blob: 86a5a135b2860edc0efb01eb62b205ab84855e8d [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000351 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000356 This calling convention attempts to make the code in the caller as
357 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000497.. _namedtypes:
498
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000499Structure Types
500---------------
Sean Silvab084af42012-12-07 10:36:55 +0000501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
503types <t_struct>`. Literal types are uniqued structurally, but identified types
504are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000505to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000506
507An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000508
509.. code-block:: llvm
510
511 %mytype = type { %mytype*, i32 }
512
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000513Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
514literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000515
516.. _globalvars:
517
518Global Variables
519----------------
520
521Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000522instead of run-time.
523
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000524Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525
526Global variables in other translation units can also be declared, in which
527case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000528
Bob Wilson85b24f22014-06-12 20:40:33 +0000529Either global variable definitions or declarations may have an explicit section
530to be placed in and may have an optional explicit alignment specified.
531
Michael Gottesman006039c2013-01-31 05:48:48 +0000532A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000536initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000567Additionally, the global can placed in a comdat if the target has the necessary
568support.
Sean Silvab084af42012-12-07 10:36:55 +0000569
Michael Gottesmane743a302013-02-04 03:22:00 +0000570By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000571variables defined within the module are not modified from their
572initial values before the start of the global initializer. This is
573true even for variables potentially accessible from outside the
574module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000575``@llvm.used`` or dllexported variables. This assumption may be suppressed
576by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000577
Sean Silvab084af42012-12-07 10:36:55 +0000578An explicit alignment may be specified for a global, which must be a
579power of 2. If not present, or if the alignment is set to zero, the
580alignment of the global is set by the target to whatever it feels
581convenient. If an explicit alignment is specified, the global is forced
582to have exactly that alignment. Targets and optimizers are not allowed
583to over-align the global if the global has an assigned section. In this
584case, the extra alignment could be observable: for example, code could
585assume that the globals are densely packed in their section and try to
586iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000587iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000588
Nico Rieck7157bb72014-01-14 15:22:47 +0000589Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
590
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000591Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000592:ref:`Thread Local Storage Model <tls_model>`.
593
Nico Rieck7157bb72014-01-14 15:22:47 +0000594Syntax::
595
596 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000597 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000598 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000599 [, section "name"] [, comdat [($name)]]
600 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000601
Sean Silvab084af42012-12-07 10:36:55 +0000602For example, the following defines a global in a numbered address space
603with an initializer, section, and alignment:
604
605.. code-block:: llvm
606
607 @G = addrspace(5) constant float 1.0, section "foo", align 4
608
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000609The following example just declares a global variable
610
611.. code-block:: llvm
612
613 @G = external global i32
614
Sean Silvab084af42012-12-07 10:36:55 +0000615The following example defines a thread-local global with the
616``initialexec`` TLS model:
617
618.. code-block:: llvm
619
620 @G = thread_local(initialexec) global i32 0, align 4
621
622.. _functionstructure:
623
624Functions
625---------
626
627LLVM function definitions consist of the "``define``" keyword, an
628optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000629style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
630an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000631an optional ``unnamed_addr`` attribute, a return type, an optional
632:ref:`parameter attribute <paramattrs>` for the return type, a function
633name, a (possibly empty) argument list (each with optional :ref:`parameter
634attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000635an optional section, an optional alignment,
636an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000637an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000638an optional :ref:`prologue <prologuedata>`,
639an optional :ref:`personality <personalityfn>`,
640an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000641
642LLVM function declarations consist of the "``declare``" keyword, an
643optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000644style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
645an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000646an optional ``unnamed_addr`` attribute, a return type, an optional
647:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000648name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000649:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
650and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000651
Bill Wendling6822ecb2013-10-27 05:09:12 +0000652A function definition contains a list of basic blocks, forming the CFG (Control
653Flow Graph) for the function. Each basic block may optionally start with a label
654(giving the basic block a symbol table entry), contains a list of instructions,
655and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
656function return). If an explicit label is not provided, a block is assigned an
657implicit numbered label, using the next value from the same counter as used for
658unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
659entry block does not have an explicit label, it will be assigned label "%0",
660then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000661
662The first basic block in a function is special in two ways: it is
663immediately executed on entrance to the function, and it is not allowed
664to have predecessor basic blocks (i.e. there can not be any branches to
665the entry block of a function). Because the block can have no
666predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
667
668LLVM allows an explicit section to be specified for functions. If the
669target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000670Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000671
672An explicit alignment may be specified for a function. If not present,
673or if the alignment is set to zero, the alignment of the function is set
674by the target to whatever it feels convenient. If an explicit alignment
675is specified, the function is forced to have at least that much
676alignment. All alignments must be a power of 2.
677
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000678If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000679be significant and two identical functions can be merged.
680
681Syntax::
682
Nico Rieck7157bb72014-01-14 15:22:47 +0000683 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000684 [cconv] [ret attrs]
685 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000686 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000687 [align N] [gc] [prefix Constant] [prologue Constant]
688 [personality Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000689
Dan Liew2661dfc2014-08-20 15:06:30 +0000690The argument list is a comma seperated sequence of arguments where each
691argument is of the following form
692
693Syntax::
694
695 <type> [parameter Attrs] [name]
696
697
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000698.. _langref_aliases:
699
Sean Silvab084af42012-12-07 10:36:55 +0000700Aliases
701-------
702
Rafael Espindola64c1e182014-06-03 02:41:57 +0000703Aliases, unlike function or variables, don't create any new data. They
704are just a new symbol and metadata for an existing position.
705
706Aliases have a name and an aliasee that is either a global value or a
707constant expression.
708
Nico Rieck7157bb72014-01-14 15:22:47 +0000709Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000710:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
711<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000712
713Syntax::
714
Rafael Espindola464fe022014-07-30 22:51:54 +0000715 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000716
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000717The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000718``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000719might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000720
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000721Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000722the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
723to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000724
Rafael Espindola64c1e182014-06-03 02:41:57 +0000725Since aliases are only a second name, some restrictions apply, of which
726some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728* The expression defining the aliasee must be computable at assembly
729 time. Since it is just a name, no relocations can be used.
730
731* No alias in the expression can be weak as the possibility of the
732 intermediate alias being overridden cannot be represented in an
733 object file.
734
735* No global value in the expression can be a declaration, since that
736 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000737
David Majnemerdad0a642014-06-27 18:19:56 +0000738.. _langref_comdats:
739
740Comdats
741-------
742
743Comdat IR provides access to COFF and ELF object file COMDAT functionality.
744
Richard Smith32dbdf62014-07-31 04:25:36 +0000745Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000746specify this key will only end up in the final object file if the linker chooses
747that key over some other key. Aliases are placed in the same COMDAT that their
748aliasee computes to, if any.
749
750Comdats have a selection kind to provide input on how the linker should
751choose between keys in two different object files.
752
753Syntax::
754
755 $<Name> = comdat SelectionKind
756
757The selection kind must be one of the following:
758
759``any``
760 The linker may choose any COMDAT key, the choice is arbitrary.
761``exactmatch``
762 The linker may choose any COMDAT key but the sections must contain the
763 same data.
764``largest``
765 The linker will choose the section containing the largest COMDAT key.
766``noduplicates``
767 The linker requires that only section with this COMDAT key exist.
768``samesize``
769 The linker may choose any COMDAT key but the sections must contain the
770 same amount of data.
771
772Note that the Mach-O platform doesn't support COMDATs and ELF only supports
773``any`` as a selection kind.
774
775Here is an example of a COMDAT group where a function will only be selected if
776the COMDAT key's section is the largest:
777
778.. code-block:: llvm
779
780 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000781 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000782
Rafael Espindola83a362c2015-01-06 22:55:16 +0000783 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000784 ret void
785 }
786
Rafael Espindola83a362c2015-01-06 22:55:16 +0000787As a syntactic sugar the ``$name`` can be omitted if the name is the same as
788the global name:
789
790.. code-block:: llvm
791
792 $foo = comdat any
793 @foo = global i32 2, comdat
794
795
David Majnemerdad0a642014-06-27 18:19:56 +0000796In a COFF object file, this will create a COMDAT section with selection kind
797``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
798and another COMDAT section with selection kind
799``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000800section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000801
802There are some restrictions on the properties of the global object.
803It, or an alias to it, must have the same name as the COMDAT group when
804targeting COFF.
805The contents and size of this object may be used during link-time to determine
806which COMDAT groups get selected depending on the selection kind.
807Because the name of the object must match the name of the COMDAT group, the
808linkage of the global object must not be local; local symbols can get renamed
809if a collision occurs in the symbol table.
810
811The combined use of COMDATS and section attributes may yield surprising results.
812For example:
813
814.. code-block:: llvm
815
816 $foo = comdat any
817 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000818 @g1 = global i32 42, section "sec", comdat($foo)
819 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000820
821From the object file perspective, this requires the creation of two sections
822with the same name. This is necessary because both globals belong to different
823COMDAT groups and COMDATs, at the object file level, are represented by
824sections.
825
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000826Note that certain IR constructs like global variables and functions may
827create COMDATs in the object file in addition to any which are specified using
828COMDAT IR. This arises when the code generator is configured to emit globals
829in individual sections (e.g. when `-data-sections` or `-function-sections`
830is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000831
Sean Silvab084af42012-12-07 10:36:55 +0000832.. _namedmetadatastructure:
833
834Named Metadata
835--------------
836
837Named metadata is a collection of metadata. :ref:`Metadata
838nodes <metadata>` (but not metadata strings) are the only valid
839operands for a named metadata.
840
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000841#. Named metadata are represented as a string of characters with the
842 metadata prefix. The rules for metadata names are the same as for
843 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
844 are still valid, which allows any character to be part of a name.
845
Sean Silvab084af42012-12-07 10:36:55 +0000846Syntax::
847
848 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000849 !0 = !{!"zero"}
850 !1 = !{!"one"}
851 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000852 ; A named metadata.
853 !name = !{!0, !1, !2}
854
855.. _paramattrs:
856
857Parameter Attributes
858--------------------
859
860The return type and each parameter of a function type may have a set of
861*parameter attributes* associated with them. Parameter attributes are
862used to communicate additional information about the result or
863parameters of a function. Parameter attributes are considered to be part
864of the function, not of the function type, so functions with different
865parameter attributes can have the same function type.
866
867Parameter attributes are simple keywords that follow the type specified.
868If multiple parameter attributes are needed, they are space separated.
869For example:
870
871.. code-block:: llvm
872
873 declare i32 @printf(i8* noalias nocapture, ...)
874 declare i32 @atoi(i8 zeroext)
875 declare signext i8 @returns_signed_char()
876
877Note that any attributes for the function result (``nounwind``,
878``readonly``) come immediately after the argument list.
879
880Currently, only the following parameter attributes are defined:
881
882``zeroext``
883 This indicates to the code generator that the parameter or return
884 value should be zero-extended to the extent required by the target's
885 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
886 the caller (for a parameter) or the callee (for a return value).
887``signext``
888 This indicates to the code generator that the parameter or return
889 value should be sign-extended to the extent required by the target's
890 ABI (which is usually 32-bits) by the caller (for a parameter) or
891 the callee (for a return value).
892``inreg``
893 This indicates that this parameter or return value should be treated
894 in a special target-dependent fashion during while emitting code for
895 a function call or return (usually, by putting it in a register as
896 opposed to memory, though some targets use it to distinguish between
897 two different kinds of registers). Use of this attribute is
898 target-specific.
899``byval``
900 This indicates that the pointer parameter should really be passed by
901 value to the function. The attribute implies that a hidden copy of
902 the pointee is made between the caller and the callee, so the callee
903 is unable to modify the value in the caller. This attribute is only
904 valid on LLVM pointer arguments. It is generally used to pass
905 structs and arrays by value, but is also valid on pointers to
906 scalars. The copy is considered to belong to the caller not the
907 callee (for example, ``readonly`` functions should not write to
908 ``byval`` parameters). This is not a valid attribute for return
909 values.
910
911 The byval attribute also supports specifying an alignment with the
912 align attribute. It indicates the alignment of the stack slot to
913 form and the known alignment of the pointer specified to the call
914 site. If the alignment is not specified, then the code generator
915 makes a target-specific assumption.
916
Reid Klecknera534a382013-12-19 02:14:12 +0000917.. _attr_inalloca:
918
919``inalloca``
920
Reid Kleckner60d3a832014-01-16 22:59:24 +0000921 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000922 address of outgoing stack arguments. An ``inalloca`` argument must
923 be a pointer to stack memory produced by an ``alloca`` instruction.
924 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000925 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000926 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000927
Reid Kleckner436c42e2014-01-17 23:58:17 +0000928 An argument allocation may be used by a call at most once because
929 the call may deallocate it. The ``inalloca`` attribute cannot be
930 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000931 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
932 ``inalloca`` attribute also disables LLVM's implicit lowering of
933 large aggregate return values, which means that frontend authors
934 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000935
Reid Kleckner60d3a832014-01-16 22:59:24 +0000936 When the call site is reached, the argument allocation must have
937 been the most recent stack allocation that is still live, or the
938 results are undefined. It is possible to allocate additional stack
939 space after an argument allocation and before its call site, but it
940 must be cleared off with :ref:`llvm.stackrestore
941 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000942
943 See :doc:`InAlloca` for more information on how to use this
944 attribute.
945
Sean Silvab084af42012-12-07 10:36:55 +0000946``sret``
947 This indicates that the pointer parameter specifies the address of a
948 structure that is the return value of the function in the source
949 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000950 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000951 not to trap and to be properly aligned. This may only be applied to
952 the first parameter. This is not a valid attribute for return
953 values.
Sean Silva1703e702014-04-08 21:06:22 +0000954
Hal Finkelccc70902014-07-22 16:58:55 +0000955``align <n>``
956 This indicates that the pointer value may be assumed by the optimizer to
957 have the specified alignment.
958
959 Note that this attribute has additional semantics when combined with the
960 ``byval`` attribute.
961
Sean Silva1703e702014-04-08 21:06:22 +0000962.. _noalias:
963
Sean Silvab084af42012-12-07 10:36:55 +0000964``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000965 This indicates that objects accessed via pointer values
966 :ref:`based <pointeraliasing>` on the argument or return value are not also
967 accessed, during the execution of the function, via pointer values not
968 *based* on the argument or return value. The attribute on a return value
969 also has additional semantics described below. The caller shares the
970 responsibility with the callee for ensuring that these requirements are met.
971 For further details, please see the discussion of the NoAlias response in
972 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000973
974 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000975 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000976
977 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000978 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
979 attribute on return values are stronger than the semantics of the attribute
980 when used on function arguments. On function return values, the ``noalias``
981 attribute indicates that the function acts like a system memory allocation
982 function, returning a pointer to allocated storage disjoint from the
983 storage for any other object accessible to the caller.
984
Sean Silvab084af42012-12-07 10:36:55 +0000985``nocapture``
986 This indicates that the callee does not make any copies of the
987 pointer that outlive the callee itself. This is not a valid
988 attribute for return values.
989
990.. _nest:
991
992``nest``
993 This indicates that the pointer parameter can be excised using the
994 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000995 attribute for return values and can only be applied to one parameter.
996
997``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000998 This indicates that the function always returns the argument as its return
999 value. This is an optimization hint to the code generator when generating
1000 the caller, allowing tail call optimization and omission of register saves
1001 and restores in some cases; it is not checked or enforced when generating
1002 the callee. The parameter and the function return type must be valid
1003 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1004 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001005
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001006``nonnull``
1007 This indicates that the parameter or return pointer is not null. This
1008 attribute may only be applied to pointer typed parameters. This is not
1009 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001010 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001011 is non-null.
1012
Hal Finkelb0407ba2014-07-18 15:51:28 +00001013``dereferenceable(<n>)``
1014 This indicates that the parameter or return pointer is dereferenceable. This
1015 attribute may only be applied to pointer typed parameters. A pointer that
1016 is dereferenceable can be loaded from speculatively without a risk of
1017 trapping. The number of bytes known to be dereferenceable must be provided
1018 in parentheses. It is legal for the number of bytes to be less than the
1019 size of the pointee type. The ``nonnull`` attribute does not imply
1020 dereferenceability (consider a pointer to one element past the end of an
1021 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1022 ``addrspace(0)`` (which is the default address space).
1023
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001024``dereferenceable_or_null(<n>)``
1025 This indicates that the parameter or return value isn't both
1026 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
1027 time. All non-null pointers tagged with
1028 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1029 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1030 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1031 and in other address spaces ``dereferenceable_or_null(<n>)``
1032 implies that a pointer is at least one of ``dereferenceable(<n>)``
1033 or ``null`` (i.e. it may be both ``null`` and
1034 ``dereferenceable(<n>)``). This attribute may only be applied to
1035 pointer typed parameters.
1036
Sean Silvab084af42012-12-07 10:36:55 +00001037.. _gc:
1038
Philip Reamesf80bbff2015-02-25 23:45:20 +00001039Garbage Collector Strategy Names
1040--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001041
Philip Reamesf80bbff2015-02-25 23:45:20 +00001042Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001043string:
1044
1045.. code-block:: llvm
1046
1047 define void @f() gc "name" { ... }
1048
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001049The supported values of *name* includes those :ref:`built in to LLVM
Philip Reamesf80bbff2015-02-25 23:45:20 +00001050<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001051strategy will cause the compiler to alter its output in order to support the
1052named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001053garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001054which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001055
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001056.. _prefixdata:
1057
1058Prefix Data
1059-----------
1060
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001061Prefix data is data associated with a function which the code
1062generator will emit immediately before the function's entrypoint.
1063The purpose of this feature is to allow frontends to associate
1064language-specific runtime metadata with specific functions and make it
1065available through the function pointer while still allowing the
1066function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001067
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001068To access the data for a given function, a program may bitcast the
1069function pointer to a pointer to the constant's type and dereference
1070index -1. This implies that the IR symbol points just past the end of
1071the prefix data. For instance, take the example of a function annotated
1072with a single ``i32``,
1073
1074.. code-block:: llvm
1075
1076 define void @f() prefix i32 123 { ... }
1077
1078The prefix data can be referenced as,
1079
1080.. code-block:: llvm
1081
David Blaikie16a97eb2015-03-04 22:02:58 +00001082 %0 = bitcast void* () @f to i32*
1083 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001084 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001085
1086Prefix data is laid out as if it were an initializer for a global variable
1087of the prefix data's type. The function will be placed such that the
1088beginning of the prefix data is aligned. This means that if the size
1089of the prefix data is not a multiple of the alignment size, the
1090function's entrypoint will not be aligned. If alignment of the
1091function's entrypoint is desired, padding must be added to the prefix
1092data.
1093
1094A function may have prefix data but no body. This has similar semantics
1095to the ``available_externally`` linkage in that the data may be used by the
1096optimizers but will not be emitted in the object file.
1097
1098.. _prologuedata:
1099
1100Prologue Data
1101-------------
1102
1103The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1104be inserted prior to the function body. This can be used for enabling
1105function hot-patching and instrumentation.
1106
1107To maintain the semantics of ordinary function calls, the prologue data must
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001108have a particular format. Specifically, it must begin with a sequence of
1109bytes which decode to a sequence of machine instructions, valid for the
1110module's target, which transfer control to the point immediately succeeding
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001111the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001112the inliner and other passes to reason about the semantics of the function
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001113definition without needing to reason about the prologue data. Obviously this
1114makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001115
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001116A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001117which encodes the ``nop`` instruction:
1118
1119.. code-block:: llvm
1120
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001121 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001122
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001123Generally prologue data can be formed by encoding a relative branch instruction
1124which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001125x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1126
1127.. code-block:: llvm
1128
1129 %0 = type <{ i8, i8, i8* }>
1130
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001131 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001132
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001133A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001134to the ``available_externally`` linkage in that the data may be used by the
1135optimizers but will not be emitted in the object file.
1136
David Majnemer7fddecc2015-06-17 20:52:32 +00001137.. _personalityfn:
1138
1139Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001140--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001141
1142The ``personality`` attribute permits functions to specify what function
1143to use for exception handling.
1144
Bill Wendling63b88192013-02-06 06:52:58 +00001145.. _attrgrp:
1146
1147Attribute Groups
1148----------------
1149
1150Attribute groups are groups of attributes that are referenced by objects within
1151the IR. They are important for keeping ``.ll`` files readable, because a lot of
1152functions will use the same set of attributes. In the degenerative case of a
1153``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1154group will capture the important command line flags used to build that file.
1155
1156An attribute group is a module-level object. To use an attribute group, an
1157object references the attribute group's ID (e.g. ``#37``). An object may refer
1158to more than one attribute group. In that situation, the attributes from the
1159different groups are merged.
1160
1161Here is an example of attribute groups for a function that should always be
1162inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1163
1164.. code-block:: llvm
1165
1166 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001167 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001168
1169 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001170 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001171
1172 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1173 define void @f() #0 #1 { ... }
1174
Sean Silvab084af42012-12-07 10:36:55 +00001175.. _fnattrs:
1176
1177Function Attributes
1178-------------------
1179
1180Function attributes are set to communicate additional information about
1181a function. Function attributes are considered to be part of the
1182function, not of the function type, so functions with different function
1183attributes can have the same function type.
1184
1185Function attributes are simple keywords that follow the type specified.
1186If multiple attributes are needed, they are space separated. For
1187example:
1188
1189.. code-block:: llvm
1190
1191 define void @f() noinline { ... }
1192 define void @f() alwaysinline { ... }
1193 define void @f() alwaysinline optsize { ... }
1194 define void @f() optsize { ... }
1195
Sean Silvab084af42012-12-07 10:36:55 +00001196``alignstack(<n>)``
1197 This attribute indicates that, when emitting the prologue and
1198 epilogue, the backend should forcibly align the stack pointer.
1199 Specify the desired alignment, which must be a power of two, in
1200 parentheses.
1201``alwaysinline``
1202 This attribute indicates that the inliner should attempt to inline
1203 this function into callers whenever possible, ignoring any active
1204 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001205``builtin``
1206 This indicates that the callee function at a call site should be
1207 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001208 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001209 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001210 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001211``cold``
1212 This attribute indicates that this function is rarely called. When
1213 computing edge weights, basic blocks post-dominated by a cold
1214 function call are also considered to be cold; and, thus, given low
1215 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001216``convergent``
1217 This attribute indicates that the callee is dependent on a convergent
1218 thread execution pattern under certain parallel execution models.
1219 Transformations that are execution model agnostic may only move or
1220 tranform this call if the final location is control equivalent to its
1221 original position in the program, where control equivalence is defined as
1222 A dominates B and B post-dominates A, or vice versa.
Sean Silvab084af42012-12-07 10:36:55 +00001223``inlinehint``
1224 This attribute indicates that the source code contained a hint that
1225 inlining this function is desirable (such as the "inline" keyword in
1226 C/C++). It is just a hint; it imposes no requirements on the
1227 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001228``jumptable``
1229 This attribute indicates that the function should be added to a
1230 jump-instruction table at code-generation time, and that all address-taken
1231 references to this function should be replaced with a reference to the
1232 appropriate jump-instruction-table function pointer. Note that this creates
1233 a new pointer for the original function, which means that code that depends
1234 on function-pointer identity can break. So, any function annotated with
1235 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001236``minsize``
1237 This attribute suggests that optimization passes and code generator
1238 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001239 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001240 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001241``naked``
1242 This attribute disables prologue / epilogue emission for the
1243 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001244``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001245 This indicates that the callee function at a call site is not recognized as
1246 a built-in function. LLVM will retain the original call and not replace it
1247 with equivalent code based on the semantics of the built-in function, unless
1248 the call site uses the ``builtin`` attribute. This is valid at call sites
1249 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001250``noduplicate``
1251 This attribute indicates that calls to the function cannot be
1252 duplicated. A call to a ``noduplicate`` function may be moved
1253 within its parent function, but may not be duplicated within
1254 its parent function.
1255
1256 A function containing a ``noduplicate`` call may still
1257 be an inlining candidate, provided that the call is not
1258 duplicated by inlining. That implies that the function has
1259 internal linkage and only has one call site, so the original
1260 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001261``noimplicitfloat``
1262 This attributes disables implicit floating point instructions.
1263``noinline``
1264 This attribute indicates that the inliner should never inline this
1265 function in any situation. This attribute may not be used together
1266 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001267``nonlazybind``
1268 This attribute suppresses lazy symbol binding for the function. This
1269 may make calls to the function faster, at the cost of extra program
1270 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001271``noredzone``
1272 This attribute indicates that the code generator should not use a
1273 red zone, even if the target-specific ABI normally permits it.
1274``noreturn``
1275 This function attribute indicates that the function never returns
1276 normally. This produces undefined behavior at runtime if the
1277 function ever does dynamically return.
1278``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001279 This function attribute indicates that the function never raises an
1280 exception. If the function does raise an exception, its runtime
1281 behavior is undefined. However, functions marked nounwind may still
1282 trap or generate asynchronous exceptions. Exception handling schemes
1283 that are recognized by LLVM to handle asynchronous exceptions, such
1284 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001285``optnone``
1286 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001287 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001288 exception of interprocedural optimization passes.
1289 This attribute cannot be used together with the ``alwaysinline``
1290 attribute; this attribute is also incompatible
1291 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001292
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001293 This attribute requires the ``noinline`` attribute to be specified on
1294 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001295 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001296 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001297``optsize``
1298 This attribute suggests that optimization passes and code generator
1299 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001300 and otherwise do optimizations specifically to reduce code size as
1301 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001302``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001303 On a function, this attribute indicates that the function computes its
1304 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001305 without dereferencing any pointer arguments or otherwise accessing
1306 any mutable state (e.g. memory, control registers, etc) visible to
1307 caller functions. It does not write through any pointer arguments
1308 (including ``byval`` arguments) and never changes any state visible
1309 to callers. This means that it cannot unwind exceptions by calling
1310 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001311
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001312 On an argument, this attribute indicates that the function does not
1313 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001314 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001315``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001316 On a function, this attribute indicates that the function does not write
1317 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001318 modify any state (e.g. memory, control registers, etc) visible to
1319 caller functions. It may dereference pointer arguments and read
1320 state that may be set in the caller. A readonly function always
1321 returns the same value (or unwinds an exception identically) when
1322 called with the same set of arguments and global state. It cannot
1323 unwind an exception by calling the ``C++`` exception throwing
1324 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001325
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001326 On an argument, this attribute indicates that the function does not write
1327 through this pointer argument, even though it may write to the memory that
1328 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001329``returns_twice``
1330 This attribute indicates that this function can return twice. The C
1331 ``setjmp`` is an example of such a function. The compiler disables
1332 some optimizations (like tail calls) in the caller of these
1333 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001334``safestack``
1335 This attribute indicates that
1336 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1337 protection is enabled for this function.
1338
1339 If a function that has a ``safestack`` attribute is inlined into a
1340 function that doesn't have a ``safestack`` attribute or which has an
1341 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1342 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001343``sanitize_address``
1344 This attribute indicates that AddressSanitizer checks
1345 (dynamic address safety analysis) are enabled for this function.
1346``sanitize_memory``
1347 This attribute indicates that MemorySanitizer checks (dynamic detection
1348 of accesses to uninitialized memory) are enabled for this function.
1349``sanitize_thread``
1350 This attribute indicates that ThreadSanitizer checks
1351 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001352``ssp``
1353 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001354 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001355 placed on the stack before the local variables that's checked upon
1356 return from the function to see if it has been overwritten. A
1357 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001358 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001359
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001360 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1361 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1362 - Calls to alloca() with variable sizes or constant sizes greater than
1363 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001364
Josh Magee24c7f062014-02-01 01:36:16 +00001365 Variables that are identified as requiring a protector will be arranged
1366 on the stack such that they are adjacent to the stack protector guard.
1367
Sean Silvab084af42012-12-07 10:36:55 +00001368 If a function that has an ``ssp`` attribute is inlined into a
1369 function that doesn't have an ``ssp`` attribute, then the resulting
1370 function will have an ``ssp`` attribute.
1371``sspreq``
1372 This attribute indicates that the function should *always* emit a
1373 stack smashing protector. This overrides the ``ssp`` function
1374 attribute.
1375
Josh Magee24c7f062014-02-01 01:36:16 +00001376 Variables that are identified as requiring a protector will be arranged
1377 on the stack such that they are adjacent to the stack protector guard.
1378 The specific layout rules are:
1379
1380 #. Large arrays and structures containing large arrays
1381 (``>= ssp-buffer-size``) are closest to the stack protector.
1382 #. Small arrays and structures containing small arrays
1383 (``< ssp-buffer-size``) are 2nd closest to the protector.
1384 #. Variables that have had their address taken are 3rd closest to the
1385 protector.
1386
Sean Silvab084af42012-12-07 10:36:55 +00001387 If a function that has an ``sspreq`` attribute is inlined into a
1388 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001389 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1390 an ``sspreq`` attribute.
1391``sspstrong``
1392 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001393 protector. This attribute causes a strong heuristic to be used when
1394 determining if a function needs stack protectors. The strong heuristic
1395 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001396
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001397 - Arrays of any size and type
1398 - Aggregates containing an array of any size and type.
1399 - Calls to alloca().
1400 - Local variables that have had their address taken.
1401
Josh Magee24c7f062014-02-01 01:36:16 +00001402 Variables that are identified as requiring a protector will be arranged
1403 on the stack such that they are adjacent to the stack protector guard.
1404 The specific layout rules are:
1405
1406 #. Large arrays and structures containing large arrays
1407 (``>= ssp-buffer-size``) are closest to the stack protector.
1408 #. Small arrays and structures containing small arrays
1409 (``< ssp-buffer-size``) are 2nd closest to the protector.
1410 #. Variables that have had their address taken are 3rd closest to the
1411 protector.
1412
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001413 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001414
1415 If a function that has an ``sspstrong`` attribute is inlined into a
1416 function that doesn't have an ``sspstrong`` attribute, then the
1417 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001418``"thunk"``
1419 This attribute indicates that the function will delegate to some other
1420 function with a tail call. The prototype of a thunk should not be used for
1421 optimization purposes. The caller is expected to cast the thunk prototype to
1422 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001423``uwtable``
1424 This attribute indicates that the ABI being targeted requires that
1425 an unwind table entry be produce for this function even if we can
1426 show that no exceptions passes by it. This is normally the case for
1427 the ELF x86-64 abi, but it can be disabled for some compilation
1428 units.
Sean Silvab084af42012-12-07 10:36:55 +00001429
1430.. _moduleasm:
1431
1432Module-Level Inline Assembly
1433----------------------------
1434
1435Modules may contain "module-level inline asm" blocks, which corresponds
1436to the GCC "file scope inline asm" blocks. These blocks are internally
1437concatenated by LLVM and treated as a single unit, but may be separated
1438in the ``.ll`` file if desired. The syntax is very simple:
1439
1440.. code-block:: llvm
1441
1442 module asm "inline asm code goes here"
1443 module asm "more can go here"
1444
1445The strings can contain any character by escaping non-printable
1446characters. The escape sequence used is simply "\\xx" where "xx" is the
1447two digit hex code for the number.
1448
James Y Knightbc832ed2015-07-08 18:08:36 +00001449Note that the assembly string *must* be parseable by LLVM's integrated assembler
1450(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001451
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001452.. _langref_datalayout:
1453
Sean Silvab084af42012-12-07 10:36:55 +00001454Data Layout
1455-----------
1456
1457A module may specify a target specific data layout string that specifies
1458how data is to be laid out in memory. The syntax for the data layout is
1459simply:
1460
1461.. code-block:: llvm
1462
1463 target datalayout = "layout specification"
1464
1465The *layout specification* consists of a list of specifications
1466separated by the minus sign character ('-'). Each specification starts
1467with a letter and may include other information after the letter to
1468define some aspect of the data layout. The specifications accepted are
1469as follows:
1470
1471``E``
1472 Specifies that the target lays out data in big-endian form. That is,
1473 the bits with the most significance have the lowest address
1474 location.
1475``e``
1476 Specifies that the target lays out data in little-endian form. That
1477 is, the bits with the least significance have the lowest address
1478 location.
1479``S<size>``
1480 Specifies the natural alignment of the stack in bits. Alignment
1481 promotion of stack variables is limited to the natural stack
1482 alignment to avoid dynamic stack realignment. The stack alignment
1483 must be a multiple of 8-bits. If omitted, the natural stack
1484 alignment defaults to "unspecified", which does not prevent any
1485 alignment promotions.
1486``p[n]:<size>:<abi>:<pref>``
1487 This specifies the *size* of a pointer and its ``<abi>`` and
1488 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001489 bits. The address space, ``n`` is optional, and if not specified,
1490 denotes the default address space 0. The value of ``n`` must be
1491 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001492``i<size>:<abi>:<pref>``
1493 This specifies the alignment for an integer type of a given bit
1494 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1495``v<size>:<abi>:<pref>``
1496 This specifies the alignment for a vector type of a given bit
1497 ``<size>``.
1498``f<size>:<abi>:<pref>``
1499 This specifies the alignment for a floating point type of a given bit
1500 ``<size>``. Only values of ``<size>`` that are supported by the target
1501 will work. 32 (float) and 64 (double) are supported on all targets; 80
1502 or 128 (different flavors of long double) are also supported on some
1503 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001504``a:<abi>:<pref>``
1505 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001506``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001507 If present, specifies that llvm names are mangled in the output. The
1508 options are
1509
1510 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1511 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1512 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1513 symbols get a ``_`` prefix.
1514 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1515 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001516``n<size1>:<size2>:<size3>...``
1517 This specifies a set of native integer widths for the target CPU in
1518 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1519 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1520 this set are considered to support most general arithmetic operations
1521 efficiently.
1522
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001523On every specification that takes a ``<abi>:<pref>``, specifying the
1524``<pref>`` alignment is optional. If omitted, the preceding ``:``
1525should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1526
Sean Silvab084af42012-12-07 10:36:55 +00001527When constructing the data layout for a given target, LLVM starts with a
1528default set of specifications which are then (possibly) overridden by
1529the specifications in the ``datalayout`` keyword. The default
1530specifications are given in this list:
1531
1532- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001533- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1534- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1535 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001536- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001537- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1538- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1539- ``i16:16:16`` - i16 is 16-bit aligned
1540- ``i32:32:32`` - i32 is 32-bit aligned
1541- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1542 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001543- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001544- ``f32:32:32`` - float is 32-bit aligned
1545- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001546- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001547- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1548- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001549- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001550
1551When LLVM is determining the alignment for a given type, it uses the
1552following rules:
1553
1554#. If the type sought is an exact match for one of the specifications,
1555 that specification is used.
1556#. If no match is found, and the type sought is an integer type, then
1557 the smallest integer type that is larger than the bitwidth of the
1558 sought type is used. If none of the specifications are larger than
1559 the bitwidth then the largest integer type is used. For example,
1560 given the default specifications above, the i7 type will use the
1561 alignment of i8 (next largest) while both i65 and i256 will use the
1562 alignment of i64 (largest specified).
1563#. If no match is found, and the type sought is a vector type, then the
1564 largest vector type that is smaller than the sought vector type will
1565 be used as a fall back. This happens because <128 x double> can be
1566 implemented in terms of 64 <2 x double>, for example.
1567
1568The function of the data layout string may not be what you expect.
1569Notably, this is not a specification from the frontend of what alignment
1570the code generator should use.
1571
1572Instead, if specified, the target data layout is required to match what
1573the ultimate *code generator* expects. This string is used by the
1574mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001575what the ultimate code generator uses. There is no way to generate IR
1576that does not embed this target-specific detail into the IR. If you
1577don't specify the string, the default specifications will be used to
1578generate a Data Layout and the optimization phases will operate
1579accordingly and introduce target specificity into the IR with respect to
1580these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001581
Bill Wendling5cc90842013-10-18 23:41:25 +00001582.. _langref_triple:
1583
1584Target Triple
1585-------------
1586
1587A module may specify a target triple string that describes the target
1588host. The syntax for the target triple is simply:
1589
1590.. code-block:: llvm
1591
1592 target triple = "x86_64-apple-macosx10.7.0"
1593
1594The *target triple* string consists of a series of identifiers delimited
1595by the minus sign character ('-'). The canonical forms are:
1596
1597::
1598
1599 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1600 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1601
1602This information is passed along to the backend so that it generates
1603code for the proper architecture. It's possible to override this on the
1604command line with the ``-mtriple`` command line option.
1605
Sean Silvab084af42012-12-07 10:36:55 +00001606.. _pointeraliasing:
1607
1608Pointer Aliasing Rules
1609----------------------
1610
1611Any memory access must be done through a pointer value associated with
1612an address range of the memory access, otherwise the behavior is
1613undefined. Pointer values are associated with address ranges according
1614to the following rules:
1615
1616- A pointer value is associated with the addresses associated with any
1617 value it is *based* on.
1618- An address of a global variable is associated with the address range
1619 of the variable's storage.
1620- The result value of an allocation instruction is associated with the
1621 address range of the allocated storage.
1622- A null pointer in the default address-space is associated with no
1623 address.
1624- An integer constant other than zero or a pointer value returned from
1625 a function not defined within LLVM may be associated with address
1626 ranges allocated through mechanisms other than those provided by
1627 LLVM. Such ranges shall not overlap with any ranges of addresses
1628 allocated by mechanisms provided by LLVM.
1629
1630A pointer value is *based* on another pointer value according to the
1631following rules:
1632
1633- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001634 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001635- The result value of a ``bitcast`` is *based* on the operand of the
1636 ``bitcast``.
1637- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1638 values that contribute (directly or indirectly) to the computation of
1639 the pointer's value.
1640- The "*based* on" relationship is transitive.
1641
1642Note that this definition of *"based"* is intentionally similar to the
1643definition of *"based"* in C99, though it is slightly weaker.
1644
1645LLVM IR does not associate types with memory. The result type of a
1646``load`` merely indicates the size and alignment of the memory from
1647which to load, as well as the interpretation of the value. The first
1648operand type of a ``store`` similarly only indicates the size and
1649alignment of the store.
1650
1651Consequently, type-based alias analysis, aka TBAA, aka
1652``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1653:ref:`Metadata <metadata>` may be used to encode additional information
1654which specialized optimization passes may use to implement type-based
1655alias analysis.
1656
1657.. _volatile:
1658
1659Volatile Memory Accesses
1660------------------------
1661
1662Certain memory accesses, such as :ref:`load <i_load>`'s,
1663:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1664marked ``volatile``. The optimizers must not change the number of
1665volatile operations or change their order of execution relative to other
1666volatile operations. The optimizers *may* change the order of volatile
1667operations relative to non-volatile operations. This is not Java's
1668"volatile" and has no cross-thread synchronization behavior.
1669
Andrew Trick89fc5a62013-01-30 21:19:35 +00001670IR-level volatile loads and stores cannot safely be optimized into
1671llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1672flagged volatile. Likewise, the backend should never split or merge
1673target-legal volatile load/store instructions.
1674
Andrew Trick7e6f9282013-01-31 00:49:39 +00001675.. admonition:: Rationale
1676
1677 Platforms may rely on volatile loads and stores of natively supported
1678 data width to be executed as single instruction. For example, in C
1679 this holds for an l-value of volatile primitive type with native
1680 hardware support, but not necessarily for aggregate types. The
1681 frontend upholds these expectations, which are intentionally
1682 unspecified in the IR. The rules above ensure that IR transformation
1683 do not violate the frontend's contract with the language.
1684
Sean Silvab084af42012-12-07 10:36:55 +00001685.. _memmodel:
1686
1687Memory Model for Concurrent Operations
1688--------------------------------------
1689
1690The LLVM IR does not define any way to start parallel threads of
1691execution or to register signal handlers. Nonetheless, there are
1692platform-specific ways to create them, and we define LLVM IR's behavior
1693in their presence. This model is inspired by the C++0x memory model.
1694
1695For a more informal introduction to this model, see the :doc:`Atomics`.
1696
1697We define a *happens-before* partial order as the least partial order
1698that
1699
1700- Is a superset of single-thread program order, and
1701- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1702 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1703 techniques, like pthread locks, thread creation, thread joining,
1704 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1705 Constraints <ordering>`).
1706
1707Note that program order does not introduce *happens-before* edges
1708between a thread and signals executing inside that thread.
1709
1710Every (defined) read operation (load instructions, memcpy, atomic
1711loads/read-modify-writes, etc.) R reads a series of bytes written by
1712(defined) write operations (store instructions, atomic
1713stores/read-modify-writes, memcpy, etc.). For the purposes of this
1714section, initialized globals are considered to have a write of the
1715initializer which is atomic and happens before any other read or write
1716of the memory in question. For each byte of a read R, R\ :sub:`byte`
1717may see any write to the same byte, except:
1718
1719- If write\ :sub:`1` happens before write\ :sub:`2`, and
1720 write\ :sub:`2` happens before R\ :sub:`byte`, then
1721 R\ :sub:`byte` does not see write\ :sub:`1`.
1722- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1723 R\ :sub:`byte` does not see write\ :sub:`3`.
1724
1725Given that definition, R\ :sub:`byte` is defined as follows:
1726
1727- If R is volatile, the result is target-dependent. (Volatile is
1728 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001729 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001730 like normal memory. It does not generally provide cross-thread
1731 synchronization.)
1732- Otherwise, if there is no write to the same byte that happens before
1733 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1734- Otherwise, if R\ :sub:`byte` may see exactly one write,
1735 R\ :sub:`byte` returns the value written by that write.
1736- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1737 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1738 Memory Ordering Constraints <ordering>` section for additional
1739 constraints on how the choice is made.
1740- Otherwise R\ :sub:`byte` returns ``undef``.
1741
1742R returns the value composed of the series of bytes it read. This
1743implies that some bytes within the value may be ``undef`` **without**
1744the entire value being ``undef``. Note that this only defines the
1745semantics of the operation; it doesn't mean that targets will emit more
1746than one instruction to read the series of bytes.
1747
1748Note that in cases where none of the atomic intrinsics are used, this
1749model places only one restriction on IR transformations on top of what
1750is required for single-threaded execution: introducing a store to a byte
1751which might not otherwise be stored is not allowed in general.
1752(Specifically, in the case where another thread might write to and read
1753from an address, introducing a store can change a load that may see
1754exactly one write into a load that may see multiple writes.)
1755
1756.. _ordering:
1757
1758Atomic Memory Ordering Constraints
1759----------------------------------
1760
1761Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1762:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1763:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001764ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001765the same address they *synchronize with*. These semantics are borrowed
1766from Java and C++0x, but are somewhat more colloquial. If these
1767descriptions aren't precise enough, check those specs (see spec
1768references in the :doc:`atomics guide <Atomics>`).
1769:ref:`fence <i_fence>` instructions treat these orderings somewhat
1770differently since they don't take an address. See that instruction's
1771documentation for details.
1772
1773For a simpler introduction to the ordering constraints, see the
1774:doc:`Atomics`.
1775
1776``unordered``
1777 The set of values that can be read is governed by the happens-before
1778 partial order. A value cannot be read unless some operation wrote
1779 it. This is intended to provide a guarantee strong enough to model
1780 Java's non-volatile shared variables. This ordering cannot be
1781 specified for read-modify-write operations; it is not strong enough
1782 to make them atomic in any interesting way.
1783``monotonic``
1784 In addition to the guarantees of ``unordered``, there is a single
1785 total order for modifications by ``monotonic`` operations on each
1786 address. All modification orders must be compatible with the
1787 happens-before order. There is no guarantee that the modification
1788 orders can be combined to a global total order for the whole program
1789 (and this often will not be possible). The read in an atomic
1790 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1791 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1792 order immediately before the value it writes. If one atomic read
1793 happens before another atomic read of the same address, the later
1794 read must see the same value or a later value in the address's
1795 modification order. This disallows reordering of ``monotonic`` (or
1796 stronger) operations on the same address. If an address is written
1797 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1798 read that address repeatedly, the other threads must eventually see
1799 the write. This corresponds to the C++0x/C1x
1800 ``memory_order_relaxed``.
1801``acquire``
1802 In addition to the guarantees of ``monotonic``, a
1803 *synchronizes-with* edge may be formed with a ``release`` operation.
1804 This is intended to model C++'s ``memory_order_acquire``.
1805``release``
1806 In addition to the guarantees of ``monotonic``, if this operation
1807 writes a value which is subsequently read by an ``acquire``
1808 operation, it *synchronizes-with* that operation. (This isn't a
1809 complete description; see the C++0x definition of a release
1810 sequence.) This corresponds to the C++0x/C1x
1811 ``memory_order_release``.
1812``acq_rel`` (acquire+release)
1813 Acts as both an ``acquire`` and ``release`` operation on its
1814 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1815``seq_cst`` (sequentially consistent)
1816 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001817 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001818 writes), there is a global total order on all
1819 sequentially-consistent operations on all addresses, which is
1820 consistent with the *happens-before* partial order and with the
1821 modification orders of all the affected addresses. Each
1822 sequentially-consistent read sees the last preceding write to the
1823 same address in this global order. This corresponds to the C++0x/C1x
1824 ``memory_order_seq_cst`` and Java volatile.
1825
1826.. _singlethread:
1827
1828If an atomic operation is marked ``singlethread``, it only *synchronizes
1829with* or participates in modification and seq\_cst total orderings with
1830other operations running in the same thread (for example, in signal
1831handlers).
1832
1833.. _fastmath:
1834
1835Fast-Math Flags
1836---------------
1837
1838LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1839:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
Eric Christopher1e61ffd2015-02-19 18:46:25 +00001840:ref:`frem <i_frem>`) have the following flags that can be set to enable
Sean Silvab084af42012-12-07 10:36:55 +00001841otherwise unsafe floating point operations
1842
1843``nnan``
1844 No NaNs - Allow optimizations to assume the arguments and result are not
1845 NaN. Such optimizations are required to retain defined behavior over
1846 NaNs, but the value of the result is undefined.
1847
1848``ninf``
1849 No Infs - Allow optimizations to assume the arguments and result are not
1850 +/-Inf. Such optimizations are required to retain defined behavior over
1851 +/-Inf, but the value of the result is undefined.
1852
1853``nsz``
1854 No Signed Zeros - Allow optimizations to treat the sign of a zero
1855 argument or result as insignificant.
1856
1857``arcp``
1858 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1859 argument rather than perform division.
1860
1861``fast``
1862 Fast - Allow algebraically equivalent transformations that may
1863 dramatically change results in floating point (e.g. reassociate). This
1864 flag implies all the others.
1865
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001866.. _uselistorder:
1867
1868Use-list Order Directives
1869-------------------------
1870
1871Use-list directives encode the in-memory order of each use-list, allowing the
1872order to be recreated. ``<order-indexes>`` is a comma-separated list of
1873indexes that are assigned to the referenced value's uses. The referenced
1874value's use-list is immediately sorted by these indexes.
1875
1876Use-list directives may appear at function scope or global scope. They are not
1877instructions, and have no effect on the semantics of the IR. When they're at
1878function scope, they must appear after the terminator of the final basic block.
1879
1880If basic blocks have their address taken via ``blockaddress()`` expressions,
1881``uselistorder_bb`` can be used to reorder their use-lists from outside their
1882function's scope.
1883
1884:Syntax:
1885
1886::
1887
1888 uselistorder <ty> <value>, { <order-indexes> }
1889 uselistorder_bb @function, %block { <order-indexes> }
1890
1891:Examples:
1892
1893::
1894
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001895 define void @foo(i32 %arg1, i32 %arg2) {
1896 entry:
1897 ; ... instructions ...
1898 bb:
1899 ; ... instructions ...
1900
1901 ; At function scope.
1902 uselistorder i32 %arg1, { 1, 0, 2 }
1903 uselistorder label %bb, { 1, 0 }
1904 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001905
1906 ; At global scope.
1907 uselistorder i32* @global, { 1, 2, 0 }
1908 uselistorder i32 7, { 1, 0 }
1909 uselistorder i32 (i32) @bar, { 1, 0 }
1910 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1911
Sean Silvab084af42012-12-07 10:36:55 +00001912.. _typesystem:
1913
1914Type System
1915===========
1916
1917The LLVM type system is one of the most important features of the
1918intermediate representation. Being typed enables a number of
1919optimizations to be performed on the intermediate representation
1920directly, without having to do extra analyses on the side before the
1921transformation. A strong type system makes it easier to read the
1922generated code and enables novel analyses and transformations that are
1923not feasible to perform on normal three address code representations.
1924
Rafael Espindola08013342013-12-07 19:34:20 +00001925.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001926
Rafael Espindola08013342013-12-07 19:34:20 +00001927Void Type
1928---------
Sean Silvab084af42012-12-07 10:36:55 +00001929
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001930:Overview:
1931
Rafael Espindola08013342013-12-07 19:34:20 +00001932
1933The void type does not represent any value and has no size.
1934
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001935:Syntax:
1936
Rafael Espindola08013342013-12-07 19:34:20 +00001937
1938::
1939
1940 void
Sean Silvab084af42012-12-07 10:36:55 +00001941
1942
Rafael Espindola08013342013-12-07 19:34:20 +00001943.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001944
Rafael Espindola08013342013-12-07 19:34:20 +00001945Function Type
1946-------------
Sean Silvab084af42012-12-07 10:36:55 +00001947
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001948:Overview:
1949
Sean Silvab084af42012-12-07 10:36:55 +00001950
Rafael Espindola08013342013-12-07 19:34:20 +00001951The function type can be thought of as a function signature. It consists of a
1952return type and a list of formal parameter types. The return type of a function
1953type is a void type or first class type --- except for :ref:`label <t_label>`
1954and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001955
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001956:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001957
Rafael Espindola08013342013-12-07 19:34:20 +00001958::
Sean Silvab084af42012-12-07 10:36:55 +00001959
Rafael Espindola08013342013-12-07 19:34:20 +00001960 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001961
Rafael Espindola08013342013-12-07 19:34:20 +00001962...where '``<parameter list>``' is a comma-separated list of type
1963specifiers. Optionally, the parameter list may include a type ``...``, which
1964indicates that the function takes a variable number of arguments. Variable
1965argument functions can access their arguments with the :ref:`variable argument
1966handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1967except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001968
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001969:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001970
Rafael Espindola08013342013-12-07 19:34:20 +00001971+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1972| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1973+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1974| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1975+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1976| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1977+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1978| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1979+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1980
1981.. _t_firstclass:
1982
1983First Class Types
1984-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001985
1986The :ref:`first class <t_firstclass>` types are perhaps the most important.
1987Values of these types are the only ones which can be produced by
1988instructions.
1989
Rafael Espindola08013342013-12-07 19:34:20 +00001990.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001991
Rafael Espindola08013342013-12-07 19:34:20 +00001992Single Value Types
1993^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001994
Rafael Espindola08013342013-12-07 19:34:20 +00001995These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001996
1997.. _t_integer:
1998
1999Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002000""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002001
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002002:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002003
2004The integer type is a very simple type that simply specifies an
2005arbitrary bit width for the integer type desired. Any bit width from 1
2006bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2007
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002008:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002009
2010::
2011
2012 iN
2013
2014The number of bits the integer will occupy is specified by the ``N``
2015value.
2016
2017Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002018*********
Sean Silvab084af42012-12-07 10:36:55 +00002019
2020+----------------+------------------------------------------------+
2021| ``i1`` | a single-bit integer. |
2022+----------------+------------------------------------------------+
2023| ``i32`` | a 32-bit integer. |
2024+----------------+------------------------------------------------+
2025| ``i1942652`` | a really big integer of over 1 million bits. |
2026+----------------+------------------------------------------------+
2027
2028.. _t_floating:
2029
2030Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002031""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002032
2033.. list-table::
2034 :header-rows: 1
2035
2036 * - Type
2037 - Description
2038
2039 * - ``half``
2040 - 16-bit floating point value
2041
2042 * - ``float``
2043 - 32-bit floating point value
2044
2045 * - ``double``
2046 - 64-bit floating point value
2047
2048 * - ``fp128``
2049 - 128-bit floating point value (112-bit mantissa)
2050
2051 * - ``x86_fp80``
2052 - 80-bit floating point value (X87)
2053
2054 * - ``ppc_fp128``
2055 - 128-bit floating point value (two 64-bits)
2056
Reid Kleckner9a16d082014-03-05 02:41:37 +00002057X86_mmx Type
2058""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002059
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002060:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002061
Reid Kleckner9a16d082014-03-05 02:41:37 +00002062The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002063machine. The operations allowed on it are quite limited: parameters and
2064return values, load and store, and bitcast. User-specified MMX
2065instructions are represented as intrinsic or asm calls with arguments
2066and/or results of this type. There are no arrays, vectors or constants
2067of this type.
2068
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002069:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002070
2071::
2072
Reid Kleckner9a16d082014-03-05 02:41:37 +00002073 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002074
Sean Silvab084af42012-12-07 10:36:55 +00002075
Rafael Espindola08013342013-12-07 19:34:20 +00002076.. _t_pointer:
2077
2078Pointer Type
2079""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002080
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002081:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002082
Rafael Espindola08013342013-12-07 19:34:20 +00002083The pointer type is used to specify memory locations. Pointers are
2084commonly used to reference objects in memory.
2085
2086Pointer types may have an optional address space attribute defining the
2087numbered address space where the pointed-to object resides. The default
2088address space is number zero. The semantics of non-zero address spaces
2089are target-specific.
2090
2091Note that LLVM does not permit pointers to void (``void*``) nor does it
2092permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002093
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002094:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002095
2096::
2097
Rafael Espindola08013342013-12-07 19:34:20 +00002098 <type> *
2099
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002100:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002101
2102+-------------------------+--------------------------------------------------------------------------------------------------------------+
2103| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2104+-------------------------+--------------------------------------------------------------------------------------------------------------+
2105| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2106+-------------------------+--------------------------------------------------------------------------------------------------------------+
2107| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2108+-------------------------+--------------------------------------------------------------------------------------------------------------+
2109
2110.. _t_vector:
2111
2112Vector Type
2113"""""""""""
2114
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002115:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002116
2117A vector type is a simple derived type that represents a vector of
2118elements. Vector types are used when multiple primitive data are
2119operated in parallel using a single instruction (SIMD). A vector type
2120requires a size (number of elements) and an underlying primitive data
2121type. Vector types are considered :ref:`first class <t_firstclass>`.
2122
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002123:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002124
2125::
2126
2127 < <# elements> x <elementtype> >
2128
2129The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002130elementtype may be any integer, floating point or pointer type. Vectors
2131of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002132
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002133:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002134
2135+-------------------+--------------------------------------------------+
2136| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2137+-------------------+--------------------------------------------------+
2138| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2139+-------------------+--------------------------------------------------+
2140| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2141+-------------------+--------------------------------------------------+
2142| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2143+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002144
2145.. _t_label:
2146
2147Label Type
2148^^^^^^^^^^
2149
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002150:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002151
2152The label type represents code labels.
2153
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002154:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002155
2156::
2157
2158 label
2159
2160.. _t_metadata:
2161
2162Metadata Type
2163^^^^^^^^^^^^^
2164
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002165:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002166
2167The metadata type represents embedded metadata. No derived types may be
2168created from metadata except for :ref:`function <t_function>` arguments.
2169
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002170:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002171
2172::
2173
2174 metadata
2175
Sean Silvab084af42012-12-07 10:36:55 +00002176.. _t_aggregate:
2177
2178Aggregate Types
2179^^^^^^^^^^^^^^^
2180
2181Aggregate Types are a subset of derived types that can contain multiple
2182member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2183aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2184aggregate types.
2185
2186.. _t_array:
2187
2188Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002189""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002190
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002191:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002192
2193The array type is a very simple derived type that arranges elements
2194sequentially in memory. The array type requires a size (number of
2195elements) and an underlying data type.
2196
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002197:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002198
2199::
2200
2201 [<# elements> x <elementtype>]
2202
2203The number of elements is a constant integer value; ``elementtype`` may
2204be any type with a size.
2205
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002206:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002207
2208+------------------+--------------------------------------+
2209| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2210+------------------+--------------------------------------+
2211| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2212+------------------+--------------------------------------+
2213| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2214+------------------+--------------------------------------+
2215
2216Here are some examples of multidimensional arrays:
2217
2218+-----------------------------+----------------------------------------------------------+
2219| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2220+-----------------------------+----------------------------------------------------------+
2221| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2222+-----------------------------+----------------------------------------------------------+
2223| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2224+-----------------------------+----------------------------------------------------------+
2225
2226There is no restriction on indexing beyond the end of the array implied
2227by a static type (though there are restrictions on indexing beyond the
2228bounds of an allocated object in some cases). This means that
2229single-dimension 'variable sized array' addressing can be implemented in
2230LLVM with a zero length array type. An implementation of 'pascal style
2231arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2232example.
2233
Sean Silvab084af42012-12-07 10:36:55 +00002234.. _t_struct:
2235
2236Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002237""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002238
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002239:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002240
2241The structure type is used to represent a collection of data members
2242together in memory. The elements of a structure may be any type that has
2243a size.
2244
2245Structures in memory are accessed using '``load``' and '``store``' by
2246getting a pointer to a field with the '``getelementptr``' instruction.
2247Structures in registers are accessed using the '``extractvalue``' and
2248'``insertvalue``' instructions.
2249
2250Structures may optionally be "packed" structures, which indicate that
2251the alignment of the struct is one byte, and that there is no padding
2252between the elements. In non-packed structs, padding between field types
2253is inserted as defined by the DataLayout string in the module, which is
2254required to match what the underlying code generator expects.
2255
2256Structures can either be "literal" or "identified". A literal structure
2257is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2258identified types are always defined at the top level with a name.
2259Literal types are uniqued by their contents and can never be recursive
2260or opaque since there is no way to write one. Identified types can be
2261recursive, can be opaqued, and are never uniqued.
2262
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002263:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002264
2265::
2266
2267 %T1 = type { <type list> } ; Identified normal struct type
2268 %T2 = type <{ <type list> }> ; Identified packed struct type
2269
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002270:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002271
2272+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2273| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2274+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002275| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002276+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2277| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2278+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2279
2280.. _t_opaque:
2281
2282Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002283""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002284
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002285:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002286
2287Opaque structure types are used to represent named structure types that
2288do not have a body specified. This corresponds (for example) to the C
2289notion of a forward declared structure.
2290
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002291:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002292
2293::
2294
2295 %X = type opaque
2296 %52 = type opaque
2297
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002298:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002299
2300+--------------+-------------------+
2301| ``opaque`` | An opaque type. |
2302+--------------+-------------------+
2303
Sean Silva1703e702014-04-08 21:06:22 +00002304.. _constants:
2305
Sean Silvab084af42012-12-07 10:36:55 +00002306Constants
2307=========
2308
2309LLVM has several different basic types of constants. This section
2310describes them all and their syntax.
2311
2312Simple Constants
2313----------------
2314
2315**Boolean constants**
2316 The two strings '``true``' and '``false``' are both valid constants
2317 of the ``i1`` type.
2318**Integer constants**
2319 Standard integers (such as '4') are constants of the
2320 :ref:`integer <t_integer>` type. Negative numbers may be used with
2321 integer types.
2322**Floating point constants**
2323 Floating point constants use standard decimal notation (e.g.
2324 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2325 hexadecimal notation (see below). The assembler requires the exact
2326 decimal value of a floating-point constant. For example, the
2327 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2328 decimal in binary. Floating point constants must have a :ref:`floating
2329 point <t_floating>` type.
2330**Null pointer constants**
2331 The identifier '``null``' is recognized as a null pointer constant
2332 and must be of :ref:`pointer type <t_pointer>`.
2333
2334The one non-intuitive notation for constants is the hexadecimal form of
2335floating point constants. For example, the form
2336'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2337than) '``double 4.5e+15``'. The only time hexadecimal floating point
2338constants are required (and the only time that they are generated by the
2339disassembler) is when a floating point constant must be emitted but it
2340cannot be represented as a decimal floating point number in a reasonable
2341number of digits. For example, NaN's, infinities, and other special
2342values are represented in their IEEE hexadecimal format so that assembly
2343and disassembly do not cause any bits to change in the constants.
2344
2345When using the hexadecimal form, constants of types half, float, and
2346double are represented using the 16-digit form shown above (which
2347matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002348must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002349precision, respectively. Hexadecimal format is always used for long
2350double, and there are three forms of long double. The 80-bit format used
2351by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2352128-bit format used by PowerPC (two adjacent doubles) is represented by
2353``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002354represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2355will only work if they match the long double format on your target.
2356The IEEE 16-bit format (half precision) is represented by ``0xH``
2357followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2358(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002359
Reid Kleckner9a16d082014-03-05 02:41:37 +00002360There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002361
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002362.. _complexconstants:
2363
Sean Silvab084af42012-12-07 10:36:55 +00002364Complex Constants
2365-----------------
2366
2367Complex constants are a (potentially recursive) combination of simple
2368constants and smaller complex constants.
2369
2370**Structure constants**
2371 Structure constants are represented with notation similar to
2372 structure type definitions (a comma separated list of elements,
2373 surrounded by braces (``{}``)). For example:
2374 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2375 "``@G = external global i32``". Structure constants must have
2376 :ref:`structure type <t_struct>`, and the number and types of elements
2377 must match those specified by the type.
2378**Array constants**
2379 Array constants are represented with notation similar to array type
2380 definitions (a comma separated list of elements, surrounded by
2381 square brackets (``[]``)). For example:
2382 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2383 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002384 match those specified by the type. As a special case, character array
2385 constants may also be represented as a double-quoted string using the ``c``
2386 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002387**Vector constants**
2388 Vector constants are represented with notation similar to vector
2389 type definitions (a comma separated list of elements, surrounded by
2390 less-than/greater-than's (``<>``)). For example:
2391 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2392 must have :ref:`vector type <t_vector>`, and the number and types of
2393 elements must match those specified by the type.
2394**Zero initialization**
2395 The string '``zeroinitializer``' can be used to zero initialize a
2396 value to zero of *any* type, including scalar and
2397 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2398 having to print large zero initializers (e.g. for large arrays) and
2399 is always exactly equivalent to using explicit zero initializers.
2400**Metadata node**
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002401 A metadata node is a constant tuple without types. For example:
2402 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
2403 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2404 Unlike other typed constants that are meant to be interpreted as part of
2405 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002406 information such as debug info.
2407
2408Global Variable and Function Addresses
2409--------------------------------------
2410
2411The addresses of :ref:`global variables <globalvars>` and
2412:ref:`functions <functionstructure>` are always implicitly valid
2413(link-time) constants. These constants are explicitly referenced when
2414the :ref:`identifier for the global <identifiers>` is used and always have
2415:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2416file:
2417
2418.. code-block:: llvm
2419
2420 @X = global i32 17
2421 @Y = global i32 42
2422 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2423
2424.. _undefvalues:
2425
2426Undefined Values
2427----------------
2428
2429The string '``undef``' can be used anywhere a constant is expected, and
2430indicates that the user of the value may receive an unspecified
2431bit-pattern. Undefined values may be of any type (other than '``label``'
2432or '``void``') and be used anywhere a constant is permitted.
2433
2434Undefined values are useful because they indicate to the compiler that
2435the program is well defined no matter what value is used. This gives the
2436compiler more freedom to optimize. Here are some examples of
2437(potentially surprising) transformations that are valid (in pseudo IR):
2438
2439.. code-block:: llvm
2440
2441 %A = add %X, undef
2442 %B = sub %X, undef
2443 %C = xor %X, undef
2444 Safe:
2445 %A = undef
2446 %B = undef
2447 %C = undef
2448
2449This is safe because all of the output bits are affected by the undef
2450bits. Any output bit can have a zero or one depending on the input bits.
2451
2452.. code-block:: llvm
2453
2454 %A = or %X, undef
2455 %B = and %X, undef
2456 Safe:
2457 %A = -1
2458 %B = 0
2459 Unsafe:
2460 %A = undef
2461 %B = undef
2462
2463These logical operations have bits that are not always affected by the
2464input. For example, if ``%X`` has a zero bit, then the output of the
2465'``and``' operation will always be a zero for that bit, no matter what
2466the corresponding bit from the '``undef``' is. As such, it is unsafe to
2467optimize or assume that the result of the '``and``' is '``undef``'.
2468However, it is safe to assume that all bits of the '``undef``' could be
24690, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2470all the bits of the '``undef``' operand to the '``or``' could be set,
2471allowing the '``or``' to be folded to -1.
2472
2473.. code-block:: llvm
2474
2475 %A = select undef, %X, %Y
2476 %B = select undef, 42, %Y
2477 %C = select %X, %Y, undef
2478 Safe:
2479 %A = %X (or %Y)
2480 %B = 42 (or %Y)
2481 %C = %Y
2482 Unsafe:
2483 %A = undef
2484 %B = undef
2485 %C = undef
2486
2487This set of examples shows that undefined '``select``' (and conditional
2488branch) conditions can go *either way*, but they have to come from one
2489of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2490both known to have a clear low bit, then ``%A`` would have to have a
2491cleared low bit. However, in the ``%C`` example, the optimizer is
2492allowed to assume that the '``undef``' operand could be the same as
2493``%Y``, allowing the whole '``select``' to be eliminated.
2494
2495.. code-block:: llvm
2496
2497 %A = xor undef, undef
2498
2499 %B = undef
2500 %C = xor %B, %B
2501
2502 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002503 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002504 %F = icmp gte %D, 4
2505
2506 Safe:
2507 %A = undef
2508 %B = undef
2509 %C = undef
2510 %D = undef
2511 %E = undef
2512 %F = undef
2513
2514This example points out that two '``undef``' operands are not
2515necessarily the same. This can be surprising to people (and also matches
2516C semantics) where they assume that "``X^X``" is always zero, even if
2517``X`` is undefined. This isn't true for a number of reasons, but the
2518short answer is that an '``undef``' "variable" can arbitrarily change
2519its value over its "live range". This is true because the variable
2520doesn't actually *have a live range*. Instead, the value is logically
2521read from arbitrary registers that happen to be around when needed, so
2522the value is not necessarily consistent over time. In fact, ``%A`` and
2523``%C`` need to have the same semantics or the core LLVM "replace all
2524uses with" concept would not hold.
2525
2526.. code-block:: llvm
2527
2528 %A = fdiv undef, %X
2529 %B = fdiv %X, undef
2530 Safe:
2531 %A = undef
2532 b: unreachable
2533
2534These examples show the crucial difference between an *undefined value*
2535and *undefined behavior*. An undefined value (like '``undef``') is
2536allowed to have an arbitrary bit-pattern. This means that the ``%A``
2537operation can be constant folded to '``undef``', because the '``undef``'
2538could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2539However, in the second example, we can make a more aggressive
2540assumption: because the ``undef`` is allowed to be an arbitrary value,
2541we are allowed to assume that it could be zero. Since a divide by zero
2542has *undefined behavior*, we are allowed to assume that the operation
2543does not execute at all. This allows us to delete the divide and all
2544code after it. Because the undefined operation "can't happen", the
2545optimizer can assume that it occurs in dead code.
2546
2547.. code-block:: llvm
2548
2549 a: store undef -> %X
2550 b: store %X -> undef
2551 Safe:
2552 a: <deleted>
2553 b: unreachable
2554
2555These examples reiterate the ``fdiv`` example: a store *of* an undefined
2556value can be assumed to not have any effect; we can assume that the
2557value is overwritten with bits that happen to match what was already
2558there. However, a store *to* an undefined location could clobber
2559arbitrary memory, therefore, it has undefined behavior.
2560
2561.. _poisonvalues:
2562
2563Poison Values
2564-------------
2565
2566Poison values are similar to :ref:`undef values <undefvalues>`, however
2567they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002568that cannot evoke side effects has nevertheless detected a condition
2569that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002570
2571There is currently no way of representing a poison value in the IR; they
2572only exist when produced by operations such as :ref:`add <i_add>` with
2573the ``nsw`` flag.
2574
2575Poison value behavior is defined in terms of value *dependence*:
2576
2577- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2578- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2579 their dynamic predecessor basic block.
2580- Function arguments depend on the corresponding actual argument values
2581 in the dynamic callers of their functions.
2582- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2583 instructions that dynamically transfer control back to them.
2584- :ref:`Invoke <i_invoke>` instructions depend on the
2585 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2586 call instructions that dynamically transfer control back to them.
2587- Non-volatile loads and stores depend on the most recent stores to all
2588 of the referenced memory addresses, following the order in the IR
2589 (including loads and stores implied by intrinsics such as
2590 :ref:`@llvm.memcpy <int_memcpy>`.)
2591- An instruction with externally visible side effects depends on the
2592 most recent preceding instruction with externally visible side
2593 effects, following the order in the IR. (This includes :ref:`volatile
2594 operations <volatile>`.)
2595- An instruction *control-depends* on a :ref:`terminator
2596 instruction <terminators>` if the terminator instruction has
2597 multiple successors and the instruction is always executed when
2598 control transfers to one of the successors, and may not be executed
2599 when control is transferred to another.
2600- Additionally, an instruction also *control-depends* on a terminator
2601 instruction if the set of instructions it otherwise depends on would
2602 be different if the terminator had transferred control to a different
2603 successor.
2604- Dependence is transitive.
2605
Richard Smith32dbdf62014-07-31 04:25:36 +00002606Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2607with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002608on a poison value has undefined behavior.
2609
2610Here are some examples:
2611
2612.. code-block:: llvm
2613
2614 entry:
2615 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2616 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002617 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002618 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2619
2620 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002621 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002622
2623 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2624
2625 %narrowaddr = bitcast i32* @g to i16*
2626 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002627 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2628 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002629
2630 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2631 br i1 %cmp, label %true, label %end ; Branch to either destination.
2632
2633 true:
2634 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2635 ; it has undefined behavior.
2636 br label %end
2637
2638 end:
2639 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2640 ; Both edges into this PHI are
2641 ; control-dependent on %cmp, so this
2642 ; always results in a poison value.
2643
2644 store volatile i32 0, i32* @g ; This would depend on the store in %true
2645 ; if %cmp is true, or the store in %entry
2646 ; otherwise, so this is undefined behavior.
2647
2648 br i1 %cmp, label %second_true, label %second_end
2649 ; The same branch again, but this time the
2650 ; true block doesn't have side effects.
2651
2652 second_true:
2653 ; No side effects!
2654 ret void
2655
2656 second_end:
2657 store volatile i32 0, i32* @g ; This time, the instruction always depends
2658 ; on the store in %end. Also, it is
2659 ; control-equivalent to %end, so this is
2660 ; well-defined (ignoring earlier undefined
2661 ; behavior in this example).
2662
2663.. _blockaddress:
2664
2665Addresses of Basic Blocks
2666-------------------------
2667
2668``blockaddress(@function, %block)``
2669
2670The '``blockaddress``' constant computes the address of the specified
2671basic block in the specified function, and always has an ``i8*`` type.
2672Taking the address of the entry block is illegal.
2673
2674This value only has defined behavior when used as an operand to the
2675':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2676against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002677undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002678no label is equal to the null pointer. This may be passed around as an
2679opaque pointer sized value as long as the bits are not inspected. This
2680allows ``ptrtoint`` and arithmetic to be performed on these values so
2681long as the original value is reconstituted before the ``indirectbr``
2682instruction.
2683
2684Finally, some targets may provide defined semantics when using the value
2685as the operand to an inline assembly, but that is target specific.
2686
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002687.. _constantexprs:
2688
Sean Silvab084af42012-12-07 10:36:55 +00002689Constant Expressions
2690--------------------
2691
2692Constant expressions are used to allow expressions involving other
2693constants to be used as constants. Constant expressions may be of any
2694:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2695that does not have side effects (e.g. load and call are not supported).
2696The following is the syntax for constant expressions:
2697
2698``trunc (CST to TYPE)``
2699 Truncate a constant to another type. The bit size of CST must be
2700 larger than the bit size of TYPE. Both types must be integers.
2701``zext (CST to TYPE)``
2702 Zero extend a constant to another type. The bit size of CST must be
2703 smaller than the bit size of TYPE. Both types must be integers.
2704``sext (CST to TYPE)``
2705 Sign extend a constant to another type. The bit size of CST must be
2706 smaller than the bit size of TYPE. Both types must be integers.
2707``fptrunc (CST to TYPE)``
2708 Truncate a floating point constant to another floating point type.
2709 The size of CST must be larger than the size of TYPE. Both types
2710 must be floating point.
2711``fpext (CST to TYPE)``
2712 Floating point extend a constant to another type. The size of CST
2713 must be smaller or equal to the size of TYPE. Both types must be
2714 floating point.
2715``fptoui (CST to TYPE)``
2716 Convert a floating point constant to the corresponding unsigned
2717 integer constant. TYPE must be a scalar or vector integer type. CST
2718 must be of scalar or vector floating point type. Both CST and TYPE
2719 must be scalars, or vectors of the same number of elements. If the
2720 value won't fit in the integer type, the results are undefined.
2721``fptosi (CST to TYPE)``
2722 Convert a floating point constant to the corresponding signed
2723 integer constant. TYPE must be a scalar or vector integer type. CST
2724 must be of scalar or vector floating point type. Both CST and TYPE
2725 must be scalars, or vectors of the same number of elements. If the
2726 value won't fit in the integer type, the results are undefined.
2727``uitofp (CST to TYPE)``
2728 Convert an unsigned integer constant to the corresponding floating
2729 point constant. TYPE must be a scalar or vector floating point type.
2730 CST must be of scalar or vector integer type. Both CST and TYPE must
2731 be scalars, or vectors of the same number of elements. If the value
2732 won't fit in the floating point type, the results are undefined.
2733``sitofp (CST to TYPE)``
2734 Convert a signed integer constant to the corresponding floating
2735 point constant. TYPE must be a scalar or vector floating point type.
2736 CST must be of scalar or vector integer type. Both CST and TYPE must
2737 be scalars, or vectors of the same number of elements. If the value
2738 won't fit in the floating point type, the results are undefined.
2739``ptrtoint (CST to TYPE)``
2740 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002741 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002742 pointer type. The ``CST`` value is zero extended, truncated, or
2743 unchanged to make it fit in ``TYPE``.
2744``inttoptr (CST to TYPE)``
2745 Convert an integer constant to a pointer constant. TYPE must be a
2746 pointer type. CST must be of integer type. The CST value is zero
2747 extended, truncated, or unchanged to make it fit in a pointer size.
2748 This one is *really* dangerous!
2749``bitcast (CST to TYPE)``
2750 Convert a constant, CST, to another TYPE. The constraints of the
2751 operands are the same as those for the :ref:`bitcast
2752 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002753``addrspacecast (CST to TYPE)``
2754 Convert a constant pointer or constant vector of pointer, CST, to another
2755 TYPE in a different address space. The constraints of the operands are the
2756 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002757``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002758 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2759 constants. As with the :ref:`getelementptr <i_getelementptr>`
2760 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002761 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002762``select (COND, VAL1, VAL2)``
2763 Perform the :ref:`select operation <i_select>` on constants.
2764``icmp COND (VAL1, VAL2)``
2765 Performs the :ref:`icmp operation <i_icmp>` on constants.
2766``fcmp COND (VAL1, VAL2)``
2767 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2768``extractelement (VAL, IDX)``
2769 Perform the :ref:`extractelement operation <i_extractelement>` on
2770 constants.
2771``insertelement (VAL, ELT, IDX)``
2772 Perform the :ref:`insertelement operation <i_insertelement>` on
2773 constants.
2774``shufflevector (VEC1, VEC2, IDXMASK)``
2775 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2776 constants.
2777``extractvalue (VAL, IDX0, IDX1, ...)``
2778 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2779 constants. The index list is interpreted in a similar manner as
2780 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2781 least one index value must be specified.
2782``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2783 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2784 The index list is interpreted in a similar manner as indices in a
2785 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2786 value must be specified.
2787``OPCODE (LHS, RHS)``
2788 Perform the specified operation of the LHS and RHS constants. OPCODE
2789 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2790 binary <bitwiseops>` operations. The constraints on operands are
2791 the same as those for the corresponding instruction (e.g. no bitwise
2792 operations on floating point values are allowed).
2793
2794Other Values
2795============
2796
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002797.. _inlineasmexprs:
2798
Sean Silvab084af42012-12-07 10:36:55 +00002799Inline Assembler Expressions
2800----------------------------
2801
2802LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00002803Inline Assembly <moduleasm>`) through the use of a special value. This value
2804represents the inline assembler as a template string (containing the
2805instructions to emit), a list of operand constraints (stored as a string), a
2806flag that indicates whether or not the inline asm expression has side effects,
2807and a flag indicating whether the function containing the asm needs to align its
2808stack conservatively.
2809
2810The template string supports argument substitution of the operands using "``$``"
2811followed by a number, to indicate substitution of the given register/memory
2812location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
2813be used, where ``MODIFIER`` is a target-specific annotation for how to print the
2814operand (See :ref:`inline-asm-modifiers`).
2815
2816A literal "``$``" may be included by using "``$$``" in the template. To include
2817other special characters into the output, the usual "``\XX``" escapes may be
2818used, just as in other strings. Note that after template substitution, the
2819resulting assembly string is parsed by LLVM's integrated assembler unless it is
2820disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
2821syntax known to LLVM.
2822
2823LLVM's support for inline asm is modeled closely on the requirements of Clang's
2824GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
2825modifier codes listed here are similar or identical to those in GCC's inline asm
2826support. However, to be clear, the syntax of the template and constraint strings
2827described here is *not* the same as the syntax accepted by GCC and Clang, and,
2828while most constraint letters are passed through as-is by Clang, some get
2829translated to other codes when converting from the C source to the LLVM
2830assembly.
2831
2832An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00002833
2834.. code-block:: llvm
2835
2836 i32 (i32) asm "bswap $0", "=r,r"
2837
2838Inline assembler expressions may **only** be used as the callee operand
2839of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2840Thus, typically we have:
2841
2842.. code-block:: llvm
2843
2844 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2845
2846Inline asms with side effects not visible in the constraint list must be
2847marked as having side effects. This is done through the use of the
2848'``sideeffect``' keyword, like so:
2849
2850.. code-block:: llvm
2851
2852 call void asm sideeffect "eieio", ""()
2853
2854In some cases inline asms will contain code that will not work unless
2855the stack is aligned in some way, such as calls or SSE instructions on
2856x86, yet will not contain code that does that alignment within the asm.
2857The compiler should make conservative assumptions about what the asm
2858might contain and should generate its usual stack alignment code in the
2859prologue if the '``alignstack``' keyword is present:
2860
2861.. code-block:: llvm
2862
2863 call void asm alignstack "eieio", ""()
2864
2865Inline asms also support using non-standard assembly dialects. The
2866assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2867the inline asm is using the Intel dialect. Currently, ATT and Intel are
2868the only supported dialects. An example is:
2869
2870.. code-block:: llvm
2871
2872 call void asm inteldialect "eieio", ""()
2873
2874If multiple keywords appear the '``sideeffect``' keyword must come
2875first, the '``alignstack``' keyword second and the '``inteldialect``'
2876keyword last.
2877
James Y Knightbc832ed2015-07-08 18:08:36 +00002878Inline Asm Constraint String
2879^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2880
2881The constraint list is a comma-separated string, each element containing one or
2882more constraint codes.
2883
2884For each element in the constraint list an appropriate register or memory
2885operand will be chosen, and it will be made available to assembly template
2886string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
2887second, etc.
2888
2889There are three different types of constraints, which are distinguished by a
2890prefix symbol in front of the constraint code: Output, Input, and Clobber. The
2891constraints must always be given in that order: outputs first, then inputs, then
2892clobbers. They cannot be intermingled.
2893
2894There are also three different categories of constraint codes:
2895
2896- Register constraint. This is either a register class, or a fixed physical
2897 register. This kind of constraint will allocate a register, and if necessary,
2898 bitcast the argument or result to the appropriate type.
2899- Memory constraint. This kind of constraint is for use with an instruction
2900 taking a memory operand. Different constraints allow for different addressing
2901 modes used by the target.
2902- Immediate value constraint. This kind of constraint is for an integer or other
2903 immediate value which can be rendered directly into an instruction. The
2904 various target-specific constraints allow the selection of a value in the
2905 proper range for the instruction you wish to use it with.
2906
2907Output constraints
2908""""""""""""""""""
2909
2910Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
2911indicates that the assembly will write to this operand, and the operand will
2912then be made available as a return value of the ``asm`` expression. Output
2913constraints do not consume an argument from the call instruction. (Except, see
2914below about indirect outputs).
2915
2916Normally, it is expected that no output locations are written to by the assembly
2917expression until *all* of the inputs have been read. As such, LLVM may assign
2918the same register to an output and an input. If this is not safe (e.g. if the
2919assembly contains two instructions, where the first writes to one output, and
2920the second reads an input and writes to a second output), then the "``&``"
2921modifier must be used (e.g. "``=&r``") to specify that the output is an
2922"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
2923will not use the same register for any inputs (other than an input tied to this
2924output).
2925
2926Input constraints
2927"""""""""""""""""
2928
2929Input constraints do not have a prefix -- just the constraint codes. Each input
2930constraint will consume one argument from the call instruction. It is not
2931permitted for the asm to write to any input register or memory location (unless
2932that input is tied to an output). Note also that multiple inputs may all be
2933assigned to the same register, if LLVM can determine that they necessarily all
2934contain the same value.
2935
2936Instead of providing a Constraint Code, input constraints may also "tie"
2937themselves to an output constraint, by providing an integer as the constraint
2938string. Tied inputs still consume an argument from the call instruction, and
2939take up a position in the asm template numbering as is usual -- they will simply
2940be constrained to always use the same register as the output they've been tied
2941to. For example, a constraint string of "``=r,0``" says to assign a register for
2942output, and use that register as an input as well (it being the 0'th
2943constraint).
2944
2945It is permitted to tie an input to an "early-clobber" output. In that case, no
2946*other* input may share the same register as the input tied to the early-clobber
2947(even when the other input has the same value).
2948
2949You may only tie an input to an output which has a register constraint, not a
2950memory constraint. Only a single input may be tied to an output.
2951
2952There is also an "interesting" feature which deserves a bit of explanation: if a
2953register class constraint allocates a register which is too small for the value
2954type operand provided as input, the input value will be split into multiple
2955registers, and all of them passed to the inline asm.
2956
2957However, this feature is often not as useful as you might think.
2958
2959Firstly, the registers are *not* guaranteed to be consecutive. So, on those
2960architectures that have instructions which operate on multiple consecutive
2961instructions, this is not an appropriate way to support them. (e.g. the 32-bit
2962SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
2963hardware then loads into both the named register, and the next register. This
2964feature of inline asm would not be useful to support that.)
2965
2966A few of the targets provide a template string modifier allowing explicit access
2967to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
2968``D``). On such an architecture, you can actually access the second allocated
2969register (yet, still, not any subsequent ones). But, in that case, you're still
2970probably better off simply splitting the value into two separate operands, for
2971clarity. (e.g. see the description of the ``A`` constraint on X86, which,
2972despite existing only for use with this feature, is not really a good idea to
2973use)
2974
2975Indirect inputs and outputs
2976"""""""""""""""""""""""""""
2977
2978Indirect output or input constraints can be specified by the "``*``" modifier
2979(which goes after the "``=``" in case of an output). This indicates that the asm
2980will write to or read from the contents of an *address* provided as an input
2981argument. (Note that in this way, indirect outputs act more like an *input* than
2982an output: just like an input, they consume an argument of the call expression,
2983rather than producing a return value. An indirect output constraint is an
2984"output" only in that the asm is expected to write to the contents of the input
2985memory location, instead of just read from it).
2986
2987This is most typically used for memory constraint, e.g. "``=*m``", to pass the
2988address of a variable as a value.
2989
2990It is also possible to use an indirect *register* constraint, but only on output
2991(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
2992value normally, and then, separately emit a store to the address provided as
2993input, after the provided inline asm. (It's not clear what value this
2994functionality provides, compared to writing the store explicitly after the asm
2995statement, and it can only produce worse code, since it bypasses many
2996optimization passes. I would recommend not using it.)
2997
2998
2999Clobber constraints
3000"""""""""""""""""""
3001
3002A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3003consume an input operand, nor generate an output. Clobbers cannot use any of the
3004general constraint code letters -- they may use only explicit register
3005constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3006"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3007memory locations -- not only the memory pointed to by a declared indirect
3008output.
3009
3010
3011Constraint Codes
3012""""""""""""""""
3013After a potential prefix comes constraint code, or codes.
3014
3015A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3016followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3017(e.g. "``{eax}``").
3018
3019The one and two letter constraint codes are typically chosen to be the same as
3020GCC's constraint codes.
3021
3022A single constraint may include one or more than constraint code in it, leaving
3023it up to LLVM to choose which one to use. This is included mainly for
3024compatibility with the translation of GCC inline asm coming from clang.
3025
3026There are two ways to specify alternatives, and either or both may be used in an
3027inline asm constraint list:
3028
30291) Append the codes to each other, making a constraint code set. E.g. "``im``"
3030 or "``{eax}m``". This means "choose any of the options in the set". The
3031 choice of constraint is made independently for each constraint in the
3032 constraint list.
3033
30342) Use "``|``" between constraint code sets, creating alternatives. Every
3035 constraint in the constraint list must have the same number of alternative
3036 sets. With this syntax, the same alternative in *all* of the items in the
3037 constraint list will be chosen together.
3038
3039Putting those together, you might have a two operand constraint string like
3040``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3041operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3042may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3043
3044However, the use of either of the alternatives features is *NOT* recommended, as
3045LLVM is not able to make an intelligent choice about which one to use. (At the
3046point it currently needs to choose, not enough information is available to do so
3047in a smart way.) Thus, it simply tries to make a choice that's most likely to
3048compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3049always choose to use memory, not registers). And, if given multiple registers,
3050or multiple register classes, it will simply choose the first one. (In fact, it
3051doesn't currently even ensure explicitly specified physical registers are
3052unique, so specifying multiple physical registers as alternatives, like
3053``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3054intended.)
3055
3056Supported Constraint Code List
3057""""""""""""""""""""""""""""""
3058
3059The constraint codes are, in general, expected to behave the same way they do in
3060GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3061inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3062and GCC likely indicates a bug in LLVM.
3063
3064Some constraint codes are typically supported by all targets:
3065
3066- ``r``: A register in the target's general purpose register class.
3067- ``m``: A memory address operand. It is target-specific what addressing modes
3068 are supported, typical examples are register, or register + register offset,
3069 or register + immediate offset (of some target-specific size).
3070- ``i``: An integer constant (of target-specific width). Allows either a simple
3071 immediate, or a relocatable value.
3072- ``n``: An integer constant -- *not* including relocatable values.
3073- ``s``: An integer constant, but allowing *only* relocatable values.
3074- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3075 useful to pass a label for an asm branch or call.
3076
3077 .. FIXME: but that surely isn't actually okay to jump out of an asm
3078 block without telling llvm about the control transfer???)
3079
3080- ``{register-name}``: Requires exactly the named physical register.
3081
3082Other constraints are target-specific:
3083
3084AArch64:
3085
3086- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3087- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3088 i.e. 0 to 4095 with optional shift by 12.
3089- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3090 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3091- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3092 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3093- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3094 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3095- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3096 32-bit register. This is a superset of ``K``: in addition to the bitmask
3097 immediate, also allows immediate integers which can be loaded with a single
3098 ``MOVZ`` or ``MOVL`` instruction.
3099- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3100 64-bit register. This is a superset of ``L``.
3101- ``Q``: Memory address operand must be in a single register (no
3102 offsets). (However, LLVM currently does this for the ``m`` constraint as
3103 well.)
3104- ``r``: A 32 or 64-bit integer register (W* or X*).
3105- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3106- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3107
3108AMDGPU:
3109
3110- ``r``: A 32 or 64-bit integer register.
3111- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3112- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3113
3114
3115All ARM modes:
3116
3117- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3118 operand. Treated the same as operand ``m``, at the moment.
3119
3120ARM and ARM's Thumb2 mode:
3121
3122- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3123- ``I``: An immediate integer valid for a data-processing instruction.
3124- ``J``: An immediate integer between -4095 and 4095.
3125- ``K``: An immediate integer whose bitwise inverse is valid for a
3126 data-processing instruction. (Can be used with template modifier "``B``" to
3127 print the inverted value).
3128- ``L``: An immediate integer whose negation is valid for a data-processing
3129 instruction. (Can be used with template modifier "``n``" to print the negated
3130 value).
3131- ``M``: A power of two or a integer between 0 and 32.
3132- ``N``: Invalid immediate constraint.
3133- ``O``: Invalid immediate constraint.
3134- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3135- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3136 as ``r``.
3137- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3138 invalid.
3139- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3140 ``d0-d31``, or ``q0-q15``.
3141- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3142 ``d0-d7``, or ``q0-q3``.
3143- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3144 ``s0-s31``.
3145
3146ARM's Thumb1 mode:
3147
3148- ``I``: An immediate integer between 0 and 255.
3149- ``J``: An immediate integer between -255 and -1.
3150- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3151 some amount.
3152- ``L``: An immediate integer between -7 and 7.
3153- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3154- ``N``: An immediate integer between 0 and 31.
3155- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3156- ``r``: A low 32-bit GPR register (``r0-r7``).
3157- ``l``: A low 32-bit GPR register (``r0-r7``).
3158- ``h``: A high GPR register (``r0-r7``).
3159- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3160 ``d0-d31``, or ``q0-q15``.
3161- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3162 ``d0-d7``, or ``q0-q3``.
3163- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3164 ``s0-s31``.
3165
3166
3167Hexagon:
3168
3169- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3170 at the moment.
3171- ``r``: A 32 or 64-bit register.
3172
3173MSP430:
3174
3175- ``r``: An 8 or 16-bit register.
3176
3177MIPS:
3178
3179- ``I``: An immediate signed 16-bit integer.
3180- ``J``: An immediate integer zero.
3181- ``K``: An immediate unsigned 16-bit integer.
3182- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3183- ``N``: An immediate integer between -65535 and -1.
3184- ``O``: An immediate signed 15-bit integer.
3185- ``P``: An immediate integer between 1 and 65535.
3186- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3187 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3188- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3189 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3190 ``m``.
3191- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3192 ``sc`` instruction on the given subtarget (details vary).
3193- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3194- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
3195 (``W0-W31``).
3196- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3197 ``25``).
3198- ``l``: The ``lo`` register, 32 or 64-bit.
3199- ``x``: Invalid.
3200
3201NVPTX:
3202
3203- ``b``: A 1-bit integer register.
3204- ``c`` or ``h``: A 16-bit integer register.
3205- ``r``: A 32-bit integer register.
3206- ``l`` or ``N``: A 64-bit integer register.
3207- ``f``: A 32-bit float register.
3208- ``d``: A 64-bit float register.
3209
3210
3211PowerPC:
3212
3213- ``I``: An immediate signed 16-bit integer.
3214- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3215- ``K``: An immediate unsigned 16-bit integer.
3216- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3217- ``M``: An immediate integer greater than 31.
3218- ``N``: An immediate integer that is an exact power of 2.
3219- ``O``: The immediate integer constant 0.
3220- ``P``: An immediate integer constant whose negation is a signed 16-bit
3221 constant.
3222- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3223 treated the same as ``m``.
3224- ``r``: A 32 or 64-bit integer register.
3225- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3226 ``R1-R31``).
3227- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3228 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3229- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3230 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3231 altivec vector register (``V0-V31``).
3232
3233 .. FIXME: is this a bug that v accepts QPX registers? I think this
3234 is supposed to only use the altivec vector registers?
3235
3236- ``y``: Condition register (``CR0-CR7``).
3237- ``wc``: An individual CR bit in a CR register.
3238- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3239 register set (overlapping both the floating-point and vector register files).
3240- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3241 set.
3242
3243Sparc:
3244
3245- ``I``: An immediate 13-bit signed integer.
3246- ``r``: A 32-bit integer register.
3247
3248SystemZ:
3249
3250- ``I``: An immediate unsigned 8-bit integer.
3251- ``J``: An immediate unsigned 12-bit integer.
3252- ``K``: An immediate signed 16-bit integer.
3253- ``L``: An immediate signed 20-bit integer.
3254- ``M``: An immediate integer 0x7fffffff.
3255- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3256 ``m``, at the moment.
3257- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3258- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3259 address context evaluates as zero).
3260- ``h``: A 32-bit value in the high part of a 64bit data register
3261 (LLVM-specific)
3262- ``f``: A 32, 64, or 128-bit floating point register.
3263
3264X86:
3265
3266- ``I``: An immediate integer between 0 and 31.
3267- ``J``: An immediate integer between 0 and 64.
3268- ``K``: An immediate signed 8-bit integer.
3269- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3270 0xffffffff.
3271- ``M``: An immediate integer between 0 and 3.
3272- ``N``: An immediate unsigned 8-bit integer.
3273- ``O``: An immediate integer between 0 and 127.
3274- ``e``: An immediate 32-bit signed integer.
3275- ``Z``: An immediate 32-bit unsigned integer.
3276- ``o``, ``v``: Treated the same as ``m``, at the moment.
3277- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3278 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3279 registers, and on X86-64, it is all of the integer registers.
3280- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3281 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3282- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3283- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3284 existed since i386, and can be accessed without the REX prefix.
3285- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3286- ``y``: A 64-bit MMX register, if MMX is enabled.
3287- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3288 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3289 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3290 512-bit vector operand in an AVX512 register, Otherwise, an error.
3291- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3292- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3293 32-bit mode, a 64-bit integer operand will get split into two registers). It
3294 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3295 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3296 you're better off splitting it yourself, before passing it to the asm
3297 statement.
3298
3299XCore:
3300
3301- ``r``: A 32-bit integer register.
3302
3303
3304.. _inline-asm-modifiers:
3305
3306Asm template argument modifiers
3307^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3308
3309In the asm template string, modifiers can be used on the operand reference, like
3310"``${0:n}``".
3311
3312The modifiers are, in general, expected to behave the same way they do in
3313GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3314inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3315and GCC likely indicates a bug in LLVM.
3316
3317Target-independent:
3318
3319- ``c``: Print an immediate integer constant unadorned, without
3320 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3321- ``n``: Negate and print immediate integer constant unadorned, without the
3322 target-specific immediate punctuation (e.g. no ``$`` prefix).
3323- ``l``: Print as an unadorned label, without the target-specific label
3324 punctuation (e.g. no ``$`` prefix).
3325
3326AArch64:
3327
3328- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3329 instead of ``x30``, print ``w30``.
3330- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3331- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3332 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3333 ``v*``.
3334
3335AMDGPU:
3336
3337- ``r``: No effect.
3338
3339ARM:
3340
3341- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3342 register).
3343- ``P``: No effect.
3344- ``q``: No effect.
3345- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3346 as ``d4[1]`` instead of ``s9``)
3347- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3348 prefix.
3349- ``L``: Print the low 16-bits of an immediate integer constant.
3350- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3351 register operands subsequent to the specified one (!), so use carefully.
3352- ``Q``: Print the low-order register of a register-pair, or the low-order
3353 register of a two-register operand.
3354- ``R``: Print the high-order register of a register-pair, or the high-order
3355 register of a two-register operand.
3356- ``H``: Print the second register of a register-pair. (On a big-endian system,
3357 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3358 to ``R``.)
3359
3360 .. FIXME: H doesn't currently support printing the second register
3361 of a two-register operand.
3362
3363- ``e``: Print the low doubleword register of a NEON quad register.
3364- ``f``: Print the high doubleword register of a NEON quad register.
3365- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3366 adornment.
3367
3368Hexagon:
3369
3370- ``L``: Print the second register of a two-register operand. Requires that it
3371 has been allocated consecutively to the first.
3372
3373 .. FIXME: why is it restricted to consecutive ones? And there's
3374 nothing that ensures that happens, is there?
3375
3376- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3377 nothing. Used to print 'addi' vs 'add' instructions.
3378
3379MSP430:
3380
3381No additional modifiers.
3382
3383MIPS:
3384
3385- ``X``: Print an immediate integer as hexadecimal
3386- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3387- ``d``: Print an immediate integer as decimal.
3388- ``m``: Subtract one and print an immediate integer as decimal.
3389- ``z``: Print $0 if an immediate zero, otherwise print normally.
3390- ``L``: Print the low-order register of a two-register operand, or prints the
3391 address of the low-order word of a double-word memory operand.
3392
3393 .. FIXME: L seems to be missing memory operand support.
3394
3395- ``M``: Print the high-order register of a two-register operand, or prints the
3396 address of the high-order word of a double-word memory operand.
3397
3398 .. FIXME: M seems to be missing memory operand support.
3399
3400- ``D``: Print the second register of a two-register operand, or prints the
3401 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3402 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3403 ``M``.)
3404- ``w``: No effect.
3405
3406NVPTX:
3407
3408- ``r``: No effect.
3409
3410PowerPC:
3411
3412- ``L``: Print the second register of a two-register operand. Requires that it
3413 has been allocated consecutively to the first.
3414
3415 .. FIXME: why is it restricted to consecutive ones? And there's
3416 nothing that ensures that happens, is there?
3417
3418- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3419 nothing. Used to print 'addi' vs 'add' instructions.
3420- ``y``: For a memory operand, prints formatter for a two-register X-form
3421 instruction. (Currently always prints ``r0,OPERAND``).
3422- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3423 otherwise. (NOTE: LLVM does not support update form, so this will currently
3424 always print nothing)
3425- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3426 not support indexed form, so this will currently always print nothing)
3427
3428Sparc:
3429
3430- ``r``: No effect.
3431
3432SystemZ:
3433
3434SystemZ implements only ``n``, and does *not* support any of the other
3435target-independent modifiers.
3436
3437X86:
3438
3439- ``c``: Print an unadorned integer or symbol name. (The latter is
3440 target-specific behavior for this typically target-independent modifier).
3441- ``A``: Print a register name with a '``*``' before it.
3442- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3443 operand.
3444- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3445 memory operand.
3446- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3447 operand.
3448- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3449 operand.
3450- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3451 available, otherwise the 32-bit register name; do nothing on a memory operand.
3452- ``n``: Negate and print an unadorned integer, or, for operands other than an
3453 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3454 the operand. (The behavior for relocatable symbol expressions is a
3455 target-specific behavior for this typically target-independent modifier)
3456- ``H``: Print a memory reference with additional offset +8.
3457- ``P``: Print a memory reference or operand for use as the argument of a call
3458 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3459
3460XCore:
3461
3462No additional modifiers.
3463
3464
Sean Silvab084af42012-12-07 10:36:55 +00003465Inline Asm Metadata
3466^^^^^^^^^^^^^^^^^^^
3467
3468The call instructions that wrap inline asm nodes may have a
3469"``!srcloc``" MDNode attached to it that contains a list of constant
3470integers. If present, the code generator will use the integer as the
3471location cookie value when report errors through the ``LLVMContext``
3472error reporting mechanisms. This allows a front-end to correlate backend
3473errors that occur with inline asm back to the source code that produced
3474it. For example:
3475
3476.. code-block:: llvm
3477
3478 call void asm sideeffect "something bad", ""(), !srcloc !42
3479 ...
3480 !42 = !{ i32 1234567 }
3481
3482It is up to the front-end to make sense of the magic numbers it places
3483in the IR. If the MDNode contains multiple constants, the code generator
3484will use the one that corresponds to the line of the asm that the error
3485occurs on.
3486
3487.. _metadata:
3488
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003489Metadata
3490========
Sean Silvab084af42012-12-07 10:36:55 +00003491
3492LLVM IR allows metadata to be attached to instructions in the program
3493that can convey extra information about the code to the optimizers and
3494code generator. One example application of metadata is source-level
3495debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003496
3497Metadata does not have a type, and is not a value. If referenced from a
3498``call`` instruction, it uses the ``metadata`` type.
3499
3500All metadata are identified in syntax by a exclamation point ('``!``').
3501
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003502.. _metadata-string:
3503
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003504Metadata Nodes and Metadata Strings
3505-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003506
3507A metadata string is a string surrounded by double quotes. It can
3508contain any character by escaping non-printable characters with
3509"``\xx``" where "``xx``" is the two digit hex code. For example:
3510"``!"test\00"``".
3511
3512Metadata nodes are represented with notation similar to structure
3513constants (a comma separated list of elements, surrounded by braces and
3514preceded by an exclamation point). Metadata nodes can have any values as
3515their operand. For example:
3516
3517.. code-block:: llvm
3518
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003519 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003520
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003521Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3522
3523.. code-block:: llvm
3524
3525 !0 = distinct !{!"test\00", i32 10}
3526
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003527``distinct`` nodes are useful when nodes shouldn't be merged based on their
3528content. They can also occur when transformations cause uniquing collisions
3529when metadata operands change.
3530
Sean Silvab084af42012-12-07 10:36:55 +00003531A :ref:`named metadata <namedmetadatastructure>` is a collection of
3532metadata nodes, which can be looked up in the module symbol table. For
3533example:
3534
3535.. code-block:: llvm
3536
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003537 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003538
3539Metadata can be used as function arguments. Here ``llvm.dbg.value``
3540function is using two metadata arguments:
3541
3542.. code-block:: llvm
3543
3544 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3545
3546Metadata can be attached with an instruction. Here metadata ``!21`` is
3547attached to the ``add`` instruction using the ``!dbg`` identifier:
3548
3549.. code-block:: llvm
3550
3551 %indvar.next = add i64 %indvar, 1, !dbg !21
3552
3553More information about specific metadata nodes recognized by the
3554optimizers and code generator is found below.
3555
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003556.. _specialized-metadata:
3557
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003558Specialized Metadata Nodes
3559^^^^^^^^^^^^^^^^^^^^^^^^^^
3560
3561Specialized metadata nodes are custom data structures in metadata (as opposed
3562to generic tuples). Their fields are labelled, and can be specified in any
3563order.
3564
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003565These aren't inherently debug info centric, but currently all the specialized
3566metadata nodes are related to debug info.
3567
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003568.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003569
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003570DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003571"""""""""""""
3572
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003573``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003574``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
3575tuples containing the debug info to be emitted along with the compile unit,
3576regardless of code optimizations (some nodes are only emitted if there are
3577references to them from instructions).
3578
3579.. code-block:: llvm
3580
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003581 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003582 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3583 splitDebugFilename: "abc.debug", emissionKind: 1,
3584 enums: !2, retainedTypes: !3, subprograms: !4,
3585 globals: !5, imports: !6)
3586
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003587Compile unit descriptors provide the root scope for objects declared in a
3588specific compilation unit. File descriptors are defined using this scope.
3589These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
3590keep track of subprograms, global variables, type information, and imported
3591entities (declarations and namespaces).
3592
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003593.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003594
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003595DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003596""""""
3597
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003598``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003599
3600.. code-block:: llvm
3601
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003602 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003603
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003604Files are sometimes used in ``scope:`` fields, and are the only valid target
3605for ``file:`` fields.
3606
Michael Kuperstein605308a2015-05-14 10:58:59 +00003607.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003608
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003609DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003610"""""""""""
3611
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003612``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003613``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003614
3615.. code-block:: llvm
3616
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003617 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003618 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003619 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003620
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003621The ``encoding:`` describes the details of the type. Usually it's one of the
3622following:
3623
3624.. code-block:: llvm
3625
3626 DW_ATE_address = 1
3627 DW_ATE_boolean = 2
3628 DW_ATE_float = 4
3629 DW_ATE_signed = 5
3630 DW_ATE_signed_char = 6
3631 DW_ATE_unsigned = 7
3632 DW_ATE_unsigned_char = 8
3633
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003634.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003635
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003636DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003637""""""""""""""""
3638
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003639``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003640refers to a tuple; the first operand is the return type, while the rest are the
3641types of the formal arguments in order. If the first operand is ``null``, that
3642represents a function with no return value (such as ``void foo() {}`` in C++).
3643
3644.. code-block:: llvm
3645
3646 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3647 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003648 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003649
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003650.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003651
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003652DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003653"""""""""""""
3654
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003655``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003656qualified types.
3657
3658.. code-block:: llvm
3659
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003660 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003661 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003662 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003663 align: 32)
3664
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003665The following ``tag:`` values are valid:
3666
3667.. code-block:: llvm
3668
3669 DW_TAG_formal_parameter = 5
3670 DW_TAG_member = 13
3671 DW_TAG_pointer_type = 15
3672 DW_TAG_reference_type = 16
3673 DW_TAG_typedef = 22
3674 DW_TAG_ptr_to_member_type = 31
3675 DW_TAG_const_type = 38
3676 DW_TAG_volatile_type = 53
3677 DW_TAG_restrict_type = 55
3678
3679``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003680<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003681is the ``baseType:``. The ``offset:`` is the member's bit offset.
3682``DW_TAG_formal_parameter`` is used to define a member which is a formal
3683argument of a subprogram.
3684
3685``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3686
3687``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3688``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3689``baseType:``.
3690
3691Note that the ``void *`` type is expressed as a type derived from NULL.
3692
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003693.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003694
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003695DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003696"""""""""""""""
3697
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003698``DICompositeType`` nodes represent types composed of other types, like
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003699structures and unions. ``elements:`` points to a tuple of the composed types.
3700
3701If the source language supports ODR, the ``identifier:`` field gives the unique
3702identifier used for type merging between modules. When specified, other types
3703can refer to composite types indirectly via a :ref:`metadata string
3704<metadata-string>` that matches their identifier.
3705
3706.. code-block:: llvm
3707
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003708 !0 = !DIEnumerator(name: "SixKind", value: 7)
3709 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3710 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3711 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003712 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3713 elements: !{!0, !1, !2})
3714
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003715The following ``tag:`` values are valid:
3716
3717.. code-block:: llvm
3718
3719 DW_TAG_array_type = 1
3720 DW_TAG_class_type = 2
3721 DW_TAG_enumeration_type = 4
3722 DW_TAG_structure_type = 19
3723 DW_TAG_union_type = 23
3724 DW_TAG_subroutine_type = 21
3725 DW_TAG_inheritance = 28
3726
3727
3728For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003729descriptors <DISubrange>`, each representing the range of subscripts at that
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003730level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
3731array type is a native packed vector.
3732
3733For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003734descriptors <DIEnumerator>`, each representing the definition of an enumeration
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003735value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003736``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003737
3738For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3739``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003740<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003741
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003742.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003743
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003744DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003745""""""""""
3746
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003747``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
3748:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003749
3750.. code-block:: llvm
3751
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003752 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3753 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3754 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003755
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003756.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003757
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003758DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003759""""""""""""
3760
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003761``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3762variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003763
3764.. code-block:: llvm
3765
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003766 !0 = !DIEnumerator(name: "SixKind", value: 7)
3767 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3768 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003769
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003770DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003771"""""""""""""""""""""""
3772
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003773``DITemplateTypeParameter`` nodes represent type parameters to generic source
3774language constructs. They are used (optionally) in :ref:`DICompositeType` and
3775:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003776
3777.. code-block:: llvm
3778
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003779 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003780
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003781DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003782""""""""""""""""""""""""
3783
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003784``DITemplateValueParameter`` nodes represent value parameters to generic source
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003785language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
3786but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
3787``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003788:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003789
3790.. code-block:: llvm
3791
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003792 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003793
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003794DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003795"""""""""""
3796
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003797``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003798
3799.. code-block:: llvm
3800
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003801 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003802
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003803DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003804""""""""""""""""
3805
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003806``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003807
3808.. code-block:: llvm
3809
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003810 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003811 file: !2, line: 7, type: !3, isLocal: true,
3812 isDefinition: false, variable: i32* @foo,
3813 declaration: !4)
3814
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003815All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003816:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003817
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003818.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003819
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003820DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003821""""""""""""
3822
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003823``DISubprogram`` nodes represent functions from the source language. The
3824``variables:`` field points at :ref:`variables <DILocalVariable>` that must be
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003825retained, even if their IR counterparts are optimized out of the IR. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003826``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003827
3828.. code-block:: llvm
3829
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003830 !0 = !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003831 file: !2, line: 7, type: !3, isLocal: true,
3832 isDefinition: false, scopeLine: 8, containingType: !4,
3833 virtuality: DW_VIRTUALITY_pure_virtual, virtualIndex: 10,
3834 flags: DIFlagPrototyped, isOptimized: true,
3835 function: void ()* @_Z3foov,
3836 templateParams: !5, declaration: !6, variables: !7)
3837
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003838.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003839
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003840DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003841""""""""""""""
3842
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003843``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
3844<DISubprogram>`. The line number and column numbers are used to dinstinguish
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003845two lexical blocks at same depth. They are valid targets for ``scope:``
3846fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003847
3848.. code-block:: llvm
3849
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003850 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003851
3852Usually lexical blocks are ``distinct`` to prevent node merging based on
3853operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003854
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003855.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003856
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003857DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003858""""""""""""""""""
3859
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003860``DILexicalBlockFile`` nodes are used to discriminate between sections of a
3861:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003862indicate textual inclusion, or the ``discriminator:`` field can be used to
3863discriminate between control flow within a single block in the source language.
3864
3865.. code-block:: llvm
3866
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003867 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
3868 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
3869 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003870
Michael Kuperstein605308a2015-05-14 10:58:59 +00003871.. _DILocation:
3872
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003873DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003874""""""""""
3875
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003876``DILocation`` nodes represent source debug locations. The ``scope:`` field is
3877mandatory, and points at an :ref:`DILexicalBlockFile`, an
3878:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003879
3880.. code-block:: llvm
3881
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003882 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003883
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003884.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003885
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003886DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003887"""""""""""""""
3888
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003889``DILocalVariable`` nodes represent local variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003890Instead of ``DW_TAG_variable``, they use LLVM-specific fake tags to
3891discriminate between local variables (``DW_TAG_auto_variable``) and subprogram
3892arguments (``DW_TAG_arg_variable``). In the latter case, the ``arg:`` field
3893specifies the argument position, and this variable will be included in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003894``variables:`` field of its :ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003895
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003896.. code-block:: llvm
3897
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003898 !0 = !DILocalVariable(tag: DW_TAG_arg_variable, name: "this", arg: 0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003899 scope: !3, file: !2, line: 7, type: !3,
Duncan P. N. Exon Smith62e0f452015-04-15 22:29:27 +00003900 flags: DIFlagArtificial)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003901 !1 = !DILocalVariable(tag: DW_TAG_arg_variable, name: "x", arg: 1,
Duncan P. N. Exon Smith62e0f452015-04-15 22:29:27 +00003902 scope: !4, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003903 !1 = !DILocalVariable(tag: DW_TAG_auto_variable, name: "y",
Duncan P. N. Exon Smith62e0f452015-04-15 22:29:27 +00003904 scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003905
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003906DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003907""""""""""""
3908
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003909``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003910:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
3911describe how the referenced LLVM variable relates to the source language
3912variable.
3913
3914The current supported vocabulary is limited:
3915
3916- ``DW_OP_deref`` dereferences the working expression.
3917- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
3918- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
3919 here, respectively) of the variable piece from the working expression.
3920
3921.. code-block:: llvm
3922
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003923 !0 = !DIExpression(DW_OP_deref)
3924 !1 = !DIExpression(DW_OP_plus, 3)
3925 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
3926 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003927
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003928DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003929""""""""""""""
3930
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003931``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003932
3933.. code-block:: llvm
3934
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003935 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003936 getter: "getFoo", attributes: 7, type: !2)
3937
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003938DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003939""""""""""""""""
3940
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003941``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003942compile unit.
3943
3944.. code-block:: llvm
3945
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003946 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003947 entity: !1, line: 7)
3948
Sean Silvab084af42012-12-07 10:36:55 +00003949'``tbaa``' Metadata
3950^^^^^^^^^^^^^^^^^^^
3951
3952In LLVM IR, memory does not have types, so LLVM's own type system is not
3953suitable for doing TBAA. Instead, metadata is added to the IR to
3954describe a type system of a higher level language. This can be used to
3955implement typical C/C++ TBAA, but it can also be used to implement
3956custom alias analysis behavior for other languages.
3957
3958The current metadata format is very simple. TBAA metadata nodes have up
3959to three fields, e.g.:
3960
3961.. code-block:: llvm
3962
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003963 !0 = !{ !"an example type tree" }
3964 !1 = !{ !"int", !0 }
3965 !2 = !{ !"float", !0 }
3966 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003967
3968The first field is an identity field. It can be any value, usually a
3969metadata string, which uniquely identifies the type. The most important
3970name in the tree is the name of the root node. Two trees with different
3971root node names are entirely disjoint, even if they have leaves with
3972common names.
3973
3974The second field identifies the type's parent node in the tree, or is
3975null or omitted for a root node. A type is considered to alias all of
3976its descendants and all of its ancestors in the tree. Also, a type is
3977considered to alias all types in other trees, so that bitcode produced
3978from multiple front-ends is handled conservatively.
3979
3980If the third field is present, it's an integer which if equal to 1
3981indicates that the type is "constant" (meaning
3982``pointsToConstantMemory`` should return true; see `other useful
3983AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
3984
3985'``tbaa.struct``' Metadata
3986^^^^^^^^^^^^^^^^^^^^^^^^^^
3987
3988The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
3989aggregate assignment operations in C and similar languages, however it
3990is defined to copy a contiguous region of memory, which is more than
3991strictly necessary for aggregate types which contain holes due to
3992padding. Also, it doesn't contain any TBAA information about the fields
3993of the aggregate.
3994
3995``!tbaa.struct`` metadata can describe which memory subregions in a
3996memcpy are padding and what the TBAA tags of the struct are.
3997
3998The current metadata format is very simple. ``!tbaa.struct`` metadata
3999nodes are a list of operands which are in conceptual groups of three.
4000For each group of three, the first operand gives the byte offset of a
4001field in bytes, the second gives its size in bytes, and the third gives
4002its tbaa tag. e.g.:
4003
4004.. code-block:: llvm
4005
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004006 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004007
4008This describes a struct with two fields. The first is at offset 0 bytes
4009with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4010and has size 4 bytes and has tbaa tag !2.
4011
4012Note that the fields need not be contiguous. In this example, there is a
40134 byte gap between the two fields. This gap represents padding which
4014does not carry useful data and need not be preserved.
4015
Hal Finkel94146652014-07-24 14:25:39 +00004016'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004017^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004018
4019``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4020noalias memory-access sets. This means that some collection of memory access
4021instructions (loads, stores, memory-accessing calls, etc.) that carry
4022``noalias`` metadata can specifically be specified not to alias with some other
4023collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004024Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004025a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004026of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004027subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004028instruction's ``noalias`` list, then the two memory accesses are assumed not to
4029alias.
Hal Finkel94146652014-07-24 14:25:39 +00004030
Hal Finkel029cde62014-07-25 15:50:02 +00004031The metadata identifying each domain is itself a list containing one or two
4032entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00004033string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004034self-reference can be used to create globally unique domain names. A
4035descriptive string may optionally be provided as a second list entry.
4036
4037The metadata identifying each scope is also itself a list containing two or
4038three entries. The first entry is the name of the scope. Note that if the name
4039is a string then it can be combined accross functions and translation units. A
4040self-reference can be used to create globally unique scope names. A metadata
4041reference to the scope's domain is the second entry. A descriptive string may
4042optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004043
4044For example,
4045
4046.. code-block:: llvm
4047
Hal Finkel029cde62014-07-25 15:50:02 +00004048 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004049 !0 = !{!0}
4050 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004051
Hal Finkel029cde62014-07-25 15:50:02 +00004052 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004053 !2 = !{!2, !0}
4054 !3 = !{!3, !0}
4055 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004056
Hal Finkel029cde62014-07-25 15:50:02 +00004057 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004058 !5 = !{!4} ; A list containing only scope !4
4059 !6 = !{!4, !3, !2}
4060 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004061
4062 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004063 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004064 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004065
Hal Finkel029cde62014-07-25 15:50:02 +00004066 ; These two instructions also don't alias (for domain !1, the set of scopes
4067 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004068 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004069 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004070
Adam Nemet0a8416f2015-05-11 08:30:28 +00004071 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004072 ; the !noalias list is not a superset of, or equal to, the scopes in the
4073 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004074 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004075 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004076
Sean Silvab084af42012-12-07 10:36:55 +00004077'``fpmath``' Metadata
4078^^^^^^^^^^^^^^^^^^^^^
4079
4080``fpmath`` metadata may be attached to any instruction of floating point
4081type. It can be used to express the maximum acceptable error in the
4082result of that instruction, in ULPs, thus potentially allowing the
4083compiler to use a more efficient but less accurate method of computing
4084it. ULP is defined as follows:
4085
4086 If ``x`` is a real number that lies between two finite consecutive
4087 floating-point numbers ``a`` and ``b``, without being equal to one
4088 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4089 distance between the two non-equal finite floating-point numbers
4090 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4091
4092The metadata node shall consist of a single positive floating point
4093number representing the maximum relative error, for example:
4094
4095.. code-block:: llvm
4096
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004097 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004098
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004099.. _range-metadata:
4100
Sean Silvab084af42012-12-07 10:36:55 +00004101'``range``' Metadata
4102^^^^^^^^^^^^^^^^^^^^
4103
Jingyue Wu37fcb592014-06-19 16:50:16 +00004104``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4105integer types. It expresses the possible ranges the loaded value or the value
4106returned by the called function at this call site is in. The ranges are
4107represented with a flattened list of integers. The loaded value or the value
4108returned is known to be in the union of the ranges defined by each consecutive
4109pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004110
4111- The type must match the type loaded by the instruction.
4112- The pair ``a,b`` represents the range ``[a,b)``.
4113- Both ``a`` and ``b`` are constants.
4114- The range is allowed to wrap.
4115- The range should not represent the full or empty set. That is,
4116 ``a!=b``.
4117
4118In addition, the pairs must be in signed order of the lower bound and
4119they must be non-contiguous.
4120
4121Examples:
4122
4123.. code-block:: llvm
4124
David Blaikiec7aabbb2015-03-04 22:06:14 +00004125 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4126 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004127 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4128 %d = invoke i8 @bar() to label %cont
4129 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004130 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004131 !0 = !{ i8 0, i8 2 }
4132 !1 = !{ i8 255, i8 2 }
4133 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4134 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004135
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004136'``llvm.loop``'
4137^^^^^^^^^^^^^^^
4138
4139It is sometimes useful to attach information to loop constructs. Currently,
4140loop metadata is implemented as metadata attached to the branch instruction
4141in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004142guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004143specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004144
4145The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004146itself to avoid merging it with any other identifier metadata, e.g.,
4147during module linkage or function inlining. That is, each loop should refer
4148to their own identification metadata even if they reside in separate functions.
4149The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004150constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004151
4152.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004153
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004154 !0 = !{!0}
4155 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004156
Mark Heffernan893752a2014-07-18 19:24:51 +00004157The loop identifier metadata can be used to specify additional
4158per-loop metadata. Any operands after the first operand can be treated
4159as user-defined metadata. For example the ``llvm.loop.unroll.count``
4160suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004161
Paul Redmond5fdf8362013-05-28 20:00:34 +00004162.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004163
Paul Redmond5fdf8362013-05-28 20:00:34 +00004164 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4165 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004166 !0 = !{!0, !1}
4167 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004168
Mark Heffernan9d20e422014-07-21 23:11:03 +00004169'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4170^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004171
Mark Heffernan9d20e422014-07-21 23:11:03 +00004172Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4173used to control per-loop vectorization and interleaving parameters such as
4174vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00004175conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004176``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4177optimization hints and the optimizer will only interleave and vectorize loops if
4178it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
4179which contains information about loop-carried memory dependencies can be helpful
4180in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004181
Mark Heffernan9d20e422014-07-21 23:11:03 +00004182'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004183^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4184
Mark Heffernan9d20e422014-07-21 23:11:03 +00004185This metadata suggests an interleave count to the loop interleaver.
4186The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004187second operand is an integer specifying the interleave count. For
4188example:
4189
4190.. code-block:: llvm
4191
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004192 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004193
Mark Heffernan9d20e422014-07-21 23:11:03 +00004194Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
4195multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
4196then the interleave count will be determined automatically.
4197
4198'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004199^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004200
4201This metadata selectively enables or disables vectorization for the loop. The
4202first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
4203is a bit. If the bit operand value is 1 vectorization is enabled. A value of
42040 disables vectorization:
4205
4206.. code-block:: llvm
4207
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004208 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4209 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004210
4211'``llvm.loop.vectorize.width``' Metadata
4212^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4213
4214This metadata sets the target width of the vectorizer. The first
4215operand is the string ``llvm.loop.vectorize.width`` and the second
4216operand is an integer specifying the width. For example:
4217
4218.. code-block:: llvm
4219
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004220 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004221
4222Note that setting ``llvm.loop.vectorize.width`` to 1 disables
4223vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
42240 or if the loop does not have this metadata the width will be
4225determined automatically.
4226
4227'``llvm.loop.unroll``'
4228^^^^^^^^^^^^^^^^^^^^^^
4229
4230Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4231optimization hints such as the unroll factor. ``llvm.loop.unroll``
4232metadata should be used in conjunction with ``llvm.loop`` loop
4233identification metadata. The ``llvm.loop.unroll`` metadata are only
4234optimization hints and the unrolling will only be performed if the
4235optimizer believes it is safe to do so.
4236
Mark Heffernan893752a2014-07-18 19:24:51 +00004237'``llvm.loop.unroll.count``' Metadata
4238^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4239
4240This metadata suggests an unroll factor to the loop unroller. The
4241first operand is the string ``llvm.loop.unroll.count`` and the second
4242operand is a positive integer specifying the unroll factor. For
4243example:
4244
4245.. code-block:: llvm
4246
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004247 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004248
4249If the trip count of the loop is less than the unroll count the loop
4250will be partially unrolled.
4251
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004252'``llvm.loop.unroll.disable``' Metadata
4253^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4254
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004255This metadata disables loop unrolling. The metadata has a single operand
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004256which is the string ``llvm.loop.unroll.disable``. For example:
4257
4258.. code-block:: llvm
4259
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004260 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004261
Kevin Qin715b01e2015-03-09 06:14:18 +00004262'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004263^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004264
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004265This metadata disables runtime loop unrolling. The metadata has a single
Kevin Qin715b01e2015-03-09 06:14:18 +00004266operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
4267
4268.. code-block:: llvm
4269
4270 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4271
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004272'``llvm.loop.unroll.full``' Metadata
4273^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4274
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004275This metadata suggests that the loop should be unrolled fully. The
4276metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004277For example:
4278
4279.. code-block:: llvm
4280
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004281 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004282
4283'``llvm.mem``'
4284^^^^^^^^^^^^^^^
4285
4286Metadata types used to annotate memory accesses with information helpful
4287for optimizations are prefixed with ``llvm.mem``.
4288
4289'``llvm.mem.parallel_loop_access``' Metadata
4290^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4291
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004292The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4293or metadata containing a list of loop identifiers for nested loops.
4294The metadata is attached to memory accessing instructions and denotes that
4295no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004296with the same loop identifier.
4297
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004298Precisely, given two instructions ``m1`` and ``m2`` that both have the
4299``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4300set of loops associated with that metadata, respectively, then there is no loop
4301carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004302``L2``.
4303
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004304As a special case, if all memory accessing instructions in a loop have
4305``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4306loop has no loop carried memory dependences and is considered to be a parallel
4307loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004308
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004309Note that if not all memory access instructions have such metadata referring to
4310the loop, then the loop is considered not being trivially parallel. Additional
4311memory dependence analysis is required to make that determination. As a fail
4312safe mechanism, this causes loops that were originally parallel to be considered
4313sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004314insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004315
4316Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004317both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004318metadata types that refer to the same loop identifier metadata.
4319
4320.. code-block:: llvm
4321
4322 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004323 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004324 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004325 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004326 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004327 ...
4328 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004329
4330 for.end:
4331 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004332 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004333
4334It is also possible to have nested parallel loops. In that case the
4335memory accesses refer to a list of loop identifier metadata nodes instead of
4336the loop identifier metadata node directly:
4337
4338.. code-block:: llvm
4339
4340 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004341 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004342 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004343 ...
4344 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004345
4346 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004347 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004348 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004349 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004350 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004351 ...
4352 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004353
4354 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004355 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004356 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004357 ...
4358 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004359
4360 outer.for.end: ; preds = %for.body
4361 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004362 !0 = !{!1, !2} ; a list of loop identifiers
4363 !1 = !{!1} ; an identifier for the inner loop
4364 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004365
Peter Collingbournee6909c82015-02-20 20:30:47 +00004366'``llvm.bitsets``'
4367^^^^^^^^^^^^^^^^^^
4368
4369The ``llvm.bitsets`` global metadata is used to implement
4370:doc:`bitsets <BitSets>`.
4371
Sean Silvab084af42012-12-07 10:36:55 +00004372Module Flags Metadata
4373=====================
4374
4375Information about the module as a whole is difficult to convey to LLVM's
4376subsystems. The LLVM IR isn't sufficient to transmit this information.
4377The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004378this. These flags are in the form of key / value pairs --- much like a
4379dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004380look it up.
4381
4382The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4383Each triplet has the following form:
4384
4385- The first element is a *behavior* flag, which specifies the behavior
4386 when two (or more) modules are merged together, and it encounters two
4387 (or more) metadata with the same ID. The supported behaviors are
4388 described below.
4389- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004390 metadata. Each module may only have one flag entry for each unique ID (not
4391 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004392- The third element is the value of the flag.
4393
4394When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004395``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4396each unique metadata ID string, there will be exactly one entry in the merged
4397modules ``llvm.module.flags`` metadata table, and the value for that entry will
4398be determined by the merge behavior flag, as described below. The only exception
4399is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004400
4401The following behaviors are supported:
4402
4403.. list-table::
4404 :header-rows: 1
4405 :widths: 10 90
4406
4407 * - Value
4408 - Behavior
4409
4410 * - 1
4411 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004412 Emits an error if two values disagree, otherwise the resulting value
4413 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004414
4415 * - 2
4416 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004417 Emits a warning if two values disagree. The result value will be the
4418 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004419
4420 * - 3
4421 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004422 Adds a requirement that another module flag be present and have a
4423 specified value after linking is performed. The value must be a
4424 metadata pair, where the first element of the pair is the ID of the
4425 module flag to be restricted, and the second element of the pair is
4426 the value the module flag should be restricted to. This behavior can
4427 be used to restrict the allowable results (via triggering of an
4428 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004429
4430 * - 4
4431 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004432 Uses the specified value, regardless of the behavior or value of the
4433 other module. If both modules specify **Override**, but the values
4434 differ, an error will be emitted.
4435
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004436 * - 5
4437 - **Append**
4438 Appends the two values, which are required to be metadata nodes.
4439
4440 * - 6
4441 - **AppendUnique**
4442 Appends the two values, which are required to be metadata
4443 nodes. However, duplicate entries in the second list are dropped
4444 during the append operation.
4445
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004446It is an error for a particular unique flag ID to have multiple behaviors,
4447except in the case of **Require** (which adds restrictions on another metadata
4448value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004449
4450An example of module flags:
4451
4452.. code-block:: llvm
4453
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004454 !0 = !{ i32 1, !"foo", i32 1 }
4455 !1 = !{ i32 4, !"bar", i32 37 }
4456 !2 = !{ i32 2, !"qux", i32 42 }
4457 !3 = !{ i32 3, !"qux",
4458 !{
4459 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004460 }
4461 }
4462 !llvm.module.flags = !{ !0, !1, !2, !3 }
4463
4464- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4465 if two or more ``!"foo"`` flags are seen is to emit an error if their
4466 values are not equal.
4467
4468- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4469 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004470 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004471
4472- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4473 behavior if two or more ``!"qux"`` flags are seen is to emit a
4474 warning if their values are not equal.
4475
4476- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4477
4478 ::
4479
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004480 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004481
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004482 The behavior is to emit an error if the ``llvm.module.flags`` does not
4483 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4484 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004485
4486Objective-C Garbage Collection Module Flags Metadata
4487----------------------------------------------------
4488
4489On the Mach-O platform, Objective-C stores metadata about garbage
4490collection in a special section called "image info". The metadata
4491consists of a version number and a bitmask specifying what types of
4492garbage collection are supported (if any) by the file. If two or more
4493modules are linked together their garbage collection metadata needs to
4494be merged rather than appended together.
4495
4496The Objective-C garbage collection module flags metadata consists of the
4497following key-value pairs:
4498
4499.. list-table::
4500 :header-rows: 1
4501 :widths: 30 70
4502
4503 * - Key
4504 - Value
4505
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004506 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004507 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004508
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004509 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004510 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004511 always 0.
4512
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004513 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004514 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004515 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4516 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4517 Objective-C ABI version 2.
4518
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004519 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004520 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004521 not. Valid values are 0, for no garbage collection, and 2, for garbage
4522 collection supported.
4523
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004524 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004525 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004526 If present, its value must be 6. This flag requires that the
4527 ``Objective-C Garbage Collection`` flag have the value 2.
4528
4529Some important flag interactions:
4530
4531- If a module with ``Objective-C Garbage Collection`` set to 0 is
4532 merged with a module with ``Objective-C Garbage Collection`` set to
4533 2, then the resulting module has the
4534 ``Objective-C Garbage Collection`` flag set to 0.
4535- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4536 merged with a module with ``Objective-C GC Only`` set to 6.
4537
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004538Automatic Linker Flags Module Flags Metadata
4539--------------------------------------------
4540
4541Some targets support embedding flags to the linker inside individual object
4542files. Typically this is used in conjunction with language extensions which
4543allow source files to explicitly declare the libraries they depend on, and have
4544these automatically be transmitted to the linker via object files.
4545
4546These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004547using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004548to be ``AppendUnique``, and the value for the key is expected to be a metadata
4549node which should be a list of other metadata nodes, each of which should be a
4550list of metadata strings defining linker options.
4551
4552For example, the following metadata section specifies two separate sets of
4553linker options, presumably to link against ``libz`` and the ``Cocoa``
4554framework::
4555
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004556 !0 = !{ i32 6, !"Linker Options",
4557 !{
4558 !{ !"-lz" },
4559 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004560 !llvm.module.flags = !{ !0 }
4561
4562The metadata encoding as lists of lists of options, as opposed to a collapsed
4563list of options, is chosen so that the IR encoding can use multiple option
4564strings to specify e.g., a single library, while still having that specifier be
4565preserved as an atomic element that can be recognized by a target specific
4566assembly writer or object file emitter.
4567
4568Each individual option is required to be either a valid option for the target's
4569linker, or an option that is reserved by the target specific assembly writer or
4570object file emitter. No other aspect of these options is defined by the IR.
4571
Oliver Stannard5dc29342014-06-20 10:08:11 +00004572C type width Module Flags Metadata
4573----------------------------------
4574
4575The ARM backend emits a section into each generated object file describing the
4576options that it was compiled with (in a compiler-independent way) to prevent
4577linking incompatible objects, and to allow automatic library selection. Some
4578of these options are not visible at the IR level, namely wchar_t width and enum
4579width.
4580
4581To pass this information to the backend, these options are encoded in module
4582flags metadata, using the following key-value pairs:
4583
4584.. list-table::
4585 :header-rows: 1
4586 :widths: 30 70
4587
4588 * - Key
4589 - Value
4590
4591 * - short_wchar
4592 - * 0 --- sizeof(wchar_t) == 4
4593 * 1 --- sizeof(wchar_t) == 2
4594
4595 * - short_enum
4596 - * 0 --- Enums are at least as large as an ``int``.
4597 * 1 --- Enums are stored in the smallest integer type which can
4598 represent all of its values.
4599
4600For example, the following metadata section specifies that the module was
4601compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4602enum is the smallest type which can represent all of its values::
4603
4604 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004605 !0 = !{i32 1, !"short_wchar", i32 1}
4606 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004607
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004608.. _intrinsicglobalvariables:
4609
Sean Silvab084af42012-12-07 10:36:55 +00004610Intrinsic Global Variables
4611==========================
4612
4613LLVM has a number of "magic" global variables that contain data that
4614affect code generation or other IR semantics. These are documented here.
4615All globals of this sort should have a section specified as
4616"``llvm.metadata``". This section and all globals that start with
4617"``llvm.``" are reserved for use by LLVM.
4618
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004619.. _gv_llvmused:
4620
Sean Silvab084af42012-12-07 10:36:55 +00004621The '``llvm.used``' Global Variable
4622-----------------------------------
4623
Rafael Espindola74f2e462013-04-22 14:58:02 +00004624The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004625:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004626pointers to named global variables, functions and aliases which may optionally
4627have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004628use of it is:
4629
4630.. code-block:: llvm
4631
4632 @X = global i8 4
4633 @Y = global i32 123
4634
4635 @llvm.used = appending global [2 x i8*] [
4636 i8* @X,
4637 i8* bitcast (i32* @Y to i8*)
4638 ], section "llvm.metadata"
4639
Rafael Espindola74f2e462013-04-22 14:58:02 +00004640If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4641and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004642symbol that it cannot see (which is why they have to be named). For example, if
4643a variable has internal linkage and no references other than that from the
4644``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4645references from inline asms and other things the compiler cannot "see", and
4646corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004647
4648On some targets, the code generator must emit a directive to the
4649assembler or object file to prevent the assembler and linker from
4650molesting the symbol.
4651
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004652.. _gv_llvmcompilerused:
4653
Sean Silvab084af42012-12-07 10:36:55 +00004654The '``llvm.compiler.used``' Global Variable
4655--------------------------------------------
4656
4657The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4658directive, except that it only prevents the compiler from touching the
4659symbol. On targets that support it, this allows an intelligent linker to
4660optimize references to the symbol without being impeded as it would be
4661by ``@llvm.used``.
4662
4663This is a rare construct that should only be used in rare circumstances,
4664and should not be exposed to source languages.
4665
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004666.. _gv_llvmglobalctors:
4667
Sean Silvab084af42012-12-07 10:36:55 +00004668The '``llvm.global_ctors``' Global Variable
4669-------------------------------------------
4670
4671.. code-block:: llvm
4672
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004673 %0 = type { i32, void ()*, i8* }
4674 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004675
4676The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004677functions, priorities, and an optional associated global or function.
4678The functions referenced by this array will be called in ascending order
4679of priority (i.e. lowest first) when the module is loaded. The order of
4680functions with the same priority is not defined.
4681
4682If the third field is present, non-null, and points to a global variable
4683or function, the initializer function will only run if the associated
4684data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004685
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004686.. _llvmglobaldtors:
4687
Sean Silvab084af42012-12-07 10:36:55 +00004688The '``llvm.global_dtors``' Global Variable
4689-------------------------------------------
4690
4691.. code-block:: llvm
4692
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004693 %0 = type { i32, void ()*, i8* }
4694 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004695
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004696The ``@llvm.global_dtors`` array contains a list of destructor
4697functions, priorities, and an optional associated global or function.
4698The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004699order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004700order of functions with the same priority is not defined.
4701
4702If the third field is present, non-null, and points to a global variable
4703or function, the destructor function will only run if the associated
4704data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004705
4706Instruction Reference
4707=====================
4708
4709The LLVM instruction set consists of several different classifications
4710of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4711instructions <binaryops>`, :ref:`bitwise binary
4712instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4713:ref:`other instructions <otherops>`.
4714
4715.. _terminators:
4716
4717Terminator Instructions
4718-----------------------
4719
4720As mentioned :ref:`previously <functionstructure>`, every basic block in a
4721program ends with a "Terminator" instruction, which indicates which
4722block should be executed after the current block is finished. These
4723terminator instructions typically yield a '``void``' value: they produce
4724control flow, not values (the one exception being the
4725':ref:`invoke <i_invoke>`' instruction).
4726
4727The terminator instructions are: ':ref:`ret <i_ret>`',
4728':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
4729':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemerae2ffc82015-07-10 07:00:44 +00004730':ref:`resume <i_resume>`', ':ref:`catchblock <i_catchblock>`',
4731':ref:`catchendblock <i_catchendblock>`',
4732':ref:`catchret <i_catchret>`',
David Majnemer11aeb902015-07-10 07:01:03 +00004733':ref:`cleanupret <i_cleanupret>`',
David Majnemerae2ffc82015-07-10 07:00:44 +00004734':ref:`terminateblock <i_terminateblock>`',
4735and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00004736
4737.. _i_ret:
4738
4739'``ret``' Instruction
4740^^^^^^^^^^^^^^^^^^^^^
4741
4742Syntax:
4743"""""""
4744
4745::
4746
4747 ret <type> <value> ; Return a value from a non-void function
4748 ret void ; Return from void function
4749
4750Overview:
4751"""""""""
4752
4753The '``ret``' instruction is used to return control flow (and optionally
4754a value) from a function back to the caller.
4755
4756There are two forms of the '``ret``' instruction: one that returns a
4757value and then causes control flow, and one that just causes control
4758flow to occur.
4759
4760Arguments:
4761""""""""""
4762
4763The '``ret``' instruction optionally accepts a single argument, the
4764return value. The type of the return value must be a ':ref:`first
4765class <t_firstclass>`' type.
4766
4767A function is not :ref:`well formed <wellformed>` if it it has a non-void
4768return type and contains a '``ret``' instruction with no return value or
4769a return value with a type that does not match its type, or if it has a
4770void return type and contains a '``ret``' instruction with a return
4771value.
4772
4773Semantics:
4774""""""""""
4775
4776When the '``ret``' instruction is executed, control flow returns back to
4777the calling function's context. If the caller is a
4778":ref:`call <i_call>`" instruction, execution continues at the
4779instruction after the call. If the caller was an
4780":ref:`invoke <i_invoke>`" instruction, execution continues at the
4781beginning of the "normal" destination block. If the instruction returns
4782a value, that value shall set the call or invoke instruction's return
4783value.
4784
4785Example:
4786""""""""
4787
4788.. code-block:: llvm
4789
4790 ret i32 5 ; Return an integer value of 5
4791 ret void ; Return from a void function
4792 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
4793
4794.. _i_br:
4795
4796'``br``' Instruction
4797^^^^^^^^^^^^^^^^^^^^
4798
4799Syntax:
4800"""""""
4801
4802::
4803
4804 br i1 <cond>, label <iftrue>, label <iffalse>
4805 br label <dest> ; Unconditional branch
4806
4807Overview:
4808"""""""""
4809
4810The '``br``' instruction is used to cause control flow to transfer to a
4811different basic block in the current function. There are two forms of
4812this instruction, corresponding to a conditional branch and an
4813unconditional branch.
4814
4815Arguments:
4816""""""""""
4817
4818The conditional branch form of the '``br``' instruction takes a single
4819'``i1``' value and two '``label``' values. The unconditional form of the
4820'``br``' instruction takes a single '``label``' value as a target.
4821
4822Semantics:
4823""""""""""
4824
4825Upon execution of a conditional '``br``' instruction, the '``i1``'
4826argument is evaluated. If the value is ``true``, control flows to the
4827'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
4828to the '``iffalse``' ``label`` argument.
4829
4830Example:
4831""""""""
4832
4833.. code-block:: llvm
4834
4835 Test:
4836 %cond = icmp eq i32 %a, %b
4837 br i1 %cond, label %IfEqual, label %IfUnequal
4838 IfEqual:
4839 ret i32 1
4840 IfUnequal:
4841 ret i32 0
4842
4843.. _i_switch:
4844
4845'``switch``' Instruction
4846^^^^^^^^^^^^^^^^^^^^^^^^
4847
4848Syntax:
4849"""""""
4850
4851::
4852
4853 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
4854
4855Overview:
4856"""""""""
4857
4858The '``switch``' instruction is used to transfer control flow to one of
4859several different places. It is a generalization of the '``br``'
4860instruction, allowing a branch to occur to one of many possible
4861destinations.
4862
4863Arguments:
4864""""""""""
4865
4866The '``switch``' instruction uses three parameters: an integer
4867comparison value '``value``', a default '``label``' destination, and an
4868array of pairs of comparison value constants and '``label``'s. The table
4869is not allowed to contain duplicate constant entries.
4870
4871Semantics:
4872""""""""""
4873
4874The ``switch`` instruction specifies a table of values and destinations.
4875When the '``switch``' instruction is executed, this table is searched
4876for the given value. If the value is found, control flow is transferred
4877to the corresponding destination; otherwise, control flow is transferred
4878to the default destination.
4879
4880Implementation:
4881"""""""""""""""
4882
4883Depending on properties of the target machine and the particular
4884``switch`` instruction, this instruction may be code generated in
4885different ways. For example, it could be generated as a series of
4886chained conditional branches or with a lookup table.
4887
4888Example:
4889""""""""
4890
4891.. code-block:: llvm
4892
4893 ; Emulate a conditional br instruction
4894 %Val = zext i1 %value to i32
4895 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
4896
4897 ; Emulate an unconditional br instruction
4898 switch i32 0, label %dest [ ]
4899
4900 ; Implement a jump table:
4901 switch i32 %val, label %otherwise [ i32 0, label %onzero
4902 i32 1, label %onone
4903 i32 2, label %ontwo ]
4904
4905.. _i_indirectbr:
4906
4907'``indirectbr``' Instruction
4908^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4909
4910Syntax:
4911"""""""
4912
4913::
4914
4915 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
4916
4917Overview:
4918"""""""""
4919
4920The '``indirectbr``' instruction implements an indirect branch to a
4921label within the current function, whose address is specified by
4922"``address``". Address must be derived from a
4923:ref:`blockaddress <blockaddress>` constant.
4924
4925Arguments:
4926""""""""""
4927
4928The '``address``' argument is the address of the label to jump to. The
4929rest of the arguments indicate the full set of possible destinations
4930that the address may point to. Blocks are allowed to occur multiple
4931times in the destination list, though this isn't particularly useful.
4932
4933This destination list is required so that dataflow analysis has an
4934accurate understanding of the CFG.
4935
4936Semantics:
4937""""""""""
4938
4939Control transfers to the block specified in the address argument. All
4940possible destination blocks must be listed in the label list, otherwise
4941this instruction has undefined behavior. This implies that jumps to
4942labels defined in other functions have undefined behavior as well.
4943
4944Implementation:
4945"""""""""""""""
4946
4947This is typically implemented with a jump through a register.
4948
4949Example:
4950""""""""
4951
4952.. code-block:: llvm
4953
4954 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
4955
4956.. _i_invoke:
4957
4958'``invoke``' Instruction
4959^^^^^^^^^^^^^^^^^^^^^^^^
4960
4961Syntax:
4962"""""""
4963
4964::
4965
4966 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
4967 to label <normal label> unwind label <exception label>
4968
4969Overview:
4970"""""""""
4971
4972The '``invoke``' instruction causes control to transfer to a specified
4973function, with the possibility of control flow transfer to either the
4974'``normal``' label or the '``exception``' label. If the callee function
4975returns with the "``ret``" instruction, control flow will return to the
4976"normal" label. If the callee (or any indirect callees) returns via the
4977":ref:`resume <i_resume>`" instruction or other exception handling
4978mechanism, control is interrupted and continued at the dynamically
4979nearest "exception" label.
4980
4981The '``exception``' label is a `landing
4982pad <ExceptionHandling.html#overview>`_ for the exception. As such,
4983'``exception``' label is required to have the
4984":ref:`landingpad <i_landingpad>`" instruction, which contains the
4985information about the behavior of the program after unwinding happens,
4986as its first non-PHI instruction. The restrictions on the
4987"``landingpad``" instruction's tightly couples it to the "``invoke``"
4988instruction, so that the important information contained within the
4989"``landingpad``" instruction can't be lost through normal code motion.
4990
4991Arguments:
4992""""""""""
4993
4994This instruction requires several arguments:
4995
4996#. The optional "cconv" marker indicates which :ref:`calling
4997 convention <callingconv>` the call should use. If none is
4998 specified, the call defaults to using C calling conventions.
4999#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5000 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5001 are valid here.
5002#. '``ptr to function ty``': shall be the signature of the pointer to
5003 function value being invoked. In most cases, this is a direct
5004 function invocation, but indirect ``invoke``'s are just as possible,
5005 branching off an arbitrary pointer to function value.
5006#. '``function ptr val``': An LLVM value containing a pointer to a
5007 function to be invoked.
5008#. '``function args``': argument list whose types match the function
5009 signature argument types and parameter attributes. All arguments must
5010 be of :ref:`first class <t_firstclass>` type. If the function signature
5011 indicates the function accepts a variable number of arguments, the
5012 extra arguments can be specified.
5013#. '``normal label``': the label reached when the called function
5014 executes a '``ret``' instruction.
5015#. '``exception label``': the label reached when a callee returns via
5016 the :ref:`resume <i_resume>` instruction or other exception handling
5017 mechanism.
5018#. The optional :ref:`function attributes <fnattrs>` list. Only
5019 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5020 attributes are valid here.
5021
5022Semantics:
5023""""""""""
5024
5025This instruction is designed to operate as a standard '``call``'
5026instruction in most regards. The primary difference is that it
5027establishes an association with a label, which is used by the runtime
5028library to unwind the stack.
5029
5030This instruction is used in languages with destructors to ensure that
5031proper cleanup is performed in the case of either a ``longjmp`` or a
5032thrown exception. Additionally, this is important for implementation of
5033'``catch``' clauses in high-level languages that support them.
5034
5035For the purposes of the SSA form, the definition of the value returned
5036by the '``invoke``' instruction is deemed to occur on the edge from the
5037current block to the "normal" label. If the callee unwinds then no
5038return value is available.
5039
5040Example:
5041""""""""
5042
5043.. code-block:: llvm
5044
5045 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005046 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005047 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005048 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005049
5050.. _i_resume:
5051
5052'``resume``' Instruction
5053^^^^^^^^^^^^^^^^^^^^^^^^
5054
5055Syntax:
5056"""""""
5057
5058::
5059
5060 resume <type> <value>
5061
5062Overview:
5063"""""""""
5064
5065The '``resume``' instruction is a terminator instruction that has no
5066successors.
5067
5068Arguments:
5069""""""""""
5070
5071The '``resume``' instruction requires one argument, which must have the
5072same type as the result of any '``landingpad``' instruction in the same
5073function.
5074
5075Semantics:
5076""""""""""
5077
5078The '``resume``' instruction resumes propagation of an existing
5079(in-flight) exception whose unwinding was interrupted with a
5080:ref:`landingpad <i_landingpad>` instruction.
5081
5082Example:
5083""""""""
5084
5085.. code-block:: llvm
5086
5087 resume { i8*, i32 } %exn
5088
David Majnemerae2ffc82015-07-10 07:00:44 +00005089.. _i_catchblock:
5090
5091'``catchblock``' Instruction
5092^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5093
5094Syntax:
5095"""""""
5096
5097::
5098
5099 <resultval> = catchblock <resultty> [<args>*]
5100 to label <normal label> unwind label <exception label>
5101
5102Overview:
5103"""""""""
5104
5105The '``catchblock``' instruction is used by `LLVM's exception handling
5106system <ExceptionHandling.html#overview>`_ to specify that a basic block
5107is a catch block --- one where a personality routine attempts to transfer
5108control to catch an exception.
5109The ``args`` correspond to whatever information the personality
5110routine requires to know if this is an appropriate place to catch the
5111exception. Control is tranfered to the ``exception`` label if the
5112``catchblock`` is not an appropriate handler for the in-flight exception.
5113The ``normal`` label should contain the code found in the ``catch``
5114portion of a ``try``/``catch`` sequence. It defines values supplied by
5115the :ref:`personality function <personalityfn>` upon re-entry to the
5116function. The ``resultval`` has the type ``resultty``.
5117
5118Arguments:
5119""""""""""
5120
5121The instruction takes a list of arbitrary values which are interpreted
5122by the :ref:`personality function <personalityfn>`.
5123
5124The ``catchblock`` must be provided a ``normal`` label to transfer control
5125to if the ``catchblock`` matches the exception and an ``exception``
5126label to transfer control to if it doesn't.
5127
5128Semantics:
5129""""""""""
5130
5131The '``catchblock``' instruction defines the values which are set by the
5132:ref:`personality function <personalityfn>` upon re-entry to the function, and
5133therefore the "result type" of the ``catchblock`` instruction. As with
5134calling conventions, how the personality function results are
5135represented in LLVM IR is target specific.
5136
5137When the call stack is being unwound due to an exception being thrown,
5138the exception is compared against the ``args``. If it doesn't match,
5139then control is transfered to the ``exception`` basic block.
5140
5141The ``catchblock`` instruction has several restrictions:
5142
5143- A catch block is a basic block which is the unwind destination of
5144 an exceptional instruction.
5145- A catch block must have a '``catchblock``' instruction as its
5146 first non-PHI instruction.
David Majnemer11aeb902015-07-10 07:01:03 +00005147- A catch block's ``exception`` edge must refer to a catch block or a
5148 catch-end block.
David Majnemerae2ffc82015-07-10 07:00:44 +00005149- There can be only one '``catchblock``' instruction within the
5150 catch block.
5151- A basic block that is not a catch block may not include a
5152 '``catchblock``' instruction.
5153
5154Example:
5155""""""""
5156
5157.. code-block:: llvm
5158
5159 ;; A catch block which can catch an integer.
5160 %res = catchblock { i8*, i32 } [i8** @_ZTIi]
5161 to label %int.handler unwind label %terminate
5162
5163.. _i_catchendblock:
5164
5165'``catchendblock``' Instruction
5166^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5167
5168Syntax:
5169"""""""
5170
5171::
5172
5173 catchendblock unwind label <nextaction>
5174 catchendblock unwind to caller
5175
5176Overview:
5177"""""""""
5178
5179The '``catchendblock``' instruction is used by `LLVM's exception handling
5180system <ExceptionHandling.html#overview>`_ to communicate to the
5181:ref:`personality function <personalityfn>` which invokes are associated
5182with a chain of :ref:`catchblock <i_catchblock>` instructions.
5183
5184The ``nextaction`` label indicates where control should transfer to if
5185none of the ``catchblock`` instructions are suitable for catching the
5186in-flight exception.
5187
5188If a ``nextaction`` label is not present, the instruction unwinds out of
David Majnemer1d3fe982015-07-10 07:00:58 +00005189its parent function. The
5190:ref:`personality function <personalityfn>` will continue processing
5191exception handling actions in the caller.
David Majnemerae2ffc82015-07-10 07:00:44 +00005192
5193Arguments:
5194""""""""""
5195
5196The instruction optionally takes a label, ``nextaction``, indicating
David Majnemer1d3fe982015-07-10 07:00:58 +00005197where control should transfer to if none of the preceding
David Majnemerae2ffc82015-07-10 07:00:44 +00005198``catchblock`` instructions are suitable for the in-flight exception.
5199
5200Semantics:
5201""""""""""
5202
5203When the call stack is being unwound due to an exception being thrown
5204and none of the constituent ``catchblock`` instructions match, then
5205control is transfered to ``nextaction`` if it is present. If it is not
5206present, control is transfered to the caller.
5207
5208The ``catchendblock`` instruction has several restrictions:
5209
5210- A catch-end block is a basic block which is the unwind destination of
5211 an exceptional instruction.
5212- A catch-end block must have a '``catchendblock``' instruction as its
5213 first non-PHI instruction.
5214- There can be only one '``catchendblock``' instruction within the
5215 catch block.
5216- A basic block that is not a catch-end block may not include a
5217 '``catchendblock``' instruction.
David Majnemer1d3fe982015-07-10 07:00:58 +00005218- Exactly one catch block may unwind to a ``catchendblock``.
David Majnemerae2ffc82015-07-10 07:00:44 +00005219
5220Example:
5221""""""""
5222
5223.. code-block:: llvm
5224
5225 catchendblock unwind label %terminate
5226 catchendblock unwind to caller
5227
5228.. _i_catchret:
5229
5230'``catchret``' Instruction
5231^^^^^^^^^^^^^^^^^^^^^^^^^^
5232
5233Syntax:
5234"""""""
5235
5236::
5237
5238 catchret label <normal>
5239
5240Overview:
5241"""""""""
5242
5243The '``catchret``' instruction is a terminator instruction that has a
5244single successor.
5245
5246
5247Arguments:
5248""""""""""
5249
5250The '``catchret``' instruction requires one argument which specifies
5251where control will transfer to next.
5252
5253Semantics:
5254""""""""""
5255
5256The '``catchret``' instruction ends the existing (in-flight) exception
5257whose unwinding was interrupted with a
David Majnemer11aeb902015-07-10 07:01:03 +00005258:ref:`catchblock <i_catchblock>` instruction.
5259The :ref:`personality function <personalityfn>` gets a chance to execute
5260arbitrary code to, for example, run a C++ destructor.
5261Control then transfers to ``normal``.
David Majnemerae2ffc82015-07-10 07:00:44 +00005262
5263Example:
5264""""""""
5265
5266.. code-block:: llvm
5267
David Majnemer11aeb902015-07-10 07:01:03 +00005268 catchret label %continue
David Majnemerae2ffc82015-07-10 07:00:44 +00005269
5270.. _i_cleanupret:
5271
5272'``cleanupret``' Instruction
5273^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5274
5275Syntax:
5276"""""""
5277
5278::
5279
5280 cleanupret <type> <value> unwind label <continue>
5281 cleanupret <type> <value> unwind to caller
5282
5283Overview:
5284"""""""""
5285
5286The '``cleanupret``' instruction is a terminator instruction that has
5287an optional successor.
5288
5289
5290Arguments:
5291""""""""""
5292
5293The '``cleanupret``' instruction requires one argument, which must have the
5294same type as the result of any '``cleanupblock``' instruction in the same
5295function. It also has an optional successor, ``continue``.
5296
5297Semantics:
5298""""""""""
5299
5300The '``cleanupret``' instruction indicates to the
David Majnemer11aeb902015-07-10 07:01:03 +00005301:ref:`personality function <personalityfn>` that one
5302:ref:`cleanupblock <i_cleanupblock>` it transferred control to has ended.
David Majnemerae2ffc82015-07-10 07:00:44 +00005303It transfers control to ``continue`` or unwinds out of the function.
5304
5305Example:
5306""""""""
5307
5308.. code-block:: llvm
5309
David Majnemer1d3fe982015-07-10 07:00:58 +00005310 cleanupret void unwind to caller
David Majnemerae2ffc82015-07-10 07:00:44 +00005311 cleanupret { i8*, i32 } %exn unwind label %continue
5312
5313.. _i_terminateblock:
5314
5315'``terminateblock``' Instruction
5316^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5317
5318Syntax:
5319"""""""
5320
5321::
5322
5323 terminateblock [<args>*] unwind label <exception label>
David Majnemer1d3fe982015-07-10 07:00:58 +00005324 terminateblock [<args>*] unwind to caller
David Majnemerae2ffc82015-07-10 07:00:44 +00005325
5326Overview:
5327"""""""""
5328
5329The '``terminateblock``' instruction is used by `LLVM's exception handling
5330system <ExceptionHandling.html#overview>`_ to specify that a basic block
David Majnemer1d3fe982015-07-10 07:00:58 +00005331is a terminate block --- one where a personality routine may decide to
5332terminate the program.
David Majnemerae2ffc82015-07-10 07:00:44 +00005333The ``args`` correspond to whatever information the personality
5334routine requires to know if this is an appropriate place to terminate the
David Majnemer11aeb902015-07-10 07:01:03 +00005335program. Control is transferred to the ``exception`` label if the
David Majnemer1d3fe982015-07-10 07:00:58 +00005336personality routine decides not to terminate the program for the
5337in-flight exception.
David Majnemerae2ffc82015-07-10 07:00:44 +00005338
5339Arguments:
5340""""""""""
5341
5342The instruction takes a list of arbitrary values which are interpreted
5343by the :ref:`personality function <personalityfn>`.
5344
David Majnemer1d3fe982015-07-10 07:00:58 +00005345The ``terminateblock`` may be given an ``exception`` label to
David Majnemerae2ffc82015-07-10 07:00:44 +00005346transfer control to if the in-flight exception matches the ``args``.
5347
5348Semantics:
5349""""""""""
5350
5351When the call stack is being unwound due to an exception being thrown,
5352the exception is compared against the ``args``. If it matches,
5353then control is transfered to the ``exception`` basic block. Otherwise,
5354the program is terminated via personality-specific means. Typically,
5355the first argument to ``terminateblock`` specifies what function the
5356personality should defer to in order to terminate the program.
5357
5358The ``terminateblock`` instruction has several restrictions:
5359
5360- A terminate block is a basic block which is the unwind destination of
5361 an exceptional instruction.
5362- A terminate block must have a '``terminateblock``' instruction as its
5363 first non-PHI instruction.
5364- There can be only one '``terminateblock``' instruction within the
5365 terminate block.
5366- A basic block that is not a terminate block may not include a
5367 '``terminateblock``' instruction.
5368
5369Example:
5370""""""""
5371
5372.. code-block:: llvm
5373
5374 ;; A terminate block which only permits integers.
5375 terminateblock [i8** @_ZTIi] unwind label %continue
5376
Sean Silvab084af42012-12-07 10:36:55 +00005377.. _i_unreachable:
5378
5379'``unreachable``' Instruction
5380^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5381
5382Syntax:
5383"""""""
5384
5385::
5386
5387 unreachable
5388
5389Overview:
5390"""""""""
5391
5392The '``unreachable``' instruction has no defined semantics. This
5393instruction is used to inform the optimizer that a particular portion of
5394the code is not reachable. This can be used to indicate that the code
5395after a no-return function cannot be reached, and other facts.
5396
5397Semantics:
5398""""""""""
5399
5400The '``unreachable``' instruction has no defined semantics.
5401
5402.. _binaryops:
5403
5404Binary Operations
5405-----------------
5406
5407Binary operators are used to do most of the computation in a program.
5408They require two operands of the same type, execute an operation on
5409them, and produce a single value. The operands might represent multiple
5410data, as is the case with the :ref:`vector <t_vector>` data type. The
5411result value has the same type as its operands.
5412
5413There are several different binary operators:
5414
5415.. _i_add:
5416
5417'``add``' Instruction
5418^^^^^^^^^^^^^^^^^^^^^
5419
5420Syntax:
5421"""""""
5422
5423::
5424
Tim Northover675a0962014-06-13 14:24:23 +00005425 <result> = add <ty> <op1>, <op2> ; yields ty:result
5426 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5427 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5428 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005429
5430Overview:
5431"""""""""
5432
5433The '``add``' instruction returns the sum of its two operands.
5434
5435Arguments:
5436""""""""""
5437
5438The two arguments to the '``add``' instruction must be
5439:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5440arguments must have identical types.
5441
5442Semantics:
5443""""""""""
5444
5445The value produced is the integer sum of the two operands.
5446
5447If the sum has unsigned overflow, the result returned is the
5448mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5449the result.
5450
5451Because LLVM integers use a two's complement representation, this
5452instruction is appropriate for both signed and unsigned integers.
5453
5454``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5455respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5456result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5457unsigned and/or signed overflow, respectively, occurs.
5458
5459Example:
5460""""""""
5461
5462.. code-block:: llvm
5463
Tim Northover675a0962014-06-13 14:24:23 +00005464 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005465
5466.. _i_fadd:
5467
5468'``fadd``' Instruction
5469^^^^^^^^^^^^^^^^^^^^^^
5470
5471Syntax:
5472"""""""
5473
5474::
5475
Tim Northover675a0962014-06-13 14:24:23 +00005476 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005477
5478Overview:
5479"""""""""
5480
5481The '``fadd``' instruction returns the sum of its two operands.
5482
5483Arguments:
5484""""""""""
5485
5486The two arguments to the '``fadd``' instruction must be :ref:`floating
5487point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5488Both arguments must have identical types.
5489
5490Semantics:
5491""""""""""
5492
5493The value produced is the floating point sum of the two operands. This
5494instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5495which are optimization hints to enable otherwise unsafe floating point
5496optimizations:
5497
5498Example:
5499""""""""
5500
5501.. code-block:: llvm
5502
Tim Northover675a0962014-06-13 14:24:23 +00005503 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005504
5505'``sub``' Instruction
5506^^^^^^^^^^^^^^^^^^^^^
5507
5508Syntax:
5509"""""""
5510
5511::
5512
Tim Northover675a0962014-06-13 14:24:23 +00005513 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5514 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5515 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5516 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005517
5518Overview:
5519"""""""""
5520
5521The '``sub``' instruction returns the difference of its two operands.
5522
5523Note that the '``sub``' instruction is used to represent the '``neg``'
5524instruction present in most other intermediate representations.
5525
5526Arguments:
5527""""""""""
5528
5529The two arguments to the '``sub``' instruction must be
5530:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5531arguments must have identical types.
5532
5533Semantics:
5534""""""""""
5535
5536The value produced is the integer difference of the two operands.
5537
5538If the difference has unsigned overflow, the result returned is the
5539mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5540the result.
5541
5542Because LLVM integers use a two's complement representation, this
5543instruction is appropriate for both signed and unsigned integers.
5544
5545``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5546respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5547result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5548unsigned and/or signed overflow, respectively, occurs.
5549
5550Example:
5551""""""""
5552
5553.. code-block:: llvm
5554
Tim Northover675a0962014-06-13 14:24:23 +00005555 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5556 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005557
5558.. _i_fsub:
5559
5560'``fsub``' Instruction
5561^^^^^^^^^^^^^^^^^^^^^^
5562
5563Syntax:
5564"""""""
5565
5566::
5567
Tim Northover675a0962014-06-13 14:24:23 +00005568 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005569
5570Overview:
5571"""""""""
5572
5573The '``fsub``' instruction returns the difference of its two operands.
5574
5575Note that the '``fsub``' instruction is used to represent the '``fneg``'
5576instruction present in most other intermediate representations.
5577
5578Arguments:
5579""""""""""
5580
5581The two arguments to the '``fsub``' instruction must be :ref:`floating
5582point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5583Both arguments must have identical types.
5584
5585Semantics:
5586""""""""""
5587
5588The value produced is the floating point difference of the two operands.
5589This instruction can also take any number of :ref:`fast-math
5590flags <fastmath>`, which are optimization hints to enable otherwise
5591unsafe floating point optimizations:
5592
5593Example:
5594""""""""
5595
5596.. code-block:: llvm
5597
Tim Northover675a0962014-06-13 14:24:23 +00005598 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5599 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005600
5601'``mul``' Instruction
5602^^^^^^^^^^^^^^^^^^^^^
5603
5604Syntax:
5605"""""""
5606
5607::
5608
Tim Northover675a0962014-06-13 14:24:23 +00005609 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5610 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5611 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5612 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005613
5614Overview:
5615"""""""""
5616
5617The '``mul``' instruction returns the product of its two operands.
5618
5619Arguments:
5620""""""""""
5621
5622The two arguments to the '``mul``' instruction must be
5623:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5624arguments must have identical types.
5625
5626Semantics:
5627""""""""""
5628
5629The value produced is the integer product of the two operands.
5630
5631If the result of the multiplication has unsigned overflow, the result
5632returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5633bit width of the result.
5634
5635Because LLVM integers use a two's complement representation, and the
5636result is the same width as the operands, this instruction returns the
5637correct result for both signed and unsigned integers. If a full product
5638(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5639sign-extended or zero-extended as appropriate to the width of the full
5640product.
5641
5642``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5643respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5644result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5645unsigned and/or signed overflow, respectively, occurs.
5646
5647Example:
5648""""""""
5649
5650.. code-block:: llvm
5651
Tim Northover675a0962014-06-13 14:24:23 +00005652 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005653
5654.. _i_fmul:
5655
5656'``fmul``' Instruction
5657^^^^^^^^^^^^^^^^^^^^^^
5658
5659Syntax:
5660"""""""
5661
5662::
5663
Tim Northover675a0962014-06-13 14:24:23 +00005664 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005665
5666Overview:
5667"""""""""
5668
5669The '``fmul``' instruction returns the product of its two operands.
5670
5671Arguments:
5672""""""""""
5673
5674The two arguments to the '``fmul``' instruction must be :ref:`floating
5675point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5676Both arguments must have identical types.
5677
5678Semantics:
5679""""""""""
5680
5681The value produced is the floating point product of the two operands.
5682This instruction can also take any number of :ref:`fast-math
5683flags <fastmath>`, which are optimization hints to enable otherwise
5684unsafe floating point optimizations:
5685
5686Example:
5687""""""""
5688
5689.. code-block:: llvm
5690
Tim Northover675a0962014-06-13 14:24:23 +00005691 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005692
5693'``udiv``' Instruction
5694^^^^^^^^^^^^^^^^^^^^^^
5695
5696Syntax:
5697"""""""
5698
5699::
5700
Tim Northover675a0962014-06-13 14:24:23 +00005701 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5702 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005703
5704Overview:
5705"""""""""
5706
5707The '``udiv``' instruction returns the quotient of its two operands.
5708
5709Arguments:
5710""""""""""
5711
5712The two arguments to the '``udiv``' instruction must be
5713:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5714arguments must have identical types.
5715
5716Semantics:
5717""""""""""
5718
5719The value produced is the unsigned integer quotient of the two operands.
5720
5721Note that unsigned integer division and signed integer division are
5722distinct operations; for signed integer division, use '``sdiv``'.
5723
5724Division by zero leads to undefined behavior.
5725
5726If the ``exact`` keyword is present, the result value of the ``udiv`` is
5727a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5728such, "((a udiv exact b) mul b) == a").
5729
5730Example:
5731""""""""
5732
5733.. code-block:: llvm
5734
Tim Northover675a0962014-06-13 14:24:23 +00005735 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005736
5737'``sdiv``' Instruction
5738^^^^^^^^^^^^^^^^^^^^^^
5739
5740Syntax:
5741"""""""
5742
5743::
5744
Tim Northover675a0962014-06-13 14:24:23 +00005745 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
5746 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005747
5748Overview:
5749"""""""""
5750
5751The '``sdiv``' instruction returns the quotient of its two operands.
5752
5753Arguments:
5754""""""""""
5755
5756The two arguments to the '``sdiv``' instruction must be
5757:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5758arguments must have identical types.
5759
5760Semantics:
5761""""""""""
5762
5763The value produced is the signed integer quotient of the two operands
5764rounded towards zero.
5765
5766Note that signed integer division and unsigned integer division are
5767distinct operations; for unsigned integer division, use '``udiv``'.
5768
5769Division by zero leads to undefined behavior. Overflow also leads to
5770undefined behavior; this is a rare case, but can occur, for example, by
5771doing a 32-bit division of -2147483648 by -1.
5772
5773If the ``exact`` keyword is present, the result value of the ``sdiv`` is
5774a :ref:`poison value <poisonvalues>` if the result would be rounded.
5775
5776Example:
5777""""""""
5778
5779.. code-block:: llvm
5780
Tim Northover675a0962014-06-13 14:24:23 +00005781 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005782
5783.. _i_fdiv:
5784
5785'``fdiv``' Instruction
5786^^^^^^^^^^^^^^^^^^^^^^
5787
5788Syntax:
5789"""""""
5790
5791::
5792
Tim Northover675a0962014-06-13 14:24:23 +00005793 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005794
5795Overview:
5796"""""""""
5797
5798The '``fdiv``' instruction returns the quotient of its two operands.
5799
5800Arguments:
5801""""""""""
5802
5803The two arguments to the '``fdiv``' instruction must be :ref:`floating
5804point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5805Both arguments must have identical types.
5806
5807Semantics:
5808""""""""""
5809
5810The value produced is the floating point quotient of the two operands.
5811This instruction can also take any number of :ref:`fast-math
5812flags <fastmath>`, which are optimization hints to enable otherwise
5813unsafe floating point optimizations:
5814
5815Example:
5816""""""""
5817
5818.. code-block:: llvm
5819
Tim Northover675a0962014-06-13 14:24:23 +00005820 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005821
5822'``urem``' Instruction
5823^^^^^^^^^^^^^^^^^^^^^^
5824
5825Syntax:
5826"""""""
5827
5828::
5829
Tim Northover675a0962014-06-13 14:24:23 +00005830 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005831
5832Overview:
5833"""""""""
5834
5835The '``urem``' instruction returns the remainder from the unsigned
5836division of its two arguments.
5837
5838Arguments:
5839""""""""""
5840
5841The two arguments to the '``urem``' instruction must be
5842:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5843arguments must have identical types.
5844
5845Semantics:
5846""""""""""
5847
5848This instruction returns the unsigned integer *remainder* of a division.
5849This instruction always performs an unsigned division to get the
5850remainder.
5851
5852Note that unsigned integer remainder and signed integer remainder are
5853distinct operations; for signed integer remainder, use '``srem``'.
5854
5855Taking the remainder of a division by zero leads to undefined behavior.
5856
5857Example:
5858""""""""
5859
5860.. code-block:: llvm
5861
Tim Northover675a0962014-06-13 14:24:23 +00005862 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005863
5864'``srem``' Instruction
5865^^^^^^^^^^^^^^^^^^^^^^
5866
5867Syntax:
5868"""""""
5869
5870::
5871
Tim Northover675a0962014-06-13 14:24:23 +00005872 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005873
5874Overview:
5875"""""""""
5876
5877The '``srem``' instruction returns the remainder from the signed
5878division of its two operands. This instruction can also take
5879:ref:`vector <t_vector>` versions of the values in which case the elements
5880must be integers.
5881
5882Arguments:
5883""""""""""
5884
5885The two arguments to the '``srem``' instruction must be
5886:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5887arguments must have identical types.
5888
5889Semantics:
5890""""""""""
5891
5892This instruction returns the *remainder* of a division (where the result
5893is either zero or has the same sign as the dividend, ``op1``), not the
5894*modulo* operator (where the result is either zero or has the same sign
5895as the divisor, ``op2``) of a value. For more information about the
5896difference, see `The Math
5897Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
5898table of how this is implemented in various languages, please see
5899`Wikipedia: modulo
5900operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
5901
5902Note that signed integer remainder and unsigned integer remainder are
5903distinct operations; for unsigned integer remainder, use '``urem``'.
5904
5905Taking the remainder of a division by zero leads to undefined behavior.
5906Overflow also leads to undefined behavior; this is a rare case, but can
5907occur, for example, by taking the remainder of a 32-bit division of
5908-2147483648 by -1. (The remainder doesn't actually overflow, but this
5909rule lets srem be implemented using instructions that return both the
5910result of the division and the remainder.)
5911
5912Example:
5913""""""""
5914
5915.. code-block:: llvm
5916
Tim Northover675a0962014-06-13 14:24:23 +00005917 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005918
5919.. _i_frem:
5920
5921'``frem``' Instruction
5922^^^^^^^^^^^^^^^^^^^^^^
5923
5924Syntax:
5925"""""""
5926
5927::
5928
Tim Northover675a0962014-06-13 14:24:23 +00005929 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005930
5931Overview:
5932"""""""""
5933
5934The '``frem``' instruction returns the remainder from the division of
5935its two operands.
5936
5937Arguments:
5938""""""""""
5939
5940The two arguments to the '``frem``' instruction must be :ref:`floating
5941point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5942Both arguments must have identical types.
5943
5944Semantics:
5945""""""""""
5946
5947This instruction returns the *remainder* of a division. The remainder
5948has the same sign as the dividend. This instruction can also take any
5949number of :ref:`fast-math flags <fastmath>`, which are optimization hints
5950to enable otherwise unsafe floating point optimizations:
5951
5952Example:
5953""""""""
5954
5955.. code-block:: llvm
5956
Tim Northover675a0962014-06-13 14:24:23 +00005957 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005958
5959.. _bitwiseops:
5960
5961Bitwise Binary Operations
5962-------------------------
5963
5964Bitwise binary operators are used to do various forms of bit-twiddling
5965in a program. They are generally very efficient instructions and can
5966commonly be strength reduced from other instructions. They require two
5967operands of the same type, execute an operation on them, and produce a
5968single value. The resulting value is the same type as its operands.
5969
5970'``shl``' Instruction
5971^^^^^^^^^^^^^^^^^^^^^
5972
5973Syntax:
5974"""""""
5975
5976::
5977
Tim Northover675a0962014-06-13 14:24:23 +00005978 <result> = shl <ty> <op1>, <op2> ; yields ty:result
5979 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
5980 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
5981 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005982
5983Overview:
5984"""""""""
5985
5986The '``shl``' instruction returns the first operand shifted to the left
5987a specified number of bits.
5988
5989Arguments:
5990""""""""""
5991
5992Both arguments to the '``shl``' instruction must be the same
5993:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5994'``op2``' is treated as an unsigned value.
5995
5996Semantics:
5997""""""""""
5998
5999The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6000where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006001dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006002``op1``, the result is undefined. If the arguments are vectors, each
6003vector element of ``op1`` is shifted by the corresponding shift amount
6004in ``op2``.
6005
6006If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6007value <poisonvalues>` if it shifts out any non-zero bits. If the
6008``nsw`` keyword is present, then the shift produces a :ref:`poison
6009value <poisonvalues>` if it shifts out any bits that disagree with the
6010resultant sign bit. As such, NUW/NSW have the same semantics as they
6011would if the shift were expressed as a mul instruction with the same
6012nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6013
6014Example:
6015""""""""
6016
6017.. code-block:: llvm
6018
Tim Northover675a0962014-06-13 14:24:23 +00006019 <result> = shl i32 4, %var ; yields i32: 4 << %var
6020 <result> = shl i32 4, 2 ; yields i32: 16
6021 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006022 <result> = shl i32 1, 32 ; undefined
6023 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6024
6025'``lshr``' Instruction
6026^^^^^^^^^^^^^^^^^^^^^^
6027
6028Syntax:
6029"""""""
6030
6031::
6032
Tim Northover675a0962014-06-13 14:24:23 +00006033 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6034 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006035
6036Overview:
6037"""""""""
6038
6039The '``lshr``' instruction (logical shift right) returns the first
6040operand shifted to the right a specified number of bits with zero fill.
6041
6042Arguments:
6043""""""""""
6044
6045Both arguments to the '``lshr``' instruction must be the same
6046:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6047'``op2``' is treated as an unsigned value.
6048
6049Semantics:
6050""""""""""
6051
6052This instruction always performs a logical shift right operation. The
6053most significant bits of the result will be filled with zero bits after
6054the shift. If ``op2`` is (statically or dynamically) equal to or larger
6055than the number of bits in ``op1``, the result is undefined. If the
6056arguments are vectors, each vector element of ``op1`` is shifted by the
6057corresponding shift amount in ``op2``.
6058
6059If the ``exact`` keyword is present, the result value of the ``lshr`` is
6060a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6061non-zero.
6062
6063Example:
6064""""""""
6065
6066.. code-block:: llvm
6067
Tim Northover675a0962014-06-13 14:24:23 +00006068 <result> = lshr i32 4, 1 ; yields i32:result = 2
6069 <result> = lshr i32 4, 2 ; yields i32:result = 1
6070 <result> = lshr i8 4, 3 ; yields i8:result = 0
6071 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006072 <result> = lshr i32 1, 32 ; undefined
6073 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6074
6075'``ashr``' Instruction
6076^^^^^^^^^^^^^^^^^^^^^^
6077
6078Syntax:
6079"""""""
6080
6081::
6082
Tim Northover675a0962014-06-13 14:24:23 +00006083 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6084 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006085
6086Overview:
6087"""""""""
6088
6089The '``ashr``' instruction (arithmetic shift right) returns the first
6090operand shifted to the right a specified number of bits with sign
6091extension.
6092
6093Arguments:
6094""""""""""
6095
6096Both arguments to the '``ashr``' instruction must be the same
6097:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6098'``op2``' is treated as an unsigned value.
6099
6100Semantics:
6101""""""""""
6102
6103This instruction always performs an arithmetic shift right operation,
6104The most significant bits of the result will be filled with the sign bit
6105of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6106than the number of bits in ``op1``, the result is undefined. If the
6107arguments are vectors, each vector element of ``op1`` is shifted by the
6108corresponding shift amount in ``op2``.
6109
6110If the ``exact`` keyword is present, the result value of the ``ashr`` is
6111a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6112non-zero.
6113
6114Example:
6115""""""""
6116
6117.. code-block:: llvm
6118
Tim Northover675a0962014-06-13 14:24:23 +00006119 <result> = ashr i32 4, 1 ; yields i32:result = 2
6120 <result> = ashr i32 4, 2 ; yields i32:result = 1
6121 <result> = ashr i8 4, 3 ; yields i8:result = 0
6122 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006123 <result> = ashr i32 1, 32 ; undefined
6124 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6125
6126'``and``' Instruction
6127^^^^^^^^^^^^^^^^^^^^^
6128
6129Syntax:
6130"""""""
6131
6132::
6133
Tim Northover675a0962014-06-13 14:24:23 +00006134 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006135
6136Overview:
6137"""""""""
6138
6139The '``and``' instruction returns the bitwise logical and of its two
6140operands.
6141
6142Arguments:
6143""""""""""
6144
6145The two arguments to the '``and``' instruction must be
6146:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6147arguments must have identical types.
6148
6149Semantics:
6150""""""""""
6151
6152The truth table used for the '``and``' instruction is:
6153
6154+-----+-----+-----+
6155| In0 | In1 | Out |
6156+-----+-----+-----+
6157| 0 | 0 | 0 |
6158+-----+-----+-----+
6159| 0 | 1 | 0 |
6160+-----+-----+-----+
6161| 1 | 0 | 0 |
6162+-----+-----+-----+
6163| 1 | 1 | 1 |
6164+-----+-----+-----+
6165
6166Example:
6167""""""""
6168
6169.. code-block:: llvm
6170
Tim Northover675a0962014-06-13 14:24:23 +00006171 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6172 <result> = and i32 15, 40 ; yields i32:result = 8
6173 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006174
6175'``or``' Instruction
6176^^^^^^^^^^^^^^^^^^^^
6177
6178Syntax:
6179"""""""
6180
6181::
6182
Tim Northover675a0962014-06-13 14:24:23 +00006183 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006184
6185Overview:
6186"""""""""
6187
6188The '``or``' instruction returns the bitwise logical inclusive or of its
6189two operands.
6190
6191Arguments:
6192""""""""""
6193
6194The two arguments to the '``or``' instruction must be
6195:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6196arguments must have identical types.
6197
6198Semantics:
6199""""""""""
6200
6201The truth table used for the '``or``' instruction is:
6202
6203+-----+-----+-----+
6204| In0 | In1 | Out |
6205+-----+-----+-----+
6206| 0 | 0 | 0 |
6207+-----+-----+-----+
6208| 0 | 1 | 1 |
6209+-----+-----+-----+
6210| 1 | 0 | 1 |
6211+-----+-----+-----+
6212| 1 | 1 | 1 |
6213+-----+-----+-----+
6214
6215Example:
6216""""""""
6217
6218::
6219
Tim Northover675a0962014-06-13 14:24:23 +00006220 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6221 <result> = or i32 15, 40 ; yields i32:result = 47
6222 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006223
6224'``xor``' Instruction
6225^^^^^^^^^^^^^^^^^^^^^
6226
6227Syntax:
6228"""""""
6229
6230::
6231
Tim Northover675a0962014-06-13 14:24:23 +00006232 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006233
6234Overview:
6235"""""""""
6236
6237The '``xor``' instruction returns the bitwise logical exclusive or of
6238its two operands. The ``xor`` is used to implement the "one's
6239complement" operation, which is the "~" operator in C.
6240
6241Arguments:
6242""""""""""
6243
6244The two arguments to the '``xor``' instruction must be
6245:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6246arguments must have identical types.
6247
6248Semantics:
6249""""""""""
6250
6251The truth table used for the '``xor``' instruction is:
6252
6253+-----+-----+-----+
6254| In0 | In1 | Out |
6255+-----+-----+-----+
6256| 0 | 0 | 0 |
6257+-----+-----+-----+
6258| 0 | 1 | 1 |
6259+-----+-----+-----+
6260| 1 | 0 | 1 |
6261+-----+-----+-----+
6262| 1 | 1 | 0 |
6263+-----+-----+-----+
6264
6265Example:
6266""""""""
6267
6268.. code-block:: llvm
6269
Tim Northover675a0962014-06-13 14:24:23 +00006270 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6271 <result> = xor i32 15, 40 ; yields i32:result = 39
6272 <result> = xor i32 4, 8 ; yields i32:result = 12
6273 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006274
6275Vector Operations
6276-----------------
6277
6278LLVM supports several instructions to represent vector operations in a
6279target-independent manner. These instructions cover the element-access
6280and vector-specific operations needed to process vectors effectively.
6281While LLVM does directly support these vector operations, many
6282sophisticated algorithms will want to use target-specific intrinsics to
6283take full advantage of a specific target.
6284
6285.. _i_extractelement:
6286
6287'``extractelement``' Instruction
6288^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6289
6290Syntax:
6291"""""""
6292
6293::
6294
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006295 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006296
6297Overview:
6298"""""""""
6299
6300The '``extractelement``' instruction extracts a single scalar element
6301from a vector at a specified index.
6302
6303Arguments:
6304""""""""""
6305
6306The first operand of an '``extractelement``' instruction is a value of
6307:ref:`vector <t_vector>` type. The second operand is an index indicating
6308the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006309variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006310
6311Semantics:
6312""""""""""
6313
6314The result is a scalar of the same type as the element type of ``val``.
6315Its value is the value at position ``idx`` of ``val``. If ``idx``
6316exceeds the length of ``val``, the results are undefined.
6317
6318Example:
6319""""""""
6320
6321.. code-block:: llvm
6322
6323 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6324
6325.. _i_insertelement:
6326
6327'``insertelement``' Instruction
6328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6329
6330Syntax:
6331"""""""
6332
6333::
6334
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006335 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006336
6337Overview:
6338"""""""""
6339
6340The '``insertelement``' instruction inserts a scalar element into a
6341vector at a specified index.
6342
6343Arguments:
6344""""""""""
6345
6346The first operand of an '``insertelement``' instruction is a value of
6347:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6348type must equal the element type of the first operand. The third operand
6349is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006350index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006351
6352Semantics:
6353""""""""""
6354
6355The result is a vector of the same type as ``val``. Its element values
6356are those of ``val`` except at position ``idx``, where it gets the value
6357``elt``. If ``idx`` exceeds the length of ``val``, the results are
6358undefined.
6359
6360Example:
6361""""""""
6362
6363.. code-block:: llvm
6364
6365 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6366
6367.. _i_shufflevector:
6368
6369'``shufflevector``' Instruction
6370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6371
6372Syntax:
6373"""""""
6374
6375::
6376
6377 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6378
6379Overview:
6380"""""""""
6381
6382The '``shufflevector``' instruction constructs a permutation of elements
6383from two input vectors, returning a vector with the same element type as
6384the input and length that is the same as the shuffle mask.
6385
6386Arguments:
6387""""""""""
6388
6389The first two operands of a '``shufflevector``' instruction are vectors
6390with the same type. The third argument is a shuffle mask whose element
6391type is always 'i32'. The result of the instruction is a vector whose
6392length is the same as the shuffle mask and whose element type is the
6393same as the element type of the first two operands.
6394
6395The shuffle mask operand is required to be a constant vector with either
6396constant integer or undef values.
6397
6398Semantics:
6399""""""""""
6400
6401The elements of the two input vectors are numbered from left to right
6402across both of the vectors. The shuffle mask operand specifies, for each
6403element of the result vector, which element of the two input vectors the
6404result element gets. The element selector may be undef (meaning "don't
6405care") and the second operand may be undef if performing a shuffle from
6406only one vector.
6407
6408Example:
6409""""""""
6410
6411.. code-block:: llvm
6412
6413 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6414 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6415 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6416 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6417 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6418 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6419 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6420 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6421
6422Aggregate Operations
6423--------------------
6424
6425LLVM supports several instructions for working with
6426:ref:`aggregate <t_aggregate>` values.
6427
6428.. _i_extractvalue:
6429
6430'``extractvalue``' Instruction
6431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6432
6433Syntax:
6434"""""""
6435
6436::
6437
6438 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6439
6440Overview:
6441"""""""""
6442
6443The '``extractvalue``' instruction extracts the value of a member field
6444from an :ref:`aggregate <t_aggregate>` value.
6445
6446Arguments:
6447""""""""""
6448
6449The first operand of an '``extractvalue``' instruction is a value of
6450:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
6451constant indices to specify which value to extract in a similar manner
6452as indices in a '``getelementptr``' instruction.
6453
6454The major differences to ``getelementptr`` indexing are:
6455
6456- Since the value being indexed is not a pointer, the first index is
6457 omitted and assumed to be zero.
6458- At least one index must be specified.
6459- Not only struct indices but also array indices must be in bounds.
6460
6461Semantics:
6462""""""""""
6463
6464The result is the value at the position in the aggregate specified by
6465the index operands.
6466
6467Example:
6468""""""""
6469
6470.. code-block:: llvm
6471
6472 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6473
6474.. _i_insertvalue:
6475
6476'``insertvalue``' Instruction
6477^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6478
6479Syntax:
6480"""""""
6481
6482::
6483
6484 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6485
6486Overview:
6487"""""""""
6488
6489The '``insertvalue``' instruction inserts a value into a member field in
6490an :ref:`aggregate <t_aggregate>` value.
6491
6492Arguments:
6493""""""""""
6494
6495The first operand of an '``insertvalue``' instruction is a value of
6496:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6497a first-class value to insert. The following operands are constant
6498indices indicating the position at which to insert the value in a
6499similar manner as indices in a '``extractvalue``' instruction. The value
6500to insert must have the same type as the value identified by the
6501indices.
6502
6503Semantics:
6504""""""""""
6505
6506The result is an aggregate of the same type as ``val``. Its value is
6507that of ``val`` except that the value at the position specified by the
6508indices is that of ``elt``.
6509
6510Example:
6511""""""""
6512
6513.. code-block:: llvm
6514
6515 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6516 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006517 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006518
6519.. _memoryops:
6520
6521Memory Access and Addressing Operations
6522---------------------------------------
6523
6524A key design point of an SSA-based representation is how it represents
6525memory. In LLVM, no memory locations are in SSA form, which makes things
6526very simple. This section describes how to read, write, and allocate
6527memory in LLVM.
6528
6529.. _i_alloca:
6530
6531'``alloca``' Instruction
6532^^^^^^^^^^^^^^^^^^^^^^^^
6533
6534Syntax:
6535"""""""
6536
6537::
6538
Tim Northover675a0962014-06-13 14:24:23 +00006539 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006540
6541Overview:
6542"""""""""
6543
6544The '``alloca``' instruction allocates memory on the stack frame of the
6545currently executing function, to be automatically released when this
6546function returns to its caller. The object is always allocated in the
6547generic address space (address space zero).
6548
6549Arguments:
6550""""""""""
6551
6552The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6553bytes of memory on the runtime stack, returning a pointer of the
6554appropriate type to the program. If "NumElements" is specified, it is
6555the number of elements allocated, otherwise "NumElements" is defaulted
6556to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006557allocation is guaranteed to be aligned to at least that boundary. The
6558alignment may not be greater than ``1 << 29``. If not specified, or if
6559zero, the target can choose to align the allocation on any convenient
6560boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006561
6562'``type``' may be any sized type.
6563
6564Semantics:
6565""""""""""
6566
6567Memory is allocated; a pointer is returned. The operation is undefined
6568if there is insufficient stack space for the allocation. '``alloca``'d
6569memory is automatically released when the function returns. The
6570'``alloca``' instruction is commonly used to represent automatic
6571variables that must have an address available. When the function returns
6572(either with the ``ret`` or ``resume`` instructions), the memory is
6573reclaimed. Allocating zero bytes is legal, but the result is undefined.
6574The order in which memory is allocated (ie., which way the stack grows)
6575is not specified.
6576
6577Example:
6578""""""""
6579
6580.. code-block:: llvm
6581
Tim Northover675a0962014-06-13 14:24:23 +00006582 %ptr = alloca i32 ; yields i32*:ptr
6583 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6584 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6585 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006586
6587.. _i_load:
6588
6589'``load``' Instruction
6590^^^^^^^^^^^^^^^^^^^^^^
6591
6592Syntax:
6593"""""""
6594
6595::
6596
Sanjoy Dasf9995472015-05-19 20:10:19 +00006597 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>][, !dereferenceable !<index>][, !dereferenceable_or_null !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006598 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
6599 !<index> = !{ i32 1 }
6600
6601Overview:
6602"""""""""
6603
6604The '``load``' instruction is used to read from memory.
6605
6606Arguments:
6607""""""""""
6608
Eli Bendersky239a78b2013-04-17 20:17:08 +00006609The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006610from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006611class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6612then the optimizer is not allowed to modify the number or order of
6613execution of this ``load`` with other :ref:`volatile
6614operations <volatile>`.
6615
6616If the ``load`` is marked as ``atomic``, it takes an extra
6617:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6618``release`` and ``acq_rel`` orderings are not valid on ``load``
6619instructions. Atomic loads produce :ref:`defined <memmodel>` results
6620when they may see multiple atomic stores. The type of the pointee must
6621be an integer type whose bit width is a power of two greater than or
6622equal to eight and less than or equal to a target-specific size limit.
6623``align`` must be explicitly specified on atomic loads, and the load has
6624undefined behavior if the alignment is not set to a value which is at
6625least the size in bytes of the pointee. ``!nontemporal`` does not have
6626any defined semantics for atomic loads.
6627
6628The optional constant ``align`` argument specifies the alignment of the
6629operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006630or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006631alignment for the target. It is the responsibility of the code emitter
6632to ensure that the alignment information is correct. Overestimating the
6633alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006634may produce less efficient code. An alignment of 1 is always safe. The
6635maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006636
6637The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006638metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006639``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006640metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006641that this load is not expected to be reused in the cache. The code
6642generator may select special instructions to save cache bandwidth, such
6643as the ``MOVNT`` instruction on x86.
6644
6645The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006646metadata name ``<index>`` corresponding to a metadata node with no
6647entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006648instruction tells the optimizer and code generator that the address
6649operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006650Being invariant does not imply that a location is dereferenceable,
6651but it does imply that once the location is known dereferenceable
6652its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006653
Philip Reamescdb72f32014-10-20 22:40:55 +00006654The optional ``!nonnull`` metadata must reference a single
6655metadata name ``<index>`` corresponding to a metadata node with no
6656entries. The existence of the ``!nonnull`` metadata on the
6657instruction tells the optimizer that the value loaded is known to
6658never be null. This is analogous to the ''nonnull'' attribute
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006659on parameters and return values. This metadata can only be applied
6660to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006661
Sanjoy Dasf9995472015-05-19 20:10:19 +00006662The optional ``!dereferenceable`` metadata must reference a single
6663metadata name ``<index>`` corresponding to a metadata node with one ``i64``
6664entry. The existence of the ``!dereferenceable`` metadata on the instruction
6665tells the optimizer that the value loaded is known to be dereferenceable.
6666The number of bytes known to be dereferenceable is specified by the integer
6667value in the metadata node. This is analogous to the ''dereferenceable''
6668attribute on parameters and return values. This metadata can only be applied
6669to loads of a pointer type.
6670
6671The optional ``!dereferenceable_or_null`` metadata must reference a single
6672metadata name ``<index>`` corresponding to a metadata node with one ``i64``
6673entry. The existence of the ``!dereferenceable_or_null`` metadata on the
6674instruction tells the optimizer that the value loaded is known to be either
6675dereferenceable or null.
6676The number of bytes known to be dereferenceable is specified by the integer
6677value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6678attribute on parameters and return values. This metadata can only be applied
6679to loads of a pointer type.
6680
Sean Silvab084af42012-12-07 10:36:55 +00006681Semantics:
6682""""""""""
6683
6684The location of memory pointed to is loaded. If the value being loaded
6685is of scalar type then the number of bytes read does not exceed the
6686minimum number of bytes needed to hold all bits of the type. For
6687example, loading an ``i24`` reads at most three bytes. When loading a
6688value of a type like ``i20`` with a size that is not an integral number
6689of bytes, the result is undefined if the value was not originally
6690written using a store of the same type.
6691
6692Examples:
6693"""""""""
6694
6695.. code-block:: llvm
6696
Tim Northover675a0962014-06-13 14:24:23 +00006697 %ptr = alloca i32 ; yields i32*:ptr
6698 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006699 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006700
6701.. _i_store:
6702
6703'``store``' Instruction
6704^^^^^^^^^^^^^^^^^^^^^^^
6705
6706Syntax:
6707"""""""
6708
6709::
6710
Tim Northover675a0962014-06-13 14:24:23 +00006711 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
6712 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006713
6714Overview:
6715"""""""""
6716
6717The '``store``' instruction is used to write to memory.
6718
6719Arguments:
6720""""""""""
6721
Eli Benderskyca380842013-04-17 17:17:20 +00006722There are two arguments to the ``store`` instruction: a value to store
6723and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00006724operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00006725the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00006726then the optimizer is not allowed to modify the number or order of
6727execution of this ``store`` with other :ref:`volatile
6728operations <volatile>`.
6729
6730If the ``store`` is marked as ``atomic``, it takes an extra
6731:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6732``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
6733instructions. Atomic loads produce :ref:`defined <memmodel>` results
6734when they may see multiple atomic stores. The type of the pointee must
6735be an integer type whose bit width is a power of two greater than or
6736equal to eight and less than or equal to a target-specific size limit.
6737``align`` must be explicitly specified on atomic stores, and the store
6738has undefined behavior if the alignment is not set to a value which is
6739at least the size in bytes of the pointee. ``!nontemporal`` does not
6740have any defined semantics for atomic stores.
6741
Eli Benderskyca380842013-04-17 17:17:20 +00006742The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00006743operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00006744or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006745alignment for the target. It is the responsibility of the code emitter
6746to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00006747alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00006748alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006749safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006750
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006751The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00006752name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006753value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00006754tells the optimizer and code generator that this load is not expected to
6755be reused in the cache. The code generator may select special
6756instructions to save cache bandwidth, such as the MOVNT instruction on
6757x86.
6758
6759Semantics:
6760""""""""""
6761
Eli Benderskyca380842013-04-17 17:17:20 +00006762The contents of memory are updated to contain ``<value>`` at the
6763location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00006764of scalar type then the number of bytes written does not exceed the
6765minimum number of bytes needed to hold all bits of the type. For
6766example, storing an ``i24`` writes at most three bytes. When writing a
6767value of a type like ``i20`` with a size that is not an integral number
6768of bytes, it is unspecified what happens to the extra bits that do not
6769belong to the type, but they will typically be overwritten.
6770
6771Example:
6772""""""""
6773
6774.. code-block:: llvm
6775
Tim Northover675a0962014-06-13 14:24:23 +00006776 %ptr = alloca i32 ; yields i32*:ptr
6777 store i32 3, i32* %ptr ; yields void
6778 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006779
6780.. _i_fence:
6781
6782'``fence``' Instruction
6783^^^^^^^^^^^^^^^^^^^^^^^
6784
6785Syntax:
6786"""""""
6787
6788::
6789
Tim Northover675a0962014-06-13 14:24:23 +00006790 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006791
6792Overview:
6793"""""""""
6794
6795The '``fence``' instruction is used to introduce happens-before edges
6796between operations.
6797
6798Arguments:
6799""""""""""
6800
6801'``fence``' instructions take an :ref:`ordering <ordering>` argument which
6802defines what *synchronizes-with* edges they add. They can only be given
6803``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
6804
6805Semantics:
6806""""""""""
6807
6808A fence A which has (at least) ``release`` ordering semantics
6809*synchronizes with* a fence B with (at least) ``acquire`` ordering
6810semantics if and only if there exist atomic operations X and Y, both
6811operating on some atomic object M, such that A is sequenced before X, X
6812modifies M (either directly or through some side effect of a sequence
6813headed by X), Y is sequenced before B, and Y observes M. This provides a
6814*happens-before* dependency between A and B. Rather than an explicit
6815``fence``, one (but not both) of the atomic operations X or Y might
6816provide a ``release`` or ``acquire`` (resp.) ordering constraint and
6817still *synchronize-with* the explicit ``fence`` and establish the
6818*happens-before* edge.
6819
6820A ``fence`` which has ``seq_cst`` ordering, in addition to having both
6821``acquire`` and ``release`` semantics specified above, participates in
6822the global program order of other ``seq_cst`` operations and/or fences.
6823
6824The optional ":ref:`singlethread <singlethread>`" argument specifies
6825that the fence only synchronizes with other fences in the same thread.
6826(This is useful for interacting with signal handlers.)
6827
6828Example:
6829""""""""
6830
6831.. code-block:: llvm
6832
Tim Northover675a0962014-06-13 14:24:23 +00006833 fence acquire ; yields void
6834 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006835
6836.. _i_cmpxchg:
6837
6838'``cmpxchg``' Instruction
6839^^^^^^^^^^^^^^^^^^^^^^^^^
6840
6841Syntax:
6842"""""""
6843
6844::
6845
Tim Northover675a0962014-06-13 14:24:23 +00006846 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00006847
6848Overview:
6849"""""""""
6850
6851The '``cmpxchg``' instruction is used to atomically modify memory. It
6852loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00006853equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00006854
6855Arguments:
6856""""""""""
6857
6858There are three arguments to the '``cmpxchg``' instruction: an address
6859to operate on, a value to compare to the value currently be at that
6860address, and a new value to place at that address if the compared values
6861are equal. The type of '<cmp>' must be an integer type whose bit width
6862is a power of two greater than or equal to eight and less than or equal
6863to a target-specific size limit. '<cmp>' and '<new>' must have the same
6864type, and the type of '<pointer>' must be a pointer to that type. If the
6865``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
6866to modify the number or order of execution of this ``cmpxchg`` with
6867other :ref:`volatile operations <volatile>`.
6868
Tim Northovere94a5182014-03-11 10:48:52 +00006869The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00006870``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
6871must be at least ``monotonic``, the ordering constraint on failure must be no
6872stronger than that on success, and the failure ordering cannot be either
6873``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00006874
6875The optional "``singlethread``" argument declares that the ``cmpxchg``
6876is only atomic with respect to code (usually signal handlers) running in
6877the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
6878respect to all other code in the system.
6879
6880The pointer passed into cmpxchg must have alignment greater than or
6881equal to the size in memory of the operand.
6882
6883Semantics:
6884""""""""""
6885
Tim Northover420a2162014-06-13 14:24:07 +00006886The contents of memory at the location specified by the '``<pointer>``' operand
6887is read and compared to '``<cmp>``'; if the read value is the equal, the
6888'``<new>``' is written. The original value at the location is returned, together
6889with a flag indicating success (true) or failure (false).
6890
6891If the cmpxchg operation is marked as ``weak`` then a spurious failure is
6892permitted: the operation may not write ``<new>`` even if the comparison
6893matched.
6894
6895If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
6896if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00006897
Tim Northovere94a5182014-03-11 10:48:52 +00006898A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
6899identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
6900load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00006901
6902Example:
6903""""""""
6904
6905.. code-block:: llvm
6906
6907 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00006908 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00006909 br label %loop
6910
6911 loop:
6912 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
6913 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00006914 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00006915 %value_loaded = extractvalue { i32, i1 } %val_success, 0
6916 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00006917 br i1 %success, label %done, label %loop
6918
6919 done:
6920 ...
6921
6922.. _i_atomicrmw:
6923
6924'``atomicrmw``' Instruction
6925^^^^^^^^^^^^^^^^^^^^^^^^^^^
6926
6927Syntax:
6928"""""""
6929
6930::
6931
Tim Northover675a0962014-06-13 14:24:23 +00006932 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00006933
6934Overview:
6935"""""""""
6936
6937The '``atomicrmw``' instruction is used to atomically modify memory.
6938
6939Arguments:
6940""""""""""
6941
6942There are three arguments to the '``atomicrmw``' instruction: an
6943operation to apply, an address whose value to modify, an argument to the
6944operation. The operation must be one of the following keywords:
6945
6946- xchg
6947- add
6948- sub
6949- and
6950- nand
6951- or
6952- xor
6953- max
6954- min
6955- umax
6956- umin
6957
6958The type of '<value>' must be an integer type whose bit width is a power
6959of two greater than or equal to eight and less than or equal to a
6960target-specific size limit. The type of the '``<pointer>``' operand must
6961be a pointer to that type. If the ``atomicrmw`` is marked as
6962``volatile``, then the optimizer is not allowed to modify the number or
6963order of execution of this ``atomicrmw`` with other :ref:`volatile
6964operations <volatile>`.
6965
6966Semantics:
6967""""""""""
6968
6969The contents of memory at the location specified by the '``<pointer>``'
6970operand are atomically read, modified, and written back. The original
6971value at the location is returned. The modification is specified by the
6972operation argument:
6973
6974- xchg: ``*ptr = val``
6975- add: ``*ptr = *ptr + val``
6976- sub: ``*ptr = *ptr - val``
6977- and: ``*ptr = *ptr & val``
6978- nand: ``*ptr = ~(*ptr & val)``
6979- or: ``*ptr = *ptr | val``
6980- xor: ``*ptr = *ptr ^ val``
6981- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
6982- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
6983- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
6984 comparison)
6985- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
6986 comparison)
6987
6988Example:
6989""""""""
6990
6991.. code-block:: llvm
6992
Tim Northover675a0962014-06-13 14:24:23 +00006993 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00006994
6995.. _i_getelementptr:
6996
6997'``getelementptr``' Instruction
6998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6999
7000Syntax:
7001"""""""
7002
7003::
7004
David Blaikie16a97eb2015-03-04 22:02:58 +00007005 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7006 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7007 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007008
7009Overview:
7010"""""""""
7011
7012The '``getelementptr``' instruction is used to get the address of a
7013subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007014address calculation only and does not access memory. The instruction can also
7015be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007016
7017Arguments:
7018""""""""""
7019
David Blaikie16a97eb2015-03-04 22:02:58 +00007020The first argument is always a type used as the basis for the calculations.
7021The second argument is always a pointer or a vector of pointers, and is the
7022base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007023that indicate which of the elements of the aggregate object are indexed.
7024The interpretation of each index is dependent on the type being indexed
7025into. The first index always indexes the pointer value given as the
7026first argument, the second index indexes a value of the type pointed to
7027(not necessarily the value directly pointed to, since the first index
7028can be non-zero), etc. The first type indexed into must be a pointer
7029value, subsequent types can be arrays, vectors, and structs. Note that
7030subsequent types being indexed into can never be pointers, since that
7031would require loading the pointer before continuing calculation.
7032
7033The type of each index argument depends on the type it is indexing into.
7034When indexing into a (optionally packed) structure, only ``i32`` integer
7035**constants** are allowed (when using a vector of indices they must all
7036be the **same** ``i32`` integer constant). When indexing into an array,
7037pointer or vector, integers of any width are allowed, and they are not
7038required to be constant. These integers are treated as signed values
7039where relevant.
7040
7041For example, let's consider a C code fragment and how it gets compiled
7042to LLVM:
7043
7044.. code-block:: c
7045
7046 struct RT {
7047 char A;
7048 int B[10][20];
7049 char C;
7050 };
7051 struct ST {
7052 int X;
7053 double Y;
7054 struct RT Z;
7055 };
7056
7057 int *foo(struct ST *s) {
7058 return &s[1].Z.B[5][13];
7059 }
7060
7061The LLVM code generated by Clang is:
7062
7063.. code-block:: llvm
7064
7065 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7066 %struct.ST = type { i32, double, %struct.RT }
7067
7068 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7069 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007070 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007071 ret i32* %arrayidx
7072 }
7073
7074Semantics:
7075""""""""""
7076
7077In the example above, the first index is indexing into the
7078'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7079= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7080indexes into the third element of the structure, yielding a
7081'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7082structure. The third index indexes into the second element of the
7083structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7084dimensions of the array are subscripted into, yielding an '``i32``'
7085type. The '``getelementptr``' instruction returns a pointer to this
7086element, thus computing a value of '``i32*``' type.
7087
7088Note that it is perfectly legal to index partially through a structure,
7089returning a pointer to an inner element. Because of this, the LLVM code
7090for the given testcase is equivalent to:
7091
7092.. code-block:: llvm
7093
7094 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007095 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7096 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7097 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7098 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7099 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007100 ret i32* %t5
7101 }
7102
7103If the ``inbounds`` keyword is present, the result value of the
7104``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7105pointer is not an *in bounds* address of an allocated object, or if any
7106of the addresses that would be formed by successive addition of the
7107offsets implied by the indices to the base address with infinitely
7108precise signed arithmetic are not an *in bounds* address of that
7109allocated object. The *in bounds* addresses for an allocated object are
7110all the addresses that point into the object, plus the address one byte
7111past the end. In cases where the base is a vector of pointers the
7112``inbounds`` keyword applies to each of the computations element-wise.
7113
7114If the ``inbounds`` keyword is not present, the offsets are added to the
7115base address with silently-wrapping two's complement arithmetic. If the
7116offsets have a different width from the pointer, they are sign-extended
7117or truncated to the width of the pointer. The result value of the
7118``getelementptr`` may be outside the object pointed to by the base
7119pointer. The result value may not necessarily be used to access memory
7120though, even if it happens to point into allocated storage. See the
7121:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7122information.
7123
7124The getelementptr instruction is often confusing. For some more insight
7125into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7126
7127Example:
7128""""""""
7129
7130.. code-block:: llvm
7131
7132 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007133 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007134 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007135 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007136 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007137 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007138 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007139 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007140
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007141Vector of pointers:
7142"""""""""""""""""""
7143
7144The ``getelementptr`` returns a vector of pointers, instead of a single address,
7145when one or more of its arguments is a vector. In such cases, all vector
7146arguments should have the same number of elements, and every scalar argument
7147will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007148
7149.. code-block:: llvm
7150
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007151 ; All arguments are vectors:
7152 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7153 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
7154
7155 ; Add the same scalar offset to each pointer of a vector:
7156 ; A[i] = ptrs[i] + offset*sizeof(i8)
7157 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
7158
7159 ; Add distinct offsets to the same pointer:
7160 ; A[i] = ptr + offsets[i]*sizeof(i8)
7161 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
7162
7163 ; In all cases described above the type of the result is <4 x i8*>
7164
7165The two following instructions are equivalent:
7166
7167.. code-block:: llvm
7168
7169 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7170 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7171 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7172 <4 x i32> %ind4,
7173 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
7174
7175 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7176 i32 2, i32 1, <4 x i32> %ind4, i64 13
7177
7178Let's look at the C code, where the vector version of ``getelementptr``
7179makes sense:
7180
7181.. code-block:: c
7182
7183 // Let's assume that we vectorize the following loop:
7184 double *A, B; int *C;
7185 for (int i = 0; i < size; ++i) {
7186 A[i] = B[C[i]];
7187 }
7188
7189.. code-block:: llvm
7190
7191 ; get pointers for 8 elements from array B
7192 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7193 ; load 8 elements from array B into A
7194 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7195 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007196
7197Conversion Operations
7198---------------------
7199
7200The instructions in this category are the conversion instructions
7201(casting) which all take a single operand and a type. They perform
7202various bit conversions on the operand.
7203
7204'``trunc .. to``' Instruction
7205^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7206
7207Syntax:
7208"""""""
7209
7210::
7211
7212 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7213
7214Overview:
7215"""""""""
7216
7217The '``trunc``' instruction truncates its operand to the type ``ty2``.
7218
7219Arguments:
7220""""""""""
7221
7222The '``trunc``' instruction takes a value to trunc, and a type to trunc
7223it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7224of the same number of integers. The bit size of the ``value`` must be
7225larger than the bit size of the destination type, ``ty2``. Equal sized
7226types are not allowed.
7227
7228Semantics:
7229""""""""""
7230
7231The '``trunc``' instruction truncates the high order bits in ``value``
7232and converts the remaining bits to ``ty2``. Since the source size must
7233be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7234It will always truncate bits.
7235
7236Example:
7237""""""""
7238
7239.. code-block:: llvm
7240
7241 %X = trunc i32 257 to i8 ; yields i8:1
7242 %Y = trunc i32 123 to i1 ; yields i1:true
7243 %Z = trunc i32 122 to i1 ; yields i1:false
7244 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7245
7246'``zext .. to``' Instruction
7247^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7248
7249Syntax:
7250"""""""
7251
7252::
7253
7254 <result> = zext <ty> <value> to <ty2> ; yields ty2
7255
7256Overview:
7257"""""""""
7258
7259The '``zext``' instruction zero extends its operand to type ``ty2``.
7260
7261Arguments:
7262""""""""""
7263
7264The '``zext``' instruction takes a value to cast, and a type to cast it
7265to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7266the same number of integers. The bit size of the ``value`` must be
7267smaller than the bit size of the destination type, ``ty2``.
7268
7269Semantics:
7270""""""""""
7271
7272The ``zext`` fills the high order bits of the ``value`` with zero bits
7273until it reaches the size of the destination type, ``ty2``.
7274
7275When zero extending from i1, the result will always be either 0 or 1.
7276
7277Example:
7278""""""""
7279
7280.. code-block:: llvm
7281
7282 %X = zext i32 257 to i64 ; yields i64:257
7283 %Y = zext i1 true to i32 ; yields i32:1
7284 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7285
7286'``sext .. to``' Instruction
7287^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7288
7289Syntax:
7290"""""""
7291
7292::
7293
7294 <result> = sext <ty> <value> to <ty2> ; yields ty2
7295
7296Overview:
7297"""""""""
7298
7299The '``sext``' sign extends ``value`` to the type ``ty2``.
7300
7301Arguments:
7302""""""""""
7303
7304The '``sext``' instruction takes a value to cast, and a type to cast it
7305to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7306the same number of integers. The bit size of the ``value`` must be
7307smaller than the bit size of the destination type, ``ty2``.
7308
7309Semantics:
7310""""""""""
7311
7312The '``sext``' instruction performs a sign extension by copying the sign
7313bit (highest order bit) of the ``value`` until it reaches the bit size
7314of the type ``ty2``.
7315
7316When sign extending from i1, the extension always results in -1 or 0.
7317
7318Example:
7319""""""""
7320
7321.. code-block:: llvm
7322
7323 %X = sext i8 -1 to i16 ; yields i16 :65535
7324 %Y = sext i1 true to i32 ; yields i32:-1
7325 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7326
7327'``fptrunc .. to``' Instruction
7328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7329
7330Syntax:
7331"""""""
7332
7333::
7334
7335 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7336
7337Overview:
7338"""""""""
7339
7340The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7341
7342Arguments:
7343""""""""""
7344
7345The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7346value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7347The size of ``value`` must be larger than the size of ``ty2``. This
7348implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7349
7350Semantics:
7351""""""""""
7352
7353The '``fptrunc``' instruction truncates a ``value`` from a larger
7354:ref:`floating point <t_floating>` type to a smaller :ref:`floating
7355point <t_floating>` type. If the value cannot fit within the
7356destination type, ``ty2``, then the results are undefined.
7357
7358Example:
7359""""""""
7360
7361.. code-block:: llvm
7362
7363 %X = fptrunc double 123.0 to float ; yields float:123.0
7364 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7365
7366'``fpext .. to``' Instruction
7367^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7368
7369Syntax:
7370"""""""
7371
7372::
7373
7374 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7375
7376Overview:
7377"""""""""
7378
7379The '``fpext``' extends a floating point ``value`` to a larger floating
7380point value.
7381
7382Arguments:
7383""""""""""
7384
7385The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7386``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7387to. The source type must be smaller than the destination type.
7388
7389Semantics:
7390""""""""""
7391
7392The '``fpext``' instruction extends the ``value`` from a smaller
7393:ref:`floating point <t_floating>` type to a larger :ref:`floating
7394point <t_floating>` type. The ``fpext`` cannot be used to make a
7395*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7396*no-op cast* for a floating point cast.
7397
7398Example:
7399""""""""
7400
7401.. code-block:: llvm
7402
7403 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7404 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7405
7406'``fptoui .. to``' Instruction
7407^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7408
7409Syntax:
7410"""""""
7411
7412::
7413
7414 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7415
7416Overview:
7417"""""""""
7418
7419The '``fptoui``' converts a floating point ``value`` to its unsigned
7420integer equivalent of type ``ty2``.
7421
7422Arguments:
7423""""""""""
7424
7425The '``fptoui``' instruction takes a value to cast, which must be a
7426scalar or vector :ref:`floating point <t_floating>` value, and a type to
7427cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7428``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7429type with the same number of elements as ``ty``
7430
7431Semantics:
7432""""""""""
7433
7434The '``fptoui``' instruction converts its :ref:`floating
7435point <t_floating>` operand into the nearest (rounding towards zero)
7436unsigned integer value. If the value cannot fit in ``ty2``, the results
7437are undefined.
7438
7439Example:
7440""""""""
7441
7442.. code-block:: llvm
7443
7444 %X = fptoui double 123.0 to i32 ; yields i32:123
7445 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7446 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7447
7448'``fptosi .. to``' Instruction
7449^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7450
7451Syntax:
7452"""""""
7453
7454::
7455
7456 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7457
7458Overview:
7459"""""""""
7460
7461The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7462``value`` to type ``ty2``.
7463
7464Arguments:
7465""""""""""
7466
7467The '``fptosi``' instruction takes a value to cast, which must be a
7468scalar or vector :ref:`floating point <t_floating>` value, and a type to
7469cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7470``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7471type with the same number of elements as ``ty``
7472
7473Semantics:
7474""""""""""
7475
7476The '``fptosi``' instruction converts its :ref:`floating
7477point <t_floating>` operand into the nearest (rounding towards zero)
7478signed integer value. If the value cannot fit in ``ty2``, the results
7479are undefined.
7480
7481Example:
7482""""""""
7483
7484.. code-block:: llvm
7485
7486 %X = fptosi double -123.0 to i32 ; yields i32:-123
7487 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7488 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7489
7490'``uitofp .. to``' Instruction
7491^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7492
7493Syntax:
7494"""""""
7495
7496::
7497
7498 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7499
7500Overview:
7501"""""""""
7502
7503The '``uitofp``' instruction regards ``value`` as an unsigned integer
7504and converts that value to the ``ty2`` type.
7505
7506Arguments:
7507""""""""""
7508
7509The '``uitofp``' instruction takes a value to cast, which must be a
7510scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7511``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7512``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7513type with the same number of elements as ``ty``
7514
7515Semantics:
7516""""""""""
7517
7518The '``uitofp``' instruction interprets its operand as an unsigned
7519integer quantity and converts it to the corresponding floating point
7520value. If the value cannot fit in the floating point value, the results
7521are undefined.
7522
7523Example:
7524""""""""
7525
7526.. code-block:: llvm
7527
7528 %X = uitofp i32 257 to float ; yields float:257.0
7529 %Y = uitofp i8 -1 to double ; yields double:255.0
7530
7531'``sitofp .. to``' Instruction
7532^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7533
7534Syntax:
7535"""""""
7536
7537::
7538
7539 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7540
7541Overview:
7542"""""""""
7543
7544The '``sitofp``' instruction regards ``value`` as a signed integer and
7545converts that value to the ``ty2`` type.
7546
7547Arguments:
7548""""""""""
7549
7550The '``sitofp``' instruction takes a value to cast, which must be a
7551scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7552``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7553``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7554type with the same number of elements as ``ty``
7555
7556Semantics:
7557""""""""""
7558
7559The '``sitofp``' instruction interprets its operand as a signed integer
7560quantity and converts it to the corresponding floating point value. If
7561the value cannot fit in the floating point value, the results are
7562undefined.
7563
7564Example:
7565""""""""
7566
7567.. code-block:: llvm
7568
7569 %X = sitofp i32 257 to float ; yields float:257.0
7570 %Y = sitofp i8 -1 to double ; yields double:-1.0
7571
7572.. _i_ptrtoint:
7573
7574'``ptrtoint .. to``' Instruction
7575^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7576
7577Syntax:
7578"""""""
7579
7580::
7581
7582 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7583
7584Overview:
7585"""""""""
7586
7587The '``ptrtoint``' instruction converts the pointer or a vector of
7588pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7589
7590Arguments:
7591""""""""""
7592
7593The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007594a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007595type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7596a vector of integers type.
7597
7598Semantics:
7599""""""""""
7600
7601The '``ptrtoint``' instruction converts ``value`` to integer type
7602``ty2`` by interpreting the pointer value as an integer and either
7603truncating or zero extending that value to the size of the integer type.
7604If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7605``value`` is larger than ``ty2`` then a truncation is done. If they are
7606the same size, then nothing is done (*no-op cast*) other than a type
7607change.
7608
7609Example:
7610""""""""
7611
7612.. code-block:: llvm
7613
7614 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7615 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7616 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7617
7618.. _i_inttoptr:
7619
7620'``inttoptr .. to``' Instruction
7621^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7622
7623Syntax:
7624"""""""
7625
7626::
7627
7628 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7629
7630Overview:
7631"""""""""
7632
7633The '``inttoptr``' instruction converts an integer ``value`` to a
7634pointer type, ``ty2``.
7635
7636Arguments:
7637""""""""""
7638
7639The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7640cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7641type.
7642
7643Semantics:
7644""""""""""
7645
7646The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7647applying either a zero extension or a truncation depending on the size
7648of the integer ``value``. If ``value`` is larger than the size of a
7649pointer then a truncation is done. If ``value`` is smaller than the size
7650of a pointer then a zero extension is done. If they are the same size,
7651nothing is done (*no-op cast*).
7652
7653Example:
7654""""""""
7655
7656.. code-block:: llvm
7657
7658 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7659 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7660 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7661 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7662
7663.. _i_bitcast:
7664
7665'``bitcast .. to``' Instruction
7666^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7667
7668Syntax:
7669"""""""
7670
7671::
7672
7673 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7674
7675Overview:
7676"""""""""
7677
7678The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7679changing any bits.
7680
7681Arguments:
7682""""""""""
7683
7684The '``bitcast``' instruction takes a value to cast, which must be a
7685non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007686also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7687bit sizes of ``value`` and the destination type, ``ty2``, must be
7688identical. If the source type is a pointer, the destination type must
7689also be a pointer of the same size. This instruction supports bitwise
7690conversion of vectors to integers and to vectors of other types (as
7691long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007692
7693Semantics:
7694""""""""""
7695
Matt Arsenault24b49c42013-07-31 17:49:08 +00007696The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7697is always a *no-op cast* because no bits change with this
7698conversion. The conversion is done as if the ``value`` had been stored
7699to memory and read back as type ``ty2``. Pointer (or vector of
7700pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007701pointers) types with the same address space through this instruction.
7702To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7703or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007704
7705Example:
7706""""""""
7707
7708.. code-block:: llvm
7709
7710 %X = bitcast i8 255 to i8 ; yields i8 :-1
7711 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7712 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7713 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7714
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007715.. _i_addrspacecast:
7716
7717'``addrspacecast .. to``' Instruction
7718^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7719
7720Syntax:
7721"""""""
7722
7723::
7724
7725 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
7726
7727Overview:
7728"""""""""
7729
7730The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
7731address space ``n`` to type ``pty2`` in address space ``m``.
7732
7733Arguments:
7734""""""""""
7735
7736The '``addrspacecast``' instruction takes a pointer or vector of pointer value
7737to cast and a pointer type to cast it to, which must have a different
7738address space.
7739
7740Semantics:
7741""""""""""
7742
7743The '``addrspacecast``' instruction converts the pointer value
7744``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00007745value modification, depending on the target and the address space
7746pair. Pointer conversions within the same address space must be
7747performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007748conversion is legal then both result and operand refer to the same memory
7749location.
7750
7751Example:
7752""""""""
7753
7754.. code-block:: llvm
7755
Matt Arsenault9c13dd02013-11-15 22:43:50 +00007756 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
7757 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
7758 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007759
Sean Silvab084af42012-12-07 10:36:55 +00007760.. _otherops:
7761
7762Other Operations
7763----------------
7764
7765The instructions in this category are the "miscellaneous" instructions,
7766which defy better classification.
7767
7768.. _i_icmp:
7769
7770'``icmp``' Instruction
7771^^^^^^^^^^^^^^^^^^^^^^
7772
7773Syntax:
7774"""""""
7775
7776::
7777
Tim Northover675a0962014-06-13 14:24:23 +00007778 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00007779
7780Overview:
7781"""""""""
7782
7783The '``icmp``' instruction returns a boolean value or a vector of
7784boolean values based on comparison of its two integer, integer vector,
7785pointer, or pointer vector operands.
7786
7787Arguments:
7788""""""""""
7789
7790The '``icmp``' instruction takes three operands. The first operand is
7791the condition code indicating the kind of comparison to perform. It is
7792not a value, just a keyword. The possible condition code are:
7793
7794#. ``eq``: equal
7795#. ``ne``: not equal
7796#. ``ugt``: unsigned greater than
7797#. ``uge``: unsigned greater or equal
7798#. ``ult``: unsigned less than
7799#. ``ule``: unsigned less or equal
7800#. ``sgt``: signed greater than
7801#. ``sge``: signed greater or equal
7802#. ``slt``: signed less than
7803#. ``sle``: signed less or equal
7804
7805The remaining two arguments must be :ref:`integer <t_integer>` or
7806:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
7807must also be identical types.
7808
7809Semantics:
7810""""""""""
7811
7812The '``icmp``' compares ``op1`` and ``op2`` according to the condition
7813code given as ``cond``. The comparison performed always yields either an
7814:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
7815
7816#. ``eq``: yields ``true`` if the operands are equal, ``false``
7817 otherwise. No sign interpretation is necessary or performed.
7818#. ``ne``: yields ``true`` if the operands are unequal, ``false``
7819 otherwise. No sign interpretation is necessary or performed.
7820#. ``ugt``: interprets the operands as unsigned values and yields
7821 ``true`` if ``op1`` is greater than ``op2``.
7822#. ``uge``: interprets the operands as unsigned values and yields
7823 ``true`` if ``op1`` is greater than or equal to ``op2``.
7824#. ``ult``: interprets the operands as unsigned values and yields
7825 ``true`` if ``op1`` is less than ``op2``.
7826#. ``ule``: interprets the operands as unsigned values and yields
7827 ``true`` if ``op1`` is less than or equal to ``op2``.
7828#. ``sgt``: interprets the operands as signed values and yields ``true``
7829 if ``op1`` is greater than ``op2``.
7830#. ``sge``: interprets the operands as signed values and yields ``true``
7831 if ``op1`` is greater than or equal to ``op2``.
7832#. ``slt``: interprets the operands as signed values and yields ``true``
7833 if ``op1`` is less than ``op2``.
7834#. ``sle``: interprets the operands as signed values and yields ``true``
7835 if ``op1`` is less than or equal to ``op2``.
7836
7837If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
7838are compared as if they were integers.
7839
7840If the operands are integer vectors, then they are compared element by
7841element. The result is an ``i1`` vector with the same number of elements
7842as the values being compared. Otherwise, the result is an ``i1``.
7843
7844Example:
7845""""""""
7846
7847.. code-block:: llvm
7848
7849 <result> = icmp eq i32 4, 5 ; yields: result=false
7850 <result> = icmp ne float* %X, %X ; yields: result=false
7851 <result> = icmp ult i16 4, 5 ; yields: result=true
7852 <result> = icmp sgt i16 4, 5 ; yields: result=false
7853 <result> = icmp ule i16 -4, 5 ; yields: result=false
7854 <result> = icmp sge i16 4, 5 ; yields: result=false
7855
7856Note that the code generator does not yet support vector types with the
7857``icmp`` instruction.
7858
7859.. _i_fcmp:
7860
7861'``fcmp``' Instruction
7862^^^^^^^^^^^^^^^^^^^^^^
7863
7864Syntax:
7865"""""""
7866
7867::
7868
Tim Northover675a0962014-06-13 14:24:23 +00007869 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00007870
7871Overview:
7872"""""""""
7873
7874The '``fcmp``' instruction returns a boolean value or vector of boolean
7875values based on comparison of its operands.
7876
7877If the operands are floating point scalars, then the result type is a
7878boolean (:ref:`i1 <t_integer>`).
7879
7880If the operands are floating point vectors, then the result type is a
7881vector of boolean with the same number of elements as the operands being
7882compared.
7883
7884Arguments:
7885""""""""""
7886
7887The '``fcmp``' instruction takes three operands. The first operand is
7888the condition code indicating the kind of comparison to perform. It is
7889not a value, just a keyword. The possible condition code are:
7890
7891#. ``false``: no comparison, always returns false
7892#. ``oeq``: ordered and equal
7893#. ``ogt``: ordered and greater than
7894#. ``oge``: ordered and greater than or equal
7895#. ``olt``: ordered and less than
7896#. ``ole``: ordered and less than or equal
7897#. ``one``: ordered and not equal
7898#. ``ord``: ordered (no nans)
7899#. ``ueq``: unordered or equal
7900#. ``ugt``: unordered or greater than
7901#. ``uge``: unordered or greater than or equal
7902#. ``ult``: unordered or less than
7903#. ``ule``: unordered or less than or equal
7904#. ``une``: unordered or not equal
7905#. ``uno``: unordered (either nans)
7906#. ``true``: no comparison, always returns true
7907
7908*Ordered* means that neither operand is a QNAN while *unordered* means
7909that either operand may be a QNAN.
7910
7911Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
7912point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
7913type. They must have identical types.
7914
7915Semantics:
7916""""""""""
7917
7918The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
7919condition code given as ``cond``. If the operands are vectors, then the
7920vectors are compared element by element. Each comparison performed
7921always yields an :ref:`i1 <t_integer>` result, as follows:
7922
7923#. ``false``: always yields ``false``, regardless of operands.
7924#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
7925 is equal to ``op2``.
7926#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
7927 is greater than ``op2``.
7928#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
7929 is greater than or equal to ``op2``.
7930#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
7931 is less than ``op2``.
7932#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
7933 is less than or equal to ``op2``.
7934#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
7935 is not equal to ``op2``.
7936#. ``ord``: yields ``true`` if both operands are not a QNAN.
7937#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
7938 equal to ``op2``.
7939#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
7940 greater than ``op2``.
7941#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
7942 greater than or equal to ``op2``.
7943#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
7944 less than ``op2``.
7945#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
7946 less than or equal to ``op2``.
7947#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
7948 not equal to ``op2``.
7949#. ``uno``: yields ``true`` if either operand is a QNAN.
7950#. ``true``: always yields ``true``, regardless of operands.
7951
7952Example:
7953""""""""
7954
7955.. code-block:: llvm
7956
7957 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
7958 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
7959 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
7960 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
7961
7962Note that the code generator does not yet support vector types with the
7963``fcmp`` instruction.
7964
7965.. _i_phi:
7966
7967'``phi``' Instruction
7968^^^^^^^^^^^^^^^^^^^^^
7969
7970Syntax:
7971"""""""
7972
7973::
7974
7975 <result> = phi <ty> [ <val0>, <label0>], ...
7976
7977Overview:
7978"""""""""
7979
7980The '``phi``' instruction is used to implement the φ node in the SSA
7981graph representing the function.
7982
7983Arguments:
7984""""""""""
7985
7986The type of the incoming values is specified with the first type field.
7987After this, the '``phi``' instruction takes a list of pairs as
7988arguments, with one pair for each predecessor basic block of the current
7989block. Only values of :ref:`first class <t_firstclass>` type may be used as
7990the value arguments to the PHI node. Only labels may be used as the
7991label arguments.
7992
7993There must be no non-phi instructions between the start of a basic block
7994and the PHI instructions: i.e. PHI instructions must be first in a basic
7995block.
7996
7997For the purposes of the SSA form, the use of each incoming value is
7998deemed to occur on the edge from the corresponding predecessor block to
7999the current block (but after any definition of an '``invoke``'
8000instruction's return value on the same edge).
8001
8002Semantics:
8003""""""""""
8004
8005At runtime, the '``phi``' instruction logically takes on the value
8006specified by the pair corresponding to the predecessor basic block that
8007executed just prior to the current block.
8008
8009Example:
8010""""""""
8011
8012.. code-block:: llvm
8013
8014 Loop: ; Infinite loop that counts from 0 on up...
8015 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8016 %nextindvar = add i32 %indvar, 1
8017 br label %Loop
8018
8019.. _i_select:
8020
8021'``select``' Instruction
8022^^^^^^^^^^^^^^^^^^^^^^^^
8023
8024Syntax:
8025"""""""
8026
8027::
8028
8029 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8030
8031 selty is either i1 or {<N x i1>}
8032
8033Overview:
8034"""""""""
8035
8036The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008037condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008038
8039Arguments:
8040""""""""""
8041
8042The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8043values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008044class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008045
8046Semantics:
8047""""""""""
8048
8049If the condition is an i1 and it evaluates to 1, the instruction returns
8050the first value argument; otherwise, it returns the second value
8051argument.
8052
8053If the condition is a vector of i1, then the value arguments must be
8054vectors of the same size, and the selection is done element by element.
8055
David Majnemer40a0b592015-03-03 22:45:47 +00008056If the condition is an i1 and the value arguments are vectors of the
8057same size, then an entire vector is selected.
8058
Sean Silvab084af42012-12-07 10:36:55 +00008059Example:
8060""""""""
8061
8062.. code-block:: llvm
8063
8064 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8065
8066.. _i_call:
8067
8068'``call``' Instruction
8069^^^^^^^^^^^^^^^^^^^^^^
8070
8071Syntax:
8072"""""""
8073
8074::
8075
Reid Kleckner5772b772014-04-24 20:14:34 +00008076 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00008077
8078Overview:
8079"""""""""
8080
8081The '``call``' instruction represents a simple function call.
8082
8083Arguments:
8084""""""""""
8085
8086This instruction requires several arguments:
8087
Reid Kleckner5772b772014-04-24 20:14:34 +00008088#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
8089 should perform tail call optimization. The ``tail`` marker is a hint that
8090 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
8091 means that the call must be tail call optimized in order for the program to
8092 be correct. The ``musttail`` marker provides these guarantees:
8093
8094 #. The call will not cause unbounded stack growth if it is part of a
8095 recursive cycle in the call graph.
8096 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8097 forwarded in place.
8098
8099 Both markers imply that the callee does not access allocas or varargs from
8100 the caller. Calls marked ``musttail`` must obey the following additional
8101 rules:
8102
8103 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8104 or a pointer bitcast followed by a ret instruction.
8105 - The ret instruction must return the (possibly bitcasted) value
8106 produced by the call or void.
8107 - The caller and callee prototypes must match. Pointer types of
8108 parameters or return types may differ in pointee type, but not
8109 in address space.
8110 - The calling conventions of the caller and callee must match.
8111 - All ABI-impacting function attributes, such as sret, byval, inreg,
8112 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008113 - The callee must be varargs iff the caller is varargs. Bitcasting a
8114 non-varargs function to the appropriate varargs type is legal so
8115 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008116
8117 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8118 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008119
8120 - Caller and callee both have the calling convention ``fastcc``.
8121 - The call is in tail position (ret immediately follows call and ret
8122 uses value of call or is void).
8123 - Option ``-tailcallopt`` is enabled, or
8124 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008125 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008126 met. <CodeGenerator.html#tailcallopt>`_
8127
8128#. The optional "cconv" marker indicates which :ref:`calling
8129 convention <callingconv>` the call should use. If none is
8130 specified, the call defaults to using C calling conventions. The
8131 calling convention of the call must match the calling convention of
8132 the target function, or else the behavior is undefined.
8133#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8134 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8135 are valid here.
8136#. '``ty``': the type of the call instruction itself which is also the
8137 type of the return value. Functions that return no value are marked
8138 ``void``.
8139#. '``fnty``': shall be the signature of the pointer to function value
8140 being invoked. The argument types must match the types implied by
8141 this signature. This type can be omitted if the function is not
8142 varargs and if the function type does not return a pointer to a
8143 function.
8144#. '``fnptrval``': An LLVM value containing a pointer to a function to
8145 be invoked. In most cases, this is a direct function invocation, but
8146 indirect ``call``'s are just as possible, calling an arbitrary pointer
8147 to function value.
8148#. '``function args``': argument list whose types match the function
8149 signature argument types and parameter attributes. All arguments must
8150 be of :ref:`first class <t_firstclass>` type. If the function signature
8151 indicates the function accepts a variable number of arguments, the
8152 extra arguments can be specified.
8153#. The optional :ref:`function attributes <fnattrs>` list. Only
8154 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8155 attributes are valid here.
8156
8157Semantics:
8158""""""""""
8159
8160The '``call``' instruction is used to cause control flow to transfer to
8161a specified function, with its incoming arguments bound to the specified
8162values. Upon a '``ret``' instruction in the called function, control
8163flow continues with the instruction after the function call, and the
8164return value of the function is bound to the result argument.
8165
8166Example:
8167""""""""
8168
8169.. code-block:: llvm
8170
8171 %retval = call i32 @test(i32 %argc)
8172 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8173 %X = tail call i32 @foo() ; yields i32
8174 %Y = tail call fastcc i32 @foo() ; yields i32
8175 call void %foo(i8 97 signext)
8176
8177 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008178 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008179 %gr = extractvalue %struct.A %r, 0 ; yields i32
8180 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8181 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8182 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8183
8184llvm treats calls to some functions with names and arguments that match
8185the standard C99 library as being the C99 library functions, and may
8186perform optimizations or generate code for them under that assumption.
8187This is something we'd like to change in the future to provide better
8188support for freestanding environments and non-C-based languages.
8189
8190.. _i_va_arg:
8191
8192'``va_arg``' Instruction
8193^^^^^^^^^^^^^^^^^^^^^^^^
8194
8195Syntax:
8196"""""""
8197
8198::
8199
8200 <resultval> = va_arg <va_list*> <arglist>, <argty>
8201
8202Overview:
8203"""""""""
8204
8205The '``va_arg``' instruction is used to access arguments passed through
8206the "variable argument" area of a function call. It is used to implement
8207the ``va_arg`` macro in C.
8208
8209Arguments:
8210""""""""""
8211
8212This instruction takes a ``va_list*`` value and the type of the
8213argument. It returns a value of the specified argument type and
8214increments the ``va_list`` to point to the next argument. The actual
8215type of ``va_list`` is target specific.
8216
8217Semantics:
8218""""""""""
8219
8220The '``va_arg``' instruction loads an argument of the specified type
8221from the specified ``va_list`` and causes the ``va_list`` to point to
8222the next argument. For more information, see the variable argument
8223handling :ref:`Intrinsic Functions <int_varargs>`.
8224
8225It is legal for this instruction to be called in a function which does
8226not take a variable number of arguments, for example, the ``vfprintf``
8227function.
8228
8229``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8230function <intrinsics>` because it takes a type as an argument.
8231
8232Example:
8233""""""""
8234
8235See the :ref:`variable argument processing <int_varargs>` section.
8236
8237Note that the code generator does not yet fully support va\_arg on many
8238targets. Also, it does not currently support va\_arg with aggregate
8239types on any target.
8240
8241.. _i_landingpad:
8242
8243'``landingpad``' Instruction
8244^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8245
8246Syntax:
8247"""""""
8248
8249::
8250
David Majnemer7fddecc2015-06-17 20:52:32 +00008251 <resultval> = landingpad <resultty> <clause>+
8252 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008253
8254 <clause> := catch <type> <value>
8255 <clause> := filter <array constant type> <array constant>
8256
8257Overview:
8258"""""""""
8259
8260The '``landingpad``' instruction is used by `LLVM's exception handling
8261system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008262is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008263code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008264defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008265re-entry to the function. The ``resultval`` has the type ``resultty``.
8266
8267Arguments:
8268""""""""""
8269
David Majnemer7fddecc2015-06-17 20:52:32 +00008270The optional
Sean Silvab084af42012-12-07 10:36:55 +00008271``cleanup`` flag indicates that the landing pad block is a cleanup.
8272
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008273A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008274contains the global variable representing the "type" that may be caught
8275or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8276clause takes an array constant as its argument. Use
8277"``[0 x i8**] undef``" for a filter which cannot throw. The
8278'``landingpad``' instruction must contain *at least* one ``clause`` or
8279the ``cleanup`` flag.
8280
8281Semantics:
8282""""""""""
8283
8284The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008285:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008286therefore the "result type" of the ``landingpad`` instruction. As with
8287calling conventions, how the personality function results are
8288represented in LLVM IR is target specific.
8289
8290The clauses are applied in order from top to bottom. If two
8291``landingpad`` instructions are merged together through inlining, the
8292clauses from the calling function are appended to the list of clauses.
8293When the call stack is being unwound due to an exception being thrown,
8294the exception is compared against each ``clause`` in turn. If it doesn't
8295match any of the clauses, and the ``cleanup`` flag is not set, then
8296unwinding continues further up the call stack.
8297
8298The ``landingpad`` instruction has several restrictions:
8299
8300- A landing pad block is a basic block which is the unwind destination
8301 of an '``invoke``' instruction.
8302- A landing pad block must have a '``landingpad``' instruction as its
8303 first non-PHI instruction.
8304- There can be only one '``landingpad``' instruction within the landing
8305 pad block.
8306- A basic block that is not a landing pad block may not include a
8307 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008308
8309Example:
8310""""""""
8311
8312.. code-block:: llvm
8313
8314 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008315 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008316 catch i8** @_ZTIi
8317 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008318 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008319 cleanup
8320 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008321 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008322 catch i8** @_ZTIi
8323 filter [1 x i8**] [@_ZTId]
8324
David Majnemerae2ffc82015-07-10 07:00:44 +00008325.. _i_cleanupblock:
8326
8327'``cleanupblock``' Instruction
8328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8329
8330Syntax:
8331"""""""
8332
8333::
8334
8335 <resultval> = cleanupblock <resultty> [<args>*]
8336
8337Overview:
8338"""""""""
8339
8340The '``cleanupblock``' instruction is used by `LLVM's exception handling
8341system <ExceptionHandling.html#overview>`_ to specify that a basic block
8342is a cleanup block --- one where a personality routine attempts to
8343transfer control to run cleanup actions.
8344The ``args`` correspond to whatever additional
8345information the :ref:`personality function <personalityfn>` requires to
8346execute the cleanup.
David Majnemer11aeb902015-07-10 07:01:03 +00008347The ``resultval`` has the type ``resultty``.
David Majnemerae2ffc82015-07-10 07:00:44 +00008348
8349Arguments:
8350""""""""""
8351
8352The instruction takes a list of arbitrary values which are interpreted
8353by the :ref:`personality function <personalityfn>`.
8354
8355Semantics:
8356""""""""""
8357
8358The '``cleanupblock``' instruction defines the values which are set by the
8359:ref:`personality function <personalityfn>` upon re-entry to the function, and
8360therefore the "result type" of the ``cleanupblock`` instruction. As with
8361calling conventions, how the personality function results are
8362represented in LLVM IR is target specific.
8363
8364When the call stack is being unwound due to an exception being thrown,
8365the :ref:`personality function <personalityfn>` transfers control to the
8366``cleanupblock`` with the aid of the personality-specific arguments.
8367
8368The ``cleanupblock`` instruction has several restrictions:
8369
8370- A cleanup block is a basic block which is the unwind destination of
8371 an exceptional instruction.
8372- A cleanup block must have a '``cleanupblock``' instruction as its
8373 first non-PHI instruction.
8374- There can be only one '``cleanupblock``' instruction within the
8375 cleanup block.
8376- A basic block that is not a cleanup block may not include a
8377 '``cleanupblock``' instruction.
8378
8379Example:
8380""""""""
8381
8382.. code-block:: llvm
8383
8384 %res = cleanupblock { i8*, i32 } [label %nextaction]
8385
Sean Silvab084af42012-12-07 10:36:55 +00008386.. _intrinsics:
8387
8388Intrinsic Functions
8389===================
8390
8391LLVM supports the notion of an "intrinsic function". These functions
8392have well known names and semantics and are required to follow certain
8393restrictions. Overall, these intrinsics represent an extension mechanism
8394for the LLVM language that does not require changing all of the
8395transformations in LLVM when adding to the language (or the bitcode
8396reader/writer, the parser, etc...).
8397
8398Intrinsic function names must all start with an "``llvm.``" prefix. This
8399prefix is reserved in LLVM for intrinsic names; thus, function names may
8400not begin with this prefix. Intrinsic functions must always be external
8401functions: you cannot define the body of intrinsic functions. Intrinsic
8402functions may only be used in call or invoke instructions: it is illegal
8403to take the address of an intrinsic function. Additionally, because
8404intrinsic functions are part of the LLVM language, it is required if any
8405are added that they be documented here.
8406
8407Some intrinsic functions can be overloaded, i.e., the intrinsic
8408represents a family of functions that perform the same operation but on
8409different data types. Because LLVM can represent over 8 million
8410different integer types, overloading is used commonly to allow an
8411intrinsic function to operate on any integer type. One or more of the
8412argument types or the result type can be overloaded to accept any
8413integer type. Argument types may also be defined as exactly matching a
8414previous argument's type or the result type. This allows an intrinsic
8415function which accepts multiple arguments, but needs all of them to be
8416of the same type, to only be overloaded with respect to a single
8417argument or the result.
8418
8419Overloaded intrinsics will have the names of its overloaded argument
8420types encoded into its function name, each preceded by a period. Only
8421those types which are overloaded result in a name suffix. Arguments
8422whose type is matched against another type do not. For example, the
8423``llvm.ctpop`` function can take an integer of any width and returns an
8424integer of exactly the same integer width. This leads to a family of
8425functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8426``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8427overloaded, and only one type suffix is required. Because the argument's
8428type is matched against the return type, it does not require its own
8429name suffix.
8430
8431To learn how to add an intrinsic function, please see the `Extending
8432LLVM Guide <ExtendingLLVM.html>`_.
8433
8434.. _int_varargs:
8435
8436Variable Argument Handling Intrinsics
8437-------------------------------------
8438
8439Variable argument support is defined in LLVM with the
8440:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8441functions. These functions are related to the similarly named macros
8442defined in the ``<stdarg.h>`` header file.
8443
8444All of these functions operate on arguments that use a target-specific
8445value type "``va_list``". The LLVM assembly language reference manual
8446does not define what this type is, so all transformations should be
8447prepared to handle these functions regardless of the type used.
8448
8449This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8450variable argument handling intrinsic functions are used.
8451
8452.. code-block:: llvm
8453
Tim Northoverab60bb92014-11-02 01:21:51 +00008454 ; This struct is different for every platform. For most platforms,
8455 ; it is merely an i8*.
8456 %struct.va_list = type { i8* }
8457
8458 ; For Unix x86_64 platforms, va_list is the following struct:
8459 ; %struct.va_list = type { i32, i32, i8*, i8* }
8460
Sean Silvab084af42012-12-07 10:36:55 +00008461 define i32 @test(i32 %X, ...) {
8462 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008463 %ap = alloca %struct.va_list
8464 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008465 call void @llvm.va_start(i8* %ap2)
8466
8467 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008468 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008469
8470 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8471 %aq = alloca i8*
8472 %aq2 = bitcast i8** %aq to i8*
8473 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8474 call void @llvm.va_end(i8* %aq2)
8475
8476 ; Stop processing of arguments.
8477 call void @llvm.va_end(i8* %ap2)
8478 ret i32 %tmp
8479 }
8480
8481 declare void @llvm.va_start(i8*)
8482 declare void @llvm.va_copy(i8*, i8*)
8483 declare void @llvm.va_end(i8*)
8484
8485.. _int_va_start:
8486
8487'``llvm.va_start``' Intrinsic
8488^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8489
8490Syntax:
8491"""""""
8492
8493::
8494
Nick Lewycky04f6de02013-09-11 22:04:52 +00008495 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008496
8497Overview:
8498"""""""""
8499
8500The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8501subsequent use by ``va_arg``.
8502
8503Arguments:
8504""""""""""
8505
8506The argument is a pointer to a ``va_list`` element to initialize.
8507
8508Semantics:
8509""""""""""
8510
8511The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8512available in C. In a target-dependent way, it initializes the
8513``va_list`` element to which the argument points, so that the next call
8514to ``va_arg`` will produce the first variable argument passed to the
8515function. Unlike the C ``va_start`` macro, this intrinsic does not need
8516to know the last argument of the function as the compiler can figure
8517that out.
8518
8519'``llvm.va_end``' Intrinsic
8520^^^^^^^^^^^^^^^^^^^^^^^^^^^
8521
8522Syntax:
8523"""""""
8524
8525::
8526
8527 declare void @llvm.va_end(i8* <arglist>)
8528
8529Overview:
8530"""""""""
8531
8532The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8533initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8534
8535Arguments:
8536""""""""""
8537
8538The argument is a pointer to a ``va_list`` to destroy.
8539
8540Semantics:
8541""""""""""
8542
8543The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8544available in C. In a target-dependent way, it destroys the ``va_list``
8545element to which the argument points. Calls to
8546:ref:`llvm.va_start <int_va_start>` and
8547:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8548``llvm.va_end``.
8549
8550.. _int_va_copy:
8551
8552'``llvm.va_copy``' Intrinsic
8553^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8554
8555Syntax:
8556"""""""
8557
8558::
8559
8560 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8561
8562Overview:
8563"""""""""
8564
8565The '``llvm.va_copy``' intrinsic copies the current argument position
8566from the source argument list to the destination argument list.
8567
8568Arguments:
8569""""""""""
8570
8571The first argument is a pointer to a ``va_list`` element to initialize.
8572The second argument is a pointer to a ``va_list`` element to copy from.
8573
8574Semantics:
8575""""""""""
8576
8577The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8578available in C. In a target-dependent way, it copies the source
8579``va_list`` element into the destination ``va_list`` element. This
8580intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8581arbitrarily complex and require, for example, memory allocation.
8582
8583Accurate Garbage Collection Intrinsics
8584--------------------------------------
8585
Philip Reamesc5b0f562015-02-25 23:52:06 +00008586LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008587(GC) requires the frontend to generate code containing appropriate intrinsic
8588calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008589intrinsics in a manner which is appropriate for the target collector.
8590
Sean Silvab084af42012-12-07 10:36:55 +00008591These intrinsics allow identification of :ref:`GC roots on the
8592stack <int_gcroot>`, as well as garbage collector implementations that
8593require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008594Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008595these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008596details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008597
Philip Reamesf80bbff2015-02-25 23:45:20 +00008598Experimental Statepoint Intrinsics
8599^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8600
8601LLVM provides an second experimental set of intrinsics for describing garbage
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008602collection safepoints in compiled code. These intrinsics are an alternative
8603to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
8604:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
8605differences in approach are covered in the `Garbage Collection with LLVM
8606<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008607described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008608
8609.. _int_gcroot:
8610
8611'``llvm.gcroot``' Intrinsic
8612^^^^^^^^^^^^^^^^^^^^^^^^^^^
8613
8614Syntax:
8615"""""""
8616
8617::
8618
8619 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8620
8621Overview:
8622"""""""""
8623
8624The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8625the code generator, and allows some metadata to be associated with it.
8626
8627Arguments:
8628""""""""""
8629
8630The first argument specifies the address of a stack object that contains
8631the root pointer. The second pointer (which must be either a constant or
8632a global value address) contains the meta-data to be associated with the
8633root.
8634
8635Semantics:
8636""""""""""
8637
8638At runtime, a call to this intrinsic stores a null pointer into the
8639"ptrloc" location. At compile-time, the code generator generates
8640information to allow the runtime to find the pointer at GC safe points.
8641The '``llvm.gcroot``' intrinsic may only be used in a function which
8642:ref:`specifies a GC algorithm <gc>`.
8643
8644.. _int_gcread:
8645
8646'``llvm.gcread``' Intrinsic
8647^^^^^^^^^^^^^^^^^^^^^^^^^^^
8648
8649Syntax:
8650"""""""
8651
8652::
8653
8654 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
8655
8656Overview:
8657"""""""""
8658
8659The '``llvm.gcread``' intrinsic identifies reads of references from heap
8660locations, allowing garbage collector implementations that require read
8661barriers.
8662
8663Arguments:
8664""""""""""
8665
8666The second argument is the address to read from, which should be an
8667address allocated from the garbage collector. The first object is a
8668pointer to the start of the referenced object, if needed by the language
8669runtime (otherwise null).
8670
8671Semantics:
8672""""""""""
8673
8674The '``llvm.gcread``' intrinsic has the same semantics as a load
8675instruction, but may be replaced with substantially more complex code by
8676the garbage collector runtime, as needed. The '``llvm.gcread``'
8677intrinsic may only be used in a function which :ref:`specifies a GC
8678algorithm <gc>`.
8679
8680.. _int_gcwrite:
8681
8682'``llvm.gcwrite``' Intrinsic
8683^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8684
8685Syntax:
8686"""""""
8687
8688::
8689
8690 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
8691
8692Overview:
8693"""""""""
8694
8695The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
8696locations, allowing garbage collector implementations that require write
8697barriers (such as generational or reference counting collectors).
8698
8699Arguments:
8700""""""""""
8701
8702The first argument is the reference to store, the second is the start of
8703the object to store it to, and the third is the address of the field of
8704Obj to store to. If the runtime does not require a pointer to the
8705object, Obj may be null.
8706
8707Semantics:
8708""""""""""
8709
8710The '``llvm.gcwrite``' intrinsic has the same semantics as a store
8711instruction, but may be replaced with substantially more complex code by
8712the garbage collector runtime, as needed. The '``llvm.gcwrite``'
8713intrinsic may only be used in a function which :ref:`specifies a GC
8714algorithm <gc>`.
8715
8716Code Generator Intrinsics
8717-------------------------
8718
8719These intrinsics are provided by LLVM to expose special features that
8720may only be implemented with code generator support.
8721
8722'``llvm.returnaddress``' Intrinsic
8723^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8724
8725Syntax:
8726"""""""
8727
8728::
8729
8730 declare i8 *@llvm.returnaddress(i32 <level>)
8731
8732Overview:
8733"""""""""
8734
8735The '``llvm.returnaddress``' intrinsic attempts to compute a
8736target-specific value indicating the return address of the current
8737function or one of its callers.
8738
8739Arguments:
8740""""""""""
8741
8742The argument to this intrinsic indicates which function to return the
8743address for. Zero indicates the calling function, one indicates its
8744caller, etc. The argument is **required** to be a constant integer
8745value.
8746
8747Semantics:
8748""""""""""
8749
8750The '``llvm.returnaddress``' intrinsic either returns a pointer
8751indicating the return address of the specified call frame, or zero if it
8752cannot be identified. The value returned by this intrinsic is likely to
8753be incorrect or 0 for arguments other than zero, so it should only be
8754used for debugging purposes.
8755
8756Note that calling this intrinsic does not prevent function inlining or
8757other aggressive transformations, so the value returned may not be that
8758of the obvious source-language caller.
8759
8760'``llvm.frameaddress``' Intrinsic
8761^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8762
8763Syntax:
8764"""""""
8765
8766::
8767
8768 declare i8* @llvm.frameaddress(i32 <level>)
8769
8770Overview:
8771"""""""""
8772
8773The '``llvm.frameaddress``' intrinsic attempts to return the
8774target-specific frame pointer value for the specified stack frame.
8775
8776Arguments:
8777""""""""""
8778
8779The argument to this intrinsic indicates which function to return the
8780frame pointer for. Zero indicates the calling function, one indicates
8781its caller, etc. The argument is **required** to be a constant integer
8782value.
8783
8784Semantics:
8785""""""""""
8786
8787The '``llvm.frameaddress``' intrinsic either returns a pointer
8788indicating the frame address of the specified call frame, or zero if it
8789cannot be identified. The value returned by this intrinsic is likely to
8790be incorrect or 0 for arguments other than zero, so it should only be
8791used for debugging purposes.
8792
8793Note that calling this intrinsic does not prevent function inlining or
8794other aggressive transformations, so the value returned may not be that
8795of the obvious source-language caller.
8796
Reid Kleckner60381792015-07-07 22:25:32 +00008797'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00008798^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8799
8800Syntax:
8801"""""""
8802
8803::
8804
Reid Kleckner60381792015-07-07 22:25:32 +00008805 declare void @llvm.localescape(...)
8806 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00008807
8808Overview:
8809"""""""""
8810
Reid Kleckner60381792015-07-07 22:25:32 +00008811The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
8812allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008813live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00008814computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00008815
8816Arguments:
8817""""""""""
8818
Reid Kleckner60381792015-07-07 22:25:32 +00008819All arguments to '``llvm.localescape``' must be pointers to static allocas or
8820casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008821once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00008822
Reid Kleckner60381792015-07-07 22:25:32 +00008823The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00008824bitcasted pointer to a function defined in the current module. The code
8825generator cannot determine the frame allocation offset of functions defined in
8826other modules.
8827
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00008828The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
8829call frame that is currently live. The return value of '``llvm.localaddress``'
8830is one way to produce such a value, but various runtimes also expose a suitable
8831pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00008832
Reid Kleckner60381792015-07-07 22:25:32 +00008833The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
8834'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008835
Reid Klecknere9b89312015-01-13 00:48:10 +00008836Semantics:
8837""""""""""
8838
Reid Kleckner60381792015-07-07 22:25:32 +00008839These intrinsics allow a group of functions to share access to a set of local
8840stack allocations of a one parent function. The parent function may call the
8841'``llvm.localescape``' intrinsic once from the function entry block, and the
8842child functions can use '``llvm.localrecover``' to access the escaped allocas.
8843The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
8844the escaped allocas are allocated, which would break attempts to use
8845'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00008846
Renato Golinc7aea402014-05-06 16:51:25 +00008847.. _int_read_register:
8848.. _int_write_register:
8849
8850'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
8851^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8852
8853Syntax:
8854"""""""
8855
8856::
8857
8858 declare i32 @llvm.read_register.i32(metadata)
8859 declare i64 @llvm.read_register.i64(metadata)
8860 declare void @llvm.write_register.i32(metadata, i32 @value)
8861 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00008862 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00008863
8864Overview:
8865"""""""""
8866
8867The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
8868provides access to the named register. The register must be valid on
8869the architecture being compiled to. The type needs to be compatible
8870with the register being read.
8871
8872Semantics:
8873""""""""""
8874
8875The '``llvm.read_register``' intrinsic returns the current value of the
8876register, where possible. The '``llvm.write_register``' intrinsic sets
8877the current value of the register, where possible.
8878
8879This is useful to implement named register global variables that need
8880to always be mapped to a specific register, as is common practice on
8881bare-metal programs including OS kernels.
8882
8883The compiler doesn't check for register availability or use of the used
8884register in surrounding code, including inline assembly. Because of that,
8885allocatable registers are not supported.
8886
8887Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00008888architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00008889work is needed to support other registers and even more so, allocatable
8890registers.
8891
Sean Silvab084af42012-12-07 10:36:55 +00008892.. _int_stacksave:
8893
8894'``llvm.stacksave``' Intrinsic
8895^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8896
8897Syntax:
8898"""""""
8899
8900::
8901
8902 declare i8* @llvm.stacksave()
8903
8904Overview:
8905"""""""""
8906
8907The '``llvm.stacksave``' intrinsic is used to remember the current state
8908of the function stack, for use with
8909:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
8910implementing language features like scoped automatic variable sized
8911arrays in C99.
8912
8913Semantics:
8914""""""""""
8915
8916This intrinsic returns a opaque pointer value that can be passed to
8917:ref:`llvm.stackrestore <int_stackrestore>`. When an
8918``llvm.stackrestore`` intrinsic is executed with a value saved from
8919``llvm.stacksave``, it effectively restores the state of the stack to
8920the state it was in when the ``llvm.stacksave`` intrinsic executed. In
8921practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
8922were allocated after the ``llvm.stacksave`` was executed.
8923
8924.. _int_stackrestore:
8925
8926'``llvm.stackrestore``' Intrinsic
8927^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8928
8929Syntax:
8930"""""""
8931
8932::
8933
8934 declare void @llvm.stackrestore(i8* %ptr)
8935
8936Overview:
8937"""""""""
8938
8939The '``llvm.stackrestore``' intrinsic is used to restore the state of
8940the function stack to the state it was in when the corresponding
8941:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
8942useful for implementing language features like scoped automatic variable
8943sized arrays in C99.
8944
8945Semantics:
8946""""""""""
8947
8948See the description for :ref:`llvm.stacksave <int_stacksave>`.
8949
8950'``llvm.prefetch``' Intrinsic
8951^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8952
8953Syntax:
8954"""""""
8955
8956::
8957
8958 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
8959
8960Overview:
8961"""""""""
8962
8963The '``llvm.prefetch``' intrinsic is a hint to the code generator to
8964insert a prefetch instruction if supported; otherwise, it is a noop.
8965Prefetches have no effect on the behavior of the program but can change
8966its performance characteristics.
8967
8968Arguments:
8969""""""""""
8970
8971``address`` is the address to be prefetched, ``rw`` is the specifier
8972determining if the fetch should be for a read (0) or write (1), and
8973``locality`` is a temporal locality specifier ranging from (0) - no
8974locality, to (3) - extremely local keep in cache. The ``cache type``
8975specifies whether the prefetch is performed on the data (1) or
8976instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
8977arguments must be constant integers.
8978
8979Semantics:
8980""""""""""
8981
8982This intrinsic does not modify the behavior of the program. In
8983particular, prefetches cannot trap and do not produce a value. On
8984targets that support this intrinsic, the prefetch can provide hints to
8985the processor cache for better performance.
8986
8987'``llvm.pcmarker``' Intrinsic
8988^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8989
8990Syntax:
8991"""""""
8992
8993::
8994
8995 declare void @llvm.pcmarker(i32 <id>)
8996
8997Overview:
8998"""""""""
8999
9000The '``llvm.pcmarker``' intrinsic is a method to export a Program
9001Counter (PC) in a region of code to simulators and other tools. The
9002method is target specific, but it is expected that the marker will use
9003exported symbols to transmit the PC of the marker. The marker makes no
9004guarantees that it will remain with any specific instruction after
9005optimizations. It is possible that the presence of a marker will inhibit
9006optimizations. The intended use is to be inserted after optimizations to
9007allow correlations of simulation runs.
9008
9009Arguments:
9010""""""""""
9011
9012``id`` is a numerical id identifying the marker.
9013
9014Semantics:
9015""""""""""
9016
9017This intrinsic does not modify the behavior of the program. Backends
9018that do not support this intrinsic may ignore it.
9019
9020'``llvm.readcyclecounter``' Intrinsic
9021^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9022
9023Syntax:
9024"""""""
9025
9026::
9027
9028 declare i64 @llvm.readcyclecounter()
9029
9030Overview:
9031"""""""""
9032
9033The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9034counter register (or similar low latency, high accuracy clocks) on those
9035targets that support it. On X86, it should map to RDTSC. On Alpha, it
9036should map to RPCC. As the backing counters overflow quickly (on the
9037order of 9 seconds on alpha), this should only be used for small
9038timings.
9039
9040Semantics:
9041""""""""""
9042
9043When directly supported, reading the cycle counter should not modify any
9044memory. Implementations are allowed to either return a application
9045specific value or a system wide value. On backends without support, this
9046is lowered to a constant 0.
9047
Tim Northoverbc933082013-05-23 19:11:20 +00009048Note that runtime support may be conditional on the privilege-level code is
9049running at and the host platform.
9050
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009051'``llvm.clear_cache``' Intrinsic
9052^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9053
9054Syntax:
9055"""""""
9056
9057::
9058
9059 declare void @llvm.clear_cache(i8*, i8*)
9060
9061Overview:
9062"""""""""
9063
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009064The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9065in the specified range to the execution unit of the processor. On
9066targets with non-unified instruction and data cache, the implementation
9067flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009068
9069Semantics:
9070""""""""""
9071
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009072On platforms with coherent instruction and data caches (e.g. x86), this
9073intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009074cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009075instructions or a system call, if cache flushing requires special
9076privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009077
Sean Silvad02bf3e2014-04-07 22:29:53 +00009078The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009079time library.
Renato Golin93010e62014-03-26 14:01:32 +00009080
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009081This instrinsic does *not* empty the instruction pipeline. Modifications
9082of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009083
Justin Bogner61ba2e32014-12-08 18:02:35 +00009084'``llvm.instrprof_increment``' Intrinsic
9085^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9086
9087Syntax:
9088"""""""
9089
9090::
9091
9092 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9093 i32 <num-counters>, i32 <index>)
9094
9095Overview:
9096"""""""""
9097
9098The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9099frontend for use with instrumentation based profiling. These will be
9100lowered by the ``-instrprof`` pass to generate execution counts of a
9101program at runtime.
9102
9103Arguments:
9104""""""""""
9105
9106The first argument is a pointer to a global variable containing the
9107name of the entity being instrumented. This should generally be the
9108(mangled) function name for a set of counters.
9109
9110The second argument is a hash value that can be used by the consumer
9111of the profile data to detect changes to the instrumented source, and
9112the third is the number of counters associated with ``name``. It is an
9113error if ``hash`` or ``num-counters`` differ between two instances of
9114``instrprof_increment`` that refer to the same name.
9115
9116The last argument refers to which of the counters for ``name`` should
9117be incremented. It should be a value between 0 and ``num-counters``.
9118
9119Semantics:
9120""""""""""
9121
9122This intrinsic represents an increment of a profiling counter. It will
9123cause the ``-instrprof`` pass to generate the appropriate data
9124structures and the code to increment the appropriate value, in a
9125format that can be written out by a compiler runtime and consumed via
9126the ``llvm-profdata`` tool.
9127
Sean Silvab084af42012-12-07 10:36:55 +00009128Standard C Library Intrinsics
9129-----------------------------
9130
9131LLVM provides intrinsics for a few important standard C library
9132functions. These intrinsics allow source-language front-ends to pass
9133information about the alignment of the pointer arguments to the code
9134generator, providing opportunity for more efficient code generation.
9135
9136.. _int_memcpy:
9137
9138'``llvm.memcpy``' Intrinsic
9139^^^^^^^^^^^^^^^^^^^^^^^^^^^
9140
9141Syntax:
9142"""""""
9143
9144This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9145integer bit width and for different address spaces. Not all targets
9146support all bit widths however.
9147
9148::
9149
9150 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9151 i32 <len>, i32 <align>, i1 <isvolatile>)
9152 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9153 i64 <len>, i32 <align>, i1 <isvolatile>)
9154
9155Overview:
9156"""""""""
9157
9158The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9159source location to the destination location.
9160
9161Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9162intrinsics do not return a value, takes extra alignment/isvolatile
9163arguments and the pointers can be in specified address spaces.
9164
9165Arguments:
9166""""""""""
9167
9168The first argument is a pointer to the destination, the second is a
9169pointer to the source. The third argument is an integer argument
9170specifying the number of bytes to copy, the fourth argument is the
9171alignment of the source and destination locations, and the fifth is a
9172boolean indicating a volatile access.
9173
9174If the call to this intrinsic has an alignment value that is not 0 or 1,
9175then the caller guarantees that both the source and destination pointers
9176are aligned to that boundary.
9177
9178If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9179a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9180very cleanly specified and it is unwise to depend on it.
9181
9182Semantics:
9183""""""""""
9184
9185The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9186source location to the destination location, which are not allowed to
9187overlap. It copies "len" bytes of memory over. If the argument is known
9188to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009189argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009190
9191'``llvm.memmove``' Intrinsic
9192^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9193
9194Syntax:
9195"""""""
9196
9197This is an overloaded intrinsic. You can use llvm.memmove on any integer
9198bit width and for different address space. Not all targets support all
9199bit widths however.
9200
9201::
9202
9203 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9204 i32 <len>, i32 <align>, i1 <isvolatile>)
9205 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9206 i64 <len>, i32 <align>, i1 <isvolatile>)
9207
9208Overview:
9209"""""""""
9210
9211The '``llvm.memmove.*``' intrinsics move a block of memory from the
9212source location to the destination location. It is similar to the
9213'``llvm.memcpy``' intrinsic but allows the two memory locations to
9214overlap.
9215
9216Note that, unlike the standard libc function, the ``llvm.memmove.*``
9217intrinsics do not return a value, takes extra alignment/isvolatile
9218arguments and the pointers can be in specified address spaces.
9219
9220Arguments:
9221""""""""""
9222
9223The first argument is a pointer to the destination, the second is a
9224pointer to the source. The third argument is an integer argument
9225specifying the number of bytes to copy, the fourth argument is the
9226alignment of the source and destination locations, and the fifth is a
9227boolean indicating a volatile access.
9228
9229If the call to this intrinsic has an alignment value that is not 0 or 1,
9230then the caller guarantees that the source and destination pointers are
9231aligned to that boundary.
9232
9233If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9234is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9235not very cleanly specified and it is unwise to depend on it.
9236
9237Semantics:
9238""""""""""
9239
9240The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9241source location to the destination location, which may overlap. It
9242copies "len" bytes of memory over. If the argument is known to be
9243aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009244otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009245
9246'``llvm.memset.*``' Intrinsics
9247^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9248
9249Syntax:
9250"""""""
9251
9252This is an overloaded intrinsic. You can use llvm.memset on any integer
9253bit width and for different address spaces. However, not all targets
9254support all bit widths.
9255
9256::
9257
9258 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9259 i32 <len>, i32 <align>, i1 <isvolatile>)
9260 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9261 i64 <len>, i32 <align>, i1 <isvolatile>)
9262
9263Overview:
9264"""""""""
9265
9266The '``llvm.memset.*``' intrinsics fill a block of memory with a
9267particular byte value.
9268
9269Note that, unlike the standard libc function, the ``llvm.memset``
9270intrinsic does not return a value and takes extra alignment/volatile
9271arguments. Also, the destination can be in an arbitrary address space.
9272
9273Arguments:
9274""""""""""
9275
9276The first argument is a pointer to the destination to fill, the second
9277is the byte value with which to fill it, the third argument is an
9278integer argument specifying the number of bytes to fill, and the fourth
9279argument is the known alignment of the destination location.
9280
9281If the call to this intrinsic has an alignment value that is not 0 or 1,
9282then the caller guarantees that the destination pointer is aligned to
9283that boundary.
9284
9285If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9286a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9287very cleanly specified and it is unwise to depend on it.
9288
9289Semantics:
9290""""""""""
9291
9292The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9293at the destination location. If the argument is known to be aligned to
9294some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009295it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009296
9297'``llvm.sqrt.*``' Intrinsic
9298^^^^^^^^^^^^^^^^^^^^^^^^^^^
9299
9300Syntax:
9301"""""""
9302
9303This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9304floating point or vector of floating point type. Not all targets support
9305all types however.
9306
9307::
9308
9309 declare float @llvm.sqrt.f32(float %Val)
9310 declare double @llvm.sqrt.f64(double %Val)
9311 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9312 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9313 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9314
9315Overview:
9316"""""""""
9317
9318The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9319returning the same value as the libm '``sqrt``' functions would. Unlike
9320``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9321negative numbers other than -0.0 (which allows for better optimization,
9322because there is no need to worry about errno being set).
9323``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9324
9325Arguments:
9326""""""""""
9327
9328The argument and return value are floating point numbers of the same
9329type.
9330
9331Semantics:
9332""""""""""
9333
9334This function returns the sqrt of the specified operand if it is a
9335nonnegative floating point number.
9336
9337'``llvm.powi.*``' Intrinsic
9338^^^^^^^^^^^^^^^^^^^^^^^^^^^
9339
9340Syntax:
9341"""""""
9342
9343This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9344floating point or vector of floating point type. Not all targets support
9345all types however.
9346
9347::
9348
9349 declare float @llvm.powi.f32(float %Val, i32 %power)
9350 declare double @llvm.powi.f64(double %Val, i32 %power)
9351 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9352 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9353 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9354
9355Overview:
9356"""""""""
9357
9358The '``llvm.powi.*``' intrinsics return the first operand raised to the
9359specified (positive or negative) power. The order of evaluation of
9360multiplications is not defined. When a vector of floating point type is
9361used, the second argument remains a scalar integer value.
9362
9363Arguments:
9364""""""""""
9365
9366The second argument is an integer power, and the first is a value to
9367raise to that power.
9368
9369Semantics:
9370""""""""""
9371
9372This function returns the first value raised to the second power with an
9373unspecified sequence of rounding operations.
9374
9375'``llvm.sin.*``' Intrinsic
9376^^^^^^^^^^^^^^^^^^^^^^^^^^
9377
9378Syntax:
9379"""""""
9380
9381This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9382floating point or vector of floating point type. Not all targets support
9383all types however.
9384
9385::
9386
9387 declare float @llvm.sin.f32(float %Val)
9388 declare double @llvm.sin.f64(double %Val)
9389 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9390 declare fp128 @llvm.sin.f128(fp128 %Val)
9391 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9392
9393Overview:
9394"""""""""
9395
9396The '``llvm.sin.*``' intrinsics return the sine of the operand.
9397
9398Arguments:
9399""""""""""
9400
9401The argument and return value are floating point numbers of the same
9402type.
9403
9404Semantics:
9405""""""""""
9406
9407This function returns the sine of the specified operand, returning the
9408same values as the libm ``sin`` functions would, and handles error
9409conditions in the same way.
9410
9411'``llvm.cos.*``' Intrinsic
9412^^^^^^^^^^^^^^^^^^^^^^^^^^
9413
9414Syntax:
9415"""""""
9416
9417This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9418floating point or vector of floating point type. Not all targets support
9419all types however.
9420
9421::
9422
9423 declare float @llvm.cos.f32(float %Val)
9424 declare double @llvm.cos.f64(double %Val)
9425 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9426 declare fp128 @llvm.cos.f128(fp128 %Val)
9427 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9428
9429Overview:
9430"""""""""
9431
9432The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9433
9434Arguments:
9435""""""""""
9436
9437The argument and return value are floating point numbers of the same
9438type.
9439
9440Semantics:
9441""""""""""
9442
9443This function returns the cosine of the specified operand, returning the
9444same values as the libm ``cos`` functions would, and handles error
9445conditions in the same way.
9446
9447'``llvm.pow.*``' Intrinsic
9448^^^^^^^^^^^^^^^^^^^^^^^^^^
9449
9450Syntax:
9451"""""""
9452
9453This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9454floating point or vector of floating point type. Not all targets support
9455all types however.
9456
9457::
9458
9459 declare float @llvm.pow.f32(float %Val, float %Power)
9460 declare double @llvm.pow.f64(double %Val, double %Power)
9461 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9462 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9463 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9464
9465Overview:
9466"""""""""
9467
9468The '``llvm.pow.*``' intrinsics return the first operand raised to the
9469specified (positive or negative) power.
9470
9471Arguments:
9472""""""""""
9473
9474The second argument is a floating point power, and the first is a value
9475to raise to that power.
9476
9477Semantics:
9478""""""""""
9479
9480This function returns the first value raised to the second power,
9481returning the same values as the libm ``pow`` functions would, and
9482handles error conditions in the same way.
9483
9484'``llvm.exp.*``' Intrinsic
9485^^^^^^^^^^^^^^^^^^^^^^^^^^
9486
9487Syntax:
9488"""""""
9489
9490This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9491floating point or vector of floating point type. Not all targets support
9492all types however.
9493
9494::
9495
9496 declare float @llvm.exp.f32(float %Val)
9497 declare double @llvm.exp.f64(double %Val)
9498 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9499 declare fp128 @llvm.exp.f128(fp128 %Val)
9500 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9501
9502Overview:
9503"""""""""
9504
9505The '``llvm.exp.*``' intrinsics perform the exp function.
9506
9507Arguments:
9508""""""""""
9509
9510The argument and return value are floating point numbers of the same
9511type.
9512
9513Semantics:
9514""""""""""
9515
9516This function returns the same values as the libm ``exp`` functions
9517would, and handles error conditions in the same way.
9518
9519'``llvm.exp2.*``' Intrinsic
9520^^^^^^^^^^^^^^^^^^^^^^^^^^^
9521
9522Syntax:
9523"""""""
9524
9525This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9526floating point or vector of floating point type. Not all targets support
9527all types however.
9528
9529::
9530
9531 declare float @llvm.exp2.f32(float %Val)
9532 declare double @llvm.exp2.f64(double %Val)
9533 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9534 declare fp128 @llvm.exp2.f128(fp128 %Val)
9535 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9536
9537Overview:
9538"""""""""
9539
9540The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9541
9542Arguments:
9543""""""""""
9544
9545The argument and return value are floating point numbers of the same
9546type.
9547
9548Semantics:
9549""""""""""
9550
9551This function returns the same values as the libm ``exp2`` functions
9552would, and handles error conditions in the same way.
9553
9554'``llvm.log.*``' Intrinsic
9555^^^^^^^^^^^^^^^^^^^^^^^^^^
9556
9557Syntax:
9558"""""""
9559
9560This is an overloaded intrinsic. You can use ``llvm.log`` on any
9561floating point or vector of floating point type. Not all targets support
9562all types however.
9563
9564::
9565
9566 declare float @llvm.log.f32(float %Val)
9567 declare double @llvm.log.f64(double %Val)
9568 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9569 declare fp128 @llvm.log.f128(fp128 %Val)
9570 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9571
9572Overview:
9573"""""""""
9574
9575The '``llvm.log.*``' intrinsics perform the log function.
9576
9577Arguments:
9578""""""""""
9579
9580The argument and return value are floating point numbers of the same
9581type.
9582
9583Semantics:
9584""""""""""
9585
9586This function returns the same values as the libm ``log`` functions
9587would, and handles error conditions in the same way.
9588
9589'``llvm.log10.*``' Intrinsic
9590^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9591
9592Syntax:
9593"""""""
9594
9595This is an overloaded intrinsic. You can use ``llvm.log10`` on any
9596floating point or vector of floating point type. Not all targets support
9597all types however.
9598
9599::
9600
9601 declare float @llvm.log10.f32(float %Val)
9602 declare double @llvm.log10.f64(double %Val)
9603 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
9604 declare fp128 @llvm.log10.f128(fp128 %Val)
9605 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
9606
9607Overview:
9608"""""""""
9609
9610The '``llvm.log10.*``' intrinsics perform the log10 function.
9611
9612Arguments:
9613""""""""""
9614
9615The argument and return value are floating point numbers of the same
9616type.
9617
9618Semantics:
9619""""""""""
9620
9621This function returns the same values as the libm ``log10`` functions
9622would, and handles error conditions in the same way.
9623
9624'``llvm.log2.*``' Intrinsic
9625^^^^^^^^^^^^^^^^^^^^^^^^^^^
9626
9627Syntax:
9628"""""""
9629
9630This is an overloaded intrinsic. You can use ``llvm.log2`` on any
9631floating point or vector of floating point type. Not all targets support
9632all types however.
9633
9634::
9635
9636 declare float @llvm.log2.f32(float %Val)
9637 declare double @llvm.log2.f64(double %Val)
9638 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
9639 declare fp128 @llvm.log2.f128(fp128 %Val)
9640 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
9641
9642Overview:
9643"""""""""
9644
9645The '``llvm.log2.*``' intrinsics perform the log2 function.
9646
9647Arguments:
9648""""""""""
9649
9650The argument and return value are floating point numbers of the same
9651type.
9652
9653Semantics:
9654""""""""""
9655
9656This function returns the same values as the libm ``log2`` functions
9657would, and handles error conditions in the same way.
9658
9659'``llvm.fma.*``' Intrinsic
9660^^^^^^^^^^^^^^^^^^^^^^^^^^
9661
9662Syntax:
9663"""""""
9664
9665This is an overloaded intrinsic. You can use ``llvm.fma`` on any
9666floating point or vector of floating point type. Not all targets support
9667all types however.
9668
9669::
9670
9671 declare float @llvm.fma.f32(float %a, float %b, float %c)
9672 declare double @llvm.fma.f64(double %a, double %b, double %c)
9673 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
9674 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
9675 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
9676
9677Overview:
9678"""""""""
9679
9680The '``llvm.fma.*``' intrinsics perform the fused multiply-add
9681operation.
9682
9683Arguments:
9684""""""""""
9685
9686The argument and return value are floating point numbers of the same
9687type.
9688
9689Semantics:
9690""""""""""
9691
9692This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009693would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00009694
9695'``llvm.fabs.*``' Intrinsic
9696^^^^^^^^^^^^^^^^^^^^^^^^^^^
9697
9698Syntax:
9699"""""""
9700
9701This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
9702floating point or vector of floating point type. Not all targets support
9703all types however.
9704
9705::
9706
9707 declare float @llvm.fabs.f32(float %Val)
9708 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009709 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00009710 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009711 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00009712
9713Overview:
9714"""""""""
9715
9716The '``llvm.fabs.*``' intrinsics return the absolute value of the
9717operand.
9718
9719Arguments:
9720""""""""""
9721
9722The argument and return value are floating point numbers of the same
9723type.
9724
9725Semantics:
9726""""""""""
9727
9728This function returns the same values as the libm ``fabs`` functions
9729would, and handles error conditions in the same way.
9730
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009731'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00009732^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009733
9734Syntax:
9735"""""""
9736
9737This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
9738floating point or vector of floating point type. Not all targets support
9739all types however.
9740
9741::
9742
Matt Arsenault64313c92014-10-22 18:25:02 +00009743 declare float @llvm.minnum.f32(float %Val0, float %Val1)
9744 declare double @llvm.minnum.f64(double %Val0, double %Val1)
9745 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
9746 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
9747 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009748
9749Overview:
9750"""""""""
9751
9752The '``llvm.minnum.*``' intrinsics return the minimum of the two
9753arguments.
9754
9755
9756Arguments:
9757""""""""""
9758
9759The arguments and return value are floating point numbers of the same
9760type.
9761
9762Semantics:
9763""""""""""
9764
9765Follows the IEEE-754 semantics for minNum, which also match for libm's
9766fmin.
9767
9768If either operand is a NaN, returns the other non-NaN operand. Returns
9769NaN only if both operands are NaN. If the operands compare equal,
9770returns a value that compares equal to both operands. This means that
9771fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
9772
9773'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00009774^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009775
9776Syntax:
9777"""""""
9778
9779This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
9780floating point or vector of floating point type. Not all targets support
9781all types however.
9782
9783::
9784
Matt Arsenault64313c92014-10-22 18:25:02 +00009785 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
9786 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
9787 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
9788 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
9789 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009790
9791Overview:
9792"""""""""
9793
9794The '``llvm.maxnum.*``' intrinsics return the maximum of the two
9795arguments.
9796
9797
9798Arguments:
9799""""""""""
9800
9801The arguments and return value are floating point numbers of the same
9802type.
9803
9804Semantics:
9805""""""""""
9806Follows the IEEE-754 semantics for maxNum, which also match for libm's
9807fmax.
9808
9809If either operand is a NaN, returns the other non-NaN operand. Returns
9810NaN only if both operands are NaN. If the operands compare equal,
9811returns a value that compares equal to both operands. This means that
9812fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
9813
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00009814'``llvm.copysign.*``' Intrinsic
9815^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9816
9817Syntax:
9818"""""""
9819
9820This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
9821floating point or vector of floating point type. Not all targets support
9822all types however.
9823
9824::
9825
9826 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
9827 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
9828 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
9829 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
9830 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
9831
9832Overview:
9833"""""""""
9834
9835The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
9836first operand and the sign of the second operand.
9837
9838Arguments:
9839""""""""""
9840
9841The arguments and return value are floating point numbers of the same
9842type.
9843
9844Semantics:
9845""""""""""
9846
9847This function returns the same values as the libm ``copysign``
9848functions would, and handles error conditions in the same way.
9849
Sean Silvab084af42012-12-07 10:36:55 +00009850'``llvm.floor.*``' Intrinsic
9851^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9852
9853Syntax:
9854"""""""
9855
9856This is an overloaded intrinsic. You can use ``llvm.floor`` on any
9857floating point or vector of floating point type. Not all targets support
9858all types however.
9859
9860::
9861
9862 declare float @llvm.floor.f32(float %Val)
9863 declare double @llvm.floor.f64(double %Val)
9864 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
9865 declare fp128 @llvm.floor.f128(fp128 %Val)
9866 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
9867
9868Overview:
9869"""""""""
9870
9871The '``llvm.floor.*``' intrinsics return the floor of the operand.
9872
9873Arguments:
9874""""""""""
9875
9876The argument and return value are floating point numbers of the same
9877type.
9878
9879Semantics:
9880""""""""""
9881
9882This function returns the same values as the libm ``floor`` functions
9883would, and handles error conditions in the same way.
9884
9885'``llvm.ceil.*``' Intrinsic
9886^^^^^^^^^^^^^^^^^^^^^^^^^^^
9887
9888Syntax:
9889"""""""
9890
9891This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
9892floating point or vector of floating point type. Not all targets support
9893all types however.
9894
9895::
9896
9897 declare float @llvm.ceil.f32(float %Val)
9898 declare double @llvm.ceil.f64(double %Val)
9899 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
9900 declare fp128 @llvm.ceil.f128(fp128 %Val)
9901 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
9902
9903Overview:
9904"""""""""
9905
9906The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
9907
9908Arguments:
9909""""""""""
9910
9911The argument and return value are floating point numbers of the same
9912type.
9913
9914Semantics:
9915""""""""""
9916
9917This function returns the same values as the libm ``ceil`` functions
9918would, and handles error conditions in the same way.
9919
9920'``llvm.trunc.*``' Intrinsic
9921^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9922
9923Syntax:
9924"""""""
9925
9926This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
9927floating point or vector of floating point type. Not all targets support
9928all types however.
9929
9930::
9931
9932 declare float @llvm.trunc.f32(float %Val)
9933 declare double @llvm.trunc.f64(double %Val)
9934 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
9935 declare fp128 @llvm.trunc.f128(fp128 %Val)
9936 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
9937
9938Overview:
9939"""""""""
9940
9941The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
9942nearest integer not larger in magnitude than the operand.
9943
9944Arguments:
9945""""""""""
9946
9947The argument and return value are floating point numbers of the same
9948type.
9949
9950Semantics:
9951""""""""""
9952
9953This function returns the same values as the libm ``trunc`` functions
9954would, and handles error conditions in the same way.
9955
9956'``llvm.rint.*``' Intrinsic
9957^^^^^^^^^^^^^^^^^^^^^^^^^^^
9958
9959Syntax:
9960"""""""
9961
9962This is an overloaded intrinsic. You can use ``llvm.rint`` on any
9963floating point or vector of floating point type. Not all targets support
9964all types however.
9965
9966::
9967
9968 declare float @llvm.rint.f32(float %Val)
9969 declare double @llvm.rint.f64(double %Val)
9970 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
9971 declare fp128 @llvm.rint.f128(fp128 %Val)
9972 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
9973
9974Overview:
9975"""""""""
9976
9977The '``llvm.rint.*``' intrinsics returns the operand rounded to the
9978nearest integer. It may raise an inexact floating-point exception if the
9979operand isn't an integer.
9980
9981Arguments:
9982""""""""""
9983
9984The argument and return value are floating point numbers of the same
9985type.
9986
9987Semantics:
9988""""""""""
9989
9990This function returns the same values as the libm ``rint`` functions
9991would, and handles error conditions in the same way.
9992
9993'``llvm.nearbyint.*``' Intrinsic
9994^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9995
9996Syntax:
9997"""""""
9998
9999This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10000floating point or vector of floating point type. Not all targets support
10001all types however.
10002
10003::
10004
10005 declare float @llvm.nearbyint.f32(float %Val)
10006 declare double @llvm.nearbyint.f64(double %Val)
10007 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10008 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10009 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10010
10011Overview:
10012"""""""""
10013
10014The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10015nearest integer.
10016
10017Arguments:
10018""""""""""
10019
10020The argument and return value are floating point numbers of the same
10021type.
10022
10023Semantics:
10024""""""""""
10025
10026This function returns the same values as the libm ``nearbyint``
10027functions would, and handles error conditions in the same way.
10028
Hal Finkel171817e2013-08-07 22:49:12 +000010029'``llvm.round.*``' Intrinsic
10030^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10031
10032Syntax:
10033"""""""
10034
10035This is an overloaded intrinsic. You can use ``llvm.round`` on any
10036floating point or vector of floating point type. Not all targets support
10037all types however.
10038
10039::
10040
10041 declare float @llvm.round.f32(float %Val)
10042 declare double @llvm.round.f64(double %Val)
10043 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10044 declare fp128 @llvm.round.f128(fp128 %Val)
10045 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10046
10047Overview:
10048"""""""""
10049
10050The '``llvm.round.*``' intrinsics returns the operand rounded to the
10051nearest integer.
10052
10053Arguments:
10054""""""""""
10055
10056The argument and return value are floating point numbers of the same
10057type.
10058
10059Semantics:
10060""""""""""
10061
10062This function returns the same values as the libm ``round``
10063functions would, and handles error conditions in the same way.
10064
Sean Silvab084af42012-12-07 10:36:55 +000010065Bit Manipulation Intrinsics
10066---------------------------
10067
10068LLVM provides intrinsics for a few important bit manipulation
10069operations. These allow efficient code generation for some algorithms.
10070
10071'``llvm.bswap.*``' Intrinsics
10072^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10073
10074Syntax:
10075"""""""
10076
10077This is an overloaded intrinsic function. You can use bswap on any
10078integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10079
10080::
10081
10082 declare i16 @llvm.bswap.i16(i16 <id>)
10083 declare i32 @llvm.bswap.i32(i32 <id>)
10084 declare i64 @llvm.bswap.i64(i64 <id>)
10085
10086Overview:
10087"""""""""
10088
10089The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10090values with an even number of bytes (positive multiple of 16 bits).
10091These are useful for performing operations on data that is not in the
10092target's native byte order.
10093
10094Semantics:
10095""""""""""
10096
10097The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10098and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10099intrinsic returns an i32 value that has the four bytes of the input i32
10100swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10101returned i32 will have its bytes in 3, 2, 1, 0 order. The
10102``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10103concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10104respectively).
10105
10106'``llvm.ctpop.*``' Intrinsic
10107^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10108
10109Syntax:
10110"""""""
10111
10112This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10113bit width, or on any vector with integer elements. Not all targets
10114support all bit widths or vector types, however.
10115
10116::
10117
10118 declare i8 @llvm.ctpop.i8(i8 <src>)
10119 declare i16 @llvm.ctpop.i16(i16 <src>)
10120 declare i32 @llvm.ctpop.i32(i32 <src>)
10121 declare i64 @llvm.ctpop.i64(i64 <src>)
10122 declare i256 @llvm.ctpop.i256(i256 <src>)
10123 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10124
10125Overview:
10126"""""""""
10127
10128The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10129in a value.
10130
10131Arguments:
10132""""""""""
10133
10134The only argument is the value to be counted. The argument may be of any
10135integer type, or a vector with integer elements. The return type must
10136match the argument type.
10137
10138Semantics:
10139""""""""""
10140
10141The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10142each element of a vector.
10143
10144'``llvm.ctlz.*``' Intrinsic
10145^^^^^^^^^^^^^^^^^^^^^^^^^^^
10146
10147Syntax:
10148"""""""
10149
10150This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10151integer bit width, or any vector whose elements are integers. Not all
10152targets support all bit widths or vector types, however.
10153
10154::
10155
10156 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10157 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10158 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10159 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10160 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
10161 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10162
10163Overview:
10164"""""""""
10165
10166The '``llvm.ctlz``' family of intrinsic functions counts the number of
10167leading zeros in a variable.
10168
10169Arguments:
10170""""""""""
10171
10172The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010173any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010174type must match the first argument type.
10175
10176The second argument must be a constant and is a flag to indicate whether
10177the intrinsic should ensure that a zero as the first argument produces a
10178defined result. Historically some architectures did not provide a
10179defined result for zero values as efficiently, and many algorithms are
10180now predicated on avoiding zero-value inputs.
10181
10182Semantics:
10183""""""""""
10184
10185The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10186zeros in a variable, or within each element of the vector. If
10187``src == 0`` then the result is the size in bits of the type of ``src``
10188if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10189``llvm.ctlz(i32 2) = 30``.
10190
10191'``llvm.cttz.*``' Intrinsic
10192^^^^^^^^^^^^^^^^^^^^^^^^^^^
10193
10194Syntax:
10195"""""""
10196
10197This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10198integer bit width, or any vector of integer elements. Not all targets
10199support all bit widths or vector types, however.
10200
10201::
10202
10203 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10204 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10205 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10206 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10207 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
10208 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10209
10210Overview:
10211"""""""""
10212
10213The '``llvm.cttz``' family of intrinsic functions counts the number of
10214trailing zeros.
10215
10216Arguments:
10217""""""""""
10218
10219The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010220any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010221type must match the first argument type.
10222
10223The second argument must be a constant and is a flag to indicate whether
10224the intrinsic should ensure that a zero as the first argument produces a
10225defined result. Historically some architectures did not provide a
10226defined result for zero values as efficiently, and many algorithms are
10227now predicated on avoiding zero-value inputs.
10228
10229Semantics:
10230""""""""""
10231
10232The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10233zeros in a variable, or within each element of a vector. If ``src == 0``
10234then the result is the size in bits of the type of ``src`` if
10235``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10236``llvm.cttz(2) = 1``.
10237
Philip Reames34843ae2015-03-05 05:55:55 +000010238.. _int_overflow:
10239
Sean Silvab084af42012-12-07 10:36:55 +000010240Arithmetic with Overflow Intrinsics
10241-----------------------------------
10242
10243LLVM provides intrinsics for some arithmetic with overflow operations.
10244
10245'``llvm.sadd.with.overflow.*``' Intrinsics
10246^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10247
10248Syntax:
10249"""""""
10250
10251This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10252on any integer bit width.
10253
10254::
10255
10256 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10257 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10258 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10259
10260Overview:
10261"""""""""
10262
10263The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10264a signed addition of the two arguments, and indicate whether an overflow
10265occurred during the signed summation.
10266
10267Arguments:
10268""""""""""
10269
10270The arguments (%a and %b) and the first element of the result structure
10271may be of integer types of any bit width, but they must have the same
10272bit width. The second element of the result structure must be of type
10273``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10274addition.
10275
10276Semantics:
10277""""""""""
10278
10279The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010280a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010281first element of which is the signed summation, and the second element
10282of which is a bit specifying if the signed summation resulted in an
10283overflow.
10284
10285Examples:
10286"""""""""
10287
10288.. code-block:: llvm
10289
10290 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10291 %sum = extractvalue {i32, i1} %res, 0
10292 %obit = extractvalue {i32, i1} %res, 1
10293 br i1 %obit, label %overflow, label %normal
10294
10295'``llvm.uadd.with.overflow.*``' Intrinsics
10296^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10297
10298Syntax:
10299"""""""
10300
10301This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10302on any integer bit width.
10303
10304::
10305
10306 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10307 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10308 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10309
10310Overview:
10311"""""""""
10312
10313The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10314an unsigned addition of the two arguments, and indicate whether a carry
10315occurred during the unsigned summation.
10316
10317Arguments:
10318""""""""""
10319
10320The arguments (%a and %b) and the first element of the result structure
10321may be of integer types of any bit width, but they must have the same
10322bit width. The second element of the result structure must be of type
10323``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10324addition.
10325
10326Semantics:
10327""""""""""
10328
10329The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010330an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010331first element of which is the sum, and the second element of which is a
10332bit specifying if the unsigned summation resulted in a carry.
10333
10334Examples:
10335"""""""""
10336
10337.. code-block:: llvm
10338
10339 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10340 %sum = extractvalue {i32, i1} %res, 0
10341 %obit = extractvalue {i32, i1} %res, 1
10342 br i1 %obit, label %carry, label %normal
10343
10344'``llvm.ssub.with.overflow.*``' Intrinsics
10345^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10346
10347Syntax:
10348"""""""
10349
10350This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10351on any integer bit width.
10352
10353::
10354
10355 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10356 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10357 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10358
10359Overview:
10360"""""""""
10361
10362The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10363a signed subtraction of the two arguments, and indicate whether an
10364overflow occurred during the signed subtraction.
10365
10366Arguments:
10367""""""""""
10368
10369The arguments (%a and %b) and the first element of the result structure
10370may be of integer types of any bit width, but they must have the same
10371bit width. The second element of the result structure must be of type
10372``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10373subtraction.
10374
10375Semantics:
10376""""""""""
10377
10378The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010379a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010380first element of which is the subtraction, and the second element of
10381which is a bit specifying if the signed subtraction resulted in an
10382overflow.
10383
10384Examples:
10385"""""""""
10386
10387.. code-block:: llvm
10388
10389 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10390 %sum = extractvalue {i32, i1} %res, 0
10391 %obit = extractvalue {i32, i1} %res, 1
10392 br i1 %obit, label %overflow, label %normal
10393
10394'``llvm.usub.with.overflow.*``' Intrinsics
10395^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10396
10397Syntax:
10398"""""""
10399
10400This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10401on any integer bit width.
10402
10403::
10404
10405 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10406 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10407 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10408
10409Overview:
10410"""""""""
10411
10412The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10413an unsigned subtraction of the two arguments, and indicate whether an
10414overflow occurred during the unsigned subtraction.
10415
10416Arguments:
10417""""""""""
10418
10419The arguments (%a and %b) and the first element of the result structure
10420may be of integer types of any bit width, but they must have the same
10421bit width. The second element of the result structure must be of type
10422``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10423subtraction.
10424
10425Semantics:
10426""""""""""
10427
10428The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010429an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010430the first element of which is the subtraction, and the second element of
10431which is a bit specifying if the unsigned subtraction resulted in an
10432overflow.
10433
10434Examples:
10435"""""""""
10436
10437.. code-block:: llvm
10438
10439 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10440 %sum = extractvalue {i32, i1} %res, 0
10441 %obit = extractvalue {i32, i1} %res, 1
10442 br i1 %obit, label %overflow, label %normal
10443
10444'``llvm.smul.with.overflow.*``' Intrinsics
10445^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10446
10447Syntax:
10448"""""""
10449
10450This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10451on any integer bit width.
10452
10453::
10454
10455 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10456 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10457 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10458
10459Overview:
10460"""""""""
10461
10462The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10463a signed multiplication of the two arguments, and indicate whether an
10464overflow occurred during the signed multiplication.
10465
10466Arguments:
10467""""""""""
10468
10469The arguments (%a and %b) and the first element of the result structure
10470may be of integer types of any bit width, but they must have the same
10471bit width. The second element of the result structure must be of type
10472``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10473multiplication.
10474
10475Semantics:
10476""""""""""
10477
10478The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010479a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010480the first element of which is the multiplication, and the second element
10481of which is a bit specifying if the signed multiplication resulted in an
10482overflow.
10483
10484Examples:
10485"""""""""
10486
10487.. code-block:: llvm
10488
10489 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10490 %sum = extractvalue {i32, i1} %res, 0
10491 %obit = extractvalue {i32, i1} %res, 1
10492 br i1 %obit, label %overflow, label %normal
10493
10494'``llvm.umul.with.overflow.*``' Intrinsics
10495^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10496
10497Syntax:
10498"""""""
10499
10500This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10501on any integer bit width.
10502
10503::
10504
10505 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10506 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10507 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10508
10509Overview:
10510"""""""""
10511
10512The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10513a unsigned multiplication of the two arguments, and indicate whether an
10514overflow occurred during the unsigned multiplication.
10515
10516Arguments:
10517""""""""""
10518
10519The arguments (%a and %b) and the first element of the result structure
10520may be of integer types of any bit width, but they must have the same
10521bit width. The second element of the result structure must be of type
10522``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10523multiplication.
10524
10525Semantics:
10526""""""""""
10527
10528The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010529an unsigned multiplication of the two arguments. They return a structure ---
10530the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010531element of which is a bit specifying if the unsigned multiplication
10532resulted in an overflow.
10533
10534Examples:
10535"""""""""
10536
10537.. code-block:: llvm
10538
10539 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10540 %sum = extractvalue {i32, i1} %res, 0
10541 %obit = extractvalue {i32, i1} %res, 1
10542 br i1 %obit, label %overflow, label %normal
10543
10544Specialised Arithmetic Intrinsics
10545---------------------------------
10546
10547'``llvm.fmuladd.*``' Intrinsic
10548^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10549
10550Syntax:
10551"""""""
10552
10553::
10554
10555 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
10556 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
10557
10558Overview:
10559"""""""""
10560
10561The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000010562expressions that can be fused if the code generator determines that (a) the
10563target instruction set has support for a fused operation, and (b) that the
10564fused operation is more efficient than the equivalent, separate pair of mul
10565and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000010566
10567Arguments:
10568""""""""""
10569
10570The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
10571multiplicands, a and b, and an addend c.
10572
10573Semantics:
10574""""""""""
10575
10576The expression:
10577
10578::
10579
10580 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
10581
10582is equivalent to the expression a \* b + c, except that rounding will
10583not be performed between the multiplication and addition steps if the
10584code generator fuses the operations. Fusion is not guaranteed, even if
10585the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010586corresponding llvm.fma.\* intrinsic function should be used
10587instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000010588
10589Examples:
10590"""""""""
10591
10592.. code-block:: llvm
10593
Tim Northover675a0962014-06-13 14:24:23 +000010594 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000010595
10596Half Precision Floating Point Intrinsics
10597----------------------------------------
10598
10599For most target platforms, half precision floating point is a
10600storage-only format. This means that it is a dense encoding (in memory)
10601but does not support computation in the format.
10602
10603This means that code must first load the half-precision floating point
10604value as an i16, then convert it to float with
10605:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
10606then be performed on the float value (including extending to double
10607etc). To store the value back to memory, it is first converted to float
10608if needed, then converted to i16 with
10609:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
10610i16 value.
10611
10612.. _int_convert_to_fp16:
10613
10614'``llvm.convert.to.fp16``' Intrinsic
10615^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10616
10617Syntax:
10618"""""""
10619
10620::
10621
Tim Northoverfd7e4242014-07-17 10:51:23 +000010622 declare i16 @llvm.convert.to.fp16.f32(float %a)
10623 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000010624
10625Overview:
10626"""""""""
10627
Tim Northoverfd7e4242014-07-17 10:51:23 +000010628The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
10629conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000010630
10631Arguments:
10632""""""""""
10633
10634The intrinsic function contains single argument - the value to be
10635converted.
10636
10637Semantics:
10638""""""""""
10639
Tim Northoverfd7e4242014-07-17 10:51:23 +000010640The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
10641conventional floating point format to half precision floating point format. The
10642return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000010643
10644Examples:
10645"""""""""
10646
10647.. code-block:: llvm
10648
Tim Northoverfd7e4242014-07-17 10:51:23 +000010649 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000010650 store i16 %res, i16* @x, align 2
10651
10652.. _int_convert_from_fp16:
10653
10654'``llvm.convert.from.fp16``' Intrinsic
10655^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10656
10657Syntax:
10658"""""""
10659
10660::
10661
Tim Northoverfd7e4242014-07-17 10:51:23 +000010662 declare float @llvm.convert.from.fp16.f32(i16 %a)
10663 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000010664
10665Overview:
10666"""""""""
10667
10668The '``llvm.convert.from.fp16``' intrinsic function performs a
10669conversion from half precision floating point format to single precision
10670floating point format.
10671
10672Arguments:
10673""""""""""
10674
10675The intrinsic function contains single argument - the value to be
10676converted.
10677
10678Semantics:
10679""""""""""
10680
10681The '``llvm.convert.from.fp16``' intrinsic function performs a
10682conversion from half single precision floating point format to single
10683precision floating point format. The input half-float value is
10684represented by an ``i16`` value.
10685
10686Examples:
10687"""""""""
10688
10689.. code-block:: llvm
10690
David Blaikiec7aabbb2015-03-04 22:06:14 +000010691 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000010692 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000010693
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000010694.. _dbg_intrinsics:
10695
Sean Silvab084af42012-12-07 10:36:55 +000010696Debugger Intrinsics
10697-------------------
10698
10699The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
10700prefix), are described in the `LLVM Source Level
10701Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
10702document.
10703
10704Exception Handling Intrinsics
10705-----------------------------
10706
10707The LLVM exception handling intrinsics (which all start with
10708``llvm.eh.`` prefix), are described in the `LLVM Exception
10709Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
10710
10711.. _int_trampoline:
10712
10713Trampoline Intrinsics
10714---------------------
10715
10716These intrinsics make it possible to excise one parameter, marked with
10717the :ref:`nest <nest>` attribute, from a function. The result is a
10718callable function pointer lacking the nest parameter - the caller does
10719not need to provide a value for it. Instead, the value to use is stored
10720in advance in a "trampoline", a block of memory usually allocated on the
10721stack, which also contains code to splice the nest value into the
10722argument list. This is used to implement the GCC nested function address
10723extension.
10724
10725For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
10726then the resulting function pointer has signature ``i32 (i32, i32)*``.
10727It can be created as follows:
10728
10729.. code-block:: llvm
10730
10731 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000010732 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000010733 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
10734 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
10735 %fp = bitcast i8* %p to i32 (i32, i32)*
10736
10737The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
10738``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
10739
10740.. _int_it:
10741
10742'``llvm.init.trampoline``' Intrinsic
10743^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10744
10745Syntax:
10746"""""""
10747
10748::
10749
10750 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
10751
10752Overview:
10753"""""""""
10754
10755This fills the memory pointed to by ``tramp`` with executable code,
10756turning it into a trampoline.
10757
10758Arguments:
10759""""""""""
10760
10761The ``llvm.init.trampoline`` intrinsic takes three arguments, all
10762pointers. The ``tramp`` argument must point to a sufficiently large and
10763sufficiently aligned block of memory; this memory is written to by the
10764intrinsic. Note that the size and the alignment are target-specific -
10765LLVM currently provides no portable way of determining them, so a
10766front-end that generates this intrinsic needs to have some
10767target-specific knowledge. The ``func`` argument must hold a function
10768bitcast to an ``i8*``.
10769
10770Semantics:
10771""""""""""
10772
10773The block of memory pointed to by ``tramp`` is filled with target
10774dependent code, turning it into a function. Then ``tramp`` needs to be
10775passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
10776be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
10777function's signature is the same as that of ``func`` with any arguments
10778marked with the ``nest`` attribute removed. At most one such ``nest``
10779argument is allowed, and it must be of pointer type. Calling the new
10780function is equivalent to calling ``func`` with the same argument list,
10781but with ``nval`` used for the missing ``nest`` argument. If, after
10782calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
10783modified, then the effect of any later call to the returned function
10784pointer is undefined.
10785
10786.. _int_at:
10787
10788'``llvm.adjust.trampoline``' Intrinsic
10789^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10790
10791Syntax:
10792"""""""
10793
10794::
10795
10796 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
10797
10798Overview:
10799"""""""""
10800
10801This performs any required machine-specific adjustment to the address of
10802a trampoline (passed as ``tramp``).
10803
10804Arguments:
10805""""""""""
10806
10807``tramp`` must point to a block of memory which already has trampoline
10808code filled in by a previous call to
10809:ref:`llvm.init.trampoline <int_it>`.
10810
10811Semantics:
10812""""""""""
10813
10814On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000010815different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000010816intrinsic returns the executable address corresponding to ``tramp``
10817after performing the required machine specific adjustments. The pointer
10818returned can then be :ref:`bitcast and executed <int_trampoline>`.
10819
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000010820.. _int_mload_mstore:
10821
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010822Masked Vector Load and Store Intrinsics
10823---------------------------------------
10824
10825LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
10826
10827.. _int_mload:
10828
10829'``llvm.masked.load.*``' Intrinsics
10830^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10831
10832Syntax:
10833"""""""
10834This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
10835
10836::
10837
10838 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
10839 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
10840
10841Overview:
10842"""""""""
10843
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000010844Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010845
10846
10847Arguments:
10848""""""""""
10849
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000010850The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010851
10852
10853Semantics:
10854""""""""""
10855
10856The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
10857The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
10858
10859
10860::
10861
10862 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010863
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010864 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000010865 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000010866 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010867
10868.. _int_mstore:
10869
10870'``llvm.masked.store.*``' Intrinsics
10871^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10872
10873Syntax:
10874"""""""
10875This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
10876
10877::
10878
10879 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
10880 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
10881
10882Overview:
10883"""""""""
10884
10885Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
10886
10887Arguments:
10888""""""""""
10889
10890The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
10891
10892
10893Semantics:
10894""""""""""
10895
10896The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
10897The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
10898
10899::
10900
10901 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010902
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000010903 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000010904 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010905 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
10906 store <16 x float> %res, <16 x float>* %ptr, align 4
10907
10908
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000010909Masked Vector Gather and Scatter Intrinsics
10910-------------------------------------------
10911
10912LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
10913
10914.. _int_mgather:
10915
10916'``llvm.masked.gather.*``' Intrinsics
10917^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10918
10919Syntax:
10920"""""""
10921This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer or floating point data type gathered together into one vector.
10922
10923::
10924
10925 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
10926 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
10927
10928Overview:
10929"""""""""
10930
10931Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
10932
10933
10934Arguments:
10935""""""""""
10936
10937The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
10938
10939
10940Semantics:
10941""""""""""
10942
10943The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
10944The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
10945
10946
10947::
10948
10949 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
10950
10951 ;; The gather with all-true mask is equivalent to the following instruction sequence
10952 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
10953 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
10954 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
10955 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
10956
10957 %val0 = load double, double* %ptr0, align 8
10958 %val1 = load double, double* %ptr1, align 8
10959 %val2 = load double, double* %ptr2, align 8
10960 %val3 = load double, double* %ptr3, align 8
10961
10962 %vec0 = insertelement <4 x double>undef, %val0, 0
10963 %vec01 = insertelement <4 x double>%vec0, %val1, 1
10964 %vec012 = insertelement <4 x double>%vec01, %val2, 2
10965 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
10966
10967.. _int_mscatter:
10968
10969'``llvm.masked.scatter.*``' Intrinsics
10970^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10971
10972Syntax:
10973"""""""
10974This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type. Each vector element is stored in an arbitrary memory addresses. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
10975
10976::
10977
10978 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
10979 declare void @llvm.masked.scatter.v16f32(<16 x i32> <value>, <16 x i32*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
10980
10981Overview:
10982"""""""""
10983
10984Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
10985
10986Arguments:
10987""""""""""
10988
10989The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
10990
10991
10992Semantics:
10993""""""""""
10994
10995The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergency. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
10996
10997::
10998
10999 ;; This instruction unconditionaly stores data vector in multiple addresses
11000 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11001
11002 ;; It is equivalent to a list of scalar stores
11003 %val0 = extractelement <8 x i32> %value, i32 0
11004 %val1 = extractelement <8 x i32> %value, i32 1
11005 ..
11006 %val7 = extractelement <8 x i32> %value, i32 7
11007 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11008 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11009 ..
11010 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11011 ;; Note: the order of the following stores is important when they overlap:
11012 store i32 %val0, i32* %ptr0, align 4
11013 store i32 %val1, i32* %ptr1, align 4
11014 ..
11015 store i32 %val7, i32* %ptr7, align 4
11016
11017
Sean Silvab084af42012-12-07 10:36:55 +000011018Memory Use Markers
11019------------------
11020
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011021This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011022memory objects and ranges where variables are immutable.
11023
Reid Klecknera534a382013-12-19 02:14:12 +000011024.. _int_lifestart:
11025
Sean Silvab084af42012-12-07 10:36:55 +000011026'``llvm.lifetime.start``' Intrinsic
11027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11028
11029Syntax:
11030"""""""
11031
11032::
11033
11034 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11035
11036Overview:
11037"""""""""
11038
11039The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11040object's lifetime.
11041
11042Arguments:
11043""""""""""
11044
11045The first argument is a constant integer representing the size of the
11046object, or -1 if it is variable sized. The second argument is a pointer
11047to the object.
11048
11049Semantics:
11050""""""""""
11051
11052This intrinsic indicates that before this point in the code, the value
11053of the memory pointed to by ``ptr`` is dead. This means that it is known
11054to never be used and has an undefined value. A load from the pointer
11055that precedes this intrinsic can be replaced with ``'undef'``.
11056
Reid Klecknera534a382013-12-19 02:14:12 +000011057.. _int_lifeend:
11058
Sean Silvab084af42012-12-07 10:36:55 +000011059'``llvm.lifetime.end``' Intrinsic
11060^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11061
11062Syntax:
11063"""""""
11064
11065::
11066
11067 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11068
11069Overview:
11070"""""""""
11071
11072The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11073object's lifetime.
11074
11075Arguments:
11076""""""""""
11077
11078The first argument is a constant integer representing the size of the
11079object, or -1 if it is variable sized. The second argument is a pointer
11080to the object.
11081
11082Semantics:
11083""""""""""
11084
11085This intrinsic indicates that after this point in the code, the value of
11086the memory pointed to by ``ptr`` is dead. This means that it is known to
11087never be used and has an undefined value. Any stores into the memory
11088object following this intrinsic may be removed as dead.
11089
11090'``llvm.invariant.start``' Intrinsic
11091^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11092
11093Syntax:
11094"""""""
11095
11096::
11097
11098 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11099
11100Overview:
11101"""""""""
11102
11103The '``llvm.invariant.start``' intrinsic specifies that the contents of
11104a memory object will not change.
11105
11106Arguments:
11107""""""""""
11108
11109The first argument is a constant integer representing the size of the
11110object, or -1 if it is variable sized. The second argument is a pointer
11111to the object.
11112
11113Semantics:
11114""""""""""
11115
11116This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11117the return value, the referenced memory location is constant and
11118unchanging.
11119
11120'``llvm.invariant.end``' Intrinsic
11121^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11122
11123Syntax:
11124"""""""
11125
11126::
11127
11128 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11129
11130Overview:
11131"""""""""
11132
11133The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11134memory object are mutable.
11135
11136Arguments:
11137""""""""""
11138
11139The first argument is the matching ``llvm.invariant.start`` intrinsic.
11140The second argument is a constant integer representing the size of the
11141object, or -1 if it is variable sized and the third argument is a
11142pointer to the object.
11143
11144Semantics:
11145""""""""""
11146
11147This intrinsic indicates that the memory is mutable again.
11148
11149General Intrinsics
11150------------------
11151
11152This class of intrinsics is designed to be generic and has no specific
11153purpose.
11154
11155'``llvm.var.annotation``' Intrinsic
11156^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11157
11158Syntax:
11159"""""""
11160
11161::
11162
11163 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11164
11165Overview:
11166"""""""""
11167
11168The '``llvm.var.annotation``' intrinsic.
11169
11170Arguments:
11171""""""""""
11172
11173The first argument is a pointer to a value, the second is a pointer to a
11174global string, the third is a pointer to a global string which is the
11175source file name, and the last argument is the line number.
11176
11177Semantics:
11178""""""""""
11179
11180This intrinsic allows annotation of local variables with arbitrary
11181strings. This can be useful for special purpose optimizations that want
11182to look for these annotations. These have no other defined use; they are
11183ignored by code generation and optimization.
11184
Michael Gottesman88d18832013-03-26 00:34:27 +000011185'``llvm.ptr.annotation.*``' Intrinsic
11186^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11187
11188Syntax:
11189"""""""
11190
11191This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11192pointer to an integer of any width. *NOTE* you must specify an address space for
11193the pointer. The identifier for the default address space is the integer
11194'``0``'.
11195
11196::
11197
11198 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11199 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11200 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11201 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11202 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11203
11204Overview:
11205"""""""""
11206
11207The '``llvm.ptr.annotation``' intrinsic.
11208
11209Arguments:
11210""""""""""
11211
11212The first argument is a pointer to an integer value of arbitrary bitwidth
11213(result of some expression), the second is a pointer to a global string, the
11214third is a pointer to a global string which is the source file name, and the
11215last argument is the line number. It returns the value of the first argument.
11216
11217Semantics:
11218""""""""""
11219
11220This intrinsic allows annotation of a pointer to an integer with arbitrary
11221strings. This can be useful for special purpose optimizations that want to look
11222for these annotations. These have no other defined use; they are ignored by code
11223generation and optimization.
11224
Sean Silvab084af42012-12-07 10:36:55 +000011225'``llvm.annotation.*``' Intrinsic
11226^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11227
11228Syntax:
11229"""""""
11230
11231This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11232any integer bit width.
11233
11234::
11235
11236 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11237 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11238 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11239 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11240 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11241
11242Overview:
11243"""""""""
11244
11245The '``llvm.annotation``' intrinsic.
11246
11247Arguments:
11248""""""""""
11249
11250The first argument is an integer value (result of some expression), the
11251second is a pointer to a global string, the third is a pointer to a
11252global string which is the source file name, and the last argument is
11253the line number. It returns the value of the first argument.
11254
11255Semantics:
11256""""""""""
11257
11258This intrinsic allows annotations to be put on arbitrary expressions
11259with arbitrary strings. This can be useful for special purpose
11260optimizations that want to look for these annotations. These have no
11261other defined use; they are ignored by code generation and optimization.
11262
11263'``llvm.trap``' Intrinsic
11264^^^^^^^^^^^^^^^^^^^^^^^^^
11265
11266Syntax:
11267"""""""
11268
11269::
11270
11271 declare void @llvm.trap() noreturn nounwind
11272
11273Overview:
11274"""""""""
11275
11276The '``llvm.trap``' intrinsic.
11277
11278Arguments:
11279""""""""""
11280
11281None.
11282
11283Semantics:
11284""""""""""
11285
11286This intrinsic is lowered to the target dependent trap instruction. If
11287the target does not have a trap instruction, this intrinsic will be
11288lowered to a call of the ``abort()`` function.
11289
11290'``llvm.debugtrap``' Intrinsic
11291^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11292
11293Syntax:
11294"""""""
11295
11296::
11297
11298 declare void @llvm.debugtrap() nounwind
11299
11300Overview:
11301"""""""""
11302
11303The '``llvm.debugtrap``' intrinsic.
11304
11305Arguments:
11306""""""""""
11307
11308None.
11309
11310Semantics:
11311""""""""""
11312
11313This intrinsic is lowered to code which is intended to cause an
11314execution trap with the intention of requesting the attention of a
11315debugger.
11316
11317'``llvm.stackprotector``' Intrinsic
11318^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11319
11320Syntax:
11321"""""""
11322
11323::
11324
11325 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11326
11327Overview:
11328"""""""""
11329
11330The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11331onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11332is placed on the stack before local variables.
11333
11334Arguments:
11335""""""""""
11336
11337The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11338The first argument is the value loaded from the stack guard
11339``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11340enough space to hold the value of the guard.
11341
11342Semantics:
11343""""""""""
11344
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011345This intrinsic causes the prologue/epilogue inserter to force the position of
11346the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11347to ensure that if a local variable on the stack is overwritten, it will destroy
11348the value of the guard. When the function exits, the guard on the stack is
11349checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11350different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11351calling the ``__stack_chk_fail()`` function.
11352
11353'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011354^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011355
11356Syntax:
11357"""""""
11358
11359::
11360
11361 declare void @llvm.stackprotectorcheck(i8** <guard>)
11362
11363Overview:
11364"""""""""
11365
11366The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011367created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011368``__stack_chk_fail()`` function.
11369
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011370Arguments:
11371""""""""""
11372
11373The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11374the variable ``@__stack_chk_guard``.
11375
11376Semantics:
11377""""""""""
11378
11379This intrinsic is provided to perform the stack protector check by comparing
11380``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11381values do not match call the ``__stack_chk_fail()`` function.
11382
11383The reason to provide this as an IR level intrinsic instead of implementing it
11384via other IR operations is that in order to perform this operation at the IR
11385level without an intrinsic, one would need to create additional basic blocks to
11386handle the success/failure cases. This makes it difficult to stop the stack
11387protector check from disrupting sibling tail calls in Codegen. With this
11388intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011389codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011390
Sean Silvab084af42012-12-07 10:36:55 +000011391'``llvm.objectsize``' Intrinsic
11392^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11393
11394Syntax:
11395"""""""
11396
11397::
11398
11399 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11400 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11401
11402Overview:
11403"""""""""
11404
11405The ``llvm.objectsize`` intrinsic is designed to provide information to
11406the optimizers to determine at compile time whether a) an operation
11407(like memcpy) will overflow a buffer that corresponds to an object, or
11408b) that a runtime check for overflow isn't necessary. An object in this
11409context means an allocation of a specific class, structure, array, or
11410other object.
11411
11412Arguments:
11413""""""""""
11414
11415The ``llvm.objectsize`` intrinsic takes two arguments. The first
11416argument is a pointer to or into the ``object``. The second argument is
11417a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11418or -1 (if false) when the object size is unknown. The second argument
11419only accepts constants.
11420
11421Semantics:
11422""""""""""
11423
11424The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11425the size of the object concerned. If the size cannot be determined at
11426compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11427on the ``min`` argument).
11428
11429'``llvm.expect``' Intrinsic
11430^^^^^^^^^^^^^^^^^^^^^^^^^^^
11431
11432Syntax:
11433"""""""
11434
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011435This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11436integer bit width.
11437
Sean Silvab084af42012-12-07 10:36:55 +000011438::
11439
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011440 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011441 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11442 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11443
11444Overview:
11445"""""""""
11446
11447The ``llvm.expect`` intrinsic provides information about expected (the
11448most probable) value of ``val``, which can be used by optimizers.
11449
11450Arguments:
11451""""""""""
11452
11453The ``llvm.expect`` intrinsic takes two arguments. The first argument is
11454a value. The second argument is an expected value, this needs to be a
11455constant value, variables are not allowed.
11456
11457Semantics:
11458""""""""""
11459
11460This intrinsic is lowered to the ``val``.
11461
Philip Reamese0e90832015-04-26 22:23:12 +000011462.. _int_assume:
11463
Hal Finkel93046912014-07-25 21:13:35 +000011464'``llvm.assume``' Intrinsic
11465^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11466
11467Syntax:
11468"""""""
11469
11470::
11471
11472 declare void @llvm.assume(i1 %cond)
11473
11474Overview:
11475"""""""""
11476
11477The ``llvm.assume`` allows the optimizer to assume that the provided
11478condition is true. This information can then be used in simplifying other parts
11479of the code.
11480
11481Arguments:
11482""""""""""
11483
11484The condition which the optimizer may assume is always true.
11485
11486Semantics:
11487""""""""""
11488
11489The intrinsic allows the optimizer to assume that the provided condition is
11490always true whenever the control flow reaches the intrinsic call. No code is
11491generated for this intrinsic, and instructions that contribute only to the
11492provided condition are not used for code generation. If the condition is
11493violated during execution, the behavior is undefined.
11494
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011495Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000011496used by the ``llvm.assume`` intrinsic in order to preserve the instructions
11497only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011498if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000011499sufficient overall improvement in code quality. For this reason,
11500``llvm.assume`` should not be used to document basic mathematical invariants
11501that the optimizer can otherwise deduce or facts that are of little use to the
11502optimizer.
11503
Peter Collingbournee6909c82015-02-20 20:30:47 +000011504.. _bitset.test:
11505
11506'``llvm.bitset.test``' Intrinsic
11507^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11508
11509Syntax:
11510"""""""
11511
11512::
11513
11514 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
11515
11516
11517Arguments:
11518""""""""""
11519
11520The first argument is a pointer to be tested. The second argument is a
11521metadata string containing the name of a :doc:`bitset <BitSets>`.
11522
11523Overview:
11524"""""""""
11525
11526The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
11527member of the given bitset.
11528
Sean Silvab084af42012-12-07 10:36:55 +000011529'``llvm.donothing``' Intrinsic
11530^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11531
11532Syntax:
11533"""""""
11534
11535::
11536
11537 declare void @llvm.donothing() nounwind readnone
11538
11539Overview:
11540"""""""""
11541
Juergen Ributzkac9161192014-10-23 22:36:13 +000011542The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
11543two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
11544with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000011545
11546Arguments:
11547""""""""""
11548
11549None.
11550
11551Semantics:
11552""""""""""
11553
11554This intrinsic does nothing, and it's removed by optimizers and ignored
11555by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000011556
11557Stack Map Intrinsics
11558--------------------
11559
11560LLVM provides experimental intrinsics to support runtime patching
11561mechanisms commonly desired in dynamic language JITs. These intrinsics
11562are described in :doc:`StackMaps`.