blob: 2f8d6f5d5c5dffff196d5c1d3291a8b33beaa6d8 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000351 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000356 This calling convention attempts to make the code in the caller as
357 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000497.. _namedtypes:
498
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000499Structure Types
500---------------
Sean Silvab084af42012-12-07 10:36:55 +0000501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
503types <t_struct>`. Literal types are uniqued structurally, but identified types
504are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000505to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000506
507An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000508
509.. code-block:: llvm
510
511 %mytype = type { %mytype*, i32 }
512
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000513Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
514literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000515
516.. _globalvars:
517
518Global Variables
519----------------
520
521Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000522instead of run-time.
523
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000524Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525
526Global variables in other translation units can also be declared, in which
527case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000528
Bob Wilson85b24f22014-06-12 20:40:33 +0000529Either global variable definitions or declarations may have an explicit section
530to be placed in and may have an optional explicit alignment specified.
531
Michael Gottesman006039c2013-01-31 05:48:48 +0000532A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000536initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000567Additionally, the global can placed in a comdat if the target has the necessary
568support.
Sean Silvab084af42012-12-07 10:36:55 +0000569
Michael Gottesmane743a302013-02-04 03:22:00 +0000570By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000571variables defined within the module are not modified from their
572initial values before the start of the global initializer. This is
573true even for variables potentially accessible from outside the
574module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000575``@llvm.used`` or dllexported variables. This assumption may be suppressed
576by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000577
Sean Silvab084af42012-12-07 10:36:55 +0000578An explicit alignment may be specified for a global, which must be a
579power of 2. If not present, or if the alignment is set to zero, the
580alignment of the global is set by the target to whatever it feels
581convenient. If an explicit alignment is specified, the global is forced
582to have exactly that alignment. Targets and optimizers are not allowed
583to over-align the global if the global has an assigned section. In this
584case, the extra alignment could be observable: for example, code could
585assume that the globals are densely packed in their section and try to
586iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000587iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000588
Nico Rieck7157bb72014-01-14 15:22:47 +0000589Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
590
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000591Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000592:ref:`Thread Local Storage Model <tls_model>`.
593
Nico Rieck7157bb72014-01-14 15:22:47 +0000594Syntax::
595
596 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000597 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000598 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000599 [, section "name"] [, comdat [($name)]]
600 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000601
Sean Silvab084af42012-12-07 10:36:55 +0000602For example, the following defines a global in a numbered address space
603with an initializer, section, and alignment:
604
605.. code-block:: llvm
606
607 @G = addrspace(5) constant float 1.0, section "foo", align 4
608
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000609The following example just declares a global variable
610
611.. code-block:: llvm
612
613 @G = external global i32
614
Sean Silvab084af42012-12-07 10:36:55 +0000615The following example defines a thread-local global with the
616``initialexec`` TLS model:
617
618.. code-block:: llvm
619
620 @G = thread_local(initialexec) global i32 0, align 4
621
622.. _functionstructure:
623
624Functions
625---------
626
627LLVM function definitions consist of the "``define``" keyword, an
628optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000629style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
630an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000631an optional ``unnamed_addr`` attribute, a return type, an optional
632:ref:`parameter attribute <paramattrs>` for the return type, a function
633name, a (possibly empty) argument list (each with optional :ref:`parameter
634attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000635an optional section, an optional alignment,
636an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000637an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000638an optional :ref:`prologue <prologuedata>`,
639an optional :ref:`personality <personalityfn>`,
640an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000641
642LLVM function declarations consist of the "``declare``" keyword, an
643optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000644style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
645an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000646an optional ``unnamed_addr`` attribute, a return type, an optional
647:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000648name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000649:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
650and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000651
Bill Wendling6822ecb2013-10-27 05:09:12 +0000652A function definition contains a list of basic blocks, forming the CFG (Control
653Flow Graph) for the function. Each basic block may optionally start with a label
654(giving the basic block a symbol table entry), contains a list of instructions,
655and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
656function return). If an explicit label is not provided, a block is assigned an
657implicit numbered label, using the next value from the same counter as used for
658unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
659entry block does not have an explicit label, it will be assigned label "%0",
660then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000661
662The first basic block in a function is special in two ways: it is
663immediately executed on entrance to the function, and it is not allowed
664to have predecessor basic blocks (i.e. there can not be any branches to
665the entry block of a function). Because the block can have no
666predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
667
668LLVM allows an explicit section to be specified for functions. If the
669target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000670Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000671
672An explicit alignment may be specified for a function. If not present,
673or if the alignment is set to zero, the alignment of the function is set
674by the target to whatever it feels convenient. If an explicit alignment
675is specified, the function is forced to have at least that much
676alignment. All alignments must be a power of 2.
677
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000678If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000679be significant and two identical functions can be merged.
680
681Syntax::
682
Nico Rieck7157bb72014-01-14 15:22:47 +0000683 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000684 [cconv] [ret attrs]
685 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000686 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000687 [align N] [gc] [prefix Constant] [prologue Constant]
688 [personality Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000689
Dan Liew2661dfc2014-08-20 15:06:30 +0000690The argument list is a comma seperated sequence of arguments where each
691argument is of the following form
692
693Syntax::
694
695 <type> [parameter Attrs] [name]
696
697
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000698.. _langref_aliases:
699
Sean Silvab084af42012-12-07 10:36:55 +0000700Aliases
701-------
702
Rafael Espindola64c1e182014-06-03 02:41:57 +0000703Aliases, unlike function or variables, don't create any new data. They
704are just a new symbol and metadata for an existing position.
705
706Aliases have a name and an aliasee that is either a global value or a
707constant expression.
708
Nico Rieck7157bb72014-01-14 15:22:47 +0000709Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000710:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
711<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000712
713Syntax::
714
Rafael Espindola464fe022014-07-30 22:51:54 +0000715 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000716
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000717The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000718``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000719might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000720
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000721Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000722the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
723to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000724
Rafael Espindola64c1e182014-06-03 02:41:57 +0000725Since aliases are only a second name, some restrictions apply, of which
726some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728* The expression defining the aliasee must be computable at assembly
729 time. Since it is just a name, no relocations can be used.
730
731* No alias in the expression can be weak as the possibility of the
732 intermediate alias being overridden cannot be represented in an
733 object file.
734
735* No global value in the expression can be a declaration, since that
736 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000737
David Majnemerdad0a642014-06-27 18:19:56 +0000738.. _langref_comdats:
739
740Comdats
741-------
742
743Comdat IR provides access to COFF and ELF object file COMDAT functionality.
744
Richard Smith32dbdf62014-07-31 04:25:36 +0000745Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000746specify this key will only end up in the final object file if the linker chooses
747that key over some other key. Aliases are placed in the same COMDAT that their
748aliasee computes to, if any.
749
750Comdats have a selection kind to provide input on how the linker should
751choose between keys in two different object files.
752
753Syntax::
754
755 $<Name> = comdat SelectionKind
756
757The selection kind must be one of the following:
758
759``any``
760 The linker may choose any COMDAT key, the choice is arbitrary.
761``exactmatch``
762 The linker may choose any COMDAT key but the sections must contain the
763 same data.
764``largest``
765 The linker will choose the section containing the largest COMDAT key.
766``noduplicates``
767 The linker requires that only section with this COMDAT key exist.
768``samesize``
769 The linker may choose any COMDAT key but the sections must contain the
770 same amount of data.
771
772Note that the Mach-O platform doesn't support COMDATs and ELF only supports
773``any`` as a selection kind.
774
775Here is an example of a COMDAT group where a function will only be selected if
776the COMDAT key's section is the largest:
777
778.. code-block:: llvm
779
780 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000781 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000782
Rafael Espindola83a362c2015-01-06 22:55:16 +0000783 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000784 ret void
785 }
786
Rafael Espindola83a362c2015-01-06 22:55:16 +0000787As a syntactic sugar the ``$name`` can be omitted if the name is the same as
788the global name:
789
790.. code-block:: llvm
791
792 $foo = comdat any
793 @foo = global i32 2, comdat
794
795
David Majnemerdad0a642014-06-27 18:19:56 +0000796In a COFF object file, this will create a COMDAT section with selection kind
797``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
798and another COMDAT section with selection kind
799``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000800section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000801
802There are some restrictions on the properties of the global object.
803It, or an alias to it, must have the same name as the COMDAT group when
804targeting COFF.
805The contents and size of this object may be used during link-time to determine
806which COMDAT groups get selected depending on the selection kind.
807Because the name of the object must match the name of the COMDAT group, the
808linkage of the global object must not be local; local symbols can get renamed
809if a collision occurs in the symbol table.
810
811The combined use of COMDATS and section attributes may yield surprising results.
812For example:
813
814.. code-block:: llvm
815
816 $foo = comdat any
817 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000818 @g1 = global i32 42, section "sec", comdat($foo)
819 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000820
821From the object file perspective, this requires the creation of two sections
822with the same name. This is necessary because both globals belong to different
823COMDAT groups and COMDATs, at the object file level, are represented by
824sections.
825
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000826Note that certain IR constructs like global variables and functions may
827create COMDATs in the object file in addition to any which are specified using
828COMDAT IR. This arises when the code generator is configured to emit globals
829in individual sections (e.g. when `-data-sections` or `-function-sections`
830is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000831
Sean Silvab084af42012-12-07 10:36:55 +0000832.. _namedmetadatastructure:
833
834Named Metadata
835--------------
836
837Named metadata is a collection of metadata. :ref:`Metadata
838nodes <metadata>` (but not metadata strings) are the only valid
839operands for a named metadata.
840
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000841#. Named metadata are represented as a string of characters with the
842 metadata prefix. The rules for metadata names are the same as for
843 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
844 are still valid, which allows any character to be part of a name.
845
Sean Silvab084af42012-12-07 10:36:55 +0000846Syntax::
847
848 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000849 !0 = !{!"zero"}
850 !1 = !{!"one"}
851 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000852 ; A named metadata.
853 !name = !{!0, !1, !2}
854
855.. _paramattrs:
856
857Parameter Attributes
858--------------------
859
860The return type and each parameter of a function type may have a set of
861*parameter attributes* associated with them. Parameter attributes are
862used to communicate additional information about the result or
863parameters of a function. Parameter attributes are considered to be part
864of the function, not of the function type, so functions with different
865parameter attributes can have the same function type.
866
867Parameter attributes are simple keywords that follow the type specified.
868If multiple parameter attributes are needed, they are space separated.
869For example:
870
871.. code-block:: llvm
872
873 declare i32 @printf(i8* noalias nocapture, ...)
874 declare i32 @atoi(i8 zeroext)
875 declare signext i8 @returns_signed_char()
876
877Note that any attributes for the function result (``nounwind``,
878``readonly``) come immediately after the argument list.
879
880Currently, only the following parameter attributes are defined:
881
882``zeroext``
883 This indicates to the code generator that the parameter or return
884 value should be zero-extended to the extent required by the target's
885 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
886 the caller (for a parameter) or the callee (for a return value).
887``signext``
888 This indicates to the code generator that the parameter or return
889 value should be sign-extended to the extent required by the target's
890 ABI (which is usually 32-bits) by the caller (for a parameter) or
891 the callee (for a return value).
892``inreg``
893 This indicates that this parameter or return value should be treated
894 in a special target-dependent fashion during while emitting code for
895 a function call or return (usually, by putting it in a register as
896 opposed to memory, though some targets use it to distinguish between
897 two different kinds of registers). Use of this attribute is
898 target-specific.
899``byval``
900 This indicates that the pointer parameter should really be passed by
901 value to the function. The attribute implies that a hidden copy of
902 the pointee is made between the caller and the callee, so the callee
903 is unable to modify the value in the caller. This attribute is only
904 valid on LLVM pointer arguments. It is generally used to pass
905 structs and arrays by value, but is also valid on pointers to
906 scalars. The copy is considered to belong to the caller not the
907 callee (for example, ``readonly`` functions should not write to
908 ``byval`` parameters). This is not a valid attribute for return
909 values.
910
911 The byval attribute also supports specifying an alignment with the
912 align attribute. It indicates the alignment of the stack slot to
913 form and the known alignment of the pointer specified to the call
914 site. If the alignment is not specified, then the code generator
915 makes a target-specific assumption.
916
Reid Klecknera534a382013-12-19 02:14:12 +0000917.. _attr_inalloca:
918
919``inalloca``
920
Reid Kleckner60d3a832014-01-16 22:59:24 +0000921 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000922 address of outgoing stack arguments. An ``inalloca`` argument must
923 be a pointer to stack memory produced by an ``alloca`` instruction.
924 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000925 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000926 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000927
Reid Kleckner436c42e2014-01-17 23:58:17 +0000928 An argument allocation may be used by a call at most once because
929 the call may deallocate it. The ``inalloca`` attribute cannot be
930 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000931 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
932 ``inalloca`` attribute also disables LLVM's implicit lowering of
933 large aggregate return values, which means that frontend authors
934 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000935
Reid Kleckner60d3a832014-01-16 22:59:24 +0000936 When the call site is reached, the argument allocation must have
937 been the most recent stack allocation that is still live, or the
938 results are undefined. It is possible to allocate additional stack
939 space after an argument allocation and before its call site, but it
940 must be cleared off with :ref:`llvm.stackrestore
941 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000942
943 See :doc:`InAlloca` for more information on how to use this
944 attribute.
945
Sean Silvab084af42012-12-07 10:36:55 +0000946``sret``
947 This indicates that the pointer parameter specifies the address of a
948 structure that is the return value of the function in the source
949 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000950 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000951 not to trap and to be properly aligned. This may only be applied to
952 the first parameter. This is not a valid attribute for return
953 values.
Sean Silva1703e702014-04-08 21:06:22 +0000954
Hal Finkelccc70902014-07-22 16:58:55 +0000955``align <n>``
956 This indicates that the pointer value may be assumed by the optimizer to
957 have the specified alignment.
958
959 Note that this attribute has additional semantics when combined with the
960 ``byval`` attribute.
961
Sean Silva1703e702014-04-08 21:06:22 +0000962.. _noalias:
963
Sean Silvab084af42012-12-07 10:36:55 +0000964``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000965 This indicates that objects accessed via pointer values
966 :ref:`based <pointeraliasing>` on the argument or return value are not also
967 accessed, during the execution of the function, via pointer values not
968 *based* on the argument or return value. The attribute on a return value
969 also has additional semantics described below. The caller shares the
970 responsibility with the callee for ensuring that these requirements are met.
971 For further details, please see the discussion of the NoAlias response in
972 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000973
974 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000975 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000976
977 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000978 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
979 attribute on return values are stronger than the semantics of the attribute
980 when used on function arguments. On function return values, the ``noalias``
981 attribute indicates that the function acts like a system memory allocation
982 function, returning a pointer to allocated storage disjoint from the
983 storage for any other object accessible to the caller.
984
Sean Silvab084af42012-12-07 10:36:55 +0000985``nocapture``
986 This indicates that the callee does not make any copies of the
987 pointer that outlive the callee itself. This is not a valid
988 attribute for return values.
989
990.. _nest:
991
992``nest``
993 This indicates that the pointer parameter can be excised using the
994 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000995 attribute for return values and can only be applied to one parameter.
996
997``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000998 This indicates that the function always returns the argument as its return
999 value. This is an optimization hint to the code generator when generating
1000 the caller, allowing tail call optimization and omission of register saves
1001 and restores in some cases; it is not checked or enforced when generating
1002 the callee. The parameter and the function return type must be valid
1003 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1004 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001005
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001006``nonnull``
1007 This indicates that the parameter or return pointer is not null. This
1008 attribute may only be applied to pointer typed parameters. This is not
1009 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001010 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001011 is non-null.
1012
Hal Finkelb0407ba2014-07-18 15:51:28 +00001013``dereferenceable(<n>)``
1014 This indicates that the parameter or return pointer is dereferenceable. This
1015 attribute may only be applied to pointer typed parameters. A pointer that
1016 is dereferenceable can be loaded from speculatively without a risk of
1017 trapping. The number of bytes known to be dereferenceable must be provided
1018 in parentheses. It is legal for the number of bytes to be less than the
1019 size of the pointee type. The ``nonnull`` attribute does not imply
1020 dereferenceability (consider a pointer to one element past the end of an
1021 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1022 ``addrspace(0)`` (which is the default address space).
1023
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001024``dereferenceable_or_null(<n>)``
1025 This indicates that the parameter or return value isn't both
1026 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
1027 time. All non-null pointers tagged with
1028 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1029 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1030 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1031 and in other address spaces ``dereferenceable_or_null(<n>)``
1032 implies that a pointer is at least one of ``dereferenceable(<n>)``
1033 or ``null`` (i.e. it may be both ``null`` and
1034 ``dereferenceable(<n>)``). This attribute may only be applied to
1035 pointer typed parameters.
1036
Sean Silvab084af42012-12-07 10:36:55 +00001037.. _gc:
1038
Philip Reamesf80bbff2015-02-25 23:45:20 +00001039Garbage Collector Strategy Names
1040--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001041
Philip Reamesf80bbff2015-02-25 23:45:20 +00001042Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001043string:
1044
1045.. code-block:: llvm
1046
1047 define void @f() gc "name" { ... }
1048
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001049The supported values of *name* includes those :ref:`built in to LLVM
Philip Reamesf80bbff2015-02-25 23:45:20 +00001050<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001051strategy will cause the compiler to alter its output in order to support the
1052named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001053garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001054which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001055
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001056.. _prefixdata:
1057
1058Prefix Data
1059-----------
1060
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001061Prefix data is data associated with a function which the code
1062generator will emit immediately before the function's entrypoint.
1063The purpose of this feature is to allow frontends to associate
1064language-specific runtime metadata with specific functions and make it
1065available through the function pointer while still allowing the
1066function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001067
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001068To access the data for a given function, a program may bitcast the
1069function pointer to a pointer to the constant's type and dereference
1070index -1. This implies that the IR symbol points just past the end of
1071the prefix data. For instance, take the example of a function annotated
1072with a single ``i32``,
1073
1074.. code-block:: llvm
1075
1076 define void @f() prefix i32 123 { ... }
1077
1078The prefix data can be referenced as,
1079
1080.. code-block:: llvm
1081
David Blaikie16a97eb2015-03-04 22:02:58 +00001082 %0 = bitcast void* () @f to i32*
1083 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001084 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001085
1086Prefix data is laid out as if it were an initializer for a global variable
1087of the prefix data's type. The function will be placed such that the
1088beginning of the prefix data is aligned. This means that if the size
1089of the prefix data is not a multiple of the alignment size, the
1090function's entrypoint will not be aligned. If alignment of the
1091function's entrypoint is desired, padding must be added to the prefix
1092data.
1093
1094A function may have prefix data but no body. This has similar semantics
1095to the ``available_externally`` linkage in that the data may be used by the
1096optimizers but will not be emitted in the object file.
1097
1098.. _prologuedata:
1099
1100Prologue Data
1101-------------
1102
1103The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1104be inserted prior to the function body. This can be used for enabling
1105function hot-patching and instrumentation.
1106
1107To maintain the semantics of ordinary function calls, the prologue data must
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001108have a particular format. Specifically, it must begin with a sequence of
1109bytes which decode to a sequence of machine instructions, valid for the
1110module's target, which transfer control to the point immediately succeeding
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001111the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001112the inliner and other passes to reason about the semantics of the function
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001113definition without needing to reason about the prologue data. Obviously this
1114makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001115
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001116A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001117which encodes the ``nop`` instruction:
1118
1119.. code-block:: llvm
1120
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001121 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001122
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001123Generally prologue data can be formed by encoding a relative branch instruction
1124which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001125x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1126
1127.. code-block:: llvm
1128
1129 %0 = type <{ i8, i8, i8* }>
1130
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001131 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001132
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001133A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001134to the ``available_externally`` linkage in that the data may be used by the
1135optimizers but will not be emitted in the object file.
1136
David Majnemer7fddecc2015-06-17 20:52:32 +00001137.. _personalityfn:
1138
1139Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001140--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001141
1142The ``personality`` attribute permits functions to specify what function
1143to use for exception handling.
1144
Bill Wendling63b88192013-02-06 06:52:58 +00001145.. _attrgrp:
1146
1147Attribute Groups
1148----------------
1149
1150Attribute groups are groups of attributes that are referenced by objects within
1151the IR. They are important for keeping ``.ll`` files readable, because a lot of
1152functions will use the same set of attributes. In the degenerative case of a
1153``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1154group will capture the important command line flags used to build that file.
1155
1156An attribute group is a module-level object. To use an attribute group, an
1157object references the attribute group's ID (e.g. ``#37``). An object may refer
1158to more than one attribute group. In that situation, the attributes from the
1159different groups are merged.
1160
1161Here is an example of attribute groups for a function that should always be
1162inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1163
1164.. code-block:: llvm
1165
1166 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001167 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001168
1169 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001170 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001171
1172 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1173 define void @f() #0 #1 { ... }
1174
Sean Silvab084af42012-12-07 10:36:55 +00001175.. _fnattrs:
1176
1177Function Attributes
1178-------------------
1179
1180Function attributes are set to communicate additional information about
1181a function. Function attributes are considered to be part of the
1182function, not of the function type, so functions with different function
1183attributes can have the same function type.
1184
1185Function attributes are simple keywords that follow the type specified.
1186If multiple attributes are needed, they are space separated. For
1187example:
1188
1189.. code-block:: llvm
1190
1191 define void @f() noinline { ... }
1192 define void @f() alwaysinline { ... }
1193 define void @f() alwaysinline optsize { ... }
1194 define void @f() optsize { ... }
1195
Sean Silvab084af42012-12-07 10:36:55 +00001196``alignstack(<n>)``
1197 This attribute indicates that, when emitting the prologue and
1198 epilogue, the backend should forcibly align the stack pointer.
1199 Specify the desired alignment, which must be a power of two, in
1200 parentheses.
1201``alwaysinline``
1202 This attribute indicates that the inliner should attempt to inline
1203 this function into callers whenever possible, ignoring any active
1204 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001205``builtin``
1206 This indicates that the callee function at a call site should be
1207 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001208 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001209 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001210 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001211``cold``
1212 This attribute indicates that this function is rarely called. When
1213 computing edge weights, basic blocks post-dominated by a cold
1214 function call are also considered to be cold; and, thus, given low
1215 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001216``convergent``
1217 This attribute indicates that the callee is dependent on a convergent
1218 thread execution pattern under certain parallel execution models.
1219 Transformations that are execution model agnostic may only move or
1220 tranform this call if the final location is control equivalent to its
1221 original position in the program, where control equivalence is defined as
1222 A dominates B and B post-dominates A, or vice versa.
Sean Silvab084af42012-12-07 10:36:55 +00001223``inlinehint``
1224 This attribute indicates that the source code contained a hint that
1225 inlining this function is desirable (such as the "inline" keyword in
1226 C/C++). It is just a hint; it imposes no requirements on the
1227 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001228``jumptable``
1229 This attribute indicates that the function should be added to a
1230 jump-instruction table at code-generation time, and that all address-taken
1231 references to this function should be replaced with a reference to the
1232 appropriate jump-instruction-table function pointer. Note that this creates
1233 a new pointer for the original function, which means that code that depends
1234 on function-pointer identity can break. So, any function annotated with
1235 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001236``minsize``
1237 This attribute suggests that optimization passes and code generator
1238 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001239 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001240 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001241``naked``
1242 This attribute disables prologue / epilogue emission for the
1243 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001244``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001245 This indicates that the callee function at a call site is not recognized as
1246 a built-in function. LLVM will retain the original call and not replace it
1247 with equivalent code based on the semantics of the built-in function, unless
1248 the call site uses the ``builtin`` attribute. This is valid at call sites
1249 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001250``noduplicate``
1251 This attribute indicates that calls to the function cannot be
1252 duplicated. A call to a ``noduplicate`` function may be moved
1253 within its parent function, but may not be duplicated within
1254 its parent function.
1255
1256 A function containing a ``noduplicate`` call may still
1257 be an inlining candidate, provided that the call is not
1258 duplicated by inlining. That implies that the function has
1259 internal linkage and only has one call site, so the original
1260 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001261``noimplicitfloat``
1262 This attributes disables implicit floating point instructions.
1263``noinline``
1264 This attribute indicates that the inliner should never inline this
1265 function in any situation. This attribute may not be used together
1266 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001267``nonlazybind``
1268 This attribute suppresses lazy symbol binding for the function. This
1269 may make calls to the function faster, at the cost of extra program
1270 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001271``noredzone``
1272 This attribute indicates that the code generator should not use a
1273 red zone, even if the target-specific ABI normally permits it.
1274``noreturn``
1275 This function attribute indicates that the function never returns
1276 normally. This produces undefined behavior at runtime if the
1277 function ever does dynamically return.
1278``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001279 This function attribute indicates that the function never raises an
1280 exception. If the function does raise an exception, its runtime
1281 behavior is undefined. However, functions marked nounwind may still
1282 trap or generate asynchronous exceptions. Exception handling schemes
1283 that are recognized by LLVM to handle asynchronous exceptions, such
1284 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001285``optnone``
1286 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001287 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001288 exception of interprocedural optimization passes.
1289 This attribute cannot be used together with the ``alwaysinline``
1290 attribute; this attribute is also incompatible
1291 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001292
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001293 This attribute requires the ``noinline`` attribute to be specified on
1294 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001295 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001296 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001297``optsize``
1298 This attribute suggests that optimization passes and code generator
1299 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001300 and otherwise do optimizations specifically to reduce code size as
1301 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001302``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001303 On a function, this attribute indicates that the function computes its
1304 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001305 without dereferencing any pointer arguments or otherwise accessing
1306 any mutable state (e.g. memory, control registers, etc) visible to
1307 caller functions. It does not write through any pointer arguments
1308 (including ``byval`` arguments) and never changes any state visible
1309 to callers. This means that it cannot unwind exceptions by calling
1310 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001311
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001312 On an argument, this attribute indicates that the function does not
1313 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001314 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001315``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001316 On a function, this attribute indicates that the function does not write
1317 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001318 modify any state (e.g. memory, control registers, etc) visible to
1319 caller functions. It may dereference pointer arguments and read
1320 state that may be set in the caller. A readonly function always
1321 returns the same value (or unwinds an exception identically) when
1322 called with the same set of arguments and global state. It cannot
1323 unwind an exception by calling the ``C++`` exception throwing
1324 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001325
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001326 On an argument, this attribute indicates that the function does not write
1327 through this pointer argument, even though it may write to the memory that
1328 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001329``returns_twice``
1330 This attribute indicates that this function can return twice. The C
1331 ``setjmp`` is an example of such a function. The compiler disables
1332 some optimizations (like tail calls) in the caller of these
1333 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001334``safestack``
1335 This attribute indicates that
1336 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1337 protection is enabled for this function.
1338
1339 If a function that has a ``safestack`` attribute is inlined into a
1340 function that doesn't have a ``safestack`` attribute or which has an
1341 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1342 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001343``sanitize_address``
1344 This attribute indicates that AddressSanitizer checks
1345 (dynamic address safety analysis) are enabled for this function.
1346``sanitize_memory``
1347 This attribute indicates that MemorySanitizer checks (dynamic detection
1348 of accesses to uninitialized memory) are enabled for this function.
1349``sanitize_thread``
1350 This attribute indicates that ThreadSanitizer checks
1351 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001352``ssp``
1353 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001354 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001355 placed on the stack before the local variables that's checked upon
1356 return from the function to see if it has been overwritten. A
1357 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001358 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001359
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001360 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1361 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1362 - Calls to alloca() with variable sizes or constant sizes greater than
1363 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001364
Josh Magee24c7f062014-02-01 01:36:16 +00001365 Variables that are identified as requiring a protector will be arranged
1366 on the stack such that they are adjacent to the stack protector guard.
1367
Sean Silvab084af42012-12-07 10:36:55 +00001368 If a function that has an ``ssp`` attribute is inlined into a
1369 function that doesn't have an ``ssp`` attribute, then the resulting
1370 function will have an ``ssp`` attribute.
1371``sspreq``
1372 This attribute indicates that the function should *always* emit a
1373 stack smashing protector. This overrides the ``ssp`` function
1374 attribute.
1375
Josh Magee24c7f062014-02-01 01:36:16 +00001376 Variables that are identified as requiring a protector will be arranged
1377 on the stack such that they are adjacent to the stack protector guard.
1378 The specific layout rules are:
1379
1380 #. Large arrays and structures containing large arrays
1381 (``>= ssp-buffer-size``) are closest to the stack protector.
1382 #. Small arrays and structures containing small arrays
1383 (``< ssp-buffer-size``) are 2nd closest to the protector.
1384 #. Variables that have had their address taken are 3rd closest to the
1385 protector.
1386
Sean Silvab084af42012-12-07 10:36:55 +00001387 If a function that has an ``sspreq`` attribute is inlined into a
1388 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001389 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1390 an ``sspreq`` attribute.
1391``sspstrong``
1392 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001393 protector. This attribute causes a strong heuristic to be used when
1394 determining if a function needs stack protectors. The strong heuristic
1395 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001396
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001397 - Arrays of any size and type
1398 - Aggregates containing an array of any size and type.
1399 - Calls to alloca().
1400 - Local variables that have had their address taken.
1401
Josh Magee24c7f062014-02-01 01:36:16 +00001402 Variables that are identified as requiring a protector will be arranged
1403 on the stack such that they are adjacent to the stack protector guard.
1404 The specific layout rules are:
1405
1406 #. Large arrays and structures containing large arrays
1407 (``>= ssp-buffer-size``) are closest to the stack protector.
1408 #. Small arrays and structures containing small arrays
1409 (``< ssp-buffer-size``) are 2nd closest to the protector.
1410 #. Variables that have had their address taken are 3rd closest to the
1411 protector.
1412
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001413 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001414
1415 If a function that has an ``sspstrong`` attribute is inlined into a
1416 function that doesn't have an ``sspstrong`` attribute, then the
1417 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001418``"thunk"``
1419 This attribute indicates that the function will delegate to some other
1420 function with a tail call. The prototype of a thunk should not be used for
1421 optimization purposes. The caller is expected to cast the thunk prototype to
1422 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001423``uwtable``
1424 This attribute indicates that the ABI being targeted requires that
1425 an unwind table entry be produce for this function even if we can
1426 show that no exceptions passes by it. This is normally the case for
1427 the ELF x86-64 abi, but it can be disabled for some compilation
1428 units.
Sean Silvab084af42012-12-07 10:36:55 +00001429
1430.. _moduleasm:
1431
1432Module-Level Inline Assembly
1433----------------------------
1434
1435Modules may contain "module-level inline asm" blocks, which corresponds
1436to the GCC "file scope inline asm" blocks. These blocks are internally
1437concatenated by LLVM and treated as a single unit, but may be separated
1438in the ``.ll`` file if desired. The syntax is very simple:
1439
1440.. code-block:: llvm
1441
1442 module asm "inline asm code goes here"
1443 module asm "more can go here"
1444
1445The strings can contain any character by escaping non-printable
1446characters. The escape sequence used is simply "\\xx" where "xx" is the
1447two digit hex code for the number.
1448
1449The inline asm code is simply printed to the machine code .s file when
1450assembly code is generated.
1451
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001452.. _langref_datalayout:
1453
Sean Silvab084af42012-12-07 10:36:55 +00001454Data Layout
1455-----------
1456
1457A module may specify a target specific data layout string that specifies
1458how data is to be laid out in memory. The syntax for the data layout is
1459simply:
1460
1461.. code-block:: llvm
1462
1463 target datalayout = "layout specification"
1464
1465The *layout specification* consists of a list of specifications
1466separated by the minus sign character ('-'). Each specification starts
1467with a letter and may include other information after the letter to
1468define some aspect of the data layout. The specifications accepted are
1469as follows:
1470
1471``E``
1472 Specifies that the target lays out data in big-endian form. That is,
1473 the bits with the most significance have the lowest address
1474 location.
1475``e``
1476 Specifies that the target lays out data in little-endian form. That
1477 is, the bits with the least significance have the lowest address
1478 location.
1479``S<size>``
1480 Specifies the natural alignment of the stack in bits. Alignment
1481 promotion of stack variables is limited to the natural stack
1482 alignment to avoid dynamic stack realignment. The stack alignment
1483 must be a multiple of 8-bits. If omitted, the natural stack
1484 alignment defaults to "unspecified", which does not prevent any
1485 alignment promotions.
1486``p[n]:<size>:<abi>:<pref>``
1487 This specifies the *size* of a pointer and its ``<abi>`` and
1488 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001489 bits. The address space, ``n`` is optional, and if not specified,
1490 denotes the default address space 0. The value of ``n`` must be
1491 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001492``i<size>:<abi>:<pref>``
1493 This specifies the alignment for an integer type of a given bit
1494 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1495``v<size>:<abi>:<pref>``
1496 This specifies the alignment for a vector type of a given bit
1497 ``<size>``.
1498``f<size>:<abi>:<pref>``
1499 This specifies the alignment for a floating point type of a given bit
1500 ``<size>``. Only values of ``<size>`` that are supported by the target
1501 will work. 32 (float) and 64 (double) are supported on all targets; 80
1502 or 128 (different flavors of long double) are also supported on some
1503 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001504``a:<abi>:<pref>``
1505 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001506``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001507 If present, specifies that llvm names are mangled in the output. The
1508 options are
1509
1510 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1511 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1512 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1513 symbols get a ``_`` prefix.
1514 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1515 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001516``n<size1>:<size2>:<size3>...``
1517 This specifies a set of native integer widths for the target CPU in
1518 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1519 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1520 this set are considered to support most general arithmetic operations
1521 efficiently.
1522
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001523On every specification that takes a ``<abi>:<pref>``, specifying the
1524``<pref>`` alignment is optional. If omitted, the preceding ``:``
1525should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1526
Sean Silvab084af42012-12-07 10:36:55 +00001527When constructing the data layout for a given target, LLVM starts with a
1528default set of specifications which are then (possibly) overridden by
1529the specifications in the ``datalayout`` keyword. The default
1530specifications are given in this list:
1531
1532- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001533- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1534- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1535 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001536- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001537- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1538- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1539- ``i16:16:16`` - i16 is 16-bit aligned
1540- ``i32:32:32`` - i32 is 32-bit aligned
1541- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1542 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001543- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001544- ``f32:32:32`` - float is 32-bit aligned
1545- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001546- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001547- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1548- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001549- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001550
1551When LLVM is determining the alignment for a given type, it uses the
1552following rules:
1553
1554#. If the type sought is an exact match for one of the specifications,
1555 that specification is used.
1556#. If no match is found, and the type sought is an integer type, then
1557 the smallest integer type that is larger than the bitwidth of the
1558 sought type is used. If none of the specifications are larger than
1559 the bitwidth then the largest integer type is used. For example,
1560 given the default specifications above, the i7 type will use the
1561 alignment of i8 (next largest) while both i65 and i256 will use the
1562 alignment of i64 (largest specified).
1563#. If no match is found, and the type sought is a vector type, then the
1564 largest vector type that is smaller than the sought vector type will
1565 be used as a fall back. This happens because <128 x double> can be
1566 implemented in terms of 64 <2 x double>, for example.
1567
1568The function of the data layout string may not be what you expect.
1569Notably, this is not a specification from the frontend of what alignment
1570the code generator should use.
1571
1572Instead, if specified, the target data layout is required to match what
1573the ultimate *code generator* expects. This string is used by the
1574mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001575what the ultimate code generator uses. There is no way to generate IR
1576that does not embed this target-specific detail into the IR. If you
1577don't specify the string, the default specifications will be used to
1578generate a Data Layout and the optimization phases will operate
1579accordingly and introduce target specificity into the IR with respect to
1580these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001581
Bill Wendling5cc90842013-10-18 23:41:25 +00001582.. _langref_triple:
1583
1584Target Triple
1585-------------
1586
1587A module may specify a target triple string that describes the target
1588host. The syntax for the target triple is simply:
1589
1590.. code-block:: llvm
1591
1592 target triple = "x86_64-apple-macosx10.7.0"
1593
1594The *target triple* string consists of a series of identifiers delimited
1595by the minus sign character ('-'). The canonical forms are:
1596
1597::
1598
1599 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1600 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1601
1602This information is passed along to the backend so that it generates
1603code for the proper architecture. It's possible to override this on the
1604command line with the ``-mtriple`` command line option.
1605
Sean Silvab084af42012-12-07 10:36:55 +00001606.. _pointeraliasing:
1607
1608Pointer Aliasing Rules
1609----------------------
1610
1611Any memory access must be done through a pointer value associated with
1612an address range of the memory access, otherwise the behavior is
1613undefined. Pointer values are associated with address ranges according
1614to the following rules:
1615
1616- A pointer value is associated with the addresses associated with any
1617 value it is *based* on.
