blob: a28ad104f136a9c72b60a8f387c258a1360b0f0a [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000351 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000356 This calling convention attempts to make the code in the caller as
357 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000497.. _namedtypes:
498
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000499Structure Types
500---------------
Sean Silvab084af42012-12-07 10:36:55 +0000501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
503types <t_struct>`. Literal types are uniqued structurally, but identified types
504are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000505to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000506
507An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000508
509.. code-block:: llvm
510
511 %mytype = type { %mytype*, i32 }
512
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000513Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
514literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000515
516.. _globalvars:
517
518Global Variables
519----------------
520
521Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000522instead of run-time.
523
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000524Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525
526Global variables in other translation units can also be declared, in which
527case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000528
Bob Wilson85b24f22014-06-12 20:40:33 +0000529Either global variable definitions or declarations may have an explicit section
530to be placed in and may have an optional explicit alignment specified.
531
Michael Gottesman006039c2013-01-31 05:48:48 +0000532A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000536initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000567Additionally, the global can placed in a comdat if the target has the necessary
568support.
Sean Silvab084af42012-12-07 10:36:55 +0000569
Michael Gottesmane743a302013-02-04 03:22:00 +0000570By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000571variables defined within the module are not modified from their
572initial values before the start of the global initializer. This is
573true even for variables potentially accessible from outside the
574module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000575``@llvm.used`` or dllexported variables. This assumption may be suppressed
576by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000577
Sean Silvab084af42012-12-07 10:36:55 +0000578An explicit alignment may be specified for a global, which must be a
579power of 2. If not present, or if the alignment is set to zero, the
580alignment of the global is set by the target to whatever it feels
581convenient. If an explicit alignment is specified, the global is forced
582to have exactly that alignment. Targets and optimizers are not allowed
583to over-align the global if the global has an assigned section. In this
584case, the extra alignment could be observable: for example, code could
585assume that the globals are densely packed in their section and try to
586iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000587iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000588
Nico Rieck7157bb72014-01-14 15:22:47 +0000589Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
590
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000591Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000592:ref:`Thread Local Storage Model <tls_model>`.
593
Nico Rieck7157bb72014-01-14 15:22:47 +0000594Syntax::
595
596 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000597 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000598 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000599 [, section "name"] [, comdat [($name)]]
600 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000601
Sean Silvab084af42012-12-07 10:36:55 +0000602For example, the following defines a global in a numbered address space
603with an initializer, section, and alignment:
604
605.. code-block:: llvm
606
607 @G = addrspace(5) constant float 1.0, section "foo", align 4
608
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000609The following example just declares a global variable
610
611.. code-block:: llvm
612
613 @G = external global i32
614
Sean Silvab084af42012-12-07 10:36:55 +0000615The following example defines a thread-local global with the
616``initialexec`` TLS model:
617
618.. code-block:: llvm
619
620 @G = thread_local(initialexec) global i32 0, align 4
621
622.. _functionstructure:
623
624Functions
625---------
626
627LLVM function definitions consist of the "``define``" keyword, an
628optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000629style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
630an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000631an optional ``unnamed_addr`` attribute, a return type, an optional
632:ref:`parameter attribute <paramattrs>` for the return type, a function
633name, a (possibly empty) argument list (each with optional :ref:`parameter
634attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000635an optional section, an optional alignment,
636an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000637an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000638an optional :ref:`prologue <prologuedata>`,
639an optional :ref:`personality <personalityfn>`,
640an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000641
642LLVM function declarations consist of the "``declare``" keyword, an
643optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000644style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
645an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000646an optional ``unnamed_addr`` attribute, a return type, an optional
647:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000648name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000649:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
650and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000651
Bill Wendling6822ecb2013-10-27 05:09:12 +0000652A function definition contains a list of basic blocks, forming the CFG (Control
653Flow Graph) for the function. Each basic block may optionally start with a label
654(giving the basic block a symbol table entry), contains a list of instructions,
655and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
656function return). If an explicit label is not provided, a block is assigned an
657implicit numbered label, using the next value from the same counter as used for
658unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
659entry block does not have an explicit label, it will be assigned label "%0",
660then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000661
662The first basic block in a function is special in two ways: it is
663immediately executed on entrance to the function, and it is not allowed
664to have predecessor basic blocks (i.e. there can not be any branches to
665the entry block of a function). Because the block can have no
666predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
667
668LLVM allows an explicit section to be specified for functions. If the
669target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000670Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000671
672An explicit alignment may be specified for a function. If not present,
673or if the alignment is set to zero, the alignment of the function is set
674by the target to whatever it feels convenient. If an explicit alignment
675is specified, the function is forced to have at least that much
676alignment. All alignments must be a power of 2.
677
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000678If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000679be significant and two identical functions can be merged.
680
681Syntax::
682
Nico Rieck7157bb72014-01-14 15:22:47 +0000683 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000684 [cconv] [ret attrs]
685 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000686 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000687 [align N] [gc] [prefix Constant] [prologue Constant]
688 [personality Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000689
Dan Liew2661dfc2014-08-20 15:06:30 +0000690The argument list is a comma seperated sequence of arguments where each
691argument is of the following form
692
693Syntax::
694
695 <type> [parameter Attrs] [name]
696
697
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000698.. _langref_aliases:
699
Sean Silvab084af42012-12-07 10:36:55 +0000700Aliases
701-------
702
Rafael Espindola64c1e182014-06-03 02:41:57 +0000703Aliases, unlike function or variables, don't create any new data. They
704are just a new symbol and metadata for an existing position.
705
706Aliases have a name and an aliasee that is either a global value or a
707constant expression.
708
Nico Rieck7157bb72014-01-14 15:22:47 +0000709Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000710:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
711<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000712
713Syntax::
714
Rafael Espindola464fe022014-07-30 22:51:54 +0000715 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000716
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000717The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000718``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000719might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000720
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000721Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000722the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
723to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000724
Rafael Espindola64c1e182014-06-03 02:41:57 +0000725Since aliases are only a second name, some restrictions apply, of which
726some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728* The expression defining the aliasee must be computable at assembly
729 time. Since it is just a name, no relocations can be used.
730
731* No alias in the expression can be weak as the possibility of the
732 intermediate alias being overridden cannot be represented in an
733 object file.
734
735* No global value in the expression can be a declaration, since that
736 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000737
David Majnemerdad0a642014-06-27 18:19:56 +0000738.. _langref_comdats:
739
740Comdats
741-------
742
743Comdat IR provides access to COFF and ELF object file COMDAT functionality.
744
Richard Smith32dbdf62014-07-31 04:25:36 +0000745Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000746specify this key will only end up in the final object file if the linker chooses
747that key over some other key. Aliases are placed in the same COMDAT that their
748aliasee computes to, if any.
749
750Comdats have a selection kind to provide input on how the linker should
751choose between keys in two different object files.
752
753Syntax::
754
755 $<Name> = comdat SelectionKind
756
757The selection kind must be one of the following:
758
759``any``
760 The linker may choose any COMDAT key, the choice is arbitrary.
761``exactmatch``
762 The linker may choose any COMDAT key but the sections must contain the
763 same data.
764``largest``
765 The linker will choose the section containing the largest COMDAT key.
766``noduplicates``
767 The linker requires that only section with this COMDAT key exist.
768``samesize``
769 The linker may choose any COMDAT key but the sections must contain the
770 same amount of data.
771
772Note that the Mach-O platform doesn't support COMDATs and ELF only supports
773``any`` as a selection kind.
774
775Here is an example of a COMDAT group where a function will only be selected if
776the COMDAT key's section is the largest:
777
778.. code-block:: llvm
779
780 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000781 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000782
Rafael Espindola83a362c2015-01-06 22:55:16 +0000783 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000784 ret void
785 }
786
Rafael Espindola83a362c2015-01-06 22:55:16 +0000787As a syntactic sugar the ``$name`` can be omitted if the name is the same as
788the global name:
789
790.. code-block:: llvm
791
792 $foo = comdat any
793 @foo = global i32 2, comdat
794
795
David Majnemerdad0a642014-06-27 18:19:56 +0000796In a COFF object file, this will create a COMDAT section with selection kind
797``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
798and another COMDAT section with selection kind
799``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000800section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000801
802There are some restrictions on the properties of the global object.
803It, or an alias to it, must have the same name as the COMDAT group when
804targeting COFF.
805The contents and size of this object may be used during link-time to determine
806which COMDAT groups get selected depending on the selection kind.
807Because the name of the object must match the name of the COMDAT group, the
808linkage of the global object must not be local; local symbols can get renamed
809if a collision occurs in the symbol table.
810
811The combined use of COMDATS and section attributes may yield surprising results.
812For example:
813
814.. code-block:: llvm
815
816 $foo = comdat any
817 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000818 @g1 = global i32 42, section "sec", comdat($foo)
819 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000820
821From the object file perspective, this requires the creation of two sections
822with the same name. This is necessary because both globals belong to different
823COMDAT groups and COMDATs, at the object file level, are represented by
824sections.
825
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000826Note that certain IR constructs like global variables and functions may
827create COMDATs in the object file in addition to any which are specified using
828COMDAT IR. This arises when the code generator is configured to emit globals
829in individual sections (e.g. when `-data-sections` or `-function-sections`
830is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000831
Sean Silvab084af42012-12-07 10:36:55 +0000832.. _namedmetadatastructure:
833
834Named Metadata
835--------------
836
837Named metadata is a collection of metadata. :ref:`Metadata
838nodes <metadata>` (but not metadata strings) are the only valid
839operands for a named metadata.
840
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000841#. Named metadata are represented as a string of characters with the
842 metadata prefix. The rules for metadata names are the same as for
843 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
844 are still valid, which allows any character to be part of a name.
845
Sean Silvab084af42012-12-07 10:36:55 +0000846Syntax::
847
848 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000849 !0 = !{!"zero"}
850 !1 = !{!"one"}
851 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000852 ; A named metadata.
853 !name = !{!0, !1, !2}
854
855.. _paramattrs:
856
857Parameter Attributes
858--------------------
859
860The return type and each parameter of a function type may have a set of
861*parameter attributes* associated with them. Parameter attributes are
862used to communicate additional information about the result or
863parameters of a function. Parameter attributes are considered to be part
864of the function, not of the function type, so functions with different
865parameter attributes can have the same function type.
866
867Parameter attributes are simple keywords that follow the type specified.
868If multiple parameter attributes are needed, they are space separated.
869For example:
870
871.. code-block:: llvm
872
873 declare i32 @printf(i8* noalias nocapture, ...)
874 declare i32 @atoi(i8 zeroext)
875 declare signext i8 @returns_signed_char()
876
877Note that any attributes for the function result (``nounwind``,
878``readonly``) come immediately after the argument list.
879
880Currently, only the following parameter attributes are defined:
881
882``zeroext``
883 This indicates to the code generator that the parameter or return
884 value should be zero-extended to the extent required by the target's
885 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
886 the caller (for a parameter) or the callee (for a return value).
887``signext``
888 This indicates to the code generator that the parameter or return
889 value should be sign-extended to the extent required by the target's
890 ABI (which is usually 32-bits) by the caller (for a parameter) or
891 the callee (for a return value).
892``inreg``
893 This indicates that this parameter or return value should be treated
894 in a special target-dependent fashion during while emitting code for
895 a function call or return (usually, by putting it in a register as
896 opposed to memory, though some targets use it to distinguish between
897 two different kinds of registers). Use of this attribute is
898 target-specific.
899``byval``
900 This indicates that the pointer parameter should really be passed by
901 value to the function. The attribute implies that a hidden copy of
902 the pointee is made between the caller and the callee, so the callee
903 is unable to modify the value in the caller. This attribute is only
904 valid on LLVM pointer arguments. It is generally used to pass
905 structs and arrays by value, but is also valid on pointers to
906 scalars. The copy is considered to belong to the caller not the
907 callee (for example, ``readonly`` functions should not write to
908 ``byval`` parameters). This is not a valid attribute for return
909 values.
910
911 The byval attribute also supports specifying an alignment with the
912 align attribute. It indicates the alignment of the stack slot to
913 form and the known alignment of the pointer specified to the call
914 site. If the alignment is not specified, then the code generator
915 makes a target-specific assumption.
916
Reid Klecknera534a382013-12-19 02:14:12 +0000917.. _attr_inalloca:
918
919``inalloca``
920
Reid Kleckner60d3a832014-01-16 22:59:24 +0000921 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000922 address of outgoing stack arguments. An ``inalloca`` argument must
923 be a pointer to stack memory produced by an ``alloca`` instruction.
924 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000925 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000926 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000927
Reid Kleckner436c42e2014-01-17 23:58:17 +0000928 An argument allocation may be used by a call at most once because
929 the call may deallocate it. The ``inalloca`` attribute cannot be
930 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000931 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
932 ``inalloca`` attribute also disables LLVM's implicit lowering of
933 large aggregate return values, which means that frontend authors
934 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000935
Reid Kleckner60d3a832014-01-16 22:59:24 +0000936 When the call site is reached, the argument allocation must have
937 been the most recent stack allocation that is still live, or the
938 results are undefined. It is possible to allocate additional stack
939 space after an argument allocation and before its call site, but it
940 must be cleared off with :ref:`llvm.stackrestore
941 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000942
943 See :doc:`InAlloca` for more information on how to use this
944 attribute.
945
Sean Silvab084af42012-12-07 10:36:55 +0000946``sret``
947 This indicates that the pointer parameter specifies the address of a
948 structure that is the return value of the function in the source
949 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000950 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000951 not to trap and to be properly aligned. This may only be applied to
952 the first parameter. This is not a valid attribute for return
953 values.
Sean Silva1703e702014-04-08 21:06:22 +0000954
Hal Finkelccc70902014-07-22 16:58:55 +0000955``align <n>``
956 This indicates that the pointer value may be assumed by the optimizer to
957 have the specified alignment.
958
959 Note that this attribute has additional semantics when combined with the
960 ``byval`` attribute.
961
Sean Silva1703e702014-04-08 21:06:22 +0000962.. _noalias:
963
Sean Silvab084af42012-12-07 10:36:55 +0000964``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000965 This indicates that objects accessed via pointer values
966 :ref:`based <pointeraliasing>` on the argument or return value are not also
967 accessed, during the execution of the function, via pointer values not
968 *based* on the argument or return value. The attribute on a return value
969 also has additional semantics described below. The caller shares the
970 responsibility with the callee for ensuring that these requirements are met.
971 For further details, please see the discussion of the NoAlias response in
972 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000973
974 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000975 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000976
977 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000978 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
979 attribute on return values are stronger than the semantics of the attribute
980 when used on function arguments. On function return values, the ``noalias``
981 attribute indicates that the function acts like a system memory allocation
982 function, returning a pointer to allocated storage disjoint from the
983 storage for any other object accessible to the caller.
984
Sean Silvab084af42012-12-07 10:36:55 +0000985``nocapture``
986 This indicates that the callee does not make any copies of the
987 pointer that outlive the callee itself. This is not a valid
988 attribute for return values.
989
990.. _nest:
991
992``nest``
993 This indicates that the pointer parameter can be excised using the
994 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000995 attribute for return values and can only be applied to one parameter.
996
997``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000998 This indicates that the function always returns the argument as its return
999 value. This is an optimization hint to the code generator when generating
1000 the caller, allowing tail call optimization and omission of register saves
1001 and restores in some cases; it is not checked or enforced when generating
1002 the callee. The parameter and the function return type must be valid
1003 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1004 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001005
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001006``nonnull``
1007 This indicates that the parameter or return pointer is not null. This
1008 attribute may only be applied to pointer typed parameters. This is not
1009 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001010 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001011 is non-null.
1012
Hal Finkelb0407ba2014-07-18 15:51:28 +00001013``dereferenceable(<n>)``
1014 This indicates that the parameter or return pointer is dereferenceable. This
1015 attribute may only be applied to pointer typed parameters. A pointer that
1016 is dereferenceable can be loaded from speculatively without a risk of
1017 trapping. The number of bytes known to be dereferenceable must be provided
1018 in parentheses. It is legal for the number of bytes to be less than the
1019 size of the pointee type. The ``nonnull`` attribute does not imply
1020 dereferenceability (consider a pointer to one element past the end of an
1021 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1022 ``addrspace(0)`` (which is the default address space).
1023
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001024``dereferenceable_or_null(<n>)``
1025 This indicates that the parameter or return value isn't both
1026 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
1027 time. All non-null pointers tagged with
1028 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1029 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1030 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1031 and in other address spaces ``dereferenceable_or_null(<n>)``
1032 implies that a pointer is at least one of ``dereferenceable(<n>)``
1033 or ``null`` (i.e. it may be both ``null`` and
1034 ``dereferenceable(<n>)``). This attribute may only be applied to
1035 pointer typed parameters.
1036
Sean Silvab084af42012-12-07 10:36:55 +00001037.. _gc:
1038
Philip Reamesf80bbff2015-02-25 23:45:20 +00001039Garbage Collector Strategy Names
1040--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001041
Philip Reamesf80bbff2015-02-25 23:45:20 +00001042Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001043string:
1044
1045.. code-block:: llvm
1046
1047 define void @f() gc "name" { ... }
1048
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001049The supported values of *name* includes those :ref:`built in to LLVM
Philip Reamesf80bbff2015-02-25 23:45:20 +00001050<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001051strategy will cause the compiler to alter its output in order to support the
1052named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001053garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001054which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001055
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001056.. _prefixdata:
1057
1058Prefix Data
1059-----------
1060
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001061Prefix data is data associated with a function which the code
1062generator will emit immediately before the function's entrypoint.
1063The purpose of this feature is to allow frontends to associate
1064language-specific runtime metadata with specific functions and make it
1065available through the function pointer while still allowing the
1066function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001067
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001068To access the data for a given function, a program may bitcast the
1069function pointer to a pointer to the constant's type and dereference
1070index -1. This implies that the IR symbol points just past the end of
1071the prefix data. For instance, take the example of a function annotated
1072with a single ``i32``,
1073
1074.. code-block:: llvm
1075
1076 define void @f() prefix i32 123 { ... }
1077
1078The prefix data can be referenced as,
1079
1080.. code-block:: llvm
1081
David Blaikie16a97eb2015-03-04 22:02:58 +00001082 %0 = bitcast void* () @f to i32*
1083 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001084 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001085
1086Prefix data is laid out as if it were an initializer for a global variable
1087of the prefix data's type. The function will be placed such that the
1088beginning of the prefix data is aligned. This means that if the size
1089of the prefix data is not a multiple of the alignment size, the
1090function's entrypoint will not be aligned. If alignment of the
1091function's entrypoint is desired, padding must be added to the prefix
1092data.
1093
1094A function may have prefix data but no body. This has similar semantics
1095to the ``available_externally`` linkage in that the data may be used by the
1096optimizers but will not be emitted in the object file.
1097
1098.. _prologuedata:
1099
1100Prologue Data
1101-------------
1102
1103The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1104be inserted prior to the function body. This can be used for enabling
1105function hot-patching and instrumentation.
1106
1107To maintain the semantics of ordinary function calls, the prologue data must
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001108have a particular format. Specifically, it must begin with a sequence of
1109bytes which decode to a sequence of machine instructions, valid for the
1110module's target, which transfer control to the point immediately succeeding
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001111the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001112the inliner and other passes to reason about the semantics of the function
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001113definition without needing to reason about the prologue data. Obviously this
1114makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001115
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001116A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001117which encodes the ``nop`` instruction:
1118
1119.. code-block:: llvm
1120
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001121 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001122
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001123Generally prologue data can be formed by encoding a relative branch instruction
1124which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001125x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1126
1127.. code-block:: llvm
1128
1129 %0 = type <{ i8, i8, i8* }>
1130
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001131 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001132
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001133A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001134to the ``available_externally`` linkage in that the data may be used by the
1135optimizers but will not be emitted in the object file.
1136
David Majnemer7fddecc2015-06-17 20:52:32 +00001137.. _personalityfn:
1138
1139Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001140--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001141
1142The ``personality`` attribute permits functions to specify what function
1143to use for exception handling.
1144
Bill Wendling63b88192013-02-06 06:52:58 +00001145.. _attrgrp:
1146
1147Attribute Groups
1148----------------
1149
1150Attribute groups are groups of attributes that are referenced by objects within
1151the IR. They are important for keeping ``.ll`` files readable, because a lot of
1152functions will use the same set of attributes. In the degenerative case of a
1153``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1154group will capture the important command line flags used to build that file.
1155
1156An attribute group is a module-level object. To use an attribute group, an
1157object references the attribute group's ID (e.g. ``#37``). An object may refer
1158to more than one attribute group. In that situation, the attributes from the
1159different groups are merged.
1160
1161Here is an example of attribute groups for a function that should always be
1162inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1163
1164.. code-block:: llvm
1165
1166 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001167 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001168
1169 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001170 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001171
1172 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1173 define void @f() #0 #1 { ... }
1174
Sean Silvab084af42012-12-07 10:36:55 +00001175.. _fnattrs:
1176
1177Function Attributes
1178-------------------
1179
1180Function attributes are set to communicate additional information about
1181a function. Function attributes are considered to be part of the
1182function, not of the function type, so functions with different function
1183attributes can have the same function type.
1184
1185Function attributes are simple keywords that follow the type specified.
1186If multiple attributes are needed, they are space separated. For
1187example:
1188
1189.. code-block:: llvm
1190
1191 define void @f() noinline { ... }
1192 define void @f() alwaysinline { ... }
1193 define void @f() alwaysinline optsize { ... }
1194 define void @f() optsize { ... }
1195
Sean Silvab084af42012-12-07 10:36:55 +00001196``alignstack(<n>)``
1197 This attribute indicates that, when emitting the prologue and
1198 epilogue, the backend should forcibly align the stack pointer.
1199 Specify the desired alignment, which must be a power of two, in
1200 parentheses.
1201``alwaysinline``
1202 This attribute indicates that the inliner should attempt to inline
1203 this function into callers whenever possible, ignoring any active
1204 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001205``builtin``
1206 This indicates that the callee function at a call site should be
1207 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001208 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001209 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001210 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001211``cold``
1212 This attribute indicates that this function is rarely called. When
1213 computing edge weights, basic blocks post-dominated by a cold
1214 function call are also considered to be cold; and, thus, given low
1215 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001216``convergent``
1217 This attribute indicates that the callee is dependent on a convergent
1218 thread execution pattern under certain parallel execution models.
1219 Transformations that are execution model agnostic may only move or
1220 tranform this call if the final location is control equivalent to its
1221 original position in the program, where control equivalence is defined as
1222 A dominates B and B post-dominates A, or vice versa.
Sean Silvab084af42012-12-07 10:36:55 +00001223``inlinehint``
1224 This attribute indicates that the source code contained a hint that
1225 inlining this function is desirable (such as the "inline" keyword in
1226 C/C++). It is just a hint; it imposes no requirements on the
1227 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001228``jumptable``
1229 This attribute indicates that the function should be added to a
1230 jump-instruction table at code-generation time, and that all address-taken
1231 references to this function should be replaced with a reference to the
1232 appropriate jump-instruction-table function pointer. Note that this creates
1233 a new pointer for the original function, which means that code that depends
1234 on function-pointer identity can break. So, any function annotated with
1235 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001236``minsize``
1237 This attribute suggests that optimization passes and code generator
1238 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001239 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001240 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001241``naked``
1242 This attribute disables prologue / epilogue emission for the
1243 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001244``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001245 This indicates that the callee function at a call site is not recognized as
1246 a built-in function. LLVM will retain the original call and not replace it
1247 with equivalent code based on the semantics of the built-in function, unless
1248 the call site uses the ``builtin`` attribute. This is valid at call sites
1249 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001250``noduplicate``
1251 This attribute indicates that calls to the function cannot be
1252 duplicated. A call to a ``noduplicate`` function may be moved
1253 within its parent function, but may not be duplicated within
1254 its parent function.
1255
1256 A function containing a ``noduplicate`` call may still
1257 be an inlining candidate, provided that the call is not
1258 duplicated by inlining. That implies that the function has
1259 internal linkage and only has one call site, so the original
1260 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001261``noimplicitfloat``
1262 This attributes disables implicit floating point instructions.
1263``noinline``
1264 This attribute indicates that the inliner should never inline this
1265 function in any situation. This attribute may not be used together
1266 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001267``nonlazybind``
1268 This attribute suppresses lazy symbol binding for the function. This
1269 may make calls to the function faster, at the cost of extra program
1270 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001271``noredzone``
1272 This attribute indicates that the code generator should not use a
1273 red zone, even if the target-specific ABI normally permits it.
1274``noreturn``
1275 This function attribute indicates that the function never returns
1276 normally. This produces undefined behavior at runtime if the
1277 function ever does dynamically return.
1278``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001279 This function attribute indicates that the function never raises an
1280 exception. If the function does raise an exception, its runtime
1281 behavior is undefined. However, functions marked nounwind may still
1282 trap or generate asynchronous exceptions. Exception handling schemes
1283 that are recognized by LLVM to handle asynchronous exceptions, such
1284 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001285``optnone``
1286 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001287 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001288 exception of interprocedural optimization passes.
1289 This attribute cannot be used together with the ``alwaysinline``
1290 attribute; this attribute is also incompatible
1291 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001292
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001293 This attribute requires the ``noinline`` attribute to be specified on
1294 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001295 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001296 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001297``optsize``
1298 This attribute suggests that optimization passes and code generator
1299 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001300 and otherwise do optimizations specifically to reduce code size as
1301 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001302``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001303 On a function, this attribute indicates that the function computes its
1304 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001305 without dereferencing any pointer arguments or otherwise accessing
1306 any mutable state (e.g. memory, control registers, etc) visible to
1307 caller functions. It does not write through any pointer arguments
1308 (including ``byval`` arguments) and never changes any state visible
1309 to callers. This means that it cannot unwind exceptions by calling
1310 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001311
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001312 On an argument, this attribute indicates that the function does not
1313 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001314 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001315``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001316 On a function, this attribute indicates that the function does not write
1317 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001318 modify any state (e.g. memory, control registers, etc) visible to
1319 caller functions. It may dereference pointer arguments and read
1320 state that may be set in the caller. A readonly function always
1321 returns the same value (or unwinds an exception identically) when
1322 called with the same set of arguments and global state. It cannot
1323 unwind an exception by calling the ``C++`` exception throwing
1324 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001325
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001326 On an argument, this attribute indicates that the function does not write
1327 through this pointer argument, even though it may write to the memory that
1328 the pointer points to.
Sean Silvab084af42012-12-07 10:36:55 +00001329``returns_twice``
1330 This attribute indicates that this function can return twice. The C
1331 ``setjmp`` is an example of such a function. The compiler disables
1332 some optimizations (like tail calls) in the caller of these
1333 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001334``safestack``
1335 This attribute indicates that
1336 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1337 protection is enabled for this function.
1338
1339 If a function that has a ``safestack`` attribute is inlined into a
1340 function that doesn't have a ``safestack`` attribute or which has an
1341 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1342 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001343``sanitize_address``
1344 This attribute indicates that AddressSanitizer checks
1345 (dynamic address safety analysis) are enabled for this function.
1346``sanitize_memory``
1347 This attribute indicates that MemorySanitizer checks (dynamic detection
1348 of accesses to uninitialized memory) are enabled for this function.
1349``sanitize_thread``
1350 This attribute indicates that ThreadSanitizer checks
1351 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001352``ssp``
1353 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001354 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001355 placed on the stack before the local variables that's checked upon
1356 return from the function to see if it has been overwritten. A
1357 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001358 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001359
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001360 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1361 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1362 - Calls to alloca() with variable sizes or constant sizes greater than
1363 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001364
Josh Magee24c7f062014-02-01 01:36:16 +00001365 Variables that are identified as requiring a protector will be arranged
1366 on the stack such that they are adjacent to the stack protector guard.
1367
Sean Silvab084af42012-12-07 10:36:55 +00001368 If a function that has an ``ssp`` attribute is inlined into a
1369 function that doesn't have an ``ssp`` attribute, then the resulting
1370 function will have an ``ssp`` attribute.
1371``sspreq``
1372 This attribute indicates that the function should *always* emit a
1373 stack smashing protector. This overrides the ``ssp`` function
1374 attribute.
1375
Josh Magee24c7f062014-02-01 01:36:16 +00001376 Variables that are identified as requiring a protector will be arranged
1377 on the stack such that they are adjacent to the stack protector guard.
1378 The specific layout rules are:
1379
1380 #. Large arrays and structures containing large arrays
1381 (``>= ssp-buffer-size``) are closest to the stack protector.
1382 #. Small arrays and structures containing small arrays
1383 (``< ssp-buffer-size``) are 2nd closest to the protector.
1384 #. Variables that have had their address taken are 3rd closest to the
1385 protector.
1386
Sean Silvab084af42012-12-07 10:36:55 +00001387 If a function that has an ``sspreq`` attribute is inlined into a
1388 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001389 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1390 an ``sspreq`` attribute.
1391``sspstrong``
1392 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001393 protector. This attribute causes a strong heuristic to be used when
1394 determining if a function needs stack protectors. The strong heuristic
1395 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001396
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001397 - Arrays of any size and type
1398 - Aggregates containing an array of any size and type.
1399 - Calls to alloca().
1400 - Local variables that have had their address taken.
1401
Josh Magee24c7f062014-02-01 01:36:16 +00001402 Variables that are identified as requiring a protector will be arranged
1403 on the stack such that they are adjacent to the stack protector guard.
1404 The specific layout rules are:
1405
1406 #. Large arrays and structures containing large arrays
1407 (``>= ssp-buffer-size``) are closest to the stack protector.
1408 #. Small arrays and structures containing small arrays
1409 (``< ssp-buffer-size``) are 2nd closest to the protector.
1410 #. Variables that have had their address taken are 3rd closest to the
1411 protector.
1412
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001413 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001414
1415 If a function that has an ``sspstrong`` attribute is inlined into a
1416 function that doesn't have an ``sspstrong`` attribute, then the
1417 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001418``"thunk"``
1419 This attribute indicates that the function will delegate to some other
1420 function with a tail call. The prototype of a thunk should not be used for
1421 optimization purposes. The caller is expected to cast the thunk prototype to
1422 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001423``uwtable``
1424 This attribute indicates that the ABI being targeted requires that
1425 an unwind table entry be produce for this function even if we can
1426 show that no exceptions passes by it. This is normally the case for
1427 the ELF x86-64 abi, but it can be disabled for some compilation
1428 units.
Sean Silvab084af42012-12-07 10:36:55 +00001429
1430.. _moduleasm:
1431
1432Module-Level Inline Assembly
1433----------------------------
1434
1435Modules may contain "module-level inline asm" blocks, which corresponds
1436to the GCC "file scope inline asm" blocks. These blocks are internally
1437concatenated by LLVM and treated as a single unit, but may be separated
1438in the ``.ll`` file if desired. The syntax is very simple:
1439
1440.. code-block:: llvm
1441
1442 module asm "inline asm code goes here"
1443 module asm "more can go here"
1444
1445The strings can contain any character by escaping non-printable
1446characters. The escape sequence used is simply "\\xx" where "xx" is the
1447two digit hex code for the number.
1448
James Y Knightbc832ed2015-07-08 18:08:36 +00001449Note that the assembly string *must* be parseable by LLVM's integrated assembler
1450(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001451
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001452.. _langref_datalayout:
1453
Sean Silvab084af42012-12-07 10:36:55 +00001454Data Layout
1455-----------
1456
1457A module may specify a target specific data layout string that specifies
1458how data is to be laid out in memory. The syntax for the data layout is
1459simply:
1460
1461.. code-block:: llvm
1462
1463 target datalayout = "layout specification"
1464
1465The *layout specification* consists of a list of specifications
1466separated by the minus sign character ('-'). Each specification starts
1467with a letter and may include other information after the letter to
1468define some aspect of the data layout. The specifications accepted are
1469as follows:
1470
1471``E``
1472 Specifies that the target lays out data in big-endian form. That is,
1473 the bits with the most significance have the lowest address
1474 location.
1475``e``
1476 Specifies that the target lays out data in little-endian form. That
1477 is, the bits with the least significance have the lowest address
1478 location.
1479``S<size>``
1480 Specifies the natural alignment of the stack in bits. Alignment
1481 promotion of stack variables is limited to the natural stack
1482 alignment to avoid dynamic stack realignment. The stack alignment
1483 must be a multiple of 8-bits. If omitted, the natural stack
1484 alignment defaults to "unspecified", which does not prevent any
1485 alignment promotions.
1486``p[n]:<size>:<abi>:<pref>``
1487 This specifies the *size* of a pointer and its ``<abi>`` and
1488 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001489 bits. The address space, ``n`` is optional, and if not specified,
1490 denotes the default address space 0. The value of ``n`` must be
1491 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001492``i<size>:<abi>:<pref>``
1493 This specifies the alignment for an integer type of a given bit
1494 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1495``v<size>:<abi>:<pref>``
1496 This specifies the alignment for a vector type of a given bit
1497 ``<size>``.
1498``f<size>:<abi>:<pref>``
1499 This specifies the alignment for a floating point type of a given bit
1500 ``<size>``. Only values of ``<size>`` that are supported by the target
1501 will work. 32 (float) and 64 (double) are supported on all targets; 80
1502 or 128 (different flavors of long double) are also supported on some
1503 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001504``a:<abi>:<pref>``
1505 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001506``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001507 If present, specifies that llvm names are mangled in the output. The
1508 options are
1509
1510 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1511 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1512 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1513 symbols get a ``_`` prefix.
1514 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1515 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001516``n<size1>:<size2>:<size3>...``
1517 This specifies a set of native integer widths for the target CPU in
1518 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1519 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1520 this set are considered to support most general arithmetic operations
1521 efficiently.
1522
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001523On every specification that takes a ``<abi>:<pref>``, specifying the
1524``<pref>`` alignment is optional. If omitted, the preceding ``:``
1525should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1526
Sean Silvab084af42012-12-07 10:36:55 +00001527When constructing the data layout for a given target, LLVM starts with a
1528default set of specifications which are then (possibly) overridden by
1529the specifications in the ``datalayout`` keyword. The default
1530specifications are given in this list:
1531
1532- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001533- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1534- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1535 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001536- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001537- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1538- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1539- ``i16:16:16`` - i16 is 16-bit aligned
1540- ``i32:32:32`` - i32 is 32-bit aligned
1541- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1542 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001543- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001544- ``f32:32:32`` - float is 32-bit aligned
1545- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001546- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001547- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1548- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001549- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001550
1551When LLVM is determining the alignment for a given type, it uses the
1552following rules:
1553
1554#. If the type sought is an exact match for one of the specifications,
1555 that specification is used.
