``true`` if ``op1`` is greater than or equal to ``op2``.
6869#. ``ult``: interprets the operands as unsigned values and yields
6870 ``true`` if ``op1`` is less than ``op2``.
6871#. ``ule``: interprets the operands as unsigned values and yields
6872 ``true`` if ``op1`` is less than or equal to ``op2``.
6873#. ``sgt``: interprets the operands as signed values and yields ``true``
6874 if ``op1`` is greater than ``op2``.
6875#. ``sge``: interprets the operands as signed values and yields ``true``
6876 if ``op1`` is greater than or equal to ``op2``.
6877#. ``slt``: interprets the operands as signed values and yields ``true``
6878 if ``op1`` is less than ``op2``.
6879#. ``sle``: interprets the operands as signed values and yields ``true``
6880 if ``op1`` is less than or equal to ``op2``.
6881
6882If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6883are compared as if they were integers.
6884
6885If the operands are integer vectors, then they are compared element by
6886element. The result is an ``i1`` vector with the same number of elements
6887as the values being compared. Otherwise, the result is an ``i1``.
6888
6889Example:
6890""""""""
6891
6892.. code-block:: llvm
6893
6894 <result> = icmp eq i32 4, 5 ; yields: result=false
6895 <result> = icmp ne float* %X, %X ; yields: result=false
6896 <result> = icmp ult i16 4, 5 ; yields: result=true
6897 <result> = icmp sgt i16 4, 5 ; yields: result=false
6898 <result> = icmp ule i16 -4, 5 ; yields: result=false
6899 <result> = icmp sge i16 4, 5 ; yields: result=false
6900
6901Note that the code generator does not yet support vector types with the
6902``icmp`` instruction.
6903
6904.. _i_fcmp:
6905
6906'``fcmp``' Instruction
6907^^^^^^^^^^^^^^^^^^^^^^
6908
6909Syntax:
6910"""""""
6911
6912::
6913
Tim Northover675a0962014-06-13 14:24:23 +00006914 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006915
6916Overview:
6917"""""""""
6918
6919The '``fcmp``' instruction returns a boolean value or vector of boolean
6920values based on comparison of its operands.
6921
6922If the operands are floating point scalars, then the result type is a
6923boolean (:ref:`i1 <t_integer>`).
6924
6925If the operands are floating point vectors, then the result type is a
6926vector of boolean with the same number of elements as the operands being
6927compared.
6928
6929Arguments:
6930""""""""""
6931
6932The '``fcmp``' instruction takes three operands. The first operand is
6933the condition code indicating the kind of comparison to perform. It is
6934not a value, just a keyword. The possible condition code are:
6935
6936#. ``false``: no comparison, always returns false
6937#. ``oeq``: ordered and equal
6938#. ``ogt``: ordered and greater than
6939#. ``oge``: ordered and greater than or equal
6940#. ``olt``: ordered and less than
6941#. ``ole``: ordered and less than or equal
6942#. ``one``: ordered and not equal
6943#. ``ord``: ordered (no nans)
6944#. ``ueq``: unordered or equal
6945#. ``ugt``: unordered or greater than
6946#. ``uge``: unordered or greater than or equal
6947#. ``ult``: unordered or less than
6948#. ``ule``: unordered or less than or equal
6949#. ``une``: unordered or not equal
6950#. ``uno``: unordered (either nans)
6951#. ``true``: no comparison, always returns true
6952
6953*Ordered* means that neither operand is a QNAN while *unordered* means
6954that either operand may be a QNAN.
6955
6956Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6957point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6958type. They must have identical types.
6959
6960Semantics:
6961""""""""""
6962
6963The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6964condition code given as ``cond``. If the operands are vectors, then the
6965vectors are compared element by element. Each comparison performed
6966always yields an :ref:`i1 <t_integer>` result, as follows:
6967
6968#. ``false``: always yields ``false``, regardless of operands.
6969#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6970 is equal to ``op2``.
6971#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6972 is greater than ``op2``.
6973#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6974 is greater than or equal to ``op2``.
6975#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6976 is less than ``op2``.
6977#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6978 is less than or equal to ``op2``.
6979#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6980 is not equal to ``op2``.
6981#. ``ord``: yields ``true`` if both operands are not a QNAN.
6982#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6983 equal to ``op2``.
6984#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6985 greater than ``op2``.
6986#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6987 greater than or equal to ``op2``.
6988#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6989 less than ``op2``.
6990#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6991 less than or equal to ``op2``.
6992#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6993 not equal to ``op2``.
6994#. ``uno``: yields ``true`` if either operand is a QNAN.
6995#. ``true``: always yields ``true``, regardless of operands.
6996
6997Example:
6998""""""""
6999
7000.. code-block:: llvm
7001
7002 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
7003 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
7004 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
7005 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
7006
7007Note that the code generator does not yet support vector types with the
7008``fcmp`` instruction.
7009
7010.. _i_phi:
7011
7012'``phi``' Instruction
7013^^^^^^^^^^^^^^^^^^^^^
7014
7015Syntax:
7016"""""""
7017
7018::
7019
7020 <result> = phi <ty> [ <val0>, <label0>], ...
7021
7022Overview:
7023"""""""""
7024
7025The '``phi``' instruction is used to implement the φ node in the SSA
7026graph representing the function.
7027
7028Arguments:
7029""""""""""
7030
7031The type of the incoming values is specified with the first type field.
7032After this, the '``phi``' instruction takes a list of pairs as
7033arguments, with one pair for each predecessor basic block of the current
7034block. Only values of :ref:`first class <t_firstclass>` type may be used as
7035the value arguments to the PHI node. Only labels may be used as the
7036label arguments.
7037
7038There must be no non-phi instructions between the start of a basic block
7039and the PHI instructions: i.e. PHI instructions must be first in a basic
7040block.
7041
7042For the purposes of the SSA form, the use of each incoming value is
7043deemed to occur on the edge from the corresponding predecessor block to
7044the current block (but after any definition of an '``invoke``'
7045instruction's return value on the same edge).
7046
7047Semantics:
7048""""""""""
7049
7050At runtime, the '``phi``' instruction logically takes on the value
7051specified by the pair corresponding to the predecessor basic block that
7052executed just prior to the current block.
7053
7054Example:
7055""""""""
7056
7057.. code-block:: llvm
7058
7059 Loop: ; Infinite loop that counts from 0 on up...
7060 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
7061 %nextindvar = add i32 %indvar, 1
7062 br label %Loop
7063
7064.. _i_select:
7065
7066'``select``' Instruction
7067^^^^^^^^^^^^^^^^^^^^^^^^
7068
7069Syntax:
7070"""""""
7071
7072::
7073
7074 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
7075
7076 selty is either i1 or {<N x i1>}
7077
7078Overview:
7079"""""""""
7080
7081The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00007082condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00007083
7084Arguments:
7085""""""""""
7086
7087The '``select``' instruction requires an 'i1' value or a vector of 'i1'
7088values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00007089class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00007090
7091Semantics:
7092""""""""""
7093
7094If the condition is an i1 and it evaluates to 1, the instruction returns
7095the first value argument; otherwise, it returns the second value
7096argument.
7097
7098If the condition is a vector of i1, then the value arguments must be
7099vectors of the same size, and the selection is done element by element.
7100
David Majnemer40a0b592015-03-03 22:45:47 +00007101If the condition is an i1 and the value arguments are vectors of the
7102same size, then an entire vector is selected.
7103
Sean Silvab084af42012-12-07 10:36:55 +00007104Example:
7105""""""""
7106
7107.. code-block:: llvm
7108
7109 %X = select i1 true, i8 17, i8 42 ; yields i8:17
7110
7111.. _i_call:
7112
7113'``call``' Instruction
7114^^^^^^^^^^^^^^^^^^^^^^
7115
7116Syntax:
7117"""""""
7118
7119::
7120
Reid Kleckner5772b772014-04-24 20:14:34 +00007121 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00007122
7123Overview:
7124"""""""""
7125
7126The '``call``' instruction represents a simple function call.
7127
7128Arguments:
7129""""""""""
7130
7131This instruction requires several arguments:
7132
Reid Kleckner5772b772014-04-24 20:14:34 +00007133#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
7134 should perform tail call optimization. The ``tail`` marker is a hint that
7135 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
7136 means that the call must be tail call optimized in order for the program to
7137 be correct. The ``musttail`` marker provides these guarantees:
7138
7139 #. The call will not cause unbounded stack growth if it is part of a
7140 recursive cycle in the call graph.
7141 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
7142 forwarded in place.
7143
7144 Both markers imply that the callee does not access allocas or varargs from
7145 the caller. Calls marked ``musttail`` must obey the following additional
7146 rules:
7147
7148 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
7149 or a pointer bitcast followed by a ret instruction.
7150 - The ret instruction must return the (possibly bitcasted) value
7151 produced by the call or void.
7152 - The caller and callee prototypes must match. Pointer types of
7153 parameters or return types may differ in pointee type, but not
7154 in address space.
7155 - The calling conventions of the caller and callee must match.
7156 - All ABI-impacting function attributes, such as sret, byval, inreg,
7157 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00007158 - The callee must be varargs iff the caller is varargs. Bitcasting a
7159 non-varargs function to the appropriate varargs type is legal so
7160 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00007161
7162 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
7163 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00007164
7165 - Caller and callee both have the calling convention ``fastcc``.
7166 - The call is in tail position (ret immediately follows call and ret
7167 uses value of call or is void).
7168 - Option ``-tailcallopt`` is enabled, or
7169 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00007170 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00007171 met. <CodeGenerator.html#tailcallopt>`_
7172
7173#. The optional "cconv" marker indicates which :ref:`calling
7174 convention <callingconv>` the call should use. If none is
7175 specified, the call defaults to using C calling conventions. The
7176 calling convention of the call must match the calling convention of
7177 the target function, or else the behavior is undefined.
7178#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
7179 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
7180 are valid here.
7181#. '``ty``': the type of the call instruction itself which is also the
7182 type of the return value. Functions that return no value are marked
7183 ``void``.
7184#. '``fnty``': shall be the signature of the pointer to function value
7185 being invoked. The argument types must match the types implied by
7186 this signature. This type can be omitted if the function is not
7187 varargs and if the function type does not return a pointer to a
7188 function.
7189#. '``fnptrval``': An LLVM value containing a pointer to a function to
7190 be invoked. In most cases, this is a direct function invocation, but
7191 indirect ``call``'s are just as possible, calling an arbitrary pointer
7192 to function value.
7193#. '``function args``': argument list whose types match the function
7194 signature argument types and parameter attributes. All arguments must
7195 be of :ref:`first class <t_firstclass>` type. If the function signature
7196 indicates the function accepts a variable number of arguments, the
7197 extra arguments can be specified.
7198#. The optional :ref:`function attributes <fnattrs>` list. Only
7199 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
7200 attributes are valid here.
7201
7202Semantics:
7203""""""""""
7204
7205The '``call``' instruction is used to cause control flow to transfer to
7206a specified function, with its incoming arguments bound to the specified
7207values. Upon a '``ret``' instruction in the called function, control
7208flow continues with the instruction after the function call, and the
7209return value of the function is bound to the result argument.
7210
7211Example:
7212""""""""
7213
7214.. code-block:: llvm
7215
7216 %retval = call i32 @test(i32 %argc)
7217 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
7218 %X = tail call i32 @foo() ; yields i32
7219 %Y = tail call fastcc i32 @foo() ; yields i32
7220 call void %foo(i8 97 signext)
7221
7222 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00007223 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00007224 %gr = extractvalue %struct.A %r, 0 ; yields i32
7225 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
7226 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
7227 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
7228
7229llvm treats calls to some functions with names and arguments that match
7230the standard C99 library as being the C99 library functions, and may
7231perform optimizations or generate code for them under that assumption.
7232This is something we'd like to change in the future to provide better
7233support for freestanding environments and non-C-based languages.
7234
7235.. _i_va_arg:
7236
7237'``va_arg``' Instruction
7238^^^^^^^^^^^^^^^^^^^^^^^^
7239
7240Syntax:
7241"""""""
7242
7243::
7244
7245 <resultval> = va_arg <va_list*> <arglist>, <argty>
7246
7247Overview:
7248"""""""""
7249
7250The '``va_arg``' instruction is used to access arguments passed through
7251the "variable argument" area of a function call. It is used to implement
7252the ``va_arg`` macro in C.
7253
7254Arguments:
7255""""""""""
7256
7257This instruction takes a ``va_list*`` value and the type of the
7258argument. It returns a value of the specified argument type and
7259increments the ``va_list`` to point to the next argument. The actual
7260type of ``va_list`` is target specific.