1618- An address of a global variable is associated with the address range
1619 of the variable's storage.
1620- The result value of an allocation instruction is associated with the
1621 address range of the allocated storage.
1622- A null pointer in the default address-space is associated with no
1623 address.
1624- An integer constant other than zero or a pointer value returned from
1625 a function not defined within LLVM may be associated with address
1626 ranges allocated through mechanisms other than those provided by
1627 LLVM. Such ranges shall not overlap with any ranges of addresses
1628 allocated by mechanisms provided by LLVM.
1629
1630A pointer value is *based* on another pointer value according to the
1631following rules:
1632
1633- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001634 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001635- The result value of a ``bitcast`` is *based* on the operand of the
1636 ``bitcast``.
1637- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1638 values that contribute (directly or indirectly) to the computation of
1639 the pointer's value.
1640- The "*based* on" relationship is transitive.
1641
1642Note that this definition of *"based"* is intentionally similar to the
1643definition of *"based"* in C99, though it is slightly weaker.
1644
1645LLVM IR does not associate types with memory. The result type of a
1646``load`` merely indicates the size and alignment of the memory from
1647which to load, as well as the interpretation of the value. The first
1648operand type of a ``store`` similarly only indicates the size and
1649alignment of the store.
1650
1651Consequently, type-based alias analysis, aka TBAA, aka
1652``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1653:ref:`Metadata <metadata>` may be used to encode additional information
1654which specialized optimization passes may use to implement type-based
1655alias analysis.
1656
1657.. _volatile:
1658
1659Volatile Memory Accesses
1660------------------------
1661
1662Certain memory accesses, such as :ref:`load <i_load>`'s,
1663:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1664marked ``volatile``. The optimizers must not change the number of
1665volatile operations or change their order of execution relative to other
1666volatile operations. The optimizers *may* change the order of volatile
1667operations relative to non-volatile operations. This is not Java's
1668"volatile" and has no cross-thread synchronization behavior.
1669
Andrew Trick89fc5a62013-01-30 21:19:35 +00001670IR-level volatile loads and stores cannot safely be optimized into
1671llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1672flagged volatile. Likewise, the backend should never split or merge
1673target-legal volatile load/store instructions.
1674
Andrew Trick7e6f9282013-01-31 00:49:39 +00001675.. admonition:: Rationale
1676
1677 Platforms may rely on volatile loads and stores of natively supported
1678 data width to be executed as single instruction. For example, in C
1679 this holds for an l-value of volatile primitive type with native
1680 hardware support, but not necessarily for aggregate types. The
1681 frontend upholds these expectations, which are intentionally
1682 unspecified in the IR. The rules above ensure that IR transformation
1683 do not violate the frontend's contract with the language.
1684
Sean Silvab084af42012-12-07 10:36:55 +00001685.. _memmodel:
1686
1687Memory Model for Concurrent Operations
1688--------------------------------------
1689
1690The LLVM IR does not define any way to start parallel threads of
1691execution or to register signal handlers. Nonetheless, there are
1692platform-specific ways to create them, and we define LLVM IR's behavior
1693in their presence. This model is inspired by the C++0x memory model.
1694
1695For a more informal introduction to this model, see the :doc:`Atomics`.
1696
1697We define a *happens-before* partial order as the least partial order
1698that
1699
1700- Is a superset of single-thread program order, and
1701- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1702 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1703 techniques, like pthread locks, thread creation, thread joining,
1704 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1705 Constraints <ordering>`).
1706
1707Note that program order does not introduce *happens-before* edges
1708between a thread and signals executing inside that thread.
1709
1710Every (defined) read operation (load instructions, memcpy, atomic
1711loads/read-modify-writes, etc.) R reads a series of bytes written by
1712(defined) write operations (store instructions, atomic
1713stores/read-modify-writes, memcpy, etc.). For the purposes of this
1714section, initialized globals are considered to have a write of the
1715initializer which is atomic and happens before any other read or write
1716of the memory in question. For each byte of a read R, R\ :sub:`byte`
1717may see any write to the same byte, except:
1718
1719- If write\ :sub:`1` happens before write\ :sub:`2`, and
1720 write\ :sub:`2` happens before R\ :sub:`byte`, then
1721 R\ :sub:`byte` does not see write\ :sub:`1`.
1722- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1723 R\ :sub:`byte` does not see write\ :sub:`3`.
1724
1725Given that definition, R\ :sub:`byte` is defined as follows:
1726
1727- If R is volatile, the result is target-dependent. (Volatile is
1728 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001729 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001730 like normal memory. It does not generally provide cross-thread
1731 synchronization.)
1732- Otherwise, if there is no write to the same byte that happens before
1733 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1734- Otherwise, if R\ :sub:`byte` may see exactly one write,
1735 R\ :sub:`byte` returns the value written by that write.
1736- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1737 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1738 Memory Ordering Constraints <ordering>` section for additional
1739 constraints on how the choice is made.
1740- Otherwise R\ :sub:`byte` returns ``undef``.
1741
1742R returns the value composed of the series of bytes it read. This
1743implies that some bytes within the value may be ``undef`` **without**
1744the entire value being ``undef``. Note that this only defines the
1745semantics of the operation; it doesn't mean that targets will emit more
1746than one instruction to read the series of bytes.
1747
1748Note that in cases where none of the atomic intrinsics are used, this
1749model places only one restriction on IR transformations on top of what
1750is required for single-threaded execution: introducing a store to a byte
1751which might not otherwise be stored is not allowed in general.
1752(Specifically, in the case where another thread might write to and read
1753from an address, introducing a store can change a load that may see
1754exactly one write into a load that may see multiple writes.)
1755
1756.. _ordering:
1757
1758Atomic Memory Ordering Constraints
1759----------------------------------
1760
1761Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1762:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1763:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001764ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001765the same address they *synchronize with*. These semantics are borrowed
1766from Java and C++0x, but are somewhat more colloquial. If these
1767descriptions aren't precise enough, check those specs (see spec
1768references in the :doc:`atomics guide <Atomics>`).
1769:ref:`fence <i_fence>` instructions treat these orderings somewhat
1770differently since they don't take an address. See that instruction's
1771documentation for details.
1772
1773For a simpler introduction to the ordering constraints, see the
1774:doc:`Atomics`.
1775
1776``unordered``
1777 The set of values that can be read is governed by the happens-before
1778 partial order. A value cannot be read unless some operation wrote
1779 it. This is intended to provide a guarantee strong enough to model
1780 Java's non-volatile shared variables. This ordering cannot be
1781 specified for read-modify-write operations; it is not strong enough
1782 to make them atomic in any interesting way.
1783``monotonic``
1784 In addition to the guarantees of ``unordered``, there is a single
1785 total order for modifications by ``monotonic`` operations on each
1786 address. All modification orders must be compatible with the
1787 happens-before order. There is no guarantee that the modification
1788 orders can be combined to a global total order for the whole program
1789 (and this often will not be possible). The read in an atomic
1790 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1791 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1792 order immediately before the value it writes. If one atomic read
1793 happens before another atomic read of the same address, the later
1794 read must see the same value or a later value in the address's
1795 modification order. This disallows reordering of ``monotonic`` (or
1796 stronger) operations on the same address. If an address is written
1797 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1798 read that address repeatedly, the other threads must eventually see
1799 the write. This corresponds to the C++0x/C1x
1800 ``memory_order_relaxed``.
1801``acquire``
1802 In addition to the guarantees of ``monotonic``, a
1803 *synchronizes-with* edge may be formed with a ``release`` operation.
1804 This is intended to model C++'s ``memory_order_acquire``.
1805``release``
1806 In addition to the guarantees of ``monotonic``, if this operation
1807 writes a value which is subsequently read by an ``acquire``
1808 operation, it *synchronizes-with* that operation. (This isn't a
1809 complete description; see the C++0x definition of a release
1810 sequence.) This corresponds to the C++0x/C1x
1811 ``memory_order_release``.
1812``acq_rel`` (acquire+release)
1813 Acts as both an ``acquire`` and ``release`` operation on its
1814 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1815``seq_cst`` (sequentially consistent)
1816 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001817 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001818 writes), there is a global total order on all
1819 sequentially-consistent operations on all addresses, which is
1820 consistent with the *happens-before* partial order and with the
1821 modification orders of all the affected addresses. Each
1822 sequentially-consistent read sees the last preceding write to the
1823 same address in this global order. This corresponds to the C++0x/C1x
1824 ``memory_order_seq_cst`` and Java volatile.
1825
1826.. _singlethread:
1827
1828If an atomic operation is marked ``singlethread``, it only *synchronizes
1829with* or participates in modification and seq\_cst total orderings with
1830other operations running in the same thread (for example, in signal
1831handlers).
1832
1833.. _fastmath:
1834
1835Fast-Math Flags
1836---------------
1837
1838LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1839:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Eric Christopher1e61ffd2015-02-19 18:46:25 +00001840:ref:`frem <i_frem>`) have the following flags that can be set to enable
Sean Silvab084af42012-12-07 10:36:55 +00001841otherwise unsafe floating point operations
1842
1843``nnan``
1844 No NaNs - Allow optimizations to assume the arguments and result are not
1845 NaN. Such optimizations are required to retain defined behavior over
1846 NaNs, but the value of the result is undefined.
1847
1848``ninf``
1849 No Infs - Allow optimizations to assume the arguments and result are not
1850 +/-Inf. Such optimizations are required to retain defined behavior over
1851 +/-Inf, but the value of the result is undefined.
1852
1853``nsz``
1854 No Signed Zeros - Allow optimizations to treat the sign of a zero
1855 argument or result as insignificant.
1856
1857``arcp``
1858 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1859 argument rather than perform division.
1860
1861``fast``
1862 Fast - Allow algebraically equivalent transformations that may
1863 dramatically change results in floating point (e.g. reassociate). This
1864 flag implies all the others.
1865
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001866.. _uselistorder:
1867
1868Use-list Order Directives
1869-------------------------
1870
1871Use-list directives encode the in-memory order of each use-list, allowing the
1872order to be recreated. ``<order-indexes>`` is a comma-separated list of
1873indexes that are assigned to the referenced value's uses. The referenced
1874value's use-list is immediately sorted by these indexes.
1875
1876Use-list directives may appear at function scope or global scope. They are not
1877instructions, and have no effect on the semantics of the IR. When they're at
1878function scope, they must appear after the terminator of the final basic block.
1879
1880If basic blocks have their address taken via ``blockaddress()`` expressions,
1881``uselistorder_bb`` can be used to reorder their use-lists from outside their
1882function's scope.
1883
1884:Syntax:
1885
1886::
1887
1888 uselistorder <ty> <value>, { <order-indexes> }
1889 uselistorder_bb @function, %block { <order-indexes> }
1890
1891:Examples:
1892
1893::
1894
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001895 define void @foo(i32 %arg1, i32 %arg2) {
1896 entry:
1897 ; ... instructions ...
1898 bb:
1899 ; ... instructions ...
1900
1901 ; At function scope.
1902 uselistorder i32 %arg1, { 1, 0, 2 }
1903 uselistorder label %bb, { 1, 0 }
1904 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001905
1906 ; At global scope.
1907 uselistorder i32* @global, { 1, 2, 0 }
1908 uselistorder i32 7, { 1, 0 }
1909 uselistorder i32 (i32) @bar, { 1, 0 }
1910 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1911
Sean Silvab084af42012-12-07 10:36:55 +00001912.. _typesystem:
1913
1914Type System
1915===========
1916
1917The LLVM type system is one of the most important features of the
1918intermediate representation. Being typed enables a number of
1919optimizations to be performed on the intermediate representation
1920directly, without having to do extra analyses on the side before the
1921transformation. A strong type system makes it easier to read the
1922generated code and enables novel analyses and transformations that are
1923not feasible to perform on normal three address code representations.
1924
Rafael Espindola08013342013-12-07 19:34:20 +00001925.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001926
Rafael Espindola08013342013-12-07 19:34:20 +00001927Void Type
1928---------
Sean Silvab084af42012-12-07 10:36:55 +00001929
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001930:Overview:
1931
Rafael Espindola08013342013-12-07 19:34:20 +00001932
1933The void type does not represent any value and has no size.
1934
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001935:Syntax:
1936
Rafael Espindola08013342013-12-07 19:34:20 +00001937
1938::
1939
1940 void
Sean Silvab084af42012-12-07 10:36:55 +00001941
1942
Rafael Espindola08013342013-12-07 19:34:20 +00001943.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001944
Rafael Espindola08013342013-12-07 19:34:20 +00001945Function Type
1946-------------
Sean Silvab084af42012-12-07 10:36:55 +00001947
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001948:Overview:
1949
Sean Silvab084af42012-12-07 10:36:55 +00001950
Rafael Espindola08013342013-12-07 19:34:20 +00001951The function type can be thought of as a function signature. It consists of a
1952return type and a list of formal parameter types. The return type of a function
1953type is a void type or first class type --- except for :ref:`label <t_label>`
1954and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001955
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001956:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001957
Rafael Espindola08013342013-12-07 19:34:20 +00001958::
Sean Silvab084af42012-12-07 10:36:55 +00001959
Rafael Espindola08013342013-12-07 19:34:20 +00001960 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001961
Rafael Espindola08013342013-12-07 19:34:20 +00001962...where '``<parameter list>``' is a comma-separated list of type
1963specifiers. Optionally, the parameter list may include a type ``...``, which
1964indicates that the function takes a variable number of arguments. Variable
1965argument functions can access their arguments with the :ref:`variable argument
1966handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1967except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001968
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001969:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001970
Rafael Espindola08013342013-12-07 19:34:20 +00001971+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1972| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1973+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1974| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1975+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1976| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1977+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1978| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1979+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1980
1981.. _t_firstclass:
1982
1983First Class Types
1984-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001985
1986The :ref:`first class <t_firstclass>` types are perhaps the most important.
1987Values of these types are the only ones which can be produced by
1988instructions.
1989
Rafael Espindola08013342013-12-07 19:34:20 +00001990.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001991
Rafael Espindola08013342013-12-07 19:34:20 +00001992Single Value Types
1993^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001994
Rafael Espindola08013342013-12-07 19:34:20 +00001995These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001996
1997.. _t_integer:
1998
1999Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002000""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002001
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002002:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002003
2004The integer type is a very simple type that simply specifies an
2005arbitrary bit width for the integer type desired. Any bit width from 1
2006bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2007
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002008:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002009
2010::
2011
2012 iN
2013
2014The number of bits the integer will occupy is specified by the ``N``
2015value.
2016
2017Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002018*********
Sean Silvab084af42012-12-07 10:36:55 +00002019
2020+----------------+------------------------------------------------+
2021| ``i1`` | a single-bit integer. |
2022+----------------+------------------------------------------------+
2023| ``i32`` | a 32-bit integer. |
2024+----------------+------------------------------------------------+
2025| ``i1942652`` | a really big integer of over 1 million bits. |
2026+----------------+------------------------------------------------+
2027
2028.. _t_floating:
2029
2030Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002031""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002032
2033.. list-table::
2034 :header-rows: 1
2035
2036 * - Type
2037 - Description
2038
2039 * - ``half``
2040 - 16-bit floating point value
2041
2042 * - ``float``
2043 - 32-bit floating point value
2044
2045 * - ``double``
2046 - 64-bit floating point value
2047
2048 * - ``fp128``
2049 - 128-bit floating point value (112-bit mantissa)
2050
2051 * - ``x86_fp80``
2052 - 80-bit floating point value (X87)
2053
2054 * - ``ppc_fp128``
2055 - 128-bit floating point value (two 64-bits)
2056
Reid Kleckner9a16d082014-03-05 02:41:37 +00002057X86_mmx Type
2058""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002059
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002060:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002061
Reid Kleckner9a16d082014-03-05 02:41:37 +00002062The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002063machine. The operations allowed on it are quite limited: parameters and
2064return values, load and store, and bitcast. User-specified MMX
2065instructions are represented as intrinsic or asm calls with arguments
2066and/or results of this type. There are no arrays, vectors or constants
2067of this type.
2068
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002069:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002070
2071::
2072
Reid Kleckner9a16d082014-03-05 02:41:37 +00002073 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002074
Sean Silvab084af42012-12-07 10:36:55 +00002075
Rafael Espindola08013342013-12-07 19:34:20 +00002076.. _t_pointer:
2077
2078Pointer Type
2079""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002080
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002081:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002082
Rafael Espindola08013342013-12-07 19:34:20 +00002083The pointer type is used to specify memory locations. Pointers are
2084commonly used to reference objects in memory.
2085
2086Pointer types may have an optional address space attribute defining the
2087numbered address space where the pointed-to object resides. The default
2088address space is number zero. The semantics of non-zero address spaces
2089are target-specific.
2090
2091Note that LLVM does not permit pointers to void (``void*``) nor does it
2092permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002093
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002094:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002095
2096::
2097
Rafael Espindola08013342013-12-07 19:34:20 +00002098 <type> *
2099
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002100:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002101
2102+-------------------------+--------------------------------------------------------------------------------------------------------------+
2103| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2104+-------------------------+--------------------------------------------------------------------------------------------------------------+
2105| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2106+-------------------------+--------------------------------------------------------------------------------------------------------------+
2107| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2108+-------------------------+--------------------------------------------------------------------------------------------------------------+
2109
2110.. _t_vector:
2111
2112Vector Type
2113"""""""""""
2114
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002115:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002116
2117A vector type is a simple derived type that represents a vector of
2118elements. Vector types are used when multiple primitive data are
2119operated in parallel using a single instruction (SIMD). A vector type
2120requires a size (number of elements) and an underlying primitive data
2121type. Vector types are considered :ref:`first class <t_firstclass>`.
2122
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002123:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002124
2125::
2126
2127 < <# elements> x <elementtype> >
2128
2129The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002130elementtype may be any integer, floating point or pointer type. Vectors
2131of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002132
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002133:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002134
2135+-------------------+--------------------------------------------------+
2136| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2137+-------------------+--------------------------------------------------+
2138| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2139+-------------------+--------------------------------------------------+
2140| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2141+-------------------+--------------------------------------------------+
2142| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2143+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002144
2145.. _t_label:
2146
2147Label Type
2148^^^^^^^^^^
2149
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002150:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002151
2152The label type represents code labels.
2153
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002154:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002155
2156::
2157
2158 label
2159
2160.. _t_metadata:
2161
2162Metadata Type
2163^^^^^^^^^^^^^
2164
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002165:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002166
2167The metadata type represents embedded metadata. No derived types may be
2168created from metadata except for :ref:`function <t_function>` arguments.
2169
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002170:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002171
2172::
2173
2174 metadata
2175
Sean Silvab084af42012-12-07 10:36:55 +00002176.. _t_aggregate:
2177
2178Aggregate Types
2179^^^^^^^^^^^^^^^
2180
2181Aggregate Types are a subset of derived types that can contain multiple
2182member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2183aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2184aggregate types.
2185
2186.. _t_array:
2187
2188Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002189""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002190
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002191:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002192
2193The array type is a very simple derived type that arranges elements
2194sequentially in memory. The array type requires a size (number of
2195elements) and an underlying data type.
2196
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002197:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002198
2199::
2200
2201 [<# elements> x <elementtype>]
2202
2203The number of elements is a constant integer value; ``elementtype`` may
2204be any type with a size.
2205
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002206:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002207
2208+------------------+--------------------------------------+
2209| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2210+------------------+--------------------------------------+
2211| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2212+------------------+--------------------------------------+
2213| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2214+------------------+--------------------------------------+
2215
2216Here are some examples of multidimensional arrays:
2217
2218+-----------------------------+----------------------------------------------------------+
2219| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2220+-----------------------------+----------------------------------------------------------+
2221| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2222+-----------------------------+----------------------------------------------------------+
2223| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2224+-----------------------------+----------------------------------------------------------+
2225
2226There is no restriction on indexing beyond the end of the array implied
2227by a static type (though there are restrictions on indexing beyond the
2228bounds of an allocated object in some cases). This means that
2229single-dimension 'variable sized array' addressing can be implemented in
2230LLVM with a zero length array type. An implementation of 'pascal style
2231arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2232example.
2233
Sean Silvab084af42012-12-07 10:36:55 +00002234.. _t_struct:
2235
2236Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002237""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002238
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002239:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002240
2241The structure type is used to represent a collection of data members
2242together in memory. The elements of a structure may be any type that has
2243a size.
2244
2245Structures in memory are accessed using '``load``' and '``store``' by
2246getting a pointer to a field with the '``getelementptr``' instruction.
2247Structures in registers are accessed using the '``extractvalue``' and
2248'``insertvalue``' instructions.
2249
2250Structures may optionally be "packed" structures, which indicate that
2251the alignment of the struct is one byte, and that there is no padding
2252between the elements. In non-packed structs, padding between field types
2253is inserted as defined by the DataLayout string in the module, which is
2254required to match what the underlying code generator expects.
2255
2256Structures can either be "literal" or "identified". A literal structure
2257is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2258identified types are always defined at the top level with a name.
2259Literal types are uniqued by their contents and can never be recursive
2260or opaque since there is no way to write one. Identified types can be
2261recursive, can be opaqued, and are never uniqued.
2262
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002263:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002264
2265::
2266
2267 %T1 = type { <type list> } ; Identified normal struct type
2268 %T2 = type <{ <type list> }> ; Identified packed struct type
2269
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002270:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002271
2272+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2273| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2274+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002275| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002276+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2277| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2278+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2279
2280.. _t_opaque:
2281
2282Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002283""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002284
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002285:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002286
2287Opaque structure types are used to represent named structure types that
2288do not have a body specified. This corresponds (for example) to the C
2289notion of a forward declared structure.
2290
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002291:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002292
2293::
2294
2295 %X = type opaque
2296 %52 = type opaque
2297
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002298:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002299
2300+--------------+-------------------+
2301| ``opaque`` | An opaque type. |
2302+--------------+-------------------+
2303
Sean Silva1703e702014-04-08 21:06:22 +00002304.. _constants:
2305
Sean Silvab084af42012-12-07 10:36:55 +00002306Constants
2307=========
2308
2309LLVM has several different basic types of constants. This section
2310describes them all and their syntax.
2311
2312Simple Constants
2313----------------
2314
2315**Boolean constants**
2316 The two strings '``true``' and '``false``' are both valid constants
2317 of the ``i1`` type.
2318**Integer constants**
2319 Standard integers (such as '4') are constants of the
2320 :ref:`integer <t_integer>` type. Negative numbers may be used with
2321 integer types.
2322**Floating point constants**
2323 Floating point constants use standard decimal notation (e.g.
2324 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2325 hexadecimal notation (see below). The assembler requires the exact
2326 decimal value of a floating-point constant. For example, the
2327 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2328 decimal in binary. Floating point constants must have a :ref:`floating
2329 point <t_floating>` type.
2330**Null pointer constants**
2331 The identifier '``null``' is recognized as a null pointer constant
2332 and must be of :ref:`pointer type <t_pointer>`.
2333
2334The one non-intuitive notation for constants is the hexadecimal form of
2335floating point constants. For example, the form
2336'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2337than) '``double 4.5e+15``'. The only time hexadecimal floating point
2338constants are required (and the only time that they are generated by the
2339disassembler) is when a floating point constant must be emitted but it
2340cannot be represented as a decimal floating point number in a reasonable
2341number of digits. For example, NaN's, infinities, and other special
2342values are represented in their IEEE hexadecimal format so that assembly
2343and disassembly do not cause any bits to change in the constants.
2344
2345When using the hexadecimal form, constants of types half, float, and
2346double are represented using the 16-digit form shown above (which
2347matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002348must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002349precision, respectively. Hexadecimal format is always used for long
2350double, and there are three forms of long double. The 80-bit format used
2351by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2352128-bit format used by PowerPC (two adjacent doubles) is represented by
2353``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002354represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2355will only work if they match the long double format on your target.
2356The IEEE 16-bit format (half precision) is represented by ``0xH``
2357followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2358(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002359
Reid Kleckner9a16d082014-03-05 02:41:37 +00002360There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002361
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002362.. _complexconstants:
2363
Sean Silvab084af42012-12-07 10:36:55 +00002364Complex Constants
2365-----------------
2366
2367Complex constants are a (potentially recursive) combination of simple
2368constants and smaller complex constants.
2369
2370**Structure constants**
2371 Structure constants are represented with notation similar to
2372 structure type definitions (a comma separated list of elements,
2373 surrounded by braces (``{}``)). For example:
2374 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2375 "``@G = external global i32``". Structure constants must have
2376 :ref:`structure type <t_struct>`, and the number and types of elements
2377 must match those specified by the type.
2378**Array constants**
2379 Array constants are represented with notation similar to array type
2380 definitions (a comma separated list of elements, surrounded by
2381 square brackets (``[]``)). For example:
2382 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2383 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002384 match those specified by the type. As a special case, character array
2385 constants may also be represented as a double-quoted string using the ``c``
2386 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002387**Vector constants**
2388 Vector constants are represented with notation similar to vector
2389 type definitions (a comma separated list of elements, surrounded by
2390 less-than/greater-than's (``<>``)). For example:
2391 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2392 must have :ref:`vector type <t_vector>`, and the number and types of
2393 elements must match those specified by the type.
2394**Zero initialization**
2395 The string '``zeroinitializer``' can be used to zero initialize a
2396 value to zero of *any* type, including scalar and
2397 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2398 having to print large zero initializers (e.g. for large arrays) and
2399 is always exactly equivalent to using explicit zero initializers.
2400**Metadata node**
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002401 A metadata node is a constant tuple without types. For example:
2402 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
2403 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2404 Unlike other typed constants that are meant to be interpreted as part of
2405 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002406 information such as debug info.
2407
2408Global Variable and Function Addresses
2409--------------------------------------
2410
2411The addresses of :ref:`global variables <globalvars>` and
2412:ref:`functions <functionstructure>` are always implicitly valid
2413(link-time) constants. These constants are explicitly referenced when
2414the :ref:`identifier for the global <identifiers>` is used and always have
2415:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2416file:
2417
2418.. code-block:: llvm
2419
2420 @X = global i32 17
2421 @Y = global i32 42
2422 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2423
2424.. _undefvalues:
2425
2426Undefined Values
2427----------------
2428
2429The string '``undef``' can be used anywhere a constant is expected, and
2430indicates that the user of the value may receive an unspecified
2431bit-pattern. Undefined values may be of any type (other than '``label``'
2432or '``void``') and be used anywhere a constant is permitted.
2433
2434Undefined values are useful because they indicate to the compiler that
2435the program is well defined no matter what value is used. This gives the
2436compiler more freedom to optimize. Here are some examples of
2437(potentially surprising) transformations that are valid (in pseudo IR):
2438
2439.. code-block:: llvm
2440
2441 %A = add %X, undef
2442 %B = sub %X, undef
2443 %C = xor %X, undef
2444 Safe:
2445 %A = undef
2446 %B = undef
2447 %C = undef
2448
2449This is safe because all of the output bits are affected by the undef
2450bits. Any output bit can have a zero or one depending on the input bits.
2451
2452.. code-block:: llvm
2453
2454 %A = or %X, undef
2455 %B = and %X, undef
2456 Safe:
2457 %A = -1
2458 %B = 0
2459 Unsafe:
2460 %A = undef
2461 %B = undef
2462
2463These logical operations have bits that are not always affected by the
2464input. For example, if ``%X`` has a zero bit, then the output of the
2465'``and``' operation will always be a zero for that bit, no matter what
2466the corresponding bit from the '``undef``' is. As such, it is unsafe to
2467optimize or assume that the result of the '``and``' is '``undef``'.
2468However, it is safe to assume that all bits of the '``undef``' could be
24690, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2470all the bits of the '``undef``' operand to the '``or``' could be set,
2471allowing the '``or``' to be folded to -1.
2472
2473.. code-block:: llvm
2474
2475 %A = select undef, %X, %Y
2476 %B = select undef, 42, %Y
2477 %C = select %X, %Y, undef
2478 Safe:
2479 %A = %X (or %Y)
2480 %B = 42 (or %Y)
2481 %C = %Y
2482 Unsafe:
2483 %A = undef
2484 %B = undef
2485 %C = undef
2486
2487This set of examples shows that undefined '``select``' (and conditional
2488branch) conditions can go *either way*, but they have to come from one
2489of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2490both known to have a clear low bit, then ``%A`` would have to have a
2491cleared low bit. However, in the ``%C`` example, the optimizer is
2492allowed to assume that the '``undef``' operand could be the same as
2493``%Y``, allowing the whole '``select``' to be eliminated.
2494
2495.. code-block:: llvm
2496
2497 %A = xor undef, undef
2498
2499 %B = undef
2500 %C = xor %B, %B
2501
2502 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002503 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002504 %F = icmp gte %D, 4
2505
2506 Safe:
2507 %A = undef
2508 %B = undef
2509 %C = undef
2510 %D = undef
2511 %E = undef
2512 %F = undef
2513
2514This example points out that two '``undef``' operands are not
2515necessarily the same. This can be surprising to people (and also matches
2516C semantics) where they assume that "``X^X``" is always zero, even if
2517``X`` is undefined. This isn't true for a number of reasons, but the
2518short answer is that an '``undef``' "variable" can arbitrarily change
2519its value over its "live range". This is true because the variable
2520doesn't actually *have a live range*. Instead, the value is logically
2521read from arbitrary registers that happen to be around when needed, so
2522the value is not necessarily consistent over time. In fact, ``%A`` and
2523``%C`` need to have the same semantics or the core LLVM "replace all
2524uses with" concept would not hold.
2525
2526.. code-block:: llvm
2527
2528 %A = fdiv undef, %X
2529 %B = fdiv %X, undef
2530 Safe:
2531 %A = undef
2532 b: unreachable
2533
2534These examples show the crucial difference between an *undefined value*
2535and *undefined behavior*. An undefined value (like '``undef``') is
2536allowed to have an arbitrary bit-pattern. This means that the ``%A``
2537operation can be constant folded to '``undef``', because the '``undef``'
2538could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2539However, in the second example, we can make a more aggressive
2540assumption: because the ``undef`` is allowed to be an arbitrary value,
2541we are allowed to assume that it could be zero. Since a divide by zero
2542has *undefined behavior*, we are allowed to assume that the operation
2543does not execute at all. This allows us to delete the divide and all
2544code after it. Because the undefined operation "can't happen", the
2545optimizer can assume that it occurs in dead code.
2546
2547.. code-block:: llvm
2548
2549 a: store undef -> %X
2550 b: store %X -> undef
2551 Safe:
2552 a: <deleted>
2553 b: unreachable
2554
2555These examples reiterate the ``fdiv`` example: a store *of* an undefined
2556value can be assumed to not have any effect; we can assume that the
2557value is overwritten with bits that happen to match what was already
2558there. However, a store *to* an undefined location could clobber
2559arbitrary memory, therefore, it has undefined behavior.
2560
2561.. _poisonvalues:
2562
2563Poison Values
2564-------------
2565
2566Poison values are similar to :ref:`undef values <undefvalues>`, however
2567they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002568that cannot evoke side effects has nevertheless detected a condition
2569that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002570
2571There is currently no way of representing a poison value in the IR; they
2572only exist when produced by operations such as :ref:`add <i_add>` with
2573the ``nsw`` flag.
2574
2575Poison value behavior is defined in terms of value *dependence*:
2576
2577- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2578- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2579 their dynamic predecessor basic block.
2580- Function arguments depend on the corresponding actual argument values
2581 in the dynamic callers of their functions.
2582- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2583 instructions that dynamically transfer control back to them.
2584- :ref:`Invoke <i_invoke>` instructions depend on the
2585 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2586 call instructions that dynamically transfer control back to them.
2587- Non-volatile loads and stores depend on the most recent stores to all
2588 of the referenced memory addresses, following the order in the IR
2589 (including loads and stores implied by intrinsics such as
2590 :ref:`@llvm.memcpy <int_memcpy>`.)
2591- An instruction with externally visible side effects depends on the
2592 most recent preceding instruction with externally visible side
2593 effects, following the order in the IR. (This includes :ref:`volatile
2594 operations <volatile>`.)
2595- An instruction *control-depends* on a :ref:`terminator
2596 instruction <terminators>` if the terminator instruction has
2597 multiple successors and the instruction is always executed when
2598 control transfers to one of the successors, and may not be executed
2599 when control is transferred to another.
2600- Additionally, an instruction also *control-depends* on a terminator
2601 instruction if the set of instructions it otherwise depends on would
2602 be different if the terminator had transferred control to a different
2603 successor.
2604- Dependence is transitive.
2605
Richard Smith32dbdf62014-07-31 04:25:36 +00002606Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2607with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002608on a poison value has undefined behavior.
2609
2610Here are some examples:
2611
2612.. code-block:: llvm
2613
2614 entry:
2615 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2616 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002617 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002618 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2619
2620 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002621 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002622
2623 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2624
2625 %narrowaddr = bitcast i32* @g to i16*
2626 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002627 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2628 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002629
2630 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2631 br i1 %cmp, label %true, label %end ; Branch to either destination.
2632
2633 true:
2634 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2635 ; it has undefined behavior.
2636 br label %end
2637
2638 end:
2639 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2640 ; Both edges into this PHI are
2641 ; control-dependent on %cmp, so this
2642 ; always results in a poison value.
2643
2644 store volatile i32 0, i32* @g ; This would depend on the store in %true
2645 ; if %cmp is true, or the store in %entry
2646 ; otherwise, so this is undefined behavior.
2647
2648 br i1 %cmp, label %second_true, label %second_end
2649 ; The same branch again, but this time the
2650 ; true block doesn't have side effects.
2651
2652 second_true:
2653 ; No side effects!
2654 ret void
2655
2656 second_end:
2657 store volatile i32 0, i32* @g ; This time, the instruction always depends
2658 ; on the store in %end. Also, it is
2659 ; control-equivalent to %end, so this is
2660 ; well-defined (ignoring earlier undefined
2661 ; behavior in this example).
2662
2663.. _blockaddress:
2664
2665Addresses of Basic Blocks
2666-------------------------
2667
2668``blockaddress(@function, %block)``
2669
2670The '``blockaddress``' constant computes the address of the specified
2671basic block in the specified function, and always has an ``i8*`` type.
2672Taking the address of the entry block is illegal.
2673
2674This value only has defined behavior when used as an operand to the
2675':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2676against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002677undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002678no label is equal to the null pointer. This may be passed around as an
2679opaque pointer sized value as long as the bits are not inspected. This
2680allows ``ptrtoint`` and arithmetic to be performed on these values so
2681long as the original value is reconstituted before the ``indirectbr``
2682instruction.
2683
2684Finally, some targets may provide defined semantics when using the value
2685as the operand to an inline assembly, but that is target specific.
2686
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002687.. _constantexprs:
2688
Sean Silvab084af42012-12-07 10:36:55 +00002689Constant Expressions
2690--------------------
2691
2692Constant expressions are used to allow expressions involving other
2693constants to be used as constants. Constant expressions may be of any
2694:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2695that does not have side effects (e.g. load and call are not supported).
2696The following is the syntax for constant expressions:
2697
2698``trunc (CST to TYPE)``
2699 Truncate a constant to another type. The bit size of CST must be
2700 larger than the bit size of TYPE. Both types must be integers.
2701``zext (CST to TYPE)``
2702 Zero extend a constant to another type. The bit size of CST must be
2703 smaller than the bit size of TYPE. Both types must be integers.
2704``sext (CST to TYPE)``
2705 Sign extend a constant to another type. The bit size of CST must be
2706 smaller than the bit size of TYPE. Both types must be integers.
2707``fptrunc (CST to TYPE)``
2708 Truncate a floating point constant to another floating point type.
2709 The size of CST must be larger than the size of TYPE. Both types
2710 must be floating point.
2711``fpext (CST to TYPE)``
2712 Floating point extend a constant to another type. The size of CST
2713 must be smaller or equal to the size of TYPE. Both types must be
2714 floating point.
2715``fptoui (CST to TYPE)``
2716 Convert a floating point constant to the corresponding unsigned
2717 integer constant. TYPE must be a scalar or vector integer type. CST
2718 must be of scalar or vector floating point type. Both CST and TYPE
2719 must be scalars, or vectors of the same number of elements. If the
2720 value won't fit in the integer type, the results are undefined.
2721``fptosi (CST to TYPE)``
2722 Convert a floating point constant to the corresponding signed
2723 integer constant. TYPE must be a scalar or vector integer type. CST
2724 must be of scalar or vector floating point type. Both CST and TYPE
2725 must be scalars, or vectors of the same number of elements. If the
2726 value won't fit in the integer type, the results are undefined.
