blob: ecd4b1206646821d20591b29e688f1c9fb0d1183 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
351 arguments into registers but allows them to be dynamcially
352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
356 This calling convention attempts to make the code in the caller as little
357 intrusive as possible. This calling convention behaves identical to the `C`
358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000497.. _namedtypes:
498
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000499Structure Types
500---------------
Sean Silvab084af42012-12-07 10:36:55 +0000501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
503types <t_struct>`. Literal types are uniqued structurally, but identified types
504are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000505to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000506
507An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000508
509.. code-block:: llvm
510
511 %mytype = type { %mytype*, i32 }
512
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000513Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
514literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000515
516.. _globalvars:
517
518Global Variables
519----------------
520
521Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000522instead of run-time.
523
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000524Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525
526Global variables in other translation units can also be declared, in which
527case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000528
Bob Wilson85b24f22014-06-12 20:40:33 +0000529Either global variable definitions or declarations may have an explicit section
530to be placed in and may have an optional explicit alignment specified.
531
Michael Gottesman006039c2013-01-31 05:48:48 +0000532A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000536initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000567Additionally, the global can placed in a comdat if the target has the necessary
568support.
Sean Silvab084af42012-12-07 10:36:55 +0000569
Michael Gottesmane743a302013-02-04 03:22:00 +0000570By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000571variables defined within the module are not modified from their
572initial values before the start of the global initializer. This is
573true even for variables potentially accessible from outside the
574module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000575``@llvm.used`` or dllexported variables. This assumption may be suppressed
576by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000577
Sean Silvab084af42012-12-07 10:36:55 +0000578An explicit alignment may be specified for a global, which must be a
579power of 2. If not present, or if the alignment is set to zero, the
580alignment of the global is set by the target to whatever it feels
581convenient. If an explicit alignment is specified, the global is forced
582to have exactly that alignment. Targets and optimizers are not allowed
583to over-align the global if the global has an assigned section. In this
584case, the extra alignment could be observable: for example, code could
585assume that the globals are densely packed in their section and try to
586iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000587iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000588
Nico Rieck7157bb72014-01-14 15:22:47 +0000589Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
590
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000591Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000592:ref:`Thread Local Storage Model <tls_model>`.
593
Nico Rieck7157bb72014-01-14 15:22:47 +0000594Syntax::
595
596 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000597 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000598 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000599 [, section "name"] [, comdat [($name)]]
600 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000601
Sean Silvab084af42012-12-07 10:36:55 +0000602For example, the following defines a global in a numbered address space
603with an initializer, section, and alignment:
604
605.. code-block:: llvm
606
607 @G = addrspace(5) constant float 1.0, section "foo", align 4
608
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000609The following example just declares a global variable
610
611.. code-block:: llvm
612
613 @G = external global i32
614
Sean Silvab084af42012-12-07 10:36:55 +0000615The following example defines a thread-local global with the
616``initialexec`` TLS model:
617
618.. code-block:: llvm
619
620 @G = thread_local(initialexec) global i32 0, align 4
621
622.. _functionstructure:
623
624Functions
625---------
626
627LLVM function definitions consist of the "``define``" keyword, an
628optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000629style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
630an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000631an optional ``unnamed_addr`` attribute, a return type, an optional
632:ref:`parameter attribute <paramattrs>` for the return type, a function
633name, a (possibly empty) argument list (each with optional :ref:`parameter
634attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000635an optional section, an optional alignment,
636an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000637an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
638an optional :ref:`prologue <prologuedata>`, an opening
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000639curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000640
641LLVM function declarations consist of the "``declare``" keyword, an
642optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000643style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
644an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000645an optional ``unnamed_addr`` attribute, a return type, an optional
646:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000647name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000648:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
649and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000650
Bill Wendling6822ecb2013-10-27 05:09:12 +0000651A function definition contains a list of basic blocks, forming the CFG (Control
652Flow Graph) for the function. Each basic block may optionally start with a label
653(giving the basic block a symbol table entry), contains a list of instructions,
654and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
655function return). If an explicit label is not provided, a block is assigned an
656implicit numbered label, using the next value from the same counter as used for
657unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
658entry block does not have an explicit label, it will be assigned label "%0",
659then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000660
661The first basic block in a function is special in two ways: it is
662immediately executed on entrance to the function, and it is not allowed
663to have predecessor basic blocks (i.e. there can not be any branches to
664the entry block of a function). Because the block can have no
665predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
666
667LLVM allows an explicit section to be specified for functions. If the
668target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000669Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000670
671An explicit alignment may be specified for a function. If not present,
672or if the alignment is set to zero, the alignment of the function is set
673by the target to whatever it feels convenient. If an explicit alignment
674is specified, the function is forced to have at least that much
675alignment. All alignments must be a power of 2.
676
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000677If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000678be significant and two identical functions can be merged.
679
680Syntax::
681
Nico Rieck7157bb72014-01-14 15:22:47 +0000682 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000683 [cconv] [ret attrs]
684 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000685 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000686 [align N] [gc] [prefix Constant] [prologue Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000687
Dan Liew2661dfc2014-08-20 15:06:30 +0000688The argument list is a comma seperated sequence of arguments where each
689argument is of the following form
690
691Syntax::
692
693 <type> [parameter Attrs] [name]
694
695
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000696.. _langref_aliases:
697
Sean Silvab084af42012-12-07 10:36:55 +0000698Aliases
699-------
700
Rafael Espindola64c1e182014-06-03 02:41:57 +0000701Aliases, unlike function or variables, don't create any new data. They
702are just a new symbol and metadata for an existing position.
703
704Aliases have a name and an aliasee that is either a global value or a
705constant expression.
706
Nico Rieck7157bb72014-01-14 15:22:47 +0000707Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000708:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
709<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000710
711Syntax::
712
Rafael Espindola464fe022014-07-30 22:51:54 +0000713 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000714
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000715The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000716``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000717might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000718
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000719Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000720the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
721to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000722
Rafael Espindola64c1e182014-06-03 02:41:57 +0000723Since aliases are only a second name, some restrictions apply, of which
724some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000725
Rafael Espindola64c1e182014-06-03 02:41:57 +0000726* The expression defining the aliasee must be computable at assembly
727 time. Since it is just a name, no relocations can be used.
728
729* No alias in the expression can be weak as the possibility of the
730 intermediate alias being overridden cannot be represented in an
731 object file.
732
733* No global value in the expression can be a declaration, since that
734 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000735
David Majnemerdad0a642014-06-27 18:19:56 +0000736.. _langref_comdats:
737
738Comdats
739-------
740
741Comdat IR provides access to COFF and ELF object file COMDAT functionality.
742
Richard Smith32dbdf62014-07-31 04:25:36 +0000743Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000744specify this key will only end up in the final object file if the linker chooses
745that key over some other key. Aliases are placed in the same COMDAT that their
746aliasee computes to, if any.
747
748Comdats have a selection kind to provide input on how the linker should
749choose between keys in two different object files.
750
751Syntax::
752
753 $<Name> = comdat SelectionKind
754
755The selection kind must be one of the following:
756
757``any``
758 The linker may choose any COMDAT key, the choice is arbitrary.
759``exactmatch``
760 The linker may choose any COMDAT key but the sections must contain the
761 same data.
762``largest``
763 The linker will choose the section containing the largest COMDAT key.
764``noduplicates``
765 The linker requires that only section with this COMDAT key exist.
766``samesize``
767 The linker may choose any COMDAT key but the sections must contain the
768 same amount of data.
769
770Note that the Mach-O platform doesn't support COMDATs and ELF only supports
771``any`` as a selection kind.
772
773Here is an example of a COMDAT group where a function will only be selected if
774the COMDAT key's section is the largest:
775
776.. code-block:: llvm
777
778 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000779 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000780
Rafael Espindola83a362c2015-01-06 22:55:16 +0000781 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000782 ret void
783 }
784
Rafael Espindola83a362c2015-01-06 22:55:16 +0000785As a syntactic sugar the ``$name`` can be omitted if the name is the same as
786the global name:
787
788.. code-block:: llvm
789
790 $foo = comdat any
791 @foo = global i32 2, comdat
792
793
David Majnemerdad0a642014-06-27 18:19:56 +0000794In a COFF object file, this will create a COMDAT section with selection kind
795``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
796and another COMDAT section with selection kind
797``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000798section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000799
800There are some restrictions on the properties of the global object.
801It, or an alias to it, must have the same name as the COMDAT group when
802targeting COFF.
803The contents and size of this object may be used during link-time to determine
804which COMDAT groups get selected depending on the selection kind.
805Because the name of the object must match the name of the COMDAT group, the
806linkage of the global object must not be local; local symbols can get renamed
807if a collision occurs in the symbol table.
808
809The combined use of COMDATS and section attributes may yield surprising results.
810For example:
811
812.. code-block:: llvm
813
814 $foo = comdat any
815 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000816 @g1 = global i32 42, section "sec", comdat($foo)
817 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000818
819From the object file perspective, this requires the creation of two sections
820with the same name. This is necessary because both globals belong to different
821COMDAT groups and COMDATs, at the object file level, are represented by
822sections.
823
824Note that certain IR constructs like global variables and functions may create
825COMDATs in the object file in addition to any which are specified using COMDAT
826IR. This arises, for example, when a global variable has linkonce_odr linkage.
827
Sean Silvab084af42012-12-07 10:36:55 +0000828.. _namedmetadatastructure:
829
830Named Metadata
831--------------
832
833Named metadata is a collection of metadata. :ref:`Metadata
834nodes <metadata>` (but not metadata strings) are the only valid
835operands for a named metadata.
836
837Syntax::
838
839 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000840 !0 = !{!"zero"}
841 !1 = !{!"one"}
842 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000843 ; A named metadata.
844 !name = !{!0, !1, !2}
845
846.. _paramattrs:
847
848Parameter Attributes
849--------------------
850
851The return type and each parameter of a function type may have a set of
852*parameter attributes* associated with them. Parameter attributes are
853used to communicate additional information about the result or
854parameters of a function. Parameter attributes are considered to be part
855of the function, not of the function type, so functions with different
856parameter attributes can have the same function type.
857
858Parameter attributes are simple keywords that follow the type specified.
859If multiple parameter attributes are needed, they are space separated.
860For example:
861
862.. code-block:: llvm
863
864 declare i32 @printf(i8* noalias nocapture, ...)
865 declare i32 @atoi(i8 zeroext)
866 declare signext i8 @returns_signed_char()
867
868Note that any attributes for the function result (``nounwind``,
869``readonly``) come immediately after the argument list.
870
871Currently, only the following parameter attributes are defined:
872
873``zeroext``
874 This indicates to the code generator that the parameter or return
875 value should be zero-extended to the extent required by the target's
876 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
877 the caller (for a parameter) or the callee (for a return value).
878``signext``
879 This indicates to the code generator that the parameter or return
880 value should be sign-extended to the extent required by the target's
881 ABI (which is usually 32-bits) by the caller (for a parameter) or
882 the callee (for a return value).
883``inreg``
884 This indicates that this parameter or return value should be treated
885 in a special target-dependent fashion during while emitting code for
886 a function call or return (usually, by putting it in a register as
887 opposed to memory, though some targets use it to distinguish between
888 two different kinds of registers). Use of this attribute is
889 target-specific.
890``byval``
891 This indicates that the pointer parameter should really be passed by
892 value to the function. The attribute implies that a hidden copy of
893 the pointee is made between the caller and the callee, so the callee
894 is unable to modify the value in the caller. This attribute is only
895 valid on LLVM pointer arguments. It is generally used to pass
896 structs and arrays by value, but is also valid on pointers to
897 scalars. The copy is considered to belong to the caller not the
898 callee (for example, ``readonly`` functions should not write to
899 ``byval`` parameters). This is not a valid attribute for return
900 values.
901
902 The byval attribute also supports specifying an alignment with the
903 align attribute. It indicates the alignment of the stack slot to
904 form and the known alignment of the pointer specified to the call
905 site. If the alignment is not specified, then the code generator
906 makes a target-specific assumption.
907
Reid Klecknera534a382013-12-19 02:14:12 +0000908.. _attr_inalloca:
909
910``inalloca``
911
Reid Kleckner60d3a832014-01-16 22:59:24 +0000912 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000913 address of outgoing stack arguments. An ``inalloca`` argument must
914 be a pointer to stack memory produced by an ``alloca`` instruction.
915 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000916 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000917 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000918
Reid Kleckner436c42e2014-01-17 23:58:17 +0000919 An argument allocation may be used by a call at most once because
920 the call may deallocate it. The ``inalloca`` attribute cannot be
921 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000922 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
923 ``inalloca`` attribute also disables LLVM's implicit lowering of
924 large aggregate return values, which means that frontend authors
925 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000926
Reid Kleckner60d3a832014-01-16 22:59:24 +0000927 When the call site is reached, the argument allocation must have
928 been the most recent stack allocation that is still live, or the
929 results are undefined. It is possible to allocate additional stack
930 space after an argument allocation and before its call site, but it
931 must be cleared off with :ref:`llvm.stackrestore
932 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000933
934 See :doc:`InAlloca` for more information on how to use this
935 attribute.
936
Sean Silvab084af42012-12-07 10:36:55 +0000937``sret``
938 This indicates that the pointer parameter specifies the address of a
939 structure that is the return value of the function in the source
940 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000941 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000942 not to trap and to be properly aligned. This may only be applied to
943 the first parameter. This is not a valid attribute for return
944 values.
Sean Silva1703e702014-04-08 21:06:22 +0000945
Hal Finkelccc70902014-07-22 16:58:55 +0000946``align <n>``
947 This indicates that the pointer value may be assumed by the optimizer to
948 have the specified alignment.
949
950 Note that this attribute has additional semantics when combined with the
951 ``byval`` attribute.
952
Sean Silva1703e702014-04-08 21:06:22 +0000953.. _noalias:
954
Sean Silvab084af42012-12-07 10:36:55 +0000955``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000956 This indicates that objects accessed via pointer values
957 :ref:`based <pointeraliasing>` on the argument or return value are not also
958 accessed, during the execution of the function, via pointer values not
959 *based* on the argument or return value. The attribute on a return value
960 also has additional semantics described below. The caller shares the
961 responsibility with the callee for ensuring that these requirements are met.
962 For further details, please see the discussion of the NoAlias response in
963 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000964
965 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000966 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000967
968 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000969 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
970 attribute on return values are stronger than the semantics of the attribute
971 when used on function arguments. On function return values, the ``noalias``
972 attribute indicates that the function acts like a system memory allocation
973 function, returning a pointer to allocated storage disjoint from the
974 storage for any other object accessible to the caller.
975
Sean Silvab084af42012-12-07 10:36:55 +0000976``nocapture``
977 This indicates that the callee does not make any copies of the
978 pointer that outlive the callee itself. This is not a valid
979 attribute for return values.
980
981.. _nest:
982
983``nest``
984 This indicates that the pointer parameter can be excised using the
985 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000986 attribute for return values and can only be applied to one parameter.
987
988``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000989 This indicates that the function always returns the argument as its return
990 value. This is an optimization hint to the code generator when generating
991 the caller, allowing tail call optimization and omission of register saves
992 and restores in some cases; it is not checked or enforced when generating
993 the callee. The parameter and the function return type must be valid
994 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
995 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +0000996
Nick Lewyckyd52b1522014-05-20 01:23:40 +0000997``nonnull``
998 This indicates that the parameter or return pointer is not null. This
999 attribute may only be applied to pointer typed parameters. This is not
1000 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001001 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001002 is non-null.
1003
Hal Finkelb0407ba2014-07-18 15:51:28 +00001004``dereferenceable(<n>)``
1005 This indicates that the parameter or return pointer is dereferenceable. This
1006 attribute may only be applied to pointer typed parameters. A pointer that
1007 is dereferenceable can be loaded from speculatively without a risk of
1008 trapping. The number of bytes known to be dereferenceable must be provided
1009 in parentheses. It is legal for the number of bytes to be less than the
1010 size of the pointee type. The ``nonnull`` attribute does not imply
1011 dereferenceability (consider a pointer to one element past the end of an
1012 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1013 ``addrspace(0)`` (which is the default address space).
1014
Sean Silvab084af42012-12-07 10:36:55 +00001015.. _gc:
1016
Philip Reamesf80bbff2015-02-25 23:45:20 +00001017Garbage Collector Strategy Names
1018--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001019
Philip Reamesf80bbff2015-02-25 23:45:20 +00001020Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001021string:
1022
1023.. code-block:: llvm
1024
1025 define void @f() gc "name" { ... }
1026
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001027The supported values of *name* includes those :ref:`built in to LLVM
Philip Reamesf80bbff2015-02-25 23:45:20 +00001028<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001029strategy will cause the compiler to alter its output in order to support the
1030named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001031garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001032which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001033
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001034.. _prefixdata:
1035
1036Prefix Data
1037-----------
1038
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001039Prefix data is data associated with a function which the code
1040generator will emit immediately before the function's entrypoint.
1041The purpose of this feature is to allow frontends to associate
1042language-specific runtime metadata with specific functions and make it
1043available through the function pointer while still allowing the
1044function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001045
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001046To access the data for a given function, a program may bitcast the
1047function pointer to a pointer to the constant's type and dereference
1048index -1. This implies that the IR symbol points just past the end of
1049the prefix data. For instance, take the example of a function annotated
1050with a single ``i32``,
1051
1052.. code-block:: llvm
1053
1054 define void @f() prefix i32 123 { ... }
1055
1056The prefix data can be referenced as,
1057
1058.. code-block:: llvm
1059
David Blaikie16a97eb2015-03-04 22:02:58 +00001060 %0 = bitcast void* () @f to i32*
1061 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001062 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001063
1064Prefix data is laid out as if it were an initializer for a global variable
1065of the prefix data's type. The function will be placed such that the
1066beginning of the prefix data is aligned. This means that if the size
1067of the prefix data is not a multiple of the alignment size, the
1068function's entrypoint will not be aligned. If alignment of the
1069function's entrypoint is desired, padding must be added to the prefix
1070data.
1071
1072A function may have prefix data but no body. This has similar semantics
1073to the ``available_externally`` linkage in that the data may be used by the
1074optimizers but will not be emitted in the object file.
1075
1076.. _prologuedata:
1077
1078Prologue Data
1079-------------
1080
1081The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1082be inserted prior to the function body. This can be used for enabling
1083function hot-patching and instrumentation.
1084
1085To maintain the semantics of ordinary function calls, the prologue data must
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001086have a particular format. Specifically, it must begin with a sequence of
1087bytes which decode to a sequence of machine instructions, valid for the
1088module's target, which transfer control to the point immediately succeeding
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001089the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001090the inliner and other passes to reason about the semantics of the function
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001091definition without needing to reason about the prologue data. Obviously this
1092makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001093
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001094A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001095which encodes the ``nop`` instruction:
1096
1097.. code-block:: llvm
1098
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001099 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001100
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001101Generally prologue data can be formed by encoding a relative branch instruction
1102which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001103x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1104
1105.. code-block:: llvm
1106
1107 %0 = type <{ i8, i8, i8* }>
1108
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001109 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001110
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001111A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001112to the ``available_externally`` linkage in that the data may be used by the
1113optimizers but will not be emitted in the object file.
1114
Bill Wendling63b88192013-02-06 06:52:58 +00001115.. _attrgrp:
1116
1117Attribute Groups
1118----------------
1119
1120Attribute groups are groups of attributes that are referenced by objects within
1121the IR. They are important for keeping ``.ll`` files readable, because a lot of
1122functions will use the same set of attributes. In the degenerative case of a
1123``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1124group will capture the important command line flags used to build that file.
1125
1126An attribute group is a module-level object. To use an attribute group, an
1127object references the attribute group's ID (e.g. ``#37``). An object may refer
1128to more than one attribute group. In that situation, the attributes from the
1129different groups are merged.
1130
1131Here is an example of attribute groups for a function that should always be
1132inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1133
1134.. code-block:: llvm
1135
1136 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001137 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001138
1139 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001140 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001141
1142 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1143 define void @f() #0 #1 { ... }
1144
Sean Silvab084af42012-12-07 10:36:55 +00001145.. _fnattrs:
1146
1147Function Attributes
1148-------------------
1149
1150Function attributes are set to communicate additional information about
1151a function. Function attributes are considered to be part of the
1152function, not of the function type, so functions with different function
1153attributes can have the same function type.
1154
1155Function attributes are simple keywords that follow the type specified.
1156If multiple attributes are needed, they are space separated. For
1157example:
1158
1159.. code-block:: llvm
1160
1161 define void @f() noinline { ... }
1162 define void @f() alwaysinline { ... }
1163 define void @f() alwaysinline optsize { ... }
1164 define void @f() optsize { ... }
1165
Sean Silvab084af42012-12-07 10:36:55 +00001166``alignstack(<n>)``
1167 This attribute indicates that, when emitting the prologue and
1168 epilogue, the backend should forcibly align the stack pointer.
1169 Specify the desired alignment, which must be a power of two, in
1170 parentheses.
1171``alwaysinline``
1172 This attribute indicates that the inliner should attempt to inline
1173 this function into callers whenever possible, ignoring any active
1174 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001175``builtin``
1176 This indicates that the callee function at a call site should be
1177 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001178 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001179 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001180 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001181``cold``
1182 This attribute indicates that this function is rarely called. When
1183 computing edge weights, basic blocks post-dominated by a cold
1184 function call are also considered to be cold; and, thus, given low
1185 weight.
Sean Silvab084af42012-12-07 10:36:55 +00001186``inlinehint``
1187 This attribute indicates that the source code contained a hint that
1188 inlining this function is desirable (such as the "inline" keyword in
1189 C/C++). It is just a hint; it imposes no requirements on the
1190 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001191``jumptable``
1192 This attribute indicates that the function should be added to a
1193 jump-instruction table at code-generation time, and that all address-taken
1194 references to this function should be replaced with a reference to the
1195 appropriate jump-instruction-table function pointer. Note that this creates
1196 a new pointer for the original function, which means that code that depends
1197 on function-pointer identity can break. So, any function annotated with
1198 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001199``minsize``
1200 This attribute suggests that optimization passes and code generator
1201 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001202 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001203 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001204``naked``
1205 This attribute disables prologue / epilogue emission for the
1206 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001207``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001208 This indicates that the callee function at a call site is not recognized as
1209 a built-in function. LLVM will retain the original call and not replace it
1210 with equivalent code based on the semantics of the built-in function, unless
1211 the call site uses the ``builtin`` attribute. This is valid at call sites
1212 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001213``noduplicate``
1214 This attribute indicates that calls to the function cannot be
1215 duplicated. A call to a ``noduplicate`` function may be moved
1216 within its parent function, but may not be duplicated within
1217 its parent function.
1218
1219 A function containing a ``noduplicate`` call may still
1220 be an inlining candidate, provided that the call is not
1221 duplicated by inlining. That implies that the function has
1222 internal linkage and only has one call site, so the original
1223 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001224``noimplicitfloat``
1225 This attributes disables implicit floating point instructions.
1226``noinline``
1227 This attribute indicates that the inliner should never inline this
1228 function in any situation. This attribute may not be used together
1229 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001230``nonlazybind``
1231 This attribute suppresses lazy symbol binding for the function. This
1232 may make calls to the function faster, at the cost of extra program
1233 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001234``noredzone``
1235 This attribute indicates that the code generator should not use a
1236 red zone, even if the target-specific ABI normally permits it.
1237``noreturn``
1238 This function attribute indicates that the function never returns
1239 normally. This produces undefined behavior at runtime if the
1240 function ever does dynamically return.
1241``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001242 This function attribute indicates that the function never raises an
1243 exception. If the function does raise an exception, its runtime
1244 behavior is undefined. However, functions marked nounwind may still
1245 trap or generate asynchronous exceptions. Exception handling schemes
1246 that are recognized by LLVM to handle asynchronous exceptions, such
1247 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001248``optnone``
1249 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001250 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001251 exception of interprocedural optimization passes.
1252 This attribute cannot be used together with the ``alwaysinline``
1253 attribute; this attribute is also incompatible
1254 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001255
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001256 This attribute requires the ``noinline`` attribute to be specified on
1257 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001258 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001259 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001260``optsize``
1261 This attribute suggests that optimization passes and code generator
1262 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001263 and otherwise do optimizations specifically to reduce code size as
1264 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001265``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001266 On a function, this attribute indicates that the function computes its
1267 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001268 without dereferencing any pointer arguments or otherwise accessing
1269 any mutable state (e.g. memory, control registers, etc) visible to
1270 caller functions. It does not write through any pointer arguments
1271 (including ``byval`` arguments) and never changes any state visible
1272 to callers. This means that it cannot unwind exceptions by calling
1273 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001274
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001275 On an argument, this attribute indicates that the function does not
1276 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001277 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001278``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001279 On a function, this attribute indicates that the function does not write
1280 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001281 modify any state (e.g. memory, control registers, etc) visible to
1282 caller functions. It may dereference pointer arguments and read
1283 state that may be set in the caller. A readonly function always
1284 returns the same value (or unwinds an exception identically) when
1285 called with the same set of arguments and global state. It cannot
1286 unwind an exception by calling the ``C++`` exception throwing
1287 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001288
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001289 On an argument, this attribute indicates that the function does not write
1290 through this pointer argument, even though it may write to the memory that
1291 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001292``returns_twice``
1293 This attribute indicates that this function can return twice. The C
1294 ``setjmp`` is an example of such a function. The compiler disables
1295 some optimizations (like tail calls) in the caller of these
1296 functions.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001297``sanitize_address``
1298 This attribute indicates that AddressSanitizer checks
1299 (dynamic address safety analysis) are enabled for this function.
1300``sanitize_memory``
1301 This attribute indicates that MemorySanitizer checks (dynamic detection
1302 of accesses to uninitialized memory) are enabled for this function.
1303``sanitize_thread``
1304 This attribute indicates that ThreadSanitizer checks
1305 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001306``ssp``
1307 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001308 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001309 placed on the stack before the local variables that's checked upon
1310 return from the function to see if it has been overwritten. A
1311 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001312 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001313
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001314 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1315 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1316 - Calls to alloca() with variable sizes or constant sizes greater than
1317 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001318
Josh Magee24c7f062014-02-01 01:36:16 +00001319 Variables that are identified as requiring a protector will be arranged
1320 on the stack such that they are adjacent to the stack protector guard.
1321
Sean Silvab084af42012-12-07 10:36:55 +00001322 If a function that has an ``ssp`` attribute is inlined into a
1323 function that doesn't have an ``ssp`` attribute, then the resulting
1324 function will have an ``ssp`` attribute.
1325``sspreq``
1326 This attribute indicates that the function should *always* emit a
1327 stack smashing protector. This overrides the ``ssp`` function
1328 attribute.
1329
Josh Magee24c7f062014-02-01 01:36:16 +00001330 Variables that are identified as requiring a protector will be arranged
1331 on the stack such that they are adjacent to the stack protector guard.
1332 The specific layout rules are:
1333
1334 #. Large arrays and structures containing large arrays
1335 (``>= ssp-buffer-size``) are closest to the stack protector.
1336 #. Small arrays and structures containing small arrays
1337 (``< ssp-buffer-size``) are 2nd closest to the protector.
1338 #. Variables that have had their address taken are 3rd closest to the
1339 protector.
1340
Sean Silvab084af42012-12-07 10:36:55 +00001341 If a function that has an ``sspreq`` attribute is inlined into a
1342 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001343 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1344 an ``sspreq`` attribute.
1345``sspstrong``
1346 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001347 protector. This attribute causes a strong heuristic to be used when
1348 determining if a function needs stack protectors. The strong heuristic
1349 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001350
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001351 - Arrays of any size and type
1352 - Aggregates containing an array of any size and type.
1353 - Calls to alloca().
1354 - Local variables that have had their address taken.
1355
Josh Magee24c7f062014-02-01 01:36:16 +00001356 Variables that are identified as requiring a protector will be arranged
1357 on the stack such that they are adjacent to the stack protector guard.
1358 The specific layout rules are:
1359
1360 #. Large arrays and structures containing large arrays
1361 (``>= ssp-buffer-size``) are closest to the stack protector.
1362 #. Small arrays and structures containing small arrays
1363 (``< ssp-buffer-size``) are 2nd closest to the protector.
1364 #. Variables that have had their address taken are 3rd closest to the
1365 protector.
1366
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001367 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001368
1369 If a function that has an ``sspstrong`` attribute is inlined into a
1370 function that doesn't have an ``sspstrong`` attribute, then the
1371 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001372``"thunk"``
1373 This attribute indicates that the function will delegate to some other
1374 function with a tail call. The prototype of a thunk should not be used for
1375 optimization purposes. The caller is expected to cast the thunk prototype to
1376 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001377``uwtable``
1378 This attribute indicates that the ABI being targeted requires that
1379 an unwind table entry be produce for this function even if we can
1380 show that no exceptions passes by it. This is normally the case for
1381 the ELF x86-64 abi, but it can be disabled for some compilation
1382 units.
Sean Silvab084af42012-12-07 10:36:55 +00001383
1384.. _moduleasm:
1385
1386Module-Level Inline Assembly
1387----------------------------
1388
1389Modules may contain "module-level inline asm" blocks, which corresponds
1390to the GCC "file scope inline asm" blocks. These blocks are internally
1391concatenated by LLVM and treated as a single unit, but may be separated
1392in the ``.ll`` file if desired. The syntax is very simple:
1393
1394.. code-block:: llvm
1395
1396 module asm "inline asm code goes here"
1397 module asm "more can go here"
1398
1399The strings can contain any character by escaping non-printable
1400characters. The escape sequence used is simply "\\xx" where "xx" is the
1401two digit hex code for the number.
1402
1403The inline asm code is simply printed to the machine code .s file when
1404assembly code is generated.
1405
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001406.. _langref_datalayout:
1407
Sean Silvab084af42012-12-07 10:36:55 +00001408Data Layout
1409-----------
1410
1411A module may specify a target specific data layout string that specifies
1412how data is to be laid out in memory. The syntax for the data layout is
1413simply:
1414
1415.. code-block:: llvm
1416
1417 target datalayout = "layout specification"
1418
1419The *layout specification* consists of a list of specifications
1420separated by the minus sign character ('-'). Each specification starts
1421with a letter and may include other information after the letter to
1422define some aspect of the data layout. The specifications accepted are
1423as follows:
1424
1425``E``
1426 Specifies that the target lays out data in big-endian form. That is,
1427 the bits with the most significance have the lowest address
1428 location.
1429``e``
1430 Specifies that the target lays out data in little-endian form. That
1431 is, the bits with the least significance have the lowest address
1432 location.
1433``S<size>``
1434 Specifies the natural alignment of the stack in bits. Alignment
1435 promotion of stack variables is limited to the natural stack
1436 alignment to avoid dynamic stack realignment. The stack alignment
1437 must be a multiple of 8-bits. If omitted, the natural stack
1438 alignment defaults to "unspecified", which does not prevent any
1439 alignment promotions.
1440``p[n]:<size>:<abi>:<pref>``
1441 This specifies the *size* of a pointer and its ``<abi>`` and
1442 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001443 bits. The address space, ``n`` is optional, and if not specified,
1444 denotes the default address space 0. The value of ``n`` must be
1445 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001446``i<size>:<abi>:<pref>``
1447 This specifies the alignment for an integer type of a given bit
1448 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1449``v<size>:<abi>:<pref>``
1450 This specifies the alignment for a vector type of a given bit
1451 ``<size>``.
1452``f<size>:<abi>:<pref>``
1453 This specifies the alignment for a floating point type of a given bit
1454 ``<size>``. Only values of ``<size>`` that are supported by the target
1455 will work. 32 (float) and 64 (double) are supported on all targets; 80
1456 or 128 (different flavors of long double) are also supported on some
1457 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001458``a:<abi>:<pref>``
1459 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001460``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001461 If present, specifies that llvm names are mangled in the output. The
1462 options are
1463
1464 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1465 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1466 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1467 symbols get a ``_`` prefix.
1468 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1469 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001470``n<size1>:<size2>:<size3>...``
1471 This specifies a set of native integer widths for the target CPU in
1472 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1473 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1474 this set are considered to support most general arithmetic operations
1475 efficiently.
1476
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001477On every specification that takes a ``<abi>:<pref>``, specifying the
1478``<pref>`` alignment is optional. If omitted, the preceding ``:``
1479should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1480
Sean Silvab084af42012-12-07 10:36:55 +00001481When constructing the data layout for a given target, LLVM starts with a
1482default set of specifications which are then (possibly) overridden by
1483the specifications in the ``datalayout`` keyword. The default
1484specifications are given in this list:
1485
1486- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001487- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1488- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1489 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001490- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001491- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1492- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1493- ``i16:16:16`` - i16 is 16-bit aligned
1494- ``i32:32:32`` - i32 is 32-bit aligned
1495- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1496 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001497- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001498- ``f32:32:32`` - float is 32-bit aligned
1499- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001500- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001501- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1502- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001503- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001504
1505When LLVM is determining the alignment for a given type, it uses the
1506following rules:
1507
1508#. If the type sought is an exact match for one of the specifications,
1509 that specification is used.
1510#. If no match is found, and the type sought is an integer type, then
1511 the smallest integer type that is larger than the bitwidth of the
1512 sought type is used. If none of the specifications are larger than
1513 the bitwidth then the largest integer type is used. For example,
1514 given the default specifications above, the i7 type will use the
1515 alignment of i8 (next largest) while both i65 and i256 will use the
1516 alignment of i64 (largest specified).
1517#. If no match is found, and the type sought is a vector type, then the
1518 largest vector type that is smaller than the sought vector type will
1519 be used as a fall back. This happens because <128 x double> can be
1520 implemented in terms of 64 <2 x double>, for example.
1521
1522The function of the data layout string may not be what you expect.
1523Notably, this is not a specification from the frontend of what alignment
1524the code generator should use.
1525
1526Instead, if specified, the target data layout is required to match what
1527the ultimate *code generator* expects. This string is used by the
1528mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001529what the ultimate code generator uses. There is no way to generate IR
1530that does not embed this target-specific detail into the IR. If you
1531don't specify the string, the default specifications will be used to
1532generate a Data Layout and the optimization phases will operate
1533accordingly and introduce target specificity into the IR with respect to
1534these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001535
Bill Wendling5cc90842013-10-18 23:41:25 +00001536.. _langref_triple:
1537
1538Target Triple
1539-------------
1540
1541A module may specify a target triple string that describes the target
1542host. The syntax for the target triple is simply:
1543
1544.. code-block:: llvm
1545
1546 target triple = "x86_64-apple-macosx10.7.0"
1547
1548The *target triple* string consists of a series of identifiers delimited
1549by the minus sign character ('-'). The canonical forms are:
1550
1551::
1552
1553 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1554 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1555
1556This information is passed along to the backend so that it generates
1557code for the proper architecture. It's possible to override this on the
1558command line with the ``-mtriple`` command line option.
1559
Sean Silvab084af42012-12-07 10:36:55 +00001560.. _pointeraliasing:
1561
1562Pointer Aliasing Rules
1563----------------------
1564
1565Any memory access must be done through a pointer value associated with
1566an address range of the memory access, otherwise the behavior is
1567undefined. Pointer values are associated with address ranges according
1568to the following rules:
1569
1570- A pointer value is associated with the addresses associated with any
1571 value it is *based* on.
1572- An address of a global variable is associated with the address range
1573 of the variable's storage.
1574- The result value of an allocation instruction is associated with the
1575 address range of the allocated storage.
1576- A null pointer in the default address-space is associated with no
1577 address.
1578- An integer constant other than zero or a pointer value returned from
1579 a function not defined within LLVM may be associated with address
1580 ranges allocated through mechanisms other than those provided by
1581 LLVM. Such ranges shall not overlap with any ranges of addresses
1582 allocated by mechanisms provided by LLVM.
1583
1584A pointer value is *based* on another pointer value according to the
1585following rules:
1586
1587- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001588 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001589- The result value of a ``bitcast`` is *based* on the operand of the
1590 ``bitcast``.
1591- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1592 values that contribute (directly or indirectly) to the computation of
1593 the pointer's value.
1594- The "*based* on" relationship is transitive.
1595
1596Note that this definition of *"based"* is intentionally similar to the
1597definition of *"based"* in C99, though it is slightly weaker.
1598
1599LLVM IR does not associate types with memory. The result type of a
1600``load`` merely indicates the size and alignment of the memory from
1601which to load, as well as the interpretation of the value. The first
1602operand type of a ``store`` similarly only indicates the size and
1603alignment of the store.
1604
1605Consequently, type-based alias analysis, aka TBAA, aka
1606``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1607:ref:`Metadata <metadata>` may be used to encode additional information
1608which specialized optimization passes may use to implement type-based
1609alias analysis.
1610
1611.. _volatile:
1612
1613Volatile Memory Accesses
1614------------------------
1615
1616Certain memory accesses, such as :ref:`load <i_load>`'s,
1617:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1618marked ``volatile``. The optimizers must not change the number of
1619volatile operations or change their order of execution relative to other
1620volatile operations. The optimizers *may* change the order of volatile
1621operations relative to non-volatile operations. This is not Java's
1622"volatile" and has no cross-thread synchronization behavior.
1623
Andrew Trick89fc5a62013-01-30 21:19:35 +00001624IR-level volatile loads and stores cannot safely be optimized into
1625llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1626flagged volatile. Likewise, the backend should never split or merge
1627target-legal volatile load/store instructions.
1628
Andrew Trick7e6f9282013-01-31 00:49:39 +00001629.. admonition:: Rationale
1630
1631 Platforms may rely on volatile loads and stores of natively supported
1632 data width to be executed as single instruction. For example, in C
1633 this holds for an l-value of volatile primitive type with native
1634 hardware support, but not necessarily for aggregate types. The
1635 frontend upholds these expectations, which are intentionally
1636 unspecified in the IR. The rules above ensure that IR transformation
1637 do not violate the frontend's contract with the language.
1638
Sean Silvab084af42012-12-07 10:36:55 +00001639.. _memmodel:
1640
1641Memory Model for Concurrent Operations
1642--------------------------------------
1643
1644The LLVM IR does not define any way to start parallel threads of
1645execution or to register signal handlers. Nonetheless, there are
1646platform-specific ways to create them, and we define LLVM IR's behavior
1647in their presence. This model is inspired by the C++0x memory model.
1648
1649For a more informal introduction to this model, see the :doc:`Atomics`.
1650
1651We define a *happens-before* partial order as the least partial order
1652that
1653
1654- Is a superset of single-thread program order, and
1655- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1656 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1657 techniques, like pthread locks, thread creation, thread joining,
1658 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1659 Constraints <ordering>`).
1660
1661Note that program order does not introduce *happens-before* edges
1662between a thread and signals executing inside that thread.
1663
1664Every (defined) read operation (load instructions, memcpy, atomic
1665loads/read-modify-writes, etc.) R reads a series of bytes written by
1666(defined) write operations (store instructions, atomic
1667stores/read-modify-writes, memcpy, etc.). For the purposes of this
1668section, initialized globals are considered to have a write of the
1669initializer which is atomic and happens before any other read or write
1670of the memory in question. For each byte of a read R, R\ :sub:`byte`
1671may see any write to the same byte, except:
1672
1673- If write\ :sub:`1` happens before write\ :sub:`2`, and
1674 write\ :sub:`2` happens before R\ :sub:`byte`, then
1675 R\ :sub:`byte` does not see write\ :sub:`1`.
1676- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1677 R\ :sub:`byte` does not see write\ :sub:`3`.
1678
1679Given that definition, R\ :sub:`byte` is defined as follows:
1680
1681- If R is volatile, the result is target-dependent. (Volatile is
1682 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001683 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001684 like normal memory. It does not generally provide cross-thread
1685 synchronization.)
1686- Otherwise, if there is no write to the same byte that happens before
1687 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1688- Otherwise, if R\ :sub:`byte` may see exactly one write,
1689 R\ :sub:`byte` returns the value written by that write.
1690- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1691 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1692 Memory Ordering Constraints <ordering>` section for additional
1693 constraints on how the choice is made.
1694- Otherwise R\ :sub:`byte` returns ``undef``.
1695
1696R returns the value composed of the series of bytes it read. This
1697implies that some bytes within the value may be ``undef`` **without**
1698the entire value being ``undef``. Note that this only defines the
1699semantics of the operation; it doesn't mean that targets will emit more
1700than one instruction to read the series of bytes.
1701
1702Note that in cases where none of the atomic intrinsics are used, this
1703model places only one restriction on IR transformations on top of what
1704is required for single-threaded execution: introducing a store to a byte
1705which might not otherwise be stored is not allowed in general.
1706(Specifically, in the case where another thread might write to and read
1707from an address, introducing a store can change a load that may see
1708exactly one write into a load that may see multiple writes.)
1709
1710.. _ordering:
1711
1712Atomic Memory Ordering Constraints
1713----------------------------------
1714
1715Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1716:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1717:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001718ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001719the same address they *synchronize with*. These semantics are borrowed
1720from Java and C++0x, but are somewhat more colloquial. If these
1721descriptions aren't precise enough, check those specs (see spec
1722references in the :doc:`atomics guide <Atomics>`).
1723:ref:`fence <i_fence>` instructions treat these orderings somewhat
1724differently since they don't take an address. See that instruction's
1725documentation for details.
1726
1727For a simpler introduction to the ordering constraints, see the
1728:doc:`Atomics`.
1729
1730``unordered``
1731 The set of values that can be read is governed by the happens-before
1732 partial order. A value cannot be read unless some operation wrote
1733 it. This is intended to provide a guarantee strong enough to model
1734 Java's non-volatile shared variables. This ordering cannot be
1735 specified for read-modify-write operations; it is not strong enough
1736 to make them atomic in any interesting way.
1737``monotonic``
1738 In addition to the guarantees of ``unordered``, there is a single
1739 total order for modifications by ``monotonic`` operations on each
1740 address. All modification orders must be compatible with the
1741 happens-before order. There is no guarantee that the modification
1742 orders can be combined to a global total order for the whole program
1743 (and this often will not be possible). The read in an atomic
1744 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1745 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1746 order immediately before the value it writes. If one atomic read
1747 happens before another atomic read of the same address, the later
1748 read must see the same value or a later value in the address's
1749 modification order. This disallows reordering of ``monotonic`` (or
1750 stronger) operations on the same address. If an address is written
1751 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1752 read that address repeatedly, the other threads must eventually see
1753 the write. This corresponds to the C++0x/C1x
1754 ``memory_order_relaxed``.
1755``acquire``
1756 In addition to the guarantees of ``monotonic``, a
1757 *synchronizes-with* edge may be formed with a ``release`` operation.
1758 This is intended to model C++'s ``memory_order_acquire``.
1759``release``
1760 In addition to the guarantees of ``monotonic``, if this operation
1761 writes a value which is subsequently read by an ``acquire``
1762 operation, it *synchronizes-with* that operation. (This isn't a
1763 complete description; see the C++0x definition of a release
1764 sequence.) This corresponds to the C++0x/C1x
1765 ``memory_order_release``.
1766``acq_rel`` (acquire+release)
1767 Acts as both an ``acquire`` and ``release`` operation on its
1768 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1769``seq_cst`` (sequentially consistent)
1770 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001771 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001772 writes), there is a global total order on all
1773 sequentially-consistent operations on all addresses, which is
1774 consistent with the *happens-before* partial order and with the
1775 modification orders of all the affected addresses. Each
1776 sequentially-consistent read sees the last preceding write to the
1777 same address in this global order. This corresponds to the C++0x/C1x
1778 ``memory_order_seq_cst`` and Java volatile.
1779
1780.. _singlethread:
1781
1782If an atomic operation is marked ``singlethread``, it only *synchronizes
1783with* or participates in modification and seq\_cst total orderings with
1784other operations running in the same thread (for example, in signal
1785handlers).
1786
1787.. _fastmath:
1788
1789Fast-Math Flags
1790---------------
1791
1792LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1793:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Eric Christopher1e61ffd2015-02-19 18:46:25 +00001794:ref:`frem <i_frem>`) have the following flags that can be set to enable
Sean Silvab084af42012-12-07 10:36:55 +00001795otherwise unsafe floating point operations
1796
1797``nnan``
1798 No NaNs - Allow optimizations to assume the arguments and result are not
1799 NaN. Such optimizations are required to retain defined behavior over
1800 NaNs, but the value of the result is undefined.
1801
1802``ninf``
1803 No Infs - Allow optimizations to assume the arguments and result are not
1804 +/-Inf. Such optimizations are required to retain defined behavior over
1805 +/-Inf, but the value of the result is undefined.
1806
1807``nsz``
1808 No Signed Zeros - Allow optimizations to treat the sign of a zero
1809 argument or result as insignificant.
1810
1811``arcp``
1812 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1813 argument rather than perform division.
1814
1815``fast``
1816 Fast - Allow algebraically equivalent transformations that may
1817 dramatically change results in floating point (e.g. reassociate). This
1818 flag implies all the others.
1819
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001820.. _uselistorder:
1821
1822Use-list Order Directives
1823-------------------------
1824
1825Use-list directives encode the in-memory order of each use-list, allowing the
1826order to be recreated. ``<order-indexes>`` is a comma-separated list of
1827indexes that are assigned to the referenced value's uses. The referenced
1828value's use-list is immediately sorted by these indexes.
1829
1830Use-list directives may appear at function scope or global scope. They are not
1831instructions, and have no effect on the semantics of the IR. When they're at
1832function scope, they must appear after the terminator of the final basic block.
1833
1834If basic blocks have their address taken via ``blockaddress()`` expressions,
1835``uselistorder_bb`` can be used to reorder their use-lists from outside their
1836function's scope.
1837
1838:Syntax:
1839
1840::
1841
1842 uselistorder <ty> <value>, { <order-indexes> }
1843 uselistorder_bb @function, %block { <order-indexes> }
1844
1845:Examples:
1846
1847::
1848
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001849 define void @foo(i32 %arg1, i32 %arg2) {
1850 entry:
1851 ; ... instructions ...
1852 bb:
1853 ; ... instructions ...
1854
1855 ; At function scope.
1856 uselistorder i32 %arg1, { 1, 0, 2 }
1857 uselistorder label %bb, { 1, 0 }
1858 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001859
1860 ; At global scope.
1861 uselistorder i32* @global, { 1, 2, 0 }
1862 uselistorder i32 7, { 1, 0 }
1863 uselistorder i32 (i32) @bar, { 1, 0 }
1864 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1865
Sean Silvab084af42012-12-07 10:36:55 +00001866.. _typesystem:
1867
1868Type System
1869===========
1870
1871The LLVM type system is one of the most important features of the
1872intermediate representation. Being typed enables a number of
1873optimizations to be performed on the intermediate representation
1874directly, without having to do extra analyses on the side before the
1875transformation. A strong type system makes it easier to read the
1876generated code and enables novel analyses and transformations that are
1877not feasible to perform on normal three address code representations.
1878
Rafael Espindola08013342013-12-07 19:34:20 +00001879.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001880
Rafael Espindola08013342013-12-07 19:34:20 +00001881Void Type
1882---------
Sean Silvab084af42012-12-07 10:36:55 +00001883
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001884:Overview:
1885
Rafael Espindola08013342013-12-07 19:34:20 +00001886
1887The void type does not represent any value and has no size.
1888
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001889:Syntax:
1890
Rafael Espindola08013342013-12-07 19:34:20 +00001891
1892::
1893
1894 void
Sean Silvab084af42012-12-07 10:36:55 +00001895
1896
Rafael Espindola08013342013-12-07 19:34:20 +00001897.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001898
Rafael Espindola08013342013-12-07 19:34:20 +00001899Function Type
1900-------------
Sean Silvab084af42012-12-07 10:36:55 +00001901
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001902:Overview:
1903
Sean Silvab084af42012-12-07 10:36:55 +00001904
Rafael Espindola08013342013-12-07 19:34:20 +00001905The function type can be thought of as a function signature. It consists of a
1906return type and a list of formal parameter types. The return type of a function
1907type is a void type or first class type --- except for :ref:`label <t_label>`
1908and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001909
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001910:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001911
Rafael Espindola08013342013-12-07 19:34:20 +00001912::
Sean Silvab084af42012-12-07 10:36:55 +00001913
Rafael Espindola08013342013-12-07 19:34:20 +00001914 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001915
Rafael Espindola08013342013-12-07 19:34:20 +00001916...where '``<parameter list>``' is a comma-separated list of type
1917specifiers. Optionally, the parameter list may include a type ``...``, which
1918indicates that the function takes a variable number of arguments. Variable
1919argument functions can access their arguments with the :ref:`variable argument
1920handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1921except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001922
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001923:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001924
Rafael Espindola08013342013-12-07 19:34:20 +00001925+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1926| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1927+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1928| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1929+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1930| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1931+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1932| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1933+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1934
1935.. _t_firstclass:
1936
1937First Class Types
1938-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001939
1940The :ref:`first class <t_firstclass>` types are perhaps the most important.
1941Values of these types are the only ones which can be produced by
1942instructions.
1943
Rafael Espindola08013342013-12-07 19:34:20 +00001944.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001945
Rafael Espindola08013342013-12-07 19:34:20 +00001946Single Value Types
1947^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001948
Rafael Espindola08013342013-12-07 19:34:20 +00001949These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001950
1951.. _t_integer:
1952
1953Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00001954""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001955
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001956:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00001957
1958The integer type is a very simple type that simply specifies an
1959arbitrary bit width for the integer type desired. Any bit width from 1
1960bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1961
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001962:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001963
1964::
1965
1966 iN
1967
1968The number of bits the integer will occupy is specified by the ``N``
1969value.
1970
1971Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00001972*********
Sean Silvab084af42012-12-07 10:36:55 +00001973
1974+----------------+------------------------------------------------+
1975| ``i1`` | a single-bit integer. |
1976+----------------+------------------------------------------------+
1977| ``i32`` | a 32-bit integer. |
1978+----------------+------------------------------------------------+
1979| ``i1942652`` | a really big integer of over 1 million bits. |
1980+----------------+------------------------------------------------+
1981
1982.. _t_floating:
1983
1984Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00001985""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00001986
1987.. list-table::
1988 :header-rows: 1
1989
1990 * - Type
1991 - Description
1992
1993 * - ``half``
1994 - 16-bit floating point value
1995
1996 * - ``float``
1997 - 32-bit floating point value
1998
1999 * - ``double``
2000 - 64-bit floating point value
2001
2002 * - ``fp128``
2003 - 128-bit floating point value (112-bit mantissa)
2004
2005 * - ``x86_fp80``
2006 - 80-bit floating point value (X87)
2007
2008 * - ``ppc_fp128``
2009 - 128-bit floating point value (two 64-bits)
2010
Reid Kleckner9a16d082014-03-05 02:41:37 +00002011X86_mmx Type
2012""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002013
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002014:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002015
Reid Kleckner9a16d082014-03-05 02:41:37 +00002016The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002017machine. The operations allowed on it are quite limited: parameters and
2018return values, load and store, and bitcast. User-specified MMX
2019instructions are represented as intrinsic or asm calls with arguments
2020and/or results of this type. There are no arrays, vectors or constants
2021of this type.
2022
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002023:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002024
2025::
2026
Reid Kleckner9a16d082014-03-05 02:41:37 +00002027 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002028
Sean Silvab084af42012-12-07 10:36:55 +00002029
Rafael Espindola08013342013-12-07 19:34:20 +00002030.. _t_pointer:
2031
2032Pointer Type
2033""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002034
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002035:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002036
Rafael Espindola08013342013-12-07 19:34:20 +00002037The pointer type is used to specify memory locations. Pointers are
2038commonly used to reference objects in memory.
2039
2040Pointer types may have an optional address space attribute defining the
2041numbered address space where the pointed-to object resides. The default
2042address space is number zero. The semantics of non-zero address spaces
2043are target-specific.
2044
2045Note that LLVM does not permit pointers to void (``void*``) nor does it
2046permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002047
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002048:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002049
2050::
2051
Rafael Espindola08013342013-12-07 19:34:20 +00002052 <type> *
2053
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002054:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002055
2056+-------------------------+--------------------------------------------------------------------------------------------------------------+
2057| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2058+-------------------------+--------------------------------------------------------------------------------------------------------------+
2059| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2060+-------------------------+--------------------------------------------------------------------------------------------------------------+
2061| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2062+-------------------------+--------------------------------------------------------------------------------------------------------------+
2063
2064.. _t_vector:
2065
2066Vector Type
2067"""""""""""
2068
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002069:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002070
2071A vector type is a simple derived type that represents a vector of
2072elements. Vector types are used when multiple primitive data are
2073operated in parallel using a single instruction (SIMD). A vector type
2074requires a size (number of elements) and an underlying primitive data
2075type. Vector types are considered :ref:`first class <t_firstclass>`.
2076
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002077:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002078
2079::
2080
2081 < <# elements> x <elementtype> >
2082
2083The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002084elementtype may be any integer, floating point or pointer type. Vectors
2085of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002086
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002087:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002088
2089+-------------------+--------------------------------------------------+
2090| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2091+-------------------+--------------------------------------------------+
2092| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2093+-------------------+--------------------------------------------------+
2094| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2095+-------------------+--------------------------------------------------+
2096| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2097+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002098
2099.. _t_label:
2100
2101Label Type
2102^^^^^^^^^^
2103
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002104:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002105
2106The label type represents code labels.
2107
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002108:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002109
2110::
2111
2112 label
2113
2114.. _t_metadata:
2115
2116Metadata Type
2117^^^^^^^^^^^^^
2118
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002119:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002120
2121The metadata type represents embedded metadata. No derived types may be
2122created from metadata except for :ref:`function <t_function>` arguments.
2123
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002124:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002125
2126::
2127
2128 metadata
2129
Sean Silvab084af42012-12-07 10:36:55 +00002130.. _t_aggregate:
2131
2132Aggregate Types
2133^^^^^^^^^^^^^^^
2134
2135Aggregate Types are a subset of derived types that can contain multiple
2136member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2137aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2138aggregate types.
2139
2140.. _t_array:
2141
2142Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002143""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002144
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002145:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002146
2147The array type is a very simple derived type that arranges elements
2148sequentially in memory. The array type requires a size (number of
2149elements) and an underlying data type.
2150
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002151:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002152
2153::
2154
2155 [<# elements> x <elementtype>]
2156
2157The number of elements is a constant integer value; ``elementtype`` may
2158be any type with a size.
2159
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002160:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002161
2162+------------------+--------------------------------------+
2163| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2164+------------------+--------------------------------------+
2165| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2166+------------------+--------------------------------------+
2167| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2168+------------------+--------------------------------------+
2169
2170Here are some examples of multidimensional arrays:
2171
2172+-----------------------------+----------------------------------------------------------+
2173| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2174+-----------------------------+----------------------------------------------------------+
2175| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2176+-----------------------------+----------------------------------------------------------+
2177| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2178+-----------------------------+----------------------------------------------------------+
2179
2180There is no restriction on indexing beyond the end of the array implied
2181by a static type (though there are restrictions on indexing beyond the
2182bounds of an allocated object in some cases). This means that
2183single-dimension 'variable sized array' addressing can be implemented in
2184LLVM with a zero length array type. An implementation of 'pascal style
2185arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2186example.
2187
Sean Silvab084af42012-12-07 10:36:55 +00002188.. _t_struct:
2189
2190Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002191""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002192
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002193:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002194
2195The structure type is used to represent a collection of data members
2196together in memory. The elements of a structure may be any type that has
2197a size.
2198
2199Structures in memory are accessed using '``load``' and '``store``' by
2200getting a pointer to a field with the '``getelementptr``' instruction.
2201Structures in registers are accessed using the '``extractvalue``' and
2202'``insertvalue``' instructions.
2203
2204Structures may optionally be "packed" structures, which indicate that
2205the alignment of the struct is one byte, and that there is no padding
2206between the elements. In non-packed structs, padding between field types
2207is inserted as defined by the DataLayout string in the module, which is
2208required to match what the underlying code generator expects.
2209
2210Structures can either be "literal" or "identified". A literal structure
2211is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2212identified types are always defined at the top level with a name.
2213Literal types are uniqued by their contents and can never be recursive
2214or opaque since there is no way to write one. Identified types can be
2215recursive, can be opaqued, and are never uniqued.
2216
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002217:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002218
2219::
2220
2221 %T1 = type { <type list> } ; Identified normal struct type
2222 %T2 = type <{ <type list> }> ; Identified packed struct type
2223
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002224:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002225
2226+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2227| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2228+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002229| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002230+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2231| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2232+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2233
2234.. _t_opaque:
2235
2236Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002237""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002238
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002239:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002240
2241Opaque structure types are used to represent named structure types that
2242do not have a body specified. This corresponds (for example) to the C
2243notion of a forward declared structure.
2244
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002245:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002246
2247::
2248
2249 %X = type opaque
2250 %52 = type opaque
2251
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002252:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002253
2254+--------------+-------------------+
2255| ``opaque`` | An opaque type. |
2256+--------------+-------------------+
2257
Sean Silva1703e702014-04-08 21:06:22 +00002258.. _constants:
2259
Sean Silvab084af42012-12-07 10:36:55 +00002260Constants
2261=========
2262
2263LLVM has several different basic types of constants. This section
2264describes them all and their syntax.
2265
2266Simple Constants
2267----------------
2268
2269**Boolean constants**
2270 The two strings '``true``' and '``false``' are both valid constants
2271 of the ``i1`` type.
2272**Integer constants**
2273 Standard integers (such as '4') are constants of the
2274 :ref:`integer <t_integer>` type. Negative numbers may be used with
2275 integer types.
2276**Floating point constants**
2277 Floating point constants use standard decimal notation (e.g.
2278 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2279 hexadecimal notation (see below). The assembler requires the exact
2280 decimal value of a floating-point constant. For example, the
2281 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2282 decimal in binary. Floating point constants must have a :ref:`floating
2283 point <t_floating>` type.
2284**Null pointer constants**
2285 The identifier '``null``' is recognized as a null pointer constant
2286 and must be of :ref:`pointer type <t_pointer>`.
2287
2288The one non-intuitive notation for constants is the hexadecimal form of
2289floating point constants. For example, the form
2290'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2291than) '``double 4.5e+15``'. The only time hexadecimal floating point
2292constants are required (and the only time that they are generated by the
2293disassembler) is when a floating point constant must be emitted but it
2294cannot be represented as a decimal floating point number in a reasonable
2295number of digits. For example, NaN's, infinities, and other special
2296values are represented in their IEEE hexadecimal format so that assembly
2297and disassembly do not cause any bits to change in the constants.
2298
2299When using the hexadecimal form, constants of types half, float, and
2300double are represented using the 16-digit form shown above (which
2301matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002302must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002303precision, respectively. Hexadecimal format is always used for long
2304double, and there are three forms of long double. The 80-bit format used
2305by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2306128-bit format used by PowerPC (two adjacent doubles) is represented by
2307``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002308represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2309will only work if they match the long double format on your target.
2310The IEEE 16-bit format (half precision) is represented by ``0xH``
2311followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2312(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002313
Reid Kleckner9a16d082014-03-05 02:41:37 +00002314There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002315
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002316.. _complexconstants:
2317
Sean Silvab084af42012-12-07 10:36:55 +00002318Complex Constants
2319-----------------
2320
2321Complex constants are a (potentially recursive) combination of simple
2322constants and smaller complex constants.
2323
2324**Structure constants**
2325 Structure constants are represented with notation similar to
2326 structure type definitions (a comma separated list of elements,
2327 surrounded by braces (``{}``)). For example:
2328 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2329 "``@G = external global i32``". Structure constants must have
2330 :ref:`structure type <t_struct>`, and the number and types of elements
2331 must match those specified by the type.
2332**Array constants**
2333 Array constants are represented with notation similar to array type
2334 definitions (a comma separated list of elements, surrounded by
2335 square brackets (``[]``)). For example:
2336 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2337 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002338 match those specified by the type. As a special case, character array
2339 constants may also be represented as a double-quoted string using the ``c``
2340 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002341**Vector constants**
2342 Vector constants are represented with notation similar to vector
2343 type definitions (a comma separated list of elements, surrounded by
2344 less-than/greater-than's (``<>``)). For example:
2345 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2346 must have :ref:`vector type <t_vector>`, and the number and types of
2347 elements must match those specified by the type.
2348**Zero initialization**
2349 The string '``zeroinitializer``' can be used to zero initialize a
2350 value to zero of *any* type, including scalar and
2351 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2352 having to print large zero initializers (e.g. for large arrays) and
2353 is always exactly equivalent to using explicit zero initializers.
2354**Metadata node**
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002355 A metadata node is a constant tuple without types. For example:
2356 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
2357 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2358 Unlike other typed constants that are meant to be interpreted as part of
2359 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002360 information such as debug info.
2361
2362Global Variable and Function Addresses
2363--------------------------------------
2364
2365The addresses of :ref:`global variables <globalvars>` and
2366:ref:`functions <functionstructure>` are always implicitly valid
2367(link-time) constants. These constants are explicitly referenced when
2368the :ref:`identifier for the global <identifiers>` is used and always have
2369:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2370file:
2371
2372.. code-block:: llvm
2373
2374 @X = global i32 17
2375 @Y = global i32 42
2376 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2377
2378.. _undefvalues:
2379
2380Undefined Values
2381----------------
2382
2383The string '``undef``' can be used anywhere a constant is expected, and
2384indicates that the user of the value may receive an unspecified
2385bit-pattern. Undefined values may be of any type (other than '``label``'
2386or '``void``') and be used anywhere a constant is permitted.
2387
2388Undefined values are useful because they indicate to the compiler that
2389the program is well defined no matter what value is used. This gives the
2390compiler more freedom to optimize. Here are some examples of
2391(potentially surprising) transformations that are valid (in pseudo IR):
2392
2393.. code-block:: llvm
2394
2395 %A = add %X, undef
2396 %B = sub %X, undef
2397 %C = xor %X, undef
2398 Safe:
2399 %A = undef
2400 %B = undef
2401 %C = undef
2402
2403This is safe because all of the output bits are affected by the undef
2404bits. Any output bit can have a zero or one depending on the input bits.
2405
2406.. code-block:: llvm
2407
2408 %A = or %X, undef
2409 %B = and %X, undef
2410 Safe:
2411 %A = -1
2412 %B = 0
2413 Unsafe:
2414 %A = undef
2415 %B = undef
2416
2417These logical operations have bits that are not always affected by the
2418input. For example, if ``%X`` has a zero bit, then the output of the
2419'``and``' operation will always be a zero for that bit, no matter what
2420the corresponding bit from the '``undef``' is. As such, it is unsafe to
2421optimize or assume that the result of the '``and``' is '``undef``'.
2422However, it is safe to assume that all bits of the '``undef``' could be
24230, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2424all the bits of the '``undef``' operand to the '``or``' could be set,
2425allowing the '``or``' to be folded to -1.
2426
2427.. code-block:: llvm
2428
2429 %A = select undef, %X, %Y
2430 %B = select undef, 42, %Y
2431 %C = select %X, %Y, undef
2432 Safe:
2433 %A = %X (or %Y)
2434 %B = 42 (or %Y)
2435 %C = %Y
2436 Unsafe:
2437 %A = undef
2438 %B = undef
2439 %C = undef
2440
2441This set of examples shows that undefined '``select``' (and conditional
2442branch) conditions can go *either way*, but they have to come from one
2443of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2444both known to have a clear low bit, then ``%A`` would have to have a
2445cleared low bit. However, in the ``%C`` example, the optimizer is
2446allowed to assume that the '``undef``' operand could be the same as
2447``%Y``, allowing the whole '``select``' to be eliminated.
2448
2449.. code-block:: llvm
2450
2451 %A = xor undef, undef
2452
2453 %B = undef
2454 %C = xor %B, %B
2455
2456 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002457 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002458 %F = icmp gte %D, 4
2459
2460 Safe:
2461 %A = undef
2462 %B = undef
2463 %C = undef
2464 %D = undef
2465 %E = undef
2466 %F = undef
2467
2468This example points out that two '``undef``' operands are not
2469necessarily the same. This can be surprising to people (and also matches
2470C semantics) where they assume that "``X^X``" is always zero, even if
2471``X`` is undefined. This isn't true for a number of reasons, but the
2472short answer is that an '``undef``' "variable" can arbitrarily change
2473its value over its "live range". This is true because the variable
2474doesn't actually *have a live range*. Instead, the value is logically
2475read from arbitrary registers that happen to be around when needed, so
2476the value is not necessarily consistent over time. In fact, ``%A`` and
2477``%C`` need to have the same semantics or the core LLVM "replace all
2478uses with" concept would not hold.
2479
2480.. code-block:: llvm
2481
2482 %A = fdiv undef, %X
2483 %B = fdiv %X, undef
2484 Safe:
2485 %A = undef
2486 b: unreachable
2487
2488These examples show the crucial difference between an *undefined value*
2489and *undefined behavior*. An undefined value (like '``undef``') is
2490allowed to have an arbitrary bit-pattern. This means that the ``%A``
2491operation can be constant folded to '``undef``', because the '``undef``'
2492could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2493However, in the second example, we can make a more aggressive
2494assumption: because the ``undef`` is allowed to be an arbitrary value,
2495we are allowed to assume that it could be zero. Since a divide by zero
2496has *undefined behavior*, we are allowed to assume that the operation
2497does not execute at all. This allows us to delete the divide and all
2498code after it. Because the undefined operation "can't happen", the
2499optimizer can assume that it occurs in dead code.
2500
2501.. code-block:: llvm
2502
2503 a: store undef -> %X
2504 b: store %X -> undef
2505 Safe:
2506 a: <deleted>
2507 b: unreachable
2508
2509These examples reiterate the ``fdiv`` example: a store *of* an undefined
2510value can be assumed to not have any effect; we can assume that the
2511value is overwritten with bits that happen to match what was already
2512there. However, a store *to* an undefined location could clobber
2513arbitrary memory, therefore, it has undefined behavior.
2514
2515.. _poisonvalues:
2516
2517Poison Values
2518-------------
2519
2520Poison values are similar to :ref:`undef values <undefvalues>`, however
2521they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002522that cannot evoke side effects has nevertheless detected a condition
2523that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002524
2525There is currently no way of representing a poison value in the IR; they
2526only exist when produced by operations such as :ref:`add <i_add>` with
2527the ``nsw`` flag.
2528
2529Poison value behavior is defined in terms of value *dependence*:
2530
2531- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2532- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2533 their dynamic predecessor basic block.
2534- Function arguments depend on the corresponding actual argument values
2535 in the dynamic callers of their functions.
2536- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2537 instructions that dynamically transfer control back to them.
2538- :ref:`Invoke <i_invoke>` instructions depend on the
2539 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2540 call instructions that dynamically transfer control back to them.
2541- Non-volatile loads and stores depend on the most recent stores to all
2542 of the referenced memory addresses, following the order in the IR
2543 (including loads and stores implied by intrinsics such as
2544 :ref:`@llvm.memcpy <int_memcpy>`.)
2545- An instruction with externally visible side effects depends on the
2546 most recent preceding instruction with externally visible side
2547 effects, following the order in the IR. (This includes :ref:`volatile
2548 operations <volatile>`.)
2549- An instruction *control-depends* on a :ref:`terminator
2550 instruction <terminators>` if the terminator instruction has
2551 multiple successors and the instruction is always executed when
2552 control transfers to one of the successors, and may not be executed
2553 when control is transferred to another.
2554- Additionally, an instruction also *control-depends* on a terminator
2555 instruction if the set of instructions it otherwise depends on would
2556 be different if the terminator had transferred control to a different
2557 successor.
2558- Dependence is transitive.
2559
Richard Smith32dbdf62014-07-31 04:25:36 +00002560Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2561with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002562on a poison value has undefined behavior.
2563
2564Here are some examples:
2565
2566.. code-block:: llvm
2567
2568 entry:
2569 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2570 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002571 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002572 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2573
2574 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002575 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002576
2577 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2578
2579 %narrowaddr = bitcast i32* @g to i16*
2580 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002581 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2582 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002583
2584 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2585 br i1 %cmp, label %true, label %end ; Branch to either destination.
2586
2587 true:
2588 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2589 ; it has undefined behavior.
2590 br label %end
2591
2592 end:
2593 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2594 ; Both edges into this PHI are
2595 ; control-dependent on %cmp, so this
2596 ; always results in a poison value.
2597
2598 store volatile i32 0, i32* @g ; This would depend on the store in %true
2599 ; if %cmp is true, or the store in %entry
2600 ; otherwise, so this is undefined behavior.
2601
2602 br i1 %cmp, label %second_true, label %second_end
2603 ; The same branch again, but this time the
2604 ; true block doesn't have side effects.
2605
2606 second_true:
2607 ; No side effects!
2608 ret void
2609
2610 second_end:
2611 store volatile i32 0, i32* @g ; This time, the instruction always depends
2612 ; on the store in %end. Also, it is
2613 ; control-equivalent to %end, so this is
2614 ; well-defined (ignoring earlier undefined
2615 ; behavior in this example).
2616
2617.. _blockaddress:
2618
2619Addresses of Basic Blocks
2620-------------------------
2621
2622``blockaddress(@function, %block)``
2623
2624The '``blockaddress``' constant computes the address of the specified
2625basic block in the specified function, and always has an ``i8*`` type.
2626Taking the address of the entry block is illegal.
2627
2628This value only has defined behavior when used as an operand to the
2629':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2630against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002631undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002632no label is equal to the null pointer. This may be passed around as an
2633opaque pointer sized value as long as the bits are not inspected. This
2634allows ``ptrtoint`` and arithmetic to be performed on these values so
2635long as the original value is reconstituted before the ``indirectbr``
2636instruction.
2637
2638Finally, some targets may provide defined semantics when using the value
2639as the operand to an inline assembly, but that is target specific.
2640
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002641.. _constantexprs:
2642
Sean Silvab084af42012-12-07 10:36:55 +00002643Constant Expressions
2644--------------------
2645
2646Constant expressions are used to allow expressions involving other
2647constants to be used as constants. Constant expressions may be of any
2648:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2649that does not have side effects (e.g. load and call are not supported).
2650The following is the syntax for constant expressions:
2651
2652``trunc (CST to TYPE)``
2653 Truncate a constant to another type. The bit size of CST must be
2654 larger than the bit size of TYPE. Both types must be integers.
2655``zext (CST to TYPE)``
2656 Zero extend a constant to another type. The bit size of CST must be
2657 smaller than the bit size of TYPE. Both types must be integers.
2658``sext (CST to TYPE)``
2659 Sign extend a constant to another type. The bit size of CST must be
2660 smaller than the bit size of TYPE. Both types must be integers.
2661``fptrunc (CST to TYPE)``
2662 Truncate a floating point constant to another floating point type.
2663 The size of CST must be larger than the size of TYPE. Both types
2664 must be floating point.
2665``fpext (CST to TYPE)``
2666 Floating point extend a constant to another type. The size of CST
2667 must be smaller or equal to the size of TYPE. Both types must be
2668 floating point.
2669``fptoui (CST to TYPE)``
2670 Convert a floating point constant to the corresponding unsigned
2671 integer constant. TYPE must be a scalar or vector integer type. CST
2672 must be of scalar or vector floating point type. Both CST and TYPE
2673 must be scalars, or vectors of the same number of elements. If the
2674 value won't fit in the integer type, the results are undefined.
2675``fptosi (CST to TYPE)``
2676 Convert a floating point constant to the corresponding signed
2677 integer constant. TYPE must be a scalar or vector integer type. CST
2678 must be of scalar or vector floating point type. Both CST and TYPE
2679 must be scalars, or vectors of the same number of elements. If the
2680 value won't fit in the integer type, the results are undefined.
2681``uitofp (CST to TYPE)``
2682 Convert an unsigned integer constant to the corresponding floating
2683 point constant. TYPE must be a scalar or vector floating point type.
2684 CST must be of scalar or vector integer type. Both CST and TYPE must
2685 be scalars, or vectors of the same number of elements. If the value
2686 won't fit in the floating point type, the results are undefined.
2687``sitofp (CST to TYPE)``
2688 Convert a signed integer constant to the corresponding floating
2689 point constant. TYPE must be a scalar or vector floating point type.
2690 CST must be of scalar or vector integer type. Both CST and TYPE must
2691 be scalars, or vectors of the same number of elements. If the value
2692 won't fit in the floating point type, the results are undefined.
2693``ptrtoint (CST to TYPE)``
2694 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002695 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002696 pointer type. The ``CST`` value is zero extended, truncated, or
2697 unchanged to make it fit in ``TYPE``.
2698``inttoptr (CST to TYPE)``
2699 Convert an integer constant to a pointer constant. TYPE must be a
2700 pointer type. CST must be of integer type. The CST value is zero
2701 extended, truncated, or unchanged to make it fit in a pointer size.
2702 This one is *really* dangerous!
2703``bitcast (CST to TYPE)``
2704 Convert a constant, CST, to another TYPE. The constraints of the
2705 operands are the same as those for the :ref:`bitcast
2706 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002707``addrspacecast (CST to TYPE)``
2708 Convert a constant pointer or constant vector of pointer, CST, to another
2709 TYPE in a different address space. The constraints of the operands are the
2710 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002711``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002712 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2713 constants. As with the :ref:`getelementptr <i_getelementptr>`
2714 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002715 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002716``select (COND, VAL1, VAL2)``
2717 Perform the :ref:`select operation <i_select>` on constants.
2718``icmp COND (VAL1, VAL2)``
2719 Performs the :ref:`icmp operation <i_icmp>` on constants.
2720``fcmp COND (VAL1, VAL2)``
2721 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2722``extractelement (VAL, IDX)``
2723 Perform the :ref:`extractelement operation <i_extractelement>` on
2724 constants.
2725``insertelement (VAL, ELT, IDX)``
2726 Perform the :ref:`insertelement operation <i_insertelement>` on
2727 constants.
2728``shufflevector (VEC1, VEC2, IDXMASK)``
2729 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2730 constants.
2731``extractvalue (VAL, IDX0, IDX1, ...)``
2732 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2733 constants. The index list is interpreted in a similar manner as
2734 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2735 least one index value must be specified.
2736``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2737 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2738 The index list is interpreted in a similar manner as indices in a
2739 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2740 value must be specified.
2741``OPCODE (LHS, RHS)``
2742 Perform the specified operation of the LHS and RHS constants. OPCODE
2743 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2744 binary <bitwiseops>` operations. The constraints on operands are
2745 the same as those for the corresponding instruction (e.g. no bitwise
2746 operations on floating point values are allowed).
2747
2748Other Values
2749============
2750
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002751.. _inlineasmexprs:
2752
Sean Silvab084af42012-12-07 10:36:55 +00002753Inline Assembler Expressions
2754----------------------------
2755
2756LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2757Inline Assembly <moduleasm>`) through the use of a special value. This
2758value represents the inline assembler as a string (containing the
2759instructions to emit), a list of operand constraints (stored as a
2760string), a flag that indicates whether or not the inline asm expression
2761has side effects, and a flag indicating whether the function containing
2762the asm needs to align its stack conservatively. An example inline
2763assembler expression is:
2764
2765.. code-block:: llvm
2766
2767 i32 (i32) asm "bswap $0", "=r,r"
2768
2769Inline assembler expressions may **only** be used as the callee operand
2770of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2771Thus, typically we have:
2772
2773.. code-block:: llvm
2774
2775 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2776
2777Inline asms with side effects not visible in the constraint list must be
2778marked as having side effects. This is done through the use of the
2779'``sideeffect``' keyword, like so:
2780
2781.. code-block:: llvm
2782
2783 call void asm sideeffect "eieio", ""()
2784
2785In some cases inline asms will contain code that will not work unless
2786the stack is aligned in some way, such as calls or SSE instructions on
2787x86, yet will not contain code that does that alignment within the asm.
2788The compiler should make conservative assumptions about what the asm
2789might contain and should generate its usual stack alignment code in the
2790prologue if the '``alignstack``' keyword is present:
2791
2792.. code-block:: llvm
2793
2794 call void asm alignstack "eieio", ""()
2795
2796Inline asms also support using non-standard assembly dialects. The
2797assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2798the inline asm is using the Intel dialect. Currently, ATT and Intel are
2799the only supported dialects. An example is:
2800
2801.. code-block:: llvm
2802
2803 call void asm inteldialect "eieio", ""()
2804
2805If multiple keywords appear the '``sideeffect``' keyword must come
2806first, the '``alignstack``' keyword second and the '``inteldialect``'
2807keyword last.
2808
2809Inline Asm Metadata
2810^^^^^^^^^^^^^^^^^^^
2811
2812The call instructions that wrap inline asm nodes may have a
2813"``!srcloc``" MDNode attached to it that contains a list of constant
2814integers. If present, the code generator will use the integer as the
2815location cookie value when report errors through the ``LLVMContext``
2816error reporting mechanisms. This allows a front-end to correlate backend
2817errors that occur with inline asm back to the source code that produced
2818it. For example:
2819
2820.. code-block:: llvm
2821
2822 call void asm sideeffect "something bad", ""(), !srcloc !42
2823 ...
2824 !42 = !{ i32 1234567 }
2825
2826It is up to the front-end to make sense of the magic numbers it places
2827in the IR. If the MDNode contains multiple constants, the code generator
2828will use the one that corresponds to the line of the asm that the error
2829occurs on.
2830
2831.. _metadata:
2832
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002833Metadata
2834========
Sean Silvab084af42012-12-07 10:36:55 +00002835
2836LLVM IR allows metadata to be attached to instructions in the program
2837that can convey extra information about the code to the optimizers and
2838code generator. One example application of metadata is source-level
2839debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002840
2841Metadata does not have a type, and is not a value. If referenced from a
2842``call`` instruction, it uses the ``metadata`` type.
2843
2844All metadata are identified in syntax by a exclamation point ('``!``').
2845
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002846.. _metadata-string:
2847
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002848Metadata Nodes and Metadata Strings
2849-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00002850
2851A metadata string is a string surrounded by double quotes. It can
2852contain any character by escaping non-printable characters with
2853"``\xx``" where "``xx``" is the two digit hex code. For example:
2854"``!"test\00"``".
2855
2856Metadata nodes are represented with notation similar to structure
2857constants (a comma separated list of elements, surrounded by braces and
2858preceded by an exclamation point). Metadata nodes can have any values as
2859their operand. For example:
2860
2861.. code-block:: llvm
2862
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002863 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00002864
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00002865Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
2866
2867.. code-block:: llvm
2868
2869 !0 = distinct !{!"test\00", i32 10}
2870
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00002871``distinct`` nodes are useful when nodes shouldn't be merged based on their
2872content. They can also occur when transformations cause uniquing collisions
2873when metadata operands change.
2874
Sean Silvab084af42012-12-07 10:36:55 +00002875A :ref:`named metadata <namedmetadatastructure>` is a collection of
2876metadata nodes, which can be looked up in the module symbol table. For
2877example:
2878
2879.. code-block:: llvm
2880
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002881 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00002882
2883Metadata can be used as function arguments. Here ``llvm.dbg.value``
2884function is using two metadata arguments:
2885
2886.. code-block:: llvm
2887
2888 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2889
2890Metadata can be attached with an instruction. Here metadata ``!21`` is
2891attached to the ``add`` instruction using the ``!dbg`` identifier:
2892
2893.. code-block:: llvm
2894
2895 %indvar.next = add i64 %indvar, 1, !dbg !21
2896
2897More information about specific metadata nodes recognized by the
2898optimizers and code generator is found below.
2899
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00002900Specialized Metadata Nodes
2901^^^^^^^^^^^^^^^^^^^^^^^^^^
2902
2903Specialized metadata nodes are custom data structures in metadata (as opposed
2904to generic tuples). Their fields are labelled, and can be specified in any
2905order.
2906
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002907These aren't inherently debug info centric, but currently all the specialized
2908metadata nodes are related to debug info.
2909
2910MDCompileUnit
2911"""""""""""""
2912
2913``MDCompileUnit`` nodes represent a compile unit. The ``enums:``,
2914``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
2915tuples containing the debug info to be emitted along with the compile unit,
2916regardless of code optimizations (some nodes are only emitted if there are
2917references to them from instructions).
2918
2919.. code-block:: llvm
2920
2921 !0 = !MDCompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
2922 isOptimized: true, flags: "-O2", runtimeVersion: 2,
2923 splitDebugFilename: "abc.debug", emissionKind: 1,
2924 enums: !2, retainedTypes: !3, subprograms: !4,
2925 globals: !5, imports: !6)
2926
2927MDFile
2928""""""
2929
2930``MDFile`` nodes represent files. The ``filename:`` can include slashes.
2931
2932.. code-block:: llvm
2933
2934 !0 = !MDFile(filename: "path/to/file", directory: "/path/to/dir")
2935
2936.. _MDLocation:
2937
2938MDBasicType
2939"""""""""""
2940
2941``MDBasicType`` nodes represent primitive types. ``tag:`` defaults to
2942``DW_TAG_base_type``.
2943
2944.. code-block:: llvm
2945
2946 !0 = !MDBasicType(name: "unsigned char", size: 8, align: 8,
2947 encoding: DW_ATE_unsigned_char)
2948 !1 = !MDBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
2949
2950.. _MDSubroutineType:
2951
2952MDSubroutineType
2953""""""""""""""""
2954
2955``MDSubroutineType`` nodes represent subroutine types. Their ``types:`` field
2956refers to a tuple; the first operand is the return type, while the rest are the
2957types of the formal arguments in order. If the first operand is ``null``, that
2958represents a function with no return value (such as ``void foo() {}`` in C++).
2959
2960.. code-block:: llvm
2961
2962 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
2963 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
2964 !2 = !MDSubroutineType(types: !{null, !0, !1}) ; void (int, char)
2965
2966MDDerivedType
2967"""""""""""""
2968
2969``MDDerivedType`` nodes represent types derived from other types, such as
2970qualified types.
2971
2972.. code-block:: llvm
2973
2974 !0 = !MDBasicType(name: "unsigned char", size: 8, align: 8,
2975 encoding: DW_ATE_unsigned_char)
2976 !1 = !MDDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
2977 align: 32)
2978
2979.. _MDCompositeType:
2980
2981MDCompositeType
2982"""""""""""""""
2983
2984``MDCompositeType`` nodes represent types composed of other types, like
2985structures and unions. ``elements:`` points to a tuple of the composed types.
2986
2987If the source language supports ODR, the ``identifier:`` field gives the unique
2988identifier used for type merging between modules. When specified, other types
2989can refer to composite types indirectly via a :ref:`metadata string
2990<metadata-string>` that matches their identifier.
2991
2992.. code-block:: llvm
2993
2994 !0 = !MDEnumerator(name: "SixKind", value: 7)
2995 !1 = !MDEnumerator(name: "SevenKind", value: 7)
2996 !2 = !MDEnumerator(name: "NegEightKind", value: -8)
2997 !3 = !MDCompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
2998 line: 2, size: 32, align: 32, identifier: "_M4Enum",
2999 elements: !{!0, !1, !2})
3000
3001MDSubrange
3002""""""""""
3003
3004``MDSubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
3005:ref:`MDCompositeType`. ``count: -1`` indicates an empty array.
3006
3007.. code-block:: llvm
3008
3009 !0 = !MDSubrange(count: 5, lowerBound: 0) ; array counting from 0
3010 !1 = !MDSubrange(count: 5, lowerBound: 1) ; array counting from 1
3011 !2 = !MDSubrange(count: -1) ; empty array.
3012
3013MDEnumerator
3014""""""""""""
3015
3016``MDEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3017variants of :ref:`MDCompositeType`.
3018
3019.. code-block:: llvm
3020
3021 !0 = !MDEnumerator(name: "SixKind", value: 7)
3022 !1 = !MDEnumerator(name: "SevenKind", value: 7)
3023 !2 = !MDEnumerator(name: "NegEightKind", value: -8)
3024
3025MDTemplateTypeParameter
3026"""""""""""""""""""""""
3027
3028``MDTemplateTypeParameter`` nodes represent type parameters to generic source
3029language constructs. They are used (optionally) in :ref:`MDCompositeType` and
3030:ref:`MDSubprogram` ``templateParams:`` fields.
3031
3032.. code-block:: llvm
3033
3034 !0 = !MDTemplateTypeParameter(name: "Ty", type: !1)
3035
3036MDTemplateValueParameter
3037""""""""""""""""""""""""
3038
3039``MDTemplateValueParameter`` nodes represent value parameters to generic source
3040language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
3041but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
3042``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
3043:ref:`MDCompositeType` and :ref:`MDSubprogram` ``templateParams:`` fields.
3044
3045.. code-block:: llvm
3046
3047 !0 = !MDTemplateValueParameter(name: "Ty", type: !1, value: i32 7)
3048
3049MDNamespace
3050"""""""""""
3051
3052``MDNamespace`` nodes represent namespaces in the source language.
3053
3054.. code-block:: llvm
3055
3056 !0 = !MDNamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
3057
3058MDGlobalVariable
3059""""""""""""""""
3060
3061``MDGlobalVariable`` nodes represent global variables in the source language.
3062
3063.. code-block:: llvm
3064
3065 !0 = !MDGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
3066 file: !2, line: 7, type: !3, isLocal: true,
3067 isDefinition: false, variable: i32* @foo,
3068 declaration: !4)
3069
3070.. _MDSubprogram:
3071
3072MDSubprogram
3073""""""""""""
3074
3075``MDSubprogram`` nodes represent functions from the source language. The
3076``variables:`` field points at :ref:`variables <MDLocalVariable>` that must be
3077retained, even if their IR counterparts are optimized out of the IR. The
3078``type:`` field must point at an :ref:`MDSubroutineType`.
3079
3080.. code-block:: llvm
3081
3082 !0 = !MDSubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
3083 file: !2, line: 7, type: !3, isLocal: true,
3084 isDefinition: false, scopeLine: 8, containingType: !4,
3085 virtuality: DW_VIRTUALITY_pure_virtual, virtualIndex: 10,
3086 flags: DIFlagPrototyped, isOptimized: true,
3087 function: void ()* @_Z3foov,
3088 templateParams: !5, declaration: !6, variables: !7)
3089
3090.. _MDLexicalBlock:
3091
3092MDLexicalBlock
3093""""""""""""""
3094
3095``MDLexicalBlock`` nodes represent lexical blocks in the source language (a
3096scope).
3097
3098.. code-block:: llvm
3099
3100 !0 = !MDLexicalBlock(scope: !1, file: !2, line: 7, column: 35)
3101
3102.. _MDLexicalBlockFile:
3103
3104MDLexicalBlockFile
3105""""""""""""""""""
3106
3107``MDLexicalBlockFile`` nodes are used to discriminate between sections of a
3108:ref:`lexical block <MDLexicalBlock>`. The ``file:`` field can be changed to
3109indicate textual inclusion, or the ``discriminator:`` field can be used to
3110discriminate between control flow within a single block in the source language.
3111
3112.. code-block:: llvm
3113
3114 !0 = !MDLexicalBlock(scope: !3, file: !4, line: 7, column: 35)
3115 !1 = !MDLexicalBlockFile(scope: !0, file: !4, discriminator: 0)
3116 !2 = !MDLexicalBlockFile(scope: !0, file: !4, discriminator: 1)
3117
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003118MDLocation
3119""""""""""
3120
3121``MDLocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003122mandatory, and points at an :ref:`MDLexicalBlockFile`, an
3123:ref:`MDLexicalBlock`, or an :ref:`MDSubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003124
3125.. code-block:: llvm
3126
3127 !0 = !MDLocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
3128
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003129.. _MDLocalVariable:
3130
3131MDLocalVariable
3132"""""""""""""""
3133
3134``MDLocalVariable`` nodes represent local variables in the source language.
3135Instead of ``DW_TAG_variable``, they use LLVM-specific fake tags to
3136discriminate between local variables (``DW_TAG_auto_variable``) and subprogram
3137arguments (``DW_TAG_arg_variable``). In the latter case, the ``arg:`` field
3138specifies the argument position, and this variable will be included in the
3139``variables:`` field of its :ref:`MDSubprogram`.
3140
3141If set, the ``inlinedAt:`` field points at an :ref:`MDLocation`, and the
3142variable represents an inlined version of a variable (with all other fields
3143duplicated from the non-inlined version).
3144
3145.. code-block:: llvm
3146
3147 !0 = !MDLocalVariable(tag: DW_TAG_arg_variable, name: "this", arg: 0,
3148 scope: !3, file: !2, line: 7, type: !3,
3149 flags: DIFlagArtificial, inlinedAt: !4)
3150 !1 = !MDLocalVariable(tag: DW_TAG_arg_variable, name: "x", arg: 1,
3151 scope: !4, file: !2, line: 7, type: !3,
3152 inlinedAt: !6)
3153 !1 = !MDLocalVariable(tag: DW_TAG_auto_variable, name: "y",
3154 scope: !5, file: !2, line: 7, type: !3,
3155 inlinedAt: !6)
3156
3157MDExpression
3158""""""""""""
3159
3160``MDExpression`` nodes represent DWARF expression sequences. They are used in
3161:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
3162describe how the referenced LLVM variable relates to the source language
3163variable.
3164
3165The current supported vocabulary is limited:
3166
3167- ``DW_OP_deref`` dereferences the working expression.
3168- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
3169- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
3170 here, respectively) of the variable piece from the working expression.
3171
3172.. code-block:: llvm
3173
3174 !0 = !MDExpression(DW_OP_deref)
3175 !1 = !MDExpression(DW_OP_plus, 3)
3176 !2 = !MDExpression(DW_OP_bit_piece, 3, 7)
3177 !3 = !MDExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
3178
3179MDObjCProperty
3180""""""""""""""
3181
3182``MDObjCProperty`` nodes represent Objective-C property nodes.
3183
3184.. code-block:: llvm
3185
3186 !3 = !MDObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
3187 getter: "getFoo", attributes: 7, type: !2)
3188
3189MDImportedEntity
3190""""""""""""""""
3191
3192``MDImportedEntity`` nodes represent entities (such as modules) imported into a
3193compile unit.
3194
3195.. code-block:: llvm
3196
3197 !2 = !MDImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
3198 entity: !1, line: 7)
3199
Sean Silvab084af42012-12-07 10:36:55 +00003200'``tbaa``' Metadata
3201^^^^^^^^^^^^^^^^^^^
3202
3203In LLVM IR, memory does not have types, so LLVM's own type system is not
3204suitable for doing TBAA. Instead, metadata is added to the IR to
3205describe a type system of a higher level language. This can be used to
3206implement typical C/C++ TBAA, but it can also be used to implement
3207custom alias analysis behavior for other languages.
3208
3209The current metadata format is very simple. TBAA metadata nodes have up
3210to three fields, e.g.:
3211
3212.. code-block:: llvm
3213
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003214 !0 = !{ !"an example type tree" }
3215 !1 = !{ !"int", !0 }
3216 !2 = !{ !"float", !0 }
3217 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003218
3219The first field is an identity field. It can be any value, usually a
3220metadata string, which uniquely identifies the type. The most important
3221name in the tree is the name of the root node. Two trees with different
3222root node names are entirely disjoint, even if they have leaves with
3223common names.
3224
3225The second field identifies the type's parent node in the tree, or is
3226null or omitted for a root node. A type is considered to alias all of
3227its descendants and all of its ancestors in the tree. Also, a type is
3228considered to alias all types in other trees, so that bitcode produced
3229from multiple front-ends is handled conservatively.
3230
3231If the third field is present, it's an integer which if equal to 1
3232indicates that the type is "constant" (meaning
3233``pointsToConstantMemory`` should return true; see `other useful
3234AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
3235
3236'``tbaa.struct``' Metadata
3237^^^^^^^^^^^^^^^^^^^^^^^^^^
3238
3239The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
3240aggregate assignment operations in C and similar languages, however it
3241is defined to copy a contiguous region of memory, which is more than
3242strictly necessary for aggregate types which contain holes due to
3243padding. Also, it doesn't contain any TBAA information about the fields
3244of the aggregate.
3245
3246``!tbaa.struct`` metadata can describe which memory subregions in a
3247memcpy are padding and what the TBAA tags of the struct are.
3248
3249The current metadata format is very simple. ``!tbaa.struct`` metadata
3250nodes are a list of operands which are in conceptual groups of three.
3251For each group of three, the first operand gives the byte offset of a
3252field in bytes, the second gives its size in bytes, and the third gives
3253its tbaa tag. e.g.:
3254
3255.. code-block:: llvm
3256
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003257 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00003258
3259This describes a struct with two fields. The first is at offset 0 bytes
3260with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
3261and has size 4 bytes and has tbaa tag !2.
3262
3263Note that the fields need not be contiguous. In this example, there is a
32644 byte gap between the two fields. This gap represents padding which
3265does not carry useful data and need not be preserved.
3266
Hal Finkel94146652014-07-24 14:25:39 +00003267'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00003268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00003269
3270``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
3271noalias memory-access sets. This means that some collection of memory access
3272instructions (loads, stores, memory-accessing calls, etc.) that carry
3273``noalias`` metadata can specifically be specified not to alias with some other
3274collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00003275Each type of metadata specifies a list of scopes where each scope has an id and
3276a domain. When evaluating an aliasing query, if for some some domain, the set
3277of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00003278subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00003279instruction's ``noalias`` list, then the two memory accesses are assumed not to
3280alias.
Hal Finkel94146652014-07-24 14:25:39 +00003281
Hal Finkel029cde62014-07-25 15:50:02 +00003282The metadata identifying each domain is itself a list containing one or two
3283entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00003284string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00003285self-reference can be used to create globally unique domain names. A
3286descriptive string may optionally be provided as a second list entry.
3287
3288The metadata identifying each scope is also itself a list containing two or
3289three entries. The first entry is the name of the scope. Note that if the name
3290is a string then it can be combined accross functions and translation units. A
3291self-reference can be used to create globally unique scope names. A metadata
3292reference to the scope's domain is the second entry. A descriptive string may
3293optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00003294
3295For example,
3296
3297.. code-block:: llvm
3298
Hal Finkel029cde62014-07-25 15:50:02 +00003299 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003300 !0 = !{!0}
3301 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00003302
Hal Finkel029cde62014-07-25 15:50:02 +00003303 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003304 !2 = !{!2, !0}
3305 !3 = !{!3, !0}
3306 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00003307
Hal Finkel029cde62014-07-25 15:50:02 +00003308 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003309 !5 = !{!4} ; A list containing only scope !4
3310 !6 = !{!4, !3, !2}
3311 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00003312
3313 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00003314 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00003315 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00003316
Hal Finkel029cde62014-07-25 15:50:02 +00003317 ; These two instructions also don't alias (for domain !1, the set of scopes
3318 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00003319 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00003320 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00003321
Hal Finkel029cde62014-07-25 15:50:02 +00003322 ; These two instructions don't alias (for domain !0, the set of scopes in
3323 ; the !noalias list is not a superset of, or equal to, the scopes in the
3324 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00003325 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00003326 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00003327
Sean Silvab084af42012-12-07 10:36:55 +00003328'``fpmath``' Metadata
3329^^^^^^^^^^^^^^^^^^^^^
3330
3331``fpmath`` metadata may be attached to any instruction of floating point
3332type. It can be used to express the maximum acceptable error in the
3333result of that instruction, in ULPs, thus potentially allowing the
3334compiler to use a more efficient but less accurate method of computing
3335it. ULP is defined as follows:
3336
3337 If ``x`` is a real number that lies between two finite consecutive
3338 floating-point numbers ``a`` and ``b``, without being equal to one
3339 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
3340 distance between the two non-equal finite floating-point numbers
3341 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
3342
3343The metadata node shall consist of a single positive floating point
3344number representing the maximum relative error, for example:
3345
3346.. code-block:: llvm
3347
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003348 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00003349
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00003350.. _range-metadata:
3351
Sean Silvab084af42012-12-07 10:36:55 +00003352'``range``' Metadata
3353^^^^^^^^^^^^^^^^^^^^
3354
Jingyue Wu37fcb592014-06-19 16:50:16 +00003355``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
3356integer types. It expresses the possible ranges the loaded value or the value
3357returned by the called function at this call site is in. The ranges are
3358represented with a flattened list of integers. The loaded value or the value
3359returned is known to be in the union of the ranges defined by each consecutive
3360pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00003361
3362- The type must match the type loaded by the instruction.
3363- The pair ``a,b`` represents the range ``[a,b)``.
3364- Both ``a`` and ``b`` are constants.
3365- The range is allowed to wrap.
3366- The range should not represent the full or empty set. That is,
3367 ``a!=b``.
3368
3369In addition, the pairs must be in signed order of the lower bound and
3370they must be non-contiguous.
3371
3372Examples:
3373
3374.. code-block:: llvm
3375
David Blaikiec7aabbb2015-03-04 22:06:14 +00003376 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
3377 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00003378 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
3379 %d = invoke i8 @bar() to label %cont
3380 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00003381 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003382 !0 = !{ i8 0, i8 2 }
3383 !1 = !{ i8 255, i8 2 }
3384 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
3385 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00003386
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003387'``llvm.loop``'
3388^^^^^^^^^^^^^^^
3389
3390It is sometimes useful to attach information to loop constructs. Currently,
3391loop metadata is implemented as metadata attached to the branch instruction
3392in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00003393guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00003394specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003395
3396The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00003397itself to avoid merging it with any other identifier metadata, e.g.,
3398during module linkage or function inlining. That is, each loop should refer
3399to their own identification metadata even if they reside in separate functions.
3400The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003401constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003402
3403.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00003404
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003405 !0 = !{!0}
3406 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003407
Mark Heffernan893752a2014-07-18 19:24:51 +00003408The loop identifier metadata can be used to specify additional
3409per-loop metadata. Any operands after the first operand can be treated
3410as user-defined metadata. For example the ``llvm.loop.unroll.count``
3411suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003412
Paul Redmond5fdf8362013-05-28 20:00:34 +00003413.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003414
Paul Redmond5fdf8362013-05-28 20:00:34 +00003415 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
3416 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003417 !0 = !{!0, !1}
3418 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003419
Mark Heffernan9d20e422014-07-21 23:11:03 +00003420'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
3421^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00003422
Mark Heffernan9d20e422014-07-21 23:11:03 +00003423Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
3424used to control per-loop vectorization and interleaving parameters such as
3425vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00003426conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00003427``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
3428optimization hints and the optimizer will only interleave and vectorize loops if
3429it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
3430which contains information about loop-carried memory dependencies can be helpful
3431in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00003432
Mark Heffernan9d20e422014-07-21 23:11:03 +00003433'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00003434^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3435
Mark Heffernan9d20e422014-07-21 23:11:03 +00003436This metadata suggests an interleave count to the loop interleaver.
3437The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00003438second operand is an integer specifying the interleave count. For
3439example:
3440
3441.. code-block:: llvm
3442
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003443 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003444
Mark Heffernan9d20e422014-07-21 23:11:03 +00003445Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3446multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
3447then the interleave count will be determined automatically.
3448
3449'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00003450^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00003451
3452This metadata selectively enables or disables vectorization for the loop. The
3453first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3454is a bit. If the bit operand value is 1 vectorization is enabled. A value of
34550 disables vectorization:
3456
3457.. code-block:: llvm
3458
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003459 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
3460 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00003461
3462'``llvm.loop.vectorize.width``' Metadata
3463^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3464
3465This metadata sets the target width of the vectorizer. The first
3466operand is the string ``llvm.loop.vectorize.width`` and the second
3467operand is an integer specifying the width. For example:
3468
3469.. code-block:: llvm
3470
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003471 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003472
3473Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3474vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
34750 or if the loop does not have this metadata the width will be
3476determined automatically.
3477
3478'``llvm.loop.unroll``'
3479^^^^^^^^^^^^^^^^^^^^^^
3480
3481Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3482optimization hints such as the unroll factor. ``llvm.loop.unroll``
3483metadata should be used in conjunction with ``llvm.loop`` loop
3484identification metadata. The ``llvm.loop.unroll`` metadata are only
3485optimization hints and the unrolling will only be performed if the
3486optimizer believes it is safe to do so.
3487
Mark Heffernan893752a2014-07-18 19:24:51 +00003488'``llvm.loop.unroll.count``' Metadata
3489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3490
3491This metadata suggests an unroll factor to the loop unroller. The
3492first operand is the string ``llvm.loop.unroll.count`` and the second
3493operand is a positive integer specifying the unroll factor. For
3494example:
3495
3496.. code-block:: llvm
3497
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003498 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003499
3500If the trip count of the loop is less than the unroll count the loop
3501will be partially unrolled.
3502
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003503'``llvm.loop.unroll.disable``' Metadata
3504^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3505
3506This metadata either disables loop unrolling. The metadata has a single operand
3507which is the string ``llvm.loop.unroll.disable``. For example:
3508
3509.. code-block:: llvm
3510
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003511 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003512
Kevin Qin715b01e2015-03-09 06:14:18 +00003513'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00003514^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00003515
3516This metadata either disables runtime loop unrolling. The metadata has a single
3517operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
3518
3519.. code-block:: llvm
3520
3521 !0 = !{!"llvm.loop.unroll.runtime.disable"}
3522
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003523'``llvm.loop.unroll.full``' Metadata
3524^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3525
3526This metadata either suggests that the loop should be unrolled fully. The
3527metadata has a single operand which is the string ``llvm.loop.unroll.disable``.
3528For example:
3529
3530.. code-block:: llvm
3531
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003532 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003533
3534'``llvm.mem``'
3535^^^^^^^^^^^^^^^
3536
3537Metadata types used to annotate memory accesses with information helpful
3538for optimizations are prefixed with ``llvm.mem``.
3539
3540'``llvm.mem.parallel_loop_access``' Metadata
3541^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3542
Mehdi Amini4a121fa2015-03-14 22:04:06 +00003543The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3544or metadata containing a list of loop identifiers for nested loops.
3545The metadata is attached to memory accessing instructions and denotes that
3546no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003547with the same loop identifier.
3548
Mehdi Amini4a121fa2015-03-14 22:04:06 +00003549Precisely, given two instructions ``m1`` and ``m2`` that both have the
3550``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3551set of loops associated with that metadata, respectively, then there is no loop
3552carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003553``L2``.
3554
Mehdi Amini4a121fa2015-03-14 22:04:06 +00003555As a special case, if all memory accessing instructions in a loop have
3556``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3557loop has no loop carried memory dependences and is considered to be a parallel
3558loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003559
Mehdi Amini4a121fa2015-03-14 22:04:06 +00003560Note that if not all memory access instructions have such metadata referring to
3561the loop, then the loop is considered not being trivially parallel. Additional
3562memory dependence analysis is required to make that determination. As a fail
3563safe mechanism, this causes loops that were originally parallel to be considered
3564sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003565insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003566
3567Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003568both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003569metadata types that refer to the same loop identifier metadata.
3570
3571.. code-block:: llvm
3572
3573 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003574 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00003575 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003576 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003577 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003578 ...
3579 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003580
3581 for.end:
3582 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003583 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003584
3585It is also possible to have nested parallel loops. In that case the
3586memory accesses refer to a list of loop identifier metadata nodes instead of
3587the loop identifier metadata node directly:
3588
3589.. code-block:: llvm
3590
3591 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003592 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00003593 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003594 ...
3595 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003596
3597 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003598 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00003599 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003600 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003601 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003602 ...
3603 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003604
3605 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003606 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003607 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003608 ...
3609 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003610
3611 outer.for.end: ; preds = %for.body
3612 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003613 !0 = !{!1, !2} ; a list of loop identifiers
3614 !1 = !{!1} ; an identifier for the inner loop
3615 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003616
Peter Collingbournee6909c82015-02-20 20:30:47 +00003617'``llvm.bitsets``'
3618^^^^^^^^^^^^^^^^^^
3619
3620The ``llvm.bitsets`` global metadata is used to implement
3621:doc:`bitsets <BitSets>`.
3622
Sean Silvab084af42012-12-07 10:36:55 +00003623Module Flags Metadata
3624=====================
3625
3626Information about the module as a whole is difficult to convey to LLVM's
3627subsystems. The LLVM IR isn't sufficient to transmit this information.
3628The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003629this. These flags are in the form of key / value pairs --- much like a
3630dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003631look it up.
3632
3633The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3634Each triplet has the following form:
3635
3636- The first element is a *behavior* flag, which specifies the behavior
3637 when two (or more) modules are merged together, and it encounters two
3638 (or more) metadata with the same ID. The supported behaviors are
3639 described below.
3640- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003641 metadata. Each module may only have one flag entry for each unique ID (not
3642 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003643- The third element is the value of the flag.
3644
3645When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003646``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3647each unique metadata ID string, there will be exactly one entry in the merged
3648modules ``llvm.module.flags`` metadata table, and the value for that entry will
3649be determined by the merge behavior flag, as described below. The only exception
3650is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003651
3652The following behaviors are supported:
3653
3654.. list-table::
3655 :header-rows: 1
3656 :widths: 10 90
3657
3658 * - Value
3659 - Behavior
3660
3661 * - 1
3662 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003663 Emits an error if two values disagree, otherwise the resulting value
3664 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003665
3666 * - 2
3667 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003668 Emits a warning if two values disagree. The result value will be the
3669 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003670
3671 * - 3
3672 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003673 Adds a requirement that another module flag be present and have a
3674 specified value after linking is performed. The value must be a
3675 metadata pair, where the first element of the pair is the ID of the
3676 module flag to be restricted, and the second element of the pair is
3677 the value the module flag should be restricted to. This behavior can
3678 be used to restrict the allowable results (via triggering of an
3679 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003680
3681 * - 4
3682 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003683 Uses the specified value, regardless of the behavior or value of the
3684 other module. If both modules specify **Override**, but the values
3685 differ, an error will be emitted.
3686
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003687 * - 5
3688 - **Append**
3689 Appends the two values, which are required to be metadata nodes.
3690
3691 * - 6
3692 - **AppendUnique**
3693 Appends the two values, which are required to be metadata
3694 nodes. However, duplicate entries in the second list are dropped
3695 during the append operation.
3696
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003697It is an error for a particular unique flag ID to have multiple behaviors,
3698except in the case of **Require** (which adds restrictions on another metadata
3699value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003700
3701An example of module flags:
3702
3703.. code-block:: llvm
3704
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003705 !0 = !{ i32 1, !"foo", i32 1 }
3706 !1 = !{ i32 4, !"bar", i32 37 }
3707 !2 = !{ i32 2, !"qux", i32 42 }
3708 !3 = !{ i32 3, !"qux",
3709 !{
3710 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00003711 }
3712 }
3713 !llvm.module.flags = !{ !0, !1, !2, !3 }
3714
3715- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3716 if two or more ``!"foo"`` flags are seen is to emit an error if their
3717 values are not equal.
3718
3719- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3720 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003721 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003722
3723- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3724 behavior if two or more ``!"qux"`` flags are seen is to emit a
3725 warning if their values are not equal.