7261
7262Semantics:
7263""""""""""
7264
7265The '``va_arg``' instruction loads an argument of the specified type
7266from the specified ``va_list`` and causes the ``va_list`` to point to
7267the next argument. For more information, see the variable argument
7268handling :ref:`Intrinsic Functions <int_varargs>`.
7269
7270It is legal for this instruction to be called in a function which does
7271not take a variable number of arguments, for example, the ``vfprintf``
7272function.
7273
7274``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
7275function <intrinsics>` because it takes a type as an argument.
7276
7277Example:
7278""""""""
7279
7280See the :ref:`variable argument processing <int_varargs>` section.
7281
7282Note that the code generator does not yet fully support va\_arg on many
7283targets. Also, it does not currently support va\_arg with aggregate
7284types on any target.
7285
7286.. _i_landingpad:
7287
7288'``landingpad``' Instruction
7289^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7290
7291Syntax:
7292"""""""
7293
7294::
7295
David Majnemer7fddecc2015-06-17 20:52:32 +00007296 <resultval> = landingpad <resultty> <clause>+
7297 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00007298
7299 <clause> := catch <type> <value>
7300 <clause> := filter <array constant type> <array constant>
7301
7302Overview:
7303"""""""""
7304
7305The '``landingpad``' instruction is used by `LLVM's exception handling
7306system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007307is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00007308code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00007309defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00007310re-entry to the function. The ``resultval`` has the type ``resultty``.
7311
7312Arguments:
7313""""""""""
7314
David Majnemer7fddecc2015-06-17 20:52:32 +00007315The optional
Sean Silvab084af42012-12-07 10:36:55 +00007316``cleanup`` flag indicates that the landing pad block is a cleanup.
7317
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007318A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00007319contains the global variable representing the "type" that may be caught
7320or filtered respectively. Unlike the ``catch`` clause, the ``filter``
7321clause takes an array constant as its argument. Use
7322"``[0 x i8**] undef``" for a filter which cannot throw. The
7323'``landingpad``' instruction must contain *at least* one ``clause`` or
7324the ``cleanup`` flag.
7325
7326Semantics:
7327""""""""""
7328
7329The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00007330:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00007331therefore the "result type" of the ``landingpad`` instruction. As with
7332calling conventions, how the personality function results are
7333represented in LLVM IR is target specific.
7334
7335The clauses are applied in order from top to bottom. If two
7336``landingpad`` instructions are merged together through inlining, the
7337clauses from the calling function are appended to the list of clauses.
7338When the call stack is being unwound due to an exception being thrown,
7339the exception is compared against each ``clause`` in turn. If it doesn't
7340match any of the clauses, and the ``cleanup`` flag is not set, then
7341unwinding continues further up the call stack.
7342
7343The ``landingpad`` instruction has several restrictions:
7344
7345- A landing pad block is a basic block which is the unwind destination
7346 of an '``invoke``' instruction.
7347- A landing pad block must have a '``landingpad``' instruction as its
7348 first non-PHI instruction.
7349- There can be only one '``landingpad``' instruction within the landing
7350 pad block.
7351- A basic block that is not a landing pad block may not include a
7352 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00007353
7354Example:
7355""""""""
7356
7357.. code-block:: llvm
7358
7359 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00007360 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00007361 catch i8** @_ZTIi
7362 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00007363 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00007364 cleanup
7365 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00007366 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00007367 catch i8** @_ZTIi
7368 filter [1 x i8**] [@_ZTId]
7369
7370.. _intrinsics:
7371
7372Intrinsic Functions
7373===================
7374
7375LLVM supports the notion of an "intrinsic function". These functions
7376have well known names and semantics and are required to follow certain
7377restrictions. Overall, these intrinsics represent an extension mechanism
7378for the LLVM language that does not require changing all of the
7379transformations in LLVM when adding to the language (or the bitcode
7380reader/writer, the parser, etc...).
7381
7382Intrinsic function names must all start with an "``llvm.``" prefix. This
7383prefix is reserved in LLVM for intrinsic names; thus, function names may
7384not begin with this prefix. Intrinsic functions must always be external
7385functions: you cannot define the body of intrinsic functions. Intrinsic
7386functions may only be used in call or invoke instructions: it is illegal
7387to take the address of an intrinsic function. Additionally, because
7388intrinsic functions are part of the LLVM language, it is required if any
7389are added that they be documented here.
7390
7391Some intrinsic functions can be overloaded, i.e., the intrinsic
7392represents a family of functions that perform the same operation but on
7393different data types. Because LLVM can represent over 8 million
7394different integer types, overloading is used commonly to allow an
7395intrinsic function to operate on any integer type. One or more of the
7396argument types or the result type can be overloaded to accept any
7397integer type. Argument types may also be defined as exactly matching a
7398previous argument's type or the result type. This allows an intrinsic
7399function which accepts multiple arguments, but needs all of them to be
7400of the same type, to only be overloaded with respect to a single
7401argument or the result.
7402
7403Overloaded intrinsics will have the names of its overloaded argument
7404types encoded into its function name, each preceded by a period. Only
7405those types which are overloaded result in a name suffix. Arguments
7406whose type is matched against another type do not. For example, the
7407``llvm.ctpop`` function can take an integer of any width and returns an
7408integer of exactly the same integer width. This leads to a family of
7409functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
7410``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
7411overloaded, and only one type suffix is required. Because the argument's
7412type is matched against the return type, it does not require its own
7413name suffix.
7414
7415To learn how to add an intrinsic function, please see the `Extending
7416LLVM Guide <ExtendingLLVM.html>`_.
7417
7418.. _int_varargs:
7419
7420Variable Argument Handling Intrinsics
7421-------------------------------------
7422
7423Variable argument support is defined in LLVM with the
7424:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
7425functions. These functions are related to the similarly named macros
7426defined in the ``<stdarg.h>`` header file.
7427
7428All of these functions operate on arguments that use a target-specific
7429value type "``va_list``". The LLVM assembly language reference manual
7430does not define what this type is, so all transformations should be
7431prepared to handle these functions regardless of the type used.
7432
7433This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
7434variable argument handling intrinsic functions are used.
7435
7436.. code-block:: llvm
7437
Tim Northoverab60bb92014-11-02 01:21:51 +00007438 ; This struct is different for every platform. For most platforms,
7439 ; it is merely an i8*.
7440 %struct.va_list = type { i8* }
7441
7442 ; For Unix x86_64 platforms, va_list is the following struct:
7443 ; %struct.va_list = type { i32, i32, i8*, i8* }
7444
Sean Silvab084af42012-12-07 10:36:55 +00007445 define i32 @test(i32 %X, ...) {
7446 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00007447 %ap = alloca %struct.va_list
7448 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00007449 call void @llvm.va_start(i8* %ap2)
7450
7451 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00007452 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00007453
7454 ; Demonstrate usage of llvm.va_copy and llvm.va_end
7455 %aq = alloca i8*
7456 %aq2 = bitcast i8** %aq to i8*
7457 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
7458 call void @llvm.va_end(i8* %aq2)
7459
7460 ; Stop processing of arguments.
7461 call void @llvm.va_end(i8* %ap2)
7462 ret i32 %tmp
7463 }
7464
7465 declare void @llvm.va_start(i8*)
7466 declare void @llvm.va_copy(i8*, i8*)
7467 declare void @llvm.va_end(i8*)
7468
7469.. _int_va_start:
7470
7471'``llvm.va_start``' Intrinsic
7472^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7473
7474Syntax:
7475"""""""
7476
7477::
7478
Nick Lewycky04f6de02013-09-11 22:04:52 +00007479 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00007480
7481Overview:
7482"""""""""
7483
7484The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
7485subsequent use by ``va_arg``.
7486
7487Arguments:
7488""""""""""
7489
7490The argument is a pointer to a ``va_list`` element to initialize.
7491
7492Semantics:
7493""""""""""
7494
7495The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
7496available in C. In a target-dependent way, it initializes the
7497``va_list`` element to which the argument points, so that the next call
7498to ``va_arg`` will produce the first variable argument passed to the
7499function. Unlike the C ``va_start`` macro, this intrinsic does not need
7500to know the last argument of the function as the compiler can figure
7501that out.
7502
7503'``llvm.va_end``' Intrinsic
7504^^^^^^^^^^^^^^^^^^^^^^^^^^^
7505
7506Syntax:
7507"""""""
7508
7509::
7510
7511 declare void @llvm.va_end(i8* <arglist>)
7512
7513Overview:
7514"""""""""
7515
7516The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
7517initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
7518
7519Arguments:
7520""""""""""
7521
7522The argument is a pointer to a ``va_list`` to destroy.
7523
7524Semantics:
7525""""""""""
7526
7527The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
7528available in C. In a target-dependent way, it destroys the ``va_list``
7529element to which the argument points. Calls to
7530:ref:`llvm.va_start <int_va_start>` and
7531:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
7532``llvm.va_end``.
7533
7534.. _int_va_copy:
7535
7536'``llvm.va_copy``' Intrinsic
7537^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7538
7539Syntax:
7540"""""""
7541
7542::
7543
7544 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
7545
7546Overview:
7547"""""""""
7548
7549The '``llvm.va_copy``' intrinsic copies the current argument position
7550from the source argument list to the destination argument list.
7551
7552Arguments:
7553""""""""""
7554
7555The first argument is a pointer to a ``va_list`` element to initialize.
7556The second argument is a pointer to a ``va_list`` element to copy from.
7557
7558Semantics:
7559""""""""""
7560
7561The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
7562available in C. In a target-dependent way, it copies the source
7563``va_list`` element into the destination ``va_list`` element. This
7564intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
7565arbitrarily complex and require, for example, memory allocation.
7566
7567Accurate Garbage Collection Intrinsics
7568--------------------------------------
7569
Philip Reamesc5b0f562015-02-25 23:52:06 +00007570LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007571(GC) requires the frontend to generate code containing appropriate intrinsic
7572calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00007573intrinsics in a manner which is appropriate for the target collector.
7574
Sean Silvab084af42012-12-07 10:36:55 +00007575These intrinsics allow identification of :ref:`GC roots on the
7576stack <int_gcroot>`, as well as garbage collector implementations that
7577require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00007578Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00007579these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00007580details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00007581
Philip Reamesf80bbff2015-02-25 23:45:20 +00007582Experimental Statepoint Intrinsics
7583^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7584
7585LLVM provides an second experimental set of intrinsics for describing garbage
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007586collection safepoints in compiled code. These intrinsics are an alternative
7587to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
7588:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
7589differences in approach are covered in the `Garbage Collection with LLVM
7590<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00007591described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00007592
7593.. _int_gcroot:
7594
7595'``llvm.gcroot``' Intrinsic
7596^^^^^^^^^^^^^^^^^^^^^^^^^^^
7597
7598Syntax:
7599"""""""
7600
7601::
7602
7603 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
7604
7605Overview:
7606"""""""""
7607
7608The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
7609the code generator, and allows some metadata to be associated with it.
7610
7611Arguments:
7612""""""""""
7613
7614The first argument specifies the address of a stack object that contains
7615the root pointer. The second pointer (which must be either a constant or
7616a global value address) contains the meta-data to be associated with the
7617root.
7618
7619Semantics:
7620""""""""""
7621
7622At runtime, a call to this intrinsic stores a null pointer into the
7623"ptrloc" location. At compile-time, the code generator generates
7624information to allow the runtime to find the pointer at GC safe points.
7625The '``llvm.gcroot``' intrinsic may only be used in a function which
7626:ref:`specifies a GC algorithm <gc>`.
7627
7628.. _int_gcread:
7629
7630'``llvm.gcread``' Intrinsic
7631^^^^^^^^^^^^^^^^^^^^^^^^^^^
7632
7633Syntax:
7634"""""""
7635
7636::
7637
7638 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7639
7640Overview:
7641"""""""""
7642
7643The '``llvm.gcread``' intrinsic identifies reads of references from heap
7644locations, allowing garbage collector implementations that require read
7645barriers.
7646
7647Arguments:
7648""""""""""
7649
7650The second argument is the address to read from, which should be an
7651address allocated from the garbage collector. The first object is a
7652pointer to the start of the referenced object, if needed by the language
7653runtime (otherwise null).
7654
7655Semantics:
7656""""""""""
7657
7658The '``llvm.gcread``' intrinsic has the same semantics as a load
7659instruction, but may be replaced with substantially more complex code by
7660the garbage collector runtime, as needed. The '``llvm.gcread``'
7661intrinsic may only be used in a function which :ref:`specifies a GC
7662algorithm <gc>`.
7663
7664.. _int_gcwrite:
7665
7666'``llvm.gcwrite``' Intrinsic
7667^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7668
7669Syntax:
7670"""""""
7671
7672::
7673
7674 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7675
7676Overview:
7677"""""""""
7678
7679The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7680locations, allowing garbage collector implementations that require write
7681barriers (such as generational or reference counting collectors).
7682
7683Arguments:
7684""""""""""
7685
7686The first argument is the reference to store, the second is the start of
7687the object to store it to, and the third is the address of the field of
7688Obj to store to. If the runtime does not require a pointer to the
7689object, Obj may be null.
7690
7691Semantics:
7692""""""""""
7693
7694The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7695instruction, but may be replaced with substantially more complex code by
7696the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7697intrinsic may only be used in a function which :ref:`specifies a GC
7698algorithm <gc>`.
7699
7700Code Generator Intrinsics
7701-------------------------
7702
7703These intrinsics are provided by LLVM to expose special features that
7704may only be implemented with code generator support.
7705
7706'``llvm.returnaddress``' Intrinsic
7707^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7708
7709Syntax:
7710"""""""
7711
7712::
7713
7714 declare i8 *@llvm.returnaddress(i32 <level>)
7715
7716Overview:
7717"""""""""
7718
7719The '``llvm.returnaddress``' intrinsic attempts to compute a
7720target-specific value indicating the return address of the current
7721function or one of its callers.
7722
7723Arguments:
7724""""""""""
7725
7726The argument to this intrinsic indicates which function to return the
7727address for. Zero indicates the calling function, one indicates its
7728caller, etc. The argument is **required** to be a constant integer
7729value.
7730
7731Semantics:
7732""""""""""
7733
7734The '``llvm.returnaddress``' intrinsic either returns a pointer
7735indicating the return address of the specified call frame, or zero if it
7736cannot be identified. The value returned by this intrinsic is likely to
7737be incorrect or 0 for arguments other than zero, so it should only be
7738used for debugging purposes.
7739
7740Note that calling this intrinsic does not prevent function inlining or
7741other aggressive transformations, so the value returned may not be that
7742of the obvious source-language caller.
7743
7744'``llvm.frameaddress``' Intrinsic
7745^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7746
7747Syntax:
7748"""""""
7749
7750::
7751
7752 declare i8* @llvm.frameaddress(i32 <level>)
7753
7754Overview:
7755"""""""""
7756
7757The '``llvm.frameaddress``' intrinsic attempts to return the
7758target-specific frame pointer value for the specified stack frame.
7759
7760Arguments:
7761""""""""""
7762
7763The argument to this intrinsic indicates which function to return the
7764frame pointer for. Zero indicates the calling function, one indicates
7765its caller, etc. The argument is **required** to be a constant integer
7766value.
7767
7768Semantics:
7769""""""""""
7770
7771The '``llvm.frameaddress``' intrinsic either returns a pointer
7772indicating the frame address of the specified call frame, or zero if it
7773cannot be identified. The value returned by this intrinsic is likely to
7774be incorrect or 0 for arguments other than zero, so it should only be
7775used for debugging purposes.
7776
7777Note that calling this intrinsic does not prevent function inlining or
7778other aggressive transformations, so the value returned may not be that
7779of the obvious source-language caller.
7780
Reid Klecknercfb9ce52015-03-05 18:26:34 +00007781'``llvm.frameescape``' and '``llvm.framerecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00007782^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7783
7784Syntax:
7785"""""""
7786
7787::
7788
Reid Klecknercfb9ce52015-03-05 18:26:34 +00007789 declare void @llvm.frameescape(...)
7790 declare i8* @llvm.framerecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00007791
7792Overview:
7793"""""""""
7794
Reid Klecknercfb9ce52015-03-05 18:26:34 +00007795The '``llvm.frameescape``' intrinsic escapes offsets of a collection of static
7796allocas, and the '``llvm.framerecover``' intrinsic applies those offsets to a
7797live frame pointer to recover the address of the allocation. The offset is
7798computed during frame layout of the caller of ``llvm.frameescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00007799
7800Arguments:
7801""""""""""
7802
Reid Klecknercfb9ce52015-03-05 18:26:34 +00007803All arguments to '``llvm.frameescape``' must be pointers to static allocas or
7804casts of static allocas. Each function can only call '``llvm.frameescape``'
7805once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00007806
Reid Kleckner3542ace2015-01-13 01:51:34 +00007807The ``func`` argument to '``llvm.framerecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00007808bitcasted pointer to a function defined in the current module. The code
7809generator cannot determine the frame allocation offset of functions defined in
7810other modules.
7811
Reid Kleckner3542ace2015-01-13 01:51:34 +00007812The ``fp`` argument to '``llvm.framerecover``' must be a frame
Reid Klecknere9b89312015-01-13 00:48:10 +00007813pointer of a call frame that is currently live. The return value of
7814'``llvm.frameaddress``' is one way to produce such a value, but most platforms
7815also expose the frame pointer through stack unwinding mechanisms.
7816
Reid Klecknercfb9ce52015-03-05 18:26:34 +00007817The ``idx`` argument to '``llvm.framerecover``' indicates which alloca passed to
7818'``llvm.frameescape``' to recover. It is zero-indexed.
7819
Reid Klecknere9b89312015-01-13 00:48:10 +00007820Semantics:
7821""""""""""
7822
7823These intrinsics allow a group of functions to access one stack memory
7824allocation in an ancestor stack frame. The memory returned from
7825'``llvm.frameallocate``' may be allocated prior to stack realignment, so the
7826memory is only aligned to the ABI-required stack alignment. Each function may
7827only call '``llvm.frameallocate``' one or zero times from the function entry
7828block. The frame allocation intrinsic inhibits inlining, as any frame
7829allocations in the inlined function frame are likely to be at a different
Reid Kleckner3542ace2015-01-13 01:51:34 +00007830offset from the one used by '``llvm.framerecover``' called with the
Reid Klecknere9b89312015-01-13 00:48:10 +00007831uninlined function.
7832
Renato Golinc7aea402014-05-06 16:51:25 +00007833.. _int_read_register:
7834.. _int_write_register:
7835
7836'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7837^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7838
7839Syntax:
7840"""""""
7841
7842::
7843
7844 declare i32 @llvm.read_register.i32(metadata)
7845 declare i64 @llvm.read_register.i64(metadata)
7846 declare void @llvm.write_register.i32(metadata, i32 @value)
7847 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00007848 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00007849
7850Overview:
7851"""""""""
7852
7853The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7854provides access to the named register. The register must be valid on
7855the architecture being compiled to. The type needs to be compatible
7856with the register being read.
7857
7858Semantics:
7859""""""""""
7860
7861The '``llvm.read_register``' intrinsic returns the current value of the
7862register, where possible. The '``llvm.write_register``' intrinsic sets
7863the current value of the register, where possible.
7864
7865This is useful to implement named register global variables that need
7866to always be mapped to a specific register, as is common practice on
7867bare-metal programs including OS kernels.
7868
7869The compiler doesn't check for register availability or use of the used
7870register in surrounding code, including inline assembly. Because of that,
7871allocatable registers are not supported.
7872
7873Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007874architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007875work is needed to support other registers and even more so, allocatable
7876registers.
7877
Sean Silvab084af42012-12-07 10:36:55 +00007878.. _int_stacksave:
7879
7880'``llvm.stacksave``' Intrinsic
7881^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7882
7883Syntax:
7884"""""""
7885
7886::
7887
7888 declare i8* @llvm.stacksave()
7889
7890Overview:
7891"""""""""
7892
7893The '``llvm.stacksave``' intrinsic is used to remember the current state
7894of the function stack, for use with
7895:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7896implementing language features like scoped automatic variable sized
7897arrays in C99.
7898
7899Semantics:
7900""""""""""
7901
7902This intrinsic returns a opaque pointer value that can be passed to
7903:ref:`llvm.stackrestore <int_stackrestore>`. When an
7904``llvm.stackrestore`` intrinsic is executed with a value saved from
7905``llvm.stacksave``, it effectively restores the state of the stack to
7906the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7907practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7908were allocated after the ``llvm.stacksave`` was executed.
7909
7910.. _int_stackrestore:
7911
7912'``llvm.stackrestore``' Intrinsic
7913^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7914
7915Syntax:
7916"""""""
7917
7918::
7919
7920 declare void @llvm.stackrestore(i8* %ptr)
7921
7922Overview:
7923"""""""""
7924
7925The '``llvm.stackrestore``' intrinsic is used to restore the state of
7926the function stack to the state it was in when the corresponding
7927:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7928useful for implementing language features like scoped automatic variable
7929sized arrays in C99.
7930
7931Semantics:
7932""""""""""
7933
7934See the description for :ref:`llvm.stacksave <int_stacksave>`.
7935
7936'``llvm.prefetch``' Intrinsic
7937^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7938
7939Syntax:
7940"""""""
7941
7942::
7943
7944 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7945
7946Overview:
7947"""""""""
7948
7949The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7950insert a prefetch instruction if supported; otherwise, it is a noop.
7951Prefetches have no effect on the behavior of the program but can change
7952its performance characteristics.
7953
7954Arguments:
7955""""""""""
7956
7957``address`` is the address to be prefetched, ``rw`` is the specifier
7958determining if the fetch should be for a read (0) or write (1), and
7959``locality`` is a temporal locality specifier ranging from (0) - no
7960locality, to (3) - extremely local keep in cache. The ``cache type``
7961specifies whether the prefetch is performed on the data (1) or
7962instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7963arguments must be constant integers.
7964
7965Semantics:
7966""""""""""
7967
7968This intrinsic does not modify the behavior of the program. In
7969particular, prefetches cannot trap and do not produce a value. On
7970targets that support this intrinsic, the prefetch can provide hints to
7971the processor cache for better performance.
7972
7973'``llvm.pcmarker``' Intrinsic
7974^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7975
7976Syntax:
7977"""""""
7978
7979::
7980
7981 declare void @llvm.pcmarker(i32 <id>)
7982
7983Overview:
7984"""""""""
7985
7986The '``llvm.pcmarker``' intrinsic is a method to export a Program
7987Counter (PC) in a region of code to simulators and other tools. The
7988method is target specific, but it is expected that the marker will use
7989exported symbols to transmit the PC of the marker. The marker makes no
7990guarantees that it will remain with any specific instruction after
7991optimizations. It is possible that the presence of a marker will inhibit
7992optimizations. The intended use is to be inserted after optimizations to
7993allow correlations of simulation runs.
7994
7995Arguments:
7996""""""""""
7997
7998``id`` is a numerical id identifying the marker.
7999
8000Semantics:
8001""""""""""
8002
8003This intrinsic does not modify the behavior of the program. Backends
8004that do not support this intrinsic may ignore it.
8005
8006'``llvm.readcyclecounter``' Intrinsic
8007^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8008
8009Syntax:
8010"""""""
8011
8012::
8013
8014 declare i64 @llvm.readcyclecounter()
8015
8016Overview:
8017"""""""""
8018
8019The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
8020counter register (or similar low latency, high accuracy clocks) on those
8021targets that support it. On X86, it should map to RDTSC. On Alpha, it
8022should map to RPCC. As the backing counters overflow quickly (on the
8023order of 9 seconds on alpha), this should only be used for small
8024timings.
8025
8026Semantics:
8027""""""""""
8028
8029When directly supported, reading the cycle counter should not modify any
8030memory. Implementations are allowed to either return a application
8031specific value or a system wide value. On backends without support, this
8032is lowered to a constant 0.
8033
Tim Northoverbc933082013-05-23 19:11:20 +00008034Note that runtime support may be conditional on the privilege-level code is
8035running at and the host platform.
8036
Renato Golinc0a3c1d2014-03-26 12:52:28 +00008037'``llvm.clear_cache``' Intrinsic
8038^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8039
8040Syntax:
8041"""""""
8042
8043::
8044
8045 declare void @llvm.clear_cache(i8*, i8*)
8046
8047Overview:
8048"""""""""
8049
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008050The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
8051in the specified range to the execution unit of the processor. On
8052targets with non-unified instruction and data cache, the implementation
8053flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00008054
8055Semantics:
8056""""""""""
8057
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008058On platforms with coherent instruction and data caches (e.g. x86), this
8059intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00008060cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008061instructions or a system call, if cache flushing requires special
8062privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00008063
Sean Silvad02bf3e2014-04-07 22:29:53 +00008064The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008065time library.
Renato Golin93010e62014-03-26 14:01:32 +00008066
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008067This instrinsic does *not* empty the instruction pipeline. Modifications
8068of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00008069
Justin Bogner61ba2e32014-12-08 18:02:35 +00008070'``llvm.instrprof_increment``' Intrinsic
8071^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8072
8073Syntax:
8074"""""""
8075
8076::
8077
8078 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
8079 i32 <num-counters>, i32 <index>)
8080
8081Overview:
8082"""""""""
8083
8084The '``llvm.instrprof_increment``' intrinsic can be emitted by a
8085frontend for use with instrumentation based profiling. These will be
8086lowered by the ``-instrprof`` pass to generate execution counts of a
8087program at runtime.
8088
8089Arguments:
8090""""""""""
8091
8092The first argument is a pointer to a global variable containing the
8093name of the entity being instrumented. This should generally be the
8094(mangled) function name for a set of counters.
8095
8096The second argument is a hash value that can be used by the consumer
8097of the profile data to detect changes to the instrumented source, and
8098the third is the number of counters associated with ``name``. It is an
8099error if ``hash`` or ``num-counters`` differ between two instances of
8100``instrprof_increment`` that refer to the same name.
8101
8102The last argument refers to which of the counters for ``name`` should
8103be incremented. It should be a value between 0 and ``num-counters``.
8104
8105Semantics:
8106""""""""""
8107
8108This intrinsic represents an increment of a profiling counter. It will
8109cause the ``-instrprof`` pass to generate the appropriate data
8110structures and the code to increment the appropriate value, in a
8111format that can be written out by a compiler runtime and consumed via
8112the ``llvm-profdata`` tool.
8113
Sean Silvab084af42012-12-07 10:36:55 +00008114Standard C Library Intrinsics
8115-----------------------------
8116
8117LLVM provides intrinsics for a few important standard C library
8118functions. These intrinsics allow source-language front-ends to pass
8119information about the alignment of the pointer arguments to the code
8120generator, providing opportunity for more efficient code generation.
8121
8122.. _int_memcpy:
8123
8124'``llvm.memcpy``' Intrinsic
8125^^^^^^^^^^^^^^^^^^^^^^^^^^^
8126
8127Syntax:
8128"""""""
8129
8130This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
8131integer bit width and for different address spaces. Not all targets
8132support all bit widths however.
8133
8134::
8135
8136 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
8137 i32 <len>, i32 <align>, i1 <isvolatile>)
8138 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
8139 i64 <len>, i32 <align>, i1 <isvolatile>)
8140
8141Overview:
8142"""""""""
8143
8144The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
8145source location to the destination location.
8146
8147Note that, unlike the standard libc function, the ``llvm.memcpy.*``
8148intrinsics do not return a value, takes extra alignment/isvolatile
8149arguments and the pointers can be in specified address spaces.
8150
8151Arguments:
8152""""""""""
8153
8154The first argument is a pointer to the destination, the second is a
8155pointer to the source. The third argument is an integer argument
8156specifying the number of bytes to copy, the fourth argument is the
8157alignment of the source and destination locations, and the fifth is a
8158boolean indicating a volatile access.
8159
8160If the call to this intrinsic has an alignment value that is not 0 or 1,
8161then the caller guarantees that both the source and destination pointers
8162are aligned to that boundary.
8163
8164If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
8165a :ref:`volatile operation <volatile>`. The detailed access behavior is not
8166very cleanly specified and it is unwise to depend on it.
8167
8168Semantics:
8169""""""""""
8170
8171The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
8172source location to the destination location, which are not allowed to
8173overlap. It copies "len" bytes of memory over. If the argument is known
8174to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00008175argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008176
8177'``llvm.memmove``' Intrinsic
8178^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8179
8180Syntax:
8181"""""""
8182
8183This is an overloaded intrinsic. You can use llvm.memmove on any integer
8184bit width and for different address space. Not all targets support all
8185bit widths however.
8186
8187::
8188
8189 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
8190 i32 <len>, i32 <align>, i1 <isvolatile>)
8191 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
8192 i64 <len>, i32 <align>, i1 <isvolatile>)
8193
8194Overview:
8195"""""""""
8196
8197The '``llvm.memmove.*``' intrinsics move a block of memory from the
8198source location to the destination location. It is similar to the
8199'``llvm.memcpy``' intrinsic but allows the two memory locations to
8200overlap.
8201
8202Note that, unlike the standard libc function, the ``llvm.memmove.*``
8203intrinsics do not return a value, takes extra alignment/isvolatile
8204arguments and the pointers can be in specified address spaces.
8205
8206Arguments:
8207""""""""""
8208
8209The first argument is a pointer to the destination, the second is a
8210pointer to the source. The third argument is an integer argument
8211specifying the number of bytes to copy, the fourth argument is the
8212alignment of the source and destination locations, and the fifth is a
8213boolean indicating a volatile access.
8214
8215If the call to this intrinsic has an alignment value that is not 0 or 1,
8216then the caller guarantees that the source and destination pointers are
8217aligned to that boundary.
8218
8219If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
8220is a :ref:`volatile operation <volatile>`. The detailed access behavior is
8221not very cleanly specified and it is unwise to depend on it.
8222
8223Semantics:
8224""""""""""
8225
8226The '``llvm.memmove.*``' intrinsics copy a block of memory from the
8227source location to the destination location, which may overlap. It
8228copies "len" bytes of memory over. If the argument is known to be
8229aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00008230otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008231
8232'``llvm.memset.*``' Intrinsics
8233^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8234
8235Syntax:
8236"""""""
8237
8238This is an overloaded intrinsic. You can use llvm.memset on any integer
8239bit width and for different address spaces. However, not all targets
8240support all bit widths.
8241
8242::
8243
8244 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
8245 i32 <len>, i32 <align>, i1 <isvolatile>)
8246 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
8247 i64 <len>, i32 <align>, i1 <isvolatile>)
8248
8249Overview:
8250"""""""""
8251
8252The '``llvm.memset.*``' intrinsics fill a block of memory with a
8253particular byte value.
8254
8255Note that, unlike the standard libc function, the ``llvm.memset``
8256intrinsic does not return a value and takes extra alignment/volatile
8257arguments. Also, the destination can be in an arbitrary address space.
8258
8259Arguments:
8260""""""""""
8261
8262The first argument is a pointer to the destination to fill, the second
8263is the byte value with which to fill it, the third argument is an
8264integer argument specifying the number of bytes to fill, and the fourth
8265argument is the known alignment of the destination location.
8266
8267If the call to this intrinsic has an alignment value that is not 0 or 1,
8268then the caller guarantees that the destination pointer is aligned to
8269that boundary.
8270
8271If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
8272a :ref:`volatile operation <volatile>`. The detailed access behavior is not
8273very cleanly specified and it is unwise to depend on it.
8274
8275Semantics:
8276""""""""""
8277
8278The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
8279at the destination location. If the argument is known to be aligned to
8280some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00008281it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008282
8283'``llvm.sqrt.*``' Intrinsic
8284^^^^^^^^^^^^^^^^^^^^^^^^^^^
8285
8286Syntax:
8287"""""""
8288
8289This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
8290floating point or vector of floating point type. Not all targets support
8291all types however.
8292
8293::
8294
8295 declare float @llvm.sqrt.f32(float %Val)
8296 declare double @llvm.sqrt.f64(double %Val)
8297 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
8298 declare fp128 @llvm.sqrt.f128(fp128 %Val)
8299 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
8300
8301Overview:
8302"""""""""
8303
8304The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
8305returning the same value as the libm '``sqrt``' functions would. Unlike
8306``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
8307negative numbers other than -0.0 (which allows for better optimization,
8308because there is no need to worry about errno being set).
8309``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
8310
8311Arguments:
8312""""""""""
8313
8314The argument and return value are floating point numbers of the same
8315type.
8316
8317Semantics:
8318""""""""""
8319
8320This function returns the sqrt of the specified operand if it is a
8321nonnegative floating point number.
8322
8323'``llvm.powi.*``' Intrinsic
8324^^^^^^^^^^^^^^^^^^^^^^^^^^^
8325
8326Syntax:
8327"""""""
8328
8329This is an overloaded intrinsic. You can use ``llvm.powi`` on any
8330floating point or vector of floating point type. Not all targets support
8331all types however.
8332
8333::
8334
8335 declare float @llvm.powi.f32(float %Val, i32 %power)
8336 declare double @llvm.powi.f64(double %Val, i32 %power)
8337 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
8338 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
8339 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
8340
8341Overview:
8342"""""""""
8343
8344The '``llvm.powi.*``' intrinsics return the first operand raised to the
8345specified (positive or negative) power. The order of evaluation of
8346multiplications is not defined. When a vector of floating point type is
8347used, the second argument remains a scalar integer value.
8348
8349Arguments:
8350""""""""""
8351
8352The second argument is an integer power, and the first is a value to
8353raise to that power.
8354
8355Semantics:
8356""""""""""
8357
8358This function returns the first value raised to the second power with an
8359unspecified sequence of rounding operations.
8360
8361'``llvm.sin.*``' Intrinsic
8362^^^^^^^^^^^^^^^^^^^^^^^^^^
8363
8364Syntax:
8365"""""""
8366
8367This is an overloaded intrinsic. You can use ``llvm.sin`` on any
8368floating point or vector of floating point type. Not all targets support
8369all types however.
8370
8371::
8372
8373 declare float @llvm.sin.f32(float %Val)
8374 declare double @llvm.sin.f64(double %Val)
8375 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
8376 declare fp128 @llvm.sin.f128(fp128 %Val)
8377 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
8378
8379Overview:
8380"""""""""
8381
8382The '``llvm.sin.*``' intrinsics return the sine of the operand.
8383
8384Arguments:
8385""""""""""
8386
8387The argument and return value are floating point numbers of the same
8388type.
8389
8390Semantics:
8391""""""""""
8392
8393This function returns the sine of the specified operand, returning the
8394same values as the libm ``sin`` functions would, and handles error
8395conditions in the same way.
8396
8397'``llvm.cos.*``' Intrinsic
8398^^^^^^^^^^^^^^^^^^^^^^^^^^
8399
8400Syntax:
8401"""""""
8402
8403This is an overloaded intrinsic. You can use ``llvm.cos`` on any
8404floating point or vector of floating point type. Not all targets support
8405all types however.
8406
8407::
8408
8409 declare float @llvm.cos.f32(float %Val)
8410 declare double @llvm.cos.f64(double %Val)
8411 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
8412 declare fp128 @llvm.cos.f128(fp128 %Val)
8413 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
8414
8415Overview:
8416"""""""""
8417
8418The '``llvm.cos.*``' intrinsics return the cosine of the operand.
8419
8420Arguments:
8421""""""""""
8422
8423The argument and return value are floating point numbers of the same
8424type.
8425
8426Semantics:
8427""""""""""
8428
8429This function returns the cosine of the specified operand, returning the
8430same values as the libm ``cos`` functions would, and handles error
8431conditions in the same way.
8432
8433'``llvm.pow.*``' Intrinsic
8434^^^^^^^^^^^^^^^^^^^^^^^^^^
8435
8436Syntax:
8437"""""""
8438
8439This is an overloaded intrinsic. You can use ``llvm.pow`` on any
8440floating point or vector of floating point type. Not all targets support
8441all types however.
8442
8443::
8444
8445 declare float @llvm.pow.f32(float %Val, float %Power)
8446 declare double @llvm.pow.f64(double %Val, double %Power)
8447 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
8448 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
8449 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
8450
8451Overview:
8452"""""""""
8453
8454The '``llvm.pow.*``' intrinsics return the first operand raised to the
8455specified (positive or negative) power.
8456
8457Arguments:
8458""""""""""
8459
8460The second argument is a floating point power, and the first is a value
8461to raise to that power.
8462
8463Semantics:
8464""""""""""
8465
8466This function returns the first value raised to the second power,
8467returning the same values as the libm ``pow`` functions would, and
8468handles error conditions in the same way.
8469
8470'``llvm.exp.*``' Intrinsic
8471^^^^^^^^^^^^^^^^^^^^^^^^^^
8472
8473Syntax:
8474"""""""
8475
8476This is an overloaded intrinsic. You can use ``llvm.exp`` on any
8477floating point or vector of floating point type. Not all targets support
8478all types however.
8479
8480::
8481
8482 declare float @llvm.exp.f32(float %Val)
8483 declare double @llvm.exp.f64(double %Val)
8484 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
8485 declare fp128 @llvm.exp.f128(fp128 %Val)
8486 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
8487
8488Overview:
8489"""""""""
8490
8491The '``llvm.exp.*``' intrinsics perform the exp function.
8492
8493Arguments:
8494""""""""""
8495
8496The argument and return value are floating point numbers of the same
8497type.
8498
8499Semantics:
8500""""""""""
8501
8502This function returns the same values as the libm ``exp`` functions
8503would, and handles error conditions in the same way.
8504
8505'``llvm.exp2.*``' Intrinsic
8506^^^^^^^^^^^^^^^^^^^^^^^^^^^
8507
8508Syntax:
8509"""""""
8510
8511This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
8512floating point or vector of floating point type. Not all targets support
8513all types however.
8514
8515::
8516
8517 declare float @llvm.exp2.f32(float %Val)
8518 declare double @llvm.exp2.f64(double %Val)
8519 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
8520 declare fp128 @llvm.exp2.f128(fp128 %Val)
8521 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
8522
8523Overview:
8524"""""""""
8525
8526The '``llvm.exp2.*``' intrinsics perform the exp2 function.
8527
8528Arguments:
8529""""""""""
8530
8531The argument and return value are floating point numbers of the same
8532type.
8533
8534Semantics:
8535""""""""""
8536
8537This function returns the same values as the libm ``exp2`` functions
8538would, and handles error conditions in the same way.
8539
8540'``llvm.log.*``' Intrinsic
8541^^^^^^^^^^^^^^^^^^^^^^^^^^
8542
8543Syntax:
8544"""""""
8545
8546This is an overloaded intrinsic. You can use ``llvm.log`` on any
8547floating point or vector of floating point type. Not all targets support
8548all types however.
8549
8550::
8551
8552 declare float @llvm.log.f32(float %Val)
8553 declare double @llvm.log.f64(double %Val)
8554 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
8555 declare fp128 @llvm.log.f128(fp128 %Val)
8556 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
8557
8558Overview:
8559"""""""""
8560
8561The '``llvm.log.*``' intrinsics perform the log function.
8562
8563Arguments:
8564""""""""""
8565
8566The argument and return value are floating point numbers of the same
8567type.
8568
8569Semantics:
8570""""""""""
8571
8572This function returns the same values as the libm ``log`` functions
8573would, and handles error conditions in the same way.
8574
8575'``llvm.log10.*``' Intrinsic
8576^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8577
8578Syntax:
8579"""""""
8580
8581This is an overloaded intrinsic. You can use ``llvm.log10`` on any
8582floating point or vector of floating point type. Not all targets support
8583all types however.
8584
8585::
8586
8587 declare float @llvm.log10.f32(float %Val)
8588 declare double @llvm.log10.f64(double %Val)
8589 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
8590 declare fp128 @llvm.log10.f128(fp128 %Val)
8591 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
8592
8593Overview:
8594"""""""""
8595
8596The '``llvm.log10.*``' intrinsics perform the log10 function.
8597
8598Arguments:
8599""""""""""
8600
8601The argument and return value are floating point numbers of the same
8602type.
8603
8604Semantics:
8605""""""""""
8606
8607This function returns the same values as the libm ``log10`` functions
8608would, and handles error conditions in the same way.
8609
8610'``llvm.log2.*``' Intrinsic
8611^^^^^^^^^^^^^^^^^^^^^^^^^^^
8612
8613Syntax:
8614"""""""
8615
8616This is an overloaded intrinsic. You can use ``llvm.log2`` on any
8617floating point or vector of floating point type. Not all targets support
8618all types however.
8619
8620::
8621
8622 declare float @llvm.log2.f32(float %Val)
8623 declare double @llvm.log2.f64(double %Val)
8624 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
8625 declare fp128 @llvm.log2.f128(fp128 %Val)
8626 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
8627
8628Overview:
8629"""""""""
8630
8631The '``llvm.log2.*``' intrinsics perform the log2 function.
8632
8633Arguments:
8634""""""""""
8635
8636The argument and return value are floating point numbers of the same
8637type.
8638
8639Semantics:
8640""""""""""
8641
8642This function returns the same values as the libm ``log2`` functions
8643would, and handles error conditions in the same way.
8644
8645'``llvm.fma.*``' Intrinsic
8646^^^^^^^^^^^^^^^^^^^^^^^^^^
8647
8648Syntax:
8649"""""""
8650
8651This is an overloaded intrinsic. You can use ``llvm.fma`` on any
8652floating point or vector of floating point type. Not all targets support
8653all types however.
8654
8655::
8656
8657 declare float @llvm.fma.f32(float %a, float %b, float %c)
8658 declare double @llvm.fma.f64(double %a, double %b, double %c)
8659 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
8660 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
8661 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
8662
8663Overview:
8664"""""""""
8665
8666The '``llvm.fma.*``' intrinsics perform the fused multiply-add
8667operation.
8668
8669Arguments:
8670""""""""""
8671
8672The argument and return value are floating point numbers of the same
8673type.
8674
8675Semantics:
8676""""""""""
8677
8678This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008679would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00008680
8681'``llvm.fabs.*``' Intrinsic
8682^^^^^^^^^^^^^^^^^^^^^^^^^^^
8683
8684Syntax:
8685"""""""
8686
8687This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
8688floating point or vector of floating point type. Not all targets support
8689all types however.
8690
8691::
8692
8693 declare float @llvm.fabs.f32(float %Val)
8694 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008695 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008696 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008697 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008698
8699Overview:
8700"""""""""
8701
8702The '``llvm.fabs.*``' intrinsics return the absolute value of the
8703operand.
8704
8705Arguments:
8706""""""""""
8707
8708The argument and return value are floating point numbers of the same
8709type.
8710
8711Semantics:
8712""""""""""
8713
8714This function returns the same values as the libm ``fabs`` functions
8715would, and handles error conditions in the same way.
8716
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008717'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008718^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008719
8720Syntax:
8721"""""""
8722
8723This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
8724floating point or vector of floating point type. Not all targets support
8725all types however.
8726
8727::
8728
Matt Arsenault64313c92014-10-22 18:25:02 +00008729 declare float @llvm.minnum.f32(float %Val0, float %Val1)
8730 declare double @llvm.minnum.f64(double %Val0, double %Val1)
8731 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8732 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
8733 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008734
8735Overview:
8736"""""""""
8737
8738The '``llvm.minnum.*``' intrinsics return the minimum of the two
8739arguments.
8740
8741
8742Arguments:
8743""""""""""
8744
8745The arguments and return value are floating point numbers of the same
8746type.
8747
8748Semantics:
8749""""""""""
8750
8751Follows the IEEE-754 semantics for minNum, which also match for libm's
8752fmin.
8753
8754If either operand is a NaN, returns the other non-NaN operand. Returns
8755NaN only if both operands are NaN. If the operands compare equal,
8756returns a value that compares equal to both operands. This means that
8757fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8758
8759'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008760^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008761
8762Syntax:
8763"""""""
8764
8765This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
8766floating point or vector of floating point type. Not all targets support
8767all types however.
8768
8769::
8770
Matt Arsenault64313c92014-10-22 18:25:02 +00008771 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
8772 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
8773 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8774 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
8775 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008776
8777Overview:
8778"""""""""
8779
8780The '``llvm.maxnum.*``' intrinsics return the maximum of the two
8781arguments.
8782
8783
8784Arguments:
8785""""""""""
8786
8787The arguments and return value are floating point numbers of the same
8788type.
8789
8790Semantics:
8791""""""""""
8792Follows the IEEE-754 semantics for maxNum, which also match for libm's
8793fmax.
8794
8795If either operand is a NaN, returns the other non-NaN operand. Returns
8796NaN only if both operands are NaN. If the operands compare equal,
8797returns a value that compares equal to both operands. This means that
8798fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8799
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00008800'``llvm.copysign.*``' Intrinsic
8801^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8802
8803Syntax:
8804"""""""
8805
8806This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
8807floating point or vector of floating point type. Not all targets support
8808all types however.
8809
8810::
8811
8812 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
8813 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
8814 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
8815 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8816 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
8817
8818Overview:
8819"""""""""
8820
8821The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8822first operand and the sign of the second operand.
8823
8824Arguments:
8825""""""""""
8826
8827The arguments and return value are floating point numbers of the same
8828type.
8829
8830Semantics:
8831""""""""""
8832
8833This function returns the same values as the libm ``copysign``
8834functions would, and handles error conditions in the same way.
8835
Sean Silvab084af42012-12-07 10:36:55 +00008836'``llvm.floor.*``' Intrinsic
8837^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8838
8839Syntax:
8840"""""""
8841
8842This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8843floating point or vector of floating point type. Not all targets support
8844all types however.
8845
8846::
8847
8848 declare float @llvm.floor.f32(float %Val)
8849 declare double @llvm.floor.f64(double %Val)
8850 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
8851 declare fp128 @llvm.floor.f128(fp128 %Val)
8852 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
8853
8854Overview:
8855"""""""""
8856
8857The '``llvm.floor.*``' intrinsics return the floor of the operand.
8858
8859Arguments:
8860""""""""""
8861
8862The argument and return value are floating point numbers of the same
8863type.
8864
8865Semantics:
8866""""""""""
8867
8868This function returns the same values as the libm ``floor`` functions
8869would, and handles error conditions in the same way.
8870
8871'``llvm.ceil.*``' Intrinsic
8872^^^^^^^^^^^^^^^^^^^^^^^^^^^
8873
8874Syntax:
8875"""""""
8876
8877This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8878floating point or vector of floating point type. Not all targets support
8879all types however.
8880
8881::
8882
8883 declare float @llvm.ceil.f32(float %Val)
8884 declare double @llvm.ceil.f64(double %Val)
8885 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8886 declare fp128 @llvm.ceil.f128(fp128 %Val)
8887 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8888
8889Overview:
8890"""""""""
8891
8892The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8893
8894Arguments:
8895""""""""""
8896
8897The argument and return value are floating point numbers of the same
8898type.
8899
8900Semantics:
8901""""""""""
8902
8903This function returns the same values as the libm ``ceil`` functions
8904would, and handles error conditions in the same way.
8905
8906'``llvm.trunc.*``' Intrinsic
8907^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8908
8909Syntax:
8910"""""""
8911
8912This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8913floating point or vector of floating point type. Not all targets support
8914all types however.
8915
8916::
8917
8918 declare float @llvm.trunc.f32(float %Val)
8919 declare double @llvm.trunc.f64(double %Val)
8920 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8921 declare fp128 @llvm.trunc.f128(fp128 %Val)
8922 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8923
8924Overview:
8925"""""""""
8926
8927The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8928nearest integer not larger in magnitude than the operand.
8929
8930Arguments:
8931""""""""""
8932
8933The argument and return value are floating point numbers of the same
8934type.
8935
8936Semantics:
8937""""""""""
8938
8939This function returns the same values as the libm ``trunc`` functions
8940would, and handles error conditions in the same way.
8941
8942'``llvm.rint.*``' Intrinsic
8943^^^^^^^^^^^^^^^^^^^^^^^^^^^
8944
8945Syntax:
8946"""""""
8947
8948This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8949floating point or vector of floating point type. Not all targets support
8950all types however.
8951
8952::
8953
8954 declare float @llvm.rint.f32(float %Val)
8955 declare double @llvm.rint.f64(double %Val)
8956 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8957 declare fp128 @llvm.rint.f128(fp128 %Val)
8958 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8959
8960Overview:
8961"""""""""
8962
8963The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8964nearest integer. It may raise an inexact floating-point exception if the
8965operand isn't an integer.
8966
8967Arguments:
8968""""""""""
8969
8970The argument and return value are floating point numbers of the same
8971type.
8972
8973Semantics:
8974""""""""""
8975
8976This function returns the same values as the libm ``rint`` functions
8977would, and handles error conditions in the same way.
8978
8979'``llvm.nearbyint.*``' Intrinsic
8980^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8981
8982Syntax:
8983"""""""
8984
8985This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8986floating point or vector of floating point type. Not all targets support
8987all types however.
8988
8989::
8990
8991 declare float @llvm.nearbyint.f32(float %Val)
8992 declare double @llvm.nearbyint.f64(double %Val)
8993 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8994 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8995 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8996
8997Overview:
8998"""""""""
8999
9000The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
9001nearest integer.
9002
9003Arguments:
9004""""""""""
9005
9006The argument and return value are floating point numbers of the same
9007type.
9008
9009Semantics:
9010""""""""""
9011
9012This function returns the same values as the libm ``nearbyint``
9013functions would, and handles error conditions in the same way.
9014
Hal Finkel171817e2013-08-07 22:49:12 +00009015'``llvm.round.*``' Intrinsic
9016^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9017
9018Syntax:
9019"""""""
9020
9021This is an overloaded intrinsic. You can use ``llvm.round`` on any
9022floating point or vector of floating point type. Not all targets support
9023all types however.
9024
9025::
9026
9027 declare float @llvm.round.f32(float %Val)
9028 declare double @llvm.round.f64(double %Val)
9029 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
9030 declare fp128 @llvm.round.f128(fp128 %Val)
9031 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
9032
9033Overview:
9034"""""""""
9035
9036The '``llvm.round.*``' intrinsics returns the operand rounded to the
9037nearest integer.
9038
9039Arguments:
9040""""""""""
9041
9042The argument and return value are floating point numbers of the same
9043type.
9044
9045Semantics:
9046""""""""""
9047
9048This function returns the same values as the libm ``round``
9049functions would, and handles error conditions in the same way.
9050
Sean Silvab084af42012-12-07 10:36:55 +00009051Bit Manipulation Intrinsics
9052---------------------------
9053
9054LLVM provides intrinsics for a few important bit manipulation
9055operations. These allow efficient code generation for some algorithms.
9056
9057'``llvm.bswap.*``' Intrinsics
9058^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9059
9060Syntax:
9061"""""""
9062
9063This is an overloaded intrinsic function. You can use bswap on any
9064integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
9065
9066::
9067
9068 declare i16 @llvm.bswap.i16(i16 <id>)
9069 declare i32 @llvm.bswap.i32(i32 <id>)
9070 declare i64 @llvm.bswap.i64(i64 <id>)
9071
9072Overview:
9073"""""""""
9074
9075The '``llvm.bswap``' family of intrinsics is used to byte swap integer
9076values with an even number of bytes (positive multiple of 16 bits).
9077These are useful for performing operations on data that is not in the
9078target's native byte order.
9079
9080Semantics:
9081""""""""""
9082
9083The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
9084and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
9085intrinsic returns an i32 value that has the four bytes of the input i32
9086swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
9087returned i32 will have its bytes in 3, 2, 1, 0 order. The
9088``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
9089concept to additional even-byte lengths (6 bytes, 8 bytes and more,
9090respectively).
9091
9092'``llvm.ctpop.*``' Intrinsic
9093^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9094
9095Syntax:
9096"""""""
9097
9098This is an overloaded intrinsic. You can use llvm.ctpop on any integer
9099bit width, or on any vector with integer elements. Not all targets
9100support all bit widths or vector types, however.
9101
9102::
9103
9104 declare i8 @llvm.ctpop.i8(i8 <src>)
9105 declare i16 @llvm.ctpop.i16(i16 <src>)
9106 declare i32 @llvm.ctpop.i32(i32 <src>)
9107 declare i64 @llvm.ctpop.i64(i64 <src>)
9108 declare i256 @llvm.ctpop.i256(i256 <src>)
9109 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
9110
9111Overview:
9112"""""""""
9113
9114The '``llvm.ctpop``' family of intrinsics counts the number of bits set
9115in a value.
9116
9117Arguments:
9118""""""""""
9119
9120The only argument is the value to be counted. The argument may be of any
9121integer type, or a vector with integer elements. The return type must
9122match the argument type.
9123
9124Semantics:
9125""""""""""
9126
9127The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
9128each element of a vector.
9129
9130'``llvm.ctlz.*``' Intrinsic
9131^^^^^^^^^^^^^^^^^^^^^^^^^^^
9132
9133Syntax:
9134"""""""
9135
9136This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
9137integer bit width, or any vector whose elements are integers. Not all
9138targets support all bit widths or vector types, however.
9139
9140::
9141
9142 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
9143 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
9144 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
9145 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
9146 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
9147 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
9148
9149Overview:
9150"""""""""
9151
9152The '``llvm.ctlz``' family of intrinsic functions counts the number of
9153leading zeros in a variable.
9154
9155Arguments:
9156""""""""""
9157
9158The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00009159any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00009160type must match the first argument type.
9161
9162The second argument must be a constant and is a flag to indicate whether
9163the intrinsic should ensure that a zero as the first argument produces a
9164defined result. Historically some architectures did not provide a
9165defined result for zero values as efficiently, and many algorithms are
9166now predicated on avoiding zero-value inputs.
9167
9168Semantics:
9169""""""""""
9170
9171The '``llvm.ctlz``' intrinsic counts the leading (most significant)
9172zeros in a variable, or within each element of the vector. If
9173``src == 0`` then the result is the size in bits of the type of ``src``
9174if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
9175``llvm.ctlz(i32 2) = 30``.
9176
9177'``llvm.cttz.*``' Intrinsic
9178^^^^^^^^^^^^^^^^^^^^^^^^^^^
9179
9180Syntax:
9181"""""""
9182
9183This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
9184integer bit width, or any vector of integer elements. Not all targets
9185support all bit widths or vector types, however.
9186
9187::
9188
9189 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
9190 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
9191 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
9192 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
9193 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
9194 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
9195
9196Overview:
9197"""""""""
9198
9199The '``llvm.cttz``' family of intrinsic functions counts the number of
9200trailing zeros.
9201
9202Arguments:
9203""""""""""
9204
9205The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00009206any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00009207type must match the first argument type.
9208
9209The second argument must be a constant and is a flag to indicate whether
9210the intrinsic should ensure that a zero as the first argument produces a
9211defined result. Historically some architectures did not provide a
9212defined result for zero values as efficiently, and many algorithms are
9213now predicated on avoiding zero-value inputs.
9214
9215Semantics:
9216""""""""""
9217
9218The '``llvm.cttz``' intrinsic counts the trailing (least significant)
9219zeros in a variable, or within each element of a vector. If ``src == 0``
9220then the result is the size in bits of the type of ``src`` if
9221``is_zero_undef == 0`` and ``undef`` otherwise. For example,
9222``llvm.cttz(2) = 1``.
9223
Philip Reames34843ae2015-03-05 05:55:55 +00009224.. _int_overflow:
9225
Sean Silvab084af42012-12-07 10:36:55 +00009226Arithmetic with Overflow Intrinsics
9227-----------------------------------
9228
9229LLVM provides intrinsics for some arithmetic with overflow operations.
9230
9231'``llvm.sadd.with.overflow.*``' Intrinsics
9232^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9233
9234Syntax:
9235"""""""
9236
9237This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
9238on any integer bit width.
9239
9240::
9241
9242 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
9243 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
9244 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
9245
9246Overview:
9247"""""""""
9248
9249The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
9250a signed addition of the two arguments, and indicate whether an overflow
9251occurred during the signed summation.
9252
9253Arguments:
9254""""""""""
9255
9256The arguments (%a and %b) and the first element of the result structure
9257may be of integer types of any bit width, but they must have the same
9258bit width. The second element of the result structure must be of type
9259``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
9260addition.
9261
9262Semantics:
9263""""""""""
9264
9265The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009266a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00009267first element of which is the signed summation, and the second element
9268of which is a bit specifying if the signed summation resulted in an
9269overflow.
9270
9271Examples:
9272"""""""""
9273
9274.. code-block:: llvm
9275
9276 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
9277 %sum = extractvalue {i32, i1} %res, 0
9278 %obit = extractvalue {i32, i1} %res, 1
9279 br i1 %obit, label %overflow, label %normal
9280
9281'``llvm.uadd.with.overflow.*``' Intrinsics
9282^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9283
9284Syntax:
9285"""""""
9286
9287This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
9288on any integer bit width.
9289
9290::
9291
9292 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
9293 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
9294 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
9295
9296Overview:
9297"""""""""
9298
9299The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
9300an unsigned addition of the two arguments, and indicate whether a carry
9301occurred during the unsigned summation.
9302
9303Arguments:
9304""""""""""
9305
9306The arguments (%a and %b) and the first element of the result structure
9307may be of integer types of any bit width, but they must have the same
9308bit width. The second element of the result structure must be of type
9309``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9310addition.
9311
9312Semantics:
9313""""""""""
9314
9315The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009316an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00009317first element of which is the sum, and the second element of which is a
9318bit specifying if the unsigned summation resulted in a carry.
9319
9320Examples:
9321"""""""""
9322
9323.. code-block:: llvm
9324
9325 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
9326 %sum = extractvalue {i32, i1} %res, 0
9327 %obit = extractvalue {i32, i1} %res, 1
9328 br i1 %obit, label %carry, label %normal
9329
9330'``llvm.ssub.with.overflow.*``' Intrinsics
9331^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9332
9333Syntax:
9334"""""""
9335
9336This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
9337on any integer bit width.
9338
9339::
9340
9341 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
9342 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
9343 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
9344
9345Overview:
9346"""""""""
9347
9348The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
9349a signed subtraction of the two arguments, and indicate whether an
9350overflow occurred during the signed subtraction.
9351
9352Arguments:
9353""""""""""
9354
9355The arguments (%a and %b) and the first element of the result structure
9356may be of integer types of any bit width, but they must have the same
9357bit width. The second element of the result structure must be of type
9358``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
9359subtraction.
9360
9361Semantics:
9362""""""""""
9363
9364The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009365a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00009366first element of which is the subtraction, and the second element of
9367which is a bit specifying if the signed subtraction resulted in an
9368overflow.
9369
9370Examples:
9371"""""""""
9372
9373.. code-block:: llvm
9374
9375 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
9376 %sum = extractvalue {i32, i1} %res, 0
9377 %obit = extractvalue {i32, i1} %res, 1
9378 br i1 %obit, label %overflow, label %normal
9379
9380'``llvm.usub.with.overflow.*``' Intrinsics
9381^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9382
9383Syntax:
9384"""""""
9385
9386This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
9387on any integer bit width.
9388
9389::
9390
9391 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
9392 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
9393 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
9394
9395Overview:
9396"""""""""
9397
9398The '``llvm.usub.with.overflow``' family of intrinsic functions perform
9399an unsigned subtraction of the two arguments, and indicate whether an
9400overflow occurred during the unsigned subtraction.
9401
9402Arguments:
9403""""""""""
9404
9405The arguments (%a and %b) and the first element of the result structure
9406may be of integer types of any bit width, but they must have the same
9407bit width. The second element of the result structure must be of type
9408``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9409subtraction.
9410
9411Semantics:
9412""""""""""
9413
9414The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009415an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00009416the first element of which is the subtraction, and the second element of
9417which is a bit specifying if the unsigned subtraction resulted in an
9418overflow.
9419
9420Examples:
9421"""""""""
9422
9423.. code-block:: llvm
9424
9425 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
9426 %sum = extractvalue {i32, i1} %res, 0
9427 %obit = extractvalue {i32, i1} %res, 1
9428 br i1 %obit, label %overflow, label %normal
9429
9430'``llvm.smul.with.overflow.*``' Intrinsics
9431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9432
9433Syntax:
9434"""""""
9435
9436This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
9437on any integer bit width.
9438
9439::
9440
9441 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
9442 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
9443 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
9444
9445Overview:
9446"""""""""
9447
9448The '``llvm.smul.with.overflow``' family of intrinsic functions perform
9449a signed multiplication of the two arguments, and indicate whether an
9450overflow occurred during the signed multiplication.
9451
9452Arguments:
9453""""""""""
9454
9455The arguments (%a and %b) and the first element of the result structure
9456may be of integer types of any bit width, but they must have the same
9457bit width. The second element of the result structure must be of type
9458``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
9459multiplication.
9460
9461Semantics:
9462""""""""""
9463
9464The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009465a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00009466the first element of which is the multiplication, and the second element
9467of which is a bit specifying if the signed multiplication resulted in an
9468overflow.
9469
9470Examples:
9471"""""""""
9472
9473.. code-block:: llvm
9474
9475 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
9476 %sum = extractvalue {i32, i1} %res, 0
9477 %obit = extractvalue {i32, i1} %res, 1
9478 br i1 %obit, label %overflow, label %normal
9479
9480'``llvm.umul.with.overflow.*``' Intrinsics
9481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9482
9483Syntax:
9484"""""""
9485
9486This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
9487on any integer bit width.
9488
9489::
9490
9491 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
9492 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
9493 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
9494
9495Overview:
9496"""""""""
9497
9498The '``llvm.umul.with.overflow``' family of intrinsic functions perform
9499a unsigned multiplication of the two arguments, and indicate whether an
9500overflow occurred during the unsigned multiplication.
9501
9502Arguments:
9503""""""""""
9504
9505The arguments (%a and %b) and the first element of the result structure
9506may be of integer types of any bit width, but they must have the same
9507bit width. The second element of the result structure must be of type
9508``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9509multiplication.
9510
9511Semantics:
9512""""""""""
9513
9514The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009515an unsigned multiplication of the two arguments. They return a structure ---
9516the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00009517element of which is a bit specifying if the unsigned multiplication
9518resulted in an overflow.
9519
9520Examples:
9521"""""""""
9522
9523.. code-block:: llvm
9524
9525 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
9526 %sum = extractvalue {i32, i1} %res, 0
9527 %obit = extractvalue {i32, i1} %res, 1
9528 br i1 %obit, label %overflow, label %normal
9529
9530Specialised Arithmetic Intrinsics
9531---------------------------------
9532
9533'``llvm.fmuladd.*``' Intrinsic
9534^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9535
9536Syntax:
9537"""""""
9538
9539::
9540
9541 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
9542 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
9543
9544Overview:
9545"""""""""
9546
9547The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00009548expressions that can be fused if the code generator determines that (a) the
9549target instruction set has support for a fused operation, and (b) that the
9550fused operation is more efficient than the equivalent, separate pair of mul
9551and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00009552
9553Arguments:
9554""""""""""
9555
9556The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
9557multiplicands, a and b, and an addend c.
9558
9559Semantics:
9560""""""""""
9561
9562The expression:
9563
9564::
9565
9566 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
9567
9568is equivalent to the expression a \* b + c, except that rounding will
9569not be performed between the multiplication and addition steps if the
9570code generator fuses the operations. Fusion is not guaranteed, even if
9571the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009572corresponding llvm.fma.\* intrinsic function should be used
9573instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00009574
9575Examples:
9576"""""""""
9577
9578.. code-block:: llvm
9579
Tim Northover675a0962014-06-13 14:24:23 +00009580 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00009581
9582Half Precision Floating Point Intrinsics
9583----------------------------------------
9584
9585For most target platforms, half precision floating point is a
9586storage-only format. This means that it is a dense encoding (in memory)
9587but does not support computation in the format.
9588
9589This means that code must first load the half-precision floating point
9590value as an i16, then convert it to float with
9591:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
9592then be performed on the float value (including extending to double
9593etc). To store the value back to memory, it is first converted to float
9594if needed, then converted to i16 with
9595:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
9596i16 value.
9597
9598.. _int_convert_to_fp16:
9599
9600'``llvm.convert.to.fp16``' Intrinsic
9601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9602
9603Syntax:
9604"""""""
9605
9606::
9607
Tim Northoverfd7e4242014-07-17 10:51:23 +00009608 declare i16 @llvm.convert.to.fp16.f32(float %a)
9609 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00009610
9611Overview:
9612"""""""""
9613
Tim Northoverfd7e4242014-07-17 10:51:23 +00009614The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9615conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00009616
9617Arguments:
9618""""""""""
9619
9620The intrinsic function contains single argument - the value to be
9621converted.
9622
9623Semantics:
9624""""""""""
9625
Tim Northoverfd7e4242014-07-17 10:51:23 +00009626The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9627conventional floating point format to half precision floating point format. The
9628return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00009629
9630Examples:
9631"""""""""
9632
9633.. code-block:: llvm
9634
Tim Northoverfd7e4242014-07-17 10:51:23 +00009635 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00009636 store i16 %res, i16* @x, align 2
9637
9638.. _int_convert_from_fp16:
9639
9640'``llvm.convert.from.fp16``' Intrinsic
9641^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9642
9643Syntax:
9644"""""""
9645
9646::
9647
Tim Northoverfd7e4242014-07-17 10:51:23 +00009648 declare float @llvm.convert.from.fp16.f32(i16 %a)
9649 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009650
9651Overview:
9652"""""""""
9653
9654The '``llvm.convert.from.fp16``' intrinsic function performs a
9655conversion from half precision floating point format to single precision
9656floating point format.
9657
9658Arguments:
9659""""""""""
9660
9661The intrinsic function contains single argument - the value to be
9662converted.
9663
9664Semantics:
9665""""""""""
9666
9667The '``llvm.convert.from.fp16``' intrinsic function performs a
9668conversion from half single precision floating point format to single
9669precision floating point format. The input half-float value is
9670represented by an ``i16`` value.
9671
9672Examples:
9673"""""""""
9674
9675.. code-block:: llvm
9676
David Blaikiec7aabbb2015-03-04 22:06:14 +00009677 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00009678 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009679
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00009680.. _dbg_intrinsics:
9681
Sean Silvab084af42012-12-07 10:36:55 +00009682Debugger Intrinsics
9683-------------------
9684
9685The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
9686prefix), are described in the `LLVM Source Level
9687Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
9688document.
9689
9690Exception Handling Intrinsics
9691-----------------------------
9692
9693The LLVM exception handling intrinsics (which all start with
9694``llvm.eh.`` prefix), are described in the `LLVM Exception
9695Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
9696
9697.. _int_trampoline:
9698
9699Trampoline Intrinsics
9700---------------------
9701
9702These intrinsics make it possible to excise one parameter, marked with
9703the :ref:`nest <nest>` attribute, from a function. The result is a
9704callable function pointer lacking the nest parameter - the caller does
9705not need to provide a value for it. Instead, the value to use is stored
9706in advance in a "trampoline", a block of memory usually allocated on the
9707stack, which also contains code to splice the nest value into the
9708argument list. This is used to implement the GCC nested function address
9709extension.
9710
9711For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
9712then the resulting function pointer has signature ``i32 (i32, i32)*``.
9713It can be created as follows:
9714
9715.. code-block:: llvm
9716
9717 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +00009718 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +00009719 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
9720 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
9721 %fp = bitcast i8* %p to i32 (i32, i32)*
9722
9723The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
9724``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
9725
9726.. _int_it:
9727
9728'``llvm.init.trampoline``' Intrinsic
9729^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9730
9731Syntax:
9732"""""""
9733
9734::
9735
9736 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
9737
9738Overview:
9739"""""""""
9740
9741This fills the memory pointed to by ``tramp`` with executable code,
9742turning it into a trampoline.
9743
9744Arguments:
9745""""""""""
9746
9747The ``llvm.init.trampoline`` intrinsic takes three arguments, all
9748pointers. The ``tramp`` argument must point to a sufficiently large and
9749sufficiently aligned block of memory; this memory is written to by the
9750intrinsic. Note that the size and the alignment are target-specific -
9751LLVM currently provides no portable way of determining them, so a
9752front-end that generates this intrinsic needs to have some
9753target-specific knowledge. The ``func`` argument must hold a function
9754bitcast to an ``i8*``.
9755
9756Semantics:
9757""""""""""
9758
9759The block of memory pointed to by ``tramp`` is filled with target
9760dependent code, turning it into a function. Then ``tramp`` needs to be
9761passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
9762be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
9763function's signature is the same as that of ``func`` with any arguments
9764marked with the ``nest`` attribute removed. At most one such ``nest``
9765argument is allowed, and it must be of pointer type. Calling the new
9766function is equivalent to calling ``func`` with the same argument list,
9767but with ``nval`` used for the missing ``nest`` argument. If, after
9768calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
9769modified, then the effect of any later call to the returned function
9770pointer is undefined.
9771
9772.. _int_at:
9773
9774'``llvm.adjust.trampoline``' Intrinsic
9775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9776
9777Syntax:
9778"""""""
9779
9780::
9781
9782 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
9783
9784Overview:
9785"""""""""
9786
9787This performs any required machine-specific adjustment to the address of
9788a trampoline (passed as ``tramp``).
9789
9790Arguments:
9791""""""""""
9792
9793``tramp`` must point to a block of memory which already has trampoline
9794code filled in by a previous call to
9795:ref:`llvm.init.trampoline <int_it>`.
9796
9797Semantics:
9798""""""""""
9799
9800On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009801different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00009802intrinsic returns the executable address corresponding to ``tramp``
9803after performing the required machine specific adjustments. The pointer
9804returned can then be :ref:`bitcast and executed <int_trampoline>`.
9805
Elena Demikhovsky82cdd652015-05-07 12:25:11 +00009806.. _int_mload_mstore:
9807
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009808Masked Vector Load and Store Intrinsics
9809---------------------------------------
9810
9811LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
9812
9813.. _int_mload:
9814
9815'``llvm.masked.load.*``' Intrinsics
9816^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9817
9818Syntax:
9819"""""""
9820This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
9821
9822::
9823
9824 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
9825 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
9826
9827Overview:
9828"""""""""
9829
Elena Demikhovsky82cdd652015-05-07 12:25:11 +00009830Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009831
9832
9833Arguments:
9834""""""""""
9835
Elena Demikhovsky82cdd652015-05-07 12:25:11 +00009836The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009837
9838
9839Semantics:
9840""""""""""
9841
9842The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
9843The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
9844
9845
9846::
9847
9848 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009849
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009850 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +00009851 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009852 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009853
9854.. _int_mstore:
9855
9856'``llvm.masked.store.*``' Intrinsics
9857^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9858
9859Syntax:
9860"""""""
9861This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
9862
9863::
9864
9865 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
9866 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
9867
9868Overview:
9869"""""""""
9870
9871Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
9872
9873Arguments:
9874""""""""""
9875
9876The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
9877
9878
9879Semantics:
9880""""""""""
9881
9882The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
9883The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
9884
9885::
9886
9887 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009888
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009889 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +00009890 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009891 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
9892 store <16 x float> %res, <16 x float>* %ptr, align 4
9893
9894
Elena Demikhovsky82cdd652015-05-07 12:25:11 +00009895Masked Vector Gather and Scatter Intrinsics
9896-------------------------------------------
9897
9898LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
9899
9900.. _int_mgather:
9901
9902'``llvm.masked.gather.*``' Intrinsics
9903^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9904
9905Syntax:
9906"""""""
9907This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer or floating point data type gathered together into one vector.
9908
9909::
9910
9911 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
9912 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
9913
9914Overview:
9915"""""""""
9916
9917Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
9918
9919
9920Arguments:
9921""""""""""
9922
9923The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
9924
9925
9926Semantics:
9927""""""""""
9928
9929The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
9930The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
9931
9932
9933::
9934
9935 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
9936
9937 ;; The gather with all-true mask is equivalent to the following instruction sequence
9938 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
9939 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
9940 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
9941 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
9942
9943 %val0 = load double, double* %ptr0, align 8
9944 %val1 = load double, double* %ptr1, align 8
9945 %val2 = load double, double* %ptr2, align 8
9946 %val3 = load double, double* %ptr3, align 8
9947
9948 %vec0 = insertelement <4 x double>undef, %val0, 0
9949 %vec01 = insertelement <4 x double>%vec0, %val1, 1
9950 %vec012 = insertelement <4 x double>%vec01, %val2, 2
9951 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
9952
9953.. _int_mscatter:
9954
9955'``llvm.masked.scatter.*``' Intrinsics
9956^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9957
9958Syntax:
9959"""""""
9960This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type. Each vector element is stored in an arbitrary memory addresses. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
9961
9962::
9963
9964 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
9965 declare void @llvm.masked.scatter.v16f32(<16 x i32> <value>, <16 x i32*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
9966
9967Overview:
9968"""""""""
9969
9970Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
9971
9972Arguments:
9973""""""""""
9974
9975The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
9976
9977
9978Semantics:
9979""""""""""
9980
9981The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergency. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
9982
9983::
9984
9985 ;; This instruction unconditionaly stores data vector in multiple addresses
9986 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
9987
9988 ;; It is equivalent to a list of scalar stores
9989 %val0 = extractelement <8 x i32> %value, i32 0
9990 %val1 = extractelement <8 x i32> %value, i32 1
9991 ..
9992 %val7 = extractelement <8 x i32> %value, i32 7
9993 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
9994 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
9995 ..
9996 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
9997 ;; Note: the order of the following stores is important when they overlap:
9998 store i32 %val0, i32* %ptr0, align 4
9999 store i32 %val1, i32* %ptr1, align 4
10000 ..
10001 store i32 %val7, i32* %ptr7, align 4
10002
10003
Sean Silvab084af42012-12-07 10:36:55 +000010004Memory Use Markers
10005------------------
10006
Sanjay Patel69bf48e2014-07-04 19:40:43 +000010007This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000010008memory objects and ranges where variables are immutable.
10009
Reid Klecknera534a382013-12-19 02:14:12 +000010010.. _int_lifestart:
10011
Sean Silvab084af42012-12-07 10:36:55 +000010012'``llvm.lifetime.start``' Intrinsic
10013^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10014
10015Syntax:
10016"""""""
10017
10018::
10019
10020 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
10021
10022Overview:
10023"""""""""
10024
10025The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
10026object's lifetime.
10027
10028Arguments:
10029""""""""""
10030
10031The first argument is a constant integer representing the size of the
10032object, or -1 if it is variable sized. The second argument is a pointer
10033to the object.
10034
10035Semantics:
10036""""""""""
10037
10038This intrinsic indicates that before this point in the code, the value
10039of the memory pointed to by ``ptr`` is dead. This means that it is known
10040to never be used and has an undefined value. A load from the pointer
10041that precedes this intrinsic can be replaced with ``'undef'``.
10042
Reid Klecknera534a382013-12-19 02:14:12 +000010043.. _int_lifeend:
10044
Sean Silvab084af42012-12-07 10:36:55 +000010045'``llvm.lifetime.end``' Intrinsic
10046^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10047
10048Syntax:
10049"""""""
10050
10051::
10052
10053 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
10054
10055Overview:
10056"""""""""
10057
10058The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
10059object's lifetime.
10060
10061Arguments:
10062""""""""""
10063
10064The first argument is a constant integer representing the size of the
10065object, or -1 if it is variable sized. The second argument is a pointer
10066to the object.
10067
10068Semantics:
10069""""""""""
10070
10071This intrinsic indicates that after this point in the code, the value of
10072the memory pointed to by ``ptr`` is dead. This means that it is known to
10073never be used and has an undefined value. Any stores into the memory
10074object following this intrinsic may be removed as dead.
10075
10076'``llvm.invariant.start``' Intrinsic
10077^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10078
10079Syntax:
10080"""""""
10081
10082::
10083
10084 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
10085
10086Overview:
10087"""""""""
10088
10089The '``llvm.invariant.start``' intrinsic specifies that the contents of
10090a memory object will not change.
10091
10092Arguments:
10093""""""""""
10094
10095The first argument is a constant integer representing the size of the
10096object, or -1 if it is variable sized. The second argument is a pointer
10097to the object.
10098
10099Semantics:
10100""""""""""
10101
10102This intrinsic indicates that until an ``llvm.invariant.end`` that uses
10103the return value, the referenced memory location is constant and
10104unchanging.
10105
10106'``llvm.invariant.end``' Intrinsic
10107^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10108
10109Syntax:
10110"""""""
10111
10112::
10113
10114 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
10115
10116Overview:
10117"""""""""
10118
10119The '``llvm.invariant.end``' intrinsic specifies that the contents of a
10120memory object are mutable.
10121
10122Arguments:
10123""""""""""
10124
10125The first argument is the matching ``llvm.invariant.start`` intrinsic.
10126The second argument is a constant integer representing the size of the
10127object, or -1 if it is variable sized and the third argument is a
10128pointer to the object.
10129
10130Semantics:
10131""""""""""
10132
10133This intrinsic indicates that the memory is mutable again.
10134
10135General Intrinsics
10136------------------
10137
10138This class of intrinsics is designed to be generic and has no specific
10139purpose.
10140
10141'``llvm.var.annotation``' Intrinsic
10142^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10143
10144Syntax:
10145"""""""
10146
10147::
10148
10149 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
10150
10151Overview:
10152"""""""""
10153
10154The '``llvm.var.annotation``' intrinsic.
10155
10156Arguments:
10157""""""""""
10158
10159The first argument is a pointer to a value, the second is a pointer to a
10160global string, the third is a pointer to a global string which is the
10161source file name, and the last argument is the line number.
10162
10163Semantics:
10164""""""""""
10165
10166This intrinsic allows annotation of local variables with arbitrary
10167strings. This can be useful for special purpose optimizations that want
10168to look for these annotations. These have no other defined use; they are
10169ignored by code generation and optimization.
10170
Michael Gottesman88d18832013-03-26 00:34:27 +000010171'``llvm.ptr.annotation.*``' Intrinsic
10172^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10173
10174Syntax:
10175"""""""
10176
10177This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
10178pointer to an integer of any width. *NOTE* you must specify an address space for
10179the pointer. The identifier for the default address space is the integer
10180'``0``'.
10181
10182::
10183
10184 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
10185 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
10186 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
10187 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
10188 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
10189
10190Overview:
10191"""""""""
10192
10193The '``llvm.ptr.annotation``' intrinsic.
10194
10195Arguments:
10196""""""""""
10197
10198The first argument is a pointer to an integer value of arbitrary bitwidth
10199(result of some expression), the second is a pointer to a global string, the
10200third is a pointer to a global string which is the source file name, and the
10201last argument is the line number. It returns the value of the first argument.
10202
10203Semantics:
10204""""""""""
10205
10206This intrinsic allows annotation of a pointer to an integer with arbitrary
10207strings. This can be useful for special purpose optimizations that want to look
10208for these annotations. These have no other defined use; they are ignored by code
10209generation and optimization.
10210
Sean Silvab084af42012-12-07 10:36:55 +000010211'``llvm.annotation.*``' Intrinsic
10212^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10213
10214Syntax:
10215"""""""
10216
10217This is an overloaded intrinsic. You can use '``llvm.annotation``' on
10218any integer bit width.
10219
10220::
10221
10222 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
10223 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
10224 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
10225 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
10226 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
10227
10228Overview:
10229"""""""""
10230
10231The '``llvm.annotation``' intrinsic.
10232
10233Arguments:
10234""""""""""
10235
10236The first argument is an integer value (result of some expression), the
10237second is a pointer to a global string, the third is a pointer to a
10238global string which is the source file name, and the last argument is
10239the line number. It returns the value of the first argument.
10240
10241Semantics:
10242""""""""""
10243
10244This intrinsic allows annotations to be put on arbitrary expressions
10245with arbitrary strings. This can be useful for special purpose
10246optimizations that want to look for these annotations. These have no
10247other defined use; they are ignored by code generation and optimization.
10248
10249'``llvm.trap``' Intrinsic
10250^^^^^^^^^^^^^^^^^^^^^^^^^
10251
10252Syntax:
10253"""""""
10254
10255::
10256
10257 declare void @llvm.trap() noreturn nounwind
10258
10259Overview:
10260"""""""""
10261
10262The '``llvm.trap``' intrinsic.
10263
10264Arguments:
10265""""""""""
10266
10267None.
10268
10269Semantics:
10270""""""""""
10271
10272This intrinsic is lowered to the target dependent trap instruction. If
10273the target does not have a trap instruction, this intrinsic will be
10274lowered to a call of the ``abort()`` function.
10275
10276'``llvm.debugtrap``' Intrinsic
10277^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10278
10279Syntax:
10280"""""""
10281
10282::
10283
10284 declare void @llvm.debugtrap() nounwind
10285
10286Overview:
10287"""""""""
10288
10289The '``llvm.debugtrap``' intrinsic.
10290
10291Arguments:
10292""""""""""
10293
10294None.
10295
10296Semantics:
10297""""""""""
10298
10299This intrinsic is lowered to code which is intended to cause an
10300execution trap with the intention of requesting the attention of a
10301debugger.
10302
10303'``llvm.stackprotector``' Intrinsic
10304^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10305
10306Syntax:
10307"""""""
10308
10309::
10310
10311 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
10312
10313Overview:
10314"""""""""
10315
10316The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
10317onto the stack at ``slot``. The stack slot is adjusted to ensure that it
10318is placed on the stack before local variables.
10319
10320Arguments:
10321""""""""""
10322
10323The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
10324The first argument is the value loaded from the stack guard
10325``@__stack_chk_guard``. The second variable is an ``alloca`` that has
10326enough space to hold the value of the guard.
10327
10328Semantics:
10329""""""""""
10330
Michael Gottesmandafc7d92013-08-12 18:35:32 +000010331This intrinsic causes the prologue/epilogue inserter to force the position of
10332the ``AllocaInst`` stack slot to be before local variables on the stack. This is
10333to ensure that if a local variable on the stack is overwritten, it will destroy
10334the value of the guard. When the function exits, the guard on the stack is
10335checked against the original guard by ``llvm.stackprotectorcheck``. If they are
10336different, then ``llvm.stackprotectorcheck`` causes the program to abort by
10337calling the ``__stack_chk_fail()`` function.
10338
10339'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000010340^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000010341
10342Syntax:
10343"""""""
10344
10345::
10346
10347 declare void @llvm.stackprotectorcheck(i8** <guard>)
10348
10349Overview:
10350"""""""""
10351
10352The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000010353created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000010354``__stack_chk_fail()`` function.
10355
Michael Gottesmandafc7d92013-08-12 18:35:32 +000010356Arguments:
10357""""""""""
10358
10359The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
10360the variable ``@__stack_chk_guard``.
10361
10362Semantics:
10363""""""""""
10364
10365This intrinsic is provided to perform the stack protector check by comparing
10366``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
10367values do not match call the ``__stack_chk_fail()`` function.
10368
10369The reason to provide this as an IR level intrinsic instead of implementing it
10370via other IR operations is that in order to perform this operation at the IR
10371level without an intrinsic, one would need to create additional basic blocks to
10372handle the success/failure cases. This makes it difficult to stop the stack
10373protector check from disrupting sibling tail calls in Codegen. With this
10374intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000010375codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000010376
Sean Silvab084af42012-12-07 10:36:55 +000010377'``llvm.objectsize``' Intrinsic
10378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10379
10380Syntax:
10381"""""""
10382
10383::
10384
10385 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
10386 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
10387
10388Overview:
10389"""""""""
10390
10391The ``llvm.objectsize`` intrinsic is designed to provide information to
10392the optimizers to determine at compile time whether a) an operation
10393(like memcpy) will overflow a buffer that corresponds to an object, or
10394b) that a runtime check for overflow isn't necessary. An object in this
10395context means an allocation of a specific class, structure, array, or
10396other object.
10397
10398Arguments:
10399""""""""""
10400
10401The ``llvm.objectsize`` intrinsic takes two arguments. The first
10402argument is a pointer to or into the ``object``. The second argument is
10403a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
10404or -1 (if false) when the object size is unknown. The second argument
10405only accepts constants.
10406
10407Semantics:
10408""""""""""
10409
10410The ``llvm.objectsize`` intrinsic is lowered to a constant representing
10411the size of the object concerned. If the size cannot be determined at
10412compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
10413on the ``min`` argument).
10414
10415'``llvm.expect``' Intrinsic
10416^^^^^^^^^^^^^^^^^^^^^^^^^^^
10417
10418Syntax:
10419"""""""
10420
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000010421This is an overloaded intrinsic. You can use ``llvm.expect`` on any
10422integer bit width.
10423
Sean Silvab084af42012-12-07 10:36:55 +000010424::
10425
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000010426 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000010427 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
10428 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
10429
10430Overview:
10431"""""""""
10432
10433The ``llvm.expect`` intrinsic provides information about expected (the
10434most probable) value of ``val``, which can be used by optimizers.
10435
10436Arguments:
10437""""""""""
10438
10439The ``llvm.expect`` intrinsic takes two arguments. The first argument is
10440a value. The second argument is an expected value, this needs to be a
10441constant value, variables are not allowed.
10442
10443Semantics:
10444""""""""""
10445
10446This intrinsic is lowered to the ``val``.
10447
Philip Reamese0e90832015-04-26 22:23:12 +000010448.. _int_assume:
10449
Hal Finkel93046912014-07-25 21:13:35 +000010450'``llvm.assume``' Intrinsic
10451^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10452
10453Syntax:
10454"""""""
10455
10456::
10457
10458 declare void @llvm.assume(i1 %cond)
10459
10460Overview:
10461"""""""""
10462
10463The ``llvm.assume`` allows the optimizer to assume that the provided
10464condition is true. This information can then be used in simplifying other parts
10465of the code.
10466
10467Arguments:
10468""""""""""
10469
10470The condition which the optimizer may assume is always true.
10471
10472Semantics:
10473""""""""""
10474
10475The intrinsic allows the optimizer to assume that the provided condition is
10476always true whenever the control flow reaches the intrinsic call. No code is
10477generated for this intrinsic, and instructions that contribute only to the
10478provided condition are not used for code generation. If the condition is
10479violated during execution, the behavior is undefined.
10480
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000010481Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000010482used by the ``llvm.assume`` intrinsic in order to preserve the instructions
10483only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000010484if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000010485sufficient overall improvement in code quality. For this reason,
10486``llvm.assume`` should not be used to document basic mathematical invariants
10487that the optimizer can otherwise deduce or facts that are of little use to the
10488optimizer.
10489
Peter Collingbournee6909c82015-02-20 20:30:47 +000010490.. _bitset.test:
10491
10492'``llvm.bitset.test``' Intrinsic
10493^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10494
10495Syntax:
10496"""""""
10497
10498::
10499
10500 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
10501
10502
10503Arguments:
10504""""""""""
10505
10506The first argument is a pointer to be tested. The second argument is a
10507metadata string containing the name of a :doc:`bitset <BitSets>`.
10508
10509Overview:
10510"""""""""
10511
10512The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
10513member of the given bitset.
10514
Sean Silvab084af42012-12-07 10:36:55 +000010515'``llvm.donothing``' Intrinsic
10516^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10517
10518Syntax:
10519"""""""
10520
10521::
10522
10523 declare void @llvm.donothing() nounwind readnone
10524
10525Overview:
10526"""""""""
10527
Juergen Ributzkac9161192014-10-23 22:36:13 +000010528The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
10529two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
10530with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000010531
10532Arguments:
10533""""""""""
10534
10535None.
10536
10537Semantics:
10538""""""""""
10539
10540This intrinsic does nothing, and it's removed by optimizers and ignored
10541by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000010542
10543Stack Map Intrinsics
10544--------------------
10545
10546LLVM provides experimental intrinsics to support runtime patching
10547mechanisms commonly desired in dynamic language JITs. These intrinsics
10548are described in :doc:`StackMaps`.