2727``uitofp (CST to TYPE)``
2728 Convert an unsigned integer constant to the corresponding floating
2729 point constant. TYPE must be a scalar or vector floating point type.
2730 CST must be of scalar or vector integer type. Both CST and TYPE must
2731 be scalars, or vectors of the same number of elements. If the value
2732 won't fit in the floating point type, the results are undefined.
2733``sitofp (CST to TYPE)``
2734 Convert a signed integer constant to the corresponding floating
2735 point constant. TYPE must be a scalar or vector floating point type.
2736 CST must be of scalar or vector integer type. Both CST and TYPE must
2737 be scalars, or vectors of the same number of elements. If the value
2738 won't fit in the floating point type, the results are undefined.
2739``ptrtoint (CST to TYPE)``
2740 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002741 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002742 pointer type. The ``CST`` value is zero extended, truncated, or
2743 unchanged to make it fit in ``TYPE``.
2744``inttoptr (CST to TYPE)``
2745 Convert an integer constant to a pointer constant. TYPE must be a
2746 pointer type. CST must be of integer type. The CST value is zero
2747 extended, truncated, or unchanged to make it fit in a pointer size.
2748 This one is *really* dangerous!
2749``bitcast (CST to TYPE)``
2750 Convert a constant, CST, to another TYPE. The constraints of the
2751 operands are the same as those for the :ref:`bitcast
2752 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002753``addrspacecast (CST to TYPE)``
2754 Convert a constant pointer or constant vector of pointer, CST, to another
2755 TYPE in a different address space. The constraints of the operands are the
2756 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002757``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002758 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2759 constants. As with the :ref:`getelementptr <i_getelementptr>`
2760 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002761 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002762``select (COND, VAL1, VAL2)``
2763 Perform the :ref:`select operation <i_select>` on constants.
2764``icmp COND (VAL1, VAL2)``
2765 Performs the :ref:`icmp operation <i_icmp>` on constants.
2766``fcmp COND (VAL1, VAL2)``
2767 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2768``extractelement (VAL, IDX)``
2769 Perform the :ref:`extractelement operation <i_extractelement>` on
2770 constants.
2771``insertelement (VAL, ELT, IDX)``
2772 Perform the :ref:`insertelement operation <i_insertelement>` on
2773 constants.
2774``shufflevector (VEC1, VEC2, IDXMASK)``
2775 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2776 constants.
2777``extractvalue (VAL, IDX0, IDX1, ...)``
2778 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2779 constants. The index list is interpreted in a similar manner as
2780 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2781 least one index value must be specified.
2782``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2783 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2784 The index list is interpreted in a similar manner as indices in a
2785 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2786 value must be specified.
2787``OPCODE (LHS, RHS)``
2788 Perform the specified operation of the LHS and RHS constants. OPCODE
2789 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2790 binary <bitwiseops>` operations. The constraints on operands are
2791 the same as those for the corresponding instruction (e.g. no bitwise
2792 operations on floating point values are allowed).
2793
2794Other Values
2795============
2796
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002797.. _inlineasmexprs:
2798
Sean Silvab084af42012-12-07 10:36:55 +00002799Inline Assembler Expressions
2800----------------------------
2801
2802LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2803Inline Assembly <moduleasm>`) through the use of a special value. This
2804value represents the inline assembler as a string (containing the
2805instructions to emit), a list of operand constraints (stored as a
2806string), a flag that indicates whether or not the inline asm expression
2807has side effects, and a flag indicating whether the function containing
2808the asm needs to align its stack conservatively. An example inline
2809assembler expression is:
2810
2811.. code-block:: llvm
2812
2813 i32 (i32) asm "bswap $0", "=r,r"
2814
2815Inline assembler expressions may **only** be used as the callee operand
2816of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2817Thus, typically we have:
2818
2819.. code-block:: llvm
2820
2821 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2822
2823Inline asms with side effects not visible in the constraint list must be
2824marked as having side effects. This is done through the use of the
2825'``sideeffect``' keyword, like so:
2826
2827.. code-block:: llvm
2828
2829 call void asm sideeffect "eieio", ""()
2830
2831In some cases inline asms will contain code that will not work unless
2832the stack is aligned in some way, such as calls or SSE instructions on
2833x86, yet will not contain code that does that alignment within the asm.
2834The compiler should make conservative assumptions about what the asm
2835might contain and should generate its usual stack alignment code in the
2836prologue if the '``alignstack``' keyword is present:
2837
2838.. code-block:: llvm
2839
2840 call void asm alignstack "eieio", ""()
2841
2842Inline asms also support using non-standard assembly dialects. The
2843assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2844the inline asm is using the Intel dialect. Currently, ATT and Intel are
2845the only supported dialects. An example is:
2846
2847.. code-block:: llvm
2848
2849 call void asm inteldialect "eieio", ""()
2850
2851If multiple keywords appear the '``sideeffect``' keyword must come
2852first, the '``alignstack``' keyword second and the '``inteldialect``'
2853keyword last.
2854
2855Inline Asm Metadata
2856^^^^^^^^^^^^^^^^^^^
2857
2858The call instructions that wrap inline asm nodes may have a
2859"``!srcloc``" MDNode attached to it that contains a list of constant
2860integers. If present, the code generator will use the integer as the
2861location cookie value when report errors through the ``LLVMContext``
2862error reporting mechanisms. This allows a front-end to correlate backend
2863errors that occur with inline asm back to the source code that produced
2864it. For example:
2865
2866.. code-block:: llvm
2867
2868 call void asm sideeffect "something bad", ""(), !srcloc !42
2869 ...
2870 !42 = !{ i32 1234567 }
2871
2872It is up to the front-end to make sense of the magic numbers it places
2873in the IR. If the MDNode contains multiple constants, the code generator
2874will use the one that corresponds to the line of the asm that the error
2875occurs on.
2876
2877.. _metadata:
2878
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002879Metadata
2880========
Sean Silvab084af42012-12-07 10:36:55 +00002881
2882LLVM IR allows metadata to be attached to instructions in the program
2883that can convey extra information about the code to the optimizers and
2884code generator. One example application of metadata is source-level
2885debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002886
2887Metadata does not have a type, and is not a value. If referenced from a
2888``call`` instruction, it uses the ``metadata`` type.
2889
2890All metadata are identified in syntax by a exclamation point ('``!``').
2891
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002892.. _metadata-string:
2893
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002894Metadata Nodes and Metadata Strings
2895-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00002896
2897A metadata string is a string surrounded by double quotes. It can
2898contain any character by escaping non-printable characters with
2899"``\xx``" where "``xx``" is the two digit hex code. For example:
2900"``!"test\00"``".
2901
2902Metadata nodes are represented with notation similar to structure
2903constants (a comma separated list of elements, surrounded by braces and
2904preceded by an exclamation point). Metadata nodes can have any values as
2905their operand. For example:
2906
2907.. code-block:: llvm
2908
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002909 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00002910
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00002911Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
2912
2913.. code-block:: llvm
2914
2915 !0 = distinct !{!"test\00", i32 10}
2916
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00002917``distinct`` nodes are useful when nodes shouldn't be merged based on their
2918content. They can also occur when transformations cause uniquing collisions
2919when metadata operands change.
2920
Sean Silvab084af42012-12-07 10:36:55 +00002921A :ref:`named metadata <namedmetadatastructure>` is a collection of
2922metadata nodes, which can be looked up in the module symbol table. For
2923example:
2924
2925.. code-block:: llvm
2926
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002927 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00002928
2929Metadata can be used as function arguments. Here ``llvm.dbg.value``
2930function is using two metadata arguments:
2931
2932.. code-block:: llvm
2933
2934 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2935
2936Metadata can be attached with an instruction. Here metadata ``!21`` is
2937attached to the ``add`` instruction using the ``!dbg`` identifier:
2938
2939.. code-block:: llvm
2940
2941 %indvar.next = add i64 %indvar, 1, !dbg !21
2942
2943More information about specific metadata nodes recognized by the
2944optimizers and code generator is found below.
2945
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00002946.. _specialized-metadata:
2947
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00002948Specialized Metadata Nodes
2949^^^^^^^^^^^^^^^^^^^^^^^^^^
2950
2951Specialized metadata nodes are custom data structures in metadata (as opposed
2952to generic tuples). Their fields are labelled, and can be specified in any
2953order.
2954
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002955These aren't inherently debug info centric, but currently all the specialized
2956metadata nodes are related to debug info.
2957
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00002958.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00002959
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00002960DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002961"""""""""""""
2962
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00002963``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002964``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
2965tuples containing the debug info to be emitted along with the compile unit,
2966regardless of code optimizations (some nodes are only emitted if there are
2967references to them from instructions).
2968
2969.. code-block:: llvm
2970
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00002971 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002972 isOptimized: true, flags: "-O2", runtimeVersion: 2,
2973 splitDebugFilename: "abc.debug", emissionKind: 1,
2974 enums: !2, retainedTypes: !3, subprograms: !4,
2975 globals: !5, imports: !6)
2976
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00002977Compile unit descriptors provide the root scope for objects declared in a
2978specific compilation unit. File descriptors are defined using this scope.
2979These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
2980keep track of subprograms, global variables, type information, and imported
2981entities (declarations and namespaces).
2982
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00002983.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00002984
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00002985DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002986""""""
2987
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00002988``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002989
2990.. code-block:: llvm
2991
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00002992 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002993
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00002994Files are sometimes used in ``scope:`` fields, and are the only valid target
2995for ``file:`` fields.
2996
Michael Kuperstein605308a2015-05-14 10:58:59 +00002997.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00002998
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00002999DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003000"""""""""""
3001
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003002``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003003``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003004
3005.. code-block:: llvm
3006
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003007 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003008 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003009 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003010
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003011The ``encoding:`` describes the details of the type. Usually it's one of the
3012following:
3013
3014.. code-block:: llvm
3015
3016 DW_ATE_address = 1
3017 DW_ATE_boolean = 2
3018 DW_ATE_float = 4
3019 DW_ATE_signed = 5
3020 DW_ATE_signed_char = 6
3021 DW_ATE_unsigned = 7
3022 DW_ATE_unsigned_char = 8
3023
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003024.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003025
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003026DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003027""""""""""""""""
3028
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003029``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003030refers to a tuple; the first operand is the return type, while the rest are the
3031types of the formal arguments in order. If the first operand is ``null``, that
3032represents a function with no return value (such as ``void foo() {}`` in C++).
3033
3034.. code-block:: llvm
3035
3036 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3037 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003038 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003039
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003040.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003041
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003042DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003043"""""""""""""
3044
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003045``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003046qualified types.
3047
3048.. code-block:: llvm
3049
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003050 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003051 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003052 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003053 align: 32)
3054
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003055The following ``tag:`` values are valid:
3056
3057.. code-block:: llvm
3058
3059 DW_TAG_formal_parameter = 5
3060 DW_TAG_member = 13
3061 DW_TAG_pointer_type = 15
3062 DW_TAG_reference_type = 16
3063 DW_TAG_typedef = 22
3064 DW_TAG_ptr_to_member_type = 31
3065 DW_TAG_const_type = 38
3066 DW_TAG_volatile_type = 53
3067 DW_TAG_restrict_type = 55
3068
3069``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003070<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003071is the ``baseType:``. The ``offset:`` is the member's bit offset.
3072``DW_TAG_formal_parameter`` is used to define a member which is a formal
3073argument of a subprogram.
3074
3075``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3076
3077``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3078``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3079``baseType:``.
3080
3081Note that the ``void *`` type is expressed as a type derived from NULL.
3082
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003083.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003084
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003085DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003086"""""""""""""""
3087
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003088``DICompositeType`` nodes represent types composed of other types, like
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003089structures and unions. ``elements:`` points to a tuple of the composed types.
3090
3091If the source language supports ODR, the ``identifier:`` field gives the unique
3092identifier used for type merging between modules. When specified, other types
3093can refer to composite types indirectly via a :ref:`metadata string
3094<metadata-string>` that matches their identifier.
3095
3096.. code-block:: llvm
3097
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003098 !0 = !DIEnumerator(name: "SixKind", value: 7)
3099 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3100 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3101 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003102 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3103 elements: !{!0, !1, !2})
3104
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003105The following ``tag:`` values are valid:
3106
3107.. code-block:: llvm
3108
3109 DW_TAG_array_type = 1
3110 DW_TAG_class_type = 2
3111 DW_TAG_enumeration_type = 4
3112 DW_TAG_structure_type = 19
3113 DW_TAG_union_type = 23
3114 DW_TAG_subroutine_type = 21
3115 DW_TAG_inheritance = 28
3116
3117
3118For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003119descriptors <DISubrange>`, each representing the range of subscripts at that
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003120level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
3121array type is a native packed vector.
3122
3123For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003124descriptors <DIEnumerator>`, each representing the definition of an enumeration
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003125value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003126``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003127
3128For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3129``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003130<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003131
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003132.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003133
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003134DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003135""""""""""
3136
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003137``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
3138:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003139
3140.. code-block:: llvm
3141
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003142 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3143 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3144 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003145
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003146.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003147
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003148DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003149""""""""""""
3150
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003151``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3152variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003153
3154.. code-block:: llvm
3155
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003156 !0 = !DIEnumerator(name: "SixKind", value: 7)
3157 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3158 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003159
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003160DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003161"""""""""""""""""""""""
3162
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003163``DITemplateTypeParameter`` nodes represent type parameters to generic source
3164language constructs. They are used (optionally) in :ref:`DICompositeType` and
3165:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003166
3167.. code-block:: llvm
3168
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003169 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003170
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003171DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003172""""""""""""""""""""""""
3173
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003174``DITemplateValueParameter`` nodes represent value parameters to generic source
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003175language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
3176but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
3177``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003178:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003179
3180.. code-block:: llvm
3181
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003182 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003183
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003184DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003185"""""""""""
3186
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003187``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003188
3189.. code-block:: llvm
3190
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003191 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003192
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003193DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003194""""""""""""""""
3195
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003196``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003197
3198.. code-block:: llvm
3199
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003200 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003201 file: !2, line: 7, type: !3, isLocal: true,
3202 isDefinition: false, variable: i32* @foo,
3203 declaration: !4)
3204
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003205All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003206:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003207
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003208.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003209
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003210DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003211""""""""""""
3212
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003213``DISubprogram`` nodes represent functions from the source language. The
3214``variables:`` field points at :ref:`variables <DILocalVariable>` that must be
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003215retained, even if their IR counterparts are optimized out of the IR. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003216``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003217
3218.. code-block:: llvm
3219
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003220 !0 = !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003221 file: !2, line: 7, type: !3, isLocal: true,
3222 isDefinition: false, scopeLine: 8, containingType: !4,
3223 virtuality: DW_VIRTUALITY_pure_virtual, virtualIndex: 10,
3224 flags: DIFlagPrototyped, isOptimized: true,
3225 function: void ()* @_Z3foov,
3226 templateParams: !5, declaration: !6, variables: !7)
3227
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003228.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003229
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003230DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003231""""""""""""""
3232
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003233``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
3234<DISubprogram>`. The line number and column numbers are used to dinstinguish
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003235two lexical blocks at same depth. They are valid targets for ``scope:``
3236fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003237
3238.. code-block:: llvm
3239
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003240 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003241
3242Usually lexical blocks are ``distinct`` to prevent node merging based on
3243operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003244
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003245.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003246
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003247DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003248""""""""""""""""""
3249
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003250``DILexicalBlockFile`` nodes are used to discriminate between sections of a
3251:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003252indicate textual inclusion, or the ``discriminator:`` field can be used to
3253discriminate between control flow within a single block in the source language.
3254
3255.. code-block:: llvm
3256
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003257 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
3258 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
3259 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003260
Michael Kuperstein605308a2015-05-14 10:58:59 +00003261.. _DILocation:
3262
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003263DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003264""""""""""
3265
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003266``DILocation`` nodes represent source debug locations. The ``scope:`` field is
3267mandatory, and points at an :ref:`DILexicalBlockFile`, an
3268:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003269
3270.. code-block:: llvm
3271
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003272 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003273
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003274.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003275
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003276DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003277"""""""""""""""
3278
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003279``DILocalVariable`` nodes represent local variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003280Instead of ``DW_TAG_variable``, they use LLVM-specific fake tags to
3281discriminate between local variables (``DW_TAG_auto_variable``) and subprogram
3282arguments (``DW_TAG_arg_variable``). In the latter case, the ``arg:`` field
3283specifies the argument position, and this variable will be included in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003284``variables:`` field of its :ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003285
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003286.. code-block:: llvm
3287
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003288 !0 = !DILocalVariable(tag: DW_TAG_arg_variable, name: "this", arg: 0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003289 scope: !3, file: !2, line: 7, type: !3,
Duncan P. N. Exon Smith62e0f452015-04-15 22:29:27 +00003290 flags: DIFlagArtificial)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003291 !1 = !DILocalVariable(tag: DW_TAG_arg_variable, name: "x", arg: 1,
Duncan P. N. Exon Smith62e0f452015-04-15 22:29:27 +00003292 scope: !4, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003293 !1 = !DILocalVariable(tag: DW_TAG_auto_variable, name: "y",
Duncan P. N. Exon Smith62e0f452015-04-15 22:29:27 +00003294 scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003295
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003296DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003297""""""""""""
3298
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003299``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003300:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
3301describe how the referenced LLVM variable relates to the source language
3302variable.
3303
3304The current supported vocabulary is limited:
3305
3306- ``DW_OP_deref`` dereferences the working expression.
3307- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
3308- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
3309 here, respectively) of the variable piece from the working expression.
3310
3311.. code-block:: llvm
3312
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003313 !0 = !DIExpression(DW_OP_deref)
3314 !1 = !DIExpression(DW_OP_plus, 3)
3315 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
3316 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003317
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003318DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003319""""""""""""""
3320
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003321``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003322
3323.. code-block:: llvm
3324
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003325 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003326 getter: "getFoo", attributes: 7, type: !2)
3327
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003328DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003329""""""""""""""""
3330
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003331``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003332compile unit.
3333
3334.. code-block:: llvm
3335
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003336 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003337 entity: !1, line: 7)
3338
Sean Silvab084af42012-12-07 10:36:55 +00003339'``tbaa``' Metadata
3340^^^^^^^^^^^^^^^^^^^
3341
3342In LLVM IR, memory does not have types, so LLVM's own type system is not
3343suitable for doing TBAA. Instead, metadata is added to the IR to
3344describe a type system of a higher level language. This can be used to
3345implement typical C/C++ TBAA, but it can also be used to implement
3346custom alias analysis behavior for other languages.
3347
3348The current metadata format is very simple. TBAA metadata nodes have up
3349to three fields, e.g.:
3350
3351.. code-block:: llvm
3352
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003353 !0 = !{ !"an example type tree" }
3354 !1 = !{ !"int", !0 }
3355 !2 = !{ !"float", !0 }
3356 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003357
3358The first field is an identity field. It can be any value, usually a
3359metadata string, which uniquely identifies the type. The most important
3360name in the tree is the name of the root node. Two trees with different
3361root node names are entirely disjoint, even if they have leaves with
3362common names.
3363
3364The second field identifies the type's parent node in the tree, or is
3365null or omitted for a root node. A type is considered to alias all of
3366its descendants and all of its ancestors in the tree. Also, a type is
3367considered to alias all types in other trees, so that bitcode produced
3368from multiple front-ends is handled conservatively.
3369
3370If the third field is present, it's an integer which if equal to 1
3371indicates that the type is "constant" (meaning
3372``pointsToConstantMemory`` should return true; see `other useful
3373AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
3374
3375'``tbaa.struct``' Metadata
3376^^^^^^^^^^^^^^^^^^^^^^^^^^
3377
3378The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
3379aggregate assignment operations in C and similar languages, however it
3380is defined to copy a contiguous region of memory, which is more than
3381strictly necessary for aggregate types which contain holes due to
3382padding. Also, it doesn't contain any TBAA information about the fields
3383of the aggregate.
3384
3385``!tbaa.struct`` metadata can describe which memory subregions in a
3386memcpy are padding and what the TBAA tags of the struct are.
3387
3388The current metadata format is very simple. ``!tbaa.struct`` metadata
3389nodes are a list of operands which are in conceptual groups of three.
3390For each group of three, the first operand gives the byte offset of a
3391field in bytes, the second gives its size in bytes, and the third gives
3392its tbaa tag. e.g.:
3393
3394.. code-block:: llvm
3395
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003396 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00003397
3398This describes a struct with two fields. The first is at offset 0 bytes
3399with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
3400and has size 4 bytes and has tbaa tag !2.
3401
3402Note that the fields need not be contiguous. In this example, there is a
34034 byte gap between the two fields. This gap represents padding which
3404does not carry useful data and need not be preserved.
3405
Hal Finkel94146652014-07-24 14:25:39 +00003406'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00003407^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00003408
3409``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
3410noalias memory-access sets. This means that some collection of memory access
3411instructions (loads, stores, memory-accessing calls, etc.) that carry
3412``noalias`` metadata can specifically be specified not to alias with some other
3413collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00003414Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00003415a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00003416of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00003417subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00003418instruction's ``noalias`` list, then the two memory accesses are assumed not to
3419alias.
Hal Finkel94146652014-07-24 14:25:39 +00003420
Hal Finkel029cde62014-07-25 15:50:02 +00003421The metadata identifying each domain is itself a list containing one or two
3422entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00003423string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00003424self-reference can be used to create globally unique domain names. A
3425descriptive string may optionally be provided as a second list entry.
3426
3427The metadata identifying each scope is also itself a list containing two or
3428three entries. The first entry is the name of the scope. Note that if the name
3429is a string then it can be combined accross functions and translation units. A
3430self-reference can be used to create globally unique scope names. A metadata
3431reference to the scope's domain is the second entry. A descriptive string may
3432optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00003433
3434For example,
3435
3436.. code-block:: llvm
3437
Hal Finkel029cde62014-07-25 15:50:02 +00003438 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003439 !0 = !{!0}
3440 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00003441
Hal Finkel029cde62014-07-25 15:50:02 +00003442 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003443 !2 = !{!2, !0}
3444 !3 = !{!3, !0}
3445 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00003446
Hal Finkel029cde62014-07-25 15:50:02 +00003447 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003448 !5 = !{!4} ; A list containing only scope !4
3449 !6 = !{!4, !3, !2}
3450 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00003451
3452 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00003453 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00003454 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00003455
Hal Finkel029cde62014-07-25 15:50:02 +00003456 ; These two instructions also don't alias (for domain !1, the set of scopes
3457 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00003458 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00003459 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00003460
Adam Nemet0a8416f2015-05-11 08:30:28 +00003461 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00003462 ; the !noalias list is not a superset of, or equal to, the scopes in the
3463 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00003464 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00003465 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00003466
Sean Silvab084af42012-12-07 10:36:55 +00003467'``fpmath``' Metadata
3468^^^^^^^^^^^^^^^^^^^^^
3469
3470``fpmath`` metadata may be attached to any instruction of floating point
3471type. It can be used to express the maximum acceptable error in the
3472result of that instruction, in ULPs, thus potentially allowing the
3473compiler to use a more efficient but less accurate method of computing
3474it. ULP is defined as follows:
3475
3476 If ``x`` is a real number that lies between two finite consecutive
3477 floating-point numbers ``a`` and ``b``, without being equal to one
3478 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
3479 distance between the two non-equal finite floating-point numbers
3480 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
3481
3482The metadata node shall consist of a single positive floating point
3483number representing the maximum relative error, for example:
3484
3485.. code-block:: llvm
3486
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003487 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00003488
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00003489.. _range-metadata:
3490
Sean Silvab084af42012-12-07 10:36:55 +00003491'``range``' Metadata
3492^^^^^^^^^^^^^^^^^^^^
3493
Jingyue Wu37fcb592014-06-19 16:50:16 +00003494``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
3495integer types. It expresses the possible ranges the loaded value or the value
3496returned by the called function at this call site is in. The ranges are
3497represented with a flattened list of integers. The loaded value or the value
3498returned is known to be in the union of the ranges defined by each consecutive
3499pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00003500
3501- The type must match the type loaded by the instruction.
3502- The pair ``a,b`` represents the range ``[a,b)``.
3503- Both ``a`` and ``b`` are constants.
3504- The range is allowed to wrap.
3505- The range should not represent the full or empty set. That is,
3506 ``a!=b``.
3507
3508In addition, the pairs must be in signed order of the lower bound and
3509they must be non-contiguous.
3510
3511Examples:
3512
3513.. code-block:: llvm
3514
David Blaikiec7aabbb2015-03-04 22:06:14 +00003515 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
3516 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00003517 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
3518 %d = invoke i8 @bar() to label %cont
3519 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00003520 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003521 !0 = !{ i8 0, i8 2 }
3522 !1 = !{ i8 255, i8 2 }
3523 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
3524 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00003525
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003526'``llvm.loop``'
3527^^^^^^^^^^^^^^^
3528
3529It is sometimes useful to attach information to loop constructs. Currently,
3530loop metadata is implemented as metadata attached to the branch instruction
3531in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00003532guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00003533specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003534
3535The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00003536itself to avoid merging it with any other identifier metadata, e.g.,
3537during module linkage or function inlining. That is, each loop should refer
3538to their own identification metadata even if they reside in separate functions.
3539The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003540constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003541
3542.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00003543
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003544 !0 = !{!0}
3545 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00003546
Mark Heffernan893752a2014-07-18 19:24:51 +00003547The loop identifier metadata can be used to specify additional
3548per-loop metadata. Any operands after the first operand can be treated
3549as user-defined metadata. For example the ``llvm.loop.unroll.count``
3550suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003551
Paul Redmond5fdf8362013-05-28 20:00:34 +00003552.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003553
Paul Redmond5fdf8362013-05-28 20:00:34 +00003554 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
3555 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003556 !0 = !{!0, !1}
3557 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003558
Mark Heffernan9d20e422014-07-21 23:11:03 +00003559'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
3560^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00003561
Mark Heffernan9d20e422014-07-21 23:11:03 +00003562Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
3563used to control per-loop vectorization and interleaving parameters such as
3564vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00003565conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00003566``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
3567optimization hints and the optimizer will only interleave and vectorize loops if
3568it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
3569which contains information about loop-carried memory dependencies can be helpful
3570in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00003571
Mark Heffernan9d20e422014-07-21 23:11:03 +00003572'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00003573^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3574
Mark Heffernan9d20e422014-07-21 23:11:03 +00003575This metadata suggests an interleave count to the loop interleaver.
3576The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00003577second operand is an integer specifying the interleave count. For
3578example:
3579
3580.. code-block:: llvm
3581
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003582 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003583
Mark Heffernan9d20e422014-07-21 23:11:03 +00003584Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
3585multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
3586then the interleave count will be determined automatically.
3587
3588'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00003589^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00003590
3591This metadata selectively enables or disables vectorization for the loop. The
3592first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
3593is a bit. If the bit operand value is 1 vectorization is enabled. A value of
35940 disables vectorization:
3595
3596.. code-block:: llvm
3597
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003598 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
3599 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00003600
3601'``llvm.loop.vectorize.width``' Metadata
3602^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3603
3604This metadata sets the target width of the vectorizer. The first
3605operand is the string ``llvm.loop.vectorize.width`` and the second
3606operand is an integer specifying the width. For example:
3607
3608.. code-block:: llvm
3609
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003610 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003611
3612Note that setting ``llvm.loop.vectorize.width`` to 1 disables
3613vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
36140 or if the loop does not have this metadata the width will be
3615determined automatically.
3616
3617'``llvm.loop.unroll``'
3618^^^^^^^^^^^^^^^^^^^^^^
3619
3620Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
3621optimization hints such as the unroll factor. ``llvm.loop.unroll``
3622metadata should be used in conjunction with ``llvm.loop`` loop
3623identification metadata. The ``llvm.loop.unroll`` metadata are only
3624optimization hints and the unrolling will only be performed if the
3625optimizer believes it is safe to do so.
3626
Mark Heffernan893752a2014-07-18 19:24:51 +00003627'``llvm.loop.unroll.count``' Metadata
3628^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3629
3630This metadata suggests an unroll factor to the loop unroller. The
3631first operand is the string ``llvm.loop.unroll.count`` and the second
3632operand is a positive integer specifying the unroll factor. For
3633example:
3634
3635.. code-block:: llvm
3636
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003637 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00003638
3639If the trip count of the loop is less than the unroll count the loop
3640will be partially unrolled.
3641
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003642'``llvm.loop.unroll.disable``' Metadata
3643^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3644
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00003645This metadata disables loop unrolling. The metadata has a single operand
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003646which is the string ``llvm.loop.unroll.disable``. For example:
3647
3648.. code-block:: llvm
3649
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003650 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003651
Kevin Qin715b01e2015-03-09 06:14:18 +00003652'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00003653^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00003654
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00003655This metadata disables runtime loop unrolling. The metadata has a single
Kevin Qin715b01e2015-03-09 06:14:18 +00003656operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
3657
3658.. code-block:: llvm
3659
3660 !0 = !{!"llvm.loop.unroll.runtime.disable"}
3661
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003662'``llvm.loop.unroll.full``' Metadata
3663^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3664
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00003665This metadata suggests that the loop should be unrolled fully. The
3666metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00003667For example:
3668
3669.. code-block:: llvm
3670
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003671 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003672
3673'``llvm.mem``'
3674^^^^^^^^^^^^^^^
3675
3676Metadata types used to annotate memory accesses with information helpful
3677for optimizations are prefixed with ``llvm.mem``.
3678
3679'``llvm.mem.parallel_loop_access``' Metadata
3680^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3681
Mehdi Amini4a121fa2015-03-14 22:04:06 +00003682The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
3683or metadata containing a list of loop identifiers for nested loops.
3684The metadata is attached to memory accessing instructions and denotes that
3685no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003686with the same loop identifier.
3687
Mehdi Amini4a121fa2015-03-14 22:04:06 +00003688Precisely, given two instructions ``m1`` and ``m2`` that both have the
3689``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
3690set of loops associated with that metadata, respectively, then there is no loop
3691carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003692``L2``.
3693
Mehdi Amini4a121fa2015-03-14 22:04:06 +00003694As a special case, if all memory accessing instructions in a loop have
3695``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
3696loop has no loop carried memory dependences and is considered to be a parallel
3697loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003698
Mehdi Amini4a121fa2015-03-14 22:04:06 +00003699Note that if not all memory access instructions have such metadata referring to
3700the loop, then the loop is considered not being trivially parallel. Additional
3701memory dependence analysis is required to make that determination. As a fail
3702safe mechanism, this causes loops that were originally parallel to be considered
3703sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00003704insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003705
3706Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00003707both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003708metadata types that refer to the same loop identifier metadata.
3709
3710.. code-block:: llvm
3711
3712 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003713 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00003714 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003715 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003716 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003717 ...
3718 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003719
3720 for.end:
3721 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003722 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003723
3724It is also possible to have nested parallel loops. In that case the
3725memory accesses refer to a list of loop identifier metadata nodes instead of
3726the loop identifier metadata node directly:
3727
3728.. code-block:: llvm
3729
3730 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003731 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00003732 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003733 ...
3734 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003735
3736 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003737 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00003738 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003739 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003740 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00003741 ...
3742 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003743
3744 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00003745 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00003746 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00003747 ...
3748 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003749
3750 outer.for.end: ; preds = %for.body
3751 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003752 !0 = !{!1, !2} ; a list of loop identifiers
3753 !1 = !{!1} ; an identifier for the inner loop
3754 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00003755
Peter Collingbournee6909c82015-02-20 20:30:47 +00003756'``llvm.bitsets``'
3757^^^^^^^^^^^^^^^^^^
3758
3759The ``llvm.bitsets`` global metadata is used to implement
3760:doc:`bitsets <BitSets>`.
3761
Sean Silvab084af42012-12-07 10:36:55 +00003762Module Flags Metadata
3763=====================
3764
3765Information about the module as a whole is difficult to convey to LLVM's
3766subsystems. The LLVM IR isn't sufficient to transmit this information.
3767The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003768this. These flags are in the form of key / value pairs --- much like a
3769dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00003770look it up.
3771
3772The ``llvm.module.flags`` metadata contains a list of metadata triplets.
3773Each triplet has the following form:
3774
3775- The first element is a *behavior* flag, which specifies the behavior
3776 when two (or more) modules are merged together, and it encounters two
3777 (or more) metadata with the same ID. The supported behaviors are
3778 described below.
3779- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003780 metadata. Each module may only have one flag entry for each unique ID (not
3781 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00003782- The third element is the value of the flag.
3783
3784When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003785``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
3786each unique metadata ID string, there will be exactly one entry in the merged
3787modules ``llvm.module.flags`` metadata table, and the value for that entry will
3788be determined by the merge behavior flag, as described below. The only exception
3789is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00003790
3791The following behaviors are supported:
3792
3793.. list-table::
3794 :header-rows: 1
3795 :widths: 10 90
3796
3797 * - Value
3798 - Behavior
3799
3800 * - 1
3801 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003802 Emits an error if two values disagree, otherwise the resulting value
3803 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00003804
3805 * - 2
3806 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003807 Emits a warning if two values disagree. The result value will be the
3808 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00003809
3810 * - 3
3811 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003812 Adds a requirement that another module flag be present and have a
3813 specified value after linking is performed. The value must be a
3814 metadata pair, where the first element of the pair is the ID of the
3815 module flag to be restricted, and the second element of the pair is
3816 the value the module flag should be restricted to. This behavior can
3817 be used to restrict the allowable results (via triggering of an
3818 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00003819
3820 * - 4
3821 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003822 Uses the specified value, regardless of the behavior or value of the
3823 other module. If both modules specify **Override**, but the values
3824 differ, an error will be emitted.
3825
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00003826 * - 5
3827 - **Append**
3828 Appends the two values, which are required to be metadata nodes.
3829
3830 * - 6
3831 - **AppendUnique**
3832 Appends the two values, which are required to be metadata
3833 nodes. However, duplicate entries in the second list are dropped
3834 during the append operation.
3835
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003836It is an error for a particular unique flag ID to have multiple behaviors,
3837except in the case of **Require** (which adds restrictions on another metadata
3838value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00003839
3840An example of module flags:
3841
3842.. code-block:: llvm
3843
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003844 !0 = !{ i32 1, !"foo", i32 1 }
3845 !1 = !{ i32 4, !"bar", i32 37 }
3846 !2 = !{ i32 2, !"qux", i32 42 }
3847 !3 = !{ i32 3, !"qux",
3848 !{
3849 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00003850 }
3851 }
3852 !llvm.module.flags = !{ !0, !1, !2, !3 }
3853
3854- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
3855 if two or more ``!"foo"`` flags are seen is to emit an error if their
3856 values are not equal.
3857
3858- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
3859 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003860 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00003861
3862- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
3863 behavior if two or more ``!"qux"`` flags are seen is to emit a
3864 warning if their values are not equal.
3865
3866- Metadata ``!3`` has the ID ``!"qux"`` and the value:
3867
3868 ::
3869
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003870 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003871
Daniel Dunbar25c4b572013-01-15 01:22:53 +00003872 The behavior is to emit an error if the ``llvm.module.flags`` does not
3873 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
3874 performed.
Sean Silvab084af42012-12-07 10:36:55 +00003875
3876Objective-C Garbage Collection Module Flags Metadata
3877----------------------------------------------------
3878
3879On the Mach-O platform, Objective-C stores metadata about garbage
3880collection in a special section called "image info". The metadata
3881consists of a version number and a bitmask specifying what types of
3882garbage collection are supported (if any) by the file. If two or more
3883modules are linked together their garbage collection metadata needs to
3884be merged rather than appended together.
3885
3886The Objective-C garbage collection module flags metadata consists of the
3887following key-value pairs:
3888
3889.. list-table::
3890 :header-rows: 1
3891 :widths: 30 70
3892
3893 * - Key
3894 - Value
3895
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003896 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003897 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00003898
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003899 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003900 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00003901 always 0.
3902
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003903 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003904 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00003905 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
3906 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
3907 Objective-C ABI version 2.
3908
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003909 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003910 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00003911 not. Valid values are 0, for no garbage collection, and 2, for garbage
3912 collection supported.
3913
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003914 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00003915 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00003916 If present, its value must be 6. This flag requires that the
3917 ``Objective-C Garbage Collection`` flag have the value 2.
3918
3919Some important flag interactions:
3920
3921- If a module with ``Objective-C Garbage Collection`` set to 0 is
3922 merged with a module with ``Objective-C Garbage Collection`` set to
3923 2, then the resulting module has the
3924 ``Objective-C Garbage Collection`` flag set to 0.
3925- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
3926 merged with a module with ``Objective-C GC Only`` set to 6.
3927
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003928Automatic Linker Flags Module Flags Metadata
3929--------------------------------------------
3930
3931Some targets support embedding flags to the linker inside individual object
3932files. Typically this is used in conjunction with language extensions which
3933allow source files to explicitly declare the libraries they depend on, and have
3934these automatically be transmitted to the linker via object files.
3935
3936These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00003937using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003938to be ``AppendUnique``, and the value for the key is expected to be a metadata
3939node which should be a list of other metadata nodes, each of which should be a
3940list of metadata strings defining linker options.
3941
3942For example, the following metadata section specifies two separate sets of
3943linker options, presumably to link against ``libz`` and the ``Cocoa``
3944framework::
3945
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003946 !0 = !{ i32 6, !"Linker Options",
3947 !{
3948 !{ !"-lz" },
3949 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00003950 !llvm.module.flags = !{ !0 }
3951
3952The metadata encoding as lists of lists of options, as opposed to a collapsed
3953list of options, is chosen so that the IR encoding can use multiple option
3954strings to specify e.g., a single library, while still having that specifier be
3955preserved as an atomic element that can be recognized by a target specific
3956assembly writer or object file emitter.
3957
3958Each individual option is required to be either a valid option for the target's
3959linker, or an option that is reserved by the target specific assembly writer or
3960object file emitter. No other aspect of these options is defined by the IR.
3961
Oliver Stannard5dc29342014-06-20 10:08:11 +00003962C type width Module Flags Metadata
3963----------------------------------
3964
3965The ARM backend emits a section into each generated object file describing the
3966options that it was compiled with (in a compiler-independent way) to prevent
3967linking incompatible objects, and to allow automatic library selection. Some
3968of these options are not visible at the IR level, namely wchar_t width and enum
3969width.
3970
3971To pass this information to the backend, these options are encoded in module
3972flags metadata, using the following key-value pairs:
3973
3974.. list-table::
3975 :header-rows: 1
3976 :widths: 30 70
3977
3978 * - Key
3979 - Value
3980
3981 * - short_wchar
3982 - * 0 --- sizeof(wchar_t) == 4
3983 * 1 --- sizeof(wchar_t) == 2
3984
3985 * - short_enum
3986 - * 0 --- Enums are at least as large as an ``int``.
3987 * 1 --- Enums are stored in the smallest integer type which can
3988 represent all of its values.
3989
3990For example, the following metadata section specifies that the module was
3991compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
3992enum is the smallest type which can represent all of its values::
3993
3994 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003995 !0 = !{i32 1, !"short_wchar", i32 1}
3996 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00003997
Eli Bendersky0220e6b2013-06-07 20:24:43 +00003998.. _intrinsicglobalvariables:
3999
Sean Silvab084af42012-12-07 10:36:55 +00004000Intrinsic Global Variables
4001==========================
4002
4003LLVM has a number of "magic" global variables that contain data that
4004affect code generation or other IR semantics. These are documented here.
4005All globals of this sort should have a section specified as
4006"``llvm.metadata``". This section and all globals that start with
4007"``llvm.``" are reserved for use by LLVM.
4008
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004009.. _gv_llvmused:
4010
Sean Silvab084af42012-12-07 10:36:55 +00004011The '``llvm.used``' Global Variable
4012-----------------------------------
4013
Rafael Espindola74f2e462013-04-22 14:58:02 +00004014The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004015:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004016pointers to named global variables, functions and aliases which may optionally
4017have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004018use of it is:
4019
4020.. code-block:: llvm
4021
4022 @X = global i8 4
4023 @Y = global i32 123
4024
4025 @llvm.used = appending global [2 x i8*] [
4026 i8* @X,
4027 i8* bitcast (i32* @Y to i8*)
4028 ], section "llvm.metadata"
4029
Rafael Espindola74f2e462013-04-22 14:58:02 +00004030If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4031and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004032symbol that it cannot see (which is why they have to be named). For example, if
4033a variable has internal linkage and no references other than that from the
4034``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4035references from inline asms and other things the compiler cannot "see", and
4036corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004037
4038On some targets, the code generator must emit a directive to the
4039assembler or object file to prevent the assembler and linker from
4040molesting the symbol.
4041
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004042.. _gv_llvmcompilerused:
4043
Sean Silvab084af42012-12-07 10:36:55 +00004044The '``llvm.compiler.used``' Global Variable
4045--------------------------------------------
4046
4047The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4048directive, except that it only prevents the compiler from touching the
4049symbol. On targets that support it, this allows an intelligent linker to
4050optimize references to the symbol without being impeded as it would be
4051by ``@llvm.used``.
4052
4053This is a rare construct that should only be used in rare circumstances,
4054and should not be exposed to source languages.
4055
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004056.. _gv_llvmglobalctors:
4057
Sean Silvab084af42012-12-07 10:36:55 +00004058The '``llvm.global_ctors``' Global Variable
4059-------------------------------------------
4060
4061.. code-block:: llvm
4062
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004063 %0 = type { i32, void ()*, i8* }
4064 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004065
4066The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004067functions, priorities, and an optional associated global or function.
4068The functions referenced by this array will be called in ascending order
4069of priority (i.e. lowest first) when the module is loaded. The order of
4070functions with the same priority is not defined.
4071
4072If the third field is present, non-null, and points to a global variable
4073or function, the initializer function will only run if the associated
4074data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004075
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004076.. _llvmglobaldtors:
4077
Sean Silvab084af42012-12-07 10:36:55 +00004078The '``llvm.global_dtors``' Global Variable
4079-------------------------------------------
4080
4081.. code-block:: llvm
4082
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004083 %0 = type { i32, void ()*, i8* }
4084 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004085
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004086The ``@llvm.global_dtors`` array contains a list of destructor
4087functions, priorities, and an optional associated global or function.
4088The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004089order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004090order of functions with the same priority is not defined.
4091
4092If the third field is present, non-null, and points to a global variable
4093or function, the destructor function will only run if the associated
4094data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004095
4096Instruction Reference
4097=====================
4098
4099The LLVM instruction set consists of several different classifications
4100of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4101instructions <binaryops>`, :ref:`bitwise binary
4102instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4103:ref:`other instructions <otherops>`.
4104
4105.. _terminators:
4106
4107Terminator Instructions
4108-----------------------
4109
4110As mentioned :ref:`previously <functionstructure>`, every basic block in a
4111program ends with a "Terminator" instruction, which indicates which
4112block should be executed after the current block is finished. These
4113terminator instructions typically yield a '``void``' value: they produce
4114control flow, not values (the one exception being the
4115':ref:`invoke <i_invoke>`' instruction).
4116
4117The terminator instructions are: ':ref:`ret <i_ret>`',
4118':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
4119':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
4120':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
4121
4122.. _i_ret:
4123
4124'``ret``' Instruction
4125^^^^^^^^^^^^^^^^^^^^^
4126
4127Syntax:
4128"""""""
4129
4130::
4131
4132 ret <type> <value> ; Return a value from a non-void function
4133 ret void ; Return from void function
4134
4135Overview:
4136"""""""""
4137
4138The '``ret``' instruction is used to return control flow (and optionally
4139a value) from a function back to the caller.
4140
4141There are two forms of the '``ret``' instruction: one that returns a
4142value and then causes control flow, and one that just causes control
4143flow to occur.
4144
4145Arguments:
4146""""""""""
4147
4148The '``ret``' instruction optionally accepts a single argument, the
4149return value. The type of the return value must be a ':ref:`first
4150class <t_firstclass>`' type.
4151
4152A function is not :ref:`well formed <wellformed>` if it it has a non-void
4153return type and contains a '``ret``' instruction with no return value or
4154a return value with a type that does not match its type, or if it has a
4155void return type and contains a '``ret``' instruction with a return
4156value.
4157
4158Semantics:
4159""""""""""
4160
4161When the '``ret``' instruction is executed, control flow returns back to
4162the calling function's context. If the caller is a
4163":ref:`call <i_call>`" instruction, execution continues at the
4164instruction after the call. If the caller was an
4165":ref:`invoke <i_invoke>`" instruction, execution continues at the
4166beginning of the "normal" destination block. If the instruction returns
4167a value, that value shall set the call or invoke instruction's return
4168value.
4169
4170Example:
4171""""""""
4172
4173.. code-block:: llvm
4174
4175 ret i32 5 ; Return an integer value of 5
4176 ret void ; Return from a void function
4177 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
4178
4179.. _i_br:
4180
4181'``br``' Instruction
4182^^^^^^^^^^^^^^^^^^^^
4183
4184Syntax:
4185"""""""
4186
4187::
4188
4189 br i1 <cond>, label <iftrue>, label <iffalse>
4190 br label <dest> ; Unconditional branch
4191
4192Overview:
4193"""""""""
4194
4195The '``br``' instruction is used to cause control flow to transfer to a
4196different basic block in the current function. There are two forms of
4197this instruction, corresponding to a conditional branch and an
4198unconditional branch.
4199
4200Arguments:
4201""""""""""
4202
4203The conditional branch form of the '``br``' instruction takes a single
4204'``i1``' value and two '``label``' values. The unconditional form of the
4205'``br``' instruction takes a single '``label``' value as a target.
4206
4207Semantics:
4208""""""""""
4209
4210Upon execution of a conditional '``br``' instruction, the '``i1``'
4211argument is evaluated. If the value is ``true``, control flows to the
4212'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
4213to the '``iffalse``' ``label`` argument.
4214
4215Example:
4216""""""""
4217
4218.. code-block:: llvm
4219
4220 Test:
4221 %cond = icmp eq i32 %a, %b
4222 br i1 %cond, label %IfEqual, label %IfUnequal
4223 IfEqual:
4224 ret i32 1
4225 IfUnequal:
4226 ret i32 0
4227
4228.. _i_switch:
4229
4230'``switch``' Instruction
4231^^^^^^^^^^^^^^^^^^^^^^^^
4232
4233Syntax:
4234"""""""
4235
4236::
4237
4238 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
4239
4240Overview:
4241"""""""""
4242
4243The '``switch``' instruction is used to transfer control flow to one of
4244several different places. It is a generalization of the '``br``'
4245instruction, allowing a branch to occur to one of many possible
4246destinations.
4247
4248Arguments:
4249""""""""""
4250
4251The '``switch``' instruction uses three parameters: an integer
4252comparison value '``value``', a default '``label``' destination, and an
4253array of pairs of comparison value constants and '``label``'s. The table
4254is not allowed to contain duplicate constant entries.
4255
4256Semantics:
4257""""""""""
4258
4259The ``switch`` instruction specifies a table of values and destinations.
4260When the '``switch``' instruction is executed, this table is searched
4261for the given value. If the value is found, control flow is transferred
4262to the corresponding destination; otherwise, control flow is transferred
4263to the default destination.
4264
4265Implementation:
4266"""""""""""""""
4267
4268Depending on properties of the target machine and the particular
4269``switch`` instruction, this instruction may be code generated in
4270different ways. For example, it could be generated as a series of
4271chained conditional branches or with a lookup table.
4272
4273Example:
4274""""""""
4275
4276.. code-block:: llvm
4277
4278 ; Emulate a conditional br instruction
4279 %Val = zext i1 %value to i32
4280 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
4281
4282 ; Emulate an unconditional br instruction
4283 switch i32 0, label %dest [ ]
4284
4285 ; Implement a jump table:
4286 switch i32 %val, label %otherwise [ i32 0, label %onzero
4287 i32 1, label %onone
4288 i32 2, label %ontwo ]
4289
4290.. _i_indirectbr:
4291
4292'``indirectbr``' Instruction
4293^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4294
4295Syntax:
4296"""""""
4297
4298::
4299
4300 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
4301
4302Overview:
4303"""""""""
4304
4305The '``indirectbr``' instruction implements an indirect branch to a
4306label within the current function, whose address is specified by
4307"``address``". Address must be derived from a
4308:ref:`blockaddress <blockaddress>` constant.
4309
4310Arguments:
4311""""""""""
4312
4313The '``address``' argument is the address of the label to jump to. The
4314rest of the arguments indicate the full set of possible destinations
4315that the address may point to. Blocks are allowed to occur multiple
4316times in the destination list, though this isn't particularly useful.
4317
4318This destination list is required so that dataflow analysis has an
4319accurate understanding of the CFG.
4320
4321Semantics:
4322""""""""""
4323
4324Control transfers to the block specified in the address argument. All
4325possible destination blocks must be listed in the label list, otherwise
4326this instruction has undefined behavior. This implies that jumps to
4327labels defined in other functions have undefined behavior as well.
4328
4329Implementation:
4330"""""""""""""""
4331
4332This is typically implemented with a jump through a register.
4333
4334Example:
4335""""""""
4336
4337.. code-block:: llvm
4338
4339 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
4340
4341.. _i_invoke:
4342
4343'``invoke``' Instruction
4344^^^^^^^^^^^^^^^^^^^^^^^^
4345
4346Syntax:
4347"""""""
4348
4349::
4350
4351 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
4352 to label <normal label> unwind label <exception label>
4353
4354Overview:
4355"""""""""
4356
4357The '``invoke``' instruction causes control to transfer to a specified
4358function, with the possibility of control flow transfer to either the
4359'``normal``' label or the '``exception``' label. If the callee function
4360returns with the "``ret``" instruction, control flow will return to the
4361"normal" label. If the callee (or any indirect callees) returns via the
4362":ref:`resume <i_resume>`" instruction or other exception handling
4363mechanism, control is interrupted and continued at the dynamically
4364nearest "exception" label.
4365
4366The '``exception``' label is a `landing
4367pad <ExceptionHandling.html#overview>`_ for the exception. As such,
4368'``exception``' label is required to have the
4369":ref:`landingpad <i_landingpad>`" instruction, which contains the
4370information about the behavior of the program after unwinding happens,
4371as its first non-PHI instruction. The restrictions on the
4372"``landingpad``" instruction's tightly couples it to the "``invoke``"
4373instruction, so that the important information contained within the
4374"``landingpad``" instruction can't be lost through normal code motion.
4375
4376Arguments:
4377""""""""""
4378
4379This instruction requires several arguments:
4380
4381#. The optional "cconv" marker indicates which :ref:`calling
4382 convention <callingconv>` the call should use. If none is
4383 specified, the call defaults to using C calling conventions.
4384#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
4385 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
4386 are valid here.
4387#. '``ptr to function ty``': shall be the signature of the pointer to
4388 function value being invoked. In most cases, this is a direct
4389 function invocation, but indirect ``invoke``'s are just as possible,
4390 branching off an arbitrary pointer to function value.
4391#. '``function ptr val``': An LLVM value containing a pointer to a
4392 function to be invoked.
4393#. '``function args``': argument list whose types match the function
4394 signature argument types and parameter attributes. All arguments must
4395 be of :ref:`first class <t_firstclass>` type. If the function signature
4396 indicates the function accepts a variable number of arguments, the
4397 extra arguments can be specified.
4398#. '``normal label``': the label reached when the called function
4399 executes a '``ret``' instruction.
4400#. '``exception label``': the label reached when a callee returns via
4401 the :ref:`resume <i_resume>` instruction or other exception handling
4402 mechanism.
4403#. The optional :ref:`function attributes <fnattrs>` list. Only
4404 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
4405 attributes are valid here.
4406
4407Semantics:
4408""""""""""
4409
4410This instruction is designed to operate as a standard '``call``'
4411instruction in most regards. The primary difference is that it
4412establishes an association with a label, which is used by the runtime
4413library to unwind the stack.
4414
4415This instruction is used in languages with destructors to ensure that
4416proper cleanup is performed in the case of either a ``longjmp`` or a
4417thrown exception. Additionally, this is important for implementation of
4418'``catch``' clauses in high-level languages that support them.
4419
4420For the purposes of the SSA form, the definition of the value returned
4421by the '``invoke``' instruction is deemed to occur on the edge from the
4422current block to the "normal" label. If the callee unwinds then no
4423return value is available.
4424
4425Example:
4426""""""""
4427
4428.. code-block:: llvm
4429
4430 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00004431 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00004432 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00004433 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00004434
4435.. _i_resume:
4436
4437'``resume``' Instruction
4438^^^^^^^^^^^^^^^^^^^^^^^^
4439
4440Syntax:
4441"""""""
4442
4443::
4444
4445 resume <type> <value>
4446
4447Overview:
4448"""""""""
4449
4450The '``resume``' instruction is a terminator instruction that has no
4451successors.
4452
4453Arguments:
4454""""""""""
4455
4456The '``resume``' instruction requires one argument, which must have the
4457same type as the result of any '``landingpad``' instruction in the same
4458function.
4459
4460Semantics:
4461""""""""""
4462
4463The '``resume``' instruction resumes propagation of an existing
4464(in-flight) exception whose unwinding was interrupted with a
4465:ref:`landingpad <i_landingpad>` instruction.
4466
4467Example:
4468""""""""
4469
4470.. code-block:: llvm
4471
4472 resume { i8*, i32 } %exn
4473
4474.. _i_unreachable:
4475
4476'``unreachable``' Instruction
4477^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4478
4479Syntax:
4480"""""""
4481
4482::
4483
4484 unreachable
4485
4486Overview:
4487"""""""""
4488
4489The '``unreachable``' instruction has no defined semantics. This
4490instruction is used to inform the optimizer that a particular portion of
4491the code is not reachable. This can be used to indicate that the code
4492after a no-return function cannot be reached, and other facts.
4493
4494Semantics:
4495""""""""""
4496
4497The '``unreachable``' instruction has no defined semantics.
4498
4499.. _binaryops:
4500
4501Binary Operations
4502-----------------
4503
4504Binary operators are used to do most of the computation in a program.
4505They require two operands of the same type, execute an operation on
4506them, and produce a single value. The operands might represent multiple
4507data, as is the case with the :ref:`vector <t_vector>` data type. The
4508result value has the same type as its operands.
4509
4510There are several different binary operators:
4511
4512.. _i_add:
4513
4514'``add``' Instruction
4515^^^^^^^^^^^^^^^^^^^^^
4516
4517Syntax:
4518"""""""
4519
4520::
4521
Tim Northover675a0962014-06-13 14:24:23 +00004522 <result> = add <ty> <op1>, <op2> ; yields ty:result
4523 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
4524 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
4525 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004526
4527Overview:
4528"""""""""
4529
4530The '``add``' instruction returns the sum of its two operands.
4531
4532Arguments:
4533""""""""""
4534
4535The two arguments to the '``add``' instruction must be
4536:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4537arguments must have identical types.
4538
4539Semantics:
4540""""""""""
4541
4542The value produced is the integer sum of the two operands.
4543
4544If the sum has unsigned overflow, the result returned is the
4545mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4546the result.
4547
4548Because LLVM integers use a two's complement representation, this
4549instruction is appropriate for both signed and unsigned integers.
4550
4551``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4552respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4553result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
4554unsigned and/or signed overflow, respectively, occurs.
4555
4556Example:
4557""""""""
4558
4559.. code-block:: llvm
4560
Tim Northover675a0962014-06-13 14:24:23 +00004561 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004562
4563.. _i_fadd:
4564
4565'``fadd``' Instruction
4566^^^^^^^^^^^^^^^^^^^^^^
4567
4568Syntax:
4569"""""""
4570
4571::
4572
Tim Northover675a0962014-06-13 14:24:23 +00004573 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004574
4575Overview:
4576"""""""""
4577
4578The '``fadd``' instruction returns the sum of its two operands.
4579
4580Arguments:
4581""""""""""
4582
4583The two arguments to the '``fadd``' instruction must be :ref:`floating
4584point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4585Both arguments must have identical types.
4586
4587Semantics:
4588""""""""""
4589
4590The value produced is the floating point sum of the two operands. This
4591instruction can also take any number of :ref:`fast-math flags <fastmath>`,
4592which are optimization hints to enable otherwise unsafe floating point
4593optimizations:
4594
4595Example:
4596""""""""
4597
4598.. code-block:: llvm
4599
Tim Northover675a0962014-06-13 14:24:23 +00004600 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00004601
4602'``sub``' Instruction
4603^^^^^^^^^^^^^^^^^^^^^
4604
4605Syntax:
4606"""""""
4607
4608::
4609
Tim Northover675a0962014-06-13 14:24:23 +00004610 <result> = sub <ty> <op1>, <op2> ; yields ty:result
4611 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
4612 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
4613 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004614
4615Overview:
4616"""""""""
4617
4618The '``sub``' instruction returns the difference of its two operands.
4619
4620Note that the '``sub``' instruction is used to represent the '``neg``'
4621instruction present in most other intermediate representations.
4622
4623Arguments:
4624""""""""""
4625
4626The two arguments to the '``sub``' instruction must be
4627:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4628arguments must have identical types.
4629
4630Semantics:
4631""""""""""
4632
4633The value produced is the integer difference of the two operands.
4634
4635If the difference has unsigned overflow, the result returned is the
4636mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
4637the result.
4638
4639Because LLVM integers use a two's complement representation, this
4640instruction is appropriate for both signed and unsigned integers.
4641
4642``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4643respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4644result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
4645unsigned and/or signed overflow, respectively, occurs.
4646
4647Example:
4648""""""""
4649
4650.. code-block:: llvm
4651
Tim Northover675a0962014-06-13 14:24:23 +00004652 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
4653 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004654
4655.. _i_fsub:
4656
4657'``fsub``' Instruction
4658^^^^^^^^^^^^^^^^^^^^^^
4659
4660Syntax:
4661"""""""
4662
4663::
4664
Tim Northover675a0962014-06-13 14:24:23 +00004665 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004666
4667Overview:
4668"""""""""
4669
4670The '``fsub``' instruction returns the difference of its two operands.
4671
4672Note that the '``fsub``' instruction is used to represent the '``fneg``'
4673instruction present in most other intermediate representations.
4674
4675Arguments:
4676""""""""""
4677
4678The two arguments to the '``fsub``' instruction must be :ref:`floating
4679point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4680Both arguments must have identical types.
4681
4682Semantics:
4683""""""""""
4684
4685The value produced is the floating point difference of the two operands.
4686This instruction can also take any number of :ref:`fast-math
4687flags <fastmath>`, which are optimization hints to enable otherwise
4688unsafe floating point optimizations:
4689
4690Example:
4691""""""""
4692
4693.. code-block:: llvm
4694
Tim Northover675a0962014-06-13 14:24:23 +00004695 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
4696 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00004697
4698'``mul``' Instruction
4699^^^^^^^^^^^^^^^^^^^^^
4700
4701Syntax:
4702"""""""
4703
4704::
4705
Tim Northover675a0962014-06-13 14:24:23 +00004706 <result> = mul <ty> <op1>, <op2> ; yields ty:result
4707 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
4708 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
4709 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004710
4711Overview:
4712"""""""""
4713
4714The '``mul``' instruction returns the product of its two operands.
4715
4716Arguments:
4717""""""""""
4718
4719The two arguments to the '``mul``' instruction must be
4720:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4721arguments must have identical types.
4722
4723Semantics:
4724""""""""""
4725
4726The value produced is the integer product of the two operands.
4727
4728If the result of the multiplication has unsigned overflow, the result
4729returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
4730bit width of the result.
4731
4732Because LLVM integers use a two's complement representation, and the
4733result is the same width as the operands, this instruction returns the
4734correct result for both signed and unsigned integers. If a full product
4735(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
4736sign-extended or zero-extended as appropriate to the width of the full
4737product.
4738
4739``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
4740respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
4741result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
4742unsigned and/or signed overflow, respectively, occurs.
4743
4744Example:
4745""""""""
4746
4747.. code-block:: llvm
4748
Tim Northover675a0962014-06-13 14:24:23 +00004749 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004750
4751.. _i_fmul:
4752
4753'``fmul``' Instruction
4754^^^^^^^^^^^^^^^^^^^^^^
4755
4756Syntax:
4757"""""""
4758
4759::
4760
Tim Northover675a0962014-06-13 14:24:23 +00004761 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004762
4763Overview:
4764"""""""""
4765
4766The '``fmul``' instruction returns the product of its two operands.
4767
4768Arguments:
4769""""""""""
4770
4771The two arguments to the '``fmul``' instruction must be :ref:`floating
4772point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4773Both arguments must have identical types.
4774
4775Semantics:
4776""""""""""
4777
4778The value produced is the floating point product of the two operands.
4779This instruction can also take any number of :ref:`fast-math
4780flags <fastmath>`, which are optimization hints to enable otherwise
4781unsafe floating point optimizations:
4782
4783Example:
4784""""""""
4785
4786.. code-block:: llvm
4787
Tim Northover675a0962014-06-13 14:24:23 +00004788 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00004789
4790'``udiv``' Instruction
4791^^^^^^^^^^^^^^^^^^^^^^
4792
4793Syntax:
4794"""""""
4795
4796::
4797
Tim Northover675a0962014-06-13 14:24:23 +00004798 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
4799 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004800
4801Overview:
4802"""""""""
4803
4804The '``udiv``' instruction returns the quotient of its two operands.
4805
4806Arguments:
4807""""""""""
4808
4809The two arguments to the '``udiv``' instruction must be
4810:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4811arguments must have identical types.
4812
4813Semantics:
4814""""""""""
4815
4816The value produced is the unsigned integer quotient of the two operands.
4817
4818Note that unsigned integer division and signed integer division are
4819distinct operations; for signed integer division, use '``sdiv``'.
4820
4821Division by zero leads to undefined behavior.
4822
4823If the ``exact`` keyword is present, the result value of the ``udiv`` is
4824a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
4825such, "((a udiv exact b) mul b) == a").
4826
4827Example:
4828""""""""
4829
4830.. code-block:: llvm
4831
Tim Northover675a0962014-06-13 14:24:23 +00004832 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004833
4834'``sdiv``' Instruction
4835^^^^^^^^^^^^^^^^^^^^^^
4836
4837Syntax:
4838"""""""
4839
4840::
4841
Tim Northover675a0962014-06-13 14:24:23 +00004842 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
4843 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004844
4845Overview:
4846"""""""""
4847
4848The '``sdiv``' instruction returns the quotient of its two operands.
4849
4850Arguments:
4851""""""""""
4852
4853The two arguments to the '``sdiv``' instruction must be
4854:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4855arguments must have identical types.
4856
4857Semantics:
4858""""""""""
4859
4860The value produced is the signed integer quotient of the two operands
4861rounded towards zero.
4862
4863Note that signed integer division and unsigned integer division are
4864distinct operations; for unsigned integer division, use '``udiv``'.
4865
4866Division by zero leads to undefined behavior. Overflow also leads to
4867undefined behavior; this is a rare case, but can occur, for example, by
4868doing a 32-bit division of -2147483648 by -1.
4869
4870If the ``exact`` keyword is present, the result value of the ``sdiv`` is
4871a :ref:`poison value <poisonvalues>` if the result would be rounded.
4872
4873Example:
4874""""""""
4875
4876.. code-block:: llvm
4877
Tim Northover675a0962014-06-13 14:24:23 +00004878 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004879
4880.. _i_fdiv:
4881
4882'``fdiv``' Instruction
4883^^^^^^^^^^^^^^^^^^^^^^
4884
4885Syntax:
4886"""""""
4887
4888::
4889
Tim Northover675a0962014-06-13 14:24:23 +00004890 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004891
4892Overview:
4893"""""""""
4894
4895The '``fdiv``' instruction returns the quotient of its two operands.
4896
4897Arguments:
4898""""""""""
4899
4900The two arguments to the '``fdiv``' instruction must be :ref:`floating
4901point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
4902Both arguments must have identical types.
4903
4904Semantics:
4905""""""""""
4906
4907The value produced is the floating point quotient of the two operands.
4908This instruction can also take any number of :ref:`fast-math
4909flags <fastmath>`, which are optimization hints to enable otherwise
4910unsafe floating point optimizations:
4911
4912Example:
4913""""""""
4914
4915.. code-block:: llvm
4916
Tim Northover675a0962014-06-13 14:24:23 +00004917 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00004918
4919'``urem``' Instruction
4920^^^^^^^^^^^^^^^^^^^^^^
4921
4922Syntax:
4923"""""""
4924
4925::
4926
Tim Northover675a0962014-06-13 14:24:23 +00004927 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004928
4929Overview:
4930"""""""""
4931
4932The '``urem``' instruction returns the remainder from the unsigned
4933division of its two arguments.
4934
4935Arguments:
4936""""""""""
4937
4938The two arguments to the '``urem``' instruction must be
4939:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4940arguments must have identical types.
4941
4942Semantics:
4943""""""""""
4944
4945This instruction returns the unsigned integer *remainder* of a division.
4946This instruction always performs an unsigned division to get the
4947remainder.
4948
4949Note that unsigned integer remainder and signed integer remainder are
4950distinct operations; for signed integer remainder, use '``srem``'.
4951
4952Taking the remainder of a division by zero leads to undefined behavior.
4953
4954Example:
4955""""""""
4956
4957.. code-block:: llvm
4958
Tim Northover675a0962014-06-13 14:24:23 +00004959 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00004960
4961'``srem``' Instruction
4962^^^^^^^^^^^^^^^^^^^^^^
4963
4964Syntax:
4965"""""""
4966
4967::
4968
Tim Northover675a0962014-06-13 14:24:23 +00004969 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00004970
4971Overview:
4972"""""""""
4973
4974The '``srem``' instruction returns the remainder from the signed
4975division of its two operands. This instruction can also take
4976:ref:`vector <t_vector>` versions of the values in which case the elements
4977must be integers.
4978
4979Arguments:
4980""""""""""
4981
4982The two arguments to the '``srem``' instruction must be
4983:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4984arguments must have identical types.
4985
4986Semantics:
4987""""""""""
4988
4989This instruction returns the *remainder* of a division (where the result
4990is either zero or has the same sign as the dividend, ``op1``), not the
4991*modulo* operator (where the result is either zero or has the same sign
4992as the divisor, ``op2``) of a value. For more information about the
4993difference, see `The Math
4994Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
4995table of how this is implemented in various languages, please see
4996`Wikipedia: modulo
4997operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
4998
4999Note that signed integer remainder and unsigned integer remainder are
5000distinct operations; for unsigned integer remainder, use '``urem``'.
5001
5002Taking the remainder of a division by zero leads to undefined behavior.
5003Overflow also leads to undefined behavior; this is a rare case, but can
5004occur, for example, by taking the remainder of a 32-bit division of
5005-2147483648 by -1. (The remainder doesn't actually overflow, but this
5006rule lets srem be implemented using instructions that return both the
5007result of the division and the remainder.)
5008
5009Example:
5010""""""""
5011
5012.. code-block:: llvm
5013
Tim Northover675a0962014-06-13 14:24:23 +00005014 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005015
5016.. _i_frem:
5017
5018'``frem``' Instruction
5019^^^^^^^^^^^^^^^^^^^^^^
5020
5021Syntax:
5022"""""""
5023
5024::
5025
Tim Northover675a0962014-06-13 14:24:23 +00005026 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005027
5028Overview:
5029"""""""""
5030
5031The '``frem``' instruction returns the remainder from the division of
5032its two operands.
5033
5034Arguments:
5035""""""""""
5036
5037The two arguments to the '``frem``' instruction must be :ref:`floating
5038point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5039Both arguments must have identical types.
5040
5041Semantics:
5042""""""""""
5043
5044This instruction returns the *remainder* of a division. The remainder
5045has the same sign as the dividend. This instruction can also take any
5046number of :ref:`fast-math flags <fastmath>`, which are optimization hints
5047to enable otherwise unsafe floating point optimizations:
5048
5049Example:
5050""""""""
5051
5052.. code-block:: llvm
5053
Tim Northover675a0962014-06-13 14:24:23 +00005054 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005055
5056.. _bitwiseops:
5057
5058Bitwise Binary Operations
5059-------------------------
5060
5061Bitwise binary operators are used to do various forms of bit-twiddling
5062in a program. They are generally very efficient instructions and can
5063commonly be strength reduced from other instructions. They require two
5064operands of the same type, execute an operation on them, and produce a
5065single value. The resulting value is the same type as its operands.
5066
5067'``shl``' Instruction
5068^^^^^^^^^^^^^^^^^^^^^
5069
5070Syntax:
5071"""""""
5072
5073::
5074
Tim Northover675a0962014-06-13 14:24:23 +00005075 <result> = shl <ty> <op1>, <op2> ; yields ty:result
5076 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
5077 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
5078 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005079
5080Overview:
5081"""""""""
5082
5083The '``shl``' instruction returns the first operand shifted to the left
5084a specified number of bits.
5085
5086Arguments:
5087""""""""""
5088
5089Both arguments to the '``shl``' instruction must be the same
5090:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5091'``op2``' is treated as an unsigned value.
5092
5093Semantics:
5094""""""""""
5095
5096The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
5097where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00005098dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00005099``op1``, the result is undefined. If the arguments are vectors, each
5100vector element of ``op1`` is shifted by the corresponding shift amount
5101in ``op2``.
5102
5103If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
5104value <poisonvalues>` if it shifts out any non-zero bits. If the
5105``nsw`` keyword is present, then the shift produces a :ref:`poison
5106value <poisonvalues>` if it shifts out any bits that disagree with the
5107resultant sign bit. As such, NUW/NSW have the same semantics as they
5108would if the shift were expressed as a mul instruction with the same
5109nsw/nuw bits in (mul %op1, (shl 1, %op2)).
5110
5111Example:
5112""""""""
5113
5114.. code-block:: llvm
5115
Tim Northover675a0962014-06-13 14:24:23 +00005116 <result> = shl i32 4, %var ; yields i32: 4 << %var
5117 <result> = shl i32 4, 2 ; yields i32: 16
5118 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00005119 <result> = shl i32 1, 32 ; undefined
5120 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
5121
5122'``lshr``' Instruction
5123^^^^^^^^^^^^^^^^^^^^^^
5124
5125Syntax:
5126"""""""
5127
5128::
5129
Tim Northover675a0962014-06-13 14:24:23 +00005130 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
5131 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005132
5133Overview:
5134"""""""""
5135
5136The '``lshr``' instruction (logical shift right) returns the first
5137operand shifted to the right a specified number of bits with zero fill.
5138
5139Arguments:
5140""""""""""
5141
5142Both arguments to the '``lshr``' instruction must be the same
5143:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5144'``op2``' is treated as an unsigned value.
5145
5146Semantics:
5147""""""""""
5148
5149This instruction always performs a logical shift right operation. The
5150most significant bits of the result will be filled with zero bits after
5151the shift. If ``op2`` is (statically or dynamically) equal to or larger
5152than the number of bits in ``op1``, the result is undefined. If the
5153arguments are vectors, each vector element of ``op1`` is shifted by the
5154corresponding shift amount in ``op2``.
5155
5156If the ``exact`` keyword is present, the result value of the ``lshr`` is
5157a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
5158non-zero.
5159
5160Example:
5161""""""""
5162
5163.. code-block:: llvm
5164
Tim Northover675a0962014-06-13 14:24:23 +00005165 <result> = lshr i32 4, 1 ; yields i32:result = 2
5166 <result> = lshr i32 4, 2 ; yields i32:result = 1
5167 <result> = lshr i8 4, 3 ; yields i8:result = 0
5168 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00005169 <result> = lshr i32 1, 32 ; undefined
5170 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
5171
5172'``ashr``' Instruction
5173^^^^^^^^^^^^^^^^^^^^^^
5174
5175Syntax:
5176"""""""
5177
5178::
5179
Tim Northover675a0962014-06-13 14:24:23 +00005180 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
5181 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005182
5183Overview:
5184"""""""""
5185
5186The '``ashr``' instruction (arithmetic shift right) returns the first
5187operand shifted to the right a specified number of bits with sign
5188extension.
5189
5190Arguments:
5191""""""""""
5192
5193Both arguments to the '``ashr``' instruction must be the same
5194:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5195'``op2``' is treated as an unsigned value.
5196
5197Semantics:
5198""""""""""
5199
5200This instruction always performs an arithmetic shift right operation,
5201The most significant bits of the result will be filled with the sign bit
5202of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
5203than the number of bits in ``op1``, the result is undefined. If the
5204arguments are vectors, each vector element of ``op1`` is shifted by the
5205corresponding shift amount in ``op2``.
5206
5207If the ``exact`` keyword is present, the result value of the ``ashr`` is
5208a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
5209non-zero.
5210
5211Example:
5212""""""""
5213
5214.. code-block:: llvm
5215
Tim Northover675a0962014-06-13 14:24:23 +00005216 <result> = ashr i32 4, 1 ; yields i32:result = 2
5217 <result> = ashr i32 4, 2 ; yields i32:result = 1
5218 <result> = ashr i8 4, 3 ; yields i8:result = 0
5219 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00005220 <result> = ashr i32 1, 32 ; undefined
5221 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
5222
5223'``and``' Instruction
5224^^^^^^^^^^^^^^^^^^^^^
5225
5226Syntax:
5227"""""""
5228
5229::
5230
Tim Northover675a0962014-06-13 14:24:23 +00005231 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005232
5233Overview:
5234"""""""""
5235
5236The '``and``' instruction returns the bitwise logical and of its two
5237operands.
5238
5239Arguments:
5240""""""""""
5241
5242The two arguments to the '``and``' instruction must be
5243:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5244arguments must have identical types.
5245
5246Semantics:
5247""""""""""
5248
5249The truth table used for the '``and``' instruction is:
5250
5251+-----+-----+-----+
5252| In0 | In1 | Out |
5253+-----+-----+-----+
5254| 0 | 0 | 0 |
5255+-----+-----+-----+
5256| 0 | 1 | 0 |
5257+-----+-----+-----+
5258| 1 | 0 | 0 |
5259+-----+-----+-----+
5260| 1 | 1 | 1 |
5261+-----+-----+-----+
5262
5263Example:
5264""""""""
5265
5266.. code-block:: llvm
5267
Tim Northover675a0962014-06-13 14:24:23 +00005268 <result> = and i32 4, %var ; yields i32:result = 4 & %var
5269 <result> = and i32 15, 40 ; yields i32:result = 8
5270 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00005271
5272'``or``' Instruction
5273^^^^^^^^^^^^^^^^^^^^
5274
5275Syntax:
5276"""""""
5277
5278::
5279
Tim Northover675a0962014-06-13 14:24:23 +00005280 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005281
5282Overview:
5283"""""""""
5284
5285The '``or``' instruction returns the bitwise logical inclusive or of its
5286two operands.
5287
5288Arguments:
5289""""""""""
5290
5291The two arguments to the '``or``' instruction must be
5292:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5293arguments must have identical types.
5294
5295Semantics:
5296""""""""""
5297
5298The truth table used for the '``or``' instruction is:
5299
5300+-----+-----+-----+
5301| In0 | In1 | Out |
5302+-----+-----+-----+
5303| 0 | 0 | 0 |
5304+-----+-----+-----+
5305| 0 | 1 | 1 |
5306+-----+-----+-----+
5307| 1 | 0 | 1 |
5308+-----+-----+-----+
5309| 1 | 1 | 1 |
5310+-----+-----+-----+
5311
5312Example:
5313""""""""
5314
5315::
5316
Tim Northover675a0962014-06-13 14:24:23 +00005317 <result> = or i32 4, %var ; yields i32:result = 4 | %var
5318 <result> = or i32 15, 40 ; yields i32:result = 47
5319 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00005320
5321'``xor``' Instruction
5322^^^^^^^^^^^^^^^^^^^^^
5323
5324Syntax:
5325"""""""
5326
5327::
5328
Tim Northover675a0962014-06-13 14:24:23 +00005329 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005330
5331Overview:
5332"""""""""
5333
5334The '``xor``' instruction returns the bitwise logical exclusive or of
5335its two operands. The ``xor`` is used to implement the "one's
5336complement" operation, which is the "~" operator in C.
5337
5338Arguments:
5339""""""""""
5340
5341The two arguments to the '``xor``' instruction must be
5342:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5343arguments must have identical types.
5344
5345Semantics:
5346""""""""""
5347
5348The truth table used for the '``xor``' instruction is:
5349
5350+-----+-----+-----+
5351| In0 | In1 | Out |
5352+-----+-----+-----+
5353| 0 | 0 | 0 |
5354+-----+-----+-----+
5355| 0 | 1 | 1 |
5356+-----+-----+-----+
5357| 1 | 0 | 1 |
5358+-----+-----+-----+
5359| 1 | 1 | 0 |
5360+-----+-----+-----+
5361
5362Example:
5363""""""""
5364
5365.. code-block:: llvm
5366
Tim Northover675a0962014-06-13 14:24:23 +00005367 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
5368 <result> = xor i32 15, 40 ; yields i32:result = 39
5369 <result> = xor i32 4, 8 ; yields i32:result = 12
5370 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00005371
5372Vector Operations
5373-----------------
5374
5375LLVM supports several instructions to represent vector operations in a
5376target-independent manner. These instructions cover the element-access
5377and vector-specific operations needed to process vectors effectively.
5378While LLVM does directly support these vector operations, many
5379sophisticated algorithms will want to use target-specific intrinsics to
5380take full advantage of a specific target.
5381
5382.. _i_extractelement:
5383
5384'``extractelement``' Instruction
5385^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5386
5387Syntax:
5388"""""""
5389
5390::
5391
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00005392 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00005393
5394Overview:
5395"""""""""
5396
5397The '``extractelement``' instruction extracts a single scalar element
5398from a vector at a specified index.
5399
5400Arguments:
5401""""""""""
5402
5403The first operand of an '``extractelement``' instruction is a value of
5404:ref:`vector <t_vector>` type. The second operand is an index indicating
5405the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00005406variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00005407
5408Semantics:
5409""""""""""
5410
5411The result is a scalar of the same type as the element type of ``val``.
5412Its value is the value at position ``idx`` of ``val``. If ``idx``
5413exceeds the length of ``val``, the results are undefined.
5414
5415Example:
5416""""""""
5417
5418.. code-block:: llvm
5419
5420 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
5421
5422.. _i_insertelement:
5423
5424'``insertelement``' Instruction
5425^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5426
5427Syntax:
5428"""""""
5429
5430::
5431
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00005432 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00005433
5434Overview:
5435"""""""""
5436
5437The '``insertelement``' instruction inserts a scalar element into a
5438vector at a specified index.
5439
5440Arguments:
5441""""""""""
5442
5443The first operand of an '``insertelement``' instruction is a value of
5444:ref:`vector <t_vector>` type. The second operand is a scalar value whose
5445type must equal the element type of the first operand. The third operand
5446is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00005447index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00005448
5449Semantics:
5450""""""""""
5451
5452The result is a vector of the same type as ``val``. Its element values
5453are those of ``val`` except at position ``idx``, where it gets the value
5454``elt``. If ``idx`` exceeds the length of ``val``, the results are
5455undefined.
5456
5457Example:
5458""""""""
5459
5460.. code-block:: llvm
5461
5462 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
5463
5464.. _i_shufflevector:
5465
5466'``shufflevector``' Instruction
5467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5468
5469Syntax:
5470"""""""
5471
5472::
5473
5474 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
5475
5476Overview:
5477"""""""""
5478
5479The '``shufflevector``' instruction constructs a permutation of elements
5480from two input vectors, returning a vector with the same element type as
5481the input and length that is the same as the shuffle mask.
5482
5483Arguments:
5484""""""""""
5485
5486The first two operands of a '``shufflevector``' instruction are vectors
5487with the same type. The third argument is a shuffle mask whose element
5488type is always 'i32'. The result of the instruction is a vector whose
5489length is the same as the shuffle mask and whose element type is the
5490same as the element type of the first two operands.
5491
5492The shuffle mask operand is required to be a constant vector with either
5493constant integer or undef values.
5494
5495Semantics:
5496""""""""""
5497
5498The elements of the two input vectors are numbered from left to right
5499across both of the vectors. The shuffle mask operand specifies, for each
5500element of the result vector, which element of the two input vectors the
5501result element gets. The element selector may be undef (meaning "don't
5502care") and the second operand may be undef if performing a shuffle from
5503only one vector.
5504
5505Example:
5506""""""""
5507
5508.. code-block:: llvm
5509
5510 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5511 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
5512 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
5513 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
5514 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
5515 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
5516 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
5517 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
5518
5519Aggregate Operations
5520--------------------
5521
5522LLVM supports several instructions for working with
5523:ref:`aggregate <t_aggregate>` values.
5524
5525.. _i_extractvalue:
5526
5527'``extractvalue``' Instruction
5528^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5529
5530Syntax:
5531"""""""
5532
5533::
5534
5535 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
5536
5537Overview:
5538"""""""""
5539
5540The '``extractvalue``' instruction extracts the value of a member field
5541from an :ref:`aggregate <t_aggregate>` value.
5542
5543Arguments:
5544""""""""""
5545
5546The first operand of an '``extractvalue``' instruction is a value of
5547:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
5548constant indices to specify which value to extract in a similar manner
5549as indices in a '``getelementptr``' instruction.
5550
5551The major differences to ``getelementptr`` indexing are:
5552
5553- Since the value being indexed is not a pointer, the first index is
5554 omitted and assumed to be zero.
5555- At least one index must be specified.
5556- Not only struct indices but also array indices must be in bounds.
5557
5558Semantics:
5559""""""""""
5560
5561The result is the value at the position in the aggregate specified by
5562the index operands.
5563
5564Example:
5565""""""""
5566
5567.. code-block:: llvm
5568
5569 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
5570
5571.. _i_insertvalue:
5572
5573'``insertvalue``' Instruction
5574^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5575
5576Syntax:
5577"""""""
5578
5579::
5580
5581 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
5582
5583Overview:
5584"""""""""
5585
5586The '``insertvalue``' instruction inserts a value into a member field in
5587an :ref:`aggregate <t_aggregate>` value.
5588
5589Arguments:
5590""""""""""
5591
5592The first operand of an '``insertvalue``' instruction is a value of
5593:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
5594a first-class value to insert. The following operands are constant
5595indices indicating the position at which to insert the value in a
5596similar manner as indices in a '``extractvalue``' instruction. The value
5597to insert must have the same type as the value identified by the
5598indices.
5599
5600Semantics:
5601""""""""""
5602
5603The result is an aggregate of the same type as ``val``. Its value is
5604that of ``val`` except that the value at the position specified by the
5605indices is that of ``elt``.
5606
5607Example:
5608""""""""
5609
5610.. code-block:: llvm
5611
5612 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
5613 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00005614 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00005615
5616.. _memoryops:
5617
5618Memory Access and Addressing Operations
5619---------------------------------------
5620
5621A key design point of an SSA-based representation is how it represents
5622memory. In LLVM, no memory locations are in SSA form, which makes things
5623very simple. This section describes how to read, write, and allocate
5624memory in LLVM.
5625
5626.. _i_alloca:
5627
5628'``alloca``' Instruction
5629^^^^^^^^^^^^^^^^^^^^^^^^
5630
5631Syntax:
5632"""""""
5633
5634::
5635
Tim Northover675a0962014-06-13 14:24:23 +00005636 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00005637
5638Overview:
5639"""""""""
5640
5641The '``alloca``' instruction allocates memory on the stack frame of the
5642currently executing function, to be automatically released when this
5643function returns to its caller. The object is always allocated in the
5644generic address space (address space zero).
5645
5646Arguments:
5647""""""""""
5648
5649The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
5650bytes of memory on the runtime stack, returning a pointer of the
5651appropriate type to the program. If "NumElements" is specified, it is
5652the number of elements allocated, otherwise "NumElements" is defaulted
5653to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005654allocation is guaranteed to be aligned to at least that boundary. The
5655alignment may not be greater than ``1 << 29``. If not specified, or if
5656zero, the target can choose to align the allocation on any convenient
5657boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00005658
5659'``type``' may be any sized type.
5660
5661Semantics:
5662""""""""""
5663
5664Memory is allocated; a pointer is returned. The operation is undefined
5665if there is insufficient stack space for the allocation. '``alloca``'d
5666memory is automatically released when the function returns. The
5667'``alloca``' instruction is commonly used to represent automatic
5668variables that must have an address available. When the function returns
5669(either with the ``ret`` or ``resume`` instructions), the memory is
5670reclaimed. Allocating zero bytes is legal, but the result is undefined.
5671The order in which memory is allocated (ie., which way the stack grows)
5672is not specified.
5673
5674Example:
5675""""""""
5676
5677.. code-block:: llvm
5678
Tim Northover675a0962014-06-13 14:24:23 +00005679 %ptr = alloca i32 ; yields i32*:ptr
5680 %ptr = alloca i32, i32 4 ; yields i32*:ptr
5681 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
5682 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00005683
5684.. _i_load:
5685
5686'``load``' Instruction
5687^^^^^^^^^^^^^^^^^^^^^^
5688
5689Syntax:
5690"""""""
5691
5692::
5693
Sanjoy Dasf9995472015-05-19 20:10:19 +00005694 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>][, !dereferenceable !<index>][, !dereferenceable_or_null !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00005695 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
5696 !<index> = !{ i32 1 }
5697
5698Overview:
5699"""""""""
5700
5701The '``load``' instruction is used to read from memory.
5702
5703Arguments:
5704""""""""""
5705
Eli Bendersky239a78b2013-04-17 20:17:08 +00005706The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00005707from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00005708class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
5709then the optimizer is not allowed to modify the number or order of
5710execution of this ``load`` with other :ref:`volatile
5711operations <volatile>`.
5712
5713If the ``load`` is marked as ``atomic``, it takes an extra
5714:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5715``release`` and ``acq_rel`` orderings are not valid on ``load``
5716instructions. Atomic loads produce :ref:`defined <memmodel>` results
5717when they may see multiple atomic stores. The type of the pointee must
5718be an integer type whose bit width is a power of two greater than or
5719equal to eight and less than or equal to a target-specific size limit.
5720``align`` must be explicitly specified on atomic loads, and the load has
5721undefined behavior if the alignment is not set to a value which is at
5722least the size in bytes of the pointee. ``!nontemporal`` does not have
5723any defined semantics for atomic loads.
5724
5725The optional constant ``align`` argument specifies the alignment of the
5726operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00005727or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005728alignment for the target. It is the responsibility of the code emitter
5729to ensure that the alignment information is correct. Overestimating the
5730alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005731may produce less efficient code. An alignment of 1 is always safe. The
5732maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005733
5734The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005735metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00005736``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005737metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00005738that this load is not expected to be reused in the cache. The code
5739generator may select special instructions to save cache bandwidth, such
5740as the ``MOVNT`` instruction on x86.
5741
5742The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005743metadata name ``<index>`` corresponding to a metadata node with no
5744entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00005745instruction tells the optimizer and code generator that the address
5746operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005747Being invariant does not imply that a location is dereferenceable,
5748but it does imply that once the location is known dereferenceable
5749its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00005750
Philip Reamescdb72f32014-10-20 22:40:55 +00005751The optional ``!nonnull`` metadata must reference a single
5752metadata name ``<index>`` corresponding to a metadata node with no
5753entries. The existence of the ``!nonnull`` metadata on the
5754instruction tells the optimizer that the value loaded is known to
5755never be null. This is analogous to the ''nonnull'' attribute
Mehdi Amini4a121fa2015-03-14 22:04:06 +00005756on parameters and return values. This metadata can only be applied
5757to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00005758
Sanjoy Dasf9995472015-05-19 20:10:19 +00005759The optional ``!dereferenceable`` metadata must reference a single
5760metadata name ``<index>`` corresponding to a metadata node with one ``i64``
5761entry. The existence of the ``!dereferenceable`` metadata on the instruction
5762tells the optimizer that the value loaded is known to be dereferenceable.
5763The number of bytes known to be dereferenceable is specified by the integer
5764value in the metadata node. This is analogous to the ''dereferenceable''
5765attribute on parameters and return values. This metadata can only be applied
5766to loads of a pointer type.
5767
5768The optional ``!dereferenceable_or_null`` metadata must reference a single
5769metadata name ``<index>`` corresponding to a metadata node with one ``i64``
5770entry. The existence of the ``!dereferenceable_or_null`` metadata on the
5771instruction tells the optimizer that the value loaded is known to be either
5772dereferenceable or null.
5773The number of bytes known to be dereferenceable is specified by the integer
5774value in the metadata node. This is analogous to the ''dereferenceable_or_null''
5775attribute on parameters and return values. This metadata can only be applied
5776to loads of a pointer type.
5777
Sean Silvab084af42012-12-07 10:36:55 +00005778Semantics:
5779""""""""""
5780
5781The location of memory pointed to is loaded. If the value being loaded
5782is of scalar type then the number of bytes read does not exceed the
5783minimum number of bytes needed to hold all bits of the type. For
5784example, loading an ``i24`` reads at most three bytes. When loading a
5785value of a type like ``i20`` with a size that is not an integral number
5786of bytes, the result is undefined if the value was not originally
5787written using a store of the same type.
5788
5789Examples:
5790"""""""""
5791
5792.. code-block:: llvm
5793
Tim Northover675a0962014-06-13 14:24:23 +00005794 %ptr = alloca i32 ; yields i32*:ptr
5795 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00005796 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005797
5798.. _i_store:
5799
5800'``store``' Instruction
5801^^^^^^^^^^^^^^^^^^^^^^^
5802
5803Syntax:
5804"""""""
5805
5806::
5807
Tim Northover675a0962014-06-13 14:24:23 +00005808 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
5809 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005810
5811Overview:
5812"""""""""
5813
5814The '``store``' instruction is used to write to memory.
5815
5816Arguments:
5817""""""""""
5818
Eli Benderskyca380842013-04-17 17:17:20 +00005819There are two arguments to the ``store`` instruction: a value to store
5820and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00005821operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00005822the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00005823then the optimizer is not allowed to modify the number or order of
5824execution of this ``store`` with other :ref:`volatile
5825operations <volatile>`.
5826
5827If the ``store`` is marked as ``atomic``, it takes an extra
5828:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
5829``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
5830instructions. Atomic loads produce :ref:`defined <memmodel>` results
5831when they may see multiple atomic stores. The type of the pointee must
5832be an integer type whose bit width is a power of two greater than or
5833equal to eight and less than or equal to a target-specific size limit.
5834``align`` must be explicitly specified on atomic stores, and the store
5835has undefined behavior if the alignment is not set to a value which is
5836at least the size in bytes of the pointee. ``!nontemporal`` does not
5837have any defined semantics for atomic stores.
5838
Eli Benderskyca380842013-04-17 17:17:20 +00005839The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00005840operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00005841or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00005842alignment for the target. It is the responsibility of the code emitter
5843to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00005844alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00005845alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00005846safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00005847
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005848The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00005849name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00005850value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00005851tells the optimizer and code generator that this load is not expected to
5852be reused in the cache. The code generator may select special
5853instructions to save cache bandwidth, such as the MOVNT instruction on
5854x86.
5855
5856Semantics:
5857""""""""""
5858
Eli Benderskyca380842013-04-17 17:17:20 +00005859The contents of memory are updated to contain ``<value>`` at the
5860location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00005861of scalar type then the number of bytes written does not exceed the
5862minimum number of bytes needed to hold all bits of the type. For
5863example, storing an ``i24`` writes at most three bytes. When writing a
5864value of a type like ``i20`` with a size that is not an integral number
5865of bytes, it is unspecified what happens to the extra bits that do not
5866belong to the type, but they will typically be overwritten.
5867
5868Example:
5869""""""""
5870
5871.. code-block:: llvm
5872
Tim Northover675a0962014-06-13 14:24:23 +00005873 %ptr = alloca i32 ; yields i32*:ptr
5874 store i32 3, i32* %ptr ; yields void
5875 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00005876
5877.. _i_fence:
5878
5879'``fence``' Instruction
5880^^^^^^^^^^^^^^^^^^^^^^^
5881
5882Syntax:
5883"""""""
5884
5885::
5886
Tim Northover675a0962014-06-13 14:24:23 +00005887 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005888
5889Overview:
5890"""""""""
5891
5892The '``fence``' instruction is used to introduce happens-before edges
5893between operations.
5894
5895Arguments:
5896""""""""""
5897
5898'``fence``' instructions take an :ref:`ordering <ordering>` argument which
5899defines what *synchronizes-with* edges they add. They can only be given
5900``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
5901
5902Semantics:
5903""""""""""
5904
5905A fence A which has (at least) ``release`` ordering semantics
5906*synchronizes with* a fence B with (at least) ``acquire`` ordering
5907semantics if and only if there exist atomic operations X and Y, both
5908operating on some atomic object M, such that A is sequenced before X, X
5909modifies M (either directly or through some side effect of a sequence
5910headed by X), Y is sequenced before B, and Y observes M. This provides a
5911*happens-before* dependency between A and B. Rather than an explicit
5912``fence``, one (but not both) of the atomic operations X or Y might
5913provide a ``release`` or ``acquire`` (resp.) ordering constraint and
5914still *synchronize-with* the explicit ``fence`` and establish the
5915*happens-before* edge.
5916
5917A ``fence`` which has ``seq_cst`` ordering, in addition to having both
5918``acquire`` and ``release`` semantics specified above, participates in
5919the global program order of other ``seq_cst`` operations and/or fences.
5920
5921The optional ":ref:`singlethread <singlethread>`" argument specifies
5922that the fence only synchronizes with other fences in the same thread.
5923(This is useful for interacting with signal handlers.)
5924
5925Example:
5926""""""""
5927
5928.. code-block:: llvm
5929
Tim Northover675a0962014-06-13 14:24:23 +00005930 fence acquire ; yields void
5931 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00005932
5933.. _i_cmpxchg:
5934
5935'``cmpxchg``' Instruction
5936^^^^^^^^^^^^^^^^^^^^^^^^^
5937
5938Syntax:
5939"""""""
5940
5941::
5942
Tim Northover675a0962014-06-13 14:24:23 +00005943 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00005944
5945Overview:
5946"""""""""
5947
5948The '``cmpxchg``' instruction is used to atomically modify memory. It
5949loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00005950equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00005951
5952Arguments:
5953""""""""""
5954
5955There are three arguments to the '``cmpxchg``' instruction: an address
5956to operate on, a value to compare to the value currently be at that
5957address, and a new value to place at that address if the compared values
5958are equal. The type of '<cmp>' must be an integer type whose bit width
5959is a power of two greater than or equal to eight and less than or equal
5960to a target-specific size limit. '<cmp>' and '<new>' must have the same
5961type, and the type of '<pointer>' must be a pointer to that type. If the
5962``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
5963to modify the number or order of execution of this ``cmpxchg`` with
5964other :ref:`volatile operations <volatile>`.
5965
Tim Northovere94a5182014-03-11 10:48:52 +00005966The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00005967``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
5968must be at least ``monotonic``, the ordering constraint on failure must be no
5969stronger than that on success, and the failure ordering cannot be either
5970``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00005971
5972The optional "``singlethread``" argument declares that the ``cmpxchg``
5973is only atomic with respect to code (usually signal handlers) running in
5974the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
5975respect to all other code in the system.
5976
5977The pointer passed into cmpxchg must have alignment greater than or
5978equal to the size in memory of the operand.
5979
5980Semantics:
5981""""""""""
5982
Tim Northover420a2162014-06-13 14:24:07 +00005983The contents of memory at the location specified by the '``<pointer>``' operand
5984is read and compared to '``<cmp>``'; if the read value is the equal, the
5985'``<new>``' is written. The original value at the location is returned, together
5986with a flag indicating success (true) or failure (false).
5987
5988If the cmpxchg operation is marked as ``weak`` then a spurious failure is
5989permitted: the operation may not write ``<new>`` even if the comparison
5990matched.
5991
5992If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
5993if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00005994
Tim Northovere94a5182014-03-11 10:48:52 +00005995A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
5996identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
5997load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00005998
5999Example:
6000""""""""
6001
6002.. code-block:: llvm
6003
6004 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00006005 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00006006 br label %loop
6007
6008 loop:
6009 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
6010 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00006011 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00006012 %value_loaded = extractvalue { i32, i1 } %val_success, 0
6013 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00006014 br i1 %success, label %done, label %loop
6015
6016 done:
6017 ...
6018
6019.. _i_atomicrmw:
6020
6021'``atomicrmw``' Instruction
6022^^^^^^^^^^^^^^^^^^^^^^^^^^^
6023
6024Syntax:
6025"""""""
6026
6027::
6028
Tim Northover675a0962014-06-13 14:24:23 +00006029 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00006030
6031Overview:
6032"""""""""
6033
6034The '``atomicrmw``' instruction is used to atomically modify memory.
6035
6036Arguments:
6037""""""""""
6038
6039There are three arguments to the '``atomicrmw``' instruction: an
6040operation to apply, an address whose value to modify, an argument to the
6041operation. The operation must be one of the following keywords:
6042
6043- xchg
6044- add
6045- sub
6046- and
6047- nand
6048- or
6049- xor
6050- max
6051- min
6052- umax
6053- umin
6054
6055The type of '<value>' must be an integer type whose bit width is a power
6056of two greater than or equal to eight and less than or equal to a
6057target-specific size limit. The type of the '``<pointer>``' operand must
6058be a pointer to that type. If the ``atomicrmw`` is marked as
6059``volatile``, then the optimizer is not allowed to modify the number or
6060order of execution of this ``atomicrmw`` with other :ref:`volatile
6061operations <volatile>`.
6062
6063Semantics:
6064""""""""""
6065
6066The contents of memory at the location specified by the '``<pointer>``'
6067operand are atomically read, modified, and written back. The original
6068value at the location is returned. The modification is specified by the
6069operation argument:
6070
6071- xchg: ``*ptr = val``
6072- add: ``*ptr = *ptr + val``
6073- sub: ``*ptr = *ptr - val``
6074- and: ``*ptr = *ptr & val``
6075- nand: ``*ptr = ~(*ptr & val)``
6076- or: ``*ptr = *ptr | val``
6077- xor: ``*ptr = *ptr ^ val``
6078- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
6079- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
6080- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
6081 comparison)
6082- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
6083 comparison)
6084
6085Example:
6086""""""""
6087
6088.. code-block:: llvm
6089
Tim Northover675a0962014-06-13 14:24:23 +00006090 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00006091
6092.. _i_getelementptr:
6093
6094'``getelementptr``' Instruction
6095^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6096
6097Syntax:
6098"""""""
6099
6100::
6101
David Blaikie16a97eb2015-03-04 22:02:58 +00006102 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
6103 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
6104 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00006105
6106Overview:
6107"""""""""
6108
6109The '``getelementptr``' instruction is used to get the address of a
6110subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
6111address calculation only and does not access memory.
6112
6113Arguments:
6114""""""""""
6115
David Blaikie16a97eb2015-03-04 22:02:58 +00006116The first argument is always a type used as the basis for the calculations.
6117The second argument is always a pointer or a vector of pointers, and is the
6118base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00006119that indicate which of the elements of the aggregate object are indexed.
6120The interpretation of each index is dependent on the type being indexed
6121into. The first index always indexes the pointer value given as the
6122first argument, the second index indexes a value of the type pointed to
6123(not necessarily the value directly pointed to, since the first index
6124can be non-zero), etc. The first type indexed into must be a pointer
6125value, subsequent types can be arrays, vectors, and structs. Note that
6126subsequent types being indexed into can never be pointers, since that
6127would require loading the pointer before continuing calculation.
6128
6129The type of each index argument depends on the type it is indexing into.
6130When indexing into a (optionally packed) structure, only ``i32`` integer
6131**constants** are allowed (when using a vector of indices they must all
6132be the **same** ``i32`` integer constant). When indexing into an array,
6133pointer or vector, integers of any width are allowed, and they are not
6134required to be constant. These integers are treated as signed values
6135where relevant.
6136
6137For example, let's consider a C code fragment and how it gets compiled
6138to LLVM:
6139
6140.. code-block:: c
6141
6142 struct RT {
6143 char A;
6144 int B[10][20];
6145 char C;
6146 };
6147 struct ST {
6148 int X;
6149 double Y;
6150 struct RT Z;
6151 };
6152
6153 int *foo(struct ST *s) {
6154 return &s[1].Z.B[5][13];
6155 }
6156
6157The LLVM code generated by Clang is:
6158
6159.. code-block:: llvm
6160
6161 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
6162 %struct.ST = type { i32, double, %struct.RT }
6163
6164 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
6165 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00006166 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00006167 ret i32* %arrayidx
6168 }
6169
6170Semantics:
6171""""""""""
6172
6173In the example above, the first index is indexing into the
6174'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
6175= '``{ i32, double, %struct.RT }``' type, a structure. The second index
6176indexes into the third element of the structure, yielding a
6177'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
6178structure. The third index indexes into the second element of the
6179structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
6180dimensions of the array are subscripted into, yielding an '``i32``'
6181type. The '``getelementptr``' instruction returns a pointer to this
6182element, thus computing a value of '``i32*``' type.
6183
6184Note that it is perfectly legal to index partially through a structure,
6185returning a pointer to an inner element. Because of this, the LLVM code
6186for the given testcase is equivalent to:
6187
6188.. code-block:: llvm
6189
6190 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00006191 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
6192 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
6193 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
6194 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
6195 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00006196 ret i32* %t5
6197 }
6198
6199If the ``inbounds`` keyword is present, the result value of the
6200``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
6201pointer is not an *in bounds* address of an allocated object, or if any
6202of the addresses that would be formed by successive addition of the
6203offsets implied by the indices to the base address with infinitely
6204precise signed arithmetic are not an *in bounds* address of that
6205allocated object. The *in bounds* addresses for an allocated object are
6206all the addresses that point into the object, plus the address one byte
6207past the end. In cases where the base is a vector of pointers the
6208``inbounds`` keyword applies to each of the computations element-wise.
6209
6210If the ``inbounds`` keyword is not present, the offsets are added to the
6211base address with silently-wrapping two's complement arithmetic. If the
6212offsets have a different width from the pointer, they are sign-extended
6213or truncated to the width of the pointer. The result value of the
6214``getelementptr`` may be outside the object pointed to by the base
6215pointer. The result value may not necessarily be used to access memory
6216though, even if it happens to point into allocated storage. See the
6217:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
6218information.
6219
6220The getelementptr instruction is often confusing. For some more insight
6221into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
6222
6223Example:
6224""""""""
6225
6226.. code-block:: llvm
6227
6228 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006229 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006230 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006231 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006232 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006233 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006234 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006235 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00006236
6237In cases where the pointer argument is a vector of pointers, each index
6238must be a vector with the same number of elements. For example:
6239
6240.. code-block:: llvm
6241
David Blaikie16a97eb2015-03-04 22:02:58 +00006242 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets,
Sean Silvab084af42012-12-07 10:36:55 +00006243
6244Conversion Operations
6245---------------------
6246
6247The instructions in this category are the conversion instructions
6248(casting) which all take a single operand and a type. They perform
6249various bit conversions on the operand.
6250
6251'``trunc .. to``' Instruction
6252^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6253
6254Syntax:
6255"""""""
6256
6257::
6258
6259 <result> = trunc <ty> <value> to <ty2> ; yields ty2
6260
6261Overview:
6262"""""""""
6263
6264The '``trunc``' instruction truncates its operand to the type ``ty2``.
6265
6266Arguments:
6267""""""""""
6268
6269The '``trunc``' instruction takes a value to trunc, and a type to trunc
6270it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
6271of the same number of integers. The bit size of the ``value`` must be
6272larger than the bit size of the destination type, ``ty2``. Equal sized
6273types are not allowed.
6274
6275Semantics:
6276""""""""""
6277
6278The '``trunc``' instruction truncates the high order bits in ``value``
6279and converts the remaining bits to ``ty2``. Since the source size must
6280be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
6281It will always truncate bits.
6282
6283Example:
6284""""""""
6285
6286.. code-block:: llvm
6287
6288 %X = trunc i32 257 to i8 ; yields i8:1
6289 %Y = trunc i32 123 to i1 ; yields i1:true
6290 %Z = trunc i32 122 to i1 ; yields i1:false
6291 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
6292
6293'``zext .. to``' Instruction
6294^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6295
6296Syntax:
6297"""""""
6298
6299::
6300
6301 <result> = zext <ty> <value> to <ty2> ; yields ty2
6302
6303Overview:
6304"""""""""
6305
6306The '``zext``' instruction zero extends its operand to type ``ty2``.
6307
6308Arguments:
6309""""""""""
6310
6311The '``zext``' instruction takes a value to cast, and a type to cast it
6312to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
6313the same number of integers. The bit size of the ``value`` must be
6314smaller than the bit size of the destination type, ``ty2``.
6315
6316Semantics:
6317""""""""""
6318
6319The ``zext`` fills the high order bits of the ``value`` with zero bits
6320until it reaches the size of the destination type, ``ty2``.
6321
6322When zero extending from i1, the result will always be either 0 or 1.
6323
6324Example:
6325""""""""
6326
6327.. code-block:: llvm
6328
6329 %X = zext i32 257 to i64 ; yields i64:257
6330 %Y = zext i1 true to i32 ; yields i32:1
6331 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
6332
6333'``sext .. to``' Instruction
6334^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6335
6336Syntax:
6337"""""""
6338
6339::
6340
6341 <result> = sext <ty> <value> to <ty2> ; yields ty2
6342
6343Overview:
6344"""""""""
6345
6346The '``sext``' sign extends ``value`` to the type ``ty2``.
6347
6348Arguments:
6349""""""""""
6350
6351The '``sext``' instruction takes a value to cast, and a type to cast it
6352to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
6353the same number of integers. The bit size of the ``value`` must be
6354smaller than the bit size of the destination type, ``ty2``.
6355
6356Semantics:
6357""""""""""
6358
6359The '``sext``' instruction performs a sign extension by copying the sign
6360bit (highest order bit) of the ``value`` until it reaches the bit size
6361of the type ``ty2``.
6362
6363When sign extending from i1, the extension always results in -1 or 0.
6364
6365Example:
6366""""""""
6367
6368.. code-block:: llvm
6369
6370 %X = sext i8 -1 to i16 ; yields i16 :65535
6371 %Y = sext i1 true to i32 ; yields i32:-1
6372 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
6373
6374'``fptrunc .. to``' Instruction
6375^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6376
6377Syntax:
6378"""""""
6379
6380::
6381
6382 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
6383
6384Overview:
6385"""""""""
6386
6387The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
6388
6389Arguments:
6390""""""""""
6391
6392The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
6393value to cast and a :ref:`floating point <t_floating>` type to cast it to.
6394The size of ``value`` must be larger than the size of ``ty2``. This
6395implies that ``fptrunc`` cannot be used to make a *no-op cast*.
6396
6397Semantics:
6398""""""""""
6399
6400The '``fptrunc``' instruction truncates a ``value`` from a larger
6401:ref:`floating point <t_floating>` type to a smaller :ref:`floating
6402point <t_floating>` type. If the value cannot fit within the
6403destination type, ``ty2``, then the results are undefined.
6404
6405Example:
6406""""""""
6407
6408.. code-block:: llvm
6409
6410 %X = fptrunc double 123.0 to float ; yields float:123.0
6411 %Y = fptrunc double 1.0E+300 to float ; yields undefined
6412
6413'``fpext .. to``' Instruction
6414^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6415
6416Syntax:
6417"""""""
6418
6419::
6420
6421 <result> = fpext <ty> <value> to <ty2> ; yields ty2
6422
6423Overview:
6424"""""""""
6425
6426The '``fpext``' extends a floating point ``value`` to a larger floating
6427point value.
6428
6429Arguments:
6430""""""""""
6431
6432The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
6433``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
6434to. The source type must be smaller than the destination type.
6435
6436Semantics:
6437""""""""""
6438
6439The '``fpext``' instruction extends the ``value`` from a smaller
6440:ref:`floating point <t_floating>` type to a larger :ref:`floating
6441point <t_floating>` type. The ``fpext`` cannot be used to make a
6442*no-op cast* because it always changes bits. Use ``bitcast`` to make a
6443*no-op cast* for a floating point cast.
6444
6445Example:
6446""""""""
6447
6448.. code-block:: llvm
6449
6450 %X = fpext float 3.125 to double ; yields double:3.125000e+00
6451 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
6452
6453'``fptoui .. to``' Instruction
6454^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6455
6456Syntax:
6457"""""""
6458
6459::
6460
6461 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
6462
6463Overview:
6464"""""""""
6465
6466The '``fptoui``' converts a floating point ``value`` to its unsigned
6467integer equivalent of type ``ty2``.
6468
6469Arguments:
6470""""""""""
6471
6472The '``fptoui``' instruction takes a value to cast, which must be a
6473scalar or vector :ref:`floating point <t_floating>` value, and a type to
6474cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6475``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6476type with the same number of elements as ``ty``
6477
6478Semantics:
6479""""""""""
6480
6481The '``fptoui``' instruction converts its :ref:`floating
6482point <t_floating>` operand into the nearest (rounding towards zero)
6483unsigned integer value. If the value cannot fit in ``ty2``, the results
6484are undefined.
6485
6486Example:
6487""""""""
6488
6489.. code-block:: llvm
6490
6491 %X = fptoui double 123.0 to i32 ; yields i32:123
6492 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
6493 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
6494
6495'``fptosi .. to``' Instruction
6496^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6497
6498Syntax:
6499"""""""
6500
6501::
6502
6503 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
6504
6505Overview:
6506"""""""""
6507
6508The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
6509``value`` to type ``ty2``.
6510
6511Arguments:
6512""""""""""
6513
6514The '``fptosi``' instruction takes a value to cast, which must be a
6515scalar or vector :ref:`floating point <t_floating>` value, and a type to
6516cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
6517``ty`` is a vector floating point type, ``ty2`` must be a vector integer
6518type with the same number of elements as ``ty``
6519
6520Semantics:
6521""""""""""
6522
6523The '``fptosi``' instruction converts its :ref:`floating
6524point <t_floating>` operand into the nearest (rounding towards zero)
6525signed integer value. If the value cannot fit in ``ty2``, the results
6526are undefined.
6527
6528Example:
6529""""""""
6530
6531.. code-block:: llvm
6532
6533 %X = fptosi double -123.0 to i32 ; yields i32:-123
6534 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
6535 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
6536
6537'``uitofp .. to``' Instruction
6538^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6539
6540Syntax:
6541"""""""
6542
6543::
6544
6545 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
6546
6547Overview:
6548"""""""""
6549
6550The '``uitofp``' instruction regards ``value`` as an unsigned integer
6551and converts that value to the ``ty2`` type.
6552
6553Arguments:
6554""""""""""
6555
6556The '``uitofp``' instruction takes a value to cast, which must be a
6557scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6558``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6559``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6560type with the same number of elements as ``ty``
6561
6562Semantics:
6563""""""""""
6564
6565The '``uitofp``' instruction interprets its operand as an unsigned
6566integer quantity and converts it to the corresponding floating point
6567value. If the value cannot fit in the floating point value, the results
6568are undefined.
6569
6570Example:
6571""""""""
6572
6573.. code-block:: llvm
6574
6575 %X = uitofp i32 257 to float ; yields float:257.0
6576 %Y = uitofp i8 -1 to double ; yields double:255.0
6577
6578'``sitofp .. to``' Instruction
6579^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6580
6581Syntax:
6582"""""""
6583
6584::
6585
6586 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
6587
6588Overview:
6589"""""""""
6590
6591The '``sitofp``' instruction regards ``value`` as a signed integer and
6592converts that value to the ``ty2`` type.
6593
6594Arguments:
6595""""""""""
6596
6597The '``sitofp``' instruction takes a value to cast, which must be a
6598scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
6599``ty2``, which must be an :ref:`floating point <t_floating>` type. If
6600``ty`` is a vector integer type, ``ty2`` must be a vector floating point
6601type with the same number of elements as ``ty``
6602
6603Semantics:
6604""""""""""
6605
6606The '``sitofp``' instruction interprets its operand as a signed integer
6607quantity and converts it to the corresponding floating point value. If
6608the value cannot fit in the floating point value, the results are
6609undefined.
6610
6611Example:
6612""""""""
6613
6614.. code-block:: llvm
6615
6616 %X = sitofp i32 257 to float ; yields float:257.0
6617 %Y = sitofp i8 -1 to double ; yields double:-1.0
6618
6619.. _i_ptrtoint:
6620
6621'``ptrtoint .. to``' Instruction
6622^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6623
6624Syntax:
6625"""""""
6626
6627::
6628
6629 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
6630
6631Overview:
6632"""""""""
6633
6634The '``ptrtoint``' instruction converts the pointer or a vector of
6635pointers ``value`` to the integer (or vector of integers) type ``ty2``.
6636
6637Arguments:
6638""""""""""
6639
6640The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00006641a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00006642type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
6643a vector of integers type.
6644
6645Semantics:
6646""""""""""
6647
6648The '``ptrtoint``' instruction converts ``value`` to integer type
6649``ty2`` by interpreting the pointer value as an integer and either
6650truncating or zero extending that value to the size of the integer type.
6651If ``value`` is smaller than ``ty2`` then a zero extension is done. If
6652``value`` is larger than ``ty2`` then a truncation is done. If they are
6653the same size, then nothing is done (*no-op cast*) other than a type
6654change.
6655
6656Example:
6657""""""""
6658
6659.. code-block:: llvm
6660
6661 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
6662 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
6663 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
6664
6665.. _i_inttoptr:
6666
6667'``inttoptr .. to``' Instruction
6668^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6669
6670Syntax:
6671"""""""
6672
6673::
6674
6675 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
6676
6677Overview:
6678"""""""""
6679
6680The '``inttoptr``' instruction converts an integer ``value`` to a
6681pointer type, ``ty2``.
6682
6683Arguments:
6684""""""""""
6685
6686The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
6687cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
6688type.
6689
6690Semantics:
6691""""""""""
6692
6693The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
6694applying either a zero extension or a truncation depending on the size
6695of the integer ``value``. If ``value`` is larger than the size of a
6696pointer then a truncation is done. If ``value`` is smaller than the size
6697of a pointer then a zero extension is done. If they are the same size,
6698nothing is done (*no-op cast*).
6699
6700Example:
6701""""""""
6702
6703.. code-block:: llvm
6704
6705 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
6706 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
6707 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
6708 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
6709
6710.. _i_bitcast:
6711
6712'``bitcast .. to``' Instruction
6713^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6714
6715Syntax:
6716"""""""
6717
6718::
6719
6720 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
6721
6722Overview:
6723"""""""""
6724
6725The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
6726changing any bits.
6727
6728Arguments:
6729""""""""""
6730
6731The '``bitcast``' instruction takes a value to cast, which must be a
6732non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00006733also be a non-aggregate :ref:`first class <t_firstclass>` type. The
6734bit sizes of ``value`` and the destination type, ``ty2``, must be
6735identical. If the source type is a pointer, the destination type must
6736also be a pointer of the same size. This instruction supports bitwise
6737conversion of vectors to integers and to vectors of other types (as
6738long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00006739
6740Semantics:
6741""""""""""
6742
Matt Arsenault24b49c42013-07-31 17:49:08 +00006743The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
6744is always a *no-op cast* because no bits change with this
6745conversion. The conversion is done as if the ``value`` had been stored
6746to memory and read back as type ``ty2``. Pointer (or vector of
6747pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006748pointers) types with the same address space through this instruction.
6749To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
6750or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00006751
6752Example:
6753""""""""
6754
6755.. code-block:: llvm
6756
6757 %X = bitcast i8 255 to i8 ; yields i8 :-1
6758 %Y = bitcast i32* %x to sint* ; yields sint*:%x
6759 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
6760 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
6761
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006762.. _i_addrspacecast:
6763
6764'``addrspacecast .. to``' Instruction
6765^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6766
6767Syntax:
6768"""""""
6769
6770::
6771
6772 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
6773
6774Overview:
6775"""""""""
6776
6777The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
6778address space ``n`` to type ``pty2`` in address space ``m``.
6779
6780Arguments:
6781""""""""""
6782
6783The '``addrspacecast``' instruction takes a pointer or vector of pointer value
6784to cast and a pointer type to cast it to, which must have a different
6785address space.
6786
6787Semantics:
6788""""""""""
6789
6790The '``addrspacecast``' instruction converts the pointer value
6791``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00006792value modification, depending on the target and the address space
6793pair. Pointer conversions within the same address space must be
6794performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006795conversion is legal then both result and operand refer to the same memory
6796location.
6797
6798Example:
6799""""""""
6800
6801.. code-block:: llvm
6802
Matt Arsenault9c13dd02013-11-15 22:43:50 +00006803 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
6804 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
6805 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00006806
Sean Silvab084af42012-12-07 10:36:55 +00006807.. _otherops:
6808
6809Other Operations
6810----------------
6811
6812The instructions in this category are the "miscellaneous" instructions,
6813which defy better classification.
6814
6815.. _i_icmp:
6816
6817'``icmp``' Instruction
6818^^^^^^^^^^^^^^^^^^^^^^
6819
6820Syntax:
6821"""""""
6822
6823::
6824
Tim Northover675a0962014-06-13 14:24:23 +00006825 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006826
6827Overview:
6828"""""""""
6829
6830The '``icmp``' instruction returns a boolean value or a vector of
6831boolean values based on comparison of its two integer, integer vector,
6832pointer, or pointer vector operands.
6833
6834Arguments:
6835""""""""""
6836
6837The '``icmp``' instruction takes three operands. The first operand is
6838the condition code indicating the kind of comparison to perform. It is
6839not a value, just a keyword. The possible condition code are:
6840
6841#. ``eq``: equal
6842#. ``ne``: not equal
6843#. ``ugt``: unsigned greater than
6844#. ``uge``: unsigned greater or equal
6845#. ``ult``: unsigned less than
6846#. ``ule``: unsigned less or equal
6847#. ``sgt``: signed greater than
6848#. ``sge``: signed greater or equal
6849#. ``slt``: signed less than
6850#. ``sle``: signed less or equal
6851
6852The remaining two arguments must be :ref:`integer <t_integer>` or
6853:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
6854must also be identical types.
6855
6856Semantics:
6857""""""""""
6858
6859The '``icmp``' compares ``op1`` and ``op2`` according to the condition
6860code given as ``cond``. The comparison performed always yields either an
6861:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
6862
6863#. ``eq``: yields ``true`` if the operands are equal, ``false``
6864 otherwise. No sign interpretation is necessary or performed.
6865#. ``ne``: yields ``true`` if the operands are unequal, ``false``
6866 otherwise. No sign interpretation is necessary or performed.
6867#. ``ugt``: interprets the operands as unsigned values and yields
6868 ``true`` if ``op1`` is greater than ``op2``.
6869#. ``uge``: interprets the operands as unsigned values and yields
6870 ``true`` if ``op1`` is greater than or equal to ``op2``.
6871#. ``ult``: interprets the operands as unsigned values and yields
6872 ``true`` if ``op1`` is less than ``op2``.
6873#. ``ule``: interprets the operands as unsigned values and yields
6874 ``true`` if ``op1`` is less than or equal to ``op2``.
6875#. ``sgt``: interprets the operands as signed values and yields ``true``
6876 if ``op1`` is greater than ``op2``.
6877#. ``sge``: interprets the operands as signed values and yields ``true``
6878 if ``op1`` is greater than or equal to ``op2``.
6879#. ``slt``: interprets the operands as signed values and yields ``true``
6880 if ``op1`` is less than ``op2``.
6881#. ``sle``: interprets the operands as signed values and yields ``true``
6882 if ``op1`` is less than or equal to ``op2``.
6883
6884If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
6885are compared as if they were integers.
6886
6887If the operands are integer vectors, then they are compared element by
6888element. The result is an ``i1`` vector with the same number of elements
6889as the values being compared. Otherwise, the result is an ``i1``.
6890
6891Example:
6892""""""""
6893
6894.. code-block:: llvm
6895
6896 <result> = icmp eq i32 4, 5 ; yields: result=false
6897 <result> = icmp ne float* %X, %X ; yields: result=false
6898 <result> = icmp ult i16 4, 5 ; yields: result=true
6899 <result> = icmp sgt i16 4, 5 ; yields: result=false
6900 <result> = icmp ule i16 -4, 5 ; yields: result=false
6901 <result> = icmp sge i16 4, 5 ; yields: result=false
6902
6903Note that the code generator does not yet support vector types with the
6904``icmp`` instruction.
6905
6906.. _i_fcmp:
6907
6908'``fcmp``' Instruction
6909^^^^^^^^^^^^^^^^^^^^^^
6910
6911Syntax:
6912"""""""
6913
6914::
6915
Tim Northover675a0962014-06-13 14:24:23 +00006916 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00006917
6918Overview:
6919"""""""""
6920
6921The '``fcmp``' instruction returns a boolean value or vector of boolean
6922values based on comparison of its operands.
6923
6924If the operands are floating point scalars, then the result type is a
6925boolean (:ref:`i1 <t_integer>`).
6926
6927If the operands are floating point vectors, then the result type is a
6928vector of boolean with the same number of elements as the operands being
6929compared.
6930
6931Arguments:
6932""""""""""
6933
6934The '``fcmp``' instruction takes three operands. The first operand is
6935the condition code indicating the kind of comparison to perform. It is
6936not a value, just a keyword. The possible condition code are:
6937
6938#. ``false``: no comparison, always returns false
6939#. ``oeq``: ordered and equal
6940#. ``ogt``: ordered and greater than
6941#. ``oge``: ordered and greater than or equal
6942#. ``olt``: ordered and less than
6943#. ``ole``: ordered and less than or equal
6944#. ``one``: ordered and not equal
6945#. ``ord``: ordered (no nans)
6946#. ``ueq``: unordered or equal
6947#. ``ugt``: unordered or greater than
6948#. ``uge``: unordered or greater than or equal
6949#. ``ult``: unordered or less than
6950#. ``ule``: unordered or less than or equal
6951#. ``une``: unordered or not equal
6952#. ``uno``: unordered (either nans)
6953#. ``true``: no comparison, always returns true
6954
6955*Ordered* means that neither operand is a QNAN while *unordered* means
6956that either operand may be a QNAN.
6957
6958Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
6959point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
6960type. They must have identical types.
6961
6962Semantics:
6963""""""""""
6964
6965The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
6966condition code given as ``cond``. If the operands are vectors, then the
6967vectors are compared element by element. Each comparison performed
6968always yields an :ref:`i1 <t_integer>` result, as follows:
6969
6970#. ``false``: always yields ``false``, regardless of operands.
6971#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
6972 is equal to ``op2``.
6973#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
6974 is greater than ``op2``.
6975#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
6976 is greater than or equal to ``op2``.
6977#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
6978 is less than ``op2``.
6979#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
6980 is less than or equal to ``op2``.
6981#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
6982 is not equal to ``op2``.
6983#. ``ord``: yields ``true`` if both operands are not a QNAN.
6984#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
6985 equal to ``op2``.
6986#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
6987 greater than ``op2``.
6988#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
6989 greater than or equal to ``op2``.
6990#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
6991 less than ``op2``.
6992#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
6993 less than or equal to ``op2``.
6994#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
6995 not equal to ``op2``.
6996#. ``uno``: yields ``true`` if either operand is a QNAN.
6997#. ``true``: always yields ``true``, regardless of operands.
6998
6999Example:
7000""""""""
7001
7002.. code-block:: llvm
7003
7004 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
7005 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
7006 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
7007 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
7008
7009Note that the code generator does not yet support vector types with the
7010``fcmp`` instruction.
7011
7012.. _i_phi:
7013
7014'``phi``' Instruction
7015^^^^^^^^^^^^^^^^^^^^^
7016
7017Syntax:
7018"""""""
7019
7020::
7021
7022 <result> = phi <ty> [ <val0>, <label0>], ...
7023
7024Overview:
7025"""""""""
7026
7027The '``phi``' instruction is used to implement the φ node in the SSA
7028graph representing the function.
7029
7030Arguments:
7031""""""""""
7032
7033The type of the incoming values is specified with the first type field.
7034After this, the '``phi``' instruction takes a list of pairs as
7035arguments, with one pair for each predecessor basic block of the current
7036block. Only values of :ref:`first class <t_firstclass>` type may be used as
7037the value arguments to the PHI node. Only labels may be used as the
7038label arguments.
7039
7040There must be no non-phi instructions between the start of a basic block
7041and the PHI instructions: i.e. PHI instructions must be first in a basic
7042block.
7043
7044For the purposes of the SSA form, the use of each incoming value is
7045deemed to occur on the edge from the corresponding predecessor block to
7046the current block (but after any definition of an '``invoke``'
7047instruction's return value on the same edge).
7048
7049Semantics:
7050""""""""""
7051
7052At runtime, the '``phi``' instruction logically takes on the value
7053specified by the pair corresponding to the predecessor basic block that
7054executed just prior to the current block.
7055
7056Example:
7057""""""""
7058
7059.. code-block:: llvm
7060
7061 Loop: ; Infinite loop that counts from 0 on up...
7062 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
7063 %nextindvar = add i32 %indvar, 1
7064 br label %Loop
7065
7066.. _i_select:
7067
7068'``select``' Instruction
7069^^^^^^^^^^^^^^^^^^^^^^^^
7070
7071Syntax:
7072"""""""
7073
7074::
7075
7076 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
7077
7078 selty is either i1 or {<N x i1>}
7079
7080Overview:
7081"""""""""
7082
7083The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00007084condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00007085
7086Arguments:
7087""""""""""
7088
7089The '``select``' instruction requires an 'i1' value or a vector of 'i1'
7090values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00007091class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00007092
7093Semantics:
7094""""""""""
7095
7096If the condition is an i1 and it evaluates to 1, the instruction returns
7097the first value argument; otherwise, it returns the second value
7098argument.
7099
7100If the condition is a vector of i1, then the value arguments must be
7101vectors of the same size, and the selection is done element by element.
7102
David Majnemer40a0b592015-03-03 22:45:47 +00007103If the condition is an i1 and the value arguments are vectors of the
7104same size, then an entire vector is selected.
7105
Sean Silvab084af42012-12-07 10:36:55 +00007106Example:
7107""""""""
7108
7109.. code-block:: llvm
7110
7111 %X = select i1 true, i8 17, i8 42 ; yields i8:17
7112
7113.. _i_call:
7114
7115'``call``' Instruction
7116^^^^^^^^^^^^^^^^^^^^^^
7117
7118Syntax:
7119"""""""
7120
7121::
7122
Reid Kleckner5772b772014-04-24 20:14:34 +00007123 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00007124
7125Overview:
7126"""""""""
7127
7128The '``call``' instruction represents a simple function call.
7129
7130Arguments:
7131""""""""""
7132
7133This instruction requires several arguments:
7134
Reid Kleckner5772b772014-04-24 20:14:34 +00007135#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
7136 should perform tail call optimization. The ``tail`` marker is a hint that
7137 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
7138 means that the call must be tail call optimized in order for the program to
7139 be correct. The ``musttail`` marker provides these guarantees:
7140
7141 #. The call will not cause unbounded stack growth if it is part of a
7142 recursive cycle in the call graph.
7143 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
7144 forwarded in place.
7145
7146 Both markers imply that the callee does not access allocas or varargs from
7147 the caller. Calls marked ``musttail`` must obey the following additional
7148 rules:
7149
7150 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
7151 or a pointer bitcast followed by a ret instruction.
7152 - The ret instruction must return the (possibly bitcasted) value
7153 produced by the call or void.
7154 - The caller and callee prototypes must match. Pointer types of
7155 parameters or return types may differ in pointee type, but not
7156 in address space.
7157 - The calling conventions of the caller and callee must match.
7158 - All ABI-impacting function attributes, such as sret, byval, inreg,
7159 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00007160 - The callee must be varargs iff the caller is varargs. Bitcasting a
7161 non-varargs function to the appropriate varargs type is legal so
7162 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00007163
7164 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
7165 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00007166
7167 - Caller and callee both have the calling convention ``fastcc``.
7168 - The call is in tail position (ret immediately follows call and ret
7169 uses value of call or is void).
7170 - Option ``-tailcallopt`` is enabled, or
7171 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00007172 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00007173 met. <CodeGenerator.html#tailcallopt>`_
7174
7175#. The optional "cconv" marker indicates which :ref:`calling
7176 convention <callingconv>` the call should use. If none is
7177 specified, the call defaults to using C calling conventions. The
7178 calling convention of the call must match the calling convention of
7179 the target function, or else the behavior is undefined.
7180#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
7181 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
7182 are valid here.
7183#. '``ty``': the type of the call instruction itself which is also the
7184 type of the return value. Functions that return no value are marked
7185 ``void``.
7186#. '``fnty``': shall be the signature of the pointer to function value
7187 being invoked. The argument types must match the types implied by
7188 this signature. This type can be omitted if the function is not
7189 varargs and if the function type does not return a pointer to a
7190 function.
7191#. '``fnptrval``': An LLVM value containing a pointer to a function to
7192 be invoked. In most cases, this is a direct function invocation, but
7193 indirect ``call``'s are just as possible, calling an arbitrary pointer
7194 to function value.
7195#. '``function args``': argument list whose types match the function
7196 signature argument types and parameter attributes. All arguments must
7197 be of :ref:`first class <t_firstclass>` type. If the function signature
7198 indicates the function accepts a variable number of arguments, the
7199 extra arguments can be specified.
7200#. The optional :ref:`function attributes <fnattrs>` list. Only
7201 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
7202 attributes are valid here.
7203
7204Semantics:
7205""""""""""
7206
7207The '``call``' instruction is used to cause control flow to transfer to
7208a specified function, with its incoming arguments bound to the specified
7209values. Upon a '``ret``' instruction in the called function, control
7210flow continues with the instruction after the function call, and the
7211return value of the function is bound to the result argument.
7212
7213Example:
7214""""""""
7215
7216.. code-block:: llvm
7217
7218 %retval = call i32 @test(i32 %argc)
7219 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
7220 %X = tail call i32 @foo() ; yields i32
7221 %Y = tail call fastcc i32 @foo() ; yields i32
7222 call void %foo(i8 97 signext)
7223
7224 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00007225 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00007226 %gr = extractvalue %struct.A %r, 0 ; yields i32
7227 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
7228 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
7229 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
7230
7231llvm treats calls to some functions with names and arguments that match
7232the standard C99 library as being the C99 library functions, and may
7233perform optimizations or generate code for them under that assumption.
7234This is something we'd like to change in the future to provide better
7235support for freestanding environments and non-C-based languages.
7236
7237.. _i_va_arg:
7238
7239'``va_arg``' Instruction
7240^^^^^^^^^^^^^^^^^^^^^^^^
7241
7242Syntax:
7243"""""""
7244
7245::
7246
7247 <resultval> = va_arg <va_list*> <arglist>, <argty>
7248
7249Overview:
7250"""""""""
7251
7252The '``va_arg``' instruction is used to access arguments passed through
7253the "variable argument" area of a function call. It is used to implement
7254the ``va_arg`` macro in C.
7255
7256Arguments:
7257""""""""""
7258
7259This instruction takes a ``va_list*`` value and the type of the
7260argument. It returns a value of the specified argument type and
7261increments the ``va_list`` to point to the next argument. The actual
7262type of ``va_list`` is target specific.
7263
7264Semantics:
7265""""""""""
7266
7267The '``va_arg``' instruction loads an argument of the specified type
7268from the specified ``va_list`` and causes the ``va_list`` to point to
7269the next argument. For more information, see the variable argument
7270handling :ref:`Intrinsic Functions <int_varargs>`.
7271
7272It is legal for this instruction to be called in a function which does
7273not take a variable number of arguments, for example, the ``vfprintf``
7274function.
7275
7276``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
7277function <intrinsics>` because it takes a type as an argument.
7278
7279Example:
7280""""""""
7281
7282See the :ref:`variable argument processing <int_varargs>` section.
7283
7284Note that the code generator does not yet fully support va\_arg on many
7285targets. Also, it does not currently support va\_arg with aggregate
7286types on any target.
7287
7288.. _i_landingpad:
7289
7290'``landingpad``' Instruction
7291^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7292
7293Syntax:
7294"""""""
7295
7296::
7297
David Majnemer7fddecc2015-06-17 20:52:32 +00007298 <resultval> = landingpad <resultty> <clause>+
7299 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00007300
7301 <clause> := catch <type> <value>
7302 <clause> := filter <array constant type> <array constant>
7303
7304Overview:
7305"""""""""
7306
7307The '``landingpad``' instruction is used by `LLVM's exception handling
7308system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007309is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00007310code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00007311defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00007312re-entry to the function. The ``resultval`` has the type ``resultty``.
7313
7314Arguments:
7315""""""""""
7316
David Majnemer7fddecc2015-06-17 20:52:32 +00007317The optional
Sean Silvab084af42012-12-07 10:36:55 +00007318``cleanup`` flag indicates that the landing pad block is a cleanup.
7319
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007320A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00007321contains the global variable representing the "type" that may be caught
7322or filtered respectively. Unlike the ``catch`` clause, the ``filter``
7323clause takes an array constant as its argument. Use
7324"``[0 x i8**] undef``" for a filter which cannot throw. The
7325'``landingpad``' instruction must contain *at least* one ``clause`` or
7326the ``cleanup`` flag.
7327
7328Semantics:
7329""""""""""
7330
7331The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00007332:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00007333therefore the "result type" of the ``landingpad`` instruction. As with
7334calling conventions, how the personality function results are
7335represented in LLVM IR is target specific.
7336
7337The clauses are applied in order from top to bottom. If two
7338``landingpad`` instructions are merged together through inlining, the
7339clauses from the calling function are appended to the list of clauses.
7340When the call stack is being unwound due to an exception being thrown,
7341the exception is compared against each ``clause`` in turn. If it doesn't
7342match any of the clauses, and the ``cleanup`` flag is not set, then
7343unwinding continues further up the call stack.
7344
7345The ``landingpad`` instruction has several restrictions:
7346
7347- A landing pad block is a basic block which is the unwind destination
7348 of an '``invoke``' instruction.
7349- A landing pad block must have a '``landingpad``' instruction as its
7350 first non-PHI instruction.
7351- There can be only one '``landingpad``' instruction within the landing
7352 pad block.
7353- A basic block that is not a landing pad block may not include a
7354 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00007355
7356Example:
7357""""""""
7358
7359.. code-block:: llvm
7360
7361 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00007362 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00007363 catch i8** @_ZTIi
7364 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00007365 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00007366 cleanup
7367 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00007368 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00007369 catch i8** @_ZTIi
7370 filter [1 x i8**] [@_ZTId]
7371
7372.. _intrinsics:
7373
7374Intrinsic Functions
7375===================
7376
7377LLVM supports the notion of an "intrinsic function". These functions
7378have well known names and semantics and are required to follow certain
7379restrictions. Overall, these intrinsics represent an extension mechanism
7380for the LLVM language that does not require changing all of the
7381transformations in LLVM when adding to the language (or the bitcode
7382reader/writer, the parser, etc...).
7383
7384Intrinsic function names must all start with an "``llvm.``" prefix. This
7385prefix is reserved in LLVM for intrinsic names; thus, function names may
7386not begin with this prefix. Intrinsic functions must always be external
7387functions: you cannot define the body of intrinsic functions. Intrinsic
7388functions may only be used in call or invoke instructions: it is illegal
7389to take the address of an intrinsic function. Additionally, because
7390intrinsic functions are part of the LLVM language, it is required if any
7391are added that they be documented here.
7392
7393Some intrinsic functions can be overloaded, i.e., the intrinsic
7394represents a family of functions that perform the same operation but on
7395different data types. Because LLVM can represent over 8 million
7396different integer types, overloading is used commonly to allow an
7397intrinsic function to operate on any integer type. One or more of the
7398argument types or the result type can be overloaded to accept any
7399integer type. Argument types may also be defined as exactly matching a
7400previous argument's type or the result type. This allows an intrinsic
7401function which accepts multiple arguments, but needs all of them to be
7402of the same type, to only be overloaded with respect to a single
7403argument or the result.
7404
7405Overloaded intrinsics will have the names of its overloaded argument
7406types encoded into its function name, each preceded by a period. Only
7407those types which are overloaded result in a name suffix. Arguments
7408whose type is matched against another type do not. For example, the
7409``llvm.ctpop`` function can take an integer of any width and returns an
7410integer of exactly the same integer width. This leads to a family of
7411functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
7412``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
7413overloaded, and only one type suffix is required. Because the argument's
7414type is matched against the return type, it does not require its own
7415name suffix.
7416
7417To learn how to add an intrinsic function, please see the `Extending
7418LLVM Guide <ExtendingLLVM.html>`_.
7419
7420.. _int_varargs:
7421
7422Variable Argument Handling Intrinsics
7423-------------------------------------
7424
7425Variable argument support is defined in LLVM with the
7426:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
7427functions. These functions are related to the similarly named macros
7428defined in the ``<stdarg.h>`` header file.
7429
7430All of these functions operate on arguments that use a target-specific
7431value type "``va_list``". The LLVM assembly language reference manual
7432does not define what this type is, so all transformations should be
7433prepared to handle these functions regardless of the type used.
7434
7435This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
7436variable argument handling intrinsic functions are used.
7437
7438.. code-block:: llvm
7439
Tim Northoverab60bb92014-11-02 01:21:51 +00007440 ; This struct is different for every platform. For most platforms,
7441 ; it is merely an i8*.
7442 %struct.va_list = type { i8* }
7443
7444 ; For Unix x86_64 platforms, va_list is the following struct:
7445 ; %struct.va_list = type { i32, i32, i8*, i8* }
7446
Sean Silvab084af42012-12-07 10:36:55 +00007447 define i32 @test(i32 %X, ...) {
7448 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00007449 %ap = alloca %struct.va_list
7450 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00007451 call void @llvm.va_start(i8* %ap2)
7452
7453 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00007454 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00007455
7456 ; Demonstrate usage of llvm.va_copy and llvm.va_end
7457 %aq = alloca i8*
7458 %aq2 = bitcast i8** %aq to i8*
7459 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
7460 call void @llvm.va_end(i8* %aq2)
7461
7462 ; Stop processing of arguments.
7463 call void @llvm.va_end(i8* %ap2)
7464 ret i32 %tmp
7465 }
7466
7467 declare void @llvm.va_start(i8*)
7468 declare void @llvm.va_copy(i8*, i8*)
7469 declare void @llvm.va_end(i8*)
7470
7471.. _int_va_start:
7472
7473'``llvm.va_start``' Intrinsic
7474^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7475
7476Syntax:
7477"""""""
7478
7479::
7480
Nick Lewycky04f6de02013-09-11 22:04:52 +00007481 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00007482
7483Overview:
7484"""""""""
7485
7486The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
7487subsequent use by ``va_arg``.
7488
7489Arguments:
7490""""""""""
7491
7492The argument is a pointer to a ``va_list`` element to initialize.
7493
7494Semantics:
7495""""""""""
7496
7497The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
7498available in C. In a target-dependent way, it initializes the
7499``va_list`` element to which the argument points, so that the next call
7500to ``va_arg`` will produce the first variable argument passed to the
7501function. Unlike the C ``va_start`` macro, this intrinsic does not need
7502to know the last argument of the function as the compiler can figure
7503that out.
7504
7505'``llvm.va_end``' Intrinsic
7506^^^^^^^^^^^^^^^^^^^^^^^^^^^
7507
7508Syntax:
7509"""""""
7510
7511::
7512
7513 declare void @llvm.va_end(i8* <arglist>)
7514
7515Overview:
7516"""""""""
7517
7518The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
7519initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
7520
7521Arguments:
7522""""""""""
7523
7524The argument is a pointer to a ``va_list`` to destroy.
7525
7526Semantics:
7527""""""""""
7528
7529The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
7530available in C. In a target-dependent way, it destroys the ``va_list``
7531element to which the argument points. Calls to
7532:ref:`llvm.va_start <int_va_start>` and
7533:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
7534``llvm.va_end``.
7535
7536.. _int_va_copy:
7537
7538'``llvm.va_copy``' Intrinsic
7539^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7540
7541Syntax:
7542"""""""
7543
7544::
7545
7546 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
7547
7548Overview:
7549"""""""""
7550
7551The '``llvm.va_copy``' intrinsic copies the current argument position
7552from the source argument list to the destination argument list.
7553
7554Arguments:
7555""""""""""
7556
7557The first argument is a pointer to a ``va_list`` element to initialize.
7558The second argument is a pointer to a ``va_list`` element to copy from.
7559
7560Semantics:
7561""""""""""
7562
7563The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
7564available in C. In a target-dependent way, it copies the source
7565``va_list`` element into the destination ``va_list`` element. This
7566intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
7567arbitrarily complex and require, for example, memory allocation.
7568
7569Accurate Garbage Collection Intrinsics
7570--------------------------------------
7571
Philip Reamesc5b0f562015-02-25 23:52:06 +00007572LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007573(GC) requires the frontend to generate code containing appropriate intrinsic
7574calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00007575intrinsics in a manner which is appropriate for the target collector.
7576
Sean Silvab084af42012-12-07 10:36:55 +00007577These intrinsics allow identification of :ref:`GC roots on the
7578stack <int_gcroot>`, as well as garbage collector implementations that
7579require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00007580Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00007581these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00007582details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00007583
Philip Reamesf80bbff2015-02-25 23:45:20 +00007584Experimental Statepoint Intrinsics
7585^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7586
7587LLVM provides an second experimental set of intrinsics for describing garbage
Mehdi Amini4a121fa2015-03-14 22:04:06 +00007588collection safepoints in compiled code. These intrinsics are an alternative
7589to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
7590:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
7591differences in approach are covered in the `Garbage Collection with LLVM
7592<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00007593described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00007594
7595.. _int_gcroot:
7596
7597'``llvm.gcroot``' Intrinsic
7598^^^^^^^^^^^^^^^^^^^^^^^^^^^
7599
7600Syntax:
7601"""""""
7602
7603::
7604
7605 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
7606
7607Overview:
7608"""""""""
7609
7610The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
7611the code generator, and allows some metadata to be associated with it.
7612
7613Arguments:
7614""""""""""
7615
7616The first argument specifies the address of a stack object that contains
7617the root pointer. The second pointer (which must be either a constant or
7618a global value address) contains the meta-data to be associated with the
7619root.
7620
7621Semantics:
7622""""""""""
7623
7624At runtime, a call to this intrinsic stores a null pointer into the
7625"ptrloc" location. At compile-time, the code generator generates
7626information to allow the runtime to find the pointer at GC safe points.
7627The '``llvm.gcroot``' intrinsic may only be used in a function which
7628:ref:`specifies a GC algorithm <gc>`.
7629
7630.. _int_gcread:
7631
7632'``llvm.gcread``' Intrinsic
7633^^^^^^^^^^^^^^^^^^^^^^^^^^^
7634
7635Syntax:
7636"""""""
7637
7638::
7639
7640 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
7641
7642Overview:
7643"""""""""
7644
7645The '``llvm.gcread``' intrinsic identifies reads of references from heap
7646locations, allowing garbage collector implementations that require read
7647barriers.
7648
7649Arguments:
7650""""""""""
7651
7652The second argument is the address to read from, which should be an
7653address allocated from the garbage collector. The first object is a
7654pointer to the start of the referenced object, if needed by the language
7655runtime (otherwise null).
7656
7657Semantics:
7658""""""""""
7659
7660The '``llvm.gcread``' intrinsic has the same semantics as a load
7661instruction, but may be replaced with substantially more complex code by
7662the garbage collector runtime, as needed. The '``llvm.gcread``'
7663intrinsic may only be used in a function which :ref:`specifies a GC
7664algorithm <gc>`.
7665
7666.. _int_gcwrite:
7667
7668'``llvm.gcwrite``' Intrinsic
7669^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7670
7671Syntax:
7672"""""""
7673
7674::
7675
7676 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
7677
7678Overview:
7679"""""""""
7680
7681The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
7682locations, allowing garbage collector implementations that require write
7683barriers (such as generational or reference counting collectors).
7684
7685Arguments:
7686""""""""""
7687
7688The first argument is the reference to store, the second is the start of
7689the object to store it to, and the third is the address of the field of
7690Obj to store to. If the runtime does not require a pointer to the
7691object, Obj may be null.
7692
7693Semantics:
7694""""""""""
7695
7696The '``llvm.gcwrite``' intrinsic has the same semantics as a store
7697instruction, but may be replaced with substantially more complex code by
7698the garbage collector runtime, as needed. The '``llvm.gcwrite``'
7699intrinsic may only be used in a function which :ref:`specifies a GC
7700algorithm <gc>`.
7701
7702Code Generator Intrinsics
7703-------------------------
7704
7705These intrinsics are provided by LLVM to expose special features that
7706may only be implemented with code generator support.
7707
7708'``llvm.returnaddress``' Intrinsic
7709^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7710
7711Syntax:
7712"""""""
7713
7714::
7715
7716 declare i8 *@llvm.returnaddress(i32 <level>)
7717
7718Overview:
7719"""""""""
7720
7721The '``llvm.returnaddress``' intrinsic attempts to compute a
7722target-specific value indicating the return address of the current
7723function or one of its callers.
7724
7725Arguments:
7726""""""""""
7727
7728The argument to this intrinsic indicates which function to return the
7729address for. Zero indicates the calling function, one indicates its
7730caller, etc. The argument is **required** to be a constant integer
7731value.
7732
7733Semantics:
7734""""""""""
7735
7736The '``llvm.returnaddress``' intrinsic either returns a pointer
7737indicating the return address of the specified call frame, or zero if it
7738cannot be identified. The value returned by this intrinsic is likely to
7739be incorrect or 0 for arguments other than zero, so it should only be
7740used for debugging purposes.
7741
7742Note that calling this intrinsic does not prevent function inlining or
7743other aggressive transformations, so the value returned may not be that
7744of the obvious source-language caller.
7745
7746'``llvm.frameaddress``' Intrinsic
7747^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7748
7749Syntax:
7750"""""""
7751
7752::
7753
7754 declare i8* @llvm.frameaddress(i32 <level>)
7755
7756Overview:
7757"""""""""
7758
7759The '``llvm.frameaddress``' intrinsic attempts to return the
7760target-specific frame pointer value for the specified stack frame.
7761
7762Arguments:
7763""""""""""
7764
7765The argument to this intrinsic indicates which function to return the
7766frame pointer for. Zero indicates the calling function, one indicates
7767its caller, etc. The argument is **required** to be a constant integer
7768value.
7769
7770Semantics:
7771""""""""""
7772
7773The '``llvm.frameaddress``' intrinsic either returns a pointer
7774indicating the frame address of the specified call frame, or zero if it
7775cannot be identified. The value returned by this intrinsic is likely to
7776be incorrect or 0 for arguments other than zero, so it should only be
7777used for debugging purposes.
7778
7779Note that calling this intrinsic does not prevent function inlining or
7780other aggressive transformations, so the value returned may not be that
7781of the obvious source-language caller.
7782
Reid Kleckner60381792015-07-07 22:25:32 +00007783'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00007784^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7785
7786Syntax:
7787"""""""
7788
7789::
7790
Reid Kleckner60381792015-07-07 22:25:32 +00007791 declare void @llvm.localescape(...)
7792 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00007793
7794Overview:
7795"""""""""
7796
Reid Kleckner60381792015-07-07 22:25:32 +00007797The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
7798allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00007799live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00007800computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00007801
7802Arguments:
7803""""""""""
7804
Reid Kleckner60381792015-07-07 22:25:32 +00007805All arguments to '``llvm.localescape``' must be pointers to static allocas or
7806casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00007807once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00007808
Reid Kleckner60381792015-07-07 22:25:32 +00007809The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00007810bitcasted pointer to a function defined in the current module. The code
7811generator cannot determine the frame allocation offset of functions defined in
7812other modules.
7813
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00007814The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
7815call frame that is currently live. The return value of '``llvm.localaddress``'
7816is one way to produce such a value, but various runtimes also expose a suitable
7817pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00007818
Reid Kleckner60381792015-07-07 22:25:32 +00007819The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
7820'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00007821
Reid Klecknere9b89312015-01-13 00:48:10 +00007822Semantics:
7823""""""""""
7824
Reid Kleckner60381792015-07-07 22:25:32 +00007825These intrinsics allow a group of functions to share access to a set of local
7826stack allocations of a one parent function. The parent function may call the
7827'``llvm.localescape``' intrinsic once from the function entry block, and the
7828child functions can use '``llvm.localrecover``' to access the escaped allocas.
7829The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
7830the escaped allocas are allocated, which would break attempts to use
7831'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00007832
Renato Golinc7aea402014-05-06 16:51:25 +00007833.. _int_read_register:
7834.. _int_write_register:
7835
7836'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
7837^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7838
7839Syntax:
7840"""""""
7841
7842::
7843
7844 declare i32 @llvm.read_register.i32(metadata)
7845 declare i64 @llvm.read_register.i64(metadata)
7846 declare void @llvm.write_register.i32(metadata, i32 @value)
7847 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00007848 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00007849
7850Overview:
7851"""""""""
7852
7853The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
7854provides access to the named register. The register must be valid on
7855the architecture being compiled to. The type needs to be compatible
7856with the register being read.
7857
7858Semantics:
7859""""""""""
7860
7861The '``llvm.read_register``' intrinsic returns the current value of the
7862register, where possible. The '``llvm.write_register``' intrinsic sets
7863the current value of the register, where possible.
7864
7865This is useful to implement named register global variables that need
7866to always be mapped to a specific register, as is common practice on
7867bare-metal programs including OS kernels.
7868
7869The compiler doesn't check for register availability or use of the used
7870register in surrounding code, including inline assembly. Because of that,
7871allocatable registers are not supported.
7872
7873Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00007874architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00007875work is needed to support other registers and even more so, allocatable
7876registers.
7877
Sean Silvab084af42012-12-07 10:36:55 +00007878.. _int_stacksave:
7879
7880'``llvm.stacksave``' Intrinsic
7881^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7882
7883Syntax:
7884"""""""
7885
7886::
7887
7888 declare i8* @llvm.stacksave()
7889
7890Overview:
7891"""""""""
7892
7893The '``llvm.stacksave``' intrinsic is used to remember the current state
7894of the function stack, for use with
7895:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
7896implementing language features like scoped automatic variable sized
7897arrays in C99.
7898
7899Semantics:
7900""""""""""
7901
7902This intrinsic returns a opaque pointer value that can be passed to
7903:ref:`llvm.stackrestore <int_stackrestore>`. When an
7904``llvm.stackrestore`` intrinsic is executed with a value saved from
7905``llvm.stacksave``, it effectively restores the state of the stack to
7906the state it was in when the ``llvm.stacksave`` intrinsic executed. In
7907practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
7908were allocated after the ``llvm.stacksave`` was executed.
7909
7910.. _int_stackrestore:
7911
7912'``llvm.stackrestore``' Intrinsic
7913^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7914
7915Syntax:
7916"""""""
7917
7918::
7919
7920 declare void @llvm.stackrestore(i8* %ptr)
7921
7922Overview:
7923"""""""""
7924
7925The '``llvm.stackrestore``' intrinsic is used to restore the state of
7926the function stack to the state it was in when the corresponding
7927:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
7928useful for implementing language features like scoped automatic variable
7929sized arrays in C99.
7930
7931Semantics:
7932""""""""""
7933
7934See the description for :ref:`llvm.stacksave <int_stacksave>`.
7935
7936'``llvm.prefetch``' Intrinsic
7937^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7938
7939Syntax:
7940"""""""
7941
7942::
7943
7944 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
7945
7946Overview:
7947"""""""""
7948
7949The '``llvm.prefetch``' intrinsic is a hint to the code generator to
7950insert a prefetch instruction if supported; otherwise, it is a noop.
7951Prefetches have no effect on the behavior of the program but can change
7952its performance characteristics.
7953
7954Arguments:
7955""""""""""
7956
7957``address`` is the address to be prefetched, ``rw`` is the specifier
7958determining if the fetch should be for a read (0) or write (1), and
7959``locality`` is a temporal locality specifier ranging from (0) - no
7960locality, to (3) - extremely local keep in cache. The ``cache type``
7961specifies whether the prefetch is performed on the data (1) or
7962instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
7963arguments must be constant integers.
7964
7965Semantics:
7966""""""""""
7967
7968This intrinsic does not modify the behavior of the program. In
7969particular, prefetches cannot trap and do not produce a value. On
7970targets that support this intrinsic, the prefetch can provide hints to
7971the processor cache for better performance.
7972
7973'``llvm.pcmarker``' Intrinsic
7974^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7975
7976Syntax:
7977"""""""
7978
7979::
7980
7981 declare void @llvm.pcmarker(i32 <id>)
7982
7983Overview:
7984"""""""""
7985
7986The '``llvm.pcmarker``' intrinsic is a method to export a Program
7987Counter (PC) in a region of code to simulators and other tools. The
7988method is target specific, but it is expected that the marker will use
7989exported symbols to transmit the PC of the marker. The marker makes no
7990guarantees that it will remain with any specific instruction after
7991optimizations. It is possible that the presence of a marker will inhibit
7992optimizations. The intended use is to be inserted after optimizations to
7993allow correlations of simulation runs.
7994
7995Arguments:
7996""""""""""
7997
7998``id`` is a numerical id identifying the marker.
7999
8000Semantics:
8001""""""""""
8002
8003This intrinsic does not modify the behavior of the program. Backends
8004that do not support this intrinsic may ignore it.
8005
8006'``llvm.readcyclecounter``' Intrinsic
8007^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8008
8009Syntax:
8010"""""""
8011
8012::
8013
8014 declare i64 @llvm.readcyclecounter()
8015
8016Overview:
8017"""""""""
8018
8019The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
8020counter register (or similar low latency, high accuracy clocks) on those
8021targets that support it. On X86, it should map to RDTSC. On Alpha, it
8022should map to RPCC. As the backing counters overflow quickly (on the
8023order of 9 seconds on alpha), this should only be used for small
8024timings.
8025
8026Semantics:
8027""""""""""
8028
8029When directly supported, reading the cycle counter should not modify any
8030memory. Implementations are allowed to either return a application
8031specific value or a system wide value. On backends without support, this
8032is lowered to a constant 0.
8033
Tim Northoverbc933082013-05-23 19:11:20 +00008034Note that runtime support may be conditional on the privilege-level code is
8035running at and the host platform.
8036
Renato Golinc0a3c1d2014-03-26 12:52:28 +00008037'``llvm.clear_cache``' Intrinsic
8038^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8039
8040Syntax:
8041"""""""
8042
8043::
8044
8045 declare void @llvm.clear_cache(i8*, i8*)
8046
8047Overview:
8048"""""""""
8049
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008050The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
8051in the specified range to the execution unit of the processor. On
8052targets with non-unified instruction and data cache, the implementation
8053flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00008054
8055Semantics:
8056""""""""""
8057
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008058On platforms with coherent instruction and data caches (e.g. x86), this
8059intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00008060cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008061instructions or a system call, if cache flushing requires special
8062privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00008063
Sean Silvad02bf3e2014-04-07 22:29:53 +00008064The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008065time library.
Renato Golin93010e62014-03-26 14:01:32 +00008066
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008067This instrinsic does *not* empty the instruction pipeline. Modifications
8068of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00008069
Justin Bogner61ba2e32014-12-08 18:02:35 +00008070'``llvm.instrprof_increment``' Intrinsic
8071^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8072
8073Syntax:
8074"""""""
8075
8076::
8077
8078 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
8079 i32 <num-counters>, i32 <index>)
8080
8081Overview:
8082"""""""""
8083
8084The '``llvm.instrprof_increment``' intrinsic can be emitted by a
8085frontend for use with instrumentation based profiling. These will be
8086lowered by the ``-instrprof`` pass to generate execution counts of a
8087program at runtime.
8088
8089Arguments:
8090""""""""""
8091
8092The first argument is a pointer to a global variable containing the
8093name of the entity being instrumented. This should generally be the
8094(mangled) function name for a set of counters.
8095
8096The second argument is a hash value that can be used by the consumer
8097of the profile data to detect changes to the instrumented source, and
8098the third is the number of counters associated with ``name``. It is an
8099error if ``hash`` or ``num-counters`` differ between two instances of
8100``instrprof_increment`` that refer to the same name.
8101
8102The last argument refers to which of the counters for ``name`` should
8103be incremented. It should be a value between 0 and ``num-counters``.
8104
8105Semantics:
8106""""""""""
8107
8108This intrinsic represents an increment of a profiling counter. It will
8109cause the ``-instrprof`` pass to generate the appropriate data
8110structures and the code to increment the appropriate value, in a
8111format that can be written out by a compiler runtime and consumed via
8112the ``llvm-profdata`` tool.
8113
Sean Silvab084af42012-12-07 10:36:55 +00008114Standard C Library Intrinsics
8115-----------------------------
8116
8117LLVM provides intrinsics for a few important standard C library
8118functions. These intrinsics allow source-language front-ends to pass
8119information about the alignment of the pointer arguments to the code
8120generator, providing opportunity for more efficient code generation.
8121
8122.. _int_memcpy:
8123
8124'``llvm.memcpy``' Intrinsic
8125^^^^^^^^^^^^^^^^^^^^^^^^^^^
8126
8127Syntax:
8128"""""""
8129
8130This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
8131integer bit width and for different address spaces. Not all targets
8132support all bit widths however.
8133
8134::
8135
8136 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
8137 i32 <len>, i32 <align>, i1 <isvolatile>)
8138 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
8139 i64 <len>, i32 <align>, i1 <isvolatile>)
8140
8141Overview:
8142"""""""""
8143
8144The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
8145source location to the destination location.
8146
8147Note that, unlike the standard libc function, the ``llvm.memcpy.*``
8148intrinsics do not return a value, takes extra alignment/isvolatile
8149arguments and the pointers can be in specified address spaces.
8150
8151Arguments:
8152""""""""""
8153
8154The first argument is a pointer to the destination, the second is a
8155pointer to the source. The third argument is an integer argument
8156specifying the number of bytes to copy, the fourth argument is the
8157alignment of the source and destination locations, and the fifth is a
8158boolean indicating a volatile access.
8159
8160If the call to this intrinsic has an alignment value that is not 0 or 1,
8161then the caller guarantees that both the source and destination pointers
8162are aligned to that boundary.
8163
8164If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
8165a :ref:`volatile operation <volatile>`. The detailed access behavior is not
8166very cleanly specified and it is unwise to depend on it.
8167
8168Semantics:
8169""""""""""
8170
8171The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
8172source location to the destination location, which are not allowed to
8173overlap. It copies "len" bytes of memory over. If the argument is known
8174to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00008175argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008176
8177'``llvm.memmove``' Intrinsic
8178^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8179
8180Syntax:
8181"""""""
8182
8183This is an overloaded intrinsic. You can use llvm.memmove on any integer
8184bit width and for different address space. Not all targets support all
8185bit widths however.
8186
8187::
8188
8189 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
8190 i32 <len>, i32 <align>, i1 <isvolatile>)
8191 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
8192 i64 <len>, i32 <align>, i1 <isvolatile>)
8193
8194Overview:
8195"""""""""
8196
8197The '``llvm.memmove.*``' intrinsics move a block of memory from the
8198source location to the destination location. It is similar to the
8199'``llvm.memcpy``' intrinsic but allows the two memory locations to
8200overlap.
8201
8202Note that, unlike the standard libc function, the ``llvm.memmove.*``
8203intrinsics do not return a value, takes extra alignment/isvolatile
8204arguments and the pointers can be in specified address spaces.
8205
8206Arguments:
8207""""""""""
8208
8209The first argument is a pointer to the destination, the second is a
8210pointer to the source. The third argument is an integer argument
8211specifying the number of bytes to copy, the fourth argument is the
8212alignment of the source and destination locations, and the fifth is a
8213boolean indicating a volatile access.
8214
8215If the call to this intrinsic has an alignment value that is not 0 or 1,
8216then the caller guarantees that the source and destination pointers are
8217aligned to that boundary.
8218
8219If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
8220is a :ref:`volatile operation <volatile>`. The detailed access behavior is
8221not very cleanly specified and it is unwise to depend on it.
8222
8223Semantics:
8224""""""""""
8225
8226The '``llvm.memmove.*``' intrinsics copy a block of memory from the
8227source location to the destination location, which may overlap. It
8228copies "len" bytes of memory over. If the argument is known to be
8229aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00008230otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008231
8232'``llvm.memset.*``' Intrinsics
8233^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8234
8235Syntax:
8236"""""""
8237
8238This is an overloaded intrinsic. You can use llvm.memset on any integer
8239bit width and for different address spaces. However, not all targets
8240support all bit widths.
8241
8242::
8243
8244 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
8245 i32 <len>, i32 <align>, i1 <isvolatile>)
8246 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
8247 i64 <len>, i32 <align>, i1 <isvolatile>)
8248
8249Overview:
8250"""""""""
8251
8252The '``llvm.memset.*``' intrinsics fill a block of memory with a
8253particular byte value.
8254
8255Note that, unlike the standard libc function, the ``llvm.memset``
8256intrinsic does not return a value and takes extra alignment/volatile
8257arguments. Also, the destination can be in an arbitrary address space.
8258
8259Arguments:
8260""""""""""
8261
8262The first argument is a pointer to the destination to fill, the second
8263is the byte value with which to fill it, the third argument is an
8264integer argument specifying the number of bytes to fill, and the fourth
8265argument is the known alignment of the destination location.
8266
8267If the call to this intrinsic has an alignment value that is not 0 or 1,
8268then the caller guarantees that the destination pointer is aligned to
8269that boundary.
8270
8271If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
8272a :ref:`volatile operation <volatile>`. The detailed access behavior is not
8273very cleanly specified and it is unwise to depend on it.
8274
8275Semantics:
8276""""""""""
8277
8278The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
8279at the destination location. If the argument is known to be aligned to
8280some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00008281it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008282
8283'``llvm.sqrt.*``' Intrinsic
8284^^^^^^^^^^^^^^^^^^^^^^^^^^^
8285
8286Syntax:
8287"""""""
8288
8289This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
8290floating point or vector of floating point type. Not all targets support
8291all types however.
8292
8293::
8294
8295 declare float @llvm.sqrt.f32(float %Val)
8296 declare double @llvm.sqrt.f64(double %Val)
8297 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
8298 declare fp128 @llvm.sqrt.f128(fp128 %Val)
8299 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
8300
8301Overview:
8302"""""""""
8303
8304The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
8305returning the same value as the libm '``sqrt``' functions would. Unlike
8306``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
8307negative numbers other than -0.0 (which allows for better optimization,
8308because there is no need to worry about errno being set).
8309``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
8310
8311Arguments:
8312""""""""""
8313
8314The argument and return value are floating point numbers of the same
8315type.
8316
8317Semantics:
8318""""""""""
8319
8320This function returns the sqrt of the specified operand if it is a
8321nonnegative floating point number.
8322
8323'``llvm.powi.*``' Intrinsic
8324^^^^^^^^^^^^^^^^^^^^^^^^^^^
8325
8326Syntax:
8327"""""""
8328
8329This is an overloaded intrinsic. You can use ``llvm.powi`` on any
8330floating point or vector of floating point type. Not all targets support
8331all types however.
8332
8333::
8334
8335 declare float @llvm.powi.f32(float %Val, i32 %power)
8336 declare double @llvm.powi.f64(double %Val, i32 %power)
8337 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
8338 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
8339 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
8340
8341Overview:
8342"""""""""
8343
8344The '``llvm.powi.*``' intrinsics return the first operand raised to the
8345specified (positive or negative) power. The order of evaluation of
8346multiplications is not defined. When a vector of floating point type is
8347used, the second argument remains a scalar integer value.
8348
8349Arguments:
8350""""""""""
8351
8352The second argument is an integer power, and the first is a value to
8353raise to that power.
8354
8355Semantics:
8356""""""""""
8357
8358This function returns the first value raised to the second power with an
8359unspecified sequence of rounding operations.
8360
8361'``llvm.sin.*``' Intrinsic
8362^^^^^^^^^^^^^^^^^^^^^^^^^^
8363
8364Syntax:
8365"""""""
8366
8367This is an overloaded intrinsic. You can use ``llvm.sin`` on any
8368floating point or vector of floating point type. Not all targets support
8369all types however.
8370
8371::
8372
8373 declare float @llvm.sin.f32(float %Val)
8374 declare double @llvm.sin.f64(double %Val)
8375 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
8376 declare fp128 @llvm.sin.f128(fp128 %Val)
8377 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
8378
8379Overview:
8380"""""""""
8381
8382The '``llvm.sin.*``' intrinsics return the sine of the operand.
8383
8384Arguments:
8385""""""""""
8386
8387The argument and return value are floating point numbers of the same
8388type.
8389
8390Semantics:
8391""""""""""
8392
8393This function returns the sine of the specified operand, returning the
8394same values as the libm ``sin`` functions would, and handles error
8395conditions in the same way.
8396
8397'``llvm.cos.*``' Intrinsic
8398^^^^^^^^^^^^^^^^^^^^^^^^^^
8399
8400Syntax:
8401"""""""
8402
8403This is an overloaded intrinsic. You can use ``llvm.cos`` on any
8404floating point or vector of floating point type. Not all targets support
8405all types however.
8406
8407::
8408
8409 declare float @llvm.cos.f32(float %Val)
8410 declare double @llvm.cos.f64(double %Val)
8411 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
8412 declare fp128 @llvm.cos.f128(fp128 %Val)
8413 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
8414
8415Overview:
8416"""""""""
8417
8418The '``llvm.cos.*``' intrinsics return the cosine of the operand.
8419
8420Arguments:
8421""""""""""
8422
8423The argument and return value are floating point numbers of the same
8424type.
8425
8426Semantics:
8427""""""""""
8428
8429This function returns the cosine of the specified operand, returning the
8430same values as the libm ``cos`` functions would, and handles error
8431conditions in the same way.
8432
8433'``llvm.pow.*``' Intrinsic
8434^^^^^^^^^^^^^^^^^^^^^^^^^^
8435
8436Syntax:
8437"""""""
8438
8439This is an overloaded intrinsic. You can use ``llvm.pow`` on any
8440floating point or vector of floating point type. Not all targets support
8441all types however.
8442
8443::
8444
8445 declare float @llvm.pow.f32(float %Val, float %Power)
8446 declare double @llvm.pow.f64(double %Val, double %Power)
8447 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
8448 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
8449 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
8450
8451Overview:
8452"""""""""
8453
8454The '``llvm.pow.*``' intrinsics return the first operand raised to the
8455specified (positive or negative) power.
8456
8457Arguments:
8458""""""""""
8459
8460The second argument is a floating point power, and the first is a value
8461to raise to that power.
8462
8463Semantics:
8464""""""""""
8465
8466This function returns the first value raised to the second power,
8467returning the same values as the libm ``pow`` functions would, and
8468handles error conditions in the same way.
8469
8470'``llvm.exp.*``' Intrinsic
8471^^^^^^^^^^^^^^^^^^^^^^^^^^
8472
8473Syntax:
8474"""""""
8475
8476This is an overloaded intrinsic. You can use ``llvm.exp`` on any
8477floating point or vector of floating point type. Not all targets support
8478all types however.
8479
8480::
8481
8482 declare float @llvm.exp.f32(float %Val)
8483 declare double @llvm.exp.f64(double %Val)
8484 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
8485 declare fp128 @llvm.exp.f128(fp128 %Val)
8486 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
8487
8488Overview:
8489"""""""""
8490
8491The '``llvm.exp.*``' intrinsics perform the exp function.
8492
8493Arguments:
8494""""""""""
8495
8496The argument and return value are floating point numbers of the same
8497type.
8498
8499Semantics:
8500""""""""""
8501
8502This function returns the same values as the libm ``exp`` functions
8503would, and handles error conditions in the same way.
8504
8505'``llvm.exp2.*``' Intrinsic
8506^^^^^^^^^^^^^^^^^^^^^^^^^^^
8507
8508Syntax:
8509"""""""
8510
8511This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
8512floating point or vector of floating point type. Not all targets support
8513all types however.
8514
8515::
8516
8517 declare float @llvm.exp2.f32(float %Val)
8518 declare double @llvm.exp2.f64(double %Val)
8519 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
8520 declare fp128 @llvm.exp2.f128(fp128 %Val)
8521 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
8522
8523Overview:
8524"""""""""
8525
8526The '``llvm.exp2.*``' intrinsics perform the exp2 function.
8527
8528Arguments:
8529""""""""""
8530
8531The argument and return value are floating point numbers of the same
8532type.
8533
8534Semantics:
8535""""""""""
8536
8537This function returns the same values as the libm ``exp2`` functions
8538would, and handles error conditions in the same way.
8539
8540'``llvm.log.*``' Intrinsic
8541^^^^^^^^^^^^^^^^^^^^^^^^^^
8542
8543Syntax:
8544"""""""
8545
8546This is an overloaded intrinsic. You can use ``llvm.log`` on any
8547floating point or vector of floating point type. Not all targets support
8548all types however.
8549
8550::
8551
8552 declare float @llvm.log.f32(float %Val)
8553 declare double @llvm.log.f64(double %Val)
8554 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
8555 declare fp128 @llvm.log.f128(fp128 %Val)
8556 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
8557
8558Overview:
8559"""""""""
8560
8561The '``llvm.log.*``' intrinsics perform the log function.
8562
8563Arguments:
8564""""""""""
8565
8566The argument and return value are floating point numbers of the same
8567type.
8568
8569Semantics:
8570""""""""""
8571
8572This function returns the same values as the libm ``log`` functions
8573would, and handles error conditions in the same way.
8574
8575'``llvm.log10.*``' Intrinsic
8576^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8577
8578Syntax:
8579"""""""
8580
8581This is an overloaded intrinsic. You can use ``llvm.log10`` on any
8582floating point or vector of floating point type. Not all targets support
8583all types however.
8584
8585::
8586
8587 declare float @llvm.log10.f32(float %Val)
8588 declare double @llvm.log10.f64(double %Val)
8589 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
8590 declare fp128 @llvm.log10.f128(fp128 %Val)
8591 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
8592
8593Overview:
8594"""""""""
8595
8596The '``llvm.log10.*``' intrinsics perform the log10 function.
8597
8598Arguments:
8599""""""""""
8600
8601The argument and return value are floating point numbers of the same
8602type.
8603
8604Semantics:
8605""""""""""
8606
8607This function returns the same values as the libm ``log10`` functions
8608would, and handles error conditions in the same way.
8609
8610'``llvm.log2.*``' Intrinsic
8611^^^^^^^^^^^^^^^^^^^^^^^^^^^
8612
8613Syntax:
8614"""""""
8615
8616This is an overloaded intrinsic. You can use ``llvm.log2`` on any
8617floating point or vector of floating point type. Not all targets support
8618all types however.
8619
8620::
8621
8622 declare float @llvm.log2.f32(float %Val)
8623 declare double @llvm.log2.f64(double %Val)
8624 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
8625 declare fp128 @llvm.log2.f128(fp128 %Val)
8626 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
8627
8628Overview:
8629"""""""""
8630
8631The '``llvm.log2.*``' intrinsics perform the log2 function.
8632
8633Arguments:
8634""""""""""
8635
8636The argument and return value are floating point numbers of the same
8637type.
8638
8639Semantics:
8640""""""""""
8641
8642This function returns the same values as the libm ``log2`` functions
8643would, and handles error conditions in the same way.
8644
8645'``llvm.fma.*``' Intrinsic
8646^^^^^^^^^^^^^^^^^^^^^^^^^^
8647
8648Syntax:
8649"""""""
8650
8651This is an overloaded intrinsic. You can use ``llvm.fma`` on any
8652floating point or vector of floating point type. Not all targets support
8653all types however.
8654
8655::
8656
8657 declare float @llvm.fma.f32(float %a, float %b, float %c)
8658 declare double @llvm.fma.f64(double %a, double %b, double %c)
8659 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
8660 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
8661 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
8662
8663Overview:
8664"""""""""
8665
8666The '``llvm.fma.*``' intrinsics perform the fused multiply-add
8667operation.
8668
8669Arguments:
8670""""""""""
8671
8672The argument and return value are floating point numbers of the same
8673type.
8674
8675Semantics:
8676""""""""""
8677
8678This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00008679would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00008680
8681'``llvm.fabs.*``' Intrinsic
8682^^^^^^^^^^^^^^^^^^^^^^^^^^^
8683
8684Syntax:
8685"""""""
8686
8687This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
8688floating point or vector of floating point type. Not all targets support
8689all types however.
8690
8691::
8692
8693 declare float @llvm.fabs.f32(float %Val)
8694 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008695 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008696 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008697 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00008698
8699Overview:
8700"""""""""
8701
8702The '``llvm.fabs.*``' intrinsics return the absolute value of the
8703operand.
8704
8705Arguments:
8706""""""""""
8707
8708The argument and return value are floating point numbers of the same
8709type.
8710
8711Semantics:
8712""""""""""
8713
8714This function returns the same values as the libm ``fabs`` functions
8715would, and handles error conditions in the same way.
8716
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008717'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008718^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008719
8720Syntax:
8721"""""""
8722
8723This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
8724floating point or vector of floating point type. Not all targets support
8725all types however.
8726
8727::
8728
Matt Arsenault64313c92014-10-22 18:25:02 +00008729 declare float @llvm.minnum.f32(float %Val0, float %Val1)
8730 declare double @llvm.minnum.f64(double %Val0, double %Val1)
8731 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8732 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
8733 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008734
8735Overview:
8736"""""""""
8737
8738The '``llvm.minnum.*``' intrinsics return the minimum of the two
8739arguments.
8740
8741
8742Arguments:
8743""""""""""
8744
8745The arguments and return value are floating point numbers of the same
8746type.
8747
8748Semantics:
8749""""""""""
8750
8751Follows the IEEE-754 semantics for minNum, which also match for libm's
8752fmin.
8753
8754If either operand is a NaN, returns the other non-NaN operand. Returns
8755NaN only if both operands are NaN. If the operands compare equal,
8756returns a value that compares equal to both operands. This means that
8757fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8758
8759'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00008760^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008761
8762Syntax:
8763"""""""
8764
8765This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
8766floating point or vector of floating point type. Not all targets support
8767all types however.
8768
8769::
8770
Matt Arsenault64313c92014-10-22 18:25:02 +00008771 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
8772 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
8773 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
8774 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
8775 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00008776
8777Overview:
8778"""""""""
8779
8780The '``llvm.maxnum.*``' intrinsics return the maximum of the two
8781arguments.
8782
8783
8784Arguments:
8785""""""""""
8786
8787The arguments and return value are floating point numbers of the same
8788type.
8789
8790Semantics:
8791""""""""""
8792Follows the IEEE-754 semantics for maxNum, which also match for libm's
8793fmax.
8794
8795If either operand is a NaN, returns the other non-NaN operand. Returns
8796NaN only if both operands are NaN. If the operands compare equal,
8797returns a value that compares equal to both operands. This means that
8798fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
8799
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00008800'``llvm.copysign.*``' Intrinsic
8801^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8802
8803Syntax:
8804"""""""
8805
8806This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
8807floating point or vector of floating point type. Not all targets support
8808all types however.
8809
8810::
8811
8812 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
8813 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
8814 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
8815 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
8816 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
8817
8818Overview:
8819"""""""""
8820
8821The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
8822first operand and the sign of the second operand.
8823
8824Arguments:
8825""""""""""
8826
8827The arguments and return value are floating point numbers of the same
8828type.
8829
8830Semantics:
8831""""""""""
8832
8833This function returns the same values as the libm ``copysign``
8834functions would, and handles error conditions in the same way.
8835
Sean Silvab084af42012-12-07 10:36:55 +00008836'``llvm.floor.*``' Intrinsic
8837^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8838
8839Syntax:
8840"""""""
8841
8842This is an overloaded intrinsic. You can use ``llvm.floor`` on any
8843floating point or vector of floating point type. Not all targets support
8844all types however.
8845
8846::
8847
8848 declare float @llvm.floor.f32(float %Val)
8849 declare double @llvm.floor.f64(double %Val)
8850 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
8851 declare fp128 @llvm.floor.f128(fp128 %Val)
8852 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
8853
8854Overview:
8855"""""""""
8856
8857The '``llvm.floor.*``' intrinsics return the floor of the operand.
8858
8859Arguments:
8860""""""""""
8861
8862The argument and return value are floating point numbers of the same
8863type.
8864
8865Semantics:
8866""""""""""
8867
8868This function returns the same values as the libm ``floor`` functions
8869would, and handles error conditions in the same way.
8870
8871'``llvm.ceil.*``' Intrinsic
8872^^^^^^^^^^^^^^^^^^^^^^^^^^^
8873
8874Syntax:
8875"""""""
8876
8877This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
8878floating point or vector of floating point type. Not all targets support
8879all types however.
8880
8881::
8882
8883 declare float @llvm.ceil.f32(float %Val)
8884 declare double @llvm.ceil.f64(double %Val)
8885 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
8886 declare fp128 @llvm.ceil.f128(fp128 %Val)
8887 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
8888
8889Overview:
8890"""""""""
8891
8892The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
8893
8894Arguments:
8895""""""""""
8896
8897The argument and return value are floating point numbers of the same
8898type.
8899
8900Semantics:
8901""""""""""
8902
8903This function returns the same values as the libm ``ceil`` functions
8904would, and handles error conditions in the same way.
8905
8906'``llvm.trunc.*``' Intrinsic
8907^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8908
8909Syntax:
8910"""""""
8911
8912This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
8913floating point or vector of floating point type. Not all targets support
8914all types however.
8915
8916::
8917
8918 declare float @llvm.trunc.f32(float %Val)
8919 declare double @llvm.trunc.f64(double %Val)
8920 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
8921 declare fp128 @llvm.trunc.f128(fp128 %Val)
8922 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
8923
8924Overview:
8925"""""""""
8926
8927The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
8928nearest integer not larger in magnitude than the operand.
8929
8930Arguments:
8931""""""""""
8932
8933The argument and return value are floating point numbers of the same
8934type.
8935
8936Semantics:
8937""""""""""
8938
8939This function returns the same values as the libm ``trunc`` functions
8940would, and handles error conditions in the same way.
8941
8942'``llvm.rint.*``' Intrinsic
8943^^^^^^^^^^^^^^^^^^^^^^^^^^^
8944
8945Syntax:
8946"""""""
8947
8948This is an overloaded intrinsic. You can use ``llvm.rint`` on any
8949floating point or vector of floating point type. Not all targets support
8950all types however.
8951
8952::
8953
8954 declare float @llvm.rint.f32(float %Val)
8955 declare double @llvm.rint.f64(double %Val)
8956 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
8957 declare fp128 @llvm.rint.f128(fp128 %Val)
8958 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
8959
8960Overview:
8961"""""""""
8962
8963The '``llvm.rint.*``' intrinsics returns the operand rounded to the
8964nearest integer. It may raise an inexact floating-point exception if the
8965operand isn't an integer.
8966
8967Arguments:
8968""""""""""
8969
8970The argument and return value are floating point numbers of the same
8971type.
8972
8973Semantics:
8974""""""""""
8975
8976This function returns the same values as the libm ``rint`` functions
8977would, and handles error conditions in the same way.
8978
8979'``llvm.nearbyint.*``' Intrinsic
8980^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8981
8982Syntax:
8983"""""""
8984
8985This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
8986floating point or vector of floating point type. Not all targets support
8987all types however.
8988
8989::
8990
8991 declare float @llvm.nearbyint.f32(float %Val)
8992 declare double @llvm.nearbyint.f64(double %Val)
8993 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
8994 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
8995 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
8996
8997Overview:
8998"""""""""
8999
9000The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
9001nearest integer.
9002
9003Arguments:
9004""""""""""
9005
9006The argument and return value are floating point numbers of the same
9007type.
9008
9009Semantics:
9010""""""""""
9011
9012This function returns the same values as the libm ``nearbyint``
9013functions would, and handles error conditions in the same way.
9014
Hal Finkel171817e2013-08-07 22:49:12 +00009015'``llvm.round.*``' Intrinsic
9016^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9017
9018Syntax:
9019"""""""
9020
9021This is an overloaded intrinsic. You can use ``llvm.round`` on any
9022floating point or vector of floating point type. Not all targets support
9023all types however.
9024
9025::
9026
9027 declare float @llvm.round.f32(float %Val)
9028 declare double @llvm.round.f64(double %Val)
9029 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
9030 declare fp128 @llvm.round.f128(fp128 %Val)
9031 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
9032
9033Overview:
9034"""""""""
9035
9036The '``llvm.round.*``' intrinsics returns the operand rounded to the
9037nearest integer.
9038
9039Arguments:
9040""""""""""
9041
9042The argument and return value are floating point numbers of the same
9043type.
9044
9045Semantics:
9046""""""""""
9047
9048This function returns the same values as the libm ``round``
9049functions would, and handles error conditions in the same way.
9050
Sean Silvab084af42012-12-07 10:36:55 +00009051Bit Manipulation Intrinsics
9052---------------------------
9053
9054LLVM provides intrinsics for a few important bit manipulation
9055operations. These allow efficient code generation for some algorithms.
9056
9057'``llvm.bswap.*``' Intrinsics
9058^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9059
9060Syntax:
9061"""""""
9062
9063This is an overloaded intrinsic function. You can use bswap on any
9064integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
9065
9066::
9067
9068 declare i16 @llvm.bswap.i16(i16 <id>)
9069 declare i32 @llvm.bswap.i32(i32 <id>)
9070 declare i64 @llvm.bswap.i64(i64 <id>)
9071
9072Overview:
9073"""""""""
9074
9075The '``llvm.bswap``' family of intrinsics is used to byte swap integer
9076values with an even number of bytes (positive multiple of 16 bits).
9077These are useful for performing operations on data that is not in the
9078target's native byte order.
9079
9080Semantics:
9081""""""""""
9082
9083The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
9084and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
9085intrinsic returns an i32 value that has the four bytes of the input i32
9086swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
9087returned i32 will have its bytes in 3, 2, 1, 0 order. The
9088``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
9089concept to additional even-byte lengths (6 bytes, 8 bytes and more,
9090respectively).
9091
9092'``llvm.ctpop.*``' Intrinsic
9093^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9094
9095Syntax:
9096"""""""
9097
9098This is an overloaded intrinsic. You can use llvm.ctpop on any integer
9099bit width, or on any vector with integer elements. Not all targets
9100support all bit widths or vector types, however.
9101
9102::
9103
9104 declare i8 @llvm.ctpop.i8(i8 <src>)
9105 declare i16 @llvm.ctpop.i16(i16 <src>)
9106 declare i32 @llvm.ctpop.i32(i32 <src>)
9107 declare i64 @llvm.ctpop.i64(i64 <src>)
9108 declare i256 @llvm.ctpop.i256(i256 <src>)
9109 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
9110
9111Overview:
9112"""""""""
9113
9114The '``llvm.ctpop``' family of intrinsics counts the number of bits set
9115in a value.
9116
9117Arguments:
9118""""""""""
9119
9120The only argument is the value to be counted. The argument may be of any
9121integer type, or a vector with integer elements. The return type must
9122match the argument type.
9123
9124Semantics:
9125""""""""""
9126
9127The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
9128each element of a vector.
9129
9130'``llvm.ctlz.*``' Intrinsic
9131^^^^^^^^^^^^^^^^^^^^^^^^^^^
9132
9133Syntax:
9134"""""""
9135
9136This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
9137integer bit width, or any vector whose elements are integers. Not all
9138targets support all bit widths or vector types, however.
9139
9140::
9141
9142 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
9143 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
9144 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
9145 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
9146 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
9147 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
9148
9149Overview:
9150"""""""""
9151
9152The '``llvm.ctlz``' family of intrinsic functions counts the number of
9153leading zeros in a variable.
9154
9155Arguments:
9156""""""""""
9157
9158The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00009159any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00009160type must match the first argument type.
9161
9162The second argument must be a constant and is a flag to indicate whether
9163the intrinsic should ensure that a zero as the first argument produces a
9164defined result. Historically some architectures did not provide a
9165defined result for zero values as efficiently, and many algorithms are
9166now predicated on avoiding zero-value inputs.
9167
9168Semantics:
9169""""""""""
9170
9171The '``llvm.ctlz``' intrinsic counts the leading (most significant)
9172zeros in a variable, or within each element of the vector. If
9173``src == 0`` then the result is the size in bits of the type of ``src``
9174if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
9175``llvm.ctlz(i32 2) = 30``.
9176
9177'``llvm.cttz.*``' Intrinsic
9178^^^^^^^^^^^^^^^^^^^^^^^^^^^
9179
9180Syntax:
9181"""""""
9182
9183This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
9184integer bit width, or any vector of integer elements. Not all targets
9185support all bit widths or vector types, however.
9186
9187::
9188
9189 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
9190 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
9191 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
9192 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
9193 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
9194 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
9195
9196Overview:
9197"""""""""
9198
9199The '``llvm.cttz``' family of intrinsic functions counts the number of
9200trailing zeros.
9201
9202Arguments:
9203""""""""""
9204
9205The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00009206any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00009207type must match the first argument type.
9208
9209The second argument must be a constant and is a flag to indicate whether
9210the intrinsic should ensure that a zero as the first argument produces a
9211defined result. Historically some architectures did not provide a
9212defined result for zero values as efficiently, and many algorithms are
9213now predicated on avoiding zero-value inputs.
9214
9215Semantics:
9216""""""""""
9217
9218The '``llvm.cttz``' intrinsic counts the trailing (least significant)
9219zeros in a variable, or within each element of a vector. If ``src == 0``
9220then the result is the size in bits of the type of ``src`` if
9221``is_zero_undef == 0`` and ``undef`` otherwise. For example,
9222``llvm.cttz(2) = 1``.
9223
Philip Reames34843ae2015-03-05 05:55:55 +00009224.. _int_overflow:
9225
Sean Silvab084af42012-12-07 10:36:55 +00009226Arithmetic with Overflow Intrinsics
9227-----------------------------------
9228
9229LLVM provides intrinsics for some arithmetic with overflow operations.
9230
9231'``llvm.sadd.with.overflow.*``' Intrinsics
9232^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9233
9234Syntax:
9235"""""""
9236
9237This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
9238on any integer bit width.
9239
9240::
9241
9242 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
9243 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
9244 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
9245
9246Overview:
9247"""""""""
9248
9249The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
9250a signed addition of the two arguments, and indicate whether an overflow
9251occurred during the signed summation.
9252
9253Arguments:
9254""""""""""
9255
9256The arguments (%a and %b) and the first element of the result structure
9257may be of integer types of any bit width, but they must have the same
9258bit width. The second element of the result structure must be of type
9259``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
9260addition.
9261
9262Semantics:
9263""""""""""
9264
9265The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009266a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00009267first element of which is the signed summation, and the second element
9268of which is a bit specifying if the signed summation resulted in an
9269overflow.
9270
9271Examples:
9272"""""""""
9273
9274.. code-block:: llvm
9275
9276 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
9277 %sum = extractvalue {i32, i1} %res, 0
9278 %obit = extractvalue {i32, i1} %res, 1
9279 br i1 %obit, label %overflow, label %normal
9280
9281'``llvm.uadd.with.overflow.*``' Intrinsics
9282^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9283
9284Syntax:
9285"""""""
9286
9287This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
9288on any integer bit width.
9289
9290::
9291
9292 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
9293 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
9294 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
9295
9296Overview:
9297"""""""""
9298
9299The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
9300an unsigned addition of the two arguments, and indicate whether a carry
9301occurred during the unsigned summation.
9302
9303Arguments:
9304""""""""""
9305
9306The arguments (%a and %b) and the first element of the result structure
9307may be of integer types of any bit width, but they must have the same
9308bit width. The second element of the result structure must be of type
9309``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9310addition.
9311
9312Semantics:
9313""""""""""
9314
9315The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009316an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00009317first element of which is the sum, and the second element of which is a
9318bit specifying if the unsigned summation resulted in a carry.
9319
9320Examples:
9321"""""""""
9322
9323.. code-block:: llvm
9324
9325 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
9326 %sum = extractvalue {i32, i1} %res, 0
9327 %obit = extractvalue {i32, i1} %res, 1
9328 br i1 %obit, label %carry, label %normal
9329
9330'``llvm.ssub.with.overflow.*``' Intrinsics
9331^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9332
9333Syntax:
9334"""""""
9335
9336This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
9337on any integer bit width.
9338
9339::
9340
9341 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
9342 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
9343 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
9344
9345Overview:
9346"""""""""
9347
9348The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
9349a signed subtraction of the two arguments, and indicate whether an
9350overflow occurred during the signed subtraction.
9351
9352Arguments:
9353""""""""""
9354
9355The arguments (%a and %b) and the first element of the result structure
9356may be of integer types of any bit width, but they must have the same
9357bit width. The second element of the result structure must be of type
9358``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
9359subtraction.
9360
9361Semantics:
9362""""""""""
9363
9364The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009365a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00009366first element of which is the subtraction, and the second element of
9367which is a bit specifying if the signed subtraction resulted in an
9368overflow.
9369
9370Examples:
9371"""""""""
9372
9373.. code-block:: llvm
9374
9375 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
9376 %sum = extractvalue {i32, i1} %res, 0
9377 %obit = extractvalue {i32, i1} %res, 1
9378 br i1 %obit, label %overflow, label %normal
9379
9380'``llvm.usub.with.overflow.*``' Intrinsics
9381^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9382
9383Syntax:
9384"""""""
9385
9386This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
9387on any integer bit width.
9388
9389::
9390
9391 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
9392 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
9393 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
9394
9395Overview:
9396"""""""""
9397
9398The '``llvm.usub.with.overflow``' family of intrinsic functions perform
9399an unsigned subtraction of the two arguments, and indicate whether an
9400overflow occurred during the unsigned subtraction.
9401
9402Arguments:
9403""""""""""
9404
9405The arguments (%a and %b) and the first element of the result structure
9406may be of integer types of any bit width, but they must have the same
9407bit width. The second element of the result structure must be of type
9408``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9409subtraction.
9410
9411Semantics:
9412""""""""""
9413
9414The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009415an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00009416the first element of which is the subtraction, and the second element of
9417which is a bit specifying if the unsigned subtraction resulted in an
9418overflow.
9419
9420Examples:
9421"""""""""
9422
9423.. code-block:: llvm
9424
9425 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
9426 %sum = extractvalue {i32, i1} %res, 0
9427 %obit = extractvalue {i32, i1} %res, 1
9428 br i1 %obit, label %overflow, label %normal
9429
9430'``llvm.smul.with.overflow.*``' Intrinsics
9431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9432
9433Syntax:
9434"""""""
9435
9436This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
9437on any integer bit width.
9438
9439::
9440
9441 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
9442 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
9443 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
9444
9445Overview:
9446"""""""""
9447
9448The '``llvm.smul.with.overflow``' family of intrinsic functions perform
9449a signed multiplication of the two arguments, and indicate whether an
9450overflow occurred during the signed multiplication.
9451
9452Arguments:
9453""""""""""
9454
9455The arguments (%a and %b) and the first element of the result structure
9456may be of integer types of any bit width, but they must have the same
9457bit width. The second element of the result structure must be of type
9458``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
9459multiplication.
9460
9461Semantics:
9462""""""""""
9463
9464The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009465a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +00009466the first element of which is the multiplication, and the second element
9467of which is a bit specifying if the signed multiplication resulted in an
9468overflow.
9469
9470Examples:
9471"""""""""
9472
9473.. code-block:: llvm
9474
9475 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
9476 %sum = extractvalue {i32, i1} %res, 0
9477 %obit = extractvalue {i32, i1} %res, 1
9478 br i1 %obit, label %overflow, label %normal
9479
9480'``llvm.umul.with.overflow.*``' Intrinsics
9481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9482
9483Syntax:
9484"""""""
9485
9486This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
9487on any integer bit width.
9488
9489::
9490
9491 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
9492 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
9493 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
9494
9495Overview:
9496"""""""""
9497
9498The '``llvm.umul.with.overflow``' family of intrinsic functions perform
9499a unsigned multiplication of the two arguments, and indicate whether an
9500overflow occurred during the unsigned multiplication.
9501
9502Arguments:
9503""""""""""
9504
9505The arguments (%a and %b) and the first element of the result structure
9506may be of integer types of any bit width, but they must have the same
9507bit width. The second element of the result structure must be of type
9508``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9509multiplication.
9510
9511Semantics:
9512""""""""""
9513
9514The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009515an unsigned multiplication of the two arguments. They return a structure ---
9516the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +00009517element of which is a bit specifying if the unsigned multiplication
9518resulted in an overflow.
9519
9520Examples:
9521"""""""""
9522
9523.. code-block:: llvm
9524
9525 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
9526 %sum = extractvalue {i32, i1} %res, 0
9527 %obit = extractvalue {i32, i1} %res, 1
9528 br i1 %obit, label %overflow, label %normal
9529
9530Specialised Arithmetic Intrinsics
9531---------------------------------
9532
9533'``llvm.fmuladd.*``' Intrinsic
9534^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9535
9536Syntax:
9537"""""""
9538
9539::
9540
9541 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
9542 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
9543
9544Overview:
9545"""""""""
9546
9547The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +00009548expressions that can be fused if the code generator determines that (a) the
9549target instruction set has support for a fused operation, and (b) that the
9550fused operation is more efficient than the equivalent, separate pair of mul
9551and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +00009552
9553Arguments:
9554""""""""""
9555
9556The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
9557multiplicands, a and b, and an addend c.
9558
9559Semantics:
9560""""""""""
9561
9562The expression:
9563
9564::
9565
9566 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
9567
9568is equivalent to the expression a \* b + c, except that rounding will
9569not be performed between the multiplication and addition steps if the
9570code generator fuses the operations. Fusion is not guaranteed, even if
9571the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009572corresponding llvm.fma.\* intrinsic function should be used
9573instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +00009574
9575Examples:
9576"""""""""
9577
9578.. code-block:: llvm
9579
Tim Northover675a0962014-06-13 14:24:23 +00009580 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +00009581
9582Half Precision Floating Point Intrinsics
9583----------------------------------------
9584
9585For most target platforms, half precision floating point is a
9586storage-only format. This means that it is a dense encoding (in memory)
9587but does not support computation in the format.
9588
9589This means that code must first load the half-precision floating point
9590value as an i16, then convert it to float with
9591:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
9592then be performed on the float value (including extending to double
9593etc). To store the value back to memory, it is first converted to float
9594if needed, then converted to i16 with
9595:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
9596i16 value.
9597
9598.. _int_convert_to_fp16:
9599
9600'``llvm.convert.to.fp16``' Intrinsic
9601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9602
9603Syntax:
9604"""""""
9605
9606::
9607
Tim Northoverfd7e4242014-07-17 10:51:23 +00009608 declare i16 @llvm.convert.to.fp16.f32(float %a)
9609 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +00009610
9611Overview:
9612"""""""""
9613
Tim Northoverfd7e4242014-07-17 10:51:23 +00009614The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9615conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +00009616
9617Arguments:
9618""""""""""
9619
9620The intrinsic function contains single argument - the value to be
9621converted.
9622
9623Semantics:
9624""""""""""
9625
Tim Northoverfd7e4242014-07-17 10:51:23 +00009626The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
9627conventional floating point format to half precision floating point format. The
9628return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +00009629
9630Examples:
9631"""""""""
9632
9633.. code-block:: llvm
9634
Tim Northoverfd7e4242014-07-17 10:51:23 +00009635 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +00009636 store i16 %res, i16* @x, align 2
9637
9638.. _int_convert_from_fp16:
9639
9640'``llvm.convert.from.fp16``' Intrinsic
9641^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9642
9643Syntax:
9644"""""""
9645
9646::
9647
Tim Northoverfd7e4242014-07-17 10:51:23 +00009648 declare float @llvm.convert.from.fp16.f32(i16 %a)
9649 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009650
9651Overview:
9652"""""""""
9653
9654The '``llvm.convert.from.fp16``' intrinsic function performs a
9655conversion from half precision floating point format to single precision
9656floating point format.
9657
9658Arguments:
9659""""""""""
9660
9661The intrinsic function contains single argument - the value to be
9662converted.
9663
9664Semantics:
9665""""""""""
9666
9667The '``llvm.convert.from.fp16``' intrinsic function performs a
9668conversion from half single precision floating point format to single
9669precision floating point format. The input half-float value is
9670represented by an ``i16`` value.
9671
9672Examples:
9673"""""""""
9674
9675.. code-block:: llvm
9676
David Blaikiec7aabbb2015-03-04 22:06:14 +00009677 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +00009678 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +00009679
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00009680.. _dbg_intrinsics:
9681
Sean Silvab084af42012-12-07 10:36:55 +00009682Debugger Intrinsics
9683-------------------
9684
9685The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
9686prefix), are described in the `LLVM Source Level
9687Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
9688document.
9689
9690Exception Handling Intrinsics
9691-----------------------------
9692
9693The LLVM exception handling intrinsics (which all start with
9694``llvm.eh.`` prefix), are described in the `LLVM Exception
9695Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
9696
9697.. _int_trampoline:
9698
9699Trampoline Intrinsics
9700---------------------
9701
9702These intrinsics make it possible to excise one parameter, marked with
9703the :ref:`nest <nest>` attribute, from a function. The result is a
9704callable function pointer lacking the nest parameter - the caller does
9705not need to provide a value for it. Instead, the value to use is stored
9706in advance in a "trampoline", a block of memory usually allocated on the
9707stack, which also contains code to splice the nest value into the
9708argument list. This is used to implement the GCC nested function address
9709extension.
9710
9711For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
9712then the resulting function pointer has signature ``i32 (i32, i32)*``.
9713It can be created as follows:
9714
9715.. code-block:: llvm
9716
9717 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +00009718 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +00009719 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
9720 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
9721 %fp = bitcast i8* %p to i32 (i32, i32)*
9722
9723The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
9724``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
9725
9726.. _int_it:
9727
9728'``llvm.init.trampoline``' Intrinsic
9729^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9730
9731Syntax:
9732"""""""
9733
9734::
9735
9736 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
9737
9738Overview:
9739"""""""""
9740
9741This fills the memory pointed to by ``tramp`` with executable code,
9742turning it into a trampoline.
9743
9744Arguments:
9745""""""""""
9746
9747The ``llvm.init.trampoline`` intrinsic takes three arguments, all
9748pointers. The ``tramp`` argument must point to a sufficiently large and
9749sufficiently aligned block of memory; this memory is written to by the
9750intrinsic. Note that the size and the alignment are target-specific -
9751LLVM currently provides no portable way of determining them, so a
9752front-end that generates this intrinsic needs to have some
9753target-specific knowledge. The ``func`` argument must hold a function
9754bitcast to an ``i8*``.
9755
9756Semantics:
9757""""""""""
9758
9759The block of memory pointed to by ``tramp`` is filled with target
9760dependent code, turning it into a function. Then ``tramp`` needs to be
9761passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
9762be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
9763function's signature is the same as that of ``func`` with any arguments
9764marked with the ``nest`` attribute removed. At most one such ``nest``
9765argument is allowed, and it must be of pointer type. Calling the new
9766function is equivalent to calling ``func`` with the same argument list,
9767but with ``nval`` used for the missing ``nest`` argument. If, after
9768calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
9769modified, then the effect of any later call to the returned function
9770pointer is undefined.
9771
9772.. _int_at:
9773
9774'``llvm.adjust.trampoline``' Intrinsic
9775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9776
9777Syntax:
9778"""""""
9779
9780::
9781
9782 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
9783
9784Overview:
9785"""""""""
9786
9787This performs any required machine-specific adjustment to the address of
9788a trampoline (passed as ``tramp``).
9789
9790Arguments:
9791""""""""""
9792
9793``tramp`` must point to a block of memory which already has trampoline
9794code filled in by a previous call to
9795:ref:`llvm.init.trampoline <int_it>`.
9796
9797Semantics:
9798""""""""""
9799
9800On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +00009801different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +00009802intrinsic returns the executable address corresponding to ``tramp``
9803after performing the required machine specific adjustments. The pointer
9804returned can then be :ref:`bitcast and executed <int_trampoline>`.
9805
Elena Demikhovsky82cdd652015-05-07 12:25:11 +00009806.. _int_mload_mstore:
9807
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009808Masked Vector Load and Store Intrinsics
9809---------------------------------------
9810
9811LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
9812
9813.. _int_mload:
9814
9815'``llvm.masked.load.*``' Intrinsics
9816^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9817
9818Syntax:
9819"""""""
9820This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
9821
9822::
9823
9824 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
9825 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
9826
9827Overview:
9828"""""""""
9829
Elena Demikhovsky82cdd652015-05-07 12:25:11 +00009830Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009831
9832
9833Arguments:
9834""""""""""
9835
Elena Demikhovsky82cdd652015-05-07 12:25:11 +00009836The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009837
9838
9839Semantics:
9840""""""""""
9841
9842The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
9843The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
9844
9845
9846::
9847
9848 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009849
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009850 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +00009851 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009852 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009853
9854.. _int_mstore:
9855
9856'``llvm.masked.store.*``' Intrinsics
9857^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9858
9859Syntax:
9860"""""""
9861This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
9862
9863::
9864
9865 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
9866 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
9867
9868Overview:
9869"""""""""
9870
9871Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
9872
9873Arguments:
9874""""""""""
9875
9876The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
9877
9878
9879Semantics:
9880""""""""""
9881
9882The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
9883The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
9884
9885::
9886
9887 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +00009888
Elena Demikhovskye86c8c82014-12-29 09:47:51 +00009889 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +00009890 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +00009891 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
9892 store <16 x float> %res, <16 x float>* %ptr, align 4
9893
9894
Elena Demikhovsky82cdd652015-05-07 12:25:11 +00009895Masked Vector Gather and Scatter Intrinsics
9896-------------------------------------------
9897
9898LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
9899
9900.. _int_mgather:
9901
9902'``llvm.masked.gather.*``' Intrinsics
9903^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9904
9905Syntax:
9906"""""""
9907This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer or floating point data type gathered together into one vector.
9908
9909::
9910
9911 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
9912 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
9913
9914Overview:
9915"""""""""
9916
9917Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
9918
9919
9920Arguments:
9921""""""""""
9922
9923The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
9924
9925
9926Semantics:
9927""""""""""
9928
9929The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
9930The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
9931
9932
9933::
9934
9935 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
9936
9937 ;; The gather with all-true mask is equivalent to the following instruction sequence
9938 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
9939 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
9940 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
9941 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
9942
9943 %val0 = load double, double* %ptr0, align 8
9944 %val1 = load double, double* %ptr1, align 8
9945 %val2 = load double, double* %ptr2, align 8
9946 %val3 = load double, double* %ptr3, align 8
9947
9948 %vec0 = insertelement <4 x double>undef, %val0, 0
9949 %vec01 = insertelement <4 x double>%vec0, %val1, 1
9950 %vec012 = insertelement <4 x double>%vec01, %val2, 2
9951 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
9952
9953.. _int_mscatter:
9954
9955'``llvm.masked.scatter.*``' Intrinsics
9956^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9957
9958Syntax:
9959"""""""
9960This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type. Each vector element is stored in an arbitrary memory addresses. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
9961
9962::
9963
9964 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
9965 declare void @llvm.masked.scatter.v16f32(<16 x i32> <value>, <16 x i32*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
9966
9967Overview:
9968"""""""""
9969
9970Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
9971
9972Arguments:
9973""""""""""
9974
9975The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
9976
9977
9978Semantics:
9979""""""""""
9980
9981The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergency. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
9982
9983::
9984
9985 ;; This instruction unconditionaly stores data vector in multiple addresses
9986 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
9987
9988 ;; It is equivalent to a list of scalar stores
9989 %val0 = extractelement <8 x i32> %value, i32 0
9990 %val1 = extractelement <8 x i32> %value, i32 1
9991 ..
9992 %val7 = extractelement <8 x i32> %value, i32 7
9993 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
9994 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
9995 ..
9996 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
9997 ;; Note: the order of the following stores is important when they overlap:
9998 store i32 %val0, i32* %ptr0, align 4
9999 store i32 %val1, i32* %ptr1, align 4
10000 ..
10001 store i32 %val7, i32* %ptr7, align 4
10002
10003
Sean Silvab084af42012-12-07 10:36:55 +000010004Memory Use Markers
10005------------------
10006
Sanjay Patel69bf48e2014-07-04 19:40:43 +000010007This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000010008memory objects and ranges where variables are immutable.
10009
Reid Klecknera534a382013-12-19 02:14:12 +000010010.. _int_lifestart:
10011
Sean Silvab084af42012-12-07 10:36:55 +000010012'``llvm.lifetime.start``' Intrinsic
10013^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10014
10015Syntax:
10016"""""""
10017
10018::
10019
10020 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
10021
10022Overview:
10023"""""""""
10024
10025The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
10026object's lifetime.
10027
10028Arguments:
10029""""""""""
10030
10031The first argument is a constant integer representing the size of the
10032object, or -1 if it is variable sized. The second argument is a pointer
10033to the object.
10034
10035Semantics:
10036""""""""""
10037
10038This intrinsic indicates that before this point in the code, the value
10039of the memory pointed to by ``ptr`` is dead. This means that it is known
10040to never be used and has an undefined value. A load from the pointer
10041that precedes this intrinsic can be replaced with ``'undef'``.
10042
Reid Klecknera534a382013-12-19 02:14:12 +000010043.. _int_lifeend:
10044
Sean Silvab084af42012-12-07 10:36:55 +000010045'``llvm.lifetime.end``' Intrinsic
10046^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10047
10048Syntax:
10049"""""""
10050
10051::
10052
10053 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
10054
10055Overview:
10056"""""""""
10057
10058The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
10059object's lifetime.
10060
10061Arguments:
10062""""""""""
10063
10064The first argument is a constant integer representing the size of the
10065object, or -1 if it is variable sized. The second argument is a pointer
10066to the object.
10067
10068Semantics:
10069""""""""""
10070
10071This intrinsic indicates that after this point in the code, the value of
10072the memory pointed to by ``ptr`` is dead. This means that it is known to
10073never be used and has an undefined value. Any stores into the memory
10074object following this intrinsic may be removed as dead.
10075
10076'``llvm.invariant.start``' Intrinsic
10077^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10078
10079Syntax:
10080"""""""
10081
10082::
10083
10084 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
10085
10086Overview:
10087"""""""""
10088
10089The '``llvm.invariant.start``' intrinsic specifies that the contents of
10090a memory object will not change.
10091
10092Arguments:
10093""""""""""
10094
10095The first argument is a constant integer representing the size of the
10096object, or -1 if it is variable sized. The second argument is a pointer
10097to the object.
10098
10099Semantics:
10100""""""""""
10101
10102This intrinsic indicates that until an ``llvm.invariant.end`` that uses
10103the return value, the referenced memory location is constant and
10104unchanging.
10105
10106'``llvm.invariant.end``' Intrinsic
10107^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10108
10109Syntax:
10110"""""""
10111
10112::
10113
10114 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
10115
10116Overview:
10117"""""""""
10118
10119The '``llvm.invariant.end``' intrinsic specifies that the contents of a
10120memory object are mutable.
10121
10122Arguments:
10123""""""""""
10124
10125The first argument is the matching ``llvm.invariant.start`` intrinsic.
10126The second argument is a constant integer representing the size of the
10127object, or -1 if it is variable sized and the third argument is a
10128pointer to the object.
10129
10130Semantics:
10131""""""""""
10132
10133This intrinsic indicates that the memory is mutable again.
10134
10135General Intrinsics
10136------------------
10137
10138This class of intrinsics is designed to be generic and has no specific
10139purpose.
10140
10141'``llvm.var.annotation``' Intrinsic
10142^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10143
10144Syntax:
10145"""""""
10146
10147::
10148
10149 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
10150
10151Overview:
10152"""""""""
10153
10154The '``llvm.var.annotation``' intrinsic.
10155
10156Arguments:
10157""""""""""
10158
10159The first argument is a pointer to a value, the second is a pointer to a
10160global string, the third is a pointer to a global string which is the
10161source file name, and the last argument is the line number.
10162
10163Semantics:
10164""""""""""
10165
10166This intrinsic allows annotation of local variables with arbitrary
10167strings. This can be useful for special purpose optimizations that want
10168to look for these annotations. These have no other defined use; they are
10169ignored by code generation and optimization.
10170
Michael Gottesman88d18832013-03-26 00:34:27 +000010171'``llvm.ptr.annotation.*``' Intrinsic
10172^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10173
10174Syntax:
10175"""""""
10176
10177This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
10178pointer to an integer of any width. *NOTE* you must specify an address space for
10179the pointer. The identifier for the default address space is the integer
10180'``0``'.
10181
10182::
10183
10184 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
10185 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
10186 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
10187 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
10188 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
10189
10190Overview:
10191"""""""""
10192
10193The '``llvm.ptr.annotation``' intrinsic.
10194
10195Arguments:
10196""""""""""
10197
10198The first argument is a pointer to an integer value of arbitrary bitwidth
10199(result of some expression), the second is a pointer to a global string, the
10200third is a pointer to a global string which is the source file name, and the
10201last argument is the line number. It returns the value of the first argument.
10202
10203Semantics:
10204""""""""""
10205
10206This intrinsic allows annotation of a pointer to an integer with arbitrary
10207strings. This can be useful for special purpose optimizations that want to look
10208for these annotations. These have no other defined use; they are ignored by code
10209generation and optimization.
10210
Sean Silvab084af42012-12-07 10:36:55 +000010211'``llvm.annotation.*``' Intrinsic
10212^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10213
10214Syntax:
10215"""""""
10216
10217This is an overloaded intrinsic. You can use '``llvm.annotation``' on
10218any integer bit width.
10219
10220::
10221
10222 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
10223 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
10224 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
10225 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
10226 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
10227
10228Overview:
10229"""""""""
10230
10231The '``llvm.annotation``' intrinsic.
10232
10233Arguments:
10234""""""""""
10235
10236The first argument is an integer value (result of some expression), the
10237second is a pointer to a global string, the third is a pointer to a
10238global string which is the source file name, and the last argument is
10239the line number. It returns the value of the first argument.
10240
10241Semantics:
10242""""""""""
10243
10244This intrinsic allows annotations to be put on arbitrary expressions
10245with arbitrary strings. This can be useful for special purpose
10246optimizations that want to look for these annotations. These have no
10247other defined use; they are ignored by code generation and optimization.
10248
10249'``llvm.trap``' Intrinsic
10250^^^^^^^^^^^^^^^^^^^^^^^^^
10251
10252Syntax:
10253"""""""
10254
10255::
10256
10257 declare void @llvm.trap() noreturn nounwind
10258
10259Overview:
10260"""""""""
10261
10262The '``llvm.trap``' intrinsic.
10263
10264Arguments:
10265""""""""""
10266
10267None.
10268
10269Semantics:
10270""""""""""
10271
10272This intrinsic is lowered to the target dependent trap instruction. If
10273the target does not have a trap instruction, this intrinsic will be
10274lowered to a call of the ``abort()`` function.
10275
10276'``llvm.debugtrap``' Intrinsic
10277^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10278
10279Syntax:
10280"""""""
10281
10282::
10283
10284 declare void @llvm.debugtrap() nounwind
10285
10286Overview:
10287"""""""""
10288
10289The '``llvm.debugtrap``' intrinsic.
10290
10291Arguments:
10292""""""""""
10293
10294None.
10295
10296Semantics:
10297""""""""""
10298
10299This intrinsic is lowered to code which is intended to cause an
10300execution trap with the intention of requesting the attention of a
10301debugger.
10302
10303'``llvm.stackprotector``' Intrinsic
10304^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10305
10306Syntax:
10307"""""""
10308
10309::
10310
10311 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
10312
10313Overview:
10314"""""""""
10315
10316The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
10317onto the stack at ``slot``. The stack slot is adjusted to ensure that it
10318is placed on the stack before local variables.
10319
10320Arguments:
10321""""""""""
10322
10323The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
10324The first argument is the value loaded from the stack guard
10325``@__stack_chk_guard``. The second variable is an ``alloca`` that has
10326enough space to hold the value of the guard.
10327
10328Semantics:
10329""""""""""
10330
Michael Gottesmandafc7d92013-08-12 18:35:32 +000010331This intrinsic causes the prologue/epilogue inserter to force the position of
10332the ``AllocaInst`` stack slot to be before local variables on the stack. This is
10333to ensure that if a local variable on the stack is overwritten, it will destroy
10334the value of the guard. When the function exits, the guard on the stack is
10335checked against the original guard by ``llvm.stackprotectorcheck``. If they are
10336different, then ``llvm.stackprotectorcheck`` causes the program to abort by
10337calling the ``__stack_chk_fail()`` function.
10338
10339'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000010340^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000010341
10342Syntax:
10343"""""""
10344
10345::
10346
10347 declare void @llvm.stackprotectorcheck(i8** <guard>)
10348
10349Overview:
10350"""""""""
10351
10352The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000010353created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000010354``__stack_chk_fail()`` function.
10355
Michael Gottesmandafc7d92013-08-12 18:35:32 +000010356Arguments:
10357""""""""""
10358
10359The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
10360the variable ``@__stack_chk_guard``.
10361
10362Semantics:
10363""""""""""
10364
10365This intrinsic is provided to perform the stack protector check by comparing
10366``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
10367values do not match call the ``__stack_chk_fail()`` function.
10368
10369The reason to provide this as an IR level intrinsic instead of implementing it
10370via other IR operations is that in order to perform this operation at the IR
10371level without an intrinsic, one would need to create additional basic blocks to
10372handle the success/failure cases. This makes it difficult to stop the stack
10373protector check from disrupting sibling tail calls in Codegen. With this
10374intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000010375codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000010376
Sean Silvab084af42012-12-07 10:36:55 +000010377'``llvm.objectsize``' Intrinsic
10378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10379
10380Syntax:
10381"""""""
10382
10383::
10384
10385 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
10386 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
10387
10388Overview:
10389"""""""""
10390
10391The ``llvm.objectsize`` intrinsic is designed to provide information to
10392the optimizers to determine at compile time whether a) an operation
10393(like memcpy) will overflow a buffer that corresponds to an object, or
10394b) that a runtime check for overflow isn't necessary. An object in this
10395context means an allocation of a specific class, structure, array, or
10396other object.
10397
10398Arguments:
10399""""""""""
10400
10401The ``llvm.objectsize`` intrinsic takes two arguments. The first
10402argument is a pointer to or into the ``object``. The second argument is
10403a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
10404or -1 (if false) when the object size is unknown. The second argument
10405only accepts constants.
10406
10407Semantics:
10408""""""""""
10409
10410The ``llvm.objectsize`` intrinsic is lowered to a constant representing
10411the size of the object concerned. If the size cannot be determined at
10412compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
10413on the ``min`` argument).
10414
10415'``llvm.expect``' Intrinsic
10416^^^^^^^^^^^^^^^^^^^^^^^^^^^
10417
10418Syntax:
10419"""""""
10420
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000010421This is an overloaded intrinsic. You can use ``llvm.expect`` on any
10422integer bit width.
10423
Sean Silvab084af42012-12-07 10:36:55 +000010424::
10425
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000010426 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000010427 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
10428 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
10429
10430Overview:
10431"""""""""
10432
10433The ``llvm.expect`` intrinsic provides information about expected (the
10434most probable) value of ``val``, which can be used by optimizers.
10435
10436Arguments:
10437""""""""""
10438
10439The ``llvm.expect`` intrinsic takes two arguments. The first argument is
10440a value. The second argument is an expected value, this needs to be a
10441constant value, variables are not allowed.
10442
10443Semantics:
10444""""""""""
10445
10446This intrinsic is lowered to the ``val``.
10447
Philip Reamese0e90832015-04-26 22:23:12 +000010448.. _int_assume:
10449
Hal Finkel93046912014-07-25 21:13:35 +000010450'``llvm.assume``' Intrinsic
10451^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10452
10453Syntax:
10454"""""""
10455
10456::
10457
10458 declare void @llvm.assume(i1 %cond)
10459
10460Overview:
10461"""""""""
10462
10463The ``llvm.assume`` allows the optimizer to assume that the provided
10464condition is true. This information can then be used in simplifying other parts
10465of the code.
10466
10467Arguments:
10468""""""""""
10469
10470The condition which the optimizer may assume is always true.
10471
10472Semantics:
10473""""""""""
10474
10475The intrinsic allows the optimizer to assume that the provided condition is
10476always true whenever the control flow reaches the intrinsic call. No code is
10477generated for this intrinsic, and instructions that contribute only to the
10478provided condition are not used for code generation. If the condition is
10479violated during execution, the behavior is undefined.
10480
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000010481Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000010482used by the ``llvm.assume`` intrinsic in order to preserve the instructions
10483only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000010484if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000010485sufficient overall improvement in code quality. For this reason,
10486``llvm.assume`` should not be used to document basic mathematical invariants
10487that the optimizer can otherwise deduce or facts that are of little use to the
10488optimizer.
10489
Peter Collingbournee6909c82015-02-20 20:30:47 +000010490.. _bitset.test:
10491
10492'``llvm.bitset.test``' Intrinsic
10493^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10494
10495Syntax:
10496"""""""
10497
10498::
10499
10500 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
10501
10502
10503Arguments:
10504""""""""""
10505
10506The first argument is a pointer to be tested. The second argument is a
10507metadata string containing the name of a :doc:`bitset <BitSets>`.
10508
10509Overview:
10510"""""""""
10511
10512The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
10513member of the given bitset.
10514
Sean Silvab084af42012-12-07 10:36:55 +000010515'``llvm.donothing``' Intrinsic
10516^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10517
10518Syntax:
10519"""""""
10520
10521::
10522
10523 declare void @llvm.donothing() nounwind readnone
10524
10525Overview:
10526"""""""""
10527
Juergen Ributzkac9161192014-10-23 22:36:13 +000010528The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
10529two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
10530with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000010531
10532Arguments:
10533""""""""""
10534
10535None.
10536
10537Semantics:
10538""""""""""
10539
10540This intrinsic does nothing, and it's removed by optimizers and ignored
10541by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000010542
10543Stack Map Intrinsics
10544--------------------
10545
10546LLVM provides experimental intrinsics to support runtime patching
10547mechanisms commonly desired in dynamic language JITs. These intrinsics
10548are described in :doc:`StackMaps`.