3726
3727- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3728
3729 ::
3730
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003731 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003732
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003733 The behavior is to emit an error if the ``llvm.module.flags`` does not
3734 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3735 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003736
3737Objective-C Garbage Collection Module Flags Metadata
3738----------------------------------------------------
3739
3740On the Mach-O platform, Objective-C stores metadata about garbage
3741collection in a special section called "image info". The metadata
3742consists of a version number and a bitmask specifying what types of
3743garbage collection are supported (if any) by the file. If two or more
3744modules are linked together their garbage collection metadata needs to
3745be merged rather than appended together.
3746
3747The Objective-C garbage collection module flags metadata consists of the
3748following key-value pairs:
3749
3750.. list-table::
3751 :header-rows: 1
3752 :widths: 30 70
3753
3754 * - Key
3755 - Value
3756
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003757 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003758 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003759
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003760 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003761 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003762 always 0.
3763
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003764 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003765 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003766 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3767 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3768 Objective-C ABI version 2.
3769
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003770 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003771 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003772 not. Valid values are 0, for no garbage collection, and 2, for garbage
3773 collection supported.
3774
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003775 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003776 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003777 If present, its value must be 6. This flag requires that the
3778 ``Objective-C Garbage Collection`` flag have the value 2.
3779
3780Some important flag interactions:
3781
3782- If a module with ``Objective-C Garbage Collection`` set to 0 is
3783 merged with a module with ``Objective-C Garbage Collection`` set to
3784 2, then the resulting module has the
3785 ``Objective-C Garbage Collection`` flag set to 0.
3786- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3787 merged with a module with ``Objective-C GC Only`` set to 6.
3788
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003789Automatic Linker Flags Module Flags Metadata
3790--------------------------------------------
3791
3792Some targets support embedding flags to the linker inside individual object
3793files. Typically this is used in conjunction with language extensions which
3794allow source files to explicitly declare the libraries they depend on, and have
3795these automatically be transmitted to the linker via object files.
3796
3797These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003798using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003799to be ``AppendUnique``, and the value for the key is expected to be a metadata
3800node which should be a list of other metadata nodes, each of which should be a
3801list of metadata strings defining linker options.
3802
3803For example, the following metadata section specifies two separate sets of
3804linker options, presumably to link against ``libz`` and the ``Cocoa``
3805framework::
3806
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003807 !0 = !{ i32 6, !"Linker Options",
3808 !{
3809 !{ !"-lz" },
3810 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003811 !llvm.module.flags = !{ !0 }
3812
3813The metadata encoding as lists of lists of options, as opposed to a collapsed
3814list of options, is chosen so that the IR encoding can use multiple option
3815strings to specify e.g., a single library, while still having that specifier be
3816preserved as an atomic element that can be recognized by a target specific
3817assembly writer or object file emitter.
3818
3819Each individual option is required to be either a valid option for the target's
3820linker, or an option that is reserved by the target specific assembly writer or
3821object file emitter. No other aspect of these options is defined by the IR.
3822
Oliver Stannard5dc29342014-06-20 10:08:11 +00003823C type width Module Flags Metadata
3824----------------------------------
3825
3826The ARM backend emits a section into each generated object file describing the
3827options that it was compiled with (in a compiler-independent way) to prevent
3828linking incompatible objects, and to allow automatic library selection. Some
3829of these options are not visible at the IR level, namely wchar_t width and enum
3830width.
3831
3832To pass this information to the backend, these options are encoded in module
3833flags metadata, using the following key-value pairs:
3834
3835.. list-table::
3836 :header-rows: 1
3837 :widths: 30 70
3838
3839 * - Key
3840 - Value
3841
3842 * - short_wchar
3843 - * 0 --- sizeof(wchar_t) == 4
3844 * 1 --- sizeof(wchar_t) == 2
3845
3846 * - short_enum
3847 - * 0 --- Enums are at least as large as an ``int``.
3848 * 1 --- Enums are stored in the smallest integer type which can
3849 represent all of its values.
3850
3851For example, the following metadata section specifies that the module was
3852compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3853enum is the smallest type which can represent all of its values::
3854
3855 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003856 !0 = !{i32 1, !"short_wchar", i32 1}
3857 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00003858
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003859.. _intrinsicglobalvariables:
3860
Sean Silvab084af42012-12-07 10:36:55 +00003861Intrinsic Global Variables
3862==========================
3863
3864LLVM has a number of "magic" global variables that contain data that
3865affect code generation or other IR semantics. These are documented here.
3866All globals of this sort should have a section specified as
3867"``llvm.metadata``". This section and all globals that start with
3868"``llvm.``" are reserved for use by LLVM.
3869
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003870.. _gv_llvmused:
3871
Sean Silvab084af42012-12-07 10:36:55 +00003872The '``llvm.used``' Global Variable
3873-----------------------------------
3874
Rafael Espindola74f2e462013-04-22 14:58:02 +00003875The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00003876:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00003877pointers to named global variables, functions and aliases which may optionally
3878have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00003879use of it is:
3880
3881.. code-block:: llvm
3882
3883 @X = global i8 4
3884 @Y = global i32 123
3885
3886 @llvm.used = appending global [2 x i8*] [
3887 i8* @X,
3888 i8* bitcast (i32* @Y to i8*)
3889 ], section "llvm.metadata"
3890
Rafael Espindola74f2e462013-04-22 14:58:02 +00003891If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
3892and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00003893symbol that it cannot see (which is why they have to be named). For example, if
3894a variable has internal linkage and no references other than that from the
3895``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
3896references from inline asms and other things the compiler cannot "see", and
3897corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00003898
3899On some targets, the code generator must emit a directive to the
3900assembler or object file to prevent the assembler and linker from
3901molesting the symbol.
3902
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003903.. _gv_llvmcompilerused:
3904
Sean Silvab084af42012-12-07 10:36:55 +00003905The '``llvm.compiler.used``' Global Variable
3906--------------------------------------------
3907
3908The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
3909directive, except that it only prevents the compiler from touching the
3910symbol. On targets that support it, this allows an intelligent linker to
3911optimize references to the symbol without being impeded as it would be
3912by ``@llvm.used``.
3913
3914This is a rare construct that should only be used in rare circumstances,
3915and should not be exposed to source languages.
3916
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003917.. _gv_llvmglobalctors:
3918
Sean Silvab084af42012-12-07 10:36:55 +00003919The '``llvm.global_ctors``' Global Variable
3920-------------------------------------------
3921
3922.. code-block:: llvm
3923
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003924 %0 = type { i32, void ()*, i8* }
3925 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003926
3927The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003928functions, priorities, and an optional associated global or function.
3929The functions referenced by this array will be called in ascending order
3930of priority (i.e. lowest first) when the module is loaded. The order of
3931functions with the same priority is not defined.
3932
3933If the third field is present, non-null, and points to a global variable
3934or function, the initializer function will only run if the associated
3935data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003936
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003937.. _llvmglobaldtors:
3938
Sean Silvab084af42012-12-07 10:36:55 +00003939The '``llvm.global_dtors``' Global Variable
3940-------------------------------------------
3941
3942.. code-block:: llvm
3943
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003944 %0 = type { i32, void ()*, i8* }
3945 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00003946
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003947The ``@llvm.global_dtors`` array contains a list of destructor
3948functions, priorities, and an optional associated global or function.
3949The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00003950order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00003951order of functions with the same priority is not defined.
3952
3953If the third field is present, non-null, and points to a global variable
3954or function, the destructor function will only run if the associated
3955data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00003956
3957Instruction Reference
3958=====================
3959
3960The LLVM instruction set consists of several different classifications
3961of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
3962instructions <binaryops>`, :ref:`bitwise binary
3963instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
3964:ref:`other instructions <otherops>`.
3965
3966.. _terminators:
3967
3968Terminator Instructions
3969-----------------------
3970
3971As mentioned :ref:`previously <functionstructure>`, every basic block in a
3972program ends with a "Terminator" instruction, which indicates which
3973block should be executed after the current block is finished. These
3974terminator instructions typically yield a '``void``' value: they produce
3975control flow, not values (the one exception being the
3976':ref:`invoke <i_invoke>`' instruction).
3977
3978The terminator instructions are: ':ref:`ret <i_ret>`',
3979':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
3980':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
3981':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
3982
3983.. _i_ret:
3984
3985'``ret``' Instruction
3986^^^^^^^^^^^^^^^^^^^^^
3987
3988Syntax:
3989"""""""
3990
3991::
3992
3993 ret <type> <value> ; Return a value from a non-void function
3994 ret void ; Return from void function
3995
3996Overview:
3997"""""""""
3998
3999The '``ret``' instruction is used to return control flow (and optionally
4000a value) from a function back to the caller.
4001
4002There are two forms of the '``ret``' instruction: one that returns a
4003value and then causes control flow, and one that just causes control
4004flow to occur.
4005
4006Arguments:
4007""""""""""
4008
4009The '``ret``' instruction optionally accepts a single argument, the
4010return value. The type of the return value must be a ':ref:`first
4011class <t_firstclass>`' type.
4012
4013A function is not :ref:`well formed <wellformed>` if it it has a non-void
4014return type and contains a '``ret``' instruction with no return value or
4015a return value with a type that does not match its type, or if it has a
4016void return type and contains a '``ret``' instruction with a return
4017value.
4018
4019Semantics:
4020""""""""""
4021
4022When the '``ret``' instruction is executed, control flow returns back to
4023the calling function's context. If the caller is a
4024":ref:`call <i_call>`" instruction, execution continues at the
4025instruction after the call. If the caller was an
4026":ref:`invoke <i_invoke>`" instruction, execution continues at the
4027beginning of the "normal" destination block. If the instruction returns
4028a value, that value shall set the call or invoke instruction's return
4029value.
4030
4031Example:
4032""""""""
4033
4034.. code-block:: llvm
4035
4036 ret i32 5 ; Return an integer value of 5
4037 ret void ; Return from a void function
4038 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
4039
4040.. _i_br:
4041
4042'``br``' Instruction
4043^^^^^^^^^^^^^^^^^^^^
4044
4045Syntax:
4046"""""""
4047
4048::
4049
4050 br i1 <cond>, label <iftrue>, label <iffalse>
4051 br label <dest> ; Unconditional branch
4052
4053Overview:
4054"""""""""
4055
4056The '``br``' instruction is used to cause control flow to transfer to a
4057different basic block in the current function. There are two forms of
4058this instruction, corresponding to a conditional branch and an
4059unconditional branch.
4060
4061Arguments:
4062""""""""""
4063
4064The conditional branch form of the '``br``' instruction takes a single
4065'``i1``' value and two '``label``' values. The unconditional form of the
4066'``br``' instruction takes a single '``label``' value as a target.
4067
4068Semantics:
4069""""""""""
4070
4071Upon execution of a conditional '``br``' instruction, the '``i1``'
4072argument is evaluated. If the value is ``true``, control flows to the
4073'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
4074to the '``iffalse``' ``label`` argument.
4075
4076Example:
4077""""""""
4078
4079.. code-block:: llvm
4080
4081 Test:
4082 %cond = icmp eq i32 %a, %b
4083 br i1 %cond, label %IfEqual, label %IfUnequal
4084 IfEqual:
4085 ret i32 1
4086 IfUnequal:
4087 ret i32 0
4088
4089.. _i_switch:
4090
4091'``switch``' Instruction
4092^^^^^^^^^^^^^^^^^^^^^^^^
4093
4094Syntax:
4095"""""""
4096
4097::
4098
4099 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
4100
4101Overview:
4102"""""""""
4103
4104The '``switch``' instruction is used to transfer control flow to one of
4105several different places. It is a generalization of the '``br``'
4106instruction, allowing a branch to occur to one of many possible
4107destinations.
4108
4109Arguments:
4110""""""""""
4111
4112The '``switch``' instruction uses three parameters: an integer
4113comparison value '``value``', a default '``label``' destination, and an
4114array of pairs of comparison value constants and '``label``'s. The table
4115is not allowed to contain duplicate constant entries.
4116
4117Semantics:
4118""""""""""
4119
4120The ``switch`` instruction specifies a table of values and destinations.
4121When the '``switch``' instruction is executed, this table is searched
4122for the given value. If the value is found, control flow is transferred
4123to the corresponding destination; otherwise, control flow is transferred
4124to the default destination.
4125
4126Implementation:
4127"""""""""""""""
4128
4129Depending on properties of the target machine and the particular
4130``switch`` instruction, this instruction may be code generated in
4131different ways. For example, it could be generated as a series of
4132chained conditional branches or with a lookup table.
4133
4134Example:
4135""""""""
4136
4137.. code-block:: llvm
4138
4139 ; Emulate a conditional br instruction
4140 %Val = zext i1 %value to i32
4141 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
4142
4143 ; Emulate an unconditional br instruction
4144 switch i32 0, label %dest [ ]
4145
4146 ; Implement a jump table:
4147 switch i32 %val, label %otherwise [ i32 0, label %onzero
4148 i32 1, label %onone
4149 i32 2, label %ontwo ]
4150
4151.. _i_indirectbr:
4152
4153'``indirectbr``' Instruction
4154^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4155
4156Syntax:
4157"""""""
4158
4159::
4160
4161 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
4162
4163Overview:
4164"""""""""
4165
4166The '``indirectbr``' instruction implements an indirect branch to a
4167label within the current function, whose address is specified by
4168"``address``". Address must be derived from a
4169:ref:`blockaddress <blockaddress>` constant.
4170
4171Arguments:
4172""""""""""
4173
4174The '``address``' argument is the address of the label to jump to. The
4175rest of the arguments indicate the full set of possible destinations
4176that the address may point to. Blocks are allowed to occur multiple
4177times in the destination list, though this isn't particularly useful.
4178
4179This destination list is required so that dataflow analysis has an
4180accurate understanding of the CFG.
4181
4182Semantics:
4183""""""""""
4184
4185Control transfers to the block specified in the address argument. All
4186possible destination blocks must be listed in the label list, otherwise
4187this instruction has undefined behavior. This implies that jumps to
4188labels defined in other functions have undefined behavior as well.
4189
4190Implementation:
4191"""""""""""""""
4192
4193This is typically implemented with a jump through a register.
4194
4195Example:
4196""""""""
4197
4198.. code-block:: llvm
4199
4200 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
4201
4202.. _i_invoke:
4203
4204'``invoke``' Instruction
4205^^^^^^^^^^^^^^^^^^^^^^^^
4206
4207Syntax:
4208"""""""
4209
4210::
4211
4212 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
4213 to label <normal label> unwind label <exception label>
4214
4215Overview:
4216"""""""""
4217
4218The '``invoke``' instruction causes control to transfer to a specified
4219function, with the possibility of control flow transfer to either the
4220'``normal``' label or the '``exception``' label. If the callee function
4221returns with the "``ret``" instruction, control flow will return to the
4222"normal" label. If the callee (or any indirect callees) returns via the
4223":ref:`resume <i_resume>`" instruction or other exception handling
4224mechanism, control is interrupted and continued at the dynamically
4225nearest "exception" label.
4226
4227The '``exception``' label is a `landing
4228pad <ExceptionHandling.html#overview>`_ for the exception. As such,
4229'``exception``' label is required to have the
4230":ref:`landingpad <i_landingpad>`" instruction, which contains the
4231information about the behavior of the program after unwinding happens,
4232as its first non-PHI instruction. The restrictions on the
4233"``landingpad``" instruction's tightly couples it to the "``invoke``"
4234instruction, so that the important information contained within the
4235"``landingpad``" instruction can't be lost through normal code motion.
4236
4237Arguments:
4238""""""""""
4239
4240This instruction requires several arguments:
4241
4242#. The optional "cconv" marker indicates which :ref:`calling
4243 convention <callingconv>` the call should use. If none is
4244 specified, the call defaults to using C calling conventions.
4245#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
4246 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
4247 are valid here.
4248#. '``ptr to function ty``': shall be the signature of the pointer to
4249 function value being invoked. In most cases, this is a direct
4250 function invocation, but indirect ``invoke``'s are just as possible,
4251 branching off an arbitrary pointer to function value.
4252#. '``function ptr val``': An LLVM value containing a pointer to a
4253 function to be invoked.
4254#. '``function args``': argument list whose types match the function
4255 signature argument types and parameter attributes. All arguments must
4256 be of :ref:`first class <t_firstclass>` type. If the function signature
4257 indicates the function accepts a variable number of arguments, the
4258 extra arguments can be specified.
4259#. '``normal label``': the label reached when the called function
4260 executes a '``ret``' instruction.
4261#. '``exception label``': the label reached when a callee returns via
4262 the :ref:`resume <i_resume>` instruction or other exception handling
4263 mechanism.
4264#. The optional :ref:`function attributes <fnattrs>` list. Only
4265 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
4266 attributes are valid here.
4267
4268Semantics:
4269""""""""""
4270
4271This instruction is designed to operate as a standard '``call``'
4272instruction in most regards. The primary difference is that it
4273establishes an association with a label, which is used by the runtime
4274library to unwind the stack.
4275
4276This instruction is used in languages with destructors to ensure that
4277proper cleanup is performed in the case of either a ``longjmp`` or a
4278thrown exception. Additionally, this is important for implementation of
4279'``catch``' clauses in high-level languages that support them.
4280
4281For the purposes of the SSA form, the definition of the value returned
4282by the '``invoke``' instruction is deemed to occur on the edge from the
4283current block to the "normal" label. If the callee unwinds then no
4284return value is available.
4285
4286Example:
4287""""""""
4288
4289.. code-block:: llvm
4290
4291 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00004292 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00004293 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00004294 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00004295
4296.. _i_resume:
4297
4298'``resume``' Instruction
4299^^^^^^^^^^^^^^^^^^^^^^^^
4300
4301Syntax:
4302"""""""
4303
4304::
4305
4306 resume <type> <value>
4307
4308Overview:
4309"""""""""
4310
4311The '``resume``' instruction is a terminator instruction that has no
4312successors.
4313
4314Arguments:
4315""""""""""
4316
4317The '``resume``' instruction requires one argument, which must have the
4318same type as the result of any '``landingpad``' instruction in the same
4319function.
4320
4321Semantics:
4322""""""""""
4323
4324The '``resume``' instruction resumes propagation of an existing
4325(in-flight) exception whose unwinding was interrupted with a
4326:ref:`landingpad <i_landingpad>` instruction.
4327
4328Example:
4329""""""""
4330
4331.. code-block:: llvm
4332
4333 resume { i8*, i32 } %exn
4334
4335.. _i_unreachable:
4336
4337'``unreachable``' Instruction
4338^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4339
4340Syntax:
4341"""""""
4342
4343::
4344
4345 unreachable
4346
4347Overview:
4348"""""""""
4349
4350The '``unreachable``' instruction has no defined semantics. This
4351instruction is used to inform the optimizer that a particular portion of
4352the code is not reachable. This can be used to indicate that the code
4353after a no-return function cannot be reached, and other facts.
4354
4355Semantics:
4356""""""""""
4357
4358The '``unreachable``' instruction has no defined semantics.
4359
4360.. _binaryops:
4361
4362Binary Operations
4363-----------------
4364
4365Binary operators are used to do most of the computation in a program.
4366They require two operands of the same type, execute an operation on
4367them, and produce a single value. The operands might represent multiple
4368data, as is the case with the :ref:`vector <t_vector>` data type. The
4369result value has the same type as its operands.
4370
4371There are several different binary operators:
4372
4373.. _i_add:
4374
4375'``add``' Instruction
4376^^^^^^^^^^^^^^^^^^^^^
4377
4378Syntax:
4379"""""""
4380
4381::
4382
Tim Northover675a0962014-06-13 14:24:23 +00004383 <result> = add <ty> <op1>, <op2> ; yields ty:result
4384 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
4385 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
4386 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004387
4388Overview:
4389"""""""""
4390
4391The '``add``' instruction returns the sum of its two operands.
4392
4393Arguments:
4394""""""""""
4395
4396The two arguments to the '``add``' instruction must be
4397:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4398arguments must have identical types.
4399
4400Semantics:
4401""""""""""
4402
4403The value produced is the integer sum of the two operands.
4404
4405If the sum has unsigned overflow, the result returned is the
4406mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4407the result.
4408
4409Because LLVM integers use a two's complement representation, this
4410instruction is appropriate for both signed and unsigned integers.
4411
4412``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4413respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4414result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
4415unsigned and/or signed overflow, respectively, occurs.
4416
4417Example:
4418""""""""
4419
4420.. code-block:: llvm
4421
Tim Northover675a0962014-06-13 14:24:23 +00004422 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004423
4424.. _i_fadd:
4425
4426'``fadd``' Instruction
4427^^^^^^^^^^^^^^^^^^^^^^
4428
4429Syntax:
4430"""""""
4431
4432::
4433
Tim Northover675a0962014-06-13 14:24:23 +00004434 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004435
4436Overview:
4437"""""""""
4438
4439The '``fadd``' instruction returns the sum of its two operands.
4440
4441Arguments:
4442""""""""""
4443
4444The two arguments to the '``fadd``' instruction must be :ref:`floating
4445point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4446Both arguments must have identical types.
4447
4448Semantics:
4449""""""""""
4450
4451The value produced is the floating point sum of the two operands. This
4452instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4453which are optimization hints to enable otherwise unsafe floating point
4454optimizations:
4455
4456Example:
4457""""""""
4458
4459.. code-block:: llvm
4460
Tim Northover675a0962014-06-13 14:24:23 +00004461 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004462
4463'``sub``' Instruction
4464^^^^^^^^^^^^^^^^^^^^^
4465
4466Syntax:
4467"""""""
4468
4469::
4470
Tim Northover675a0962014-06-13 14:24:23 +00004471 <result> = sub <ty> <op1>, <op2> ; yields ty:result
4472 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
4473 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
4474 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004475
4476Overview:
4477"""""""""
4478
4479The '``sub``' instruction returns the difference of its two operands.
4480
4481Note that the '``sub``' instruction is used to represent the '``neg``'
4482instruction present in most other intermediate representations.
4483
4484Arguments:
4485""""""""""
4486
4487The two arguments to the '``sub``' instruction must be
4488:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4489arguments must have identical types.
4490
4491Semantics:
4492""""""""""
4493
4494The value produced is the integer difference of the two operands.
4495
4496If the difference has unsigned overflow, the result returned is the
4497mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4498the result.
4499
4500Because LLVM integers use a two's complement representation, this
4501instruction is appropriate for both signed and unsigned integers.
4502
4503``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4504respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4505result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4506unsigned and/or signed overflow, respectively, occurs.
4507
4508Example:
4509""""""""
4510
4511.. code-block:: llvm
4512
Tim Northover675a0962014-06-13 14:24:23 +00004513 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
4514 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004515
4516.. _i_fsub:
4517
4518'``fsub``' Instruction
4519^^^^^^^^^^^^^^^^^^^^^^
4520
4521Syntax:
4522"""""""
4523
4524::
4525
Tim Northover675a0962014-06-13 14:24:23 +00004526 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004527
4528Overview:
4529"""""""""
4530
4531The '``fsub``' instruction returns the difference of its two operands.
4532
4533Note that the '``fsub``' instruction is used to represent the '``fneg``'
4534instruction present in most other intermediate representations.
4535
4536Arguments:
4537""""""""""
4538
4539The two arguments to the '``fsub``' instruction must be :ref:`floating
4540point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4541Both arguments must have identical types.
4542
4543Semantics:
4544""""""""""
4545
4546The value produced is the floating point difference of the two operands.
4547This instruction can also take any number of :ref:`fast-math
4548flags <fastmath>`, which are optimization hints to enable otherwise
4549unsafe floating point optimizations:
4550
4551Example:
4552""""""""
4553
4554.. code-block:: llvm
4555
Tim Northover675a0962014-06-13 14:24:23 +00004556 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4557 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004558
4559'``mul``' Instruction
4560^^^^^^^^^^^^^^^^^^^^^
4561
4562Syntax:
4563"""""""
4564
4565::
4566
Tim Northover675a0962014-06-13 14:24:23 +00004567 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4568 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4569 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4570 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004571
4572Overview:
4573"""""""""
4574
4575The '``mul``' instruction returns the product of its two operands.
4576
4577Arguments:
4578""""""""""
4579
4580The two arguments to the '``mul``' instruction must be
4581:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4582arguments must have identical types.
4583
4584Semantics:
4585""""""""""
4586
4587The value produced is the integer product of the two operands.
4588
4589If the result of the multiplication has unsigned overflow, the result
4590returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4591bit width of the result.
4592
4593Because LLVM integers use a two's complement representation, and the
4594result is the same width as the operands, this instruction returns the
4595correct result for both signed and unsigned integers. If a full product
4596(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4597sign-extended or zero-extended as appropriate to the width of the full
4598product.
4599
4600``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4601respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4602result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4603unsigned and/or signed overflow, respectively, occurs.
4604
4605Example:
4606""""""""
4607
4608.. code-block:: llvm
4609
Tim Northover675a0962014-06-13 14:24:23 +00004610 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004611
4612.. _i_fmul:
4613
4614'``fmul``' Instruction
4615^^^^^^^^^^^^^^^^^^^^^^
4616
4617Syntax:
4618"""""""
4619
4620::
4621
Tim Northover675a0962014-06-13 14:24:23 +00004622 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004623
4624Overview:
4625"""""""""
4626
4627The '``fmul``' instruction returns the product of its two operands.
4628
4629Arguments:
4630""""""""""
4631
4632The two arguments to the '``fmul``' instruction must be :ref:`floating
4633point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4634Both arguments must have identical types.
4635
4636Semantics:
4637""""""""""
4638
4639The value produced is the floating point product of the two operands.
4640This instruction can also take any number of :ref:`fast-math
4641flags <fastmath>`, which are optimization hints to enable otherwise
4642unsafe floating point optimizations:
4643
4644Example:
4645""""""""
4646
4647.. code-block:: llvm
4648
Tim Northover675a0962014-06-13 14:24:23 +00004649 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004650
4651'``udiv``' Instruction
4652^^^^^^^^^^^^^^^^^^^^^^
4653
4654Syntax:
4655"""""""
4656
4657::
4658
Tim Northover675a0962014-06-13 14:24:23 +00004659 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4660 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004661
4662Overview:
4663"""""""""
4664
4665The '``udiv``' instruction returns the quotient of its two operands.
4666
4667Arguments:
4668""""""""""
4669
4670The two arguments to the '``udiv``' instruction must be
4671:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4672arguments must have identical types.
4673
4674Semantics:
4675""""""""""
4676
4677The value produced is the unsigned integer quotient of the two operands.
4678
4679Note that unsigned integer division and signed integer division are
4680distinct operations; for signed integer division, use '``sdiv``'.
4681
4682Division by zero leads to undefined behavior.
4683
4684If the ``exact`` keyword is present, the result value of the ``udiv`` is
4685a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4686such, "((a udiv exact b) mul b) == a").
4687
4688Example:
4689""""""""
4690
4691.. code-block:: llvm
4692
Tim Northover675a0962014-06-13 14:24:23 +00004693 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004694
4695'``sdiv``' Instruction
4696^^^^^^^^^^^^^^^^^^^^^^
4697
4698Syntax:
4699"""""""
4700
4701::
4702
Tim Northover675a0962014-06-13 14:24:23 +00004703 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4704 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004705
4706Overview:
4707"""""""""
4708
4709The '``sdiv``' instruction returns the quotient of its two operands.
4710
4711Arguments:
4712""""""""""
4713
4714The two arguments to the '``sdiv``' instruction must be
4715:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4716arguments must have identical types.
4717
4718Semantics:
4719""""""""""
4720
4721The value produced is the signed integer quotient of the two operands
4722rounded towards zero.
4723
4724Note that signed integer division and unsigned integer division are
4725distinct operations; for unsigned integer division, use '``udiv``'.
4726
4727Division by zero leads to undefined behavior. Overflow also leads to
4728undefined behavior; this is a rare case, but can occur, for example, by
4729doing a 32-bit division of -2147483648 by -1.
4730
4731If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4732a :ref:`poison value <poisonvalues>` if the result would be rounded.
4733
4734Example:
4735""""""""
4736
4737.. code-block:: llvm
4738
Tim Northover675a0962014-06-13 14:24:23 +00004739 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004740
4741.. _i_fdiv:
4742
4743'``fdiv``' Instruction
4744^^^^^^^^^^^^^^^^^^^^^^
4745
4746Syntax:
4747"""""""
4748
4749::
4750
Tim Northover675a0962014-06-13 14:24:23 +00004751 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004752
4753Overview:
4754"""""""""
4755
4756The '``fdiv``' instruction returns the quotient of its two operands.
4757
4758Arguments:
4759""""""""""
4760
4761The two arguments to the '``fdiv``' instruction must be :ref:`floating
4762point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4763Both arguments must have identical types.
4764
4765Semantics:
4766""""""""""
4767
4768The value produced is the floating point quotient of the two operands.
4769This instruction can also take any number of :ref:`fast-math
4770flags <fastmath>`, which are optimization hints to enable otherwise
4771unsafe floating point optimizations:
4772
4773Example:
4774""""""""
4775
4776.. code-block:: llvm
4777
Tim Northover675a0962014-06-13 14:24:23 +00004778 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004779
4780'``urem``' Instruction
4781^^^^^^^^^^^^^^^^^^^^^^
4782
4783Syntax:
4784"""""""
4785
4786::
4787
Tim Northover675a0962014-06-13 14:24:23 +00004788 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004789
4790Overview:
4791"""""""""
4792
4793The '``urem``' instruction returns the remainder from the unsigned
4794division of its two arguments.
4795
4796Arguments:
4797""""""""""
4798
4799The two arguments to the '``urem``' instruction must be
4800:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4801arguments must have identical types.
4802
4803Semantics:
4804""""""""""
4805
4806This instruction returns the unsigned integer *remainder* of a division.
4807This instruction always performs an unsigned division to get the
4808remainder.
4809
4810Note that unsigned integer remainder and signed integer remainder are
4811distinct operations; for signed integer remainder, use '``srem``'.
4812
4813Taking the remainder of a division by zero leads to undefined behavior.
4814
4815Example:
4816""""""""
4817
4818.. code-block:: llvm
4819
Tim Northover675a0962014-06-13 14:24:23 +00004820 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004821
4822'``srem``' Instruction
4823^^^^^^^^^^^^^^^^^^^^^^
4824
4825Syntax:
4826"""""""
4827
4828::
4829
Tim Northover675a0962014-06-13 14:24:23 +00004830 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004831
4832Overview:
4833"""""""""
4834
4835The '``srem``' instruction returns the remainder from the signed
4836division of its two operands. This instruction can also take
4837:ref:`vector <t_vector>` versions of the values in which case the elements
4838must be integers.
4839
4840Arguments:
4841""""""""""
4842
4843The two arguments to the '``srem``' instruction must be
4844:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4845arguments must have identical types.
4846
4847Semantics:
4848""""""""""
4849
4850This instruction returns the *remainder* of a division (where the result
4851is either zero or has the same sign as the dividend, ``op1``), not the
4852*modulo* operator (where the result is either zero or has the same sign
4853as the divisor, ``op2``) of a value. For more information about the
4854difference, see `The Math
4855Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4856table of how this is implemented in various languages, please see
4857`Wikipedia: modulo
4858operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4859
4860Note that signed integer remainder and unsigned integer remainder are
4861distinct operations; for unsigned integer remainder, use '``urem``'.
4862
4863Taking the remainder of a division by zero leads to undefined behavior.
4864Overflow also leads to undefined behavior; this is a rare case, but can
4865occur, for example, by taking the remainder of a 32-bit division of
4866-2147483648 by -1. (The remainder doesn't actually overflow, but this
4867rule lets srem be implemented using instructions that return both the
4868result of the division and the remainder.)
4869
4870Example:
4871""""""""
4872
4873.. code-block:: llvm
4874
Tim Northover675a0962014-06-13 14:24:23 +00004875 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004876
4877.. _i_frem:
4878
4879'``frem``' Instruction
4880^^^^^^^^^^^^^^^^^^^^^^
4881
4882Syntax:
4883"""""""
4884
4885::
4886
Tim Northover675a0962014-06-13 14:24:23 +00004887 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004888
4889Overview:
4890"""""""""
4891
4892The '``frem``' instruction returns the remainder from the division of
4893its two operands.
4894
4895Arguments:
4896""""""""""
4897
4898The two arguments to the '``frem``' instruction must be :ref:`floating
4899point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4900Both arguments must have identical types.
4901
4902Semantics:
4903""""""""""
4904
4905This instruction returns the *remainder* of a division. The remainder
4906has the same sign as the dividend. This instruction can also take any
4907number of :ref:`fast-math flags <fastmath>`, which are optimization hints
4908to enable otherwise unsafe floating point optimizations:
4909
4910Example:
4911""""""""
4912
4913.. code-block:: llvm
4914
Tim Northover675a0962014-06-13 14:24:23 +00004915 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004916
4917.. _bitwiseops:
4918
4919Bitwise Binary Operations
4920-------------------------
4921
4922Bitwise binary operators are used to do various forms of bit-twiddling
4923in a program. They are generally very efficient instructions and can
4924commonly be strength reduced from other instructions. They require two
4925operands of the same type, execute an operation on them, and produce a
4926single value. The resulting value is the same type as its operands.
4927
4928'``shl``' Instruction
4929^^^^^^^^^^^^^^^^^^^^^
4930
4931Syntax:
4932"""""""
4933
4934::
4935
Tim Northover675a0962014-06-13 14:24:23 +00004936 <result> = shl <ty> <op1>, <op2> ; yields ty:result
4937 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
4938 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
4939 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004940
4941Overview:
4942"""""""""
4943
4944The '``shl``' instruction returns the first operand shifted to the left
4945a specified number of bits.
4946
4947Arguments:
4948""""""""""
4949
4950Both arguments to the '``shl``' instruction must be the same
4951:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4952'``op2``' is treated as an unsigned value.
4953
4954Semantics:
4955""""""""""
4956
4957The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
4958where ``n`` is the width of the result. If ``op2`` is (statically or
4959dynamically) negative or equal to or larger than the number of bits in
4960``op1``, the result is undefined. If the arguments are vectors, each
4961vector element of ``op1`` is shifted by the corresponding shift amount
4962in ``op2``.
4963
4964If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
4965value <poisonvalues>` if it shifts out any non-zero bits. If the
4966``nsw`` keyword is present, then the shift produces a :ref:`poison
4967value <poisonvalues>` if it shifts out any bits that disagree with the
4968resultant sign bit. As such, NUW/NSW have the same semantics as they
4969would if the shift were expressed as a mul instruction with the same
4970nsw/nuw bits in (mul %op1, (shl 1, %op2)).
4971
4972Example:
4973""""""""
4974
4975.. code-block:: llvm
4976
Tim Northover675a0962014-06-13 14:24:23 +00004977 <result> = shl i32 4, %var ; yields i32: 4 << %var
4978 <result> = shl i32 4, 2 ; yields i32: 16
4979 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00004980 <result> = shl i32 1, 32 ; undefined
4981 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
4982
4983'``lshr``' Instruction
4984^^^^^^^^^^^^^^^^^^^^^^
4985
4986Syntax:
4987"""""""
4988
4989::
4990
Tim Northover675a0962014-06-13 14:24:23 +00004991 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
4992 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004993
4994Overview:
4995"""""""""
4996
4997The '``lshr``' instruction (logical shift right) returns the first
4998operand shifted to the right a specified number of bits with zero fill.
4999
5000Arguments:
5001""""""""""
5002
5003Both arguments to the '``lshr``' instruction must be the same
5004:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5005'``op2``' is treated as an unsigned value.
5006
5007Semantics:
5008""""""""""
5009
5010This instruction always performs a logical shift right operation. The
5011most significant bits of the result will be filled with zero bits after
5012the shift. If ``op2`` is (statically or dynamically) equal to or larger
5013than the number of bits in ``op1``, the result is undefined. If the
5014arguments are vectors, each vector element of ``op1`` is shifted by the
5015corresponding shift amount in ``op2``.
5016
5017If the ``exact`` keyword is present, the result value of the ``lshr`` is
5018a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
5019non-zero.
5020
5021Example:
5022""""""""
5023
5024.. code-block:: llvm
5025
Tim Northover675a0962014-06-13 14:24:23 +00005026 <result> = lshr i32 4, 1 ; yields i32:result = 2
5027 <result> = lshr i32 4, 2 ; yields i32:result = 1
5028 <result> = lshr i8 4, 3 ; yields i8:result = 0
5029 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00005030 <result> = lshr i32 1, 32 ; undefined
5031 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
5032
5033'``ashr``' Instruction
5034^^^^^^^^^^^^^^^^^^^^^^
5035
5036Syntax:
5037"""""""
5038
5039::
5040
Tim Northover675a0962014-06-13 14:24:23 +00005041 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
5042 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005043
5044Overview:
5045"""""""""
5046
5047The '``ashr``' instruction (arithmetic shift right) returns the first
5048operand shifted to the right a specified number of bits with sign
5049extension.
5050
5051Arguments:
5052""""""""""
5053
5054Both arguments to the '``ashr``' instruction must be the same
5055:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5056'``op2``' is treated as an unsigned value.
5057
5058Semantics:
5059""""""""""
5060
5061This instruction always performs an arithmetic shift right operation,
5062The most significant bits of the result will be filled with the sign bit
5063of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
5064than the number of bits in ``op1``, the result is undefined. If the
5065arguments are vectors, each vector element of ``op1`` is shifted by the
5066corresponding shift amount in ``op2``.
5067
5068If the ``exact`` keyword is present, the result value of the ``ashr`` is
5069a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
5070non-zero.
5071
5072Example:
5073""""""""
5074
5075.. code-block:: llvm
5076
Tim Northover675a0962014-06-13 14:24:23 +00005077 <result> = ashr i32 4, 1 ; yields i32:result = 2
5078 <result> = ashr i32 4, 2 ; yields i32:result = 1
5079 <result> = ashr i8 4, 3 ; yields i8:result = 0
5080 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00005081 <result> = ashr i32 1, 32 ; undefined
5082 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
5083
5084'``and``' Instruction
5085^^^^^^^^^^^^^^^^^^^^^
5086
5087Syntax:
5088"""""""
5089
5090::
5091
Tim Northover675a0962014-06-13 14:24:23 +00005092 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005093
5094Overview:
5095"""""""""
5096
5097The '``and``' instruction returns the bitwise logical and of its two
5098operands.
5099
5100Arguments:
5101""""""""""
5102
5103The two arguments to the '``and``' instruction must be
5104:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5105arguments must have identical types.
5106
5107Semantics:
5108""""""""""
5109
5110The truth table used for the '``and``' instruction is:
5111
5112+-----+-----+-----+
5113| In0 | In1 | Out |
5114+-----+-----+-----+
5115| 0 | 0 | 0 |
5116+-----+-----+-----+
5117| 0 | 1 | 0 |
5118+-----+-----+-----+
5119| 1 | 0 | 0 |
5120+-----+-----+-----+
5121| 1 | 1 | 1 |
5122+-----+-----+-----+
5123
5124Example:
5125""""""""
5126
5127.. code-block:: llvm
5128
Tim Northover675a0962014-06-13 14:24:23 +00005129 <result> = and i32 4, %var ; yields i32:result = 4 & %var
5130 <result> = and i32 15, 40 ; yields i32:result = 8
5131 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00005132
5133'``or``' Instruction
5134^^^^^^^^^^^^^^^^^^^^
5135
5136Syntax:
5137"""""""
5138
5139::
5140
Tim Northover675a0962014-06-13 14:24:23 +00005141 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005142
5143Overview:
5144"""""""""
5145
5146The '``or``' instruction returns the bitwise logical inclusive or of its
5147two operands.
5148
5149Arguments:
5150""""""""""
5151
5152The two arguments to the '``or``' instruction must be
5153:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5154arguments must have identical types.
5155
5156Semantics:
5157""""""""""
5158
5159The truth table used for the '``or``' instruction is:
5160
5161+-----+-----+-----+
5162| In0 | In1 | Out |
5163+-----+-----+-----+
5164| 0 | 0 | 0 |
5165+-----+-----+-----+
5166| 0 | 1 | 1 |
5167+-----+-----+-----+
5168| 1 | 0 | 1 |
5169+-----+-----+-----+
5170| 1 | 1 | 1 |
5171+-----+-----+-----+
5172
5173Example:
5174""""""""
5175
5176::
5177
Tim Northover675a0962014-06-13 14:24:23 +00005178 <result> = or i32 4, %var ; yields i32:result = 4 | %var
5179 <result> = or i32 15, 40 ; yields i32:result = 47
5180 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00005181
5182'``xor``' Instruction
5183^^^^^^^^^^^^^^^^^^^^^
5184
5185Syntax:
5186"""""""
5187
5188::
5189
Tim Northover675a0962014-06-13 14:24:23 +00005190 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005191
5192Overview:
5193"""""""""
5194
5195The '``xor``' instruction returns the bitwise logical exclusive or of
5196its two operands. The ``xor`` is used to implement the "one's
5197complement" operation, which is the "~" operator in C.
5198
5199Arguments:
5200""""""""""
5201
5202The two arguments to the '``xor``' instruction must be
5203:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5204arguments must have identical types.
5205
5206Semantics:
5207""""""""""
5208
5209The truth table used for the '``xor``' instruction is:
5210
5211+-----+-----+-----+
5212| In0 | In1 | Out |
5213+-----+-----+-----+
5214| 0 | 0 | 0 |
5215+-----+-----+-----+
5216| 0 | 1 | 1 |
5217+-----+-----+-----+
5218| 1 | 0 | 1 |
5219+-----+-----+-----+
5220| 1 | 1 | 0 |
5221+-----+-----+-----+
5222
5223Example:
5224""""""""
5225
5226.. code-block:: llvm
5227
Tim Northover675a0962014-06-13 14:24:23 +00005228 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
5229 <result> = xor i32 15, 40 ; yields i32:result = 39
5230 <result> = xor i32 4, 8 ; yields i32:result = 12
5231 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00005232
5233Vector Operations
5234-----------------
5235
5236LLVM supports several instructions to represent vector operations in a
5237target-independent manner. These instructions cover the element-access
5238and vector-specific operations needed to process vectors effectively.
5239While LLVM does directly support these vector operations, many
5240sophisticated algorithms will want to use target-specific intrinsics to
5241take full advantage of a specific target.
5242
5243.. _i_extractelement:
5244
5245'``extractelement``' Instruction
5246^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5247
5248Syntax:
5249"""""""
5250
5251::
5252
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00005253 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00005254
5255Overview:
5256"""""""""
5257
5258The '``extractelement``' instruction extracts a single scalar element
5259from a vector at a specified index.
5260
5261Arguments:
5262""""""""""
5263
5264The first operand of an '``extractelement``' instruction is a value of
5265:ref:`vector <t_vector>` type. The second operand is an index indicating
5266the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00005267variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00005268
5269Semantics:
5270""""""""""
5271
5272The result is a scalar of the same type as the element type of ``val``.
5273Its value is the value at position ``idx`` of ``val``. If ``idx``
5274exceeds the length of ``val``, the results are undefined.
5275
5276Example:
5277""""""""
5278
5279.. code-block:: llvm
5280
5281 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
5282
5283.. _i_insertelement:
5284
5285'``insertelement``' Instruction
5286^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5287
5288Syntax:
5289"""""""
5290
5291::
5292
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00005293 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00005294
5295Overview:
5296"""""""""
5297
5298The '``insertelement``' instruction inserts a scalar element into a
5299vector at a specified index.
5300
5301Arguments:
5302""""""""""
5303
5304The first operand of an '``insertelement``' instruction is a value of
5305:ref:`vector <t_vector>` type. The second operand is a scalar value whose
5306type must equal the element type of the first operand. The third operand
5307is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00005308index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00005309
5310Semantics:
5311""""""""""
5312
5313The result is a vector of the same type as ``val``. Its element values
5314are those of ``val`` except at position ``idx``, where it gets the value
5315``elt``. If ``idx`` exceeds the length of ``val``, the results are
5316undefined.
5317
5318Example:
5319""""""""
5320
5321.. code-block:: llvm
5322
5323 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
5324
5325.. _i_shufflevector:
5326
5327'``shufflevector``' Instruction
5328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5329
5330Syntax:
5331"""""""
5332
5333::
5334
5335 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
5336
5337Overview:
5338"""""""""
5339
5340The '``shufflevector``' instruction constructs a permutation of elements
5341from two input vectors, returning a vector with the same element type as
5342the input and length that is the same as the shuffle mask.
5343
5344Arguments:
5345""""""""""
5346
5347The first two operands of a '``shufflevector``' instruction are vectors
5348with the same type. The third argument is a shuffle mask whose element
5349type is always 'i32'. The result of the instruction is a vector whose
5350length is the same as the shuffle mask and whose element type is the
5351same as the element type of the first two operands.
5352
5353The shuffle mask operand is required to be a constant vector with either
5354constant integer or undef values.
5355
5356Semantics:
5357""""""""""
5358
5359The elements of the two input vectors are numbered from left to right
5360across both of the vectors. The shuffle mask operand specifies, for each
5361element of the result vector, which element of the two input vectors the
5362result element gets. The element selector may be undef (meaning "don't
5363care") and the second operand may be undef if performing a shuffle from
5364only one vector.
5365
5366Example:
5367""""""""
5368
5369.. code-block:: llvm
5370
5371 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5372 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
5373 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
5374 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
5375 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
5376 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
5377 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5378 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
5379
5380Aggregate Operations
5381--------------------
5382
5383LLVM supports several instructions for working with
5384:ref:`aggregate <t_aggregate>` values.
5385
5386.. _i_extractvalue:
5387
5388'``extractvalue``' Instruction
5389^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5390
5391Syntax:
5392"""""""
5393
5394::
5395
5396 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
5397
5398Overview:
5399"""""""""
5400
5401The '``extractvalue``' instruction extracts the value of a member field
5402from an :ref:`aggregate <t_aggregate>` value.
5403
5404Arguments:
5405""""""""""
5406
5407The first operand of an '``extractvalue``' instruction is a value of
5408:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
5409constant indices to specify which value to extract in a similar manner
5410as indices in a '``getelementptr``' instruction.
5411
5412The major differences to ``getelementptr`` indexing are:
5413
5414- Since the value being indexed is not a pointer, the first index is
5415 omitted and assumed to be zero.
5416- At least one index must be specified.
5417- Not only struct indices but also array indices must be in bounds.
5418
5419Semantics:
5420""""""""""
5421
5422The result is the value at the position in the aggregate specified by
5423the index operands.
5424
5425Example:
5426""""""""
5427
5428.. code-block:: llvm
5429
5430 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
5431
5432.. _i_insertvalue:
5433
5434'``insertvalue``' Instruction
5435^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5436
5437Syntax:
5438"""""""
5439
5440::
5441
5442 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
5443
5444Overview:
5445"""""""""
5446
5447The '``insertvalue``' instruction inserts a value into a member field in
5448an :ref:`aggregate <t_aggregate>` value.
5449
5450Arguments:
5451""""""""""
5452
5453The first operand of an '``insertvalue``' instruction is a value of
5454:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5455a first-class value to insert. The following operands are constant
5456indices indicating the position at which to insert the value in a
5457similar manner as indices in a '``extractvalue``' instruction. The value
5458to insert must have the same type as the value identified by the
5459indices.
5460
5461Semantics:
5462""""""""""
5463
5464The result is an aggregate of the same type as ``val``. Its value is
5465that of ``val`` except that the value at the position specified by the
5466indices is that of ``elt``.
5467
5468Example:
5469""""""""
5470
5471.. code-block:: llvm
5472
5473 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
5474 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00005475 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00005476
5477.. _memoryops:
5478
5479Memory Access and Addressing Operations
5480---------------------------------------
5481
5482A key design point of an SSA-based representation is how it represents
5483memory. In LLVM, no memory locations are in SSA form, which makes things
5484very simple. This section describes how to read, write, and allocate
5485memory in LLVM.
5486
5487.. _i_alloca:
5488
5489'``alloca``' Instruction
5490^^^^^^^^^^^^^^^^^^^^^^^^
5491
5492Syntax:
5493"""""""
5494
5495::
5496
Tim Northover675a0962014-06-13 14:24:23 +00005497 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00005498
5499Overview:
5500"""""""""
5501
5502The '``alloca``' instruction allocates memory on the stack frame of the
5503currently executing function, to be automatically released when this
5504function returns to its caller. The object is always allocated in the
5505generic address space (address space zero).
5506
5507Arguments:
5508""""""""""
5509
5510The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5511bytes of memory on the runtime stack, returning a pointer of the
5512appropriate type to the program. If "NumElements" is specified, it is
5513the number of elements allocated, otherwise "NumElements" is defaulted
5514to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005515allocation is guaranteed to be aligned to at least that boundary. The
5516alignment may not be greater than ``1 << 29``. If not specified, or if
5517zero, the target can choose to align the allocation on any convenient
5518boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00005519
5520'``type``' may be any sized type.
5521
5522Semantics:
5523""""""""""
5524
5525Memory is allocated; a pointer is returned. The operation is undefined
5526if there is insufficient stack space for the allocation. '``alloca``'d
5527memory is automatically released when the function returns. The
5528'``alloca``' instruction is commonly used to represent automatic
5529variables that must have an address available. When the function returns
5530(either with the ``ret`` or ``resume`` instructions), the memory is
5531reclaimed. Allocating zero bytes is legal, but the result is undefined.
5532The order in which memory is allocated (ie., which way the stack grows)
5533is not specified.
5534
5535Example:
5536""""""""
5537
5538.. code-block:: llvm
5539
Tim Northover675a0962014-06-13 14:24:23 +00005540 %ptr = alloca i32 ; yields i32*:ptr
5541 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5542 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5543 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005544
5545.. _i_load:
5546
5547'``load``' Instruction
5548^^^^^^^^^^^^^^^^^^^^^^
5549
5550Syntax:
5551"""""""
5552
5553::
5554
David Blaikiec7aabbb2015-03-04 22:06:14 +00005555 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00005556 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5557 !<index> = !{ i32 1 }
5558
5559Overview:
5560"""""""""
5561
5562The '``load``' instruction is used to read from memory.
5563
5564Arguments:
5565""""""""""
5566
Eli Bendersky239a78b2013-04-17 20:17:08 +00005567The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00005568from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00005569class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5570then the optimizer is not allowed to modify the number or order of
5571execution of this ``load`` with other :ref:`volatile
5572operations <volatile>`.
5573
5574If the ``load`` is marked as ``atomic``, it takes an extra
5575:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5576``release`` and ``acq_rel`` orderings are not valid on ``load``
5577instructions. Atomic loads produce :ref:`defined <memmodel>` results
5578when they may see multiple atomic stores. The type of the pointee must
5579be an integer type whose bit width is a power of two greater than or
5580equal to eight and less than or equal to a target-specific size limit.
5581``align`` must be explicitly specified on atomic loads, and the load has
5582undefined behavior if the alignment is not set to a value which is at
5583least the size in bytes of the pointee. ``!nontemporal`` does not have
5584any defined semantics for atomic loads.
5585
5586The optional constant ``align`` argument specifies the alignment of the
5587operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005588or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005589alignment for the target. It is the responsibility of the code emitter
5590to ensure that the alignment information is correct. Overestimating the
5591alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005592may produce less efficient code. An alignment of 1 is always safe. The
5593maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005594
5595The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005596metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005597``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005598metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005599that this load is not expected to be reused in the cache. The code
5600generator may select special instructions to save cache bandwidth, such
5601as the ``MOVNT`` instruction on x86.
5602
5603The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005604metadata name ``<index>`` corresponding to a metadata node with no
5605entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00005606instruction tells the optimizer and code generator that the address
5607operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005608Being invariant does not imply that a location is dereferenceable,
5609but it does imply that once the location is known dereferenceable
5610its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00005611
Philip Reamescdb72f32014-10-20 22:40:55 +00005612The optional ``!nonnull`` metadata must reference a single
5613metadata name ``<index>`` corresponding to a metadata node with no
5614entries. The existence of the ``!nonnull`` metadata on the
5615instruction tells the optimizer that the value loaded is known to
5616never be null. This is analogous to the ''nonnull'' attribute
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005617on parameters and return values. This metadata can only be applied
5618to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00005619
Sean Silvab084af42012-12-07 10:36:55 +00005620Semantics:
5621""""""""""
5622
5623The location of memory pointed to is loaded. If the value being loaded
5624is of scalar type then the number of bytes read does not exceed the
5625minimum number of bytes needed to hold all bits of the type. For
5626example, loading an ``i24`` reads at most three bytes. When loading a
5627value of a type like ``i20`` with a size that is not an integral number
5628of bytes, the result is undefined if the value was not originally
5629written using a store of the same type.
5630
5631Examples:
5632"""""""""
5633
5634.. code-block:: llvm
5635
Tim Northover675a0962014-06-13 14:24:23 +00005636 %ptr = alloca i32 ; yields i32*:ptr
5637 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00005638 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005639
5640.. _i_store:
5641
5642'``store``' Instruction
5643^^^^^^^^^^^^^^^^^^^^^^^
5644
5645Syntax:
5646"""""""
5647
5648::
5649
Tim Northover675a0962014-06-13 14:24:23 +00005650 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5651 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005652
5653Overview:
5654"""""""""
5655
5656The '``store``' instruction is used to write to memory.
5657
5658Arguments:
5659""""""""""
5660
Eli Benderskyca380842013-04-17 17:17:20 +00005661There are two arguments to the ``store`` instruction: a value to store
5662and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005663operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005664the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005665then the optimizer is not allowed to modify the number or order of
5666execution of this ``store`` with other :ref:`volatile
5667operations <volatile>`.
5668
5669If the ``store`` is marked as ``atomic``, it takes an extra
5670:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5671``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5672instructions. Atomic loads produce :ref:`defined <memmodel>` results
5673when they may see multiple atomic stores. The type of the pointee must
5674be an integer type whose bit width is a power of two greater than or
5675equal to eight and less than or equal to a target-specific size limit.
5676``align`` must be explicitly specified on atomic stores, and the store
5677has undefined behavior if the alignment is not set to a value which is
5678at least the size in bytes of the pointee. ``!nontemporal`` does not
5679have any defined semantics for atomic stores.
5680
Eli Benderskyca380842013-04-17 17:17:20 +00005681The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005682operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005683or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005684alignment for the target. It is the responsibility of the code emitter
5685to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005686alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005687alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005688safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005689
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005690The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005691name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005692value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005693tells the optimizer and code generator that this load is not expected to
5694be reused in the cache. The code generator may select special
5695instructions to save cache bandwidth, such as the MOVNT instruction on
5696x86.
5697
5698Semantics:
5699""""""""""
5700
Eli Benderskyca380842013-04-17 17:17:20 +00005701The contents of memory are updated to contain ``<value>`` at the
5702location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005703of scalar type then the number of bytes written does not exceed the
5704minimum number of bytes needed to hold all bits of the type. For
5705example, storing an ``i24`` writes at most three bytes. When writing a
5706value of a type like ``i20`` with a size that is not an integral number
5707of bytes, it is unspecified what happens to the extra bits that do not
5708belong to the type, but they will typically be overwritten.
5709
5710Example:
5711""""""""
5712
5713.. code-block:: llvm
5714
Tim Northover675a0962014-06-13 14:24:23 +00005715 %ptr = alloca i32 ; yields i32*:ptr
5716 store i32 3, i32* %ptr ; yields void
5717 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005718
5719.. _i_fence:
5720
5721'``fence``' Instruction
5722^^^^^^^^^^^^^^^^^^^^^^^
5723
5724Syntax:
5725"""""""
5726
5727::
5728
Tim Northover675a0962014-06-13 14:24:23 +00005729 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005730
5731Overview:
5732"""""""""
5733
5734The '``fence``' instruction is used to introduce happens-before edges
5735between operations.
5736
5737Arguments:
5738""""""""""
5739
5740'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5741defines what *synchronizes-with* edges they add. They can only be given
5742``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5743
5744Semantics:
5745""""""""""
5746
5747A fence A which has (at least) ``release`` ordering semantics
5748*synchronizes with* a fence B with (at least) ``acquire`` ordering
5749semantics if and only if there exist atomic operations X and Y, both
5750operating on some atomic object M, such that A is sequenced before X, X
5751modifies M (either directly or through some side effect of a sequence
5752headed by X), Y is sequenced before B, and Y observes M. This provides a
5753*happens-before* dependency between A and B. Rather than an explicit
5754``fence``, one (but not both) of the atomic operations X or Y might
5755provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5756still *synchronize-with* the explicit ``fence`` and establish the
5757*happens-before* edge.
5758
5759A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5760``acquire`` and ``release`` semantics specified above, participates in
5761the global program order of other ``seq_cst`` operations and/or fences.
5762
5763The optional ":ref:`singlethread <singlethread>`" argument specifies
5764that the fence only synchronizes with other fences in the same thread.
5765(This is useful for interacting with signal handlers.)
5766
5767Example:
5768""""""""
5769
5770.. code-block:: llvm
5771
Tim Northover675a0962014-06-13 14:24:23 +00005772 fence acquire ; yields void
5773 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005774
5775.. _i_cmpxchg:
5776
5777'``cmpxchg``' Instruction
5778^^^^^^^^^^^^^^^^^^^^^^^^^
5779
5780Syntax:
5781"""""""
5782
5783::
5784
Tim Northover675a0962014-06-13 14:24:23 +00005785 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005786
5787Overview:
5788"""""""""
5789
5790The '``cmpxchg``' instruction is used to atomically modify memory. It
5791loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005792equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005793
5794Arguments:
5795""""""""""
5796
5797There are three arguments to the '``cmpxchg``' instruction: an address
5798to operate on, a value to compare to the value currently be at that
5799address, and a new value to place at that address if the compared values
5800are equal. The type of '<cmp>' must be an integer type whose bit width
5801is a power of two greater than or equal to eight and less than or equal
5802to a target-specific size limit. '<cmp>' and '<new>' must have the same
5803type, and the type of '<pointer>' must be a pointer to that type. If the
5804``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5805to modify the number or order of execution of this ``cmpxchg`` with
5806other :ref:`volatile operations <volatile>`.
5807
Tim Northovere94a5182014-03-11 10:48:52 +00005808The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005809``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5810must be at least ``monotonic``, the ordering constraint on failure must be no
5811stronger than that on success, and the failure ordering cannot be either
5812``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005813
5814The optional "``singlethread``" argument declares that the ``cmpxchg``
5815is only atomic with respect to code (usually signal handlers) running in
5816the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5817respect to all other code in the system.
5818
5819The pointer passed into cmpxchg must have alignment greater than or
5820equal to the size in memory of the operand.
5821
5822Semantics:
5823""""""""""
5824
Tim Northover420a2162014-06-13 14:24:07 +00005825The contents of memory at the location specified by the '``<pointer>``' operand
5826is read and compared to '``<cmp>``'; if the read value is the equal, the
5827'``<new>``' is written. The original value at the location is returned, together
5828with a flag indicating success (true) or failure (false).
5829
5830If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5831permitted: the operation may not write ``<new>`` even if the comparison
5832matched.
5833
5834If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5835if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005836
Tim Northovere94a5182014-03-11 10:48:52 +00005837A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5838identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5839load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005840
5841Example:
5842""""""""
5843
5844.. code-block:: llvm
5845
5846 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00005847 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005848 br label %loop
5849
5850 loop:
5851 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
5852 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00005853 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00005854 %value_loaded = extractvalue { i32, i1 } %val_success, 0
5855 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00005856 br i1 %success, label %done, label %loop
5857
5858 done:
5859 ...
5860
5861.. _i_atomicrmw:
5862
5863'``atomicrmw``' Instruction
5864^^^^^^^^^^^^^^^^^^^^^^^^^^^
5865
5866Syntax:
5867"""""""
5868
5869::
5870
Tim Northover675a0962014-06-13 14:24:23 +00005871 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00005872
5873Overview:
5874"""""""""
5875
5876The '``atomicrmw``' instruction is used to atomically modify memory.
5877
5878Arguments:
5879""""""""""
5880
5881There are three arguments to the '``atomicrmw``' instruction: an
5882operation to apply, an address whose value to modify, an argument to the
5883operation. The operation must be one of the following keywords:
5884
5885- xchg
5886- add
5887- sub
5888- and
5889- nand
5890- or
5891- xor
5892- max
5893- min
5894- umax
5895- umin
5896
5897The type of '<value>' must be an integer type whose bit width is a power
5898of two greater than or equal to eight and less than or equal to a
5899target-specific size limit. The type of the '``<pointer>``' operand must
5900be a pointer to that type. If the ``atomicrmw`` is marked as
5901``volatile``, then the optimizer is not allowed to modify the number or
5902order of execution of this ``atomicrmw`` with other :ref:`volatile
5903operations <volatile>`.
5904
5905Semantics:
5906""""""""""
5907
5908The contents of memory at the location specified by the '``<pointer>``'
5909operand are atomically read, modified, and written back. The original
5910value at the location is returned. The modification is specified by the
5911operation argument:
5912
5913- xchg: ``*ptr = val``
5914- add: ``*ptr = *ptr + val``
5915- sub: ``*ptr = *ptr - val``
5916- and: ``*ptr = *ptr & val``
5917- nand: ``*ptr = ~(*ptr & val)``
5918- or: ``*ptr = *ptr | val``
5919- xor: ``*ptr = *ptr ^ val``
5920- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
5921- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
5922- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
5923 comparison)
5924- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
5925 comparison)
5926
5927Example:
5928""""""""
5929
5930.. code-block:: llvm
5931
Tim Northover675a0962014-06-13 14:24:23 +00005932 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00005933
5934.. _i_getelementptr:
5935
5936'``getelementptr``' Instruction
5937^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5938
5939Syntax:
5940"""""""
5941
5942::
5943
David Blaikie16a97eb2015-03-04 22:02:58 +00005944 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
5945 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
5946 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00005947
5948Overview:
5949"""""""""
5950
5951The '``getelementptr``' instruction is used to get the address of a
5952subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
5953address calculation only and does not access memory.
5954
5955Arguments:
5956""""""""""
5957
David Blaikie16a97eb2015-03-04 22:02:58 +00005958The first argument is always a type used as the basis for the calculations.
5959The second argument is always a pointer or a vector of pointers, and is the
5960base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00005961that indicate which of the elements of the aggregate object are indexed.
5962The interpretation of each index is dependent on the type being indexed
5963into. The first index always indexes the pointer value given as the
5964first argument, the second index indexes a value of the type pointed to
5965(not necessarily the value directly pointed to, since the first index
5966can be non-zero), etc. The first type indexed into must be a pointer
5967value, subsequent types can be arrays, vectors, and structs. Note that
5968subsequent types being indexed into can never be pointers, since that
5969would require loading the pointer before continuing calculation.
5970
5971The type of each index argument depends on the type it is indexing into.
5972When indexing into a (optionally packed) structure, only ``i32`` integer
5973**constants** are allowed (when using a vector of indices they must all
5974be the **same** ``i32`` integer constant). When indexing into an array,
5975pointer or vector, integers of any width are allowed, and they are not
5976required to be constant. These integers are treated as signed values
5977where relevant.
5978
5979For example, let's consider a C code fragment and how it gets compiled
5980to LLVM:
5981
5982.. code-block:: c
5983
5984 struct RT {
5985 char A;
5986 int B[10][20];
5987 char C;
5988 };
5989 struct ST {
5990 int X;
5991 double Y;
5992 struct RT Z;
5993 };
5994
5995 int *foo(struct ST *s) {
5996 return &s[1].Z.B[5][13];
5997 }
5998
5999The LLVM code generated by Clang is:
6000
6001.. code-block:: llvm
6002
6003 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
6004 %struct.ST = type { i32, double, %struct.RT }
6005
6006 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
6007 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00006008 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00006009 ret i32* %arrayidx
6010 }
6011
6012Semantics:
6013""""""""""
6014
6015In the example above, the first index is indexing into the
6016'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
6017= '``{ i32, double, %struct.RT }``' type, a structure. The second index
6018indexes into the third element of the structure, yielding a
6019'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
6020structure. The third index indexes into the second element of the
6021structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
6022dimensions of the array are subscripted into, yielding an '``i32``'
6023type. The '``getelementptr``' instruction returns a pointer to this
6024element, thus computing a value of '``i32*``' type.
6025
6026Note that it is perfectly legal to index partially through a structure,
6027returning a pointer to an inner element. Because of this, the LLVM code
6028for the given testcase is equivalent to:
6029
6030.. code-block:: llvm
6031
6032 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00006033 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
6034 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
6035 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
6036 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
6037 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00006038 ret i32* %t5
6039 }
6040
6041If the ``inbounds`` keyword is present, the result value of the
6042``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
6043pointer is not an *in bounds* address of an allocated object, or if any
6044of the addresses that would be formed by successive addition of the
6045offsets implied by the indices to the base address with infinitely
6046precise signed arithmetic are not an *in bounds* address of that
6047allocated object. The *in bounds* addresses for an allocated object are
6048all the addresses that point into the object, plus the address one byte
6049past the end. In cases where the base is a vector of pointers the
6050``inbounds`` keyword applies to each of the computations element-wise.
6051
6052If the ``inbounds`` keyword is not present, the offsets are added to the
6053base address with silently-wrapping two's complement arithmetic. If the
6054offsets have a different width from the pointer, they are sign-extended
6055or truncated to the width of the pointer. The result value of the
6056``getelementptr`` may be outside the object pointed to by the base
6057pointer. The result value may not necessarily be used to access memory
6058though, even if it happens to point into allocated storage. See the
6059:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
6060information.
6061
6062The getelementptr instruction is often confusing. For some more insight
6063into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
6064
6065Example:
6066""""""""
6067
6068.. code-block:: llvm
6069
6070 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006071 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006072 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006073 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006074 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006075 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006076 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006077 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00006078
6079In cases where the pointer argument is a vector of pointers, each index
6080must be a vector with the same number of elements. For example:
6081
6082.. code-block:: llvm
6083
David Blaikie16a97eb2015-03-04 22:02:58 +00006084 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets,
Sean Silvab084af42012-12-07 10:36:55 +00006085
6086Conversion Operations
6087---------------------
6088
6089The instructions in this category are the conversion instructions
6090(casting) which all take a single operand and a type. They perform
6091various bit conversions on the operand.
6092
6093'``trunc .. to``' Instruction
6094^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6095
6096Syntax:
6097"""""""
6098
6099::
6100
6101 <result> = trunc <ty> <value> to <ty2> ; yields ty2
6102
6103Overview:
6104"""""""""
6105
6106The '``trunc``' instruction truncates its operand to the type ``ty2``.
6107
6108Arguments:
6109""""""""""
6110
6111The '``trunc``' instruction takes a value to trunc, and a type to trunc
6112it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
6113of the same number of integers. The bit size of the ``value`` must be
6114larger than the bit size of the destination type, ``ty2``. Equal sized
6115types are not allowed.
6116
6117Semantics:
6118""""""""""
6119
6120The '``trunc``' instruction truncates the high order bits in ``value``
6121and converts the remaining bits to ``ty2``. Since the source size must
6122be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
6123It will always truncate bits.
6124
6125Example:
6126""""""""
6127
6128.. code-block:: llvm
6129
6130 %X = trunc i32 257 to i8 ; yields i8:1
6131 %Y = trunc i32 123 to i1 ; yields i1:true
6132 %Z = trunc i32 122 to i1 ; yields i1:false
6133 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
6134
6135'``zext .. to``' Instruction
6136^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6137
6138Syntax:
6139"""""""
6140
6141::
6142
6143 <result> = zext <ty> <value> to <ty2> ; yields ty2
6144
6145Overview:
6146"""""""""
6147
6148The '``zext``' instruction zero extends its operand to type ``ty2``.
6149
6150Arguments:
6151""""""""""
6152
6153The '``zext``' instruction takes a value to cast, and a type to cast it
6154to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
6155the same number of integers. The bit size of the ``value`` must be
6156smaller than the bit size of the destination type, ``ty2``.
6157
6158Semantics:
6159""""""""""
6160
6161The ``zext`` fills the high order bits of the ``value`` with zero bits
6162until it reaches the size of the destination type, ``ty2``.
6163
6164When zero extending from i1, the result will always be either 0 or 1.
6165
6166Example:
6167""""""""
6168
6169.. code-block:: llvm
6170
6171 %X = zext i32 257 to i64 ; yields i64:257
6172 %Y = zext i1 true to i32 ; yields i32:1
6173 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
6174
6175'``sext .. to``' Instruction
6176^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6177
6178Syntax:
6179"""""""
6180
6181::
6182
6183 <result> = sext <ty> <value> to <ty2> ; yields ty2
6184
6185Overview:
6186"""""""""
6187
6188The '``sext``' sign extends ``value`` to the type ``ty2``.
6189
6190Arguments:
6191""""""""""
6192
6193The '``sext``' instruction takes a value to cast, and a type to cast it
6194to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
6195the same number of integers. The bit size of the ``value`` must be
6196smaller than the bit size of the destination type, ``ty2``.
6197
6198Semantics:
6199""""""""""
6200
6201The '``sext``' instruction performs a sign extension by copying the sign
6202bit (highest order bit) of the ``value`` until it reaches the bit size
6203of the type ``ty2``.
6204
6205When sign extending from i1, the extension always results in -1 or 0.
6206
6207Example:
6208""""""""
6209
6210.. code-block:: llvm
6211
6212 %X = sext i8 -1 to i16 ; yields i16 :65535
6213 %Y = sext i1 true to i32 ; yields i32:-1
6214 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
6215
6216'``fptrunc .. to``' Instruction
6217^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6218
6219Syntax:
6220"""""""
6221
6222::
6223
6224 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
6225
6226Overview:
6227"""""""""
6228
6229The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
6230
6231Arguments:
6232""""""""""
6233
6234The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
6235value to cast and a :ref:`floating point <t_floating>` type to cast it to.
6236The size of ``value`` must be larger than the size of ``ty2``. This
6237implies that ``fptrunc`` cannot be used to make a *no-op cast*.
6238
6239Semantics:
6240""""""""""
6241
6242The '``fptrunc``' instruction truncates a ``value`` from a larger
6243:ref:`floating point <t_floating>` type to a smaller :ref:`floating
6244point <t_floating>` type. If the value cannot fit within the
6245destination type, ``ty2``, then the results are undefined.
6246
6247Example:
6248""""""""
6249
6250.. code-block:: llvm
6251
6252 %X = fptrunc double 123.0 to float ; yields float:123.0
6253 %Y = fptrunc double 1.0E+300 to float ; yields undefined
6254
6255'``fpext .. to``' Instruction
6256^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6257
6258Syntax:
6259"""""""
6260
6261::
6262
6263 <result> = fpext <ty> <value> to <ty2> ; yields ty2
6264
6265Overview:
6266"""""""""
6267
6268The '``fpext``' extends a floating point ``value`` to a larger floating
6269point value.
6270
6271Arguments:
6272""""""""""
6273
6274The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
6275``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
6276to. The source type must be smaller than the destination type.
6277
6278Semantics:
6279""""""""""
6280
6281The '``fpext``' instruction extends the ``value`` from a smaller
6282:ref:`floating point <t_floating>` type to a larger :ref:`floating
6283point <t_floating>` type. The ``fpext`` cannot be used to make a
6284*no-op cast* because it always changes bits. Use ``bitcast`` to make a
6285*no-op cast* for a floating point cast.
6286
6287Example:
6288""""""""
6289
6290.. code-block:: llvm
6291
6292 %X = fpext float 3.125 to double ; yields double:3.125000e+00
6293 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
6294
6295'``fptoui .. to``' Instruction
6296^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6297
6298Syntax:
6299"""""""
6300
6301::
6302
6303 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
6304
6305Overview:
6306"""""""""
6307
6308The '``fptoui``' converts a floating point ``value`` to its unsigned
6309integer equivalent of type ``ty2``.
6310
6311Arguments:
6312""""""""""
6313
6314The '``fptoui``' instruction takes a value to cast, which must be a
6315scalar or vector :ref:`floating point <t_floating>` value, and a type to
6316cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6317``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6318type with the same number of elements as ``ty``
6319
6320Semantics:
6321""""""""""
6322
6323The '``fptoui``' instruction converts its :ref:`floating
6324point <t_floating>` operand into the nearest (rounding towards zero)
6325unsigned integer value. If the value cannot fit in ``ty2``, the results
6326are undefined.
6327
6328Example:
6329""""""""
6330
6331.. code-block:: llvm
6332
6333 %X = fptoui double 123.0 to i32 ; yields i32:123
6334 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
6335 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
6336
6337'``fptosi .. to``' Instruction
6338^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6339
6340Syntax:
6341"""""""
6342
6343::
6344
6345 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
6346
6347Overview:
6348"""""""""
6349
6350The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
6351``value`` to type ``ty2``.
6352
6353Arguments:
6354""""""""""
6355
6356The '``fptosi``' instruction takes a value to cast, which must be a
6357scalar or vector :ref:`floating point <t_floating>` value, and a type to
6358cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6359``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6360type with the same number of elements as ``ty``
6361
6362Semantics:
6363""""""""""
6364
6365The '``fptosi``' instruction converts its :ref:`floating
6366point <t_floating>` operand into the nearest (rounding towards zero)
6367signed integer value. If the value cannot fit in ``ty2``, the results
6368are undefined.
6369
6370Example:
6371""""""""
6372
6373.. code-block:: llvm
6374
6375 %X = fptosi double -123.0 to i32 ; yields i32:-123
6376 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
6377 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
6378
6379'``uitofp .. to``' Instruction
6380^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6381
6382Syntax:
6383"""""""
6384
6385::
6386
6387 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
6388
6389Overview:
6390"""""""""
6391
6392The '``uitofp``' instruction regards ``value`` as an unsigned integer
6393and converts that value to the ``ty2`` type.
6394
6395Arguments:
6396""""""""""
6397
6398The '``uitofp``' instruction takes a value to cast, which must be a
6399scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6400``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6401``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6402type with the same number of elements as ``ty``
6403
6404Semantics:
6405""""""""""
6406
6407The '``uitofp``' instruction interprets its operand as an unsigned
6408integer quantity and converts it to the corresponding floating point
6409value. If the value cannot fit in the floating point value, the results
6410are undefined.
6411
6412Example:
6413""""""""
6414
6415.. code-block:: llvm
6416
6417 %X = uitofp i32 257 to float ; yields float:257.0
6418 %Y = uitofp i8 -1 to double ; yields double:255.0
6419
6420'``sitofp .. to``' Instruction
6421^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6422
6423Syntax:
6424"""""""
6425
6426::
6427
6428 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
6429
6430Overview:
6431"""""""""
6432
6433The '``sitofp``' instruction regards ``value`` as a signed integer and
6434converts that value to the ``ty2`` type.
6435
6436Arguments:
6437""""""""""
6438
6439The '``sitofp``' instruction takes a value to cast, which must be a
6440scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6441``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6442``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6443type with the same number of elements as ``ty``
6444
6445Semantics:
6446""""""""""
6447
6448The '``sitofp``' instruction interprets its operand as a signed integer
6449quantity and converts it to the corresponding floating point value. If
6450the value cannot fit in the floating point value, the results are
6451undefined.
6452
6453Example:
6454""""""""
6455
6456.. code-block:: llvm
6457
6458 %X = sitofp i32 257 to float ; yields float:257.0
6459 %Y = sitofp i8 -1 to double ; yields double:-1.0
6460
6461.. _i_ptrtoint:
6462
6463'``ptrtoint .. to``' Instruction
6464^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6465
6466Syntax:
6467"""""""
6468
6469::
6470
6471 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
6472
6473Overview:
6474"""""""""
6475
6476The '``ptrtoint``' instruction converts the pointer or a vector of
6477pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6478
6479Arguments:
6480""""""""""
6481
6482The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
6483a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
6484type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6485a vector of integers type.
6486
6487Semantics:
6488""""""""""
6489
6490The '``ptrtoint``' instruction converts ``value`` to integer type
6491``ty2`` by interpreting the pointer value as an integer and either
6492truncating or zero extending that value to the size of the integer type.
6493If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6494``value`` is larger than ``ty2`` then a truncation is done. If they are
6495the same size, then nothing is done (*no-op cast*) other than a type
6496change.
6497
6498Example:
6499""""""""
6500
6501.. code-block:: llvm
6502
6503 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
6504 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
6505 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6506
6507.. _i_inttoptr:
6508
6509'``inttoptr .. to``' Instruction
6510^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6511
6512Syntax:
6513"""""""
6514
6515::
6516
6517 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
6518
6519Overview:
6520"""""""""
6521
6522The '``inttoptr``' instruction converts an integer ``value`` to a
6523pointer type, ``ty2``.
6524
6525Arguments:
6526""""""""""
6527
6528The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6529cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6530type.
6531
6532Semantics:
6533""""""""""
6534
6535The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6536applying either a zero extension or a truncation depending on the size
6537of the integer ``value``. If ``value`` is larger than the size of a
6538pointer then a truncation is done. If ``value`` is smaller than the size
6539of a pointer then a zero extension is done. If they are the same size,
6540nothing is done (*no-op cast*).
6541
6542Example:
6543""""""""
6544
6545.. code-block:: llvm
6546
6547 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6548 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6549 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6550 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6551
6552.. _i_bitcast:
6553
6554'``bitcast .. to``' Instruction
6555^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6556
6557Syntax:
6558"""""""
6559
6560::
6561
6562 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6563
6564Overview:
6565"""""""""
6566
6567The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6568changing any bits.
6569
6570Arguments:
6571""""""""""
6572
6573The '``bitcast``' instruction takes a value to cast, which must be a
6574non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006575also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6576bit sizes of ``value`` and the destination type, ``ty2``, must be
6577identical. If the source type is a pointer, the destination type must
6578also be a pointer of the same size. This instruction supports bitwise
6579conversion of vectors to integers and to vectors of other types (as
6580long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006581
6582Semantics:
6583""""""""""
6584
Matt Arsenault24b49c42013-07-31 17:49:08 +00006585The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6586is always a *no-op cast* because no bits change with this
6587conversion. The conversion is done as if the ``value`` had been stored
6588to memory and read back as type ``ty2``. Pointer (or vector of
6589pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006590pointers) types with the same address space through this instruction.
6591To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6592or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006593
6594Example:
6595""""""""
6596
6597.. code-block:: llvm
6598
6599 %X = bitcast i8 255 to i8 ; yields i8 :-1
6600 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6601 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6602 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6603
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006604.. _i_addrspacecast:
6605
6606'``addrspacecast .. to``' Instruction
6607^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6608
6609Syntax:
6610"""""""
6611
6612::
6613
6614 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6615
6616Overview:
6617"""""""""
6618
6619The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6620address space ``n`` to type ``pty2`` in address space ``m``.
6621
6622Arguments:
6623""""""""""
6624
6625The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6626to cast and a pointer type to cast it to, which must have a different
6627address space.
6628
6629Semantics:
6630""""""""""
6631
6632The '``addrspacecast``' instruction converts the pointer value
6633``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006634value modification, depending on the target and the address space
6635pair. Pointer conversions within the same address space must be
6636performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006637conversion is legal then both result and operand refer to the same memory
6638location.
6639
6640Example:
6641""""""""
6642
6643.. code-block:: llvm
6644
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006645 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6646 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6647 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006648
Sean Silvab084af42012-12-07 10:36:55 +00006649.. _otherops:
6650
6651Other Operations
6652----------------
6653
6654The instructions in this category are the "miscellaneous" instructions,
6655which defy better classification.
6656
6657.. _i_icmp:
6658
6659'``icmp``' Instruction
6660^^^^^^^^^^^^^^^^^^^^^^
6661
6662Syntax:
6663"""""""
6664
6665::
6666
Tim Northover675a0962014-06-13 14:24:23 +00006667 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006668
6669Overview:
6670"""""""""
6671
6672The '``icmp``' instruction returns a boolean value or a vector of
6673boolean values based on comparison of its two integer, integer vector,
6674pointer, or pointer vector operands.
6675
6676Arguments:
6677""""""""""
6678
6679The '``icmp``' instruction takes three operands. The first operand is
6680the condition code indicating the kind of comparison to perform. It is
6681not a value, just a keyword. The possible condition code are:
6682
6683#. ``eq``: equal
6684#. ``ne``: not equal
6685#. ``ugt``: unsigned greater than
6686#. ``uge``: unsigned greater or equal
6687#. ``ult``: unsigned less than
6688#. ``ule``: unsigned less or equal
6689#. ``sgt``: signed greater than
6690#. ``sge``: signed greater or equal
6691#. ``slt``: signed less than
6692#. ``sle``: signed less or equal
6693
6694The remaining two arguments must be :ref:`integer <t_integer>` or
6695:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6696must also be identical types.
6697
6698Semantics:
6699""""""""""
6700
6701The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6702code given as ``cond``. The comparison performed always yields either an
6703:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6704
6705#. ``eq``: yields ``true`` if the operands are equal, ``false``
6706 otherwise. No sign interpretation is necessary or performed.
6707#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6708 otherwise. No sign interpretation is necessary or performed.
6709#. ``ugt``: interprets the operands as unsigned values and yields
6710 ``true`` if ``op1`` is greater than ``op2``.
6711#. ``uge``: interprets the operands as unsigned values and yields
6712 ``true`` if ``op1`` is greater than or equal to ``op2``.
6713#. ``ult``: interprets the operands as unsigned values and yields
6714 ``true`` if ``op1`` is less than ``op2``.
6715#. ``ule``: interprets the operands as unsigned values and yields
6716 ``true`` if ``op1`` is less than or equal to ``op2``.
6717#. ``sgt``: interprets the operands as signed values and yields ``true``
6718 if ``op1`` is greater than ``op2``.
6719#. ``sge``: interprets the operands as signed values and yields ``true``
6720 if ``op1`` is greater than or equal to ``op2``.
6721#. ``slt``: interprets the operands as signed values and yields ``true``
6722 if ``op1`` is less than ``op2``.
6723#. ``sle``: interprets the operands as signed values and yields ``true``
6724 if ``op1`` is less than or equal to ``op2``.
6725
6726If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6727are compared as if they were integers.
6728
6729If the operands are integer vectors, then they are compared element by
6730element. The result is an ``i1`` vector with the same number of elements
6731as the values being compared. Otherwise, the result is an ``i1``.
6732
6733Example:
6734""""""""
6735
6736.. code-block:: llvm
6737
6738 <result> = icmp eq i32 4, 5 ; yields: result=false
6739 <result> = icmp ne float* %X, %X ; yields: result=false
6740 <result> = icmp ult i16 4, 5 ; yields: result=true
6741 <result> = icmp sgt i16 4, 5 ; yields: result=false
6742 <result> = icmp ule i16 -4, 5 ; yields: result=false
6743 <result> = icmp sge i16 4, 5 ; yields: result=false
6744
6745Note that the code generator does not yet support vector types with the
6746``icmp`` instruction.
6747
6748.. _i_fcmp:
6749
6750'``fcmp``' Instruction
6751^^^^^^^^^^^^^^^^^^^^^^
6752
6753Syntax:
6754"""""""
6755
6756::
6757
Tim Northover675a0962014-06-13 14:24:23 +00006758 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006759
6760Overview:
6761"""""""""
6762
6763The '``fcmp``' instruction returns a boolean value or vector of boolean
6764values based on comparison of its operands.
6765
6766If the operands are floating point scalars, then the result type is a
6767boolean (:ref:`i1 <t_integer>`).
6768
6769If the operands are floating point vectors, then the result type is a
6770vector of boolean with the same number of elements as the operands being
6771compared.
6772
6773Arguments:
6774""""""""""
6775
6776The '``fcmp``' instruction takes three operands. The first operand is
6777the condition code indicating the kind of comparison to perform. It is
6778not a value, just a keyword. The possible condition code are:
6779
6780#. ``false``: no comparison, always returns false
6781#. ``oeq``: ordered and equal
6782#. ``ogt``: ordered and greater than
6783#. ``oge``: ordered and greater than or equal
6784#. ``olt``: ordered and less than
6785#. ``ole``: ordered and less than or equal
6786#. ``one``: ordered and not equal
6787#. ``ord``: ordered (no nans)
6788#. ``ueq``: unordered or equal
6789#. ``ugt``: unordered or greater than
6790#. ``uge``: unordered or greater than or equal
6791#. ``ult``: unordered or less than
6792#. ``ule``: unordered or less than or equal
6793#. ``une``: unordered or not equal
6794#. ``uno``: unordered (either nans)
6795#. ``true``: no comparison, always returns true
6796
6797*Ordered* means that neither operand is a QNAN while *unordered* means
6798that either operand may be a QNAN.
6799
6800Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6801point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6802type. They must have identical types.
6803
6804Semantics:
6805""""""""""
6806
6807The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6808condition code given as ``cond``. If the operands are vectors, then the
6809vectors are compared element by element. Each comparison performed
6810always yields an :ref:`i1 <t_integer>` result, as follows:
6811
6812#. ``false``: always yields ``false``, regardless of operands.
6813#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6814 is equal to ``op2``.
6815#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6816 is greater than ``op2``.
6817#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6818 is greater than or equal to ``op2``.
6819#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6820 is less than ``op2``.
6821#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6822 is less than or equal to ``op2``.
6823#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6824 is not equal to ``op2``.
6825#. ``ord``: yields ``true`` if both operands are not a QNAN.
6826#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6827 equal to ``op2``.
6828#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6829 greater than ``op2``.
6830#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6831 greater than or equal to ``op2``.
6832#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6833 less than ``op2``.
6834#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6835 less than or equal to ``op2``.
6836#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6837 not equal to ``op2``.
6838#. ``uno``: yields ``true`` if either operand is a QNAN.
6839#. ``true``: always yields ``true``, regardless of operands.
6840
6841Example:
6842""""""""
6843
6844.. code-block:: llvm
6845
6846 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
6847 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
6848 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
6849 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
6850
6851Note that the code generator does not yet support vector types with the
6852``fcmp`` instruction.
6853
6854.. _i_phi:
6855
6856'``phi``' Instruction
6857^^^^^^^^^^^^^^^^^^^^^
6858
6859Syntax:
6860"""""""
6861
6862::
6863
6864 <result> = phi <ty> [ <val0>, <label0>], ...
6865
6866Overview:
6867"""""""""
6868
6869The '``phi``' instruction is used to implement the φ node in the SSA
6870graph representing the function.
6871
6872Arguments:
6873""""""""""
6874
6875The type of the incoming values is specified with the first type field.
6876After this, the '``phi``' instruction takes a list of pairs as
6877arguments, with one pair for each predecessor basic block of the current
6878block. Only values of :ref:`first class <t_firstclass>` type may be used as
6879the value arguments to the PHI node. Only labels may be used as the
6880label arguments.
6881
6882There must be no non-phi instructions between the start of a basic block
6883and the PHI instructions: i.e. PHI instructions must be first in a basic
6884block.
6885
6886For the purposes of the SSA form, the use of each incoming value is
6887deemed to occur on the edge from the corresponding predecessor block to
6888the current block (but after any definition of an '``invoke``'
6889instruction's return value on the same edge).
6890
6891Semantics:
6892""""""""""
6893
6894At runtime, the '``phi``' instruction logically takes on the value
6895specified by the pair corresponding to the predecessor basic block that
6896executed just prior to the current block.
6897
6898Example:
6899""""""""
6900
6901.. code-block:: llvm
6902
6903 Loop: ; Infinite loop that counts from 0 on up...
6904 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
6905 %nextindvar = add i32 %indvar, 1
6906 br label %Loop
6907
6908.. _i_select:
6909
6910'``select``' Instruction
6911^^^^^^^^^^^^^^^^^^^^^^^^
6912
6913Syntax:
6914"""""""
6915
6916::
6917
6918 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
6919
6920 selty is either i1 or {<N x i1>}
6921
6922Overview:
6923"""""""""
6924
6925The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00006926condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00006927
6928Arguments:
6929""""""""""
6930
6931The '``select``' instruction requires an 'i1' value or a vector of 'i1'
6932values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00006933class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00006934
6935Semantics:
6936""""""""""
6937
6938If the condition is an i1 and it evaluates to 1, the instruction returns
6939the first value argument; otherwise, it returns the second value
6940argument.
6941
6942If the condition is a vector of i1, then the value arguments must be
6943vectors of the same size, and the selection is done element by element.
6944
David Majnemer40a0b592015-03-03 22:45:47 +00006945If the condition is an i1 and the value arguments are vectors of the
6946same size, then an entire vector is selected.
6947
Sean Silvab084af42012-12-07 10:36:55 +00006948Example:
6949""""""""
6950
6951.. code-block:: llvm
6952
6953 %X = select i1 true, i8 17, i8 42 ; yields i8:17
6954
6955.. _i_call:
6956
6957'``call``' Instruction
6958^^^^^^^^^^^^^^^^^^^^^^
6959
6960Syntax:
6961"""""""
6962
6963::
6964
Reid Kleckner5772b772014-04-24 20:14:34 +00006965 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00006966
6967Overview:
6968"""""""""
6969
6970The '``call``' instruction represents a simple function call.
6971
6972Arguments:
6973""""""""""
6974
6975This instruction requires several arguments:
6976
Reid Kleckner5772b772014-04-24 20:14:34 +00006977#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
6978 should perform tail call optimization. The ``tail`` marker is a hint that
6979 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
6980 means that the call must be tail call optimized in order for the program to
6981 be correct. The ``musttail`` marker provides these guarantees:
6982
6983 #. The call will not cause unbounded stack growth if it is part of a
6984 recursive cycle in the call graph.
6985 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
6986 forwarded in place.
6987
6988 Both markers imply that the callee does not access allocas or varargs from
6989 the caller. Calls marked ``musttail`` must obey the following additional
6990 rules:
6991
6992 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
6993 or a pointer bitcast followed by a ret instruction.
6994 - The ret instruction must return the (possibly bitcasted) value
6995 produced by the call or void.
6996 - The caller and callee prototypes must match. Pointer types of
6997 parameters or return types may differ in pointee type, but not
6998 in address space.
6999 - The calling conventions of the caller and callee must match.
7000 - All ABI-impacting function attributes, such as sret, byval, inreg,
7001 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00007002 - The callee must be varargs iff the caller is varargs. Bitcasting a
7003 non-varargs function to the appropriate varargs type is legal so
7004 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00007005
7006 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
7007 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00007008
7009 - Caller and callee both have the calling convention ``fastcc``.
7010 - The call is in tail position (ret immediately follows call and ret
7011 uses value of call or is void).
7012 - Option ``-tailcallopt`` is enabled, or
7013 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00007014 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00007015 met. <CodeGenerator.html#tailcallopt>`_
7016
7017#. The optional "cconv" marker indicates which :ref:`calling
7018 convention <callingconv>` the call should use. If none is
7019 specified, the call defaults to using C calling conventions. The
7020 calling convention of the call must match the calling convention of
7021 the target function, or else the behavior is undefined.
7022#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
7023 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
7024 are valid here.
7025#. '``ty``': the type of the call instruction itself which is also the
7026 type of the return value. Functions that return no value are marked
7027 ``void``.
7028#. '``fnty``': shall be the signature of the pointer to function value
7029 being invoked. The argument types must match the types implied by
7030 this signature. This type can be omitted if the function is not
7031 varargs and if the function type does not return a pointer to a
7032 function.
7033#. '``fnptrval``': An LLVM value containing a pointer to a function to
7034 be invoked. In most cases, this is a direct function invocation, but
7035 indirect ``call``'s are just as possible, calling an arbitrary pointer
7036 to function value.
7037#. '``function args``': argument list whose types match the function
7038 signature argument types and parameter attributes. All arguments must
7039 be of :ref:`first class <t_firstclass>` type. If the function signature
7040 indicates the function accepts a variable number of arguments, the
7041 extra arguments can be specified.
7042#. The optional :ref:`function attributes <fnattrs>` list. Only
7043 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
7044 attributes are valid here.
7045
7046Semantics:
7047""""""""""
7048
7049The '``call``' instruction is used to cause control flow to transfer to
7050a specified function, with its incoming arguments bound to the specified
7051values. Upon a '``ret``' instruction in the called function, control
7052flow continues with the instruction after the function call, and the
7053return value of the function is bound to the result argument.
7054
7055Example:
7056""""""""
7057
7058.. code-block:: llvm
7059
7060 %retval = call i32 @test(i32 %argc)
7061 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
7062 %X = tail call i32 @foo() ; yields i32
7063 %Y = tail call fastcc i32 @foo() ; yields i32
7064 call void %foo(i8 97 signext)
7065
7066 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00007067 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00007068 %gr = extractvalue %struct.A %r, 0 ; yields i32
7069 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
7070 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
7071 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
7072
7073llvm treats calls to some functions with names and arguments that match
7074the standard C99 library as being the C99 library functions, and may
7075perform optimizations or generate code for them under that assumption.
7076This is something we'd like to change in the future to provide better
7077support for freestanding environments and non-C-based languages.
7078
7079.. _i_va_arg:
7080
7081'``va_arg``' Instruction
7082^^^^^^^^^^^^^^^^^^^^^^^^
7083
7084Syntax:
7085"""""""
7086
7087::
7088
7089 <resultval> = va_arg <va_list*> <arglist>, <argty>
7090
7091Overview:
7092"""""""""
7093
7094The '``va_arg``' instruction is used to access arguments passed through
7095the "variable argument" area of a function call. It is used to implement
7096the ``va_arg`` macro in C.
7097
7098Arguments:
7099""""""""""
7100
7101This instruction takes a ``va_list*`` value and the type of the
7102argument. It returns a value of the specified argument type and
7103increments the ``va_list`` to point to the next argument. The actual
7104type of ``va_list`` is target specific.
7105
7106Semantics:
7107""""""""""
7108
7109The '``va_arg``' instruction loads an argument of the specified type
7110from the specified ``va_list`` and causes the ``va_list`` to point to
7111the next argument. For more information, see the variable argument
7112handling :ref:`Intrinsic Functions <int_varargs>`.
7113
7114It is legal for this instruction to be called in a function which does
7115not take a variable number of arguments, for example, the ``vfprintf``
7116function.
7117
7118``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
7119function <intrinsics>` because it takes a type as an argument.
7120
7121Example:
7122""""""""
7123
7124See the :ref:`variable argument processing <int_varargs>` section.
7125
7126Note that the code generator does not yet fully support va\_arg on many
7127targets. Also, it does not currently support va\_arg with aggregate
7128types on any target.
7129
7130.. _i_landingpad:
7131
7132'``landingpad``' Instruction
7133^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7134
7135Syntax:
7136"""""""
7137
7138::
7139
7140 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
7141 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
7142
7143 <clause> := catch <type> <value>
7144 <clause> := filter <array constant type> <array constant>
7145
7146Overview:
7147"""""""""
7148
7149The '``landingpad``' instruction is used by `LLVM's exception handling
7150system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007151is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00007152code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
7153defines values supplied by the personality function (``pers_fn``) upon
7154re-entry to the function. The ``resultval`` has the type ``resultty``.
7155
7156Arguments:
7157""""""""""
7158
7159This instruction takes a ``pers_fn`` value. This is the personality
7160function associated with the unwinding mechanism. The optional
7161``cleanup`` flag indicates that the landing pad block is a cleanup.
7162
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007163A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00007164contains the global variable representing the "type" that may be caught
7165or filtered respectively. Unlike the ``catch`` clause, the ``filter``
7166clause takes an array constant as its argument. Use
7167"``[0 x i8**] undef``" for a filter which cannot throw. The
7168'``landingpad``' instruction must contain *at least* one ``clause`` or
7169the ``cleanup`` flag.
7170
7171Semantics:
7172""""""""""
7173
7174The '``landingpad``' instruction defines the values which are set by the
7175personality function (``pers_fn``) upon re-entry to the function, and
7176therefore the "result type" of the ``landingpad`` instruction. As with
7177calling conventions, how the personality function results are
7178represented in LLVM IR is target specific.
7179
7180The clauses are applied in order from top to bottom. If two
7181``landingpad`` instructions are merged together through inlining, the
7182clauses from the calling function are appended to the list of clauses.
7183When the call stack is being unwound due to an exception being thrown,
7184the exception is compared against each ``clause`` in turn. If it doesn't
7185match any of the clauses, and the ``cleanup`` flag is not set, then
7186unwinding continues further up the call stack.
7187
7188The ``landingpad`` instruction has several restrictions:
7189
7190- A landing pad block is a basic block which is the unwind destination
7191 of an '``invoke``' instruction.
7192- A landing pad block must have a '``landingpad``' instruction as its
7193 first non-PHI instruction.
7194- There can be only one '``landingpad``' instruction within the landing
7195 pad block.
7196- A basic block that is not a landing pad block may not include a
7197 '``landingpad``' instruction.
7198- All '``landingpad``' instructions in a function must have the same
7199 personality function.
7200
7201Example:
7202""""""""
7203
7204.. code-block:: llvm
7205
7206 ;; A landing pad which can catch an integer.
7207 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
7208 catch i8** @_ZTIi
7209 ;; A landing pad that is a cleanup.
7210 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
7211 cleanup
7212 ;; A landing pad which can catch an integer and can only throw a double.
7213 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
7214 catch i8** @_ZTIi
7215 filter [1 x i8**] [@_ZTId]
7216
7217.. _intrinsics:
7218
7219Intrinsic Functions
7220===================
7221
7222LLVM supports the notion of an "intrinsic function". These functions
7223have well known names and semantics and are required to follow certain
7224restrictions. Overall, these intrinsics represent an extension mechanism
7225for the LLVM language that does not require changing all of the
7226transformations in LLVM when adding to the language (or the bitcode
7227reader/writer, the parser, etc...).
7228
7229Intrinsic function names must all start with an "``llvm.``" prefix. This
7230prefix is reserved in LLVM for intrinsic names; thus, function names may
7231not begin with this prefix. Intrinsic functions must always be external
7232functions: you cannot define the body of intrinsic functions. Intrinsic
7233functions may only be used in call or invoke instructions: it is illegal
7234to take the address of an intrinsic function. Additionally, because
7235intrinsic functions are part of the LLVM language, it is required if any
7236are added that they be documented here.
7237
7238Some intrinsic functions can be overloaded, i.e., the intrinsic
7239represents a family of functions that perform the same operation but on
7240different data types. Because LLVM can represent over 8 million
7241different integer types, overloading is used commonly to allow an
7242intrinsic function to operate on any integer type. One or more of the
7243argument types or the result type can be overloaded to accept any
7244integer type. Argument types may also be defined as exactly matching a
7245previous argument's type or the result type. This allows an intrinsic
7246function which accepts multiple arguments, but needs all of them to be
7247of the same type, to only be overloaded with respect to a single
7248argument or the result.
7249
7250Overloaded intrinsics will have the names of its overloaded argument
7251types encoded into its function name, each preceded by a period. Only
7252those types which are overloaded result in a name suffix. Arguments
7253whose type is matched against another type do not. For example, the
7254``llvm.ctpop`` function can take an integer of any width and returns an
7255integer of exactly the same integer width. This leads to a family of
7256functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
7257``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
7258overloaded, and only one type suffix is required. Because the argument's
7259type is matched against the return type, it does not require its own
7260name suffix.
7261
7262To learn how to add an intrinsic function, please see the `Extending
7263LLVM Guide <ExtendingLLVM.html>`_.
7264
7265.. _int_varargs:
7266
7267Variable Argument Handling Intrinsics
7268-------------------------------------
7269
7270Variable argument support is defined in LLVM with the
7271:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
7272functions. These functions are related to the similarly named macros
7273defined in the ``<stdarg.h>`` header file.
7274
7275All of these functions operate on arguments that use a target-specific
7276value type "``va_list``". The LLVM assembly language reference manual
7277does not define what this type is, so all transformations should be
7278prepared to handle these functions regardless of the type used.
7279
7280This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
7281variable argument handling intrinsic functions are used.
7282
7283.. code-block:: llvm
7284
Tim Northoverab60bb92014-11-02 01:21:51 +00007285 ; This struct is different for every platform. For most platforms,
7286 ; it is merely an i8*.
7287 %struct.va_list = type { i8* }
7288
7289 ; For Unix x86_64 platforms, va_list is the following struct:
7290 ; %struct.va_list = type { i32, i32, i8*, i8* }
7291
Sean Silvab084af42012-12-07 10:36:55 +00007292 define i32 @test(i32 %X, ...) {
7293 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00007294 %ap = alloca %struct.va_list
7295 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00007296 call void @llvm.va_start(i8* %ap2)
7297
7298 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00007299 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00007300
7301 ; Demonstrate usage of llvm.va_copy and llvm.va_end
7302 %aq = alloca i8*
7303 %aq2 = bitcast i8** %aq to i8*
7304 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
7305 call void @llvm.va_end(i8* %aq2)
7306
7307 ; Stop processing of arguments.
7308 call void @llvm.va_end(i8* %ap2)
7309 ret i32 %tmp
7310 }
7311
7312 declare void @llvm.va_start(i8*)
7313 declare void @llvm.va_copy(i8*, i8*)
7314 declare void @llvm.va_end(i8*)
7315
7316.. _int_va_start:
7317
7318'``llvm.va_start``' Intrinsic
7319^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7320
7321Syntax:
7322"""""""
7323
7324::
7325
Nick Lewycky04f6de02013-09-11 22:04:52 +00007326 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00007327
7328Overview:
7329"""""""""
7330
7331The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
7332subsequent use by ``va_arg``.
7333
7334Arguments:
7335""""""""""
7336
7337The argument is a pointer to a ``va_list`` element to initialize.
7338
7339Semantics:
7340""""""""""
7341
7342The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
7343available in C. In a target-dependent way, it initializes the
7344``va_list`` element to which the argument points, so that the next call
7345to ``va_arg`` will produce the first variable argument passed to the
7346function. Unlike the C ``va_start`` macro, this intrinsic does not need
7347to know the last argument of the function as the compiler can figure
7348that out.
7349
7350'``llvm.va_end``' Intrinsic
7351^^^^^^^^^^^^^^^^^^^^^^^^^^^
7352
7353Syntax:
7354"""""""
7355
7356::
7357
7358 declare void @llvm.va_end(i8* <arglist>)
7359
7360Overview:
7361"""""""""
7362
7363The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
7364initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
7365
7366Arguments:
7367""""""""""
7368
7369The argument is a pointer to a ``va_list`` to destroy.
7370
7371Semantics:
7372""""""""""
7373
7374The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
7375available in C. In a target-dependent way, it destroys the ``va_list``
7376element to which the argument points. Calls to
7377:ref:`llvm.va_start <int_va_start>` and
7378:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
7379``llvm.va_end``.
7380
7381.. _int_va_copy:
7382
7383'``llvm.va_copy``' Intrinsic
7384^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7385
7386Syntax:
7387"""""""
7388
7389::
7390
7391 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
7392
7393Overview:
7394"""""""""
7395
7396The '``llvm.va_copy``' intrinsic copies the current argument position
7397from the source argument list to the destination argument list.
7398
7399Arguments:
7400""""""""""
7401
7402The first argument is a pointer to a ``va_list`` element to initialize.
7403The second argument is a pointer to a ``va_list`` element to copy from.
7404
7405Semantics:
7406""""""""""
7407
7408The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
7409available in C. In a target-dependent way, it copies the source
7410``va_list`` element into the destination ``va_list`` element. This
7411intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
7412arbitrarily complex and require, for example, memory allocation.
7413
7414Accurate Garbage Collection Intrinsics
7415--------------------------------------
7416
Philip Reamesc5b0f562015-02-25 23:52:06 +00007417LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007418(GC) requires the frontend to generate code containing appropriate intrinsic
7419calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00007420intrinsics in a manner which is appropriate for the target collector.
7421
Sean Silvab084af42012-12-07 10:36:55 +00007422These intrinsics allow identification of :ref:`GC roots on the
7423stack <int_gcroot>`, as well as garbage collector implementations that
7424require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00007425Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00007426these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00007427details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00007428
Philip Reamesf80bbff2015-02-25 23:45:20 +00007429Experimental Statepoint Intrinsics
7430^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7431
7432LLVM provides an second experimental set of intrinsics for describing garbage
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007433collection safepoints in compiled code. These intrinsics are an alternative
7434to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
7435:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
7436differences in approach are covered in the `Garbage Collection with LLVM
7437<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00007438described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00007439
7440.. _int_gcroot:
7441
7442'``llvm.gcroot``' Intrinsic
7443^^^^^^^^^^^^^^^^^^^^^^^^^^^
7444
7445Syntax:
7446"""""""
7447
7448::
7449
7450 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
7451
7452Overview:
7453"""""""""
7454
7455The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
7456the code generator, and allows some metadata to be associated with it.
7457
7458Arguments:
7459""""""""""
7460
7461The first argument specifies the address of a stack object that contains
7462the root pointer. The second pointer (which must be either a constant or
7463a global value address) contains the meta-data to be associated with the
7464root.
7465
7466Semantics:
7467""""""""""
7468
7469At runtime, a call to this intrinsic stores a null pointer into the
7470"ptrloc" location. At compile-time, the code generator generates
7471information to allow the runtime to find the pointer at GC safe points.
7472The '``llvm.gcroot``' intrinsic may only be used in a function which
7473:ref:`specifies a GC algorithm <gc>`.
7474
7475.. _int_gcread:
7476
7477'``llvm.gcread``' Intrinsic
7478^^^^^^^^^^^^^^^^^^^^^^^^^^^
7479
7480Syntax:
7481"""""""
7482
7483::
7484
7485 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7486
7487Overview:
7488"""""""""
7489
7490The '``llvm.gcread``' intrinsic identifies reads of references from heap
7491locations, allowing garbage collector implementations that require read
7492barriers.
7493
7494Arguments:
7495""""""""""
7496
7497The second argument is the address to read from, which should be an
7498address allocated from the garbage collector. The first object is a
7499pointer to the start of the referenced object, if needed by the language
7500runtime (otherwise null).
7501
7502Semantics:
7503""""""""""
7504
7505The '``llvm.gcread``' intrinsic has the same semantics as a load
7506instruction, but may be replaced with substantially more complex code by
7507the garbage collector runtime, as needed. The '``llvm.gcread``'
7508intrinsic may only be used in a function which :ref:`specifies a GC
7509algorithm <gc>`.
7510
7511.. _int_gcwrite:
7512
7513'``llvm.gcwrite``' Intrinsic
7514^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7515
7516Syntax:
7517"""""""
7518
7519::
7520
7521 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7522
7523Overview:
7524"""""""""
7525
7526The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7527locations, allowing garbage collector implementations that require write
7528barriers (such as generational or reference counting collectors).
7529
7530Arguments:
7531""""""""""
7532
7533The first argument is the reference to store, the second is the start of
7534the object to store it to, and the third is the address of the field of
7535Obj to store to. If the runtime does not require a pointer to the
7536object, Obj may be null.
7537
7538Semantics:
7539""""""""""
7540
7541The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7542instruction, but may be replaced with substantially more complex code by
7543the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7544intrinsic may only be used in a function which :ref:`specifies a GC
7545algorithm <gc>`.
7546
7547Code Generator Intrinsics
7548-------------------------
7549
7550These intrinsics are provided by LLVM to expose special features that
7551may only be implemented with code generator support.
7552
7553'``llvm.returnaddress``' Intrinsic
7554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7555
7556Syntax:
7557"""""""
7558
7559::
7560
7561 declare i8 *@llvm.returnaddress(i32 <level>)
7562
7563Overview:
7564"""""""""
7565
7566The '``llvm.returnaddress``' intrinsic attempts to compute a
7567target-specific value indicating the return address of the current
7568function or one of its callers.
7569
7570Arguments:
7571""""""""""
7572
7573The argument to this intrinsic indicates which function to return the
7574address for. Zero indicates the calling function, one indicates its
7575caller, etc. The argument is **required** to be a constant integer
7576value.
7577
7578Semantics:
7579""""""""""
7580
7581The '``llvm.returnaddress``' intrinsic either returns a pointer
7582indicating the return address of the specified call frame, or zero if it
7583cannot be identified. The value returned by this intrinsic is likely to
7584be incorrect or 0 for arguments other than zero, so it should only be
7585used for debugging purposes.
7586
7587Note that calling this intrinsic does not prevent function inlining or
7588other aggressive transformations, so the value returned may not be that
7589of the obvious source-language caller.
7590
7591'``llvm.frameaddress``' Intrinsic
7592^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7593
7594Syntax:
7595"""""""
7596
7597::
7598
7599 declare i8* @llvm.frameaddress(i32 <level>)
7600
7601Overview:
7602"""""""""
7603
7604The '``llvm.frameaddress``' intrinsic attempts to return the
7605target-specific frame pointer value for the specified stack frame.
7606
7607Arguments:
7608""""""""""
7609
7610The argument to this intrinsic indicates which function to return the
7611frame pointer for. Zero indicates the calling function, one indicates
7612its caller, etc. The argument is **required** to be a constant integer
7613value.
7614
7615Semantics:
7616""""""""""
7617
7618The '``llvm.frameaddress``' intrinsic either returns a pointer
7619indicating the frame address of the specified call frame, or zero if it
7620cannot be identified. The value returned by this intrinsic is likely to
7621be incorrect or 0 for arguments other than zero, so it should only be
7622used for debugging purposes.
7623
7624Note that calling this intrinsic does not prevent function inlining or
7625other aggressive transformations, so the value returned may not be that
7626of the obvious source-language caller.
7627
Reid Klecknercfb9ce52015-03-05 18:26:34 +00007628'``llvm.frameescape``' and '``llvm.framerecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00007629^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7630
7631Syntax:
7632"""""""
7633
7634::
7635
Reid Klecknercfb9ce52015-03-05 18:26:34 +00007636 declare void @llvm.frameescape(...)
7637 declare i8* @llvm.framerecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00007638
7639Overview:
7640"""""""""
7641
Reid Klecknercfb9ce52015-03-05 18:26:34 +00007642The '``llvm.frameescape``' intrinsic escapes offsets of a collection of static
7643allocas, and the '``llvm.framerecover``' intrinsic applies those offsets to a
7644live frame pointer to recover the address of the allocation. The offset is
7645computed during frame layout of the caller of ``llvm.frameescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00007646
7647Arguments:
7648""""""""""
7649
Reid Klecknercfb9ce52015-03-05 18:26:34 +00007650All arguments to '``llvm.frameescape``' must be pointers to static allocas or
7651casts of static allocas. Each function can only call '``llvm.frameescape``'
7652once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00007653
Reid Kleckner3542ace2015-01-13 01:51:34 +00007654The ``func`` argument to '``llvm.framerecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00007655bitcasted pointer to a function defined in the current module. The code
7656generator cannot determine the frame allocation offset of functions defined in
7657other modules.
7658
Reid Kleckner3542ace2015-01-13 01:51:34 +00007659The ``fp`` argument to '``llvm.framerecover``' must be a frame
Reid Klecknere9b89312015-01-13 00:48:10 +00007660pointer of a call frame that is currently live. The return value of
7661'``llvm.frameaddress``' is one way to produce such a value, but most platforms
7662also expose the frame pointer through stack unwinding mechanisms.
7663
Reid Klecknercfb9ce52015-03-05 18:26:34 +00007664The ``idx`` argument to '``llvm.framerecover``' indicates which alloca passed to
7665'``llvm.frameescape``' to recover. It is zero-indexed.
7666
Reid Klecknere9b89312015-01-13 00:48:10 +00007667Semantics:
7668""""""""""
7669
7670These intrinsics allow a group of functions to access one stack memory
7671allocation in an ancestor stack frame. The memory returned from
7672'``llvm.frameallocate``' may be allocated prior to stack realignment, so the
7673memory is only aligned to the ABI-required stack alignment. Each function may
7674only call '``llvm.frameallocate``' one or zero times from the function entry
7675block. The frame allocation intrinsic inhibits inlining, as any frame
7676allocations in the inlined function frame are likely to be at a different
Reid Kleckner3542ace2015-01-13 01:51:34 +00007677offset from the one used by '``llvm.framerecover``' called with the
Reid Klecknere9b89312015-01-13 00:48:10 +00007678uninlined function.
7679
Renato Golinc7aea402014-05-06 16:51:25 +00007680.. _int_read_register:
7681.. _int_write_register:
7682
7683'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7684^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7685
7686Syntax:
7687"""""""
7688
7689::
7690
7691 declare i32 @llvm.read_register.i32(metadata)
7692 declare i64 @llvm.read_register.i64(metadata)
7693 declare void @llvm.write_register.i32(metadata, i32 @value)
7694 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00007695 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00007696
7697Overview:
7698"""""""""
7699
7700The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7701provides access to the named register. The register must be valid on
7702the architecture being compiled to. The type needs to be compatible
7703with the register being read.
7704
7705Semantics:
7706""""""""""
7707
7708The '``llvm.read_register``' intrinsic returns the current value of the
7709register, where possible. The '``llvm.write_register``' intrinsic sets
7710the current value of the register, where possible.
7711
7712This is useful to implement named register global variables that need
7713to always be mapped to a specific register, as is common practice on
7714bare-metal programs including OS kernels.
7715
7716The compiler doesn't check for register availability or use of the used
7717register in surrounding code, including inline assembly. Because of that,
7718allocatable registers are not supported.
7719
7720Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007721architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007722work is needed to support other registers and even more so, allocatable
7723registers.
7724
Sean Silvab084af42012-12-07 10:36:55 +00007725.. _int_stacksave:
7726
7727'``llvm.stacksave``' Intrinsic
7728^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7729
7730Syntax:
7731"""""""
7732
7733::
7734
7735 declare i8* @llvm.stacksave()
7736
7737Overview:
7738"""""""""
7739
7740The '``llvm.stacksave``' intrinsic is used to remember the current state
7741of the function stack, for use with
7742:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7743implementing language features like scoped automatic variable sized
7744arrays in C99.
7745
7746Semantics:
7747""""""""""
7748
7749This intrinsic returns a opaque pointer value that can be passed to
7750:ref:`llvm.stackrestore <int_stackrestore>`. When an
7751``llvm.stackrestore`` intrinsic is executed with a value saved from
7752``llvm.stacksave``, it effectively restores the state of the stack to
7753the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7754practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7755were allocated after the ``llvm.stacksave`` was executed.
7756
7757.. _int_stackrestore:
7758
7759'``llvm.stackrestore``' Intrinsic
7760^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7761
7762Syntax:
7763"""""""
7764
7765::
7766
7767 declare void @llvm.stackrestore(i8* %ptr)
7768
7769Overview:
7770"""""""""
7771
7772The '``llvm.stackrestore``' intrinsic is used to restore the state of
7773the function stack to the state it was in when the corresponding
7774:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7775useful for implementing language features like scoped automatic variable
7776sized arrays in C99.
7777
7778Semantics:
7779""""""""""
7780
7781See the description for :ref:`llvm.stacksave <int_stacksave>`.
7782
7783'``llvm.prefetch``' Intrinsic
7784^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7785
7786Syntax:
7787"""""""
7788
7789::
7790
7791 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7792
7793Overview:
7794"""""""""
7795
7796The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7797insert a prefetch instruction if supported; otherwise, it is a noop.
7798Prefetches have no effect on the behavior of the program but can change
7799its performance characteristics.
7800
7801Arguments:
7802""""""""""
7803
7804``address`` is the address to be prefetched, ``rw`` is the specifier
7805determining if the fetch should be for a read (0) or write (1), and
7806``locality`` is a temporal locality specifier ranging from (0) - no
7807locality, to (3) - extremely local keep in cache. The ``cache type``
7808specifies whether the prefetch is performed on the data (1) or
7809instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7810arguments must be constant integers.
7811
7812Semantics:
7813""""""""""
7814
7815This intrinsic does not modify the behavior of the program. In
7816particular, prefetches cannot trap and do not produce a value. On
7817targets that support this intrinsic, the prefetch can provide hints to
7818the processor cache for better performance.
7819
7820'``llvm.pcmarker``' Intrinsic
7821^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7822
7823Syntax:
7824"""""""
7825
7826::
7827
7828 declare void @llvm.pcmarker(i32 <id>)
7829
7830Overview:
7831"""""""""
7832
7833The '``llvm.pcmarker``' intrinsic is a method to export a Program
7834Counter (PC) in a region of code to simulators and other tools. The
7835method is target specific, but it is expected that the marker will use
7836exported symbols to transmit the PC of the marker. The marker makes no
7837guarantees that it will remain with any specific instruction after
7838optimizations. It is possible that the presence of a marker will inhibit
7839optimizations. The intended use is to be inserted after optimizations to
7840allow correlations of simulation runs.
7841
7842Arguments:
7843""""""""""
7844
7845``id`` is a numerical id identifying the marker.
7846
7847Semantics:
7848""""""""""
7849
7850This intrinsic does not modify the behavior of the program. Backends
7851that do not support this intrinsic may ignore it.
7852
7853'``llvm.readcyclecounter``' Intrinsic
7854^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7855
7856Syntax:
7857"""""""
7858
7859::
7860
7861 declare i64 @llvm.readcyclecounter()
7862
7863Overview:
7864"""""""""
7865
7866The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
7867counter register (or similar low latency, high accuracy clocks) on those
7868targets that support it. On X86, it should map to RDTSC. On Alpha, it
7869should map to RPCC. As the backing counters overflow quickly (on the
7870order of 9 seconds on alpha), this should only be used for small
7871timings.
7872
7873Semantics:
7874""""""""""
7875
7876When directly supported, reading the cycle counter should not modify any
7877memory. Implementations are allowed to either return a application
7878specific value or a system wide value. On backends without support, this
7879is lowered to a constant 0.
7880
Tim Northoverbc933082013-05-23 19:11:20 +00007881Note that runtime support may be conditional on the privilege-level code is
7882running at and the host platform.
7883
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007884'``llvm.clear_cache``' Intrinsic
7885^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7886
7887Syntax:
7888"""""""
7889
7890::
7891
7892 declare void @llvm.clear_cache(i8*, i8*)
7893
7894Overview:
7895"""""""""
7896
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007897The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
7898in the specified range to the execution unit of the processor. On
7899targets with non-unified instruction and data cache, the implementation
7900flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007901
7902Semantics:
7903""""""""""
7904
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007905On platforms with coherent instruction and data caches (e.g. x86), this
7906intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00007907cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007908instructions or a system call, if cache flushing requires special
7909privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007910
Sean Silvad02bf3e2014-04-07 22:29:53 +00007911The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007912time library.
Renato Golin93010e62014-03-26 14:01:32 +00007913
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00007914This instrinsic does *not* empty the instruction pipeline. Modifications
7915of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00007916
Justin Bogner61ba2e32014-12-08 18:02:35 +00007917'``llvm.instrprof_increment``' Intrinsic
7918^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7919
7920Syntax:
7921"""""""
7922
7923::
7924
7925 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
7926 i32 <num-counters>, i32 <index>)
7927
7928Overview:
7929"""""""""
7930
7931The '``llvm.instrprof_increment``' intrinsic can be emitted by a
7932frontend for use with instrumentation based profiling. These will be
7933lowered by the ``-instrprof`` pass to generate execution counts of a
7934program at runtime.
7935
7936Arguments:
7937""""""""""
7938
7939The first argument is a pointer to a global variable containing the
7940name of the entity being instrumented. This should generally be the
7941(mangled) function name for a set of counters.
7942
7943The second argument is a hash value that can be used by the consumer
7944of the profile data to detect changes to the instrumented source, and
7945the third is the number of counters associated with ``name``. It is an
7946error if ``hash`` or ``num-counters`` differ between two instances of
7947``instrprof_increment`` that refer to the same name.
7948
7949The last argument refers to which of the counters for ``name`` should
7950be incremented. It should be a value between 0 and ``num-counters``.
7951
7952Semantics:
7953""""""""""
7954
7955This intrinsic represents an increment of a profiling counter. It will
7956cause the ``-instrprof`` pass to generate the appropriate data
7957structures and the code to increment the appropriate value, in a
7958format that can be written out by a compiler runtime and consumed via
7959the ``llvm-profdata`` tool.
7960
Sean Silvab084af42012-12-07 10:36:55 +00007961Standard C Library Intrinsics
7962-----------------------------
7963
7964LLVM provides intrinsics for a few important standard C library
7965functions. These intrinsics allow source-language front-ends to pass
7966information about the alignment of the pointer arguments to the code
7967generator, providing opportunity for more efficient code generation.
7968
7969.. _int_memcpy:
7970
7971'``llvm.memcpy``' Intrinsic
7972^^^^^^^^^^^^^^^^^^^^^^^^^^^
7973
7974Syntax:
7975"""""""
7976
7977This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
7978integer bit width and for different address spaces. Not all targets
7979support all bit widths however.
7980
7981::
7982
7983 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
7984 i32 <len>, i32 <align>, i1 <isvolatile>)
7985 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
7986 i64 <len>, i32 <align>, i1 <isvolatile>)
7987
7988Overview:
7989"""""""""
7990
7991The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
7992source location to the destination location.
7993
7994Note that, unlike the standard libc function, the ``llvm.memcpy.*``
7995intrinsics do not return a value, takes extra alignment/isvolatile
7996arguments and the pointers can be in specified address spaces.
7997
7998Arguments:
7999""""""""""
8000
8001The first argument is a pointer to the destination, the second is a
8002pointer to the source. The third argument is an integer argument
8003specifying the number of bytes to copy, the fourth argument is the
8004alignment of the source and destination locations, and the fifth is a
8005boolean indicating a volatile access.
8006
8007If the call to this intrinsic has an alignment value that is not 0 or 1,
8008then the caller guarantees that both the source and destination pointers
8009are aligned to that boundary.
8010
8011If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
8012a :ref:`volatile operation <volatile>`. The detailed access behavior is not
8013very cleanly specified and it is unwise to depend on it.
8014
8015Semantics:
8016""""""""""
8017
8018The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
8019source location to the destination location, which are not allowed to
8020overlap. It copies "len" bytes of memory over. If the argument is known
8021to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00008022argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008023
8024'``llvm.memmove``' Intrinsic
8025^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8026
8027Syntax:
8028"""""""
8029
8030This is an overloaded intrinsic. You can use llvm.memmove on any integer
8031bit width and for different address space. Not all targets support all
8032bit widths however.
8033
8034::
8035
8036 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
8037 i32 <len>, i32 <align>, i1 <isvolatile>)
8038 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
8039 i64 <len>, i32 <align>, i1 <isvolatile>)
8040
8041Overview:
8042"""""""""
8043
8044The '``llvm.memmove.*``' intrinsics move a block of memory from the
8045source location to the destination location. It is similar to the
8046'``llvm.memcpy``' intrinsic but allows the two memory locations to
8047overlap.
8048
8049Note that, unlike the standard libc function, the ``llvm.memmove.*``
8050intrinsics do not return a value, takes extra alignment/isvolatile
8051arguments and the pointers can be in specified address spaces.
8052
8053Arguments:
8054""""""""""
8055
8056The first argument is a pointer to the destination, the second is a
8057pointer to the source. The third argument is an integer argument
8058specifying the number of bytes to copy, the fourth argument is the
8059alignment of the source and destination locations, and the fifth is a
8060boolean indicating a volatile access.
8061
8062If the call to this intrinsic has an alignment value that is not 0 or 1,
8063then the caller guarantees that the source and destination pointers are
8064aligned to that boundary.
8065
8066If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
8067is a :ref:`volatile operation <volatile>`. The detailed access behavior is
8068not very cleanly specified and it is unwise to depend on it.
8069
8070Semantics:
8071""""""""""
8072
8073The '``llvm.memmove.*``' intrinsics copy a block of memory from the
8074source location to the destination location, which may overlap. It
8075copies "len" bytes of memory over. If the argument is known to be
8076aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00008077otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008078
8079'``llvm.memset.*``' Intrinsics
8080^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8081
8082Syntax:
8083"""""""
8084
8085This is an overloaded intrinsic. You can use llvm.memset on any integer
8086bit width and for different address spaces. However, not all targets
8087support all bit widths.
8088
8089::
8090
8091 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
8092 i32 <len>, i32 <align>, i1 <isvolatile>)
8093 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
8094 i64 <len>, i32 <align>, i1 <isvolatile>)
8095
8096Overview:
8097"""""""""
8098
8099The '``llvm.memset.*``' intrinsics fill a block of memory with a
8100particular byte value.
8101
8102Note that, unlike the standard libc function, the ``llvm.memset``
8103intrinsic does not return a value and takes extra alignment/volatile
8104arguments. Also, the destination can be in an arbitrary address space.
8105
8106Arguments:
8107""""""""""
8108
8109The first argument is a pointer to the destination to fill, the second
8110is the byte value with which to fill it, the third argument is an
8111integer argument specifying the number of bytes to fill, and the fourth
8112argument is the known alignment of the destination location.
8113
8114If the call to this intrinsic has an alignment value that is not 0 or 1,
8115then the caller guarantees that the destination pointer is aligned to
8116that boundary.
8117
8118If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
8119a :ref:`volatile operation <volatile>`. The detailed access behavior is not
8120very cleanly specified and it is unwise to depend on it.
8121
8122Semantics:
8123""""""""""
8124
8125The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
8126at the destination location. If the argument is known to be aligned to
8127some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00008128it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008129
8130'``llvm.sqrt.*``' Intrinsic
8131^^^^^^^^^^^^^^^^^^^^^^^^^^^
8132
8133Syntax:
8134"""""""
8135
8136This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
8137floating point or vector of floating point type. Not all targets support
8138all types however.
8139
8140::
8141
8142 declare float @llvm.sqrt.f32(float %Val)
8143 declare double @llvm.sqrt.f64(double %Val)
8144 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
8145 declare fp128 @llvm.sqrt.f128(fp128 %Val)
8146 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
8147
8148Overview:
8149"""""""""
8150
8151The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
8152returning the same value as the libm '``sqrt``' functions would. Unlike
8153``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
8154negative numbers other than -0.0 (which allows for better optimization,
8155because there is no need to worry about errno being set).
8156``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
8157
8158Arguments:
8159""""""""""
8160
8161The argument and return value are floating point numbers of the same
8162type.
8163
8164Semantics:
8165""""""""""
8166
8167This function returns the sqrt of the specified operand if it is a
8168nonnegative floating point number.
8169
8170'``llvm.powi.*``' Intrinsic
8171^^^^^^^^^^^^^^^^^^^^^^^^^^^
8172
8173Syntax:
8174"""""""
8175
8176This is an overloaded intrinsic. You can use ``llvm.powi`` on any
8177floating point or vector of floating point type. Not all targets support
8178all types however.
8179
8180::
8181
8182 declare float @llvm.powi.f32(float %Val, i32 %power)
8183 declare double @llvm.powi.f64(double %Val, i32 %power)
8184 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
8185 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
8186 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
8187
8188Overview:
8189"""""""""
8190
8191The '``llvm.powi.*``' intrinsics return the first operand raised to the
8192specified (positive or negative) power. The order of evaluation of
8193multiplications is not defined. When a vector of floating point type is
8194used, the second argument remains a scalar integer value.
8195
8196Arguments:
8197""""""""""
8198
8199The second argument is an integer power, and the first is a value to
8200raise to that power.
8201
8202Semantics:
8203""""""""""
8204
8205This function returns the first value raised to the second power with an
8206unspecified sequence of rounding operations.
8207
8208'``llvm.sin.*``' Intrinsic
8209^^^^^^^^^^^^^^^^^^^^^^^^^^
8210
8211Syntax:
8212"""""""
8213
8214This is an overloaded intrinsic. You can use ``llvm.sin`` on any
8215floating point or vector of floating point type. Not all targets support
8216all types however.
8217
8218::
8219
8220 declare float @llvm.sin.f32(float %Val)
8221 declare double @llvm.sin.f64(double %Val)
8222 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
8223 declare fp128 @llvm.sin.f128(fp128 %Val)
8224 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
8225
8226Overview:
8227"""""""""
8228
8229The '``llvm.sin.*``' intrinsics return the sine of the operand.
8230
8231Arguments:
8232""""""""""
8233
8234The argument and return value are floating point numbers of the same
8235type.
8236
8237Semantics:
8238""""""""""
8239
8240This function returns the sine of the specified operand, returning the
8241same values as the libm ``sin`` functions would, and handles error
8242conditions in the same way.
8243
8244'``llvm.cos.*``' Intrinsic
8245^^^^^^^^^^^^^^^^^^^^^^^^^^
8246
8247Syntax:
8248"""""""
8249
8250This is an overloaded intrinsic. You can use ``llvm.cos`` on any
8251floating point or vector of floating point type. Not all targets support
8252all types however.
8253
8254::
8255
8256 declare float @llvm.cos.f32(float %Val)
8257 declare double @llvm.cos.f64(double %Val)
8258 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
8259 declare fp128 @llvm.cos.f128(fp128 %Val)
8260 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
8261
8262Overview:
8263"""""""""
8264
8265The '``llvm.cos.*``' intrinsics return the cosine of the operand.
8266
8267Arguments:
8268""""""""""
8269
8270The argument and return value are floating point numbers of the same
8271type.
8272
8273Semantics:
8274""""""""""
8275
8276This function returns the cosine of the specified operand, returning the
8277same values as the libm ``cos`` functions would, and handles error
8278conditions in the same way.
8279
8280'``llvm.pow.*``' Intrinsic
8281^^^^^^^^^^^^^^^^^^^^^^^^^^
8282
8283Syntax:
8284"""""""
8285
8286This is an overloaded intrinsic. You can use ``llvm.pow`` on any
8287floating point or vector of floating point type. Not all targets support
8288all types however.
8289
8290::
8291
8292 declare float @llvm.pow.f32(float %Val, float %Power)
8293 declare double @llvm.pow.f64(double %Val, double %Power)
8294 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
8295 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
8296 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
8297
8298Overview:
8299"""""""""
8300
8301The '``llvm.pow.*``' intrinsics return the first operand raised to the
8302specified (positive or negative) power.
8303
8304Arguments:
8305""""""""""
8306
8307The second argument is a floating point power, and the first is a value
8308to raise to that power.
8309
8310Semantics:
8311""""""""""
8312
8313This function returns the first value raised to the second power,
8314returning the same values as the libm ``pow`` functions would, and
8315handles error conditions in the same way.
8316
8317'``llvm.exp.*``' Intrinsic
8318^^^^^^^^^^^^^^^^^^^^^^^^^^
8319
8320Syntax:
8321"""""""
8322
8323This is an overloaded intrinsic. You can use ``llvm.exp`` on any
8324floating point or vector of floating point type. Not all targets support
8325all types however.
8326
8327::
8328
8329 declare float @llvm.exp.f32(float %Val)
8330 declare double @llvm.exp.f64(double %Val)
8331 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
8332 declare fp128 @llvm.exp.f128(fp128 %Val)
8333 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
8334
8335Overview:
8336"""""""""
8337
8338The '``llvm.exp.*``' intrinsics perform the exp function.
8339
8340Arguments:
8341""""""""""
8342
8343The argument and return value are floating point numbers of the same
8344type.
8345
8346Semantics:
8347""""""""""
8348
8349This function returns the same values as the libm ``exp`` functions
8350would, and handles error conditions in the same way.
8351
8352'``llvm.exp2.*``' Intrinsic
8353^^^^^^^^^^^^^^^^^^^^^^^^^^^
8354
8355Syntax:
8356"""""""
8357
8358This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
8359floating point or vector of floating point type. Not all targets support
8360all types however.
8361
8362::
8363
8364 declare float @llvm.exp2.f32(float %Val)
8365 declare double @llvm.exp2.f64(double %Val)
8366 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
8367 declare fp128 @llvm.exp2.f128(fp128 %Val)
8368 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
8369
8370Overview:
8371"""""""""
8372
8373The '``llvm.exp2.*``' intrinsics perform the exp2 function.
8374
8375Arguments:
8376""""""""""
8377
8378The argument and return value are floating point numbers of the same
8379type.
8380
8381Semantics:
8382""""""""""
8383
8384This function returns the same values as the libm ``exp2`` functions
8385would, and handles error conditions in the same way.
8386
8387'``llvm.log.*``' Intrinsic
8388^^^^^^^^^^^^^^^^^^^^^^^^^^
8389
8390Syntax:
8391"""""""
8392
8393This is an overloaded intrinsic. You can use ``llvm.log`` on any
8394floating point or vector of floating point type. Not all targets support
8395all types however.
8396
8397::
8398
8399 declare float @llvm.log.f32(float %Val)
8400 declare double @llvm.log.f64(double %Val)
8401 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
8402 declare fp128 @llvm.log.f128(fp128 %Val)
8403 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
8404
8405Overview:
8406"""""""""
8407
8408The '``llvm.log.*``' intrinsics perform the log function.
8409
8410Arguments:
8411""""""""""
8412
8413The argument and return value are floating point numbers of the same
8414type.
8415
8416Semantics:
8417""""""""""
8418
8419This function returns the same values as the libm ``log`` functions
8420would, and handles error conditions in the same way.
8421
8422'``llvm.log10.*``' Intrinsic
8423^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8424
8425Syntax:
8426"""""""
8427
8428This is an overloaded intrinsic. You can use ``llvm.log10`` on any
8429floating point or vector of floating point type. Not all targets support
8430all types however.
8431
8432::
8433
8434 declare float @llvm.log10.f32(float %Val)
8435 declare double @llvm.log10.f64(double %Val)
8436 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
8437 declare fp128 @llvm.log10.f128(fp128 %Val)
8438 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
8439
8440Overview:
8441"""""""""
8442
8443The '``llvm.log10.*``' intrinsics perform the log10 function.
8444
8445Arguments:
8446""""""""""
8447
8448The argument and return value are floating point numbers of the same
8449type.
8450
8451Semantics:
8452""""""""""
8453
8454This function returns the same values as the libm ``log10`` functions
8455would, and handles error conditions in the same way.
8456
8457'``llvm.log2.*``' Intrinsic
8458^^^^^^^^^^^^^^^^^^^^^^^^^^^
8459
8460Syntax:
8461"""""""
8462
8463This is an overloaded intrinsic. You can use ``llvm.log2`` on any
8464floating point or vector of floating point type. Not all targets support
8465all types however.
8466
8467::
8468
8469 declare float @llvm.log2.f32(float %Val)
8470 declare double @llvm.log2.f64(double %Val)
8471 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
8472 declare fp128 @llvm.log2.f128(fp128 %Val)
8473 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
8474
8475Overview:
8476"""""""""
8477
8478The '``llvm.log2.*``' intrinsics perform the log2 function.
8479
8480Arguments:
8481""""""""""
8482
8483The argument and return value are floating point numbers of the same
8484type.
8485
8486Semantics:
8487""""""""""
8488
8489This function returns the same values as the libm ``log2`` functions
8490would, and handles error conditions in the same way.
8491
8492'``llvm.fma.*``' Intrinsic
8493^^^^^^^^^^^^^^^^^^^^^^^^^^
8494
8495Syntax:
8496"""""""
8497
8498This is an overloaded intrinsic. You can use ``llvm.fma`` on any
8499floating point or vector of floating point type. Not all targets support
8500all types however.
8501
8502::
8503
8504 declare float @llvm.fma.f32(float %a, float %b, float %c)
8505 declare double @llvm.fma.f64(double %a, double %b, double %c)
8506 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
8507 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
8508 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
8509
8510Overview:
8511"""""""""
8512
8513The '``llvm.fma.*``' intrinsics perform the fused multiply-add
8514operation.
8515
8516Arguments:
8517""""""""""
8518
8519The argument and return value are floating point numbers of the same
8520type.
8521
8522Semantics:
8523""""""""""
8524
8525This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008526would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00008527
8528'``llvm.fabs.*``' Intrinsic
8529^^^^^^^^^^^^^^^^^^^^^^^^^^^
8530
8531Syntax:
8532"""""""
8533
8534This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
8535floating point or vector of floating point type. Not all targets support
8536all types however.
8537
8538::
8539
8540 declare float @llvm.fabs.f32(float %Val)
8541 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008542 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008543 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008544 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008545
8546Overview:
8547"""""""""
8548
8549The '``llvm.fabs.*``' intrinsics return the absolute value of the
8550operand.
8551
8552Arguments:
8553""""""""""
8554
8555The argument and return value are floating point numbers of the same
8556type.
8557
8558Semantics:
8559""""""""""
8560
8561This function returns the same values as the libm ``fabs`` functions
8562would, and handles error conditions in the same way.
8563
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008564'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008565^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008566
8567Syntax:
8568"""""""
8569
8570This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
8571floating point or vector of floating point type. Not all targets support
8572all types however.
8573
8574::
8575
Matt Arsenault64313c92014-10-22 18:25:02 +00008576 declare float @llvm.minnum.f32(float %Val0, float %Val1)
8577 declare double @llvm.minnum.f64(double %Val0, double %Val1)
8578 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8579 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
8580 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008581
8582Overview:
8583"""""""""
8584
8585The '``llvm.minnum.*``' intrinsics return the minimum of the two
8586arguments.
8587
8588
8589Arguments:
8590""""""""""
8591
8592The arguments and return value are floating point numbers of the same
8593type.
8594
8595Semantics:
8596""""""""""
8597
8598Follows the IEEE-754 semantics for minNum, which also match for libm's
8599fmin.
8600
8601If either operand is a NaN, returns the other non-NaN operand. Returns
8602NaN only if both operands are NaN. If the operands compare equal,
8603returns a value that compares equal to both operands. This means that
8604fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8605
8606'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008607^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008608
8609Syntax:
8610"""""""
8611
8612This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
8613floating point or vector of floating point type. Not all targets support
8614all types however.
8615
8616::
8617
Matt Arsenault64313c92014-10-22 18:25:02 +00008618 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
8619 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
8620 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8621 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
8622 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008623
8624Overview:
8625"""""""""
8626
8627The '``llvm.maxnum.*``' intrinsics return the maximum of the two
8628arguments.
8629
8630
8631Arguments:
8632""""""""""
8633
8634The arguments and return value are floating point numbers of the same
8635type.
8636
8637Semantics:
8638""""""""""
8639Follows the IEEE-754 semantics for maxNum, which also match for libm's
8640fmax.
8641
8642If either operand is a NaN, returns the other non-NaN operand. Returns
8643NaN only if both operands are NaN. If the operands compare equal,
8644returns a value that compares equal to both operands. This means that
8645fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8646
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00008647'``llvm.copysign.*``' Intrinsic
8648^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8649
8650Syntax:
8651"""""""
8652
8653This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
8654floating point or vector of floating point type. Not all targets support
8655all types however.
8656
8657::
8658
8659 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
8660 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
8661 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
8662 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8663 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
8664
8665Overview:
8666"""""""""
8667
8668The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8669first operand and the sign of the second operand.
8670
8671Arguments:
8672""""""""""
8673
8674The arguments and return value are floating point numbers of the same
8675type.
8676
8677Semantics:
8678""""""""""
8679
8680This function returns the same values as the libm ``copysign``
8681functions would, and handles error conditions in the same way.
8682
Sean Silvab084af42012-12-07 10:36:55 +00008683'``llvm.floor.*``' Intrinsic
8684^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8685
8686Syntax:
8687"""""""
8688
8689This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8690floating point or vector of floating point type. Not all targets support
8691all types however.
8692
8693::
8694
8695 declare float @llvm.floor.f32(float %Val)
8696 declare double @llvm.floor.f64(double %Val)
8697 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
8698 declare fp128 @llvm.floor.f128(fp128 %Val)
8699 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
8700
8701Overview:
8702"""""""""
8703
8704The '``llvm.floor.*``' intrinsics return the floor of the operand.
8705
8706Arguments:
8707""""""""""
8708
8709The argument and return value are floating point numbers of the same
8710type.
8711
8712Semantics:
8713""""""""""
8714
8715This function returns the same values as the libm ``floor`` functions
8716would, and handles error conditions in the same way.
8717
8718'``llvm.ceil.*``' Intrinsic
8719^^^^^^^^^^^^^^^^^^^^^^^^^^^
8720
8721Syntax:
8722"""""""
8723
8724This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8725floating point or vector of floating point type. Not all targets support
8726all types however.
8727
8728::
8729
8730 declare float @llvm.ceil.f32(float %Val)
8731 declare double @llvm.ceil.f64(double %Val)
8732 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8733 declare fp128 @llvm.ceil.f128(fp128 %Val)
8734 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8735
8736Overview:
8737"""""""""
8738
8739The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8740
8741Arguments:
8742""""""""""
8743
8744The argument and return value are floating point numbers of the same
8745type.
8746
8747Semantics:
8748""""""""""
8749
8750This function returns the same values as the libm ``ceil`` functions
8751would, and handles error conditions in the same way.
8752
8753'``llvm.trunc.*``' Intrinsic
8754^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8755
8756Syntax:
8757"""""""
8758
8759This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8760floating point or vector of floating point type. Not all targets support
8761all types however.
8762
8763::
8764
8765 declare float @llvm.trunc.f32(float %Val)
8766 declare double @llvm.trunc.f64(double %Val)
8767 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8768 declare fp128 @llvm.trunc.f128(fp128 %Val)
8769 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8770
8771Overview:
8772"""""""""
8773
8774The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8775nearest integer not larger in magnitude than the operand.
8776
8777Arguments:
8778""""""""""
8779
8780The argument and return value are floating point numbers of the same
8781type.
8782
8783Semantics:
8784""""""""""
8785
8786This function returns the same values as the libm ``trunc`` functions
8787would, and handles error conditions in the same way.
8788
8789'``llvm.rint.*``' Intrinsic
8790^^^^^^^^^^^^^^^^^^^^^^^^^^^
8791
8792Syntax:
8793"""""""
8794
8795This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8796floating point or vector of floating point type. Not all targets support
8797all types however.
8798
8799::
8800
8801 declare float @llvm.rint.f32(float %Val)
8802 declare double @llvm.rint.f64(double %Val)
8803 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8804 declare fp128 @llvm.rint.f128(fp128 %Val)
8805 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8806
8807Overview:
8808"""""""""
8809
8810The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8811nearest integer. It may raise an inexact floating-point exception if the
8812operand isn't an integer.
8813
8814Arguments:
8815""""""""""
8816
8817The argument and return value are floating point numbers of the same
8818type.
8819
8820Semantics:
8821""""""""""
8822
8823This function returns the same values as the libm ``rint`` functions
8824would, and handles error conditions in the same way.
8825
8826'``llvm.nearbyint.*``' Intrinsic
8827^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8828
8829Syntax:
8830"""""""
8831
8832This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8833floating point or vector of floating point type. Not all targets support
8834all types however.
8835
8836::
8837
8838 declare float @llvm.nearbyint.f32(float %Val)
8839 declare double @llvm.nearbyint.f64(double %Val)
8840 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8841 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8842 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8843
8844Overview:
8845"""""""""
8846
8847The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
8848nearest integer.
8849
8850Arguments:
8851""""""""""
8852
8853The argument and return value are floating point numbers of the same
8854type.
8855
8856Semantics:
8857""""""""""
8858
8859This function returns the same values as the libm ``nearbyint``
8860functions would, and handles error conditions in the same way.
8861
Hal Finkel171817e2013-08-07 22:49:12 +00008862'``llvm.round.*``' Intrinsic
8863^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8864
8865Syntax:
8866"""""""
8867
8868This is an overloaded intrinsic. You can use ``llvm.round`` on any
8869floating point or vector of floating point type. Not all targets support
8870all types however.
8871
8872::
8873
8874 declare float @llvm.round.f32(float %Val)
8875 declare double @llvm.round.f64(double %Val)
8876 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
8877 declare fp128 @llvm.round.f128(fp128 %Val)
8878 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
8879
8880Overview:
8881"""""""""
8882
8883The '``llvm.round.*``' intrinsics returns the operand rounded to the
8884nearest integer.
8885
8886Arguments:
8887""""""""""
8888
8889The argument and return value are floating point numbers of the same
8890type.
8891
8892Semantics:
8893""""""""""
8894
8895This function returns the same values as the libm ``round``
8896functions would, and handles error conditions in the same way.
8897
Sean Silvab084af42012-12-07 10:36:55 +00008898Bit Manipulation Intrinsics
8899---------------------------
8900
8901LLVM provides intrinsics for a few important bit manipulation
8902operations. These allow efficient code generation for some algorithms.
8903
8904'``llvm.bswap.*``' Intrinsics
8905^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8906
8907Syntax:
8908"""""""
8909
8910This is an overloaded intrinsic function. You can use bswap on any
8911integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
8912
8913::
8914
8915 declare i16 @llvm.bswap.i16(i16 <id>)
8916 declare i32 @llvm.bswap.i32(i32 <id>)
8917 declare i64 @llvm.bswap.i64(i64 <id>)
8918
8919Overview:
8920"""""""""
8921
8922The '``llvm.bswap``' family of intrinsics is used to byte swap integer
8923values with an even number of bytes (positive multiple of 16 bits).
8924These are useful for performing operations on data that is not in the
8925target's native byte order.
8926
8927Semantics:
8928""""""""""
8929
8930The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
8931and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
8932intrinsic returns an i32 value that has the four bytes of the input i32
8933swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
8934returned i32 will have its bytes in 3, 2, 1, 0 order. The
8935``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
8936concept to additional even-byte lengths (6 bytes, 8 bytes and more,
8937respectively).
8938
8939'``llvm.ctpop.*``' Intrinsic
8940^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8941
8942Syntax:
8943"""""""
8944
8945This is an overloaded intrinsic. You can use llvm.ctpop on any integer
8946bit width, or on any vector with integer elements. Not all targets
8947support all bit widths or vector types, however.
8948
8949::
8950
8951 declare i8 @llvm.ctpop.i8(i8 <src>)
8952 declare i16 @llvm.ctpop.i16(i16 <src>)
8953 declare i32 @llvm.ctpop.i32(i32 <src>)
8954 declare i64 @llvm.ctpop.i64(i64 <src>)
8955 declare i256 @llvm.ctpop.i256(i256 <src>)
8956 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
8957
8958Overview:
8959"""""""""
8960
8961The '``llvm.ctpop``' family of intrinsics counts the number of bits set
8962in a value.
8963
8964Arguments:
8965""""""""""
8966
8967The only argument is the value to be counted. The argument may be of any
8968integer type, or a vector with integer elements. The return type must
8969match the argument type.
8970
8971Semantics:
8972""""""""""
8973
8974The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
8975each element of a vector.
8976
8977'``llvm.ctlz.*``' Intrinsic
8978^^^^^^^^^^^^^^^^^^^^^^^^^^^
8979
8980Syntax:
8981"""""""
8982
8983This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
8984integer bit width, or any vector whose elements are integers. Not all
8985targets support all bit widths or vector types, however.
8986
8987::
8988
8989 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
8990 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
8991 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
8992 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
8993 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
8994 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
8995
8996Overview:
8997"""""""""
8998
8999The '``llvm.ctlz``' family of intrinsic functions counts the number of
9000leading zeros in a variable.
9001
9002Arguments:
9003""""""""""
9004
9005The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00009006any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00009007type must match the first argument type.
9008
9009The second argument must be a constant and is a flag to indicate whether
9010the intrinsic should ensure that a zero as the first argument produces a
9011defined result. Historically some architectures did not provide a
9012defined result for zero values as efficiently, and many algorithms are
9013now predicated on avoiding zero-value inputs.
9014
9015Semantics:
9016""""""""""
9017
9018The '``llvm.ctlz``' intrinsic counts the leading (most significant)
9019zeros in a variable, or within each element of the vector. If
9020``src == 0`` then the result is the size in bits of the type of ``src``
9021if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
9022``llvm.ctlz(i32 2) = 30``.
9023
9024'``llvm.cttz.*``' Intrinsic
9025^^^^^^^^^^^^^^^^^^^^^^^^^^^
9026
9027Syntax:
9028"""""""
9029
9030This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
9031integer bit width, or any vector of integer elements. Not all targets
9032support all bit widths or vector types, however.
9033
9034::
9035
9036 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
9037 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
9038 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
9039 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
9040 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
9041 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
9042
9043Overview:
9044"""""""""
9045
9046The '``llvm.cttz``' family of intrinsic functions counts the number of
9047trailing zeros.
9048
9049Arguments:
9050""""""""""
9051
9052The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00009053any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00009054type must match the first argument type.
9055
9056The second argument must be a constant and is a flag to indicate whether
9057the intrinsic should ensure that a zero as the first argument produces a
9058defined result. Historically some architectures did not provide a
9059defined result for zero values as efficiently, and many algorithms are
9060now predicated on avoiding zero-value inputs.
9061
9062Semantics:
9063""""""""""
9064
9065The '``llvm.cttz``' intrinsic counts the trailing (least significant)
9066zeros in a variable, or within each element of a vector. If ``src == 0``
9067then the result is the size in bits of the type of ``src`` if
9068``is_zero_undef == 0`` and ``undef`` otherwise. For example,
9069``llvm.cttz(2) = 1``.
9070
Philip Reames34843ae2015-03-05 05:55:55 +00009071.. _int_overflow:
9072
Sean Silvab084af42012-12-07 10:36:55 +00009073Arithmetic with Overflow Intrinsics
9074-----------------------------------
9075
9076LLVM provides intrinsics for some arithmetic with overflow operations.
9077
9078'``llvm.sadd.with.overflow.*``' Intrinsics
9079^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9080
9081Syntax:
9082"""""""
9083
9084This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
9085on any integer bit width.
9086
9087::
9088
9089 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
9090 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
9091 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
9092
9093Overview:
9094"""""""""
9095
9096The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
9097a signed addition of the two arguments, and indicate whether an overflow
9098occurred during the signed summation.
9099
9100Arguments:
9101""""""""""
9102
9103The arguments (%a and %b) and the first element of the result structure
9104may be of integer types of any bit width, but they must have the same
9105bit width. The second element of the result structure must be of type
9106``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
9107addition.
9108
9109Semantics:
9110""""""""""
9111
9112The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009113a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00009114first element of which is the signed summation, and the second element
9115of which is a bit specifying if the signed summation resulted in an
9116overflow.
9117
9118Examples:
9119"""""""""
9120
9121.. code-block:: llvm
9122
9123 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
9124 %sum = extractvalue {i32, i1} %res, 0
9125 %obit = extractvalue {i32, i1} %res, 1
9126 br i1 %obit, label %overflow, label %normal
9127
9128'``llvm.uadd.with.overflow.*``' Intrinsics
9129^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9130
9131Syntax:
9132"""""""
9133
9134This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
9135on any integer bit width.
9136
9137::
9138
9139 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
9140 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
9141 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
9142
9143Overview:
9144"""""""""
9145
9146The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
9147an unsigned addition of the two arguments, and indicate whether a carry
9148occurred during the unsigned summation.
9149
9150Arguments:
9151""""""""""
9152
9153The arguments (%a and %b) and the first element of the result structure
9154may be of integer types of any bit width, but they must have the same
9155bit width. The second element of the result structure must be of type
9156``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9157addition.
9158
9159Semantics:
9160""""""""""
9161
9162The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009163an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00009164first element of which is the sum, and the second element of which is a
9165bit specifying if the unsigned summation resulted in a carry.
9166
9167Examples:
9168"""""""""
9169
9170.. code-block:: llvm
9171
9172 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
9173 %sum = extractvalue {i32, i1} %res, 0
9174 %obit = extractvalue {i32, i1} %res, 1
9175 br i1 %obit, label %carry, label %normal
9176
9177'``llvm.ssub.with.overflow.*``' Intrinsics
9178^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9179
9180Syntax:
9181"""""""
9182
9183This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
9184on any integer bit width.
9185
9186::
9187
9188 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
9189 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
9190 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
9191
9192Overview:
9193"""""""""
9194
9195The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
9196a signed subtraction of the two arguments, and indicate whether an
9197overflow occurred during the signed subtraction.
9198
9199Arguments:
9200""""""""""
9201
9202The arguments (%a and %b) and the first element of the result structure
9203may be of integer types of any bit width, but they must have the same
9204bit width. The second element of the result structure must be of type
9205``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
9206subtraction.
9207
9208Semantics:
9209""""""""""
9210
9211The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009212a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00009213first element of which is the subtraction, and the second element of
9214which is a bit specifying if the signed subtraction resulted in an
9215overflow.
9216
9217Examples:
9218"""""""""
9219
9220.. code-block:: llvm
9221
9222 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
9223 %sum = extractvalue {i32, i1} %res, 0
9224 %obit = extractvalue {i32, i1} %res, 1
9225 br i1 %obit, label %overflow, label %normal
9226
9227'``llvm.usub.with.overflow.*``' Intrinsics
9228^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9229
9230Syntax:
9231"""""""
9232
9233This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
9234on any integer bit width.
9235
9236::
9237
9238 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
9239 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
9240 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
9241
9242Overview:
9243"""""""""
9244
9245The '``llvm.usub.with.overflow``' family of intrinsic functions perform
9246an unsigned subtraction of the two arguments, and indicate whether an
9247overflow occurred during the unsigned subtraction.
9248
9249Arguments:
9250""""""""""
9251
9252The arguments (%a and %b) and the first element of the result structure
9253may be of integer types of any bit width, but they must have the same
9254bit width. The second element of the result structure must be of type
9255``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9256subtraction.
9257
9258Semantics:
9259""""""""""
9260
9261The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009262an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00009263the first element of which is the subtraction, and the second element of
9264which is a bit specifying if the unsigned subtraction resulted in an
9265overflow.
9266
9267Examples:
9268"""""""""
9269
9270.. code-block:: llvm
9271
9272 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
9273 %sum = extractvalue {i32, i1} %res, 0
9274 %obit = extractvalue {i32, i1} %res, 1
9275 br i1 %obit, label %overflow, label %normal
9276
9277'``llvm.smul.with.overflow.*``' Intrinsics
9278^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9279
9280Syntax:
9281"""""""
9282
9283This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
9284on any integer bit width.
9285
9286::
9287
9288 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
9289 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
9290 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
9291
9292Overview:
9293"""""""""
9294
9295The '``llvm.smul.with.overflow``' family of intrinsic functions perform
9296a signed multiplication of the two arguments, and indicate whether an
9297overflow occurred during the signed multiplication.
9298
9299Arguments:
9300""""""""""
9301
9302The arguments (%a and %b) and the first element of the result structure
9303may be of integer types of any bit width, but they must have the same
9304bit width. The second element of the result structure must be of type
9305``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
9306multiplication.
9307
9308Semantics:
9309""""""""""
9310
9311The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009312a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00009313the first element of which is the multiplication, and the second element
9314of which is a bit specifying if the signed multiplication resulted in an
9315overflow.
9316
9317Examples:
9318"""""""""
9319
9320.. code-block:: llvm
9321
9322 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
9323 %sum = extractvalue {i32, i1} %res, 0
9324 %obit = extractvalue {i32, i1} %res, 1
9325 br i1 %obit, label %overflow, label %normal
9326
9327'``llvm.umul.with.overflow.*``' Intrinsics
9328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9329
9330Syntax:
9331"""""""
9332
9333This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
9334on any integer bit width.
9335
9336::
9337
9338 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
9339 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
9340 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
9341
9342Overview:
9343"""""""""
9344
9345The '``llvm.umul.with.overflow``' family of intrinsic functions perform
9346a unsigned multiplication of the two arguments, and indicate whether an
9347overflow occurred during the unsigned multiplication.
9348
9349Arguments:
9350""""""""""
9351
9352The arguments (%a and %b) and the first element of the result structure
9353may be of integer types of any bit width, but they must have the same
9354bit width. The second element of the result structure must be of type
9355``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9356multiplication.
9357
9358Semantics:
9359""""""""""
9360
9361The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009362an unsigned multiplication of the two arguments. They return a structure ---
9363the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00009364element of which is a bit specifying if the unsigned multiplication
9365resulted in an overflow.
9366
9367Examples:
9368"""""""""
9369
9370.. code-block:: llvm
9371
9372 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
9373 %sum = extractvalue {i32, i1} %res, 0
9374 %obit = extractvalue {i32, i1} %res, 1
9375 br i1 %obit, label %overflow, label %normal
9376
9377Specialised Arithmetic Intrinsics
9378---------------------------------
9379
9380'``llvm.fmuladd.*``' Intrinsic
9381^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9382
9383Syntax:
9384"""""""
9385
9386::
9387
9388 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
9389 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
9390
9391Overview:
9392"""""""""
9393
9394The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00009395expressions that can be fused if the code generator determines that (a) the
9396target instruction set has support for a fused operation, and (b) that the
9397fused operation is more efficient than the equivalent, separate pair of mul
9398and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00009399
9400Arguments:
9401""""""""""
9402
9403The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
9404multiplicands, a and b, and an addend c.
9405
9406Semantics:
9407""""""""""
9408
9409The expression:
9410
9411::
9412
9413 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
9414
9415is equivalent to the expression a \* b + c, except that rounding will
9416not be performed between the multiplication and addition steps if the
9417code generator fuses the operations. Fusion is not guaranteed, even if
9418the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009419corresponding llvm.fma.\* intrinsic function should be used
9420instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00009421
9422Examples:
9423"""""""""
9424
9425.. code-block:: llvm
9426
Tim Northover675a0962014-06-13 14:24:23 +00009427 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00009428
9429Half Precision Floating Point Intrinsics
9430----------------------------------------
9431
9432For most target platforms, half precision floating point is a
9433storage-only format. This means that it is a dense encoding (in memory)
9434but does not support computation in the format.
9435
9436This means that code must first load the half-precision floating point
9437value as an i16, then convert it to float with
9438:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
9439then be performed on the float value (including extending to double
9440etc). To store the value back to memory, it is first converted to float
9441if needed, then converted to i16 with
9442:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
9443i16 value.
9444
9445.. _int_convert_to_fp16:
9446
9447'``llvm.convert.to.fp16``' Intrinsic
9448^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9449
9450Syntax:
9451"""""""
9452
9453::
9454
Tim Northoverfd7e4242014-07-17 10:51:23 +00009455 declare i16 @llvm.convert.to.fp16.f32(float %a)
9456 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00009457
9458Overview:
9459"""""""""
9460
Tim Northoverfd7e4242014-07-17 10:51:23 +00009461The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9462conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00009463
9464Arguments:
9465""""""""""
9466
9467The intrinsic function contains single argument - the value to be
9468converted.
9469
9470Semantics:
9471""""""""""
9472
Tim Northoverfd7e4242014-07-17 10:51:23 +00009473The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9474conventional floating point format to half precision floating point format. The
9475return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00009476
9477Examples:
9478"""""""""
9479
9480.. code-block:: llvm
9481
Tim Northoverfd7e4242014-07-17 10:51:23 +00009482 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00009483 store i16 %res, i16* @x, align 2
9484
9485.. _int_convert_from_fp16:
9486
9487'``llvm.convert.from.fp16``' Intrinsic
9488^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9489
9490Syntax:
9491"""""""
9492
9493::
9494
Tim Northoverfd7e4242014-07-17 10:51:23 +00009495 declare float @llvm.convert.from.fp16.f32(i16 %a)
9496 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009497
9498Overview:
9499"""""""""
9500
9501The '``llvm.convert.from.fp16``' intrinsic function performs a
9502conversion from half precision floating point format to single precision
9503floating point format.
9504
9505Arguments:
9506""""""""""
9507
9508The intrinsic function contains single argument - the value to be
9509converted.
9510
9511Semantics:
9512""""""""""
9513
9514The '``llvm.convert.from.fp16``' intrinsic function performs a
9515conversion from half single precision floating point format to single
9516precision floating point format. The input half-float value is
9517represented by an ``i16`` value.
9518
9519Examples:
9520"""""""""
9521
9522.. code-block:: llvm
9523
David Blaikiec7aabbb2015-03-04 22:06:14 +00009524 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00009525 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009526
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00009527.. _dbg_intrinsics:
9528
Sean Silvab084af42012-12-07 10:36:55 +00009529Debugger Intrinsics
9530-------------------
9531
9532The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
9533prefix), are described in the `LLVM Source Level
9534Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
9535document.
9536
9537Exception Handling Intrinsics
9538-----------------------------
9539
9540The LLVM exception handling intrinsics (which all start with
9541``llvm.eh.`` prefix), are described in the `LLVM Exception
9542Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
9543
9544.. _int_trampoline:
9545
9546Trampoline Intrinsics
9547---------------------
9548
9549These intrinsics make it possible to excise one parameter, marked with
9550the :ref:`nest <nest>` attribute, from a function. The result is a
9551callable function pointer lacking the nest parameter - the caller does
9552not need to provide a value for it. Instead, the value to use is stored
9553in advance in a "trampoline", a block of memory usually allocated on the
9554stack, which also contains code to splice the nest value into the
9555argument list. This is used to implement the GCC nested function address
9556extension.
9557
9558For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
9559then the resulting function pointer has signature ``i32 (i32, i32)*``.
9560It can be created as follows:
9561
9562.. code-block:: llvm
9563
9564 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +00009565 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +00009566 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
9567 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
9568 %fp = bitcast i8* %p to i32 (i32, i32)*
9569
9570The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
9571``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
9572
9573.. _int_it:
9574
9575'``llvm.init.trampoline``' Intrinsic
9576^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9577
9578Syntax:
9579"""""""
9580
9581::
9582
9583 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
9584
9585Overview:
9586"""""""""
9587
9588This fills the memory pointed to by ``tramp`` with executable code,
9589turning it into a trampoline.
9590
9591Arguments:
9592""""""""""
9593
9594The ``llvm.init.trampoline`` intrinsic takes three arguments, all
9595pointers. The ``tramp`` argument must point to a sufficiently large and
9596sufficiently aligned block of memory; this memory is written to by the
9597intrinsic. Note that the size and the alignment are target-specific -
9598LLVM currently provides no portable way of determining them, so a
9599front-end that generates this intrinsic needs to have some
9600target-specific knowledge. The ``func`` argument must hold a function
9601bitcast to an ``i8*``.
9602
9603Semantics:
9604""""""""""
9605
9606The block of memory pointed to by ``tramp`` is filled with target
9607dependent code, turning it into a function. Then ``tramp`` needs to be
9608passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
9609be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
9610function's signature is the same as that of ``func`` with any arguments
9611marked with the ``nest`` attribute removed. At most one such ``nest``
9612argument is allowed, and it must be of pointer type. Calling the new
9613function is equivalent to calling ``func`` with the same argument list,
9614but with ``nval`` used for the missing ``nest`` argument. If, after
9615calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
9616modified, then the effect of any later call to the returned function
9617pointer is undefined.
9618
9619.. _int_at:
9620
9621'``llvm.adjust.trampoline``' Intrinsic
9622^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9623
9624Syntax:
9625"""""""
9626
9627::
9628
9629 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
9630
9631Overview:
9632"""""""""
9633
9634This performs any required machine-specific adjustment to the address of
9635a trampoline (passed as ``tramp``).
9636
9637Arguments:
9638""""""""""
9639
9640``tramp`` must point to a block of memory which already has trampoline
9641code filled in by a previous call to
9642:ref:`llvm.init.trampoline <int_it>`.
9643
9644Semantics:
9645""""""""""
9646
9647On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009648different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00009649intrinsic returns the executable address corresponding to ``tramp``
9650after performing the required machine specific adjustments. The pointer
9651returned can then be :ref:`bitcast and executed <int_trampoline>`.
9652
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009653Masked Vector Load and Store Intrinsics
9654---------------------------------------
9655
9656LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
9657
9658.. _int_mload:
9659
9660'``llvm.masked.load.*``' Intrinsics
9661^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9662
9663Syntax:
9664"""""""
9665This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
9666
9667::
9668
9669 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
9670 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
9671
9672Overview:
9673"""""""""
9674
9675Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes in the passthru operand.
9676
9677
9678Arguments:
9679""""""""""
9680
9681The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean 'i1' values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of passthru operand are the same vector types.
9682
9683
9684Semantics:
9685""""""""""
9686
9687The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
9688The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
9689
9690
9691::
9692
9693 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009694
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009695 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +00009696 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009697 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009698
9699.. _int_mstore:
9700
9701'``llvm.masked.store.*``' Intrinsics
9702^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9703
9704Syntax:
9705"""""""
9706This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
9707
9708::
9709
9710 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
9711 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
9712
9713Overview:
9714"""""""""
9715
9716Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
9717
9718Arguments:
9719""""""""""
9720
9721The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
9722
9723
9724Semantics:
9725""""""""""
9726
9727The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
9728The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
9729
9730::
9731
9732 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009733
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009734 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +00009735 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009736 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
9737 store <16 x float> %res, <16 x float>* %ptr, align 4
9738
9739
Sean Silvab084af42012-12-07 10:36:55 +00009740Memory Use Markers
9741------------------
9742
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009743This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +00009744memory objects and ranges where variables are immutable.
9745
Reid Klecknera534a382013-12-19 02:14:12 +00009746.. _int_lifestart:
9747
Sean Silvab084af42012-12-07 10:36:55 +00009748'``llvm.lifetime.start``' Intrinsic
9749^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9750
9751Syntax:
9752"""""""
9753
9754::
9755
9756 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
9757
9758Overview:
9759"""""""""
9760
9761The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
9762object's lifetime.
9763
9764Arguments:
9765""""""""""
9766
9767The first argument is a constant integer representing the size of the
9768object, or -1 if it is variable sized. The second argument is a pointer
9769to the object.
9770
9771Semantics:
9772""""""""""
9773
9774This intrinsic indicates that before this point in the code, the value
9775of the memory pointed to by ``ptr`` is dead. This means that it is known
9776to never be used and has an undefined value. A load from the pointer
9777that precedes this intrinsic can be replaced with ``'undef'``.
9778
Reid Klecknera534a382013-12-19 02:14:12 +00009779.. _int_lifeend:
9780
Sean Silvab084af42012-12-07 10:36:55 +00009781'``llvm.lifetime.end``' Intrinsic
9782^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9783
9784Syntax:
9785"""""""
9786
9787::
9788
9789 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
9790
9791Overview:
9792"""""""""
9793
9794The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
9795object's lifetime.
9796
9797Arguments:
9798""""""""""
9799
9800The first argument is a constant integer representing the size of the
9801object, or -1 if it is variable sized. The second argument is a pointer
9802to the object.
9803
9804Semantics:
9805""""""""""
9806
9807This intrinsic indicates that after this point in the code, the value of
9808the memory pointed to by ``ptr`` is dead. This means that it is known to
9809never be used and has an undefined value. Any stores into the memory
9810object following this intrinsic may be removed as dead.
9811
9812'``llvm.invariant.start``' Intrinsic
9813^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9814
9815Syntax:
9816"""""""
9817
9818::
9819
9820 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
9821
9822Overview:
9823"""""""""
9824
9825The '``llvm.invariant.start``' intrinsic specifies that the contents of
9826a memory object will not change.
9827
9828Arguments:
9829""""""""""
9830
9831The first argument is a constant integer representing the size of the
9832object, or -1 if it is variable sized. The second argument is a pointer
9833to the object.
9834
9835Semantics:
9836""""""""""
9837
9838This intrinsic indicates that until an ``llvm.invariant.end`` that uses
9839the return value, the referenced memory location is constant and
9840unchanging.
9841
9842'``llvm.invariant.end``' Intrinsic
9843^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9844
9845Syntax:
9846"""""""
9847
9848::
9849
9850 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
9851
9852Overview:
9853"""""""""
9854
9855The '``llvm.invariant.end``' intrinsic specifies that the contents of a
9856memory object are mutable.
9857
9858Arguments:
9859""""""""""
9860
9861The first argument is the matching ``llvm.invariant.start`` intrinsic.
9862The second argument is a constant integer representing the size of the
9863object, or -1 if it is variable sized and the third argument is a
9864pointer to the object.
9865
9866Semantics:
9867""""""""""
9868
9869This intrinsic indicates that the memory is mutable again.
9870
9871General Intrinsics
9872------------------
9873
9874This class of intrinsics is designed to be generic and has no specific
9875purpose.
9876
9877'``llvm.var.annotation``' Intrinsic
9878^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9879
9880Syntax:
9881"""""""
9882
9883::
9884
9885 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9886
9887Overview:
9888"""""""""
9889
9890The '``llvm.var.annotation``' intrinsic.
9891
9892Arguments:
9893""""""""""
9894
9895The first argument is a pointer to a value, the second is a pointer to a
9896global string, the third is a pointer to a global string which is the
9897source file name, and the last argument is the line number.
9898
9899Semantics:
9900""""""""""
9901
9902This intrinsic allows annotation of local variables with arbitrary
9903strings. This can be useful for special purpose optimizations that want
9904to look for these annotations. These have no other defined use; they are
9905ignored by code generation and optimization.
9906
Michael Gottesman88d18832013-03-26 00:34:27 +00009907'``llvm.ptr.annotation.*``' Intrinsic
9908^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9909
9910Syntax:
9911"""""""
9912
9913This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
9914pointer to an integer of any width. *NOTE* you must specify an address space for
9915the pointer. The identifier for the default address space is the integer
9916'``0``'.
9917
9918::
9919
9920 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
9921 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
9922 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
9923 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
9924 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
9925
9926Overview:
9927"""""""""
9928
9929The '``llvm.ptr.annotation``' intrinsic.
9930
9931Arguments:
9932""""""""""
9933
9934The first argument is a pointer to an integer value of arbitrary bitwidth
9935(result of some expression), the second is a pointer to a global string, the
9936third is a pointer to a global string which is the source file name, and the
9937last argument is the line number. It returns the value of the first argument.
9938
9939Semantics:
9940""""""""""
9941
9942This intrinsic allows annotation of a pointer to an integer with arbitrary
9943strings. This can be useful for special purpose optimizations that want to look
9944for these annotations. These have no other defined use; they are ignored by code
9945generation and optimization.
9946
Sean Silvab084af42012-12-07 10:36:55 +00009947'``llvm.annotation.*``' Intrinsic
9948^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9949
9950Syntax:
9951"""""""
9952
9953This is an overloaded intrinsic. You can use '``llvm.annotation``' on
9954any integer bit width.
9955
9956::
9957
9958 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
9959 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
9960 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
9961 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
9962 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
9963
9964Overview:
9965"""""""""
9966
9967The '``llvm.annotation``' intrinsic.
9968
9969Arguments:
9970""""""""""
9971
9972The first argument is an integer value (result of some expression), the
9973second is a pointer to a global string, the third is a pointer to a
9974global string which is the source file name, and the last argument is
9975the line number. It returns the value of the first argument.
9976
9977Semantics:
9978""""""""""
9979
9980This intrinsic allows annotations to be put on arbitrary expressions
9981with arbitrary strings. This can be useful for special purpose
9982optimizations that want to look for these annotations. These have no
9983other defined use; they are ignored by code generation and optimization.
9984
9985'``llvm.trap``' Intrinsic
9986^^^^^^^^^^^^^^^^^^^^^^^^^
9987
9988Syntax:
9989"""""""
9990
9991::
9992
9993 declare void @llvm.trap() noreturn nounwind
9994
9995Overview:
9996"""""""""
9997
9998The '``llvm.trap``' intrinsic.
9999
10000Arguments:
10001""""""""""
10002
10003None.
10004
10005Semantics:
10006""""""""""
10007
10008This intrinsic is lowered to the target dependent trap instruction. If
10009the target does not have a trap instruction, this intrinsic will be
10010lowered to a call of the ``abort()`` function.
10011
10012'``llvm.debugtrap``' Intrinsic
10013^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10014
10015Syntax:
10016"""""""
10017
10018::
10019
10020 declare void @llvm.debugtrap() nounwind
10021
10022Overview:
10023"""""""""
10024
10025The '``llvm.debugtrap``' intrinsic.
10026
10027Arguments:
10028""""""""""
10029
10030None.
10031
10032Semantics:
10033""""""""""
10034
10035This intrinsic is lowered to code which is intended to cause an
10036execution trap with the intention of requesting the attention of a
10037debugger.
10038
10039'``llvm.stackprotector``' Intrinsic
10040^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10041
10042Syntax:
10043"""""""
10044
10045::
10046
10047 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
10048
10049Overview:
10050"""""""""
10051
10052The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
10053onto the stack at ``slot``. The stack slot is adjusted to ensure that it
10054is placed on the stack before local variables.
10055
10056Arguments:
10057""""""""""
10058
10059The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
10060The first argument is the value loaded from the stack guard
10061``@__stack_chk_guard``. The second variable is an ``alloca`` that has
10062enough space to hold the value of the guard.
10063
10064Semantics:
10065""""""""""
10066
Michael Gottesmandafc7d92013-08-12 18:35:32 +000010067This intrinsic causes the prologue/epilogue inserter to force the position of
10068the ``AllocaInst`` stack slot to be before local variables on the stack. This is
10069to ensure that if a local variable on the stack is overwritten, it will destroy
10070the value of the guard. When the function exits, the guard on the stack is
10071checked against the original guard by ``llvm.stackprotectorcheck``. If they are
10072different, then ``llvm.stackprotectorcheck`` causes the program to abort by
10073calling the ``__stack_chk_fail()`` function.
10074
10075'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000010076^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000010077
10078Syntax:
10079"""""""
10080
10081::
10082
10083 declare void @llvm.stackprotectorcheck(i8** <guard>)
10084
10085Overview:
10086"""""""""
10087
10088The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000010089created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000010090``__stack_chk_fail()`` function.
10091
Michael Gottesmandafc7d92013-08-12 18:35:32 +000010092Arguments:
10093""""""""""
10094
10095The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
10096the variable ``@__stack_chk_guard``.
10097
10098Semantics:
10099""""""""""
10100
10101This intrinsic is provided to perform the stack protector check by comparing
10102``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
10103values do not match call the ``__stack_chk_fail()`` function.
10104
10105The reason to provide this as an IR level intrinsic instead of implementing it
10106via other IR operations is that in order to perform this operation at the IR
10107level without an intrinsic, one would need to create additional basic blocks to
10108handle the success/failure cases. This makes it difficult to stop the stack
10109protector check from disrupting sibling tail calls in Codegen. With this
10110intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000010111codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000010112
Sean Silvab084af42012-12-07 10:36:55 +000010113'``llvm.objectsize``' Intrinsic
10114^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10115
10116Syntax:
10117"""""""
10118
10119::
10120
10121 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
10122 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
10123
10124Overview:
10125"""""""""
10126
10127The ``llvm.objectsize`` intrinsic is designed to provide information to
10128the optimizers to determine at compile time whether a) an operation
10129(like memcpy) will overflow a buffer that corresponds to an object, or
10130b) that a runtime check for overflow isn't necessary. An object in this
10131context means an allocation of a specific class, structure, array, or
10132other object.
10133
10134Arguments:
10135""""""""""
10136
10137The ``llvm.objectsize`` intrinsic takes two arguments. The first
10138argument is a pointer to or into the ``object``. The second argument is
10139a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
10140or -1 (if false) when the object size is unknown. The second argument
10141only accepts constants.
10142
10143Semantics:
10144""""""""""
10145
10146The ``llvm.objectsize`` intrinsic is lowered to a constant representing
10147the size of the object concerned. If the size cannot be determined at
10148compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
10149on the ``min`` argument).
10150
10151'``llvm.expect``' Intrinsic
10152^^^^^^^^^^^^^^^^^^^^^^^^^^^
10153
10154Syntax:
10155"""""""
10156
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000010157This is an overloaded intrinsic. You can use ``llvm.expect`` on any
10158integer bit width.
10159
Sean Silvab084af42012-12-07 10:36:55 +000010160::
10161
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000010162 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000010163 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
10164 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
10165
10166Overview:
10167"""""""""
10168
10169The ``llvm.expect`` intrinsic provides information about expected (the
10170most probable) value of ``val``, which can be used by optimizers.
10171
10172Arguments:
10173""""""""""
10174
10175The ``llvm.expect`` intrinsic takes two arguments. The first argument is
10176a value. The second argument is an expected value, this needs to be a
10177constant value, variables are not allowed.
10178
10179Semantics:
10180""""""""""
10181
10182This intrinsic is lowered to the ``val``.
10183
Hal Finkel93046912014-07-25 21:13:35 +000010184'``llvm.assume``' Intrinsic
10185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10186
10187Syntax:
10188"""""""
10189
10190::
10191
10192 declare void @llvm.assume(i1 %cond)
10193
10194Overview:
10195"""""""""
10196
10197The ``llvm.assume`` allows the optimizer to assume that the provided
10198condition is true. This information can then be used in simplifying other parts
10199of the code.
10200
10201Arguments:
10202""""""""""
10203
10204The condition which the optimizer may assume is always true.
10205
10206Semantics:
10207""""""""""
10208
10209The intrinsic allows the optimizer to assume that the provided condition is
10210always true whenever the control flow reaches the intrinsic call. No code is
10211generated for this intrinsic, and instructions that contribute only to the
10212provided condition are not used for code generation. If the condition is
10213violated during execution, the behavior is undefined.
10214
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000010215Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000010216used by the ``llvm.assume`` intrinsic in order to preserve the instructions
10217only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000010218if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000010219sufficient overall improvement in code quality. For this reason,
10220``llvm.assume`` should not be used to document basic mathematical invariants
10221that the optimizer can otherwise deduce or facts that are of little use to the
10222optimizer.
10223
Peter Collingbournee6909c82015-02-20 20:30:47 +000010224.. _bitset.test:
10225
10226'``llvm.bitset.test``' Intrinsic
10227^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10228
10229Syntax:
10230"""""""
10231
10232::
10233
10234 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
10235
10236
10237Arguments:
10238""""""""""
10239
10240The first argument is a pointer to be tested. The second argument is a
10241metadata string containing the name of a :doc:`bitset <BitSets>`.
10242
10243Overview:
10244"""""""""
10245
10246The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
10247member of the given bitset.
10248
Sean Silvab084af42012-12-07 10:36:55 +000010249'``llvm.donothing``' Intrinsic
10250^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10251
10252Syntax:
10253"""""""
10254
10255::
10256
10257 declare void @llvm.donothing() nounwind readnone
10258
10259Overview:
10260"""""""""
10261
Juergen Ributzkac9161192014-10-23 22:36:13 +000010262The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
10263two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
10264with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000010265
10266Arguments:
10267""""""""""
10268
10269None.
10270
10271Semantics:
10272""""""""""
10273
10274This intrinsic does nothing, and it's removed by optimizers and ignored
10275by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000010276
10277Stack Map Intrinsics
10278--------------------
10279
10280LLVM provides experimental intrinsics to support runtime patching
10281mechanisms commonly desired in dynamic language JITs. These intrinsics
10282are described in :doc:`StackMaps`.