1556#. If no match is found, and the type sought is an integer type, then
1557 the smallest integer type that is larger than the bitwidth of the
1558 sought type is used. If none of the specifications are larger than
1559 the bitwidth then the largest integer type is used. For example,
1560 given the default specifications above, the i7 type will use the
1561 alignment of i8 (next largest) while both i65 and i256 will use the
1562 alignment of i64 (largest specified).
1563#. If no match is found, and the type sought is a vector type, then the
1564 largest vector type that is smaller than the sought vector type will
1565 be used as a fall back. This happens because <128 x double> can be
1566 implemented in terms of 64 <2 x double>, for example.
1567
1568The function of the data layout string may not be what you expect.
1569Notably, this is not a specification from the frontend of what alignment
1570the code generator should use.
1571
1572Instead, if specified, the target data layout is required to match what
1573the ultimate *code generator* expects. This string is used by the
1574mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001575what the ultimate code generator uses. There is no way to generate IR
1576that does not embed this target-specific detail into the IR. If you
1577don't specify the string, the default specifications will be used to
1578generate a Data Layout and the optimization phases will operate
1579accordingly and introduce target specificity into the IR with respect to
1580these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001581
Bill Wendling5cc90842013-10-18 23:41:25 +00001582.. _langref_triple:
1583
1584Target Triple
1585-------------
1586
1587A module may specify a target triple string that describes the target
1588host. The syntax for the target triple is simply:
1589
1590.. code-block:: llvm
1591
1592 target triple = "x86_64-apple-macosx10.7.0"
1593
1594The *target triple* string consists of a series of identifiers delimited
1595by the minus sign character ('-'). The canonical forms are:
1596
1597::
1598
1599 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1600 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1601
1602This information is passed along to the backend so that it generates
1603code for the proper architecture. It's possible to override this on the
1604command line with the ``-mtriple`` command line option.
1605
Sean Silvab084af42012-12-07 10:36:55 +00001606.. _pointeraliasing:
1607
1608Pointer Aliasing Rules
1609----------------------
1610
1611Any memory access must be done through a pointer value associated with
1612an address range of the memory access, otherwise the behavior is
1613undefined. Pointer values are associated with address ranges according
1614to the following rules:
1615
1616- A pointer value is associated with the addresses associated with any
1617 value it is *based* on.
1618- An address of a global variable is associated with the address range
1619 of the variable's storage.
1620- The result value of an allocation instruction is associated with the
1621 address range of the allocated storage.
1622- A null pointer in the default address-space is associated with no
1623 address.
1624- An integer constant other than zero or a pointer value returned from
1625 a function not defined within LLVM may be associated with address
1626 ranges allocated through mechanisms other than those provided by
1627 LLVM. Such ranges shall not overlap with any ranges of addresses
1628 allocated by mechanisms provided by LLVM.
1629
1630A pointer value is *based* on another pointer value according to the
1631following rules:
1632
1633- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001634 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001635- The result value of a ``bitcast`` is *based* on the operand of the
1636 ``bitcast``.
1637- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1638 values that contribute (directly or indirectly) to the computation of
1639 the pointer's value.
1640- The "*based* on" relationship is transitive.
1641
1642Note that this definition of *"based"* is intentionally similar to the
1643definition of *"based"* in C99, though it is slightly weaker.
1644
1645LLVM IR does not associate types with memory. The result type of a
1646``load`` merely indicates the size and alignment of the memory from
1647which to load, as well as the interpretation of the value. The first
1648operand type of a ``store`` similarly only indicates the size and
1649alignment of the store.
1650
1651Consequently, type-based alias analysis, aka TBAA, aka
1652``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1653:ref:`Metadata <metadata>` may be used to encode additional information
1654which specialized optimization passes may use to implement type-based
1655alias analysis.
1656
1657.. _volatile:
1658
1659Volatile Memory Accesses
1660------------------------
1661
1662Certain memory accesses, such as :ref:`load <i_load>`'s,
1663:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1664marked ``volatile``. The optimizers must not change the number of
1665volatile operations or change their order of execution relative to other
1666volatile operations. The optimizers *may* change the order of volatile
1667operations relative to non-volatile operations. This is not Java's
1668"volatile" and has no cross-thread synchronization behavior.
1669
Andrew Trick89fc5a62013-01-30 21:19:35 +00001670IR-level volatile loads and stores cannot safely be optimized into
1671llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1672flagged volatile. Likewise, the backend should never split or merge
1673target-legal volatile load/store instructions.
1674
Andrew Trick7e6f9282013-01-31 00:49:39 +00001675.. admonition:: Rationale
1676
1677 Platforms may rely on volatile loads and stores of natively supported
1678 data width to be executed as single instruction. For example, in C
1679 this holds for an l-value of volatile primitive type with native
1680 hardware support, but not necessarily for aggregate types. The
1681 frontend upholds these expectations, which are intentionally
1682 unspecified in the IR. The rules above ensure that IR transformation
1683 do not violate the frontend's contract with the language.
1684
Sean Silvab084af42012-12-07 10:36:55 +00001685.. _memmodel:
1686
1687Memory Model for Concurrent Operations
1688--------------------------------------
1689
1690The LLVM IR does not define any way to start parallel threads of
1691execution or to register signal handlers. Nonetheless, there are
1692platform-specific ways to create them, and we define LLVM IR's behavior
1693in their presence. This model is inspired by the C++0x memory model.
1694
1695For a more informal introduction to this model, see the :doc:`Atomics`.
1696
1697We define a *happens-before* partial order as the least partial order
1698that
1699
1700- Is a superset of single-thread program order, and
1701- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1702 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1703 techniques, like pthread locks, thread creation, thread joining,
1704 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1705 Constraints <ordering>`).
1706
1707Note that program order does not introduce *happens-before* edges
1708between a thread and signals executing inside that thread.
1709
1710Every (defined) read operation (load instructions, memcpy, atomic
1711loads/read-modify-writes, etc.) R reads a series of bytes written by
1712(defined) write operations (store instructions, atomic
1713stores/read-modify-writes, memcpy, etc.). For the purposes of this
1714section, initialized globals are considered to have a write of the
1715initializer which is atomic and happens before any other read or write
1716of the memory in question. For each byte of a read R, R\ :sub:`byte`
1717may see any write to the same byte, except:
1718
1719- If write\ :sub:`1` happens before write\ :sub:`2`, and
1720 write\ :sub:`2` happens before R\ :sub:`byte`, then
1721 R\ :sub:`byte` does not see write\ :sub:`1`.
1722- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1723 R\ :sub:`byte` does not see write\ :sub:`3`.
1724
1725Given that definition, R\ :sub:`byte` is defined as follows:
1726
1727- If R is volatile, the result is target-dependent. (Volatile is
1728 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001729 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001730 like normal memory. It does not generally provide cross-thread
1731 synchronization.)
1732- Otherwise, if there is no write to the same byte that happens before
1733 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1734- Otherwise, if R\ :sub:`byte` may see exactly one write,
1735 R\ :sub:`byte` returns the value written by that write.
1736- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1737 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1738 Memory Ordering Constraints <ordering>` section for additional
1739 constraints on how the choice is made.
1740- Otherwise R\ :sub:`byte` returns ``undef``.
1741
1742R returns the value composed of the series of bytes it read. This
1743implies that some bytes within the value may be ``undef`` **without**
1744the entire value being ``undef``. Note that this only defines the
1745semantics of the operation; it doesn't mean that targets will emit more
1746than one instruction to read the series of bytes.
1747
1748Note that in cases where none of the atomic intrinsics are used, this
1749model places only one restriction on IR transformations on top of what
1750is required for single-threaded execution: introducing a store to a byte
1751which might not otherwise be stored is not allowed in general.
1752(Specifically, in the case where another thread might write to and read
1753from an address, introducing a store can change a load that may see
1754exactly one write into a load that may see multiple writes.)
1755
1756.. _ordering:
1757
1758Atomic Memory Ordering Constraints
1759----------------------------------
1760
1761Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1762:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1763:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001764ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001765the same address they *synchronize with*. These semantics are borrowed
1766from Java and C++0x, but are somewhat more colloquial. If these
1767descriptions aren't precise enough, check those specs (see spec
1768references in the :doc:`atomics guide <Atomics>`).
1769:ref:`fence <i_fence>` instructions treat these orderings somewhat
1770differently since they don't take an address. See that instruction's
1771documentation for details.
1772
1773For a simpler introduction to the ordering constraints, see the
1774:doc:`Atomics`.
1775
1776``unordered``
1777 The set of values that can be read is governed by the happens-before
1778 partial order. A value cannot be read unless some operation wrote
1779 it. This is intended to provide a guarantee strong enough to model
1780 Java's non-volatile shared variables. This ordering cannot be
1781 specified for read-modify-write operations; it is not strong enough
1782 to make them atomic in any interesting way.
1783``monotonic``
1784 In addition to the guarantees of ``unordered``, there is a single
1785 total order for modifications by ``monotonic`` operations on each
1786 address. All modification orders must be compatible with the
1787 happens-before order. There is no guarantee that the modification
1788 orders can be combined to a global total order for the whole program
1789 (and this often will not be possible). The read in an atomic
1790 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1791 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1792 order immediately before the value it writes. If one atomic read
1793 happens before another atomic read of the same address, the later
1794 read must see the same value or a later value in the address's
1795 modification order. This disallows reordering of ``monotonic`` (or
1796 stronger) operations on the same address. If an address is written
1797 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1798 read that address repeatedly, the other threads must eventually see
1799 the write. This corresponds to the C++0x/C1x
1800 ``memory_order_relaxed``.
1801``acquire``
1802 In addition to the guarantees of ``monotonic``, a
1803 *synchronizes-with* edge may be formed with a ``release`` operation.
1804 This is intended to model C++'s ``memory_order_acquire``.
1805``release``
1806 In addition to the guarantees of ``monotonic``, if this operation
1807 writes a value which is subsequently read by an ``acquire``
1808 operation, it *synchronizes-with* that operation. (This isn't a
1809 complete description; see the C++0x definition of a release
1810 sequence.) This corresponds to the C++0x/C1x
1811 ``memory_order_release``.
1812``acq_rel`` (acquire+release)
1813 Acts as both an ``acquire`` and ``release`` operation on its
1814 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1815``seq_cst`` (sequentially consistent)
1816 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001817 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001818 writes), there is a global total order on all
1819 sequentially-consistent operations on all addresses, which is
1820 consistent with the *happens-before* partial order and with the
1821 modification orders of all the affected addresses. Each
1822 sequentially-consistent read sees the last preceding write to the
1823 same address in this global order. This corresponds to the C++0x/C1x
1824 ``memory_order_seq_cst`` and Java volatile.
1825
1826.. _singlethread:
1827
1828If an atomic operation is marked ``singlethread``, it only *synchronizes
1829with* or participates in modification and seq\_cst total orderings with
1830other operations running in the same thread (for example, in signal
1831handlers).
1832
1833.. _fastmath:
1834
1835Fast-Math Flags
1836---------------
1837
1838LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1839:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00001840:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
1841be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00001842
1843``nnan``
1844 No NaNs - Allow optimizations to assume the arguments and result are not
1845 NaN. Such optimizations are required to retain defined behavior over
1846 NaNs, but the value of the result is undefined.
1847
1848``ninf``
1849 No Infs - Allow optimizations to assume the arguments and result are not
1850 +/-Inf. Such optimizations are required to retain defined behavior over
1851 +/-Inf, but the value of the result is undefined.
1852
1853``nsz``
1854 No Signed Zeros - Allow optimizations to treat the sign of a zero
1855 argument or result as insignificant.
1856
1857``arcp``
1858 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1859 argument rather than perform division.
1860
1861``fast``
1862 Fast - Allow algebraically equivalent transformations that may
1863 dramatically change results in floating point (e.g. reassociate). This
1864 flag implies all the others.
1865
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001866.. _uselistorder:
1867
1868Use-list Order Directives
1869-------------------------
1870
1871Use-list directives encode the in-memory order of each use-list, allowing the
1872order to be recreated. ``<order-indexes>`` is a comma-separated list of
1873indexes that are assigned to the referenced value's uses. The referenced
1874value's use-list is immediately sorted by these indexes.
1875
1876Use-list directives may appear at function scope or global scope. They are not
1877instructions, and have no effect on the semantics of the IR. When they're at
1878function scope, they must appear after the terminator of the final basic block.
1879
1880If basic blocks have their address taken via ``blockaddress()`` expressions,
1881``uselistorder_bb`` can be used to reorder their use-lists from outside their
1882function's scope.
1883
1884:Syntax:
1885
1886::
1887
1888 uselistorder <ty> <value>, { <order-indexes> }
1889 uselistorder_bb @function, %block { <order-indexes> }
1890
1891:Examples:
1892
1893::
1894
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001895 define void @foo(i32 %arg1, i32 %arg2) {
1896 entry:
1897 ; ... instructions ...
1898 bb:
1899 ; ... instructions ...
1900
1901 ; At function scope.
1902 uselistorder i32 %arg1, { 1, 0, 2 }
1903 uselistorder label %bb, { 1, 0 }
1904 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001905
1906 ; At global scope.
1907 uselistorder i32* @global, { 1, 2, 0 }
1908 uselistorder i32 7, { 1, 0 }
1909 uselistorder i32 (i32) @bar, { 1, 0 }
1910 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1911
Sean Silvab084af42012-12-07 10:36:55 +00001912.. _typesystem:
1913
1914Type System
1915===========
1916
1917The LLVM type system is one of the most important features of the
1918intermediate representation. Being typed enables a number of
1919optimizations to be performed on the intermediate representation
1920directly, without having to do extra analyses on the side before the
1921transformation. A strong type system makes it easier to read the
1922generated code and enables novel analyses and transformations that are
1923not feasible to perform on normal three address code representations.
1924
Rafael Espindola08013342013-12-07 19:34:20 +00001925.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001926
Rafael Espindola08013342013-12-07 19:34:20 +00001927Void Type
1928---------
Sean Silvab084af42012-12-07 10:36:55 +00001929
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001930:Overview:
1931
Rafael Espindola08013342013-12-07 19:34:20 +00001932
1933The void type does not represent any value and has no size.
1934
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001935:Syntax:
1936
Rafael Espindola08013342013-12-07 19:34:20 +00001937
1938::
1939
1940 void
Sean Silvab084af42012-12-07 10:36:55 +00001941
1942
Rafael Espindola08013342013-12-07 19:34:20 +00001943.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001944
Rafael Espindola08013342013-12-07 19:34:20 +00001945Function Type
1946-------------
Sean Silvab084af42012-12-07 10:36:55 +00001947
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001948:Overview:
1949
Sean Silvab084af42012-12-07 10:36:55 +00001950
Rafael Espindola08013342013-12-07 19:34:20 +00001951The function type can be thought of as a function signature. It consists of a
1952return type and a list of formal parameter types. The return type of a function
1953type is a void type or first class type --- except for :ref:`label <t_label>`
1954and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001955
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001956:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001957
Rafael Espindola08013342013-12-07 19:34:20 +00001958::
Sean Silvab084af42012-12-07 10:36:55 +00001959
Rafael Espindola08013342013-12-07 19:34:20 +00001960 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001961
Rafael Espindola08013342013-12-07 19:34:20 +00001962...where '``<parameter list>``' is a comma-separated list of type
1963specifiers. Optionally, the parameter list may include a type ``...``, which
1964indicates that the function takes a variable number of arguments. Variable
1965argument functions can access their arguments with the :ref:`variable argument
1966handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1967except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001968
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001969:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001970
Rafael Espindola08013342013-12-07 19:34:20 +00001971+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1972| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1973+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1974| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1975+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1976| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1977+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1978| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1979+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1980
1981.. _t_firstclass:
1982
1983First Class Types
1984-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001985
1986The :ref:`first class <t_firstclass>` types are perhaps the most important.
1987Values of these types are the only ones which can be produced by
1988instructions.
1989
Rafael Espindola08013342013-12-07 19:34:20 +00001990.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001991
Rafael Espindola08013342013-12-07 19:34:20 +00001992Single Value Types
1993^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00001994
Rafael Espindola08013342013-12-07 19:34:20 +00001995These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00001996
1997.. _t_integer:
1998
1999Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002000""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002001
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002002:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002003
2004The integer type is a very simple type that simply specifies an
2005arbitrary bit width for the integer type desired. Any bit width from 1
2006bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2007
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002008:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002009
2010::
2011
2012 iN
2013
2014The number of bits the integer will occupy is specified by the ``N``
2015value.
2016
2017Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002018*********
Sean Silvab084af42012-12-07 10:36:55 +00002019
2020+----------------+------------------------------------------------+
2021| ``i1`` | a single-bit integer. |
2022+----------------+------------------------------------------------+
2023| ``i32`` | a 32-bit integer. |
2024+----------------+------------------------------------------------+
2025| ``i1942652`` | a really big integer of over 1 million bits. |
2026+----------------+------------------------------------------------+
2027
2028.. _t_floating:
2029
2030Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002031""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002032
2033.. list-table::
2034 :header-rows: 1
2035
2036 * - Type
2037 - Description
2038
2039 * - ``half``
2040 - 16-bit floating point value
2041
2042 * - ``float``
2043 - 32-bit floating point value
2044
2045 * - ``double``
2046 - 64-bit floating point value
2047
2048 * - ``fp128``
2049 - 128-bit floating point value (112-bit mantissa)
2050
2051 * - ``x86_fp80``
2052 - 80-bit floating point value (X87)
2053
2054 * - ``ppc_fp128``
2055 - 128-bit floating point value (two 64-bits)
2056
Reid Kleckner9a16d082014-03-05 02:41:37 +00002057X86_mmx Type
2058""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002059
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002060:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002061
Reid Kleckner9a16d082014-03-05 02:41:37 +00002062The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002063machine. The operations allowed on it are quite limited: parameters and
2064return values, load and store, and bitcast. User-specified MMX
2065instructions are represented as intrinsic or asm calls with arguments
2066and/or results of this type. There are no arrays, vectors or constants
2067of this type.
2068
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002069:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002070
2071::
2072
Reid Kleckner9a16d082014-03-05 02:41:37 +00002073 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002074
Sean Silvab084af42012-12-07 10:36:55 +00002075
Rafael Espindola08013342013-12-07 19:34:20 +00002076.. _t_pointer:
2077
2078Pointer Type
2079""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002080
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002081:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002082
Rafael Espindola08013342013-12-07 19:34:20 +00002083The pointer type is used to specify memory locations. Pointers are
2084commonly used to reference objects in memory.
2085
2086Pointer types may have an optional address space attribute defining the
2087numbered address space where the pointed-to object resides. The default
2088address space is number zero. The semantics of non-zero address spaces
2089are target-specific.
2090
2091Note that LLVM does not permit pointers to void (``void*``) nor does it
2092permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002093
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002094:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002095
2096::
2097
Rafael Espindola08013342013-12-07 19:34:20 +00002098 <type> *
2099
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002100:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002101
2102+-------------------------+--------------------------------------------------------------------------------------------------------------+
2103| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2104+-------------------------+--------------------------------------------------------------------------------------------------------------+
2105| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2106+-------------------------+--------------------------------------------------------------------------------------------------------------+
2107| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2108+-------------------------+--------------------------------------------------------------------------------------------------------------+
2109
2110.. _t_vector:
2111
2112Vector Type
2113"""""""""""
2114
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002115:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002116
2117A vector type is a simple derived type that represents a vector of
2118elements. Vector types are used when multiple primitive data are
2119operated in parallel using a single instruction (SIMD). A vector type
2120requires a size (number of elements) and an underlying primitive data
2121type. Vector types are considered :ref:`first class <t_firstclass>`.
2122
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002123:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002124
2125::
2126
2127 < <# elements> x <elementtype> >
2128
2129The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002130elementtype may be any integer, floating point or pointer type. Vectors
2131of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002132
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002133:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002134
2135+-------------------+--------------------------------------------------+
2136| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2137+-------------------+--------------------------------------------------+
2138| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2139+-------------------+--------------------------------------------------+
2140| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2141+-------------------+--------------------------------------------------+
2142| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2143+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002144
2145.. _t_label:
2146
2147Label Type
2148^^^^^^^^^^
2149
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002150:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002151
2152The label type represents code labels.
2153
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002154:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002155
2156::
2157
2158 label
2159
2160.. _t_metadata:
2161
2162Metadata Type
2163^^^^^^^^^^^^^
2164
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002165:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002166
2167The metadata type represents embedded metadata. No derived types may be
2168created from metadata except for :ref:`function <t_function>` arguments.
2169
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002170:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002171
2172::
2173
2174 metadata
2175
Sean Silvab084af42012-12-07 10:36:55 +00002176.. _t_aggregate:
2177
2178Aggregate Types
2179^^^^^^^^^^^^^^^
2180
2181Aggregate Types are a subset of derived types that can contain multiple
2182member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2183aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2184aggregate types.
2185
2186.. _t_array:
2187
2188Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002189""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002190
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002191:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002192
2193The array type is a very simple derived type that arranges elements
2194sequentially in memory. The array type requires a size (number of
2195elements) and an underlying data type.
2196
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002197:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002198
2199::
2200
2201 [<# elements> x <elementtype>]
2202
2203The number of elements is a constant integer value; ``elementtype`` may
2204be any type with a size.
2205
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002206:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002207
2208+------------------+--------------------------------------+
2209| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2210+------------------+--------------------------------------+
2211| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2212+------------------+--------------------------------------+
2213| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2214+------------------+--------------------------------------+
2215
2216Here are some examples of multidimensional arrays:
2217
2218+-----------------------------+----------------------------------------------------------+
2219| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2220+-----------------------------+----------------------------------------------------------+
2221| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2222+-----------------------------+----------------------------------------------------------+
2223| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2224+-----------------------------+----------------------------------------------------------+
2225
2226There is no restriction on indexing beyond the end of the array implied
2227by a static type (though there are restrictions on indexing beyond the
2228bounds of an allocated object in some cases). This means that
2229single-dimension 'variable sized array' addressing can be implemented in
2230LLVM with a zero length array type. An implementation of 'pascal style
2231arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2232example.
2233
Sean Silvab084af42012-12-07 10:36:55 +00002234.. _t_struct:
2235
2236Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002237""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002238
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002239:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002240
2241The structure type is used to represent a collection of data members
2242together in memory. The elements of a structure may be any type that has
2243a size.
2244
2245Structures in memory are accessed using '``load``' and '``store``' by
2246getting a pointer to a field with the '``getelementptr``' instruction.
2247Structures in registers are accessed using the '``extractvalue``' and
2248'``insertvalue``' instructions.
2249
2250Structures may optionally be "packed" structures, which indicate that
2251the alignment of the struct is one byte, and that there is no padding
2252between the elements. In non-packed structs, padding between field types
2253is inserted as defined by the DataLayout string in the module, which is
2254required to match what the underlying code generator expects.
2255
2256Structures can either be "literal" or "identified". A literal structure
2257is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2258identified types are always defined at the top level with a name.
2259Literal types are uniqued by their contents and can never be recursive
2260or opaque since there is no way to write one. Identified types can be
2261recursive, can be opaqued, and are never uniqued.
2262
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002263:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002264
2265::
2266
2267 %T1 = type { <type list> } ; Identified normal struct type
2268 %T2 = type <{ <type list> }> ; Identified packed struct type
2269
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002270:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002271
2272+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2273| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2274+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002275| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002276+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2277| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2278+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2279
2280.. _t_opaque:
2281
2282Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002283""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002284
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002285:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002286
2287Opaque structure types are used to represent named structure types that
2288do not have a body specified. This corresponds (for example) to the C
2289notion of a forward declared structure.
2290
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002291:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002292
2293::
2294
2295 %X = type opaque
2296 %52 = type opaque
2297
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002298:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002299
2300+--------------+-------------------+
2301| ``opaque`` | An opaque type. |
2302+--------------+-------------------+
2303
Sean Silva1703e702014-04-08 21:06:22 +00002304.. _constants:
2305
Sean Silvab084af42012-12-07 10:36:55 +00002306Constants
2307=========
2308
2309LLVM has several different basic types of constants. This section
2310describes them all and their syntax.
2311
2312Simple Constants
2313----------------
2314
2315**Boolean constants**
2316 The two strings '``true``' and '``false``' are both valid constants
2317 of the ``i1`` type.
2318**Integer constants**
2319 Standard integers (such as '4') are constants of the
2320 :ref:`integer <t_integer>` type. Negative numbers may be used with
2321 integer types.
2322**Floating point constants**
2323 Floating point constants use standard decimal notation (e.g.
2324 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2325 hexadecimal notation (see below). The assembler requires the exact
2326 decimal value of a floating-point constant. For example, the
2327 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2328 decimal in binary. Floating point constants must have a :ref:`floating
2329 point <t_floating>` type.
2330**Null pointer constants**
2331 The identifier '``null``' is recognized as a null pointer constant
2332 and must be of :ref:`pointer type <t_pointer>`.
2333
2334The one non-intuitive notation for constants is the hexadecimal form of
2335floating point constants. For example, the form
2336'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2337than) '``double 4.5e+15``'. The only time hexadecimal floating point
2338constants are required (and the only time that they are generated by the
2339disassembler) is when a floating point constant must be emitted but it
2340cannot be represented as a decimal floating point number in a reasonable
2341number of digits. For example, NaN's, infinities, and other special
2342values are represented in their IEEE hexadecimal format so that assembly
2343and disassembly do not cause any bits to change in the constants.
2344
2345When using the hexadecimal form, constants of types half, float, and
2346double are represented using the 16-digit form shown above (which
2347matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002348must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002349precision, respectively. Hexadecimal format is always used for long
2350double, and there are three forms of long double. The 80-bit format used
2351by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2352128-bit format used by PowerPC (two adjacent doubles) is represented by
2353``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002354represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2355will only work if they match the long double format on your target.
2356The IEEE 16-bit format (half precision) is represented by ``0xH``
2357followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2358(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002359
Reid Kleckner9a16d082014-03-05 02:41:37 +00002360There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002361
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002362.. _complexconstants:
2363
Sean Silvab084af42012-12-07 10:36:55 +00002364Complex Constants
2365-----------------
2366
2367Complex constants are a (potentially recursive) combination of simple
2368constants and smaller complex constants.
2369
2370**Structure constants**
2371 Structure constants are represented with notation similar to
2372 structure type definitions (a comma separated list of elements,
2373 surrounded by braces (``{}``)). For example:
2374 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2375 "``@G = external global i32``". Structure constants must have
2376 :ref:`structure type <t_struct>`, and the number and types of elements
2377 must match those specified by the type.
2378**Array constants**
2379 Array constants are represented with notation similar to array type
2380 definitions (a comma separated list of elements, surrounded by
2381 square brackets (``[]``)). For example:
2382 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2383 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002384 match those specified by the type. As a special case, character array
2385 constants may also be represented as a double-quoted string using the ``c``
2386 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002387**Vector constants**
2388 Vector constants are represented with notation similar to vector
2389 type definitions (a comma separated list of elements, surrounded by
2390 less-than/greater-than's (``<>``)). For example:
2391 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2392 must have :ref:`vector type <t_vector>`, and the number and types of
2393 elements must match those specified by the type.
2394**Zero initialization**
2395 The string '``zeroinitializer``' can be used to zero initialize a
2396 value to zero of *any* type, including scalar and
2397 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2398 having to print large zero initializers (e.g. for large arrays) and
2399 is always exactly equivalent to using explicit zero initializers.
2400**Metadata node**
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002401 A metadata node is a constant tuple without types. For example:
2402 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
2403 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2404 Unlike other typed constants that are meant to be interpreted as part of
2405 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002406 information such as debug info.
2407
2408Global Variable and Function Addresses
2409--------------------------------------
2410
2411The addresses of :ref:`global variables <globalvars>` and
2412:ref:`functions <functionstructure>` are always implicitly valid
2413(link-time) constants. These constants are explicitly referenced when
2414the :ref:`identifier for the global <identifiers>` is used and always have
2415:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2416file:
2417
2418.. code-block:: llvm
2419
2420 @X = global i32 17
2421 @Y = global i32 42
2422 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2423
2424.. _undefvalues:
2425
2426Undefined Values
2427----------------
2428
2429The string '``undef``' can be used anywhere a constant is expected, and
2430indicates that the user of the value may receive an unspecified
2431bit-pattern. Undefined values may be of any type (other than '``label``'
2432or '``void``') and be used anywhere a constant is permitted.
2433
2434Undefined values are useful because they indicate to the compiler that
2435the program is well defined no matter what value is used. This gives the
2436compiler more freedom to optimize. Here are some examples of
2437(potentially surprising) transformations that are valid (in pseudo IR):
2438
2439.. code-block:: llvm
2440
2441 %A = add %X, undef
2442 %B = sub %X, undef
2443 %C = xor %X, undef
2444 Safe:
2445 %A = undef
2446 %B = undef
2447 %C = undef
2448
2449This is safe because all of the output bits are affected by the undef
2450bits. Any output bit can have a zero or one depending on the input bits.
2451
2452.. code-block:: llvm
2453
2454 %A = or %X, undef
2455 %B = and %X, undef
2456 Safe:
2457 %A = -1
2458 %B = 0
2459 Unsafe:
2460 %A = undef
2461 %B = undef
2462
2463These logical operations have bits that are not always affected by the
2464input. For example, if ``%X`` has a zero bit, then the output of the
2465'``and``' operation will always be a zero for that bit, no matter what
2466the corresponding bit from the '``undef``' is. As such, it is unsafe to
2467optimize or assume that the result of the '``and``' is '``undef``'.
2468However, it is safe to assume that all bits of the '``undef``' could be
24690, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2470all the bits of the '``undef``' operand to the '``or``' could be set,
2471allowing the '``or``' to be folded to -1.
2472
2473.. code-block:: llvm
2474
2475 %A = select undef, %X, %Y
2476 %B = select undef, 42, %Y
2477 %C = select %X, %Y, undef
2478 Safe:
2479 %A = %X (or %Y)
2480 %B = 42 (or %Y)
2481 %C = %Y
2482 Unsafe:
2483 %A = undef
2484 %B = undef
2485 %C = undef
2486
2487This set of examples shows that undefined '``select``' (and conditional
2488branch) conditions can go *either way*, but they have to come from one
2489of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2490both known to have a clear low bit, then ``%A`` would have to have a
2491cleared low bit. However, in the ``%C`` example, the optimizer is
2492allowed to assume that the '``undef``' operand could be the same as
2493``%Y``, allowing the whole '``select``' to be eliminated.
2494
2495.. code-block:: llvm
2496
2497 %A = xor undef, undef
2498
2499 %B = undef
2500 %C = xor %B, %B
2501
2502 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002503 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002504 %F = icmp gte %D, 4
2505
2506 Safe:
2507 %A = undef
2508 %B = undef
2509 %C = undef
2510 %D = undef
2511 %E = undef
2512 %F = undef
2513
2514This example points out that two '``undef``' operands are not
2515necessarily the same. This can be surprising to people (and also matches
2516C semantics) where they assume that "``X^X``" is always zero, even if
2517``X`` is undefined. This isn't true for a number of reasons, but the
2518short answer is that an '``undef``' "variable" can arbitrarily change
2519its value over its "live range". This is true because the variable
2520doesn't actually *have a live range*. Instead, the value is logically
2521read from arbitrary registers that happen to be around when needed, so
2522the value is not necessarily consistent over time. In fact, ``%A`` and
2523``%C`` need to have the same semantics or the core LLVM "replace all
2524uses with" concept would not hold.
2525
2526.. code-block:: llvm
2527
2528 %A = fdiv undef, %X
2529 %B = fdiv %X, undef
2530 Safe:
2531 %A = undef
2532 b: unreachable
2533
2534These examples show the crucial difference between an *undefined value*
2535and *undefined behavior*. An undefined value (like '``undef``') is
2536allowed to have an arbitrary bit-pattern. This means that the ``%A``
2537operation can be constant folded to '``undef``', because the '``undef``'
2538could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2539However, in the second example, we can make a more aggressive
2540assumption: because the ``undef`` is allowed to be an arbitrary value,
2541we are allowed to assume that it could be zero. Since a divide by zero
2542has *undefined behavior*, we are allowed to assume that the operation
2543does not execute at all. This allows us to delete the divide and all
2544code after it. Because the undefined operation "can't happen", the
2545optimizer can assume that it occurs in dead code.
2546
2547.. code-block:: llvm
2548
2549 a: store undef -> %X
2550 b: store %X -> undef
2551 Safe:
2552 a: <deleted>
2553 b: unreachable
2554
2555These examples reiterate the ``fdiv`` example: a store *of* an undefined
2556value can be assumed to not have any effect; we can assume that the
2557value is overwritten with bits that happen to match what was already
2558there. However, a store *to* an undefined location could clobber
2559arbitrary memory, therefore, it has undefined behavior.
2560
2561.. _poisonvalues:
2562
2563Poison Values
2564-------------
2565
2566Poison values are similar to :ref:`undef values <undefvalues>`, however
2567they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002568that cannot evoke side effects has nevertheless detected a condition
2569that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002570
2571There is currently no way of representing a poison value in the IR; they
2572only exist when produced by operations such as :ref:`add <i_add>` with
2573the ``nsw`` flag.
2574
2575Poison value behavior is defined in terms of value *dependence*:
2576
2577- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2578- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2579 their dynamic predecessor basic block.
2580- Function arguments depend on the corresponding actual argument values
2581 in the dynamic callers of their functions.
2582- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2583 instructions that dynamically transfer control back to them.
2584- :ref:`Invoke <i_invoke>` instructions depend on the
2585 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2586 call instructions that dynamically transfer control back to them.
2587- Non-volatile loads and stores depend on the most recent stores to all
2588 of the referenced memory addresses, following the order in the IR
2589 (including loads and stores implied by intrinsics such as
2590 :ref:`@llvm.memcpy <int_memcpy>`.)
2591- An instruction with externally visible side effects depends on the
2592 most recent preceding instruction with externally visible side
2593 effects, following the order in the IR. (This includes :ref:`volatile
2594 operations <volatile>`.)
2595- An instruction *control-depends* on a :ref:`terminator
2596 instruction <terminators>` if the terminator instruction has
2597 multiple successors and the instruction is always executed when
2598 control transfers to one of the successors, and may not be executed
2599 when control is transferred to another.
2600- Additionally, an instruction also *control-depends* on a terminator
2601 instruction if the set of instructions it otherwise depends on would
2602 be different if the terminator had transferred control to a different
2603 successor.
2604- Dependence is transitive.
2605
Richard Smith32dbdf62014-07-31 04:25:36 +00002606Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2607with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002608on a poison value has undefined behavior.
2609
2610Here are some examples:
2611
2612.. code-block:: llvm
2613
2614 entry:
2615 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2616 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002617 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002618 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2619
2620 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002621 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002622
2623 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2624
2625 %narrowaddr = bitcast i32* @g to i16*
2626 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002627 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2628 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002629
2630 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2631 br i1 %cmp, label %true, label %end ; Branch to either destination.
2632
2633 true:
2634 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2635 ; it has undefined behavior.
2636 br label %end
2637
2638 end:
2639 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2640 ; Both edges into this PHI are
2641 ; control-dependent on %cmp, so this
2642 ; always results in a poison value.
2643
2644 store volatile i32 0, i32* @g ; This would depend on the store in %true
2645 ; if %cmp is true, or the store in %entry
2646 ; otherwise, so this is undefined behavior.
2647
2648 br i1 %cmp, label %second_true, label %second_end
2649 ; The same branch again, but this time the
2650 ; true block doesn't have side effects.
2651
2652 second_true:
2653 ; No side effects!
2654 ret void
2655
2656 second_end:
2657 store volatile i32 0, i32* @g ; This time, the instruction always depends
2658 ; on the store in %end. Also, it is
2659 ; control-equivalent to %end, so this is
2660 ; well-defined (ignoring earlier undefined
2661 ; behavior in this example).
2662
2663.. _blockaddress:
2664
2665Addresses of Basic Blocks
2666-------------------------
2667
2668``blockaddress(@function, %block)``
2669
2670The '``blockaddress``' constant computes the address of the specified
2671basic block in the specified function, and always has an ``i8*`` type.
2672Taking the address of the entry block is illegal.
2673
2674This value only has defined behavior when used as an operand to the
2675':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2676against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002677undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002678no label is equal to the null pointer. This may be passed around as an
2679opaque pointer sized value as long as the bits are not inspected. This
2680allows ``ptrtoint`` and arithmetic to be performed on these values so
2681long as the original value is reconstituted before the ``indirectbr``
2682instruction.
2683
2684Finally, some targets may provide defined semantics when using the value
2685as the operand to an inline assembly, but that is target specific.
2686
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002687.. _constantexprs:
2688
Sean Silvab084af42012-12-07 10:36:55 +00002689Constant Expressions
2690--------------------
2691
2692Constant expressions are used to allow expressions involving other
2693constants to be used as constants. Constant expressions may be of any
2694:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2695that does not have side effects (e.g. load and call are not supported).
2696The following is the syntax for constant expressions:
2697
2698``trunc (CST to TYPE)``
2699 Truncate a constant to another type. The bit size of CST must be
2700 larger than the bit size of TYPE. Both types must be integers.
2701``zext (CST to TYPE)``
2702 Zero extend a constant to another type. The bit size of CST must be
2703 smaller than the bit size of TYPE. Both types must be integers.
2704``sext (CST to TYPE)``
2705 Sign extend a constant to another type. The bit size of CST must be
2706 smaller than the bit size of TYPE. Both types must be integers.
2707``fptrunc (CST to TYPE)``
2708 Truncate a floating point constant to another floating point type.
2709 The size of CST must be larger than the size of TYPE. Both types
2710 must be floating point.
2711``fpext (CST to TYPE)``
2712 Floating point extend a constant to another type. The size of CST
2713 must be smaller or equal to the size of TYPE. Both types must be
2714 floating point.
2715``fptoui (CST to TYPE)``
2716 Convert a floating point constant to the corresponding unsigned
2717 integer constant. TYPE must be a scalar or vector integer type. CST
2718 must be of scalar or vector floating point type. Both CST and TYPE
2719 must be scalars, or vectors of the same number of elements. If the
2720 value won't fit in the integer type, the results are undefined.
2721``fptosi (CST to TYPE)``
2722 Convert a floating point constant to the corresponding signed
2723 integer constant. TYPE must be a scalar or vector integer type. CST
2724 must be of scalar or vector floating point type. Both CST and TYPE
2725 must be scalars, or vectors of the same number of elements. If the
2726 value won't fit in the integer type, the results are undefined.
2727``uitofp (CST to TYPE)``
2728 Convert an unsigned integer constant to the corresponding floating
2729 point constant. TYPE must be a scalar or vector floating point type.
2730 CST must be of scalar or vector integer type. Both CST and TYPE must
2731 be scalars, or vectors of the same number of elements. If the value
2732 won't fit in the floating point type, the results are undefined.
2733``sitofp (CST to TYPE)``
2734 Convert a signed integer constant to the corresponding floating
2735 point constant. TYPE must be a scalar or vector floating point type.
2736 CST must be of scalar or vector integer type. Both CST and TYPE must
2737 be scalars, or vectors of the same number of elements. If the value
2738 won't fit in the floating point type, the results are undefined.
2739``ptrtoint (CST to TYPE)``
2740 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002741 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002742 pointer type. The ``CST`` value is zero extended, truncated, or
2743 unchanged to make it fit in ``TYPE``.
2744``inttoptr (CST to TYPE)``
2745 Convert an integer constant to a pointer constant. TYPE must be a
2746 pointer type. CST must be of integer type. The CST value is zero
2747 extended, truncated, or unchanged to make it fit in a pointer size.
2748 This one is *really* dangerous!
2749``bitcast (CST to TYPE)``
2750 Convert a constant, CST, to another TYPE. The constraints of the
2751 operands are the same as those for the :ref:`bitcast
2752 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002753``addrspacecast (CST to TYPE)``
2754 Convert a constant pointer or constant vector of pointer, CST, to another
2755 TYPE in a different address space. The constraints of the operands are the
2756 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002757``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002758 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2759 constants. As with the :ref:`getelementptr <i_getelementptr>`
2760 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002761 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002762``select (COND, VAL1, VAL2)``
2763 Perform the :ref:`select operation <i_select>` on constants.
2764``icmp COND (VAL1, VAL2)``
2765 Performs the :ref:`icmp operation <i_icmp>` on constants.
2766``fcmp COND (VAL1, VAL2)``
2767 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2768``extractelement (VAL, IDX)``
2769 Perform the :ref:`extractelement operation <i_extractelement>` on
2770 constants.
2771``insertelement (VAL, ELT, IDX)``
2772 Perform the :ref:`insertelement operation <i_insertelement>` on
2773 constants.
2774``shufflevector (VEC1, VEC2, IDXMASK)``
2775 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2776 constants.
2777``extractvalue (VAL, IDX0, IDX1, ...)``
2778 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2779 constants. The index list is interpreted in a similar manner as
2780 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2781 least one index value must be specified.
2782``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2783 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2784 The index list is interpreted in a similar manner as indices in a
2785 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2786 value must be specified.
2787``OPCODE (LHS, RHS)``
2788 Perform the specified operation of the LHS and RHS constants. OPCODE
2789 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2790 binary <bitwiseops>` operations. The constraints on operands are
2791 the same as those for the corresponding instruction (e.g. no bitwise
2792 operations on floating point values are allowed).
2793
2794Other Values
2795============
2796
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002797.. _inlineasmexprs:
2798
Sean Silvab084af42012-12-07 10:36:55 +00002799Inline Assembler Expressions
2800----------------------------
2801
2802LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00002803Inline Assembly <moduleasm>`) through the use of a special value. This value
2804represents the inline assembler as a template string (containing the
2805instructions to emit), a list of operand constraints (stored as a string), a
2806flag that indicates whether or not the inline asm expression has side effects,
2807and a flag indicating whether the function containing the asm needs to align its
2808stack conservatively.
2809
2810The template string supports argument substitution of the operands using "``$``"
2811followed by a number, to indicate substitution of the given register/memory
2812location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
2813be used, where ``MODIFIER`` is a target-specific annotation for how to print the
2814operand (See :ref:`inline-asm-modifiers`).
2815
2816A literal "``$``" may be included by using "``$$``" in the template. To include
2817other special characters into the output, the usual "``\XX``" escapes may be
2818used, just as in other strings. Note that after template substitution, the
2819resulting assembly string is parsed by LLVM's integrated assembler unless it is
2820disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
2821syntax known to LLVM.
2822
2823LLVM's support for inline asm is modeled closely on the requirements of Clang's
2824GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
2825modifier codes listed here are similar or identical to those in GCC's inline asm
2826support. However, to be clear, the syntax of the template and constraint strings
2827described here is *not* the same as the syntax accepted by GCC and Clang, and,
2828while most constraint letters are passed through as-is by Clang, some get
2829translated to other codes when converting from the C source to the LLVM
2830assembly.
2831
2832An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00002833
2834.. code-block:: llvm
2835
2836 i32 (i32) asm "bswap $0", "=r,r"
2837
2838Inline assembler expressions may **only** be used as the callee operand
2839of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2840Thus, typically we have:
2841
2842.. code-block:: llvm
2843
2844 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2845
2846Inline asms with side effects not visible in the constraint list must be
2847marked as having side effects. This is done through the use of the
2848'``sideeffect``' keyword, like so:
2849
2850.. code-block:: llvm
2851
2852 call void asm sideeffect "eieio", ""()
2853
2854In some cases inline asms will contain code that will not work unless
2855the stack is aligned in some way, such as calls or SSE instructions on
2856x86, yet will not contain code that does that alignment within the asm.
2857The compiler should make conservative assumptions about what the asm
2858might contain and should generate its usual stack alignment code in the
2859prologue if the '``alignstack``' keyword is present:
2860
2861.. code-block:: llvm
2862
2863 call void asm alignstack "eieio", ""()
2864
2865Inline asms also support using non-standard assembly dialects. The
2866assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2867the inline asm is using the Intel dialect. Currently, ATT and Intel are
2868the only supported dialects. An example is:
2869
2870.. code-block:: llvm
2871
2872 call void asm inteldialect "eieio", ""()
2873
2874If multiple keywords appear the '``sideeffect``' keyword must come
2875first, the '``alignstack``' keyword second and the '``inteldialect``'
2876keyword last.
2877
James Y Knightbc832ed2015-07-08 18:08:36 +00002878Inline Asm Constraint String
2879^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2880
2881The constraint list is a comma-separated string, each element containing one or
2882more constraint codes.
2883
2884For each element in the constraint list an appropriate register or memory
2885operand will be chosen, and it will be made available to assembly template
2886string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
2887second, etc.
2888
2889There are three different types of constraints, which are distinguished by a
2890prefix symbol in front of the constraint code: Output, Input, and Clobber. The
2891constraints must always be given in that order: outputs first, then inputs, then
2892clobbers. They cannot be intermingled.
2893
2894There are also three different categories of constraint codes:
2895
2896- Register constraint. This is either a register class, or a fixed physical
2897 register. This kind of constraint will allocate a register, and if necessary,
2898 bitcast the argument or result to the appropriate type.
2899- Memory constraint. This kind of constraint is for use with an instruction
2900 taking a memory operand. Different constraints allow for different addressing
2901 modes used by the target.
2902- Immediate value constraint. This kind of constraint is for an integer or other
2903 immediate value which can be rendered directly into an instruction. The
2904 various target-specific constraints allow the selection of a value in the
2905 proper range for the instruction you wish to use it with.
2906
2907Output constraints
2908""""""""""""""""""
2909
2910Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
2911indicates that the assembly will write to this operand, and the operand will
2912then be made available as a return value of the ``asm`` expression. Output
2913constraints do not consume an argument from the call instruction. (Except, see
2914below about indirect outputs).
2915
2916Normally, it is expected that no output locations are written to by the assembly
2917expression until *all* of the inputs have been read. As such, LLVM may assign
2918the same register to an output and an input. If this is not safe (e.g. if the
2919assembly contains two instructions, where the first writes to one output, and
2920the second reads an input and writes to a second output), then the "``&``"
2921modifier must be used (e.g. "``=&r``") to specify that the output is an
2922"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
2923will not use the same register for any inputs (other than an input tied to this
2924output).
2925
2926Input constraints
2927"""""""""""""""""
2928
2929Input constraints do not have a prefix -- just the constraint codes. Each input
2930constraint will consume one argument from the call instruction. It is not
2931permitted for the asm to write to any input register or memory location (unless
2932that input is tied to an output). Note also that multiple inputs may all be
2933assigned to the same register, if LLVM can determine that they necessarily all
2934contain the same value.
2935
2936Instead of providing a Constraint Code, input constraints may also "tie"
2937themselves to an output constraint, by providing an integer as the constraint
2938string. Tied inputs still consume an argument from the call instruction, and
2939take up a position in the asm template numbering as is usual -- they will simply
2940be constrained to always use the same register as the output they've been tied
2941to. For example, a constraint string of "``=r,0``" says to assign a register for
2942output, and use that register as an input as well (it being the 0'th
2943constraint).
2944
2945It is permitted to tie an input to an "early-clobber" output. In that case, no
2946*other* input may share the same register as the input tied to the early-clobber
2947(even when the other input has the same value).
2948
2949You may only tie an input to an output which has a register constraint, not a
2950memory constraint. Only a single input may be tied to an output.
2951
2952There is also an "interesting" feature which deserves a bit of explanation: if a
2953register class constraint allocates a register which is too small for the value
2954type operand provided as input, the input value will be split into multiple
2955registers, and all of them passed to the inline asm.
2956
2957However, this feature is often not as useful as you might think.
2958
2959Firstly, the registers are *not* guaranteed to be consecutive. So, on those
2960architectures that have instructions which operate on multiple consecutive
2961instructions, this is not an appropriate way to support them. (e.g. the 32-bit
2962SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
2963hardware then loads into both the named register, and the next register. This
2964feature of inline asm would not be useful to support that.)
2965
2966A few of the targets provide a template string modifier allowing explicit access
2967to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
2968``D``). On such an architecture, you can actually access the second allocated
2969register (yet, still, not any subsequent ones). But, in that case, you're still
2970probably better off simply splitting the value into two separate operands, for
2971clarity. (e.g. see the description of the ``A`` constraint on X86, which,
2972despite existing only for use with this feature, is not really a good idea to
2973use)
2974
2975Indirect inputs and outputs
2976"""""""""""""""""""""""""""
2977
2978Indirect output or input constraints can be specified by the "``*``" modifier
2979(which goes after the "``=``" in case of an output). This indicates that the asm
2980will write to or read from the contents of an *address* provided as an input
2981argument. (Note that in this way, indirect outputs act more like an *input* than
2982an output: just like an input, they consume an argument of the call expression,
2983rather than producing a return value. An indirect output constraint is an
2984"output" only in that the asm is expected to write to the contents of the input
2985memory location, instead of just read from it).
2986
2987This is most typically used for memory constraint, e.g. "``=*m``", to pass the
2988address of a variable as a value.
2989
2990It is also possible to use an indirect *register* constraint, but only on output
2991(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
2992value normally, and then, separately emit a store to the address provided as
2993input, after the provided inline asm. (It's not clear what value this
2994functionality provides, compared to writing the store explicitly after the asm
2995statement, and it can only produce worse code, since it bypasses many
2996optimization passes. I would recommend not using it.)
2997
2998
2999Clobber constraints
3000"""""""""""""""""""
3001
3002A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3003consume an input operand, nor generate an output. Clobbers cannot use any of the
3004general constraint code letters -- they may use only explicit register
3005constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3006"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3007memory locations -- not only the memory pointed to by a declared indirect
3008output.
3009
3010
3011Constraint Codes
3012""""""""""""""""
3013After a potential prefix comes constraint code, or codes.
3014
3015A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3016followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3017(e.g. "``{eax}``").
3018
3019The one and two letter constraint codes are typically chosen to be the same as
3020GCC's constraint codes.
3021
3022A single constraint may include one or more than constraint code in it, leaving
3023it up to LLVM to choose which one to use. This is included mainly for
3024compatibility with the translation of GCC inline asm coming from clang.
3025
3026There are two ways to specify alternatives, and either or both may be used in an
3027inline asm constraint list:
3028
30291) Append the codes to each other, making a constraint code set. E.g. "``im``"
3030 or "``{eax}m``". This means "choose any of the options in the set". The
3031 choice of constraint is made independently for each constraint in the
3032 constraint list.
3033
30342) Use "``|``" between constraint code sets, creating alternatives. Every
3035 constraint in the constraint list must have the same number of alternative
3036 sets. With this syntax, the same alternative in *all* of the items in the
3037 constraint list will be chosen together.
3038
3039Putting those together, you might have a two operand constraint string like
3040``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3041operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3042may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3043
3044However, the use of either of the alternatives features is *NOT* recommended, as
3045LLVM is not able to make an intelligent choice about which one to use. (At the
3046point it currently needs to choose, not enough information is available to do so
3047in a smart way.) Thus, it simply tries to make a choice that's most likely to
3048compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3049always choose to use memory, not registers). And, if given multiple registers,
3050or multiple register classes, it will simply choose the first one. (In fact, it
3051doesn't currently even ensure explicitly specified physical registers are
3052unique, so specifying multiple physical registers as alternatives, like
3053``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3054intended.)
3055
3056Supported Constraint Code List
3057""""""""""""""""""""""""""""""
3058
3059The constraint codes are, in general, expected to behave the same way they do in
3060GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3061inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3062and GCC likely indicates a bug in LLVM.
3063
3064Some constraint codes are typically supported by all targets:
3065
3066- ``r``: A register in the target's general purpose register class.
3067- ``m``: A memory address operand. It is target-specific what addressing modes
3068 are supported, typical examples are register, or register + register offset,
3069 or register + immediate offset (of some target-specific size).
3070- ``i``: An integer constant (of target-specific width). Allows either a simple
3071 immediate, or a relocatable value.
3072- ``n``: An integer constant -- *not* including relocatable values.
3073- ``s``: An integer constant, but allowing *only* relocatable values.
3074- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3075 useful to pass a label for an asm branch or call.
3076
3077 .. FIXME: but that surely isn't actually okay to jump out of an asm
3078 block without telling llvm about the control transfer???)
3079
3080- ``{register-name}``: Requires exactly the named physical register.
3081
3082Other constraints are target-specific:
3083
3084AArch64:
3085
3086- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3087- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3088 i.e. 0 to 4095 with optional shift by 12.
3089- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3090 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3091- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3092 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3093- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3094 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3095- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3096 32-bit register. This is a superset of ``K``: in addition to the bitmask
3097 immediate, also allows immediate integers which can be loaded with a single
3098 ``MOVZ`` or ``MOVL`` instruction.
3099- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3100 64-bit register. This is a superset of ``L``.
3101- ``Q``: Memory address operand must be in a single register (no
3102 offsets). (However, LLVM currently does this for the ``m`` constraint as
3103 well.)
3104- ``r``: A 32 or 64-bit integer register (W* or X*).
3105- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3106- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3107
3108AMDGPU:
3109
3110- ``r``: A 32 or 64-bit integer register.
3111- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3112- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3113
3114
3115All ARM modes:
3116
3117- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3118 operand. Treated the same as operand ``m``, at the moment.
3119
3120ARM and ARM's Thumb2 mode:
3121
3122- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3123- ``I``: An immediate integer valid for a data-processing instruction.
3124- ``J``: An immediate integer between -4095 and 4095.
3125- ``K``: An immediate integer whose bitwise inverse is valid for a
3126 data-processing instruction. (Can be used with template modifier "``B``" to
3127 print the inverted value).
3128- ``L``: An immediate integer whose negation is valid for a data-processing
3129 instruction. (Can be used with template modifier "``n``" to print the negated
3130 value).
3131- ``M``: A power of two or a integer between 0 and 32.
3132- ``N``: Invalid immediate constraint.
3133- ``O``: Invalid immediate constraint.
3134- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3135- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3136 as ``r``.
3137- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3138 invalid.
3139- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3140 ``d0-d31``, or ``q0-q15``.
3141- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3142 ``d0-d7``, or ``q0-q3``.
3143- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3144 ``s0-s31``.
3145
3146ARM's Thumb1 mode:
3147
3148- ``I``: An immediate integer between 0 and 255.
3149- ``J``: An immediate integer between -255 and -1.
3150- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3151 some amount.
3152- ``L``: An immediate integer between -7 and 7.
3153- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3154- ``N``: An immediate integer between 0 and 31.
3155- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3156- ``r``: A low 32-bit GPR register (``r0-r7``).
3157- ``l``: A low 32-bit GPR register (``r0-r7``).
3158- ``h``: A high GPR register (``r0-r7``).
3159- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3160 ``d0-d31``, or ``q0-q15``.
3161- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3162 ``d0-d7``, or ``q0-q3``.
3163- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3164 ``s0-s31``.
3165
3166
3167Hexagon:
3168
3169- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3170 at the moment.
3171- ``r``: A 32 or 64-bit register.
3172
3173MSP430:
3174
3175- ``r``: An 8 or 16-bit register.
3176
3177MIPS:
3178
3179- ``I``: An immediate signed 16-bit integer.
3180- ``J``: An immediate integer zero.
3181- ``K``: An immediate unsigned 16-bit integer.
3182- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3183- ``N``: An immediate integer between -65535 and -1.
3184- ``O``: An immediate signed 15-bit integer.
3185- ``P``: An immediate integer between 1 and 65535.
3186- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3187 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3188- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3189 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3190 ``m``.
3191- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3192 ``sc`` instruction on the given subtarget (details vary).
3193- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3194- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
3195 (``W0-W31``).
3196- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3197 ``25``).
3198- ``l``: The ``lo`` register, 32 or 64-bit.
3199- ``x``: Invalid.
3200
3201NVPTX:
3202
3203- ``b``: A 1-bit integer register.
3204- ``c`` or ``h``: A 16-bit integer register.
3205- ``r``: A 32-bit integer register.
3206- ``l`` or ``N``: A 64-bit integer register.
3207- ``f``: A 32-bit float register.
3208- ``d``: A 64-bit float register.
3209
3210
3211PowerPC:
3212
3213- ``I``: An immediate signed 16-bit integer.
3214- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3215- ``K``: An immediate unsigned 16-bit integer.
3216- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3217- ``M``: An immediate integer greater than 31.
3218- ``N``: An immediate integer that is an exact power of 2.
3219- ``O``: The immediate integer constant 0.
3220- ``P``: An immediate integer constant whose negation is a signed 16-bit
3221 constant.
3222- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3223 treated the same as ``m``.
3224- ``r``: A 32 or 64-bit integer register.
3225- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3226 ``R1-R31``).
3227- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3228 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3229- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3230 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3231 altivec vector register (``V0-V31``).
3232
3233 .. FIXME: is this a bug that v accepts QPX registers? I think this
3234 is supposed to only use the altivec vector registers?
3235
3236- ``y``: Condition register (``CR0-CR7``).
3237- ``wc``: An individual CR bit in a CR register.
3238- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3239 register set (overlapping both the floating-point and vector register files).
3240- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3241 set.
3242
3243Sparc:
3244
3245- ``I``: An immediate 13-bit signed integer.
3246- ``r``: A 32-bit integer register.
3247
3248SystemZ:
3249
3250- ``I``: An immediate unsigned 8-bit integer.
3251- ``J``: An immediate unsigned 12-bit integer.
3252- ``K``: An immediate signed 16-bit integer.
3253- ``L``: An immediate signed 20-bit integer.
3254- ``M``: An immediate integer 0x7fffffff.
3255- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3256 ``m``, at the moment.
3257- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3258- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3259 address context evaluates as zero).
3260- ``h``: A 32-bit value in the high part of a 64bit data register
3261 (LLVM-specific)
3262- ``f``: A 32, 64, or 128-bit floating point register.
3263
3264X86:
3265
3266- ``I``: An immediate integer between 0 and 31.
3267- ``J``: An immediate integer between 0 and 64.
3268- ``K``: An immediate signed 8-bit integer.
3269- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3270 0xffffffff.
3271- ``M``: An immediate integer between 0 and 3.
3272- ``N``: An immediate unsigned 8-bit integer.
3273- ``O``: An immediate integer between 0 and 127.
3274- ``e``: An immediate 32-bit signed integer.
3275- ``Z``: An immediate 32-bit unsigned integer.
3276- ``o``, ``v``: Treated the same as ``m``, at the moment.
3277- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3278 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3279 registers, and on X86-64, it is all of the integer registers.
3280- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3281 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3282- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3283- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3284 existed since i386, and can be accessed without the REX prefix.
3285- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3286- ``y``: A 64-bit MMX register, if MMX is enabled.
3287- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3288 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3289 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3290 512-bit vector operand in an AVX512 register, Otherwise, an error.
3291- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3292- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3293 32-bit mode, a 64-bit integer operand will get split into two registers). It
3294 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3295 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3296 you're better off splitting it yourself, before passing it to the asm
3297 statement.
3298
3299XCore:
3300
3301- ``r``: A 32-bit integer register.
3302
3303
3304.. _inline-asm-modifiers:
3305
3306Asm template argument modifiers
3307^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3308
3309In the asm template string, modifiers can be used on the operand reference, like
3310"``${0:n}``".
3311
3312The modifiers are, in general, expected to behave the same way they do in
3313GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3314inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3315and GCC likely indicates a bug in LLVM.
3316
3317Target-independent:
3318
3319- ``c``: Print an immediate integer constant unadorned, without
3320 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3321- ``n``: Negate and print immediate integer constant unadorned, without the
3322 target-specific immediate punctuation (e.g. no ``$`` prefix).
3323- ``l``: Print as an unadorned label, without the target-specific label
3324 punctuation (e.g. no ``$`` prefix).
3325
3326AArch64:
3327
3328- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3329 instead of ``x30``, print ``w30``.
3330- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3331- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3332 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3333 ``v*``.
3334
3335AMDGPU:
3336
3337- ``r``: No effect.
3338
3339ARM:
3340
3341- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3342 register).
3343- ``P``: No effect.
3344- ``q``: No effect.
3345- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3346 as ``d4[1]`` instead of ``s9``)
3347- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3348 prefix.
3349- ``L``: Print the low 16-bits of an immediate integer constant.
3350- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3351 register operands subsequent to the specified one (!), so use carefully.
3352- ``Q``: Print the low-order register of a register-pair, or the low-order
3353 register of a two-register operand.
3354- ``R``: Print the high-order register of a register-pair, or the high-order
3355 register of a two-register operand.
3356- ``H``: Print the second register of a register-pair. (On a big-endian system,
3357 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3358 to ``R``.)
3359
3360 .. FIXME: H doesn't currently support printing the second register
3361 of a two-register operand.
3362
3363- ``e``: Print the low doubleword register of a NEON quad register.
3364- ``f``: Print the high doubleword register of a NEON quad register.
3365- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3366 adornment.
3367
3368Hexagon:
3369
3370- ``L``: Print the second register of a two-register operand. Requires that it
3371 has been allocated consecutively to the first.
3372
3373 .. FIXME: why is it restricted to consecutive ones? And there's
3374 nothing that ensures that happens, is there?
3375
3376- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3377 nothing. Used to print 'addi' vs 'add' instructions.
3378
3379MSP430:
3380
3381No additional modifiers.
3382
3383MIPS:
3384
3385- ``X``: Print an immediate integer as hexadecimal
3386- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3387- ``d``: Print an immediate integer as decimal.
3388- ``m``: Subtract one and print an immediate integer as decimal.
3389- ``z``: Print $0 if an immediate zero, otherwise print normally.
3390- ``L``: Print the low-order register of a two-register operand, or prints the
3391 address of the low-order word of a double-word memory operand.
3392
3393 .. FIXME: L seems to be missing memory operand support.
3394
3395- ``M``: Print the high-order register of a two-register operand, or prints the
3396 address of the high-order word of a double-word memory operand.
3397
3398 .. FIXME: M seems to be missing memory operand support.
3399
3400- ``D``: Print the second register of a two-register operand, or prints the
3401 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3402 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3403 ``M``.)
3404- ``w``: No effect.
3405
3406NVPTX:
3407
3408- ``r``: No effect.
3409
3410PowerPC:
3411
3412- ``L``: Print the second register of a two-register operand. Requires that it
3413 has been allocated consecutively to the first.
3414
3415 .. FIXME: why is it restricted to consecutive ones? And there's
3416 nothing that ensures that happens, is there?
3417
3418- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3419 nothing. Used to print 'addi' vs 'add' instructions.
3420- ``y``: For a memory operand, prints formatter for a two-register X-form
3421 instruction. (Currently always prints ``r0,OPERAND``).
3422- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3423 otherwise. (NOTE: LLVM does not support update form, so this will currently
3424 always print nothing)
3425- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3426 not support indexed form, so this will currently always print nothing)
3427
3428Sparc:
3429
3430- ``r``: No effect.
3431
3432SystemZ:
3433
3434SystemZ implements only ``n``, and does *not* support any of the other
3435target-independent modifiers.
3436
3437X86:
3438
3439- ``c``: Print an unadorned integer or symbol name. (The latter is
3440 target-specific behavior for this typically target-independent modifier).
3441- ``A``: Print a register name with a '``*``' before it.
3442- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3443 operand.
3444- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3445 memory operand.
3446- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3447 operand.
3448- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3449 operand.
3450- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3451 available, otherwise the 32-bit register name; do nothing on a memory operand.
3452- ``n``: Negate and print an unadorned integer, or, for operands other than an
3453 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3454 the operand. (The behavior for relocatable symbol expressions is a
3455 target-specific behavior for this typically target-independent modifier)
3456- ``H``: Print a memory reference with additional offset +8.
3457- ``P``: Print a memory reference or operand for use as the argument of a call
3458 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3459
3460XCore:
3461
3462No additional modifiers.
3463
3464
Sean Silvab084af42012-12-07 10:36:55 +00003465Inline Asm Metadata
3466^^^^^^^^^^^^^^^^^^^
3467
3468The call instructions that wrap inline asm nodes may have a
3469"``!srcloc``" MDNode attached to it that contains a list of constant
3470integers. If present, the code generator will use the integer as the
3471location cookie value when report errors through the ``LLVMContext``
3472error reporting mechanisms. This allows a front-end to correlate backend
3473errors that occur with inline asm back to the source code that produced
3474it. For example:
3475
3476.. code-block:: llvm
3477
3478 call void asm sideeffect "something bad", ""(), !srcloc !42
3479 ...
3480 !42 = !{ i32 1234567 }
3481
3482It is up to the front-end to make sense of the magic numbers it places
3483in the IR. If the MDNode contains multiple constants, the code generator
3484will use the one that corresponds to the line of the asm that the error
3485occurs on.
3486
3487.. _metadata:
3488
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003489Metadata
3490========
Sean Silvab084af42012-12-07 10:36:55 +00003491
3492LLVM IR allows metadata to be attached to instructions in the program
3493that can convey extra information about the code to the optimizers and
3494code generator. One example application of metadata is source-level
3495debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003496
3497Metadata does not have a type, and is not a value. If referenced from a
3498``call`` instruction, it uses the ``metadata`` type.
3499
3500All metadata are identified in syntax by a exclamation point ('``!``').
3501
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003502.. _metadata-string:
3503
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003504Metadata Nodes and Metadata Strings
3505-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003506
3507A metadata string is a string surrounded by double quotes. It can
3508contain any character by escaping non-printable characters with
3509"``\xx``" where "``xx``" is the two digit hex code. For example:
3510"``!"test\00"``".
3511
3512Metadata nodes are represented with notation similar to structure
3513constants (a comma separated list of elements, surrounded by braces and
3514preceded by an exclamation point). Metadata nodes can have any values as
3515their operand. For example:
3516
3517.. code-block:: llvm
3518
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003519 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003520
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003521Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3522
3523.. code-block:: llvm
3524
3525 !0 = distinct !{!"test\00", i32 10}
3526
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003527``distinct`` nodes are useful when nodes shouldn't be merged based on their
3528content. They can also occur when transformations cause uniquing collisions
3529when metadata operands change.
3530
Sean Silvab084af42012-12-07 10:36:55 +00003531A :ref:`named metadata <namedmetadatastructure>` is a collection of
3532metadata nodes, which can be looked up in the module symbol table. For
3533example:
3534
3535.. code-block:: llvm
3536
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003537 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003538
3539Metadata can be used as function arguments. Here ``llvm.dbg.value``
3540function is using two metadata arguments:
3541
3542.. code-block:: llvm
3543
3544 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3545
3546Metadata can be attached with an instruction. Here metadata ``!21`` is
3547attached to the ``add`` instruction using the ``!dbg`` identifier:
3548
3549.. code-block:: llvm
3550
3551 %indvar.next = add i64 %indvar, 1, !dbg !21
3552
3553More information about specific metadata nodes recognized by the
3554optimizers and code generator is found below.
3555
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003556.. _specialized-metadata:
3557
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003558Specialized Metadata Nodes
3559^^^^^^^^^^^^^^^^^^^^^^^^^^
3560
3561Specialized metadata nodes are custom data structures in metadata (as opposed
3562to generic tuples). Their fields are labelled, and can be specified in any
3563order.
3564
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003565These aren't inherently debug info centric, but currently all the specialized
3566metadata nodes are related to debug info.
3567
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003568.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003569
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003570DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003571"""""""""""""
3572
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003573``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003574``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
3575tuples containing the debug info to be emitted along with the compile unit,
3576regardless of code optimizations (some nodes are only emitted if there are
3577references to them from instructions).
3578
3579.. code-block:: llvm
3580
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003581 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003582 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3583 splitDebugFilename: "abc.debug", emissionKind: 1,
3584 enums: !2, retainedTypes: !3, subprograms: !4,
3585 globals: !5, imports: !6)
3586
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003587Compile unit descriptors provide the root scope for objects declared in a
3588specific compilation unit. File descriptors are defined using this scope.
3589These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
3590keep track of subprograms, global variables, type information, and imported
3591entities (declarations and namespaces).
3592
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003593.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003594
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003595DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003596""""""
3597
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003598``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003599
3600.. code-block:: llvm
3601
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003602 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003603
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003604Files are sometimes used in ``scope:`` fields, and are the only valid target
3605for ``file:`` fields.
3606
Michael Kuperstein605308a2015-05-14 10:58:59 +00003607.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003608
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003609DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003610"""""""""""
3611
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003612``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003613``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003614
3615.. code-block:: llvm
3616
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003617 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003618 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003619 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003620
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003621The ``encoding:`` describes the details of the type. Usually it's one of the
3622following:
3623
3624.. code-block:: llvm
3625
3626 DW_ATE_address = 1
3627 DW_ATE_boolean = 2
3628 DW_ATE_float = 4
3629 DW_ATE_signed = 5
3630 DW_ATE_signed_char = 6
3631 DW_ATE_unsigned = 7
3632 DW_ATE_unsigned_char = 8
3633
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003634.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003635
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003636DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003637""""""""""""""""
3638
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003639``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003640refers to a tuple; the first operand is the return type, while the rest are the
3641types of the formal arguments in order. If the first operand is ``null``, that
3642represents a function with no return value (such as ``void foo() {}`` in C++).
3643
3644.. code-block:: llvm
3645
3646 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3647 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003648 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003649
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003650.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003651
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003652DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003653"""""""""""""
3654
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003655``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003656qualified types.
3657
3658.. code-block:: llvm
3659
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003660 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003661 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003662 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003663 align: 32)
3664
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003665The following ``tag:`` values are valid:
3666
3667.. code-block:: llvm
3668
3669 DW_TAG_formal_parameter = 5
3670 DW_TAG_member = 13
3671 DW_TAG_pointer_type = 15
3672 DW_TAG_reference_type = 16
3673 DW_TAG_typedef = 22
3674 DW_TAG_ptr_to_member_type = 31
3675 DW_TAG_const_type = 38
3676 DW_TAG_volatile_type = 53
3677 DW_TAG_restrict_type = 55
3678
3679``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003680<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003681is the ``baseType:``. The ``offset:`` is the member's bit offset.
3682``DW_TAG_formal_parameter`` is used to define a member which is a formal
3683argument of a subprogram.
3684
3685``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3686
3687``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3688``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3689``baseType:``.
3690
3691Note that the ``void *`` type is expressed as a type derived from NULL.
3692
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003693.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003694
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003695DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003696"""""""""""""""
3697
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003698``DICompositeType`` nodes represent types composed of other types, like
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003699structures and unions. ``elements:`` points to a tuple of the composed types.
3700
3701If the source language supports ODR, the ``identifier:`` field gives the unique
3702identifier used for type merging between modules. When specified, other types
3703can refer to composite types indirectly via a :ref:`metadata string
3704<metadata-string>` that matches their identifier.
3705
3706.. code-block:: llvm
3707
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003708 !0 = !DIEnumerator(name: "SixKind", value: 7)
3709 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3710 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3711 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003712 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3713 elements: !{!0, !1, !2})
3714
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003715The following ``tag:`` values are valid:
3716
3717.. code-block:: llvm
3718
3719 DW_TAG_array_type = 1
3720 DW_TAG_class_type = 2
3721 DW_TAG_enumeration_type = 4
3722 DW_TAG_structure_type = 19
3723 DW_TAG_union_type = 23
3724 DW_TAG_subroutine_type = 21
3725 DW_TAG_inheritance = 28
3726
3727
3728For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003729descriptors <DISubrange>`, each representing the range of subscripts at that
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003730level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
3731array type is a native packed vector.
3732
3733For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003734descriptors <DIEnumerator>`, each representing the definition of an enumeration
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003735value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003736``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003737
3738For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3739``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003740<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003741
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003742.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003743
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003744DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003745""""""""""
3746
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003747``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
3748:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003749
3750.. code-block:: llvm
3751
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003752 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3753 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3754 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003755
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003756.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003757
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003758DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003759""""""""""""
3760
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003761``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3762variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003763
3764.. code-block:: llvm
3765
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003766 !0 = !DIEnumerator(name: "SixKind", value: 7)
3767 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3768 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003769
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003770DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003771"""""""""""""""""""""""
3772
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003773``DITemplateTypeParameter`` nodes represent type parameters to generic source
3774language constructs. They are used (optionally) in :ref:`DICompositeType` and
3775:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003776
3777.. code-block:: llvm
3778
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003779 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003780
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003781DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003782""""""""""""""""""""""""
3783
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003784``DITemplateValueParameter`` nodes represent value parameters to generic source
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003785language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
3786but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
3787``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003788:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003789
3790.. code-block:: llvm
3791
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003792 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003793
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003794DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003795"""""""""""
3796
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003797``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003798
3799.. code-block:: llvm
3800
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003801 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003802
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003803DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003804""""""""""""""""
3805
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003806``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003807
3808.. code-block:: llvm
3809
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003810 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003811 file: !2, line: 7, type: !3, isLocal: true,
3812 isDefinition: false, variable: i32* @foo,
3813 declaration: !4)
3814
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003815All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003816:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003817
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003818.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003819
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003820DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003821""""""""""""
3822
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003823``DISubprogram`` nodes represent functions from the source language. The
3824``variables:`` field points at :ref:`variables <DILocalVariable>` that must be
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003825retained, even if their IR counterparts are optimized out of the IR. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003826``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003827
3828.. code-block:: llvm
3829
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003830 !0 = !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003831 file: !2, line: 7, type: !3, isLocal: true,
3832 isDefinition: false, scopeLine: 8, containingType: !4,
3833 virtuality: DW_VIRTUALITY_pure_virtual, virtualIndex: 10,
3834 flags: DIFlagPrototyped, isOptimized: true,
3835 function: void ()* @_Z3foov,
3836 templateParams: !5, declaration: !6, variables: !7)
3837
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003838.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003839
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003840DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003841""""""""""""""
3842
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003843``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
3844<DISubprogram>`. The line number and column numbers are used to dinstinguish
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003845two lexical blocks at same depth. They are valid targets for ``scope:``
3846fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003847
3848.. code-block:: llvm
3849
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003850 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003851
3852Usually lexical blocks are ``distinct`` to prevent node merging based on
3853operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003854
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003855.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003856
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003857DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003858""""""""""""""""""
3859
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003860``DILexicalBlockFile`` nodes are used to discriminate between sections of a
3861:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003862indicate textual inclusion, or the ``discriminator:`` field can be used to
3863discriminate between control flow within a single block in the source language.
3864
3865.. code-block:: llvm
3866
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003867 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
3868 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
3869 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003870
Michael Kuperstein605308a2015-05-14 10:58:59 +00003871.. _DILocation:
3872
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003873DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003874""""""""""
3875
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003876``DILocation`` nodes represent source debug locations. The ``scope:`` field is
3877mandatory, and points at an :ref:`DILexicalBlockFile`, an
3878:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003879
3880.. code-block:: llvm
3881
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003882 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003883
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003884.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003885
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003886DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003887"""""""""""""""
3888
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003889``DILocalVariable`` nodes represent local variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003890Instead of ``DW_TAG_variable``, they use LLVM-specific fake tags to
3891discriminate between local variables (``DW_TAG_auto_variable``) and subprogram
3892arguments (``DW_TAG_arg_variable``). In the latter case, the ``arg:`` field
3893specifies the argument position, and this variable will be included in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003894``variables:`` field of its :ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003895
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003896.. code-block:: llvm
3897
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003898 !0 = !DILocalVariable(tag: DW_TAG_arg_variable, name: "this", arg: 0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003899 scope: !3, file: !2, line: 7, type: !3,
Duncan P. N. Exon Smith62e0f452015-04-15 22:29:27 +00003900 flags: DIFlagArtificial)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003901 !1 = !DILocalVariable(tag: DW_TAG_arg_variable, name: "x", arg: 1,
Duncan P. N. Exon Smith62e0f452015-04-15 22:29:27 +00003902 scope: !4, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003903 !1 = !DILocalVariable(tag: DW_TAG_auto_variable, name: "y",
Duncan P. N. Exon Smith62e0f452015-04-15 22:29:27 +00003904 scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003905
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003906DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003907""""""""""""
3908
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003909``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003910:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
3911describe how the referenced LLVM variable relates to the source language
3912variable.
3913
3914The current supported vocabulary is limited:
3915
3916- ``DW_OP_deref`` dereferences the working expression.
3917- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
3918- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
3919 here, respectively) of the variable piece from the working expression.
3920
3921.. code-block:: llvm
3922
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003923 !0 = !DIExpression(DW_OP_deref)
3924 !1 = !DIExpression(DW_OP_plus, 3)
3925 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
3926 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003927
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003928DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003929""""""""""""""
3930
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003931``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003932
3933.. code-block:: llvm
3934
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003935 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003936 getter: "getFoo", attributes: 7, type: !2)
3937
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003938DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003939""""""""""""""""
3940
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003941``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003942compile unit.
3943
3944.. code-block:: llvm
3945
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003946 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003947 entity: !1, line: 7)
3948
Sean Silvab084af42012-12-07 10:36:55 +00003949'``tbaa``' Metadata
3950^^^^^^^^^^^^^^^^^^^
3951
3952In LLVM IR, memory does not have types, so LLVM's own type system is not
3953suitable for doing TBAA. Instead, metadata is added to the IR to
3954describe a type system of a higher level language. This can be used to
3955implement typical C/C++ TBAA, but it can also be used to implement
3956custom alias analysis behavior for other languages.
3957
3958The current metadata format is very simple. TBAA metadata nodes have up
3959to three fields, e.g.:
3960
3961.. code-block:: llvm
3962
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003963 !0 = !{ !"an example type tree" }
3964 !1 = !{ !"int", !0 }
3965 !2 = !{ !"float", !0 }
3966 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003967
3968The first field is an identity field. It can be any value, usually a
3969metadata string, which uniquely identifies the type. The most important
3970name in the tree is the name of the root node. Two trees with different
3971root node names are entirely disjoint, even if they have leaves with
3972common names.
3973
3974The second field identifies the type's parent node in the tree, or is
3975null or omitted for a root node. A type is considered to alias all of
3976its descendants and all of its ancestors in the tree. Also, a type is
3977considered to alias all types in other trees, so that bitcode produced
3978from multiple front-ends is handled conservatively.
3979
3980If the third field is present, it's an integer which if equal to 1
3981indicates that the type is "constant" (meaning
3982``pointsToConstantMemory`` should return true; see `other useful
3983AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
3984
3985'``tbaa.struct``' Metadata
3986^^^^^^^^^^^^^^^^^^^^^^^^^^
3987
3988The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
3989aggregate assignment operations in C and similar languages, however it
3990is defined to copy a contiguous region of memory, which is more than
3991strictly necessary for aggregate types which contain holes due to
3992padding. Also, it doesn't contain any TBAA information about the fields
3993of the aggregate.
3994
3995``!tbaa.struct`` metadata can describe which memory subregions in a
3996memcpy are padding and what the TBAA tags of the struct are.
3997
3998The current metadata format is very simple. ``!tbaa.struct`` metadata
3999nodes are a list of operands which are in conceptual groups of three.
4000For each group of three, the first operand gives the byte offset of a
4001field in bytes, the second gives its size in bytes, and the third gives
4002its tbaa tag. e.g.:
4003
4004.. code-block:: llvm
4005
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004006 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004007
4008This describes a struct with two fields. The first is at offset 0 bytes
4009with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4010and has size 4 bytes and has tbaa tag !2.
4011
4012Note that the fields need not be contiguous. In this example, there is a
40134 byte gap between the two fields. This gap represents padding which
4014does not carry useful data and need not be preserved.
4015
Hal Finkel94146652014-07-24 14:25:39 +00004016'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004017^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004018
4019``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4020noalias memory-access sets. This means that some collection of memory access
4021instructions (loads, stores, memory-accessing calls, etc.) that carry
4022``noalias`` metadata can specifically be specified not to alias with some other
4023collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004024Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004025a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004026of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004027subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004028instruction's ``noalias`` list, then the two memory accesses are assumed not to
4029alias.
Hal Finkel94146652014-07-24 14:25:39 +00004030
Hal Finkel029cde62014-07-25 15:50:02 +00004031The metadata identifying each domain is itself a list containing one or two
4032entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00004033string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004034self-reference can be used to create globally unique domain names. A
4035descriptive string may optionally be provided as a second list entry.
4036
4037The metadata identifying each scope is also itself a list containing two or
4038three entries. The first entry is the name of the scope. Note that if the name
4039is a string then it can be combined accross functions and translation units. A
4040self-reference can be used to create globally unique scope names. A metadata
4041reference to the scope's domain is the second entry. A descriptive string may
4042optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004043
4044For example,
4045
4046.. code-block:: llvm
4047
Hal Finkel029cde62014-07-25 15:50:02 +00004048 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004049 !0 = !{!0}
4050 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004051
Hal Finkel029cde62014-07-25 15:50:02 +00004052 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004053 !2 = !{!2, !0}
4054 !3 = !{!3, !0}
4055 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004056
Hal Finkel029cde62014-07-25 15:50:02 +00004057 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004058 !5 = !{!4} ; A list containing only scope !4
4059 !6 = !{!4, !3, !2}
4060 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004061
4062 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004063 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004064 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004065
Hal Finkel029cde62014-07-25 15:50:02 +00004066 ; These two instructions also don't alias (for domain !1, the set of scopes
4067 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004068 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004069 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004070
Adam Nemet0a8416f2015-05-11 08:30:28 +00004071 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004072 ; the !noalias list is not a superset of, or equal to, the scopes in the
4073 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004074 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004075 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004076
Sean Silvab084af42012-12-07 10:36:55 +00004077'``fpmath``' Metadata
4078^^^^^^^^^^^^^^^^^^^^^
4079
4080``fpmath`` metadata may be attached to any instruction of floating point
4081type. It can be used to express the maximum acceptable error in the
4082result of that instruction, in ULPs, thus potentially allowing the
4083compiler to use a more efficient but less accurate method of computing
4084it. ULP is defined as follows:
4085
4086 If ``x`` is a real number that lies between two finite consecutive
4087 floating-point numbers ``a`` and ``b``, without being equal to one
4088 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4089 distance between the two non-equal finite floating-point numbers
4090 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4091
4092The metadata node shall consist of a single positive floating point
4093number representing the maximum relative error, for example:
4094
4095.. code-block:: llvm
4096
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004097 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004098
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004099.. _range-metadata:
4100
Sean Silvab084af42012-12-07 10:36:55 +00004101'``range``' Metadata
4102^^^^^^^^^^^^^^^^^^^^
4103
Jingyue Wu37fcb592014-06-19 16:50:16 +00004104``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4105integer types. It expresses the possible ranges the loaded value or the value
4106returned by the called function at this call site is in. The ranges are
4107represented with a flattened list of integers. The loaded value or the value
4108returned is known to be in the union of the ranges defined by each consecutive
4109pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004110
4111- The type must match the type loaded by the instruction.
4112- The pair ``a,b`` represents the range ``[a,b)``.
4113- Both ``a`` and ``b`` are constants.
4114- The range is allowed to wrap.
4115- The range should not represent the full or empty set. That is,
4116 ``a!=b``.
4117
4118In addition, the pairs must be in signed order of the lower bound and
4119they must be non-contiguous.
4120
4121Examples:
4122
4123.. code-block:: llvm
4124
David Blaikiec7aabbb2015-03-04 22:06:14 +00004125 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4126 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004127 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4128 %d = invoke i8 @bar() to label %cont
4129 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004130 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004131 !0 = !{ i8 0, i8 2 }
4132 !1 = !{ i8 255, i8 2 }
4133 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4134 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004135
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004136'``llvm.loop``'
4137^^^^^^^^^^^^^^^
4138
4139It is sometimes useful to attach information to loop constructs. Currently,
4140loop metadata is implemented as metadata attached to the branch instruction
4141in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004142guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004143specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004144
4145The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004146itself to avoid merging it with any other identifier metadata, e.g.,
4147during module linkage or function inlining. That is, each loop should refer
4148to their own identification metadata even if they reside in separate functions.
4149The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004150constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004151
4152.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004153
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004154 !0 = !{!0}
4155 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004156
Mark Heffernan893752a2014-07-18 19:24:51 +00004157The loop identifier metadata can be used to specify additional
4158per-loop metadata. Any operands after the first operand can be treated
4159as user-defined metadata. For example the ``llvm.loop.unroll.count``
4160suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004161
Paul Redmond5fdf8362013-05-28 20:00:34 +00004162.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004163
Paul Redmond5fdf8362013-05-28 20:00:34 +00004164 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4165 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004166 !0 = !{!0, !1}
4167 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004168
Mark Heffernan9d20e422014-07-21 23:11:03 +00004169'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4170^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004171
Mark Heffernan9d20e422014-07-21 23:11:03 +00004172Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4173used to control per-loop vectorization and interleaving parameters such as
4174vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00004175conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004176``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4177optimization hints and the optimizer will only interleave and vectorize loops if
4178it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
4179which contains information about loop-carried memory dependencies can be helpful
4180in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004181
Mark Heffernan9d20e422014-07-21 23:11:03 +00004182'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004183^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4184
Mark Heffernan9d20e422014-07-21 23:11:03 +00004185This metadata suggests an interleave count to the loop interleaver.
4186The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004187second operand is an integer specifying the interleave count. For
4188example:
4189
4190.. code-block:: llvm
4191
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004192 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004193
Mark Heffernan9d20e422014-07-21 23:11:03 +00004194Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
4195multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
4196then the interleave count will be determined automatically.
4197
4198'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004199^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004200
4201This metadata selectively enables or disables vectorization for the loop. The
4202first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
4203is a bit. If the bit operand value is 1 vectorization is enabled. A value of
42040 disables vectorization:
4205
4206.. code-block:: llvm
4207
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004208 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4209 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004210
4211'``llvm.loop.vectorize.width``' Metadata
4212^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4213
4214This metadata sets the target width of the vectorizer. The first
4215operand is the string ``llvm.loop.vectorize.width`` and the second
4216operand is an integer specifying the width. For example:
4217
4218.. code-block:: llvm
4219
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004220 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004221
4222Note that setting ``llvm.loop.vectorize.width`` to 1 disables
4223vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
42240 or if the loop does not have this metadata the width will be
4225determined automatically.
4226
4227'``llvm.loop.unroll``'
4228^^^^^^^^^^^^^^^^^^^^^^
4229
4230Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4231optimization hints such as the unroll factor. ``llvm.loop.unroll``
4232metadata should be used in conjunction with ``llvm.loop`` loop
4233identification metadata. The ``llvm.loop.unroll`` metadata are only
4234optimization hints and the unrolling will only be performed if the
4235optimizer believes it is safe to do so.
4236
Mark Heffernan893752a2014-07-18 19:24:51 +00004237'``llvm.loop.unroll.count``' Metadata
4238^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4239
4240This metadata suggests an unroll factor to the loop unroller. The
4241first operand is the string ``llvm.loop.unroll.count`` and the second
4242operand is a positive integer specifying the unroll factor. For
4243example:
4244
4245.. code-block:: llvm
4246
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004247 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004248
4249If the trip count of the loop is less than the unroll count the loop
4250will be partially unrolled.
4251
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004252'``llvm.loop.unroll.disable``' Metadata
4253^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4254
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004255This metadata disables loop unrolling. The metadata has a single operand
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004256which is the string ``llvm.loop.unroll.disable``. For example:
4257
4258.. code-block:: llvm
4259
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004260 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004261
Kevin Qin715b01e2015-03-09 06:14:18 +00004262'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004263^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004264
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004265This metadata disables runtime loop unrolling. The metadata has a single
Kevin Qin715b01e2015-03-09 06:14:18 +00004266operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
4267
4268.. code-block:: llvm
4269
4270 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4271
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004272'``llvm.loop.unroll.full``' Metadata
4273^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4274
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004275This metadata suggests that the loop should be unrolled fully. The
4276metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004277For example:
4278
4279.. code-block:: llvm
4280
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004281 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004282
4283'``llvm.mem``'
4284^^^^^^^^^^^^^^^
4285
4286Metadata types used to annotate memory accesses with information helpful
4287for optimizations are prefixed with ``llvm.mem``.
4288
4289'``llvm.mem.parallel_loop_access``' Metadata
4290^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4291
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004292The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4293or metadata containing a list of loop identifiers for nested loops.
4294The metadata is attached to memory accessing instructions and denotes that
4295no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004296with the same loop identifier.
4297
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004298Precisely, given two instructions ``m1`` and ``m2`` that both have the
4299``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4300set of loops associated with that metadata, respectively, then there is no loop
4301carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004302``L2``.
4303
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004304As a special case, if all memory accessing instructions in a loop have
4305``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4306loop has no loop carried memory dependences and is considered to be a parallel
4307loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004308
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004309Note that if not all memory access instructions have such metadata referring to
4310the loop, then the loop is considered not being trivially parallel. Additional
4311memory dependence analysis is required to make that determination. As a fail
4312safe mechanism, this causes loops that were originally parallel to be considered
4313sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004314insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004315
4316Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004317both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004318metadata types that refer to the same loop identifier metadata.
4319
4320.. code-block:: llvm
4321
4322 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004323 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004324 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004325 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004326 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004327 ...
4328 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004329
4330 for.end:
4331 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004332 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004333
4334It is also possible to have nested parallel loops. In that case the
4335memory accesses refer to a list of loop identifier metadata nodes instead of
4336the loop identifier metadata node directly:
4337
4338.. code-block:: llvm
4339
4340 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004341 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004342 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004343 ...
4344 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004345
4346 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004347 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004348 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004349 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004350 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004351 ...
4352 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004353
4354 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004355 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004356 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004357 ...
4358 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004359
4360 outer.for.end: ; preds = %for.body
4361 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004362 !0 = !{!1, !2} ; a list of loop identifiers
4363 !1 = !{!1} ; an identifier for the inner loop
4364 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004365
Peter Collingbournee6909c82015-02-20 20:30:47 +00004366'``llvm.bitsets``'
4367^^^^^^^^^^^^^^^^^^
4368
4369The ``llvm.bitsets`` global metadata is used to implement
4370:doc:`bitsets <BitSets>`.
4371
Sean Silvab084af42012-12-07 10:36:55 +00004372Module Flags Metadata
4373=====================
4374
4375Information about the module as a whole is difficult to convey to LLVM's
4376subsystems. The LLVM IR isn't sufficient to transmit this information.
4377The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004378this. These flags are in the form of key / value pairs --- much like a
4379dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004380look it up.
4381
4382The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4383Each triplet has the following form:
4384
4385- The first element is a *behavior* flag, which specifies the behavior
4386 when two (or more) modules are merged together, and it encounters two
4387 (or more) metadata with the same ID. The supported behaviors are
4388 described below.
4389- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004390 metadata. Each module may only have one flag entry for each unique ID (not
4391 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004392- The third element is the value of the flag.
4393
4394When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004395``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4396each unique metadata ID string, there will be exactly one entry in the merged
4397modules ``llvm.module.flags`` metadata table, and the value for that entry will
4398be determined by the merge behavior flag, as described below. The only exception
4399is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004400
4401The following behaviors are supported:
4402
4403.. list-table::
4404 :header-rows: 1
4405 :widths: 10 90
4406
4407 * - Value
4408 - Behavior
4409
4410 * - 1
4411 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004412 Emits an error if two values disagree, otherwise the resulting value
4413 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004414
4415 * - 2
4416 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004417 Emits a warning if two values disagree. The result value will be the
4418 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004419
4420 * - 3
4421 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004422 Adds a requirement that another module flag be present and have a
4423 specified value after linking is performed. The value must be a
4424 metadata pair, where the first element of the pair is the ID of the
4425 module flag to be restricted, and the second element of the pair is
4426 the value the module flag should be restricted to. This behavior can
4427 be used to restrict the allowable results (via triggering of an
4428 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004429
4430 * - 4
4431 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004432 Uses the specified value, regardless of the behavior or value of the
4433 other module. If both modules specify **Override**, but the values
4434 differ, an error will be emitted.
4435
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004436 * - 5
4437 - **Append**
4438 Appends the two values, which are required to be metadata nodes.
4439
4440 * - 6
4441 - **AppendUnique**
4442 Appends the two values, which are required to be metadata
4443 nodes. However, duplicate entries in the second list are dropped
4444 during the append operation.
4445
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004446It is an error for a particular unique flag ID to have multiple behaviors,
4447except in the case of **Require** (which adds restrictions on another metadata
4448value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004449
4450An example of module flags:
4451
4452.. code-block:: llvm
4453
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004454 !0 = !{ i32 1, !"foo", i32 1 }
4455 !1 = !{ i32 4, !"bar", i32 37 }
4456 !2 = !{ i32 2, !"qux", i32 42 }
4457 !3 = !{ i32 3, !"qux",
4458 !{
4459 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004460 }
4461 }
4462 !llvm.module.flags = !{ !0, !1, !2, !3 }
4463
4464- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4465 if two or more ``!"foo"`` flags are seen is to emit an error if their
4466 values are not equal.
4467
4468- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4469 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004470 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004471
4472- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4473 behavior if two or more ``!"qux"`` flags are seen is to emit a
4474 warning if their values are not equal.
4475
4476- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4477
4478 ::
4479
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004480 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004481
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004482 The behavior is to emit an error if the ``llvm.module.flags`` does not
4483 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4484 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004485
4486Objective-C Garbage Collection Module Flags Metadata
4487----------------------------------------------------
4488
4489On the Mach-O platform, Objective-C stores metadata about garbage
4490collection in a special section called "image info". The metadata
4491consists of a version number and a bitmask specifying what types of
4492garbage collection are supported (if any) by the file. If two or more
4493modules are linked together their garbage collection metadata needs to
4494be merged rather than appended together.
4495
4496The Objective-C garbage collection module flags metadata consists of the
4497following key-value pairs:
4498
4499.. list-table::
4500 :header-rows: 1
4501 :widths: 30 70
4502
4503 * - Key
4504 - Value
4505
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004506 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004507 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004508
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004509 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004510 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004511 always 0.
4512
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004513 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004514 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004515 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4516 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4517 Objective-C ABI version 2.
4518
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004519 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004520 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004521 not. Valid values are 0, for no garbage collection, and 2, for garbage
4522 collection supported.
4523
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004524 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004525 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004526 If present, its value must be 6. This flag requires that the
4527 ``Objective-C Garbage Collection`` flag have the value 2.
4528
4529Some important flag interactions:
4530
4531- If a module with ``Objective-C Garbage Collection`` set to 0 is
4532 merged with a module with ``Objective-C Garbage Collection`` set to
4533 2, then the resulting module has the
4534 ``Objective-C Garbage Collection`` flag set to 0.
4535- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4536 merged with a module with ``Objective-C GC Only`` set to 6.
4537
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004538Automatic Linker Flags Module Flags Metadata
4539--------------------------------------------
4540
4541Some targets support embedding flags to the linker inside individual object
4542files. Typically this is used in conjunction with language extensions which
4543allow source files to explicitly declare the libraries they depend on, and have
4544these automatically be transmitted to the linker via object files.
4545
4546These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004547using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004548to be ``AppendUnique``, and the value for the key is expected to be a metadata
4549node which should be a list of other metadata nodes, each of which should be a
4550list of metadata strings defining linker options.
4551
4552For example, the following metadata section specifies two separate sets of
4553linker options, presumably to link against ``libz`` and the ``Cocoa``
4554framework::
4555
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004556 !0 = !{ i32 6, !"Linker Options",
4557 !{
4558 !{ !"-lz" },
4559 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004560 !llvm.module.flags = !{ !0 }
4561
4562The metadata encoding as lists of lists of options, as opposed to a collapsed
4563list of options, is chosen so that the IR encoding can use multiple option
4564strings to specify e.g., a single library, while still having that specifier be
4565preserved as an atomic element that can be recognized by a target specific
4566assembly writer or object file emitter.
4567
4568Each individual option is required to be either a valid option for the target's
4569linker, or an option that is reserved by the target specific assembly writer or
4570object file emitter. No other aspect of these options is defined by the IR.
4571
Oliver Stannard5dc29342014-06-20 10:08:11 +00004572C type width Module Flags Metadata
4573----------------------------------
4574
4575The ARM backend emits a section into each generated object file describing the
4576options that it was compiled with (in a compiler-independent way) to prevent
4577linking incompatible objects, and to allow automatic library selection. Some
4578of these options are not visible at the IR level, namely wchar_t width and enum
4579width.
4580
4581To pass this information to the backend, these options are encoded in module
4582flags metadata, using the following key-value pairs:
4583
4584.. list-table::
4585 :header-rows: 1
4586 :widths: 30 70
4587
4588 * - Key
4589 - Value
4590
4591 * - short_wchar
4592 - * 0 --- sizeof(wchar_t) == 4
4593 * 1 --- sizeof(wchar_t) == 2
4594
4595 * - short_enum
4596 - * 0 --- Enums are at least as large as an ``int``.
4597 * 1 --- Enums are stored in the smallest integer type which can
4598 represent all of its values.
4599
4600For example, the following metadata section specifies that the module was
4601compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4602enum is the smallest type which can represent all of its values::
4603
4604 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004605 !0 = !{i32 1, !"short_wchar", i32 1}
4606 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004607
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004608.. _intrinsicglobalvariables:
4609
Sean Silvab084af42012-12-07 10:36:55 +00004610Intrinsic Global Variables
4611==========================
4612
4613LLVM has a number of "magic" global variables that contain data that
4614affect code generation or other IR semantics. These are documented here.
4615All globals of this sort should have a section specified as
4616"``llvm.metadata``". This section and all globals that start with
4617"``llvm.``" are reserved for use by LLVM.
4618
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004619.. _gv_llvmused:
4620
Sean Silvab084af42012-12-07 10:36:55 +00004621The '``llvm.used``' Global Variable
4622-----------------------------------
4623
Rafael Espindola74f2e462013-04-22 14:58:02 +00004624The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004625:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004626pointers to named global variables, functions and aliases which may optionally
4627have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004628use of it is:
4629
4630.. code-block:: llvm
4631
4632 @X = global i8 4
4633 @Y = global i32 123
4634
4635 @llvm.used = appending global [2 x i8*] [
4636 i8* @X,
4637 i8* bitcast (i32* @Y to i8*)
4638 ], section "llvm.metadata"
4639
Rafael Espindola74f2e462013-04-22 14:58:02 +00004640If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4641and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004642symbol that it cannot see (which is why they have to be named). For example, if
4643a variable has internal linkage and no references other than that from the
4644``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4645references from inline asms and other things the compiler cannot "see", and
4646corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004647
4648On some targets, the code generator must emit a directive to the
4649assembler or object file to prevent the assembler and linker from
4650molesting the symbol.
4651
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004652.. _gv_llvmcompilerused:
4653
Sean Silvab084af42012-12-07 10:36:55 +00004654The '``llvm.compiler.used``' Global Variable
4655--------------------------------------------
4656
4657The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4658directive, except that it only prevents the compiler from touching the
4659symbol. On targets that support it, this allows an intelligent linker to
4660optimize references to the symbol without being impeded as it would be
4661by ``@llvm.used``.
4662
4663This is a rare construct that should only be used in rare circumstances,
4664and should not be exposed to source languages.
4665
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004666.. _gv_llvmglobalctors:
4667
Sean Silvab084af42012-12-07 10:36:55 +00004668The '``llvm.global_ctors``' Global Variable
4669-------------------------------------------
4670
4671.. code-block:: llvm
4672
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004673 %0 = type { i32, void ()*, i8* }
4674 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004675
4676The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004677functions, priorities, and an optional associated global or function.
4678The functions referenced by this array will be called in ascending order
4679of priority (i.e. lowest first) when the module is loaded. The order of
4680functions with the same priority is not defined.
4681
4682If the third field is present, non-null, and points to a global variable
4683or function, the initializer function will only run if the associated
4684data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004685
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004686.. _llvmglobaldtors:
4687
Sean Silvab084af42012-12-07 10:36:55 +00004688The '``llvm.global_dtors``' Global Variable
4689-------------------------------------------
4690
4691.. code-block:: llvm
4692
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004693 %0 = type { i32, void ()*, i8* }
4694 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004695
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004696The ``@llvm.global_dtors`` array contains a list of destructor
4697functions, priorities, and an optional associated global or function.
4698The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004699order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004700order of functions with the same priority is not defined.
4701
4702If the third field is present, non-null, and points to a global variable
4703or function, the destructor function will only run if the associated
4704data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004705
4706Instruction Reference
4707=====================
4708
4709The LLVM instruction set consists of several different classifications
4710of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4711instructions <binaryops>`, :ref:`bitwise binary
4712instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4713:ref:`other instructions <otherops>`.
4714
4715.. _terminators:
4716
4717Terminator Instructions
4718-----------------------
4719
4720As mentioned :ref:`previously <functionstructure>`, every basic block in a
4721program ends with a "Terminator" instruction, which indicates which
4722block should be executed after the current block is finished. These
4723terminator instructions typically yield a '``void``' value: they produce
4724control flow, not values (the one exception being the
4725':ref:`invoke <i_invoke>`' instruction).
4726
4727The terminator instructions are: ':ref:`ret <i_ret>`',
4728':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
4729':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemerdb82d2f2015-07-10 07:15:17 +00004730':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00004731
4732.. _i_ret:
4733
4734'``ret``' Instruction
4735^^^^^^^^^^^^^^^^^^^^^
4736
4737Syntax:
4738"""""""
4739
4740::
4741
4742 ret <type> <value> ; Return a value from a non-void function
4743 ret void ; Return from void function
4744
4745Overview:
4746"""""""""
4747
4748The '``ret``' instruction is used to return control flow (and optionally
4749a value) from a function back to the caller.
4750
4751There are two forms of the '``ret``' instruction: one that returns a
4752value and then causes control flow, and one that just causes control
4753flow to occur.
4754
4755Arguments:
4756""""""""""
4757
4758The '``ret``' instruction optionally accepts a single argument, the
4759return value. The type of the return value must be a ':ref:`first
4760class <t_firstclass>`' type.
4761
4762A function is not :ref:`well formed <wellformed>` if it it has a non-void
4763return type and contains a '``ret``' instruction with no return value or
4764a return value with a type that does not match its type, or if it has a
4765void return type and contains a '``ret``' instruction with a return
4766value.
4767
4768Semantics:
4769""""""""""
4770
4771When the '``ret``' instruction is executed, control flow returns back to
4772the calling function's context. If the caller is a
4773":ref:`call <i_call>`" instruction, execution continues at the
4774instruction after the call. If the caller was an
4775":ref:`invoke <i_invoke>`" instruction, execution continues at the
4776beginning of the "normal" destination block. If the instruction returns
4777a value, that value shall set the call or invoke instruction's return
4778value.
4779
4780Example:
4781""""""""
4782
4783.. code-block:: llvm
4784
4785 ret i32 5 ; Return an integer value of 5
4786 ret void ; Return from a void function
4787 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
4788
4789.. _i_br:
4790
4791'``br``' Instruction
4792^^^^^^^^^^^^^^^^^^^^
4793
4794Syntax:
4795"""""""
4796
4797::
4798
4799 br i1 <cond>, label <iftrue>, label <iffalse>
4800 br label <dest> ; Unconditional branch
4801
4802Overview:
4803"""""""""
4804
4805The '``br``' instruction is used to cause control flow to transfer to a
4806different basic block in the current function. There are two forms of
4807this instruction, corresponding to a conditional branch and an
4808unconditional branch.
4809
4810Arguments:
4811""""""""""
4812
4813The conditional branch form of the '``br``' instruction takes a single
4814'``i1``' value and two '``label``' values. The unconditional form of the
4815'``br``' instruction takes a single '``label``' value as a target.
4816
4817Semantics:
4818""""""""""
4819
4820Upon execution of a conditional '``br``' instruction, the '``i1``'
4821argument is evaluated. If the value is ``true``, control flows to the
4822'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
4823to the '``iffalse``' ``label`` argument.
4824
4825Example:
4826""""""""
4827
4828.. code-block:: llvm
4829
4830 Test:
4831 %cond = icmp eq i32 %a, %b
4832 br i1 %cond, label %IfEqual, label %IfUnequal
4833 IfEqual:
4834 ret i32 1
4835 IfUnequal:
4836 ret i32 0
4837
4838.. _i_switch:
4839
4840'``switch``' Instruction
4841^^^^^^^^^^^^^^^^^^^^^^^^
4842
4843Syntax:
4844"""""""
4845
4846::
4847
4848 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
4849
4850Overview:
4851"""""""""
4852
4853The '``switch``' instruction is used to transfer control flow to one of
4854several different places. It is a generalization of the '``br``'
4855instruction, allowing a branch to occur to one of many possible
4856destinations.
4857
4858Arguments:
4859""""""""""
4860
4861The '``switch``' instruction uses three parameters: an integer
4862comparison value '``value``', a default '``label``' destination, and an
4863array of pairs of comparison value constants and '``label``'s. The table
4864is not allowed to contain duplicate constant entries.
4865
4866Semantics:
4867""""""""""
4868
4869The ``switch`` instruction specifies a table of values and destinations.
4870When the '``switch``' instruction is executed, this table is searched
4871for the given value. If the value is found, control flow is transferred
4872to the corresponding destination; otherwise, control flow is transferred
4873to the default destination.
4874
4875Implementation:
4876"""""""""""""""
4877
4878Depending on properties of the target machine and the particular
4879``switch`` instruction, this instruction may be code generated in
4880different ways. For example, it could be generated as a series of
4881chained conditional branches or with a lookup table.
4882
4883Example:
4884""""""""
4885
4886.. code-block:: llvm
4887
4888 ; Emulate a conditional br instruction
4889 %Val = zext i1 %value to i32
4890 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
4891
4892 ; Emulate an unconditional br instruction
4893 switch i32 0, label %dest [ ]
4894
4895 ; Implement a jump table:
4896 switch i32 %val, label %otherwise [ i32 0, label %onzero
4897 i32 1, label %onone
4898 i32 2, label %ontwo ]
4899
4900.. _i_indirectbr:
4901
4902'``indirectbr``' Instruction
4903^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4904
4905Syntax:
4906"""""""
4907
4908::
4909
4910 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
4911
4912Overview:
4913"""""""""
4914
4915The '``indirectbr``' instruction implements an indirect branch to a
4916label within the current function, whose address is specified by
4917"``address``". Address must be derived from a
4918:ref:`blockaddress <blockaddress>` constant.
4919
4920Arguments:
4921""""""""""
4922
4923The '``address``' argument is the address of the label to jump to. The
4924rest of the arguments indicate the full set of possible destinations
4925that the address may point to. Blocks are allowed to occur multiple
4926times in the destination list, though this isn't particularly useful.
4927
4928This destination list is required so that dataflow analysis has an
4929accurate understanding of the CFG.
4930
4931Semantics:
4932""""""""""
4933
4934Control transfers to the block specified in the address argument. All
4935possible destination blocks must be listed in the label list, otherwise
4936this instruction has undefined behavior. This implies that jumps to
4937labels defined in other functions have undefined behavior as well.
4938
4939Implementation:
4940"""""""""""""""
4941
4942This is typically implemented with a jump through a register.
4943
4944Example:
4945""""""""
4946
4947.. code-block:: llvm
4948
4949 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
4950
4951.. _i_invoke:
4952
4953'``invoke``' Instruction
4954^^^^^^^^^^^^^^^^^^^^^^^^
4955
4956Syntax:
4957"""""""
4958
4959::
4960
4961 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
4962 to label <normal label> unwind label <exception label>
4963
4964Overview:
4965"""""""""
4966
4967The '``invoke``' instruction causes control to transfer to a specified
4968function, with the possibility of control flow transfer to either the
4969'``normal``' label or the '``exception``' label. If the callee function
4970returns with the "``ret``" instruction, control flow will return to the
4971"normal" label. If the callee (or any indirect callees) returns via the
4972":ref:`resume <i_resume>`" instruction or other exception handling
4973mechanism, control is interrupted and continued at the dynamically
4974nearest "exception" label.
4975
4976The '``exception``' label is a `landing
4977pad <ExceptionHandling.html#overview>`_ for the exception. As such,
4978'``exception``' label is required to have the
4979":ref:`landingpad <i_landingpad>`" instruction, which contains the
4980information about the behavior of the program after unwinding happens,
4981as its first non-PHI instruction. The restrictions on the
4982"``landingpad``" instruction's tightly couples it to the "``invoke``"
4983instruction, so that the important information contained within the
4984"``landingpad``" instruction can't be lost through normal code motion.
4985
4986Arguments:
4987""""""""""
4988
4989This instruction requires several arguments:
4990
4991#. The optional "cconv" marker indicates which :ref:`calling
4992 convention <callingconv>` the call should use. If none is
4993 specified, the call defaults to using C calling conventions.
4994#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
4995 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
4996 are valid here.
4997#. '``ptr to function ty``': shall be the signature of the pointer to
4998 function value being invoked. In most cases, this is a direct
4999 function invocation, but indirect ``invoke``'s are just as possible,
5000 branching off an arbitrary pointer to function value.
5001#. '``function ptr val``': An LLVM value containing a pointer to a
5002 function to be invoked.
5003#. '``function args``': argument list whose types match the function
5004 signature argument types and parameter attributes. All arguments must
5005 be of :ref:`first class <t_firstclass>` type. If the function signature
5006 indicates the function accepts a variable number of arguments, the
5007 extra arguments can be specified.
5008#. '``normal label``': the label reached when the called function
5009 executes a '``ret``' instruction.
5010#. '``exception label``': the label reached when a callee returns via
5011 the :ref:`resume <i_resume>` instruction or other exception handling
5012 mechanism.
5013#. The optional :ref:`function attributes <fnattrs>` list. Only
5014 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5015 attributes are valid here.
5016
5017Semantics:
5018""""""""""
5019
5020This instruction is designed to operate as a standard '``call``'
5021instruction in most regards. The primary difference is that it
5022establishes an association with a label, which is used by the runtime
5023library to unwind the stack.
5024
5025This instruction is used in languages with destructors to ensure that
5026proper cleanup is performed in the case of either a ``longjmp`` or a
5027thrown exception. Additionally, this is important for implementation of
5028'``catch``' clauses in high-level languages that support them.
5029
5030For the purposes of the SSA form, the definition of the value returned
5031by the '``invoke``' instruction is deemed to occur on the edge from the
5032current block to the "normal" label. If the callee unwinds then no
5033return value is available.
5034
5035Example:
5036""""""""
5037
5038.. code-block:: llvm
5039
5040 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005041 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005042 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005043 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005044
5045.. _i_resume:
5046
5047'``resume``' Instruction
5048^^^^^^^^^^^^^^^^^^^^^^^^
5049
5050Syntax:
5051"""""""
5052
5053::
5054
5055 resume <type> <value>
5056
5057Overview:
5058"""""""""
5059
5060The '``resume``' instruction is a terminator instruction that has no
5061successors.
5062
5063Arguments:
5064""""""""""
5065
5066The '``resume``' instruction requires one argument, which must have the
5067same type as the result of any '``landingpad``' instruction in the same
5068function.
5069
5070Semantics:
5071""""""""""
5072
5073The '``resume``' instruction resumes propagation of an existing
5074(in-flight) exception whose unwinding was interrupted with a
5075:ref:`landingpad <i_landingpad>` instruction.
5076
5077Example:
5078""""""""
5079
5080.. code-block:: llvm
5081
5082 resume { i8*, i32 } %exn
5083
5084.. _i_unreachable:
5085
5086'``unreachable``' Instruction
5087^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5088
5089Syntax:
5090"""""""
5091
5092::
5093
5094 unreachable
5095
5096Overview:
5097"""""""""
5098
5099The '``unreachable``' instruction has no defined semantics. This
5100instruction is used to inform the optimizer that a particular portion of
5101the code is not reachable. This can be used to indicate that the code
5102after a no-return function cannot be reached, and other facts.
5103
5104Semantics:
5105""""""""""
5106
5107The '``unreachable``' instruction has no defined semantics.
5108
5109.. _binaryops:
5110
5111Binary Operations
5112-----------------
5113
5114Binary operators are used to do most of the computation in a program.
5115They require two operands of the same type, execute an operation on
5116them, and produce a single value. The operands might represent multiple
5117data, as is the case with the :ref:`vector <t_vector>` data type. The
5118result value has the same type as its operands.
5119
5120There are several different binary operators:
5121
5122.. _i_add:
5123
5124'``add``' Instruction
5125^^^^^^^^^^^^^^^^^^^^^
5126
5127Syntax:
5128"""""""
5129
5130::
5131
Tim Northover675a0962014-06-13 14:24:23 +00005132 <result> = add <ty> <op1>, <op2> ; yields ty:result
5133 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5134 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5135 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005136
5137Overview:
5138"""""""""
5139
5140The '``add``' instruction returns the sum of its two operands.
5141
5142Arguments:
5143""""""""""
5144
5145The two arguments to the '``add``' instruction must be
5146:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5147arguments must have identical types.
5148
5149Semantics:
5150""""""""""
5151
5152The value produced is the integer sum of the two operands.
5153
5154If the sum has unsigned overflow, the result returned is the
5155mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5156the result.
5157
5158Because LLVM integers use a two's complement representation, this
5159instruction is appropriate for both signed and unsigned integers.
5160
5161``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5162respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5163result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5164unsigned and/or signed overflow, respectively, occurs.
5165
5166Example:
5167""""""""
5168
5169.. code-block:: llvm
5170
Tim Northover675a0962014-06-13 14:24:23 +00005171 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005172
5173.. _i_fadd:
5174
5175'``fadd``' Instruction
5176^^^^^^^^^^^^^^^^^^^^^^
5177
5178Syntax:
5179"""""""
5180
5181::
5182
Tim Northover675a0962014-06-13 14:24:23 +00005183 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005184
5185Overview:
5186"""""""""
5187
5188The '``fadd``' instruction returns the sum of its two operands.
5189
5190Arguments:
5191""""""""""
5192
5193The two arguments to the '``fadd``' instruction must be :ref:`floating
5194point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5195Both arguments must have identical types.
5196
5197Semantics:
5198""""""""""
5199
5200The value produced is the floating point sum of the two operands. This
5201instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5202which are optimization hints to enable otherwise unsafe floating point
5203optimizations:
5204
5205Example:
5206""""""""
5207
5208.. code-block:: llvm
5209
Tim Northover675a0962014-06-13 14:24:23 +00005210 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005211
5212'``sub``' Instruction
5213^^^^^^^^^^^^^^^^^^^^^
5214
5215Syntax:
5216"""""""
5217
5218::
5219
Tim Northover675a0962014-06-13 14:24:23 +00005220 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5221 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5222 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5223 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005224
5225Overview:
5226"""""""""
5227
5228The '``sub``' instruction returns the difference of its two operands.
5229
5230Note that the '``sub``' instruction is used to represent the '``neg``'
5231instruction present in most other intermediate representations.
5232
5233Arguments:
5234""""""""""
5235
5236The two arguments to the '``sub``' instruction must be
5237:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5238arguments must have identical types.
5239
5240Semantics:
5241""""""""""
5242
5243The value produced is the integer difference of the two operands.
5244
5245If the difference has unsigned overflow, the result returned is the
5246mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5247the result.
5248
5249Because LLVM integers use a two's complement representation, this
5250instruction is appropriate for both signed and unsigned integers.
5251
5252``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5253respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5254result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5255unsigned and/or signed overflow, respectively, occurs.
5256
5257Example:
5258""""""""
5259
5260.. code-block:: llvm
5261
Tim Northover675a0962014-06-13 14:24:23 +00005262 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5263 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005264
5265.. _i_fsub:
5266
5267'``fsub``' Instruction
5268^^^^^^^^^^^^^^^^^^^^^^
5269
5270Syntax:
5271"""""""
5272
5273::
5274
Tim Northover675a0962014-06-13 14:24:23 +00005275 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005276
5277Overview:
5278"""""""""
5279
5280The '``fsub``' instruction returns the difference of its two operands.
5281
5282Note that the '``fsub``' instruction is used to represent the '``fneg``'
5283instruction present in most other intermediate representations.
5284
5285Arguments:
5286""""""""""
5287
5288The two arguments to the '``fsub``' instruction must be :ref:`floating
5289point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5290Both arguments must have identical types.
5291
5292Semantics:
5293""""""""""
5294
5295The value produced is the floating point difference of the two operands.
5296This instruction can also take any number of :ref:`fast-math
5297flags <fastmath>`, which are optimization hints to enable otherwise
5298unsafe floating point optimizations:
5299
5300Example:
5301""""""""
5302
5303.. code-block:: llvm
5304
Tim Northover675a0962014-06-13 14:24:23 +00005305 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5306 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005307
5308'``mul``' Instruction
5309^^^^^^^^^^^^^^^^^^^^^
5310
5311Syntax:
5312"""""""
5313
5314::
5315
Tim Northover675a0962014-06-13 14:24:23 +00005316 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5317 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5318 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5319 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005320
5321Overview:
5322"""""""""
5323
5324The '``mul``' instruction returns the product of its two operands.
5325
5326Arguments:
5327""""""""""
5328
5329The two arguments to the '``mul``' instruction must be
5330:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5331arguments must have identical types.
5332
5333Semantics:
5334""""""""""
5335
5336The value produced is the integer product of the two operands.
5337
5338If the result of the multiplication has unsigned overflow, the result
5339returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5340bit width of the result.
5341
5342Because LLVM integers use a two's complement representation, and the
5343result is the same width as the operands, this instruction returns the
5344correct result for both signed and unsigned integers. If a full product
5345(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5346sign-extended or zero-extended as appropriate to the width of the full
5347product.
5348
5349``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5350respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5351result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5352unsigned and/or signed overflow, respectively, occurs.
5353
5354Example:
5355""""""""
5356
5357.. code-block:: llvm
5358
Tim Northover675a0962014-06-13 14:24:23 +00005359 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005360
5361.. _i_fmul:
5362
5363'``fmul``' Instruction
5364^^^^^^^^^^^^^^^^^^^^^^
5365
5366Syntax:
5367"""""""
5368
5369::
5370
Tim Northover675a0962014-06-13 14:24:23 +00005371 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005372
5373Overview:
5374"""""""""
5375
5376The '``fmul``' instruction returns the product of its two operands.
5377
5378Arguments:
5379""""""""""
5380
5381The two arguments to the '``fmul``' instruction must be :ref:`floating
5382point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5383Both arguments must have identical types.
5384
5385Semantics:
5386""""""""""
5387
5388The value produced is the floating point product of the two operands.
5389This instruction can also take any number of :ref:`fast-math
5390flags <fastmath>`, which are optimization hints to enable otherwise
5391unsafe floating point optimizations:
5392
5393Example:
5394""""""""
5395
5396.. code-block:: llvm
5397
Tim Northover675a0962014-06-13 14:24:23 +00005398 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005399
5400'``udiv``' Instruction
5401^^^^^^^^^^^^^^^^^^^^^^
5402
5403Syntax:
5404"""""""
5405
5406::
5407
Tim Northover675a0962014-06-13 14:24:23 +00005408 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5409 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005410
5411Overview:
5412"""""""""
5413
5414The '``udiv``' instruction returns the quotient of its two operands.
5415
5416Arguments:
5417""""""""""
5418
5419The two arguments to the '``udiv``' instruction must be
5420:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5421arguments must have identical types.
5422
5423Semantics:
5424""""""""""
5425
5426The value produced is the unsigned integer quotient of the two operands.
5427
5428Note that unsigned integer division and signed integer division are
5429distinct operations; for signed integer division, use '``sdiv``'.
5430
5431Division by zero leads to undefined behavior.
5432
5433If the ``exact`` keyword is present, the result value of the ``udiv`` is
5434a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5435such, "((a udiv exact b) mul b) == a").
5436
5437Example:
5438""""""""
5439
5440.. code-block:: llvm
5441
Tim Northover675a0962014-06-13 14:24:23 +00005442 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005443
5444'``sdiv``' Instruction
5445^^^^^^^^^^^^^^^^^^^^^^
5446
5447Syntax:
5448"""""""
5449
5450::
5451
Tim Northover675a0962014-06-13 14:24:23 +00005452 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
5453 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005454
5455Overview:
5456"""""""""
5457
5458The '``sdiv``' instruction returns the quotient of its two operands.
5459
5460Arguments:
5461""""""""""
5462
5463The two arguments to the '``sdiv``' instruction must be
5464:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5465arguments must have identical types.
5466
5467Semantics:
5468""""""""""
5469
5470The value produced is the signed integer quotient of the two operands
5471rounded towards zero.
5472
5473Note that signed integer division and unsigned integer division are
5474distinct operations; for unsigned integer division, use '``udiv``'.
5475
5476Division by zero leads to undefined behavior. Overflow also leads to
5477undefined behavior; this is a rare case, but can occur, for example, by
5478doing a 32-bit division of -2147483648 by -1.
5479
5480If the ``exact`` keyword is present, the result value of the ``sdiv`` is
5481a :ref:`poison value <poisonvalues>` if the result would be rounded.
5482
5483Example:
5484""""""""
5485
5486.. code-block:: llvm
5487
Tim Northover675a0962014-06-13 14:24:23 +00005488 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005489
5490.. _i_fdiv:
5491
5492'``fdiv``' Instruction
5493^^^^^^^^^^^^^^^^^^^^^^
5494
5495Syntax:
5496"""""""
5497
5498::
5499
Tim Northover675a0962014-06-13 14:24:23 +00005500 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005501
5502Overview:
5503"""""""""
5504
5505The '``fdiv``' instruction returns the quotient of its two operands.
5506
5507Arguments:
5508""""""""""
5509
5510The two arguments to the '``fdiv``' instruction must be :ref:`floating
5511point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5512Both arguments must have identical types.
5513
5514Semantics:
5515""""""""""
5516
5517The value produced is the floating point quotient of the two operands.
5518This instruction can also take any number of :ref:`fast-math
5519flags <fastmath>`, which are optimization hints to enable otherwise
5520unsafe floating point optimizations:
5521
5522Example:
5523""""""""
5524
5525.. code-block:: llvm
5526
Tim Northover675a0962014-06-13 14:24:23 +00005527 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005528
5529'``urem``' Instruction
5530^^^^^^^^^^^^^^^^^^^^^^
5531
5532Syntax:
5533"""""""
5534
5535::
5536
Tim Northover675a0962014-06-13 14:24:23 +00005537 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005538
5539Overview:
5540"""""""""
5541
5542The '``urem``' instruction returns the remainder from the unsigned
5543division of its two arguments.
5544
5545Arguments:
5546""""""""""
5547
5548The two arguments to the '``urem``' instruction must be
5549:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5550arguments must have identical types.
5551
5552Semantics:
5553""""""""""
5554
5555This instruction returns the unsigned integer *remainder* of a division.
5556This instruction always performs an unsigned division to get the
5557remainder.
5558
5559Note that unsigned integer remainder and signed integer remainder are
5560distinct operations; for signed integer remainder, use '``srem``'.
5561
5562Taking the remainder of a division by zero leads to undefined behavior.
5563
5564Example:
5565""""""""
5566
5567.. code-block:: llvm
5568
Tim Northover675a0962014-06-13 14:24:23 +00005569 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005570
5571'``srem``' Instruction
5572^^^^^^^^^^^^^^^^^^^^^^
5573
5574Syntax:
5575"""""""
5576
5577::
5578
Tim Northover675a0962014-06-13 14:24:23 +00005579 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005580
5581Overview:
5582"""""""""
5583
5584The '``srem``' instruction returns the remainder from the signed
5585division of its two operands. This instruction can also take
5586:ref:`vector <t_vector>` versions of the values in which case the elements
5587must be integers.
5588
5589Arguments:
5590""""""""""
5591
5592The two arguments to the '``srem``' instruction must be
5593:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5594arguments must have identical types.
5595
5596Semantics:
5597""""""""""
5598
5599This instruction returns the *remainder* of a division (where the result
5600is either zero or has the same sign as the dividend, ``op1``), not the
5601*modulo* operator (where the result is either zero or has the same sign
5602as the divisor, ``op2``) of a value. For more information about the
5603difference, see `The Math
5604Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
5605table of how this is implemented in various languages, please see
5606`Wikipedia: modulo
5607operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
5608
5609Note that signed integer remainder and unsigned integer remainder are
5610distinct operations; for unsigned integer remainder, use '``urem``'.
5611
5612Taking the remainder of a division by zero leads to undefined behavior.
5613Overflow also leads to undefined behavior; this is a rare case, but can
5614occur, for example, by taking the remainder of a 32-bit division of
5615-2147483648 by -1. (The remainder doesn't actually overflow, but this
5616rule lets srem be implemented using instructions that return both the
5617result of the division and the remainder.)
5618
5619Example:
5620""""""""
5621
5622.. code-block:: llvm
5623
Tim Northover675a0962014-06-13 14:24:23 +00005624 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005625
5626.. _i_frem:
5627
5628'``frem``' Instruction
5629^^^^^^^^^^^^^^^^^^^^^^
5630
5631Syntax:
5632"""""""
5633
5634::
5635
Tim Northover675a0962014-06-13 14:24:23 +00005636 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005637
5638Overview:
5639"""""""""
5640
5641The '``frem``' instruction returns the remainder from the division of
5642its two operands.
5643
5644Arguments:
5645""""""""""
5646
5647The two arguments to the '``frem``' instruction must be :ref:`floating
5648point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5649Both arguments must have identical types.
5650
5651Semantics:
5652""""""""""
5653
5654This instruction returns the *remainder* of a division. The remainder
5655has the same sign as the dividend. This instruction can also take any
5656number of :ref:`fast-math flags <fastmath>`, which are optimization hints
5657to enable otherwise unsafe floating point optimizations:
5658
5659Example:
5660""""""""
5661
5662.. code-block:: llvm
5663
Tim Northover675a0962014-06-13 14:24:23 +00005664 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005665
5666.. _bitwiseops:
5667
5668Bitwise Binary Operations
5669-------------------------
5670
5671Bitwise binary operators are used to do various forms of bit-twiddling
5672in a program. They are generally very efficient instructions and can
5673commonly be strength reduced from other instructions. They require two
5674operands of the same type, execute an operation on them, and produce a
5675single value. The resulting value is the same type as its operands.
5676
5677'``shl``' Instruction
5678^^^^^^^^^^^^^^^^^^^^^
5679
5680Syntax:
5681"""""""
5682
5683::
5684
Tim Northover675a0962014-06-13 14:24:23 +00005685 <result> = shl <ty> <op1>, <op2> ; yields ty:result
5686 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
5687 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
5688 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005689
5690Overview:
5691"""""""""
5692
5693The '``shl``' instruction returns the first operand shifted to the left
5694a specified number of bits.
5695
5696Arguments:
5697""""""""""
5698
5699Both arguments to the '``shl``' instruction must be the same
5700:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5701'``op2``' is treated as an unsigned value.
5702
5703Semantics:
5704""""""""""
5705
5706The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
5707where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00005708dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00005709``op1``, the result is undefined. If the arguments are vectors, each
5710vector element of ``op1`` is shifted by the corresponding shift amount
5711in ``op2``.
5712
5713If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
5714value <poisonvalues>` if it shifts out any non-zero bits. If the
5715``nsw`` keyword is present, then the shift produces a :ref:`poison
5716value <poisonvalues>` if it shifts out any bits that disagree with the
5717resultant sign bit. As such, NUW/NSW have the same semantics as they
5718would if the shift were expressed as a mul instruction with the same
5719nsw/nuw bits in (mul %op1, (shl 1, %op2)).
5720
5721Example:
5722""""""""
5723
5724.. code-block:: llvm
5725
Tim Northover675a0962014-06-13 14:24:23 +00005726 <result> = shl i32 4, %var ; yields i32: 4 << %var
5727 <result> = shl i32 4, 2 ; yields i32: 16
5728 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00005729 <result> = shl i32 1, 32 ; undefined
5730 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
5731
5732'``lshr``' Instruction
5733^^^^^^^^^^^^^^^^^^^^^^
5734
5735Syntax:
5736"""""""
5737
5738::
5739
Tim Northover675a0962014-06-13 14:24:23 +00005740 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
5741 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005742
5743Overview:
5744"""""""""
5745
5746The '``lshr``' instruction (logical shift right) returns the first
5747operand shifted to the right a specified number of bits with zero fill.
5748
5749Arguments:
5750""""""""""
5751
5752Both arguments to the '``lshr``' instruction must be the same
5753:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5754'``op2``' is treated as an unsigned value.
5755
5756Semantics:
5757""""""""""
5758
5759This instruction always performs a logical shift right operation. The
5760most significant bits of the result will be filled with zero bits after
5761the shift. If ``op2`` is (statically or dynamically) equal to or larger
5762than the number of bits in ``op1``, the result is undefined. If the
5763arguments are vectors, each vector element of ``op1`` is shifted by the
5764corresponding shift amount in ``op2``.
5765
5766If the ``exact`` keyword is present, the result value of the ``lshr`` is
5767a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
5768non-zero.
5769
5770Example:
5771""""""""
5772
5773.. code-block:: llvm
5774
Tim Northover675a0962014-06-13 14:24:23 +00005775 <result> = lshr i32 4, 1 ; yields i32:result = 2
5776 <result> = lshr i32 4, 2 ; yields i32:result = 1
5777 <result> = lshr i8 4, 3 ; yields i8:result = 0
5778 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00005779 <result> = lshr i32 1, 32 ; undefined
5780 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
5781
5782'``ashr``' Instruction
5783^^^^^^^^^^^^^^^^^^^^^^
5784
5785Syntax:
5786"""""""
5787
5788::
5789
Tim Northover675a0962014-06-13 14:24:23 +00005790 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
5791 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005792
5793Overview:
5794"""""""""
5795
5796The '``ashr``' instruction (arithmetic shift right) returns the first
5797operand shifted to the right a specified number of bits with sign
5798extension.
5799
5800Arguments:
5801""""""""""
5802
5803Both arguments to the '``ashr``' instruction must be the same
5804:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5805'``op2``' is treated as an unsigned value.
5806
5807Semantics:
5808""""""""""
5809
5810This instruction always performs an arithmetic shift right operation,
5811The most significant bits of the result will be filled with the sign bit
5812of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
5813than the number of bits in ``op1``, the result is undefined. If the
5814arguments are vectors, each vector element of ``op1`` is shifted by the
5815corresponding shift amount in ``op2``.
5816
5817If the ``exact`` keyword is present, the result value of the ``ashr`` is
5818a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
5819non-zero.
5820
5821Example:
5822""""""""
5823
5824.. code-block:: llvm
5825
Tim Northover675a0962014-06-13 14:24:23 +00005826 <result> = ashr i32 4, 1 ; yields i32:result = 2
5827 <result> = ashr i32 4, 2 ; yields i32:result = 1
5828 <result> = ashr i8 4, 3 ; yields i8:result = 0
5829 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00005830 <result> = ashr i32 1, 32 ; undefined
5831 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
5832
5833'``and``' Instruction
5834^^^^^^^^^^^^^^^^^^^^^
5835
5836Syntax:
5837"""""""
5838
5839::
5840
Tim Northover675a0962014-06-13 14:24:23 +00005841 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005842
5843Overview:
5844"""""""""
5845
5846The '``and``' instruction returns the bitwise logical and of its two
5847operands.
5848
5849Arguments:
5850""""""""""
5851
5852The two arguments to the '``and``' instruction must be
5853:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5854arguments must have identical types.
5855
5856Semantics:
5857""""""""""
5858
5859The truth table used for the '``and``' instruction is:
5860
5861+-----+-----+-----+
5862| In0 | In1 | Out |
5863+-----+-----+-----+
5864| 0 | 0 | 0 |
5865+-----+-----+-----+
5866| 0 | 1 | 0 |
5867+-----+-----+-----+
5868| 1 | 0 | 0 |
5869+-----+-----+-----+
5870| 1 | 1 | 1 |
5871+-----+-----+-----+
5872
5873Example:
5874""""""""
5875
5876.. code-block:: llvm
5877
Tim Northover675a0962014-06-13 14:24:23 +00005878 <result> = and i32 4, %var ; yields i32:result = 4 & %var
5879 <result> = and i32 15, 40 ; yields i32:result = 8
5880 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00005881
5882'``or``' Instruction
5883^^^^^^^^^^^^^^^^^^^^
5884
5885Syntax:
5886"""""""
5887
5888::
5889
Tim Northover675a0962014-06-13 14:24:23 +00005890 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005891
5892Overview:
5893"""""""""
5894
5895The '``or``' instruction returns the bitwise logical inclusive or of its
5896two operands.
5897
5898Arguments:
5899""""""""""
5900
5901The two arguments to the '``or``' instruction must be
5902:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5903arguments must have identical types.
5904
5905Semantics:
5906""""""""""
5907
5908The truth table used for the '``or``' instruction is:
5909
5910+-----+-----+-----+
5911| In0 | In1 | Out |
5912+-----+-----+-----+
5913| 0 | 0 | 0 |
5914+-----+-----+-----+
5915| 0 | 1 | 1 |
5916+-----+-----+-----+
5917| 1 | 0 | 1 |
5918+-----+-----+-----+
5919| 1 | 1 | 1 |
5920+-----+-----+-----+
5921
5922Example:
5923""""""""
5924
5925::
5926
Tim Northover675a0962014-06-13 14:24:23 +00005927 <result> = or i32 4, %var ; yields i32:result = 4 | %var
5928 <result> = or i32 15, 40 ; yields i32:result = 47
5929 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00005930
5931'``xor``' Instruction
5932^^^^^^^^^^^^^^^^^^^^^
5933
5934Syntax:
5935"""""""
5936
5937::
5938
Tim Northover675a0962014-06-13 14:24:23 +00005939 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005940
5941Overview:
5942"""""""""
5943
5944The '``xor``' instruction returns the bitwise logical exclusive or of
5945its two operands. The ``xor`` is used to implement the "one's
5946complement" operation, which is the "~" operator in C.
5947
5948Arguments:
5949""""""""""
5950
5951The two arguments to the '``xor``' instruction must be
5952:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5953arguments must have identical types.
5954
5955Semantics:
5956""""""""""
5957
5958The truth table used for the '``xor``' instruction is:
5959
5960+-----+-----+-----+
5961| In0 | In1 | Out |
5962+-----+-----+-----+
5963| 0 | 0 | 0 |
5964+-----+-----+-----+
5965| 0 | 1 | 1 |
5966+-----+-----+-----+
5967| 1 | 0 | 1 |
5968+-----+-----+-----+
5969| 1 | 1 | 0 |
5970+-----+-----+-----+
5971
5972Example:
5973""""""""
5974
5975.. code-block:: llvm
5976
Tim Northover675a0962014-06-13 14:24:23 +00005977 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
5978 <result> = xor i32 15, 40 ; yields i32:result = 39
5979 <result> = xor i32 4, 8 ; yields i32:result = 12
5980 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00005981
5982Vector Operations
5983-----------------
5984
5985LLVM supports several instructions to represent vector operations in a
5986target-independent manner. These instructions cover the element-access
5987and vector-specific operations needed to process vectors effectively.
5988While LLVM does directly support these vector operations, many
5989sophisticated algorithms will want to use target-specific intrinsics to
5990take full advantage of a specific target.
5991
5992.. _i_extractelement:
5993
5994'``extractelement``' Instruction
5995^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5996
5997Syntax:
5998"""""""
5999
6000::
6001
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006002 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006003
6004Overview:
6005"""""""""
6006
6007The '``extractelement``' instruction extracts a single scalar element
6008from a vector at a specified index.
6009
6010Arguments:
6011""""""""""
6012
6013The first operand of an '``extractelement``' instruction is a value of
6014:ref:`vector <t_vector>` type. The second operand is an index indicating
6015the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006016variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006017
6018Semantics:
6019""""""""""
6020
6021The result is a scalar of the same type as the element type of ``val``.
6022Its value is the value at position ``idx`` of ``val``. If ``idx``
6023exceeds the length of ``val``, the results are undefined.
6024
6025Example:
6026""""""""
6027
6028.. code-block:: llvm
6029
6030 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6031
6032.. _i_insertelement:
6033
6034'``insertelement``' Instruction
6035^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6036
6037Syntax:
6038"""""""
6039
6040::
6041
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006042 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006043
6044Overview:
6045"""""""""
6046
6047The '``insertelement``' instruction inserts a scalar element into a
6048vector at a specified index.
6049
6050Arguments:
6051""""""""""
6052
6053The first operand of an '``insertelement``' instruction is a value of
6054:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6055type must equal the element type of the first operand. The third operand
6056is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006057index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006058
6059Semantics:
6060""""""""""
6061
6062The result is a vector of the same type as ``val``. Its element values
6063are those of ``val`` except at position ``idx``, where it gets the value
6064``elt``. If ``idx`` exceeds the length of ``val``, the results are
6065undefined.
6066
6067Example:
6068""""""""
6069
6070.. code-block:: llvm
6071
6072 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6073
6074.. _i_shufflevector:
6075
6076'``shufflevector``' Instruction
6077^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6078
6079Syntax:
6080"""""""
6081
6082::
6083
6084 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6085
6086Overview:
6087"""""""""
6088
6089The '``shufflevector``' instruction constructs a permutation of elements
6090from two input vectors, returning a vector with the same element type as
6091the input and length that is the same as the shuffle mask.
6092
6093Arguments:
6094""""""""""
6095
6096The first two operands of a '``shufflevector``' instruction are vectors
6097with the same type. The third argument is a shuffle mask whose element
6098type is always 'i32'. The result of the instruction is a vector whose
6099length is the same as the shuffle mask and whose element type is the
6100same as the element type of the first two operands.
6101
6102The shuffle mask operand is required to be a constant vector with either
6103constant integer or undef values.
6104
6105Semantics:
6106""""""""""
6107
6108The elements of the two input vectors are numbered from left to right
6109across both of the vectors. The shuffle mask operand specifies, for each
6110element of the result vector, which element of the two input vectors the
6111result element gets. The element selector may be undef (meaning "don't
6112care") and the second operand may be undef if performing a shuffle from
6113only one vector.
6114
6115Example:
6116""""""""
6117
6118.. code-block:: llvm
6119
6120 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6121 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6122 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6123 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6124 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6125 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6126 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6127 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6128
6129Aggregate Operations
6130--------------------
6131
6132LLVM supports several instructions for working with
6133:ref:`aggregate <t_aggregate>` values.
6134
6135.. _i_extractvalue:
6136
6137'``extractvalue``' Instruction
6138^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6139
6140Syntax:
6141"""""""
6142
6143::
6144
6145 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6146
6147Overview:
6148"""""""""
6149
6150The '``extractvalue``' instruction extracts the value of a member field
6151from an :ref:`aggregate <t_aggregate>` value.
6152
6153Arguments:
6154""""""""""
6155
6156The first operand of an '``extractvalue``' instruction is a value of
6157:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
6158constant indices to specify which value to extract in a similar manner
6159as indices in a '``getelementptr``' instruction.
6160
6161The major differences to ``getelementptr`` indexing are:
6162
6163- Since the value being indexed is not a pointer, the first index is
6164 omitted and assumed to be zero.
6165- At least one index must be specified.
6166- Not only struct indices but also array indices must be in bounds.
6167
6168Semantics:
6169""""""""""
6170
6171The result is the value at the position in the aggregate specified by
6172the index operands.
6173
6174Example:
6175""""""""
6176
6177.. code-block:: llvm
6178
6179 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6180
6181.. _i_insertvalue:
6182
6183'``insertvalue``' Instruction
6184^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6185
6186Syntax:
6187"""""""
6188
6189::
6190
6191 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6192
6193Overview:
6194"""""""""
6195
6196The '``insertvalue``' instruction inserts a value into a member field in
6197an :ref:`aggregate <t_aggregate>` value.
6198
6199Arguments:
6200""""""""""
6201
6202The first operand of an '``insertvalue``' instruction is a value of
6203:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6204a first-class value to insert. The following operands are constant
6205indices indicating the position at which to insert the value in a
6206similar manner as indices in a '``extractvalue``' instruction. The value
6207to insert must have the same type as the value identified by the
6208indices.
6209
6210Semantics:
6211""""""""""
6212
6213The result is an aggregate of the same type as ``val``. Its value is
6214that of ``val`` except that the value at the position specified by the
6215indices is that of ``elt``.
6216
6217Example:
6218""""""""
6219
6220.. code-block:: llvm
6221
6222 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6223 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006224 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006225
6226.. _memoryops:
6227
6228Memory Access and Addressing Operations
6229---------------------------------------
6230
6231A key design point of an SSA-based representation is how it represents
6232memory. In LLVM, no memory locations are in SSA form, which makes things
6233very simple. This section describes how to read, write, and allocate
6234memory in LLVM.
6235
6236.. _i_alloca:
6237
6238'``alloca``' Instruction
6239^^^^^^^^^^^^^^^^^^^^^^^^
6240
6241Syntax:
6242"""""""
6243
6244::
6245
Tim Northover675a0962014-06-13 14:24:23 +00006246 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006247
6248Overview:
6249"""""""""
6250
6251The '``alloca``' instruction allocates memory on the stack frame of the
6252currently executing function, to be automatically released when this
6253function returns to its caller. The object is always allocated in the
6254generic address space (address space zero).
6255
6256Arguments:
6257""""""""""
6258
6259The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6260bytes of memory on the runtime stack, returning a pointer of the
6261appropriate type to the program. If "NumElements" is specified, it is
6262the number of elements allocated, otherwise "NumElements" is defaulted
6263to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006264allocation is guaranteed to be aligned to at least that boundary. The
6265alignment may not be greater than ``1 << 29``. If not specified, or if
6266zero, the target can choose to align the allocation on any convenient
6267boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006268
6269'``type``' may be any sized type.
6270
6271Semantics:
6272""""""""""
6273
6274Memory is allocated; a pointer is returned. The operation is undefined
6275if there is insufficient stack space for the allocation. '``alloca``'d
6276memory is automatically released when the function returns. The
6277'``alloca``' instruction is commonly used to represent automatic
6278variables that must have an address available. When the function returns
6279(either with the ``ret`` or ``resume`` instructions), the memory is
6280reclaimed. Allocating zero bytes is legal, but the result is undefined.
6281The order in which memory is allocated (ie., which way the stack grows)
6282is not specified.
6283
6284Example:
6285""""""""
6286
6287.. code-block:: llvm
6288
Tim Northover675a0962014-06-13 14:24:23 +00006289 %ptr = alloca i32 ; yields i32*:ptr
6290 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6291 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6292 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006293
6294.. _i_load:
6295
6296'``load``' Instruction
6297^^^^^^^^^^^^^^^^^^^^^^
6298
6299Syntax:
6300"""""""
6301
6302::
6303
Sanjoy Dasf9995472015-05-19 20:10:19 +00006304 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>][, !dereferenceable !<index>][, !dereferenceable_or_null !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006305 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
6306 !<index> = !{ i32 1 }
6307
6308Overview:
6309"""""""""
6310
6311The '``load``' instruction is used to read from memory.
6312
6313Arguments:
6314""""""""""
6315
Eli Bendersky239a78b2013-04-17 20:17:08 +00006316The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006317from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006318class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6319then the optimizer is not allowed to modify the number or order of
6320execution of this ``load`` with other :ref:`volatile
6321operations <volatile>`.
6322
6323If the ``load`` is marked as ``atomic``, it takes an extra
6324:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6325``release`` and ``acq_rel`` orderings are not valid on ``load``
6326instructions. Atomic loads produce :ref:`defined <memmodel>` results
6327when they may see multiple atomic stores. The type of the pointee must
6328be an integer type whose bit width is a power of two greater than or
6329equal to eight and less than or equal to a target-specific size limit.
6330``align`` must be explicitly specified on atomic loads, and the load has
6331undefined behavior if the alignment is not set to a value which is at
6332least the size in bytes of the pointee. ``!nontemporal`` does not have
6333any defined semantics for atomic loads.
6334
6335The optional constant ``align`` argument specifies the alignment of the
6336operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006337or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006338alignment for the target. It is the responsibility of the code emitter
6339to ensure that the alignment information is correct. Overestimating the
6340alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006341may produce less efficient code. An alignment of 1 is always safe. The
6342maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006343
6344The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006345metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006346``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006347metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006348that this load is not expected to be reused in the cache. The code
6349generator may select special instructions to save cache bandwidth, such
6350as the ``MOVNT`` instruction on x86.
6351
6352The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006353metadata name ``<index>`` corresponding to a metadata node with no
6354entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006355instruction tells the optimizer and code generator that the address
6356operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006357Being invariant does not imply that a location is dereferenceable,
6358but it does imply that once the location is known dereferenceable
6359its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006360
Philip Reamescdb72f32014-10-20 22:40:55 +00006361The optional ``!nonnull`` metadata must reference a single
6362metadata name ``<index>`` corresponding to a metadata node with no
6363entries. The existence of the ``!nonnull`` metadata on the
6364instruction tells the optimizer that the value loaded is known to
6365never be null. This is analogous to the ''nonnull'' attribute
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006366on parameters and return values. This metadata can only be applied
6367to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006368
Sanjoy Dasf9995472015-05-19 20:10:19 +00006369The optional ``!dereferenceable`` metadata must reference a single
6370metadata name ``<index>`` corresponding to a metadata node with one ``i64``
6371entry. The existence of the ``!dereferenceable`` metadata on the instruction
6372tells the optimizer that the value loaded is known to be dereferenceable.
6373The number of bytes known to be dereferenceable is specified by the integer
6374value in the metadata node. This is analogous to the ''dereferenceable''
6375attribute on parameters and return values. This metadata can only be applied
6376to loads of a pointer type.
6377
6378The optional ``!dereferenceable_or_null`` metadata must reference a single
6379metadata name ``<index>`` corresponding to a metadata node with one ``i64``
6380entry. The existence of the ``!dereferenceable_or_null`` metadata on the
6381instruction tells the optimizer that the value loaded is known to be either
6382dereferenceable or null.
6383The number of bytes known to be dereferenceable is specified by the integer
6384value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6385attribute on parameters and return values. This metadata can only be applied
6386to loads of a pointer type.
6387
Sean Silvab084af42012-12-07 10:36:55 +00006388Semantics:
6389""""""""""
6390
6391The location of memory pointed to is loaded. If the value being loaded
6392is of scalar type then the number of bytes read does not exceed the
6393minimum number of bytes needed to hold all bits of the type. For
6394example, loading an ``i24`` reads at most three bytes. When loading a
6395value of a type like ``i20`` with a size that is not an integral number
6396of bytes, the result is undefined if the value was not originally
6397written using a store of the same type.
6398
6399Examples:
6400"""""""""
6401
6402.. code-block:: llvm
6403
Tim Northover675a0962014-06-13 14:24:23 +00006404 %ptr = alloca i32 ; yields i32*:ptr
6405 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006406 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006407
6408.. _i_store:
6409
6410'``store``' Instruction
6411^^^^^^^^^^^^^^^^^^^^^^^
6412
6413Syntax:
6414"""""""
6415
6416::
6417
Tim Northover675a0962014-06-13 14:24:23 +00006418 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
6419 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006420
6421Overview:
6422"""""""""
6423
6424The '``store``' instruction is used to write to memory.
6425
6426Arguments:
6427""""""""""
6428
Eli Benderskyca380842013-04-17 17:17:20 +00006429There are two arguments to the ``store`` instruction: a value to store
6430and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00006431operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00006432the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00006433then the optimizer is not allowed to modify the number or order of
6434execution of this ``store`` with other :ref:`volatile
6435operations <volatile>`.
6436
6437If the ``store`` is marked as ``atomic``, it takes an extra
6438:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6439``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
6440instructions. Atomic loads produce :ref:`defined <memmodel>` results
6441when they may see multiple atomic stores. The type of the pointee must
6442be an integer type whose bit width is a power of two greater than or
6443equal to eight and less than or equal to a target-specific size limit.
6444``align`` must be explicitly specified on atomic stores, and the store
6445has undefined behavior if the alignment is not set to a value which is
6446at least the size in bytes of the pointee. ``!nontemporal`` does not
6447have any defined semantics for atomic stores.
6448
Eli Benderskyca380842013-04-17 17:17:20 +00006449The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00006450operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00006451or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006452alignment for the target. It is the responsibility of the code emitter
6453to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00006454alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00006455alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006456safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006457
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006458The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00006459name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006460value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00006461tells the optimizer and code generator that this load is not expected to
6462be reused in the cache. The code generator may select special
6463instructions to save cache bandwidth, such as the MOVNT instruction on
6464x86.
6465
6466Semantics:
6467""""""""""
6468
Eli Benderskyca380842013-04-17 17:17:20 +00006469The contents of memory are updated to contain ``<value>`` at the
6470location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00006471of scalar type then the number of bytes written does not exceed the
6472minimum number of bytes needed to hold all bits of the type. For
6473example, storing an ``i24`` writes at most three bytes. When writing a
6474value of a type like ``i20`` with a size that is not an integral number
6475of bytes, it is unspecified what happens to the extra bits that do not
6476belong to the type, but they will typically be overwritten.
6477
6478Example:
6479""""""""
6480
6481.. code-block:: llvm
6482
Tim Northover675a0962014-06-13 14:24:23 +00006483 %ptr = alloca i32 ; yields i32*:ptr
6484 store i32 3, i32* %ptr ; yields void
6485 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006486
6487.. _i_fence:
6488
6489'``fence``' Instruction
6490^^^^^^^^^^^^^^^^^^^^^^^
6491
6492Syntax:
6493"""""""
6494
6495::
6496
Tim Northover675a0962014-06-13 14:24:23 +00006497 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006498
6499Overview:
6500"""""""""
6501
6502The '``fence``' instruction is used to introduce happens-before edges
6503between operations.
6504
6505Arguments:
6506""""""""""
6507
6508'``fence``' instructions take an :ref:`ordering <ordering>` argument which
6509defines what *synchronizes-with* edges they add. They can only be given
6510``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
6511
6512Semantics:
6513""""""""""
6514
6515A fence A which has (at least) ``release`` ordering semantics
6516*synchronizes with* a fence B with (at least) ``acquire`` ordering
6517semantics if and only if there exist atomic operations X and Y, both
6518operating on some atomic object M, such that A is sequenced before X, X
6519modifies M (either directly or through some side effect of a sequence
6520headed by X), Y is sequenced before B, and Y observes M. This provides a
6521*happens-before* dependency between A and B. Rather than an explicit
6522``fence``, one (but not both) of the atomic operations X or Y might
6523provide a ``release`` or ``acquire`` (resp.) ordering constraint and
6524still *synchronize-with* the explicit ``fence`` and establish the
6525*happens-before* edge.
6526
6527A ``fence`` which has ``seq_cst`` ordering, in addition to having both
6528``acquire`` and ``release`` semantics specified above, participates in
6529the global program order of other ``seq_cst`` operations and/or fences.
6530
6531The optional ":ref:`singlethread <singlethread>`" argument specifies
6532that the fence only synchronizes with other fences in the same thread.
6533(This is useful for interacting with signal handlers.)
6534
6535Example:
6536""""""""
6537
6538.. code-block:: llvm
6539
Tim Northover675a0962014-06-13 14:24:23 +00006540 fence acquire ; yields void
6541 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006542
6543.. _i_cmpxchg:
6544
6545'``cmpxchg``' Instruction
6546^^^^^^^^^^^^^^^^^^^^^^^^^
6547
6548Syntax:
6549"""""""
6550
6551::
6552
Tim Northover675a0962014-06-13 14:24:23 +00006553 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00006554
6555Overview:
6556"""""""""
6557
6558The '``cmpxchg``' instruction is used to atomically modify memory. It
6559loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00006560equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00006561
6562Arguments:
6563""""""""""
6564
6565There are three arguments to the '``cmpxchg``' instruction: an address
6566to operate on, a value to compare to the value currently be at that
6567address, and a new value to place at that address if the compared values
6568are equal. The type of '<cmp>' must be an integer type whose bit width
6569is a power of two greater than or equal to eight and less than or equal
6570to a target-specific size limit. '<cmp>' and '<new>' must have the same
6571type, and the type of '<pointer>' must be a pointer to that type. If the
6572``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
6573to modify the number or order of execution of this ``cmpxchg`` with
6574other :ref:`volatile operations <volatile>`.
6575
Tim Northovere94a5182014-03-11 10:48:52 +00006576The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00006577``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
6578must be at least ``monotonic``, the ordering constraint on failure must be no
6579stronger than that on success, and the failure ordering cannot be either
6580``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00006581
6582The optional "``singlethread``" argument declares that the ``cmpxchg``
6583is only atomic with respect to code (usually signal handlers) running in
6584the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
6585respect to all other code in the system.
6586
6587The pointer passed into cmpxchg must have alignment greater than or
6588equal to the size in memory of the operand.
6589
6590Semantics:
6591""""""""""
6592
Tim Northover420a2162014-06-13 14:24:07 +00006593The contents of memory at the location specified by the '``<pointer>``' operand
6594is read and compared to '``<cmp>``'; if the read value is the equal, the
6595'``<new>``' is written. The original value at the location is returned, together
6596with a flag indicating success (true) or failure (false).
6597
6598If the cmpxchg operation is marked as ``weak`` then a spurious failure is
6599permitted: the operation may not write ``<new>`` even if the comparison
6600matched.
6601
6602If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
6603if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00006604
Tim Northovere94a5182014-03-11 10:48:52 +00006605A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
6606identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
6607load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00006608
6609Example:
6610""""""""
6611
6612.. code-block:: llvm
6613
6614 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00006615 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00006616 br label %loop
6617
6618 loop:
6619 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
6620 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00006621 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00006622 %value_loaded = extractvalue { i32, i1 } %val_success, 0
6623 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00006624 br i1 %success, label %done, label %loop
6625
6626 done:
6627 ...
6628
6629.. _i_atomicrmw:
6630
6631'``atomicrmw``' Instruction
6632^^^^^^^^^^^^^^^^^^^^^^^^^^^
6633
6634Syntax:
6635"""""""
6636
6637::
6638
Tim Northover675a0962014-06-13 14:24:23 +00006639 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00006640
6641Overview:
6642"""""""""
6643
6644The '``atomicrmw``' instruction is used to atomically modify memory.
6645
6646Arguments:
6647""""""""""
6648
6649There are three arguments to the '``atomicrmw``' instruction: an
6650operation to apply, an address whose value to modify, an argument to the
6651operation. The operation must be one of the following keywords:
6652
6653- xchg
6654- add
6655- sub
6656- and
6657- nand
6658- or
6659- xor
6660- max
6661- min
6662- umax
6663- umin
6664
6665The type of '<value>' must be an integer type whose bit width is a power
6666of two greater than or equal to eight and less than or equal to a
6667target-specific size limit. The type of the '``<pointer>``' operand must
6668be a pointer to that type. If the ``atomicrmw`` is marked as
6669``volatile``, then the optimizer is not allowed to modify the number or
6670order of execution of this ``atomicrmw`` with other :ref:`volatile
6671operations <volatile>`.
6672
6673Semantics:
6674""""""""""
6675
6676The contents of memory at the location specified by the '``<pointer>``'
6677operand are atomically read, modified, and written back. The original
6678value at the location is returned. The modification is specified by the
6679operation argument:
6680
6681- xchg: ``*ptr = val``
6682- add: ``*ptr = *ptr + val``
6683- sub: ``*ptr = *ptr - val``
6684- and: ``*ptr = *ptr & val``
6685- nand: ``*ptr = ~(*ptr & val)``
6686- or: ``*ptr = *ptr | val``
6687- xor: ``*ptr = *ptr ^ val``
6688- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
6689- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
6690- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
6691 comparison)
6692- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
6693 comparison)
6694
6695Example:
6696""""""""
6697
6698.. code-block:: llvm
6699
Tim Northover675a0962014-06-13 14:24:23 +00006700 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00006701
6702.. _i_getelementptr:
6703
6704'``getelementptr``' Instruction
6705^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6706
6707Syntax:
6708"""""""
6709
6710::
6711
David Blaikie16a97eb2015-03-04 22:02:58 +00006712 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
6713 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
6714 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00006715
6716Overview:
6717"""""""""
6718
6719The '``getelementptr``' instruction is used to get the address of a
6720subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00006721address calculation only and does not access memory. The instruction can also
6722be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00006723
6724Arguments:
6725""""""""""
6726
David Blaikie16a97eb2015-03-04 22:02:58 +00006727The first argument is always a type used as the basis for the calculations.
6728The second argument is always a pointer or a vector of pointers, and is the
6729base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00006730that indicate which of the elements of the aggregate object are indexed.
6731The interpretation of each index is dependent on the type being indexed
6732into. The first index always indexes the pointer value given as the
6733first argument, the second index indexes a value of the type pointed to
6734(not necessarily the value directly pointed to, since the first index
6735can be non-zero), etc. The first type indexed into must be a pointer
6736value, subsequent types can be arrays, vectors, and structs. Note that
6737subsequent types being indexed into can never be pointers, since that
6738would require loading the pointer before continuing calculation.
6739
6740The type of each index argument depends on the type it is indexing into.
6741When indexing into a (optionally packed) structure, only ``i32`` integer
6742**constants** are allowed (when using a vector of indices they must all
6743be the **same** ``i32`` integer constant). When indexing into an array,
6744pointer or vector, integers of any width are allowed, and they are not
6745required to be constant. These integers are treated as signed values
6746where relevant.
6747
6748For example, let's consider a C code fragment and how it gets compiled
6749to LLVM:
6750
6751.. code-block:: c
6752
6753 struct RT {
6754 char A;
6755 int B[10][20];
6756 char C;
6757 };
6758 struct ST {
6759 int X;
6760 double Y;
6761 struct RT Z;
6762 };
6763
6764 int *foo(struct ST *s) {
6765 return &s[1].Z.B[5][13];
6766 }
6767
6768The LLVM code generated by Clang is:
6769
6770.. code-block:: llvm
6771
6772 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
6773 %struct.ST = type { i32, double, %struct.RT }
6774
6775 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
6776 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00006777 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00006778 ret i32* %arrayidx
6779 }
6780
6781Semantics:
6782""""""""""
6783
6784In the example above, the first index is indexing into the
6785'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
6786= '``{ i32, double, %struct.RT }``' type, a structure. The second index
6787indexes into the third element of the structure, yielding a
6788'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
6789structure. The third index indexes into the second element of the
6790structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
6791dimensions of the array are subscripted into, yielding an '``i32``'
6792type. The '``getelementptr``' instruction returns a pointer to this
6793element, thus computing a value of '``i32*``' type.
6794
6795Note that it is perfectly legal to index partially through a structure,
6796returning a pointer to an inner element. Because of this, the LLVM code
6797for the given testcase is equivalent to:
6798
6799.. code-block:: llvm
6800
6801 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00006802 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
6803 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
6804 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
6805 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
6806 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00006807 ret i32* %t5
6808 }
6809
6810If the ``inbounds`` keyword is present, the result value of the
6811``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
6812pointer is not an *in bounds* address of an allocated object, or if any
6813of the addresses that would be formed by successive addition of the
6814offsets implied by the indices to the base address with infinitely
6815precise signed arithmetic are not an *in bounds* address of that
6816allocated object. The *in bounds* addresses for an allocated object are
6817all the addresses that point into the object, plus the address one byte
6818past the end. In cases where the base is a vector of pointers the
6819``inbounds`` keyword applies to each of the computations element-wise.
6820
6821If the ``inbounds`` keyword is not present, the offsets are added to the
6822base address with silently-wrapping two's complement arithmetic. If the
6823offsets have a different width from the pointer, they are sign-extended
6824or truncated to the width of the pointer. The result value of the
6825``getelementptr`` may be outside the object pointed to by the base
6826pointer. The result value may not necessarily be used to access memory
6827though, even if it happens to point into allocated storage. See the
6828:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
6829information.
6830
6831The getelementptr instruction is often confusing. For some more insight
6832into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
6833
6834Example:
6835""""""""
6836
6837.. code-block:: llvm
6838
6839 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006840 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006841 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006842 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006843 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006844 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006845 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006846 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00006847
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00006848Vector of pointers:
6849"""""""""""""""""""
6850
6851The ``getelementptr`` returns a vector of pointers, instead of a single address,
6852when one or more of its arguments is a vector. In such cases, all vector
6853arguments should have the same number of elements, and every scalar argument
6854will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00006855
6856.. code-block:: llvm
6857
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00006858 ; All arguments are vectors:
6859 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
6860 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
6861
6862 ; Add the same scalar offset to each pointer of a vector:
6863 ; A[i] = ptrs[i] + offset*sizeof(i8)
6864 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
6865
6866 ; Add distinct offsets to the same pointer:
6867 ; A[i] = ptr + offsets[i]*sizeof(i8)
6868 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
6869
6870 ; In all cases described above the type of the result is <4 x i8*>
6871
6872The two following instructions are equivalent:
6873
6874.. code-block:: llvm
6875
6876 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
6877 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
6878 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
6879 <4 x i32> %ind4,
6880 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
6881
6882 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
6883 i32 2, i32 1, <4 x i32> %ind4, i64 13
6884
6885Let's look at the C code, where the vector version of ``getelementptr``
6886makes sense:
6887
6888.. code-block:: c
6889
6890 // Let's assume that we vectorize the following loop:
6891 double *A, B; int *C;
6892 for (int i = 0; i < size; ++i) {
6893 A[i] = B[C[i]];
6894 }
6895
6896.. code-block:: llvm
6897
6898 ; get pointers for 8 elements from array B
6899 %ptrs = getelementptr double, double* %B, <8 x i32> %C
6900 ; load 8 elements from array B into A
6901 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
6902 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00006903
6904Conversion Operations
6905---------------------
6906
6907The instructions in this category are the conversion instructions
6908(casting) which all take a single operand and a type. They perform
6909various bit conversions on the operand.
6910
6911'``trunc .. to``' Instruction
6912^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6913
6914Syntax:
6915"""""""
6916
6917::
6918
6919 <result> = trunc <ty> <value> to <ty2> ; yields ty2
6920
6921Overview:
6922"""""""""
6923
6924The '``trunc``' instruction truncates its operand to the type ``ty2``.
6925
6926Arguments:
6927""""""""""
6928
6929The '``trunc``' instruction takes a value to trunc, and a type to trunc
6930it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
6931of the same number of integers. The bit size of the ``value`` must be
6932larger than the bit size of the destination type, ``ty2``. Equal sized
6933types are not allowed.
6934
6935Semantics:
6936""""""""""
6937
6938The '``trunc``' instruction truncates the high order bits in ``value``
6939and converts the remaining bits to ``ty2``. Since the source size must
6940be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
6941It will always truncate bits.
6942
6943Example:
6944""""""""
6945
6946.. code-block:: llvm
6947
6948 %X = trunc i32 257 to i8 ; yields i8:1
6949 %Y = trunc i32 123 to i1 ; yields i1:true
6950 %Z = trunc i32 122 to i1 ; yields i1:false
6951 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
6952
6953'``zext .. to``' Instruction
6954^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6955
6956Syntax:
6957"""""""
6958
6959::
6960
6961 <result> = zext <ty> <value> to <ty2> ; yields ty2
6962
6963Overview:
6964"""""""""
6965
6966The '``zext``' instruction zero extends its operand to type ``ty2``.
6967
6968Arguments:
6969""""""""""
6970
6971The '``zext``' instruction takes a value to cast, and a type to cast it
6972to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
6973the same number of integers. The bit size of the ``value`` must be
6974smaller than the bit size of the destination type, ``ty2``.
6975
6976Semantics:
6977""""""""""
6978
6979The ``zext`` fills the high order bits of the ``value`` with zero bits
6980until it reaches the size of the destination type, ``ty2``.
6981
6982When zero extending from i1, the result will always be either 0 or 1.
6983
6984Example:
6985""""""""
6986
6987.. code-block:: llvm
6988
6989 %X = zext i32 257 to i64 ; yields i64:257
6990 %Y = zext i1 true to i32 ; yields i32:1
6991 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
6992
6993'``sext .. to``' Instruction
6994^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6995
6996Syntax:
6997"""""""
6998
6999::
7000
7001 <result> = sext <ty> <value> to <ty2> ; yields ty2
7002
7003Overview:
7004"""""""""
7005
7006The '``sext``' sign extends ``value`` to the type ``ty2``.
7007
7008Arguments:
7009""""""""""
7010
7011The '``sext``' instruction takes a value to cast, and a type to cast it
7012to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7013the same number of integers. The bit size of the ``value`` must be
7014smaller than the bit size of the destination type, ``ty2``.
7015
7016Semantics:
7017""""""""""
7018
7019The '``sext``' instruction performs a sign extension by copying the sign
7020bit (highest order bit) of the ``value`` until it reaches the bit size
7021of the type ``ty2``.
7022
7023When sign extending from i1, the extension always results in -1 or 0.
7024
7025Example:
7026""""""""
7027
7028.. code-block:: llvm
7029
7030 %X = sext i8 -1 to i16 ; yields i16 :65535
7031 %Y = sext i1 true to i32 ; yields i32:-1
7032 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7033
7034'``fptrunc .. to``' Instruction
7035^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7036
7037Syntax:
7038"""""""
7039
7040::
7041
7042 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7043
7044Overview:
7045"""""""""
7046
7047The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7048
7049Arguments:
7050""""""""""
7051
7052The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7053value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7054The size of ``value`` must be larger than the size of ``ty2``. This
7055implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7056
7057Semantics:
7058""""""""""
7059
7060The '``fptrunc``' instruction truncates a ``value`` from a larger
7061:ref:`floating point <t_floating>` type to a smaller :ref:`floating
7062point <t_floating>` type. If the value cannot fit within the
7063destination type, ``ty2``, then the results are undefined.
7064
7065Example:
7066""""""""
7067
7068.. code-block:: llvm
7069
7070 %X = fptrunc double 123.0 to float ; yields float:123.0
7071 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7072
7073'``fpext .. to``' Instruction
7074^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7075
7076Syntax:
7077"""""""
7078
7079::
7080
7081 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7082
7083Overview:
7084"""""""""
7085
7086The '``fpext``' extends a floating point ``value`` to a larger floating
7087point value.
7088
7089Arguments:
7090""""""""""
7091
7092The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7093``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7094to. The source type must be smaller than the destination type.
7095
7096Semantics:
7097""""""""""
7098
7099The '``fpext``' instruction extends the ``value`` from a smaller
7100:ref:`floating point <t_floating>` type to a larger :ref:`floating
7101point <t_floating>` type. The ``fpext`` cannot be used to make a
7102*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7103*no-op cast* for a floating point cast.
7104
7105Example:
7106""""""""
7107
7108.. code-block:: llvm
7109
7110 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7111 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7112
7113'``fptoui .. to``' Instruction
7114^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7115
7116Syntax:
7117"""""""
7118
7119::
7120
7121 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7122
7123Overview:
7124"""""""""
7125
7126The '``fptoui``' converts a floating point ``value`` to its unsigned
7127integer equivalent of type ``ty2``.
7128
7129Arguments:
7130""""""""""
7131
7132The '``fptoui``' instruction takes a value to cast, which must be a
7133scalar or vector :ref:`floating point <t_floating>` value, and a type to
7134cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7135``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7136type with the same number of elements as ``ty``
7137
7138Semantics:
7139""""""""""
7140
7141The '``fptoui``' instruction converts its :ref:`floating
7142point <t_floating>` operand into the nearest (rounding towards zero)
7143unsigned integer value. If the value cannot fit in ``ty2``, the results
7144are undefined.
7145
7146Example:
7147""""""""
7148
7149.. code-block:: llvm
7150
7151 %X = fptoui double 123.0 to i32 ; yields i32:123
7152 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7153 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7154
7155'``fptosi .. to``' Instruction
7156^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7157
7158Syntax:
7159"""""""
7160
7161::
7162
7163 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7164
7165Overview:
7166"""""""""
7167
7168The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7169``value`` to type ``ty2``.
7170
7171Arguments:
7172""""""""""
7173
7174The '``fptosi``' instruction takes a value to cast, which must be a
7175scalar or vector :ref:`floating point <t_floating>` value, and a type to
7176cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7177``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7178type with the same number of elements as ``ty``
7179
7180Semantics:
7181""""""""""
7182
7183The '``fptosi``' instruction converts its :ref:`floating
7184point <t_floating>` operand into the nearest (rounding towards zero)
7185signed integer value. If the value cannot fit in ``ty2``, the results
7186are undefined.
7187
7188Example:
7189""""""""
7190
7191.. code-block:: llvm
7192
7193 %X = fptosi double -123.0 to i32 ; yields i32:-123
7194 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7195 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7196
7197'``uitofp .. to``' Instruction
7198^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7199
7200Syntax:
7201"""""""
7202
7203::
7204
7205 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7206
7207Overview:
7208"""""""""
7209
7210The '``uitofp``' instruction regards ``value`` as an unsigned integer
7211and converts that value to the ``ty2`` type.
7212
7213Arguments:
7214""""""""""
7215
7216The '``uitofp``' instruction takes a value to cast, which must be a
7217scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7218``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7219``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7220type with the same number of elements as ``ty``
7221
7222Semantics:
7223""""""""""
7224
7225The '``uitofp``' instruction interprets its operand as an unsigned
7226integer quantity and converts it to the corresponding floating point
7227value. If the value cannot fit in the floating point value, the results
7228are undefined.
7229
7230Example:
7231""""""""
7232
7233.. code-block:: llvm
7234
7235 %X = uitofp i32 257 to float ; yields float:257.0
7236 %Y = uitofp i8 -1 to double ; yields double:255.0
7237
7238'``sitofp .. to``' Instruction
7239^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7240
7241Syntax:
7242"""""""
7243
7244::
7245
7246 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7247
7248Overview:
7249"""""""""
7250
7251The '``sitofp``' instruction regards ``value`` as a signed integer and
7252converts that value to the ``ty2`` type.
7253
7254Arguments:
7255""""""""""
7256
7257The '``sitofp``' instruction takes a value to cast, which must be a
7258scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7259``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7260``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7261type with the same number of elements as ``ty``
7262
7263Semantics:
7264""""""""""
7265
7266The '``sitofp``' instruction interprets its operand as a signed integer
7267quantity and converts it to the corresponding floating point value. If
7268the value cannot fit in the floating point value, the results are
7269undefined.
7270
7271Example:
7272""""""""
7273
7274.. code-block:: llvm
7275
7276 %X = sitofp i32 257 to float ; yields float:257.0
7277 %Y = sitofp i8 -1 to double ; yields double:-1.0
7278
7279.. _i_ptrtoint:
7280
7281'``ptrtoint .. to``' Instruction
7282^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7283
7284Syntax:
7285"""""""
7286
7287::
7288
7289 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7290
7291Overview:
7292"""""""""
7293
7294The '``ptrtoint``' instruction converts the pointer or a vector of
7295pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7296
7297Arguments:
7298""""""""""
7299
7300The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007301a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007302type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7303a vector of integers type.
7304
7305Semantics:
7306""""""""""
7307
7308The '``ptrtoint``' instruction converts ``value`` to integer type
7309``ty2`` by interpreting the pointer value as an integer and either
7310truncating or zero extending that value to the size of the integer type.
7311If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7312``value`` is larger than ``ty2`` then a truncation is done. If they are
7313the same size, then nothing is done (*no-op cast*) other than a type
7314change.
7315
7316Example:
7317""""""""
7318
7319.. code-block:: llvm
7320
7321 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7322 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7323 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7324
7325.. _i_inttoptr:
7326
7327'``inttoptr .. to``' Instruction
7328^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7329
7330Syntax:
7331"""""""
7332
7333::
7334
7335 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7336
7337Overview:
7338"""""""""
7339
7340The '``inttoptr``' instruction converts an integer ``value`` to a
7341pointer type, ``ty2``.
7342
7343Arguments:
7344""""""""""
7345
7346The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7347cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7348type.
7349
7350Semantics:
7351""""""""""
7352
7353The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7354applying either a zero extension or a truncation depending on the size
7355of the integer ``value``. If ``value`` is larger than the size of a
7356pointer then a truncation is done. If ``value`` is smaller than the size
7357of a pointer then a zero extension is done. If they are the same size,
7358nothing is done (*no-op cast*).
7359
7360Example:
7361""""""""
7362
7363.. code-block:: llvm
7364
7365 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7366 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7367 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7368 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7369
7370.. _i_bitcast:
7371
7372'``bitcast .. to``' Instruction
7373^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7374
7375Syntax:
7376"""""""
7377
7378::
7379
7380 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7381
7382Overview:
7383"""""""""
7384
7385The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7386changing any bits.
7387
7388Arguments:
7389""""""""""
7390
7391The '``bitcast``' instruction takes a value to cast, which must be a
7392non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007393also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7394bit sizes of ``value`` and the destination type, ``ty2``, must be
7395identical. If the source type is a pointer, the destination type must
7396also be a pointer of the same size. This instruction supports bitwise
7397conversion of vectors to integers and to vectors of other types (as
7398long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007399
7400Semantics:
7401""""""""""
7402
Matt Arsenault24b49c42013-07-31 17:49:08 +00007403The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7404is always a *no-op cast* because no bits change with this
7405conversion. The conversion is done as if the ``value`` had been stored
7406to memory and read back as type ``ty2``. Pointer (or vector of
7407pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007408pointers) types with the same address space through this instruction.
7409To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7410or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007411
7412Example:
7413""""""""
7414
7415.. code-block:: llvm
7416
7417 %X = bitcast i8 255 to i8 ; yields i8 :-1
7418 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7419 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7420 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7421
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007422.. _i_addrspacecast:
7423
7424'``addrspacecast .. to``' Instruction
7425^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7426
7427Syntax:
7428"""""""
7429
7430::
7431
7432 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
7433
7434Overview:
7435"""""""""
7436
7437The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
7438address space ``n`` to type ``pty2`` in address space ``m``.
7439
7440Arguments:
7441""""""""""
7442
7443The '``addrspacecast``' instruction takes a pointer or vector of pointer value
7444to cast and a pointer type to cast it to, which must have a different
7445address space.
7446
7447Semantics:
7448""""""""""
7449
7450The '``addrspacecast``' instruction converts the pointer value
7451``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00007452value modification, depending on the target and the address space
7453pair. Pointer conversions within the same address space must be
7454performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007455conversion is legal then both result and operand refer to the same memory
7456location.
7457
7458Example:
7459""""""""
7460
7461.. code-block:: llvm
7462
Matt Arsenault9c13dd02013-11-15 22:43:50 +00007463 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
7464 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
7465 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007466
Sean Silvab084af42012-12-07 10:36:55 +00007467.. _otherops:
7468
7469Other Operations
7470----------------
7471
7472The instructions in this category are the "miscellaneous" instructions,
7473which defy better classification.
7474
7475.. _i_icmp:
7476
7477'``icmp``' Instruction
7478^^^^^^^^^^^^^^^^^^^^^^
7479
7480Syntax:
7481"""""""
7482
7483::
7484
Tim Northover675a0962014-06-13 14:24:23 +00007485 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00007486
7487Overview:
7488"""""""""
7489
7490The '``icmp``' instruction returns a boolean value or a vector of
7491boolean values based on comparison of its two integer, integer vector,
7492pointer, or pointer vector operands.
7493
7494Arguments:
7495""""""""""
7496
7497The '``icmp``' instruction takes three operands. The first operand is
7498the condition code indicating the kind of comparison to perform. It is
7499not a value, just a keyword. The possible condition code are:
7500
7501#. ``eq``: equal
7502#. ``ne``: not equal
7503#. ``ugt``: unsigned greater than
7504#. ``uge``: unsigned greater or equal
7505#. ``ult``: unsigned less than
7506#. ``ule``: unsigned less or equal
7507#. ``sgt``: signed greater than
7508#. ``sge``: signed greater or equal
7509#. ``slt``: signed less than
7510#. ``sle``: signed less or equal
7511
7512The remaining two arguments must be :ref:`integer <t_integer>` or
7513:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
7514must also be identical types.
7515
7516Semantics:
7517""""""""""
7518
7519The '``icmp``' compares ``op1`` and ``op2`` according to the condition
7520code given as ``cond``. The comparison performed always yields either an
7521:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
7522
7523#. ``eq``: yields ``true`` if the operands are equal, ``false``
7524 otherwise. No sign interpretation is necessary or performed.
7525#. ``ne``: yields ``true`` if the operands are unequal, ``false``
7526 otherwise. No sign interpretation is necessary or performed.
7527#. ``ugt``: interprets the operands as unsigned values and yields
7528 ``true`` if ``op1`` is greater than ``op2``.
7529#. ``uge``: interprets the operands as unsigned values and yields
7530 ``true`` if ``op1`` is greater than or equal to ``op2``.
7531#. ``ult``: interprets the operands as unsigned values and yields
7532 ``true`` if ``op1`` is less than ``op2``.
7533#. ``ule``: interprets the operands as unsigned values and yields
7534 ``true`` if ``op1`` is less than or equal to ``op2``.
7535#. ``sgt``: interprets the operands as signed values and yields ``true``
7536 if ``op1`` is greater than ``op2``.
7537#. ``sge``: interprets the operands as signed values and yields ``true``
7538 if ``op1`` is greater than or equal to ``op2``.
7539#. ``slt``: interprets the operands as signed values and yields ``true``
7540 if ``op1`` is less than ``op2``.
7541#. ``sle``: interprets the operands as signed values and yields ``true``
7542 if ``op1`` is less than or equal to ``op2``.
7543
7544If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
7545are compared as if they were integers.
7546
7547If the operands are integer vectors, then they are compared element by
7548element. The result is an ``i1`` vector with the same number of elements
7549as the values being compared. Otherwise, the result is an ``i1``.
7550
7551Example:
7552""""""""
7553
7554.. code-block:: llvm
7555
7556 <result> = icmp eq i32 4, 5 ; yields: result=false
7557 <result> = icmp ne float* %X, %X ; yields: result=false
7558 <result> = icmp ult i16 4, 5 ; yields: result=true
7559 <result> = icmp sgt i16 4, 5 ; yields: result=false
7560 <result> = icmp ule i16 -4, 5 ; yields: result=false
7561 <result> = icmp sge i16 4, 5 ; yields: result=false
7562
7563Note that the code generator does not yet support vector types with the
7564``icmp`` instruction.
7565
7566.. _i_fcmp:
7567
7568'``fcmp``' Instruction
7569^^^^^^^^^^^^^^^^^^^^^^
7570
7571Syntax:
7572"""""""
7573
7574::
7575
James Molloy88eb5352015-07-10 12:52:00 +00007576 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00007577
7578Overview:
7579"""""""""
7580
7581The '``fcmp``' instruction returns a boolean value or vector of boolean
7582values based on comparison of its operands.
7583
7584If the operands are floating point scalars, then the result type is a
7585boolean (:ref:`i1 <t_integer>`).
7586
7587If the operands are floating point vectors, then the result type is a
7588vector of boolean with the same number of elements as the operands being
7589compared.
7590
7591Arguments:
7592""""""""""
7593
7594The '``fcmp``' instruction takes three operands. The first operand is
7595the condition code indicating the kind of comparison to perform. It is
7596not a value, just a keyword. The possible condition code are:
7597
7598#. ``false``: no comparison, always returns false
7599#. ``oeq``: ordered and equal
7600#. ``ogt``: ordered and greater than
7601#. ``oge``: ordered and greater than or equal
7602#. ``olt``: ordered and less than
7603#. ``ole``: ordered and less than or equal
7604#. ``one``: ordered and not equal
7605#. ``ord``: ordered (no nans)
7606#. ``ueq``: unordered or equal
7607#. ``ugt``: unordered or greater than
7608#. ``uge``: unordered or greater than or equal
7609#. ``ult``: unordered or less than
7610#. ``ule``: unordered or less than or equal
7611#. ``une``: unordered or not equal
7612#. ``uno``: unordered (either nans)
7613#. ``true``: no comparison, always returns true
7614
7615*Ordered* means that neither operand is a QNAN while *unordered* means
7616that either operand may be a QNAN.
7617
7618Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
7619point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
7620type. They must have identical types.
7621
7622Semantics:
7623""""""""""
7624
7625The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
7626condition code given as ``cond``. If the operands are vectors, then the
7627vectors are compared element by element. Each comparison performed
7628always yields an :ref:`i1 <t_integer>` result, as follows:
7629
7630#. ``false``: always yields ``false``, regardless of operands.
7631#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
7632 is equal to ``op2``.
7633#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
7634 is greater than ``op2``.
7635#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
7636 is greater than or equal to ``op2``.
7637#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
7638 is less than ``op2``.
7639#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
7640 is less than or equal to ``op2``.
7641#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
7642 is not equal to ``op2``.
7643#. ``ord``: yields ``true`` if both operands are not a QNAN.
7644#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
7645 equal to ``op2``.
7646#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
7647 greater than ``op2``.
7648#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
7649 greater than or equal to ``op2``.
7650#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
7651 less than ``op2``.
7652#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
7653 less than or equal to ``op2``.
7654#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
7655 not equal to ``op2``.
7656#. ``uno``: yields ``true`` if either operand is a QNAN.
7657#. ``true``: always yields ``true``, regardless of operands.
7658
James Molloy88eb5352015-07-10 12:52:00 +00007659The ``fcmp`` instruction can also optionally take any number of
7660:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
7661otherwise unsafe floating point optimizations.
7662
7663Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
7664only flags that have any effect on its semantics are those that allow
7665assumptions to be made about the values of input arguments; namely
7666``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
7667
Sean Silvab084af42012-12-07 10:36:55 +00007668Example:
7669""""""""
7670
7671.. code-block:: llvm
7672
7673 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
7674 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
7675 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
7676 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
7677
7678Note that the code generator does not yet support vector types with the
7679``fcmp`` instruction.
7680
7681.. _i_phi:
7682
7683'``phi``' Instruction
7684^^^^^^^^^^^^^^^^^^^^^
7685
7686Syntax:
7687"""""""
7688
7689::
7690
7691 <result> = phi <ty> [ <val0>, <label0>], ...
7692
7693Overview:
7694"""""""""
7695
7696The '``phi``' instruction is used to implement the φ node in the SSA
7697graph representing the function.
7698
7699Arguments:
7700""""""""""
7701
7702The type of the incoming values is specified with the first type field.
7703After this, the '``phi``' instruction takes a list of pairs as
7704arguments, with one pair for each predecessor basic block of the current
7705block. Only values of :ref:`first class <t_firstclass>` type may be used as
7706the value arguments to the PHI node. Only labels may be used as the
7707label arguments.
7708
7709There must be no non-phi instructions between the start of a basic block
7710and the PHI instructions: i.e. PHI instructions must be first in a basic
7711block.
7712
7713For the purposes of the SSA form, the use of each incoming value is
7714deemed to occur on the edge from the corresponding predecessor block to
7715the current block (but after any definition of an '``invoke``'
7716instruction's return value on the same edge).
7717
7718Semantics:
7719""""""""""
7720
7721At runtime, the '``phi``' instruction logically takes on the value
7722specified by the pair corresponding to the predecessor basic block that
7723executed just prior to the current block.
7724
7725Example:
7726""""""""
7727
7728.. code-block:: llvm
7729
7730 Loop: ; Infinite loop that counts from 0 on up...
7731 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
7732 %nextindvar = add i32 %indvar, 1
7733 br label %Loop
7734
7735.. _i_select:
7736
7737'``select``' Instruction
7738^^^^^^^^^^^^^^^^^^^^^^^^
7739
7740Syntax:
7741"""""""
7742
7743::
7744
7745 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
7746
7747 selty is either i1 or {<N x i1>}
7748
7749Overview:
7750"""""""""
7751
7752The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00007753condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00007754
7755Arguments:
7756""""""""""
7757
7758The '``select``' instruction requires an 'i1' value or a vector of 'i1'
7759values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00007760class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00007761
7762Semantics:
7763""""""""""
7764
7765If the condition is an i1 and it evaluates to 1, the instruction returns
7766the first value argument; otherwise, it returns the second value
7767argument.
7768
7769If the condition is a vector of i1, then the value arguments must be
7770vectors of the same size, and the selection is done element by element.
7771
David Majnemer40a0b592015-03-03 22:45:47 +00007772If the condition is an i1 and the value arguments are vectors of the
7773same size, then an entire vector is selected.
7774
Sean Silvab084af42012-12-07 10:36:55 +00007775Example:
7776""""""""
7777
7778.. code-block:: llvm
7779
7780 %X = select i1 true, i8 17, i8 42 ; yields i8:17
7781
7782.. _i_call:
7783
7784'``call``' Instruction
7785^^^^^^^^^^^^^^^^^^^^^^
7786
7787Syntax:
7788"""""""
7789
7790::
7791
Reid Kleckner5772b772014-04-24 20:14:34 +00007792 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00007793
7794Overview:
7795"""""""""
7796
7797The '``call``' instruction represents a simple function call.
7798
7799Arguments:
7800""""""""""
7801
7802This instruction requires several arguments:
7803
Reid Kleckner5772b772014-04-24 20:14:34 +00007804#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
7805 should perform tail call optimization. The ``tail`` marker is a hint that
7806 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
7807 means that the call must be tail call optimized in order for the program to
7808 be correct. The ``musttail`` marker provides these guarantees:
7809
7810 #. The call will not cause unbounded stack growth if it is part of a
7811 recursive cycle in the call graph.
7812 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
7813 forwarded in place.
7814
7815 Both markers imply that the callee does not access allocas or varargs from
7816 the caller. Calls marked ``musttail`` must obey the following additional
7817 rules:
7818
7819 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
7820 or a pointer bitcast followed by a ret instruction.
7821 - The ret instruction must return the (possibly bitcasted) value
7822 produced by the call or void.
7823 - The caller and callee prototypes must match. Pointer types of
7824 parameters or return types may differ in pointee type, but not
7825 in address space.
7826 - The calling conventions of the caller and callee must match.
7827 - All ABI-impacting function attributes, such as sret, byval, inreg,
7828 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00007829 - The callee must be varargs iff the caller is varargs. Bitcasting a
7830 non-varargs function to the appropriate varargs type is legal so
7831 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00007832
7833 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
7834 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00007835
7836 - Caller and callee both have the calling convention ``fastcc``.
7837 - The call is in tail position (ret immediately follows call and ret
7838 uses value of call or is void).
7839 - Option ``-tailcallopt`` is enabled, or
7840 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00007841 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00007842 met. <CodeGenerator.html#tailcallopt>`_
7843
7844#. The optional "cconv" marker indicates which :ref:`calling
7845 convention <callingconv>` the call should use. If none is
7846 specified, the call defaults to using C calling conventions. The
7847 calling convention of the call must match the calling convention of
7848 the target function, or else the behavior is undefined.
7849#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
7850 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
7851 are valid here.
7852#. '``ty``': the type of the call instruction itself which is also the
7853 type of the return value. Functions that return no value are marked
7854 ``void``.
7855#. '``fnty``': shall be the signature of the pointer to function value
7856 being invoked. The argument types must match the types implied by
7857 this signature. This type can be omitted if the function is not
7858 varargs and if the function type does not return a pointer to a
7859 function.
7860#. '``fnptrval``': An LLVM value containing a pointer to a function to
7861 be invoked. In most cases, this is a direct function invocation, but
7862 indirect ``call``'s are just as possible, calling an arbitrary pointer
7863 to function value.
7864#. '``function args``': argument list whose types match the function
7865 signature argument types and parameter attributes. All arguments must
7866 be of :ref:`first class <t_firstclass>` type. If the function signature
7867 indicates the function accepts a variable number of arguments, the
7868 extra arguments can be specified.
7869#. The optional :ref:`function attributes <fnattrs>` list. Only
7870 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
7871 attributes are valid here.
7872
7873Semantics:
7874""""""""""
7875
7876The '``call``' instruction is used to cause control flow to transfer to
7877a specified function, with its incoming arguments bound to the specified
7878values. Upon a '``ret``' instruction in the called function, control
7879flow continues with the instruction after the function call, and the
7880return value of the function is bound to the result argument.
7881
7882Example:
7883""""""""
7884
7885.. code-block:: llvm
7886
7887 %retval = call i32 @test(i32 %argc)
7888 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
7889 %X = tail call i32 @foo() ; yields i32
7890 %Y = tail call fastcc i32 @foo() ; yields i32
7891 call void %foo(i8 97 signext)
7892
7893 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00007894 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00007895 %gr = extractvalue %struct.A %r, 0 ; yields i32
7896 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
7897 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
7898 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
7899
7900llvm treats calls to some functions with names and arguments that match
7901the standard C99 library as being the C99 library functions, and may
7902perform optimizations or generate code for them under that assumption.
7903This is something we'd like to change in the future to provide better
7904support for freestanding environments and non-C-based languages.
7905
7906.. _i_va_arg:
7907
7908'``va_arg``' Instruction
7909^^^^^^^^^^^^^^^^^^^^^^^^
7910
7911Syntax:
7912"""""""
7913
7914::
7915
7916 <resultval> = va_arg <va_list*> <arglist>, <argty>
7917
7918Overview:
7919"""""""""
7920
7921The '``va_arg``' instruction is used to access arguments passed through
7922the "variable argument" area of a function call. It is used to implement
7923the ``va_arg`` macro in C.
7924
7925Arguments:
7926""""""""""
7927
7928This instruction takes a ``va_list*`` value and the type of the
7929argument. It returns a value of the specified argument type and
7930increments the ``va_list`` to point to the next argument. The actual
7931type of ``va_list`` is target specific.
7932
7933Semantics:
7934""""""""""
7935
7936The '``va_arg``' instruction loads an argument of the specified type
7937from the specified ``va_list`` and causes the ``va_list`` to point to
7938the next argument. For more information, see the variable argument
7939handling :ref:`Intrinsic Functions <int_varargs>`.
7940
7941It is legal for this instruction to be called in a function which does
7942not take a variable number of arguments, for example, the ``vfprintf``
7943function.
7944
7945``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
7946function <intrinsics>` because it takes a type as an argument.
7947
7948Example:
7949""""""""
7950
7951See the :ref:`variable argument processing <int_varargs>` section.
7952
7953Note that the code generator does not yet fully support va\_arg on many
7954targets. Also, it does not currently support va\_arg with aggregate
7955types on any target.
7956
7957.. _i_landingpad:
7958
7959'``landingpad``' Instruction
7960^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7961
7962Syntax:
7963"""""""
7964
7965::
7966
David Majnemer7fddecc2015-06-17 20:52:32 +00007967 <resultval> = landingpad <resultty> <clause>+
7968 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00007969
7970 <clause> := catch <type> <value>
7971 <clause> := filter <array constant type> <array constant>
7972
7973Overview:
7974"""""""""
7975
7976The '``landingpad``' instruction is used by `LLVM's exception handling
7977system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007978is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00007979code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00007980defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00007981re-entry to the function. The ``resultval`` has the type ``resultty``.
7982
7983Arguments:
7984""""""""""
7985
David Majnemer7fddecc2015-06-17 20:52:32 +00007986The optional
Sean Silvab084af42012-12-07 10:36:55 +00007987``cleanup`` flag indicates that the landing pad block is a cleanup.
7988
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007989A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00007990contains the global variable representing the "type" that may be caught
7991or filtered respectively. Unlike the ``catch`` clause, the ``filter``
7992clause takes an array constant as its argument. Use
7993"``[0 x i8**] undef``" for a filter which cannot throw. The
7994'``landingpad``' instruction must contain *at least* one ``clause`` or
7995the ``cleanup`` flag.
7996
7997Semantics:
7998""""""""""
7999
8000The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008001:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008002therefore the "result type" of the ``landingpad`` instruction. As with
8003calling conventions, how the personality function results are
8004represented in LLVM IR is target specific.
8005
8006The clauses are applied in order from top to bottom. If two
8007``landingpad`` instructions are merged together through inlining, the
8008clauses from the calling function are appended to the list of clauses.
8009When the call stack is being unwound due to an exception being thrown,
8010the exception is compared against each ``clause`` in turn. If it doesn't
8011match any of the clauses, and the ``cleanup`` flag is not set, then
8012unwinding continues further up the call stack.
8013
8014The ``landingpad`` instruction has several restrictions:
8015
8016- A landing pad block is a basic block which is the unwind destination
8017 of an '``invoke``' instruction.
8018- A landing pad block must have a '``landingpad``' instruction as its
8019 first non-PHI instruction.
8020- There can be only one '``landingpad``' instruction within the landing
8021 pad block.
8022- A basic block that is not a landing pad block may not include a
8023 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008024
8025Example:
8026""""""""
8027
8028.. code-block:: llvm
8029
8030 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008031 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008032 catch i8** @_ZTIi
8033 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008034 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008035 cleanup
8036 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008037 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008038 catch i8** @_ZTIi
8039 filter [1 x i8**] [@_ZTId]
8040
8041.. _intrinsics:
8042
8043Intrinsic Functions
8044===================
8045
8046LLVM supports the notion of an "intrinsic function". These functions
8047have well known names and semantics and are required to follow certain
8048restrictions. Overall, these intrinsics represent an extension mechanism
8049for the LLVM language that does not require changing all of the
8050transformations in LLVM when adding to the language (or the bitcode
8051reader/writer, the parser, etc...).
8052
8053Intrinsic function names must all start with an "``llvm.``" prefix. This
8054prefix is reserved in LLVM for intrinsic names; thus, function names may
8055not begin with this prefix. Intrinsic functions must always be external
8056functions: you cannot define the body of intrinsic functions. Intrinsic
8057functions may only be used in call or invoke instructions: it is illegal
8058to take the address of an intrinsic function. Additionally, because
8059intrinsic functions are part of the LLVM language, it is required if any
8060are added that they be documented here.
8061
8062Some intrinsic functions can be overloaded, i.e., the intrinsic
8063represents a family of functions that perform the same operation but on
8064different data types. Because LLVM can represent over 8 million
8065different integer types, overloading is used commonly to allow an
8066intrinsic function to operate on any integer type. One or more of the
8067argument types or the result type can be overloaded to accept any
8068integer type. Argument types may also be defined as exactly matching a
8069previous argument's type or the result type. This allows an intrinsic
8070function which accepts multiple arguments, but needs all of them to be
8071of the same type, to only be overloaded with respect to a single
8072argument or the result.
8073
8074Overloaded intrinsics will have the names of its overloaded argument
8075types encoded into its function name, each preceded by a period. Only
8076those types which are overloaded result in a name suffix. Arguments
8077whose type is matched against another type do not. For example, the
8078``llvm.ctpop`` function can take an integer of any width and returns an
8079integer of exactly the same integer width. This leads to a family of
8080functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8081``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8082overloaded, and only one type suffix is required. Because the argument's
8083type is matched against the return type, it does not require its own
8084name suffix.
8085
8086To learn how to add an intrinsic function, please see the `Extending
8087LLVM Guide <ExtendingLLVM.html>`_.
8088
8089.. _int_varargs:
8090
8091Variable Argument Handling Intrinsics
8092-------------------------------------
8093
8094Variable argument support is defined in LLVM with the
8095:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8096functions. These functions are related to the similarly named macros
8097defined in the ``<stdarg.h>`` header file.
8098
8099All of these functions operate on arguments that use a target-specific
8100value type "``va_list``". The LLVM assembly language reference manual
8101does not define what this type is, so all transformations should be
8102prepared to handle these functions regardless of the type used.
8103
8104This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8105variable argument handling intrinsic functions are used.
8106
8107.. code-block:: llvm
8108
Tim Northoverab60bb92014-11-02 01:21:51 +00008109 ; This struct is different for every platform. For most platforms,
8110 ; it is merely an i8*.
8111 %struct.va_list = type { i8* }
8112
8113 ; For Unix x86_64 platforms, va_list is the following struct:
8114 ; %struct.va_list = type { i32, i32, i8*, i8* }
8115
Sean Silvab084af42012-12-07 10:36:55 +00008116 define i32 @test(i32 %X, ...) {
8117 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008118 %ap = alloca %struct.va_list
8119 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008120 call void @llvm.va_start(i8* %ap2)
8121
8122 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008123 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008124
8125 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8126 %aq = alloca i8*
8127 %aq2 = bitcast i8** %aq to i8*
8128 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8129 call void @llvm.va_end(i8* %aq2)
8130
8131 ; Stop processing of arguments.
8132 call void @llvm.va_end(i8* %ap2)
8133 ret i32 %tmp
8134 }
8135
8136 declare void @llvm.va_start(i8*)
8137 declare void @llvm.va_copy(i8*, i8*)
8138 declare void @llvm.va_end(i8*)
8139
8140.. _int_va_start:
8141
8142'``llvm.va_start``' Intrinsic
8143^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8144
8145Syntax:
8146"""""""
8147
8148::
8149
Nick Lewycky04f6de02013-09-11 22:04:52 +00008150 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008151
8152Overview:
8153"""""""""
8154
8155The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8156subsequent use by ``va_arg``.
8157
8158Arguments:
8159""""""""""
8160
8161The argument is a pointer to a ``va_list`` element to initialize.
8162
8163Semantics:
8164""""""""""
8165
8166The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8167available in C. In a target-dependent way, it initializes the
8168``va_list`` element to which the argument points, so that the next call
8169to ``va_arg`` will produce the first variable argument passed to the
8170function. Unlike the C ``va_start`` macro, this intrinsic does not need
8171to know the last argument of the function as the compiler can figure
8172that out.
8173
8174'``llvm.va_end``' Intrinsic
8175^^^^^^^^^^^^^^^^^^^^^^^^^^^
8176
8177Syntax:
8178"""""""
8179
8180::
8181
8182 declare void @llvm.va_end(i8* <arglist>)
8183
8184Overview:
8185"""""""""
8186
8187The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8188initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8189
8190Arguments:
8191""""""""""
8192
8193The argument is a pointer to a ``va_list`` to destroy.
8194
8195Semantics:
8196""""""""""
8197
8198The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8199available in C. In a target-dependent way, it destroys the ``va_list``
8200element to which the argument points. Calls to
8201:ref:`llvm.va_start <int_va_start>` and
8202:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8203``llvm.va_end``.
8204
8205.. _int_va_copy:
8206
8207'``llvm.va_copy``' Intrinsic
8208^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8209
8210Syntax:
8211"""""""
8212
8213::
8214
8215 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8216
8217Overview:
8218"""""""""
8219
8220The '``llvm.va_copy``' intrinsic copies the current argument position
8221from the source argument list to the destination argument list.
8222
8223Arguments:
8224""""""""""
8225
8226The first argument is a pointer to a ``va_list`` element to initialize.
8227The second argument is a pointer to a ``va_list`` element to copy from.
8228
8229Semantics:
8230""""""""""
8231
8232The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8233available in C. In a target-dependent way, it copies the source
8234``va_list`` element into the destination ``va_list`` element. This
8235intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8236arbitrarily complex and require, for example, memory allocation.
8237
8238Accurate Garbage Collection Intrinsics
8239--------------------------------------
8240
Philip Reamesc5b0f562015-02-25 23:52:06 +00008241LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008242(GC) requires the frontend to generate code containing appropriate intrinsic
8243calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008244intrinsics in a manner which is appropriate for the target collector.
8245
Sean Silvab084af42012-12-07 10:36:55 +00008246These intrinsics allow identification of :ref:`GC roots on the
8247stack <int_gcroot>`, as well as garbage collector implementations that
8248require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008249Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008250these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008251details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008252
Philip Reamesf80bbff2015-02-25 23:45:20 +00008253Experimental Statepoint Intrinsics
8254^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8255
8256LLVM provides an second experimental set of intrinsics for describing garbage
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008257collection safepoints in compiled code. These intrinsics are an alternative
8258to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
8259:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
8260differences in approach are covered in the `Garbage Collection with LLVM
8261<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008262described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008263
8264.. _int_gcroot:
8265
8266'``llvm.gcroot``' Intrinsic
8267^^^^^^^^^^^^^^^^^^^^^^^^^^^
8268
8269Syntax:
8270"""""""
8271
8272::
8273
8274 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8275
8276Overview:
8277"""""""""
8278
8279The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8280the code generator, and allows some metadata to be associated with it.
8281
8282Arguments:
8283""""""""""
8284
8285The first argument specifies the address of a stack object that contains
8286the root pointer. The second pointer (which must be either a constant or
8287a global value address) contains the meta-data to be associated with the
8288root.
8289
8290Semantics:
8291""""""""""
8292
8293At runtime, a call to this intrinsic stores a null pointer into the
8294"ptrloc" location. At compile-time, the code generator generates
8295information to allow the runtime to find the pointer at GC safe points.
8296The '``llvm.gcroot``' intrinsic may only be used in a function which
8297:ref:`specifies a GC algorithm <gc>`.
8298
8299.. _int_gcread:
8300
8301'``llvm.gcread``' Intrinsic
8302^^^^^^^^^^^^^^^^^^^^^^^^^^^
8303
8304Syntax:
8305"""""""
8306
8307::
8308
8309 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
8310
8311Overview:
8312"""""""""
8313
8314The '``llvm.gcread``' intrinsic identifies reads of references from heap
8315locations, allowing garbage collector implementations that require read
8316barriers.
8317
8318Arguments:
8319""""""""""
8320
8321The second argument is the address to read from, which should be an
8322address allocated from the garbage collector. The first object is a
8323pointer to the start of the referenced object, if needed by the language
8324runtime (otherwise null).
8325
8326Semantics:
8327""""""""""
8328
8329The '``llvm.gcread``' intrinsic has the same semantics as a load
8330instruction, but may be replaced with substantially more complex code by
8331the garbage collector runtime, as needed. The '``llvm.gcread``'
8332intrinsic may only be used in a function which :ref:`specifies a GC
8333algorithm <gc>`.
8334
8335.. _int_gcwrite:
8336
8337'``llvm.gcwrite``' Intrinsic
8338^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8339
8340Syntax:
8341"""""""
8342
8343::
8344
8345 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
8346
8347Overview:
8348"""""""""
8349
8350The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
8351locations, allowing garbage collector implementations that require write
8352barriers (such as generational or reference counting collectors).
8353
8354Arguments:
8355""""""""""
8356
8357The first argument is the reference to store, the second is the start of
8358the object to store it to, and the third is the address of the field of
8359Obj to store to. If the runtime does not require a pointer to the
8360object, Obj may be null.
8361
8362Semantics:
8363""""""""""
8364
8365The '``llvm.gcwrite``' intrinsic has the same semantics as a store
8366instruction, but may be replaced with substantially more complex code by
8367the garbage collector runtime, as needed. The '``llvm.gcwrite``'
8368intrinsic may only be used in a function which :ref:`specifies a GC
8369algorithm <gc>`.
8370
8371Code Generator Intrinsics
8372-------------------------
8373
8374These intrinsics are provided by LLVM to expose special features that
8375may only be implemented with code generator support.
8376
8377'``llvm.returnaddress``' Intrinsic
8378^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8379
8380Syntax:
8381"""""""
8382
8383::
8384
8385 declare i8 *@llvm.returnaddress(i32 <level>)
8386
8387Overview:
8388"""""""""
8389
8390The '``llvm.returnaddress``' intrinsic attempts to compute a
8391target-specific value indicating the return address of the current
8392function or one of its callers.
8393
8394Arguments:
8395""""""""""
8396
8397The argument to this intrinsic indicates which function to return the
8398address for. Zero indicates the calling function, one indicates its
8399caller, etc. The argument is **required** to be a constant integer
8400value.
8401
8402Semantics:
8403""""""""""
8404
8405The '``llvm.returnaddress``' intrinsic either returns a pointer
8406indicating the return address of the specified call frame, or zero if it
8407cannot be identified. The value returned by this intrinsic is likely to
8408be incorrect or 0 for arguments other than zero, so it should only be
8409used for debugging purposes.
8410
8411Note that calling this intrinsic does not prevent function inlining or
8412other aggressive transformations, so the value returned may not be that
8413of the obvious source-language caller.
8414
8415'``llvm.frameaddress``' Intrinsic
8416^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8417
8418Syntax:
8419"""""""
8420
8421::
8422
8423 declare i8* @llvm.frameaddress(i32 <level>)
8424
8425Overview:
8426"""""""""
8427
8428The '``llvm.frameaddress``' intrinsic attempts to return the
8429target-specific frame pointer value for the specified stack frame.
8430
8431Arguments:
8432""""""""""
8433
8434The argument to this intrinsic indicates which function to return the
8435frame pointer for. Zero indicates the calling function, one indicates
8436its caller, etc. The argument is **required** to be a constant integer
8437value.
8438
8439Semantics:
8440""""""""""
8441
8442The '``llvm.frameaddress``' intrinsic either returns a pointer
8443indicating the frame address of the specified call frame, or zero if it
8444cannot be identified. The value returned by this intrinsic is likely to
8445be incorrect or 0 for arguments other than zero, so it should only be
8446used for debugging purposes.
8447
8448Note that calling this intrinsic does not prevent function inlining or
8449other aggressive transformations, so the value returned may not be that
8450of the obvious source-language caller.
8451
Reid Kleckner60381792015-07-07 22:25:32 +00008452'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00008453^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8454
8455Syntax:
8456"""""""
8457
8458::
8459
Reid Kleckner60381792015-07-07 22:25:32 +00008460 declare void @llvm.localescape(...)
8461 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00008462
8463Overview:
8464"""""""""
8465
Reid Kleckner60381792015-07-07 22:25:32 +00008466The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
8467allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008468live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00008469computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00008470
8471Arguments:
8472""""""""""
8473
Reid Kleckner60381792015-07-07 22:25:32 +00008474All arguments to '``llvm.localescape``' must be pointers to static allocas or
8475casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008476once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00008477
Reid Kleckner60381792015-07-07 22:25:32 +00008478The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00008479bitcasted pointer to a function defined in the current module. The code
8480generator cannot determine the frame allocation offset of functions defined in
8481other modules.
8482
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00008483The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
8484call frame that is currently live. The return value of '``llvm.localaddress``'
8485is one way to produce such a value, but various runtimes also expose a suitable
8486pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00008487
Reid Kleckner60381792015-07-07 22:25:32 +00008488The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
8489'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008490
Reid Klecknere9b89312015-01-13 00:48:10 +00008491Semantics:
8492""""""""""
8493
Reid Kleckner60381792015-07-07 22:25:32 +00008494These intrinsics allow a group of functions to share access to a set of local
8495stack allocations of a one parent function. The parent function may call the
8496'``llvm.localescape``' intrinsic once from the function entry block, and the
8497child functions can use '``llvm.localrecover``' to access the escaped allocas.
8498The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
8499the escaped allocas are allocated, which would break attempts to use
8500'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00008501
Renato Golinc7aea402014-05-06 16:51:25 +00008502.. _int_read_register:
8503.. _int_write_register:
8504
8505'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
8506^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8507
8508Syntax:
8509"""""""
8510
8511::
8512
8513 declare i32 @llvm.read_register.i32(metadata)
8514 declare i64 @llvm.read_register.i64(metadata)
8515 declare void @llvm.write_register.i32(metadata, i32 @value)
8516 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00008517 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00008518
8519Overview:
8520"""""""""
8521
8522The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
8523provides access to the named register. The register must be valid on
8524the architecture being compiled to. The type needs to be compatible
8525with the register being read.
8526
8527Semantics:
8528""""""""""
8529
8530The '``llvm.read_register``' intrinsic returns the current value of the
8531register, where possible. The '``llvm.write_register``' intrinsic sets
8532the current value of the register, where possible.
8533
8534This is useful to implement named register global variables that need
8535to always be mapped to a specific register, as is common practice on
8536bare-metal programs including OS kernels.
8537
8538The compiler doesn't check for register availability or use of the used
8539register in surrounding code, including inline assembly. Because of that,
8540allocatable registers are not supported.
8541
8542Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00008543architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00008544work is needed to support other registers and even more so, allocatable
8545registers.
8546
Sean Silvab084af42012-12-07 10:36:55 +00008547.. _int_stacksave:
8548
8549'``llvm.stacksave``' Intrinsic
8550^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8551
8552Syntax:
8553"""""""
8554
8555::
8556
8557 declare i8* @llvm.stacksave()
8558
8559Overview:
8560"""""""""
8561
8562The '``llvm.stacksave``' intrinsic is used to remember the current state
8563of the function stack, for use with
8564:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
8565implementing language features like scoped automatic variable sized
8566arrays in C99.
8567
8568Semantics:
8569""""""""""
8570
8571This intrinsic returns a opaque pointer value that can be passed to
8572:ref:`llvm.stackrestore <int_stackrestore>`. When an
8573``llvm.stackrestore`` intrinsic is executed with a value saved from
8574``llvm.stacksave``, it effectively restores the state of the stack to
8575the state it was in when the ``llvm.stacksave`` intrinsic executed. In
8576practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
8577were allocated after the ``llvm.stacksave`` was executed.
8578
8579.. _int_stackrestore:
8580
8581'``llvm.stackrestore``' Intrinsic
8582^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8583
8584Syntax:
8585"""""""
8586
8587::
8588
8589 declare void @llvm.stackrestore(i8* %ptr)
8590
8591Overview:
8592"""""""""
8593
8594The '``llvm.stackrestore``' intrinsic is used to restore the state of
8595the function stack to the state it was in when the corresponding
8596:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
8597useful for implementing language features like scoped automatic variable
8598sized arrays in C99.
8599
8600Semantics:
8601""""""""""
8602
8603See the description for :ref:`llvm.stacksave <int_stacksave>`.
8604
8605'``llvm.prefetch``' Intrinsic
8606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8607
8608Syntax:
8609"""""""
8610
8611::
8612
8613 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
8614
8615Overview:
8616"""""""""
8617
8618The '``llvm.prefetch``' intrinsic is a hint to the code generator to
8619insert a prefetch instruction if supported; otherwise, it is a noop.
8620Prefetches have no effect on the behavior of the program but can change
8621its performance characteristics.
8622
8623Arguments:
8624""""""""""
8625
8626``address`` is the address to be prefetched, ``rw`` is the specifier
8627determining if the fetch should be for a read (0) or write (1), and
8628``locality`` is a temporal locality specifier ranging from (0) - no
8629locality, to (3) - extremely local keep in cache. The ``cache type``
8630specifies whether the prefetch is performed on the data (1) or
8631instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
8632arguments must be constant integers.
8633
8634Semantics:
8635""""""""""
8636
8637This intrinsic does not modify the behavior of the program. In
8638particular, prefetches cannot trap and do not produce a value. On
8639targets that support this intrinsic, the prefetch can provide hints to
8640the processor cache for better performance.
8641
8642'``llvm.pcmarker``' Intrinsic
8643^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8644
8645Syntax:
8646"""""""
8647
8648::
8649
8650 declare void @llvm.pcmarker(i32 <id>)
8651
8652Overview:
8653"""""""""
8654
8655The '``llvm.pcmarker``' intrinsic is a method to export a Program
8656Counter (PC) in a region of code to simulators and other tools. The
8657method is target specific, but it is expected that the marker will use
8658exported symbols to transmit the PC of the marker. The marker makes no
8659guarantees that it will remain with any specific instruction after
8660optimizations. It is possible that the presence of a marker will inhibit
8661optimizations. The intended use is to be inserted after optimizations to
8662allow correlations of simulation runs.
8663
8664Arguments:
8665""""""""""
8666
8667``id`` is a numerical id identifying the marker.
8668
8669Semantics:
8670""""""""""
8671
8672This intrinsic does not modify the behavior of the program. Backends
8673that do not support this intrinsic may ignore it.
8674
8675'``llvm.readcyclecounter``' Intrinsic
8676^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8677
8678Syntax:
8679"""""""
8680
8681::
8682
8683 declare i64 @llvm.readcyclecounter()
8684
8685Overview:
8686"""""""""
8687
8688The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
8689counter register (or similar low latency, high accuracy clocks) on those
8690targets that support it. On X86, it should map to RDTSC. On Alpha, it
8691should map to RPCC. As the backing counters overflow quickly (on the
8692order of 9 seconds on alpha), this should only be used for small
8693timings.
8694
8695Semantics:
8696""""""""""
8697
8698When directly supported, reading the cycle counter should not modify any
8699memory. Implementations are allowed to either return a application
8700specific value or a system wide value. On backends without support, this
8701is lowered to a constant 0.
8702
Tim Northoverbc933082013-05-23 19:11:20 +00008703Note that runtime support may be conditional on the privilege-level code is
8704running at and the host platform.
8705
Renato Golinc0a3c1d2014-03-26 12:52:28 +00008706'``llvm.clear_cache``' Intrinsic
8707^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8708
8709Syntax:
8710"""""""
8711
8712::
8713
8714 declare void @llvm.clear_cache(i8*, i8*)
8715
8716Overview:
8717"""""""""
8718
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008719The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
8720in the specified range to the execution unit of the processor. On
8721targets with non-unified instruction and data cache, the implementation
8722flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00008723
8724Semantics:
8725""""""""""
8726
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008727On platforms with coherent instruction and data caches (e.g. x86), this
8728intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00008729cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008730instructions or a system call, if cache flushing requires special
8731privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00008732
Sean Silvad02bf3e2014-04-07 22:29:53 +00008733The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008734time library.
Renato Golin93010e62014-03-26 14:01:32 +00008735
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008736This instrinsic does *not* empty the instruction pipeline. Modifications
8737of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00008738
Justin Bogner61ba2e32014-12-08 18:02:35 +00008739'``llvm.instrprof_increment``' Intrinsic
8740^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8741
8742Syntax:
8743"""""""
8744
8745::
8746
8747 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
8748 i32 <num-counters>, i32 <index>)
8749
8750Overview:
8751"""""""""
8752
8753The '``llvm.instrprof_increment``' intrinsic can be emitted by a
8754frontend for use with instrumentation based profiling. These will be
8755lowered by the ``-instrprof`` pass to generate execution counts of a
8756program at runtime.
8757
8758Arguments:
8759""""""""""
8760
8761The first argument is a pointer to a global variable containing the
8762name of the entity being instrumented. This should generally be the
8763(mangled) function name for a set of counters.
8764
8765The second argument is a hash value that can be used by the consumer
8766of the profile data to detect changes to the instrumented source, and
8767the third is the number of counters associated with ``name``. It is an
8768error if ``hash`` or ``num-counters`` differ between two instances of
8769``instrprof_increment`` that refer to the same name.
8770
8771The last argument refers to which of the counters for ``name`` should
8772be incremented. It should be a value between 0 and ``num-counters``.
8773
8774Semantics:
8775""""""""""
8776
8777This intrinsic represents an increment of a profiling counter. It will
8778cause the ``-instrprof`` pass to generate the appropriate data
8779structures and the code to increment the appropriate value, in a
8780format that can be written out by a compiler runtime and consumed via
8781the ``llvm-profdata`` tool.
8782
Sean Silvab084af42012-12-07 10:36:55 +00008783Standard C Library Intrinsics
8784-----------------------------
8785
8786LLVM provides intrinsics for a few important standard C library
8787functions. These intrinsics allow source-language front-ends to pass
8788information about the alignment of the pointer arguments to the code
8789generator, providing opportunity for more efficient code generation.
8790
8791.. _int_memcpy:
8792
8793'``llvm.memcpy``' Intrinsic
8794^^^^^^^^^^^^^^^^^^^^^^^^^^^
8795
8796Syntax:
8797"""""""
8798
8799This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
8800integer bit width and for different address spaces. Not all targets
8801support all bit widths however.
8802
8803::
8804
8805 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
8806 i32 <len>, i32 <align>, i1 <isvolatile>)
8807 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
8808 i64 <len>, i32 <align>, i1 <isvolatile>)
8809
8810Overview:
8811"""""""""
8812
8813The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
8814source location to the destination location.
8815
8816Note that, unlike the standard libc function, the ``llvm.memcpy.*``
8817intrinsics do not return a value, takes extra alignment/isvolatile
8818arguments and the pointers can be in specified address spaces.
8819
8820Arguments:
8821""""""""""
8822
8823The first argument is a pointer to the destination, the second is a
8824pointer to the source. The third argument is an integer argument
8825specifying the number of bytes to copy, the fourth argument is the
8826alignment of the source and destination locations, and the fifth is a
8827boolean indicating a volatile access.
8828
8829If the call to this intrinsic has an alignment value that is not 0 or 1,
8830then the caller guarantees that both the source and destination pointers
8831are aligned to that boundary.
8832
8833If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
8834a :ref:`volatile operation <volatile>`. The detailed access behavior is not
8835very cleanly specified and it is unwise to depend on it.
8836
8837Semantics:
8838""""""""""
8839
8840The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
8841source location to the destination location, which are not allowed to
8842overlap. It copies "len" bytes of memory over. If the argument is known
8843to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00008844argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008845
8846'``llvm.memmove``' Intrinsic
8847^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8848
8849Syntax:
8850"""""""
8851
8852This is an overloaded intrinsic. You can use llvm.memmove on any integer
8853bit width and for different address space. Not all targets support all
8854bit widths however.
8855
8856::
8857
8858 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
8859 i32 <len>, i32 <align>, i1 <isvolatile>)
8860 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
8861 i64 <len>, i32 <align>, i1 <isvolatile>)
8862
8863Overview:
8864"""""""""
8865
8866The '``llvm.memmove.*``' intrinsics move a block of memory from the
8867source location to the destination location. It is similar to the
8868'``llvm.memcpy``' intrinsic but allows the two memory locations to
8869overlap.
8870
8871Note that, unlike the standard libc function, the ``llvm.memmove.*``
8872intrinsics do not return a value, takes extra alignment/isvolatile
8873arguments and the pointers can be in specified address spaces.
8874
8875Arguments:
8876""""""""""
8877
8878The first argument is a pointer to the destination, the second is a
8879pointer to the source. The third argument is an integer argument
8880specifying the number of bytes to copy, the fourth argument is the
8881alignment of the source and destination locations, and the fifth is a
8882boolean indicating a volatile access.
8883
8884If the call to this intrinsic has an alignment value that is not 0 or 1,
8885then the caller guarantees that the source and destination pointers are
8886aligned to that boundary.
8887
8888If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
8889is a :ref:`volatile operation <volatile>`. The detailed access behavior is
8890not very cleanly specified and it is unwise to depend on it.
8891
8892Semantics:
8893""""""""""
8894
8895The '``llvm.memmove.*``' intrinsics copy a block of memory from the
8896source location to the destination location, which may overlap. It
8897copies "len" bytes of memory over. If the argument is known to be
8898aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00008899otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008900
8901'``llvm.memset.*``' Intrinsics
8902^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8903
8904Syntax:
8905"""""""
8906
8907This is an overloaded intrinsic. You can use llvm.memset on any integer
8908bit width and for different address spaces. However, not all targets
8909support all bit widths.
8910
8911::
8912
8913 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
8914 i32 <len>, i32 <align>, i1 <isvolatile>)
8915 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
8916 i64 <len>, i32 <align>, i1 <isvolatile>)
8917
8918Overview:
8919"""""""""
8920
8921The '``llvm.memset.*``' intrinsics fill a block of memory with a
8922particular byte value.
8923
8924Note that, unlike the standard libc function, the ``llvm.memset``
8925intrinsic does not return a value and takes extra alignment/volatile
8926arguments. Also, the destination can be in an arbitrary address space.
8927
8928Arguments:
8929""""""""""
8930
8931The first argument is a pointer to the destination to fill, the second
8932is the byte value with which to fill it, the third argument is an
8933integer argument specifying the number of bytes to fill, and the fourth
8934argument is the known alignment of the destination location.
8935
8936If the call to this intrinsic has an alignment value that is not 0 or 1,
8937then the caller guarantees that the destination pointer is aligned to
8938that boundary.
8939
8940If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
8941a :ref:`volatile operation <volatile>`. The detailed access behavior is not
8942very cleanly specified and it is unwise to depend on it.
8943
8944Semantics:
8945""""""""""
8946
8947The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
8948at the destination location. If the argument is known to be aligned to
8949some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00008950it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008951
8952'``llvm.sqrt.*``' Intrinsic
8953^^^^^^^^^^^^^^^^^^^^^^^^^^^
8954
8955Syntax:
8956"""""""
8957
8958This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
8959floating point or vector of floating point type. Not all targets support
8960all types however.
8961
8962::
8963
8964 declare float @llvm.sqrt.f32(float %Val)
8965 declare double @llvm.sqrt.f64(double %Val)
8966 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
8967 declare fp128 @llvm.sqrt.f128(fp128 %Val)
8968 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
8969
8970Overview:
8971"""""""""
8972
8973The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
8974returning the same value as the libm '``sqrt``' functions would. Unlike
8975``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
8976negative numbers other than -0.0 (which allows for better optimization,
8977because there is no need to worry about errno being set).
8978``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
8979
8980Arguments:
8981""""""""""
8982
8983The argument and return value are floating point numbers of the same
8984type.
8985
8986Semantics:
8987""""""""""
8988
8989This function returns the sqrt of the specified operand if it is a
8990nonnegative floating point number.
8991
8992'``llvm.powi.*``' Intrinsic
8993^^^^^^^^^^^^^^^^^^^^^^^^^^^
8994
8995Syntax:
8996"""""""
8997
8998This is an overloaded intrinsic. You can use ``llvm.powi`` on any
8999floating point or vector of floating point type. Not all targets support
9000all types however.
9001
9002::
9003
9004 declare float @llvm.powi.f32(float %Val, i32 %power)
9005 declare double @llvm.powi.f64(double %Val, i32 %power)
9006 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9007 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9008 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9009
9010Overview:
9011"""""""""
9012
9013The '``llvm.powi.*``' intrinsics return the first operand raised to the
9014specified (positive or negative) power. The order of evaluation of
9015multiplications is not defined. When a vector of floating point type is
9016used, the second argument remains a scalar integer value.
9017
9018Arguments:
9019""""""""""
9020
9021The second argument is an integer power, and the first is a value to
9022raise to that power.
9023
9024Semantics:
9025""""""""""
9026
9027This function returns the first value raised to the second power with an
9028unspecified sequence of rounding operations.
9029
9030'``llvm.sin.*``' Intrinsic
9031^^^^^^^^^^^^^^^^^^^^^^^^^^
9032
9033Syntax:
9034"""""""
9035
9036This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9037floating point or vector of floating point type. Not all targets support
9038all types however.
9039
9040::
9041
9042 declare float @llvm.sin.f32(float %Val)
9043 declare double @llvm.sin.f64(double %Val)
9044 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9045 declare fp128 @llvm.sin.f128(fp128 %Val)
9046 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9047
9048Overview:
9049"""""""""
9050
9051The '``llvm.sin.*``' intrinsics return the sine of the operand.
9052
9053Arguments:
9054""""""""""
9055
9056The argument and return value are floating point numbers of the same
9057type.
9058
9059Semantics:
9060""""""""""
9061
9062This function returns the sine of the specified operand, returning the
9063same values as the libm ``sin`` functions would, and handles error
9064conditions in the same way.
9065
9066'``llvm.cos.*``' Intrinsic
9067^^^^^^^^^^^^^^^^^^^^^^^^^^
9068
9069Syntax:
9070"""""""
9071
9072This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9073floating point or vector of floating point type. Not all targets support
9074all types however.
9075
9076::
9077
9078 declare float @llvm.cos.f32(float %Val)
9079 declare double @llvm.cos.f64(double %Val)
9080 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9081 declare fp128 @llvm.cos.f128(fp128 %Val)
9082 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9083
9084Overview:
9085"""""""""
9086
9087The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9088
9089Arguments:
9090""""""""""
9091
9092The argument and return value are floating point numbers of the same
9093type.
9094
9095Semantics:
9096""""""""""
9097
9098This function returns the cosine of the specified operand, returning the
9099same values as the libm ``cos`` functions would, and handles error
9100conditions in the same way.
9101
9102'``llvm.pow.*``' Intrinsic
9103^^^^^^^^^^^^^^^^^^^^^^^^^^
9104
9105Syntax:
9106"""""""
9107
9108This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9109floating point or vector of floating point type. Not all targets support
9110all types however.
9111
9112::
9113
9114 declare float @llvm.pow.f32(float %Val, float %Power)
9115 declare double @llvm.pow.f64(double %Val, double %Power)
9116 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9117 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9118 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9119
9120Overview:
9121"""""""""
9122
9123The '``llvm.pow.*``' intrinsics return the first operand raised to the
9124specified (positive or negative) power.
9125
9126Arguments:
9127""""""""""
9128
9129The second argument is a floating point power, and the first is a value
9130to raise to that power.
9131
9132Semantics:
9133""""""""""
9134
9135This function returns the first value raised to the second power,
9136returning the same values as the libm ``pow`` functions would, and
9137handles error conditions in the same way.
9138
9139'``llvm.exp.*``' Intrinsic
9140^^^^^^^^^^^^^^^^^^^^^^^^^^
9141
9142Syntax:
9143"""""""
9144
9145This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9146floating point or vector of floating point type. Not all targets support
9147all types however.
9148
9149::
9150
9151 declare float @llvm.exp.f32(float %Val)
9152 declare double @llvm.exp.f64(double %Val)
9153 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9154 declare fp128 @llvm.exp.f128(fp128 %Val)
9155 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9156
9157Overview:
9158"""""""""
9159
9160The '``llvm.exp.*``' intrinsics perform the exp function.
9161
9162Arguments:
9163""""""""""
9164
9165The argument and return value are floating point numbers of the same
9166type.
9167
9168Semantics:
9169""""""""""
9170
9171This function returns the same values as the libm ``exp`` functions
9172would, and handles error conditions in the same way.
9173
9174'``llvm.exp2.*``' Intrinsic
9175^^^^^^^^^^^^^^^^^^^^^^^^^^^
9176
9177Syntax:
9178"""""""
9179
9180This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9181floating point or vector of floating point type. Not all targets support
9182all types however.
9183
9184::
9185
9186 declare float @llvm.exp2.f32(float %Val)
9187 declare double @llvm.exp2.f64(double %Val)
9188 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9189 declare fp128 @llvm.exp2.f128(fp128 %Val)
9190 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9191
9192Overview:
9193"""""""""
9194
9195The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9196
9197Arguments:
9198""""""""""
9199
9200The argument and return value are floating point numbers of the same
9201type.
9202
9203Semantics:
9204""""""""""
9205
9206This function returns the same values as the libm ``exp2`` functions
9207would, and handles error conditions in the same way.
9208
9209'``llvm.log.*``' Intrinsic
9210^^^^^^^^^^^^^^^^^^^^^^^^^^
9211
9212Syntax:
9213"""""""
9214
9215This is an overloaded intrinsic. You can use ``llvm.log`` on any
9216floating point or vector of floating point type. Not all targets support
9217all types however.
9218
9219::
9220
9221 declare float @llvm.log.f32(float %Val)
9222 declare double @llvm.log.f64(double %Val)
9223 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9224 declare fp128 @llvm.log.f128(fp128 %Val)
9225 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9226
9227Overview:
9228"""""""""
9229
9230The '``llvm.log.*``' intrinsics perform the log function.
9231
9232Arguments:
9233""""""""""
9234
9235The argument and return value are floating point numbers of the same
9236type.
9237
9238Semantics:
9239""""""""""
9240
9241This function returns the same values as the libm ``log`` functions
9242would, and handles error conditions in the same way.
9243
9244'``llvm.log10.*``' Intrinsic
9245^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9246
9247Syntax:
9248"""""""
9249
9250This is an overloaded intrinsic. You can use ``llvm.log10`` on any
9251floating point or vector of floating point type. Not all targets support
9252all types however.
9253
9254::
9255
9256 declare float @llvm.log10.f32(float %Val)
9257 declare double @llvm.log10.f64(double %Val)
9258 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
9259 declare fp128 @llvm.log10.f128(fp128 %Val)
9260 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
9261
9262Overview:
9263"""""""""
9264
9265The '``llvm.log10.*``' intrinsics perform the log10 function.
9266
9267Arguments:
9268""""""""""
9269
9270The argument and return value are floating point numbers of the same
9271type.
9272
9273Semantics:
9274""""""""""
9275
9276This function returns the same values as the libm ``log10`` functions
9277would, and handles error conditions in the same way.
9278
9279'``llvm.log2.*``' Intrinsic
9280^^^^^^^^^^^^^^^^^^^^^^^^^^^
9281
9282Syntax:
9283"""""""
9284
9285This is an overloaded intrinsic. You can use ``llvm.log2`` on any
9286floating point or vector of floating point type. Not all targets support
9287all types however.
9288
9289::
9290
9291 declare float @llvm.log2.f32(float %Val)
9292 declare double @llvm.log2.f64(double %Val)
9293 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
9294 declare fp128 @llvm.log2.f128(fp128 %Val)
9295 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
9296
9297Overview:
9298"""""""""
9299
9300The '``llvm.log2.*``' intrinsics perform the log2 function.
9301
9302Arguments:
9303""""""""""
9304
9305The argument and return value are floating point numbers of the same
9306type.
9307
9308Semantics:
9309""""""""""
9310
9311This function returns the same values as the libm ``log2`` functions
9312would, and handles error conditions in the same way.
9313
9314'``llvm.fma.*``' Intrinsic
9315^^^^^^^^^^^^^^^^^^^^^^^^^^
9316
9317Syntax:
9318"""""""
9319
9320This is an overloaded intrinsic. You can use ``llvm.fma`` on any
9321floating point or vector of floating point type. Not all targets support
9322all types however.
9323
9324::
9325
9326 declare float @llvm.fma.f32(float %a, float %b, float %c)
9327 declare double @llvm.fma.f64(double %a, double %b, double %c)
9328 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
9329 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
9330 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
9331
9332Overview:
9333"""""""""
9334
9335The '``llvm.fma.*``' intrinsics perform the fused multiply-add
9336operation.
9337
9338Arguments:
9339""""""""""
9340
9341The argument and return value are floating point numbers of the same
9342type.
9343
9344Semantics:
9345""""""""""
9346
9347This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009348would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00009349
9350'``llvm.fabs.*``' Intrinsic
9351^^^^^^^^^^^^^^^^^^^^^^^^^^^
9352
9353Syntax:
9354"""""""
9355
9356This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
9357floating point or vector of floating point type. Not all targets support
9358all types however.
9359
9360::
9361
9362 declare float @llvm.fabs.f32(float %Val)
9363 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009364 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00009365 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009366 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00009367
9368Overview:
9369"""""""""
9370
9371The '``llvm.fabs.*``' intrinsics return the absolute value of the
9372operand.
9373
9374Arguments:
9375""""""""""
9376
9377The argument and return value are floating point numbers of the same
9378type.
9379
9380Semantics:
9381""""""""""
9382
9383This function returns the same values as the libm ``fabs`` functions
9384would, and handles error conditions in the same way.
9385
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009386'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00009387^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009388
9389Syntax:
9390"""""""
9391
9392This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
9393floating point or vector of floating point type. Not all targets support
9394all types however.
9395
9396::
9397
Matt Arsenault64313c92014-10-22 18:25:02 +00009398 declare float @llvm.minnum.f32(float %Val0, float %Val1)
9399 declare double @llvm.minnum.f64(double %Val0, double %Val1)
9400 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
9401 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
9402 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009403
9404Overview:
9405"""""""""
9406
9407The '``llvm.minnum.*``' intrinsics return the minimum of the two
9408arguments.
9409
9410
9411Arguments:
9412""""""""""
9413
9414The arguments and return value are floating point numbers of the same
9415type.
9416
9417Semantics:
9418""""""""""
9419
9420Follows the IEEE-754 semantics for minNum, which also match for libm's
9421fmin.
9422
9423If either operand is a NaN, returns the other non-NaN operand. Returns
9424NaN only if both operands are NaN. If the operands compare equal,
9425returns a value that compares equal to both operands. This means that
9426fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
9427
9428'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00009429^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009430
9431Syntax:
9432"""""""
9433
9434This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
9435floating point or vector of floating point type. Not all targets support
9436all types however.
9437
9438::
9439
Matt Arsenault64313c92014-10-22 18:25:02 +00009440 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
9441 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
9442 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
9443 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
9444 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009445
9446Overview:
9447"""""""""
9448
9449The '``llvm.maxnum.*``' intrinsics return the maximum of the two
9450arguments.
9451
9452
9453Arguments:
9454""""""""""
9455
9456The arguments and return value are floating point numbers of the same
9457type.
9458
9459Semantics:
9460""""""""""
9461Follows the IEEE-754 semantics for maxNum, which also match for libm's
9462fmax.
9463
9464If either operand is a NaN, returns the other non-NaN operand. Returns
9465NaN only if both operands are NaN. If the operands compare equal,
9466returns a value that compares equal to both operands. This means that
9467fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
9468
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00009469'``llvm.copysign.*``' Intrinsic
9470^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9471
9472Syntax:
9473"""""""
9474
9475This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
9476floating point or vector of floating point type. Not all targets support
9477all types however.
9478
9479::
9480
9481 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
9482 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
9483 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
9484 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
9485 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
9486
9487Overview:
9488"""""""""
9489
9490The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
9491first operand and the sign of the second operand.
9492
9493Arguments:
9494""""""""""
9495
9496The arguments and return value are floating point numbers of the same
9497type.
9498
9499Semantics:
9500""""""""""
9501
9502This function returns the same values as the libm ``copysign``
9503functions would, and handles error conditions in the same way.
9504
Sean Silvab084af42012-12-07 10:36:55 +00009505'``llvm.floor.*``' Intrinsic
9506^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9507
9508Syntax:
9509"""""""
9510
9511This is an overloaded intrinsic. You can use ``llvm.floor`` on any
9512floating point or vector of floating point type. Not all targets support
9513all types however.
9514
9515::
9516
9517 declare float @llvm.floor.f32(float %Val)
9518 declare double @llvm.floor.f64(double %Val)
9519 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
9520 declare fp128 @llvm.floor.f128(fp128 %Val)
9521 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
9522
9523Overview:
9524"""""""""
9525
9526The '``llvm.floor.*``' intrinsics return the floor of the operand.
9527
9528Arguments:
9529""""""""""
9530
9531The argument and return value are floating point numbers of the same
9532type.
9533
9534Semantics:
9535""""""""""
9536
9537This function returns the same values as the libm ``floor`` functions
9538would, and handles error conditions in the same way.
9539
9540'``llvm.ceil.*``' Intrinsic
9541^^^^^^^^^^^^^^^^^^^^^^^^^^^
9542
9543Syntax:
9544"""""""
9545
9546This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
9547floating point or vector of floating point type. Not all targets support
9548all types however.
9549
9550::
9551
9552 declare float @llvm.ceil.f32(float %Val)
9553 declare double @llvm.ceil.f64(double %Val)
9554 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
9555 declare fp128 @llvm.ceil.f128(fp128 %Val)
9556 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
9557
9558Overview:
9559"""""""""
9560
9561The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
9562
9563Arguments:
9564""""""""""
9565
9566The argument and return value are floating point numbers of the same
9567type.
9568
9569Semantics:
9570""""""""""
9571
9572This function returns the same values as the libm ``ceil`` functions
9573would, and handles error conditions in the same way.
9574
9575'``llvm.trunc.*``' Intrinsic
9576^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9577
9578Syntax:
9579"""""""
9580
9581This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
9582floating point or vector of floating point type. Not all targets support
9583all types however.
9584
9585::
9586
9587 declare float @llvm.trunc.f32(float %Val)
9588 declare double @llvm.trunc.f64(double %Val)
9589 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
9590 declare fp128 @llvm.trunc.f128(fp128 %Val)
9591 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
9592
9593Overview:
9594"""""""""
9595
9596The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
9597nearest integer not larger in magnitude than the operand.
9598
9599Arguments:
9600""""""""""
9601
9602The argument and return value are floating point numbers of the same
9603type.
9604
9605Semantics:
9606""""""""""
9607
9608This function returns the same values as the libm ``trunc`` functions
9609would, and handles error conditions in the same way.
9610
9611'``llvm.rint.*``' Intrinsic
9612^^^^^^^^^^^^^^^^^^^^^^^^^^^
9613
9614Syntax:
9615"""""""
9616
9617This is an overloaded intrinsic. You can use ``llvm.rint`` on any
9618floating point or vector of floating point type. Not all targets support
9619all types however.
9620
9621::
9622
9623 declare float @llvm.rint.f32(float %Val)
9624 declare double @llvm.rint.f64(double %Val)
9625 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
9626 declare fp128 @llvm.rint.f128(fp128 %Val)
9627 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
9628
9629Overview:
9630"""""""""
9631
9632The '``llvm.rint.*``' intrinsics returns the operand rounded to the
9633nearest integer. It may raise an inexact floating-point exception if the
9634operand isn't an integer.
9635
9636Arguments:
9637""""""""""
9638
9639The argument and return value are floating point numbers of the same
9640type.
9641
9642Semantics:
9643""""""""""
9644
9645This function returns the same values as the libm ``rint`` functions
9646would, and handles error conditions in the same way.
9647
9648'``llvm.nearbyint.*``' Intrinsic
9649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9650
9651Syntax:
9652"""""""
9653
9654This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
9655floating point or vector of floating point type. Not all targets support
9656all types however.
9657
9658::
9659
9660 declare float @llvm.nearbyint.f32(float %Val)
9661 declare double @llvm.nearbyint.f64(double %Val)
9662 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
9663 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
9664 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
9665
9666Overview:
9667"""""""""
9668
9669The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
9670nearest integer.
9671
9672Arguments:
9673""""""""""
9674
9675The argument and return value are floating point numbers of the same
9676type.
9677
9678Semantics:
9679""""""""""
9680
9681This function returns the same values as the libm ``nearbyint``
9682functions would, and handles error conditions in the same way.
9683
Hal Finkel171817e2013-08-07 22:49:12 +00009684'``llvm.round.*``' Intrinsic
9685^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9686
9687Syntax:
9688"""""""
9689
9690This is an overloaded intrinsic. You can use ``llvm.round`` on any
9691floating point or vector of floating point type. Not all targets support
9692all types however.
9693
9694::
9695
9696 declare float @llvm.round.f32(float %Val)
9697 declare double @llvm.round.f64(double %Val)
9698 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
9699 declare fp128 @llvm.round.f128(fp128 %Val)
9700 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
9701
9702Overview:
9703"""""""""
9704
9705The '``llvm.round.*``' intrinsics returns the operand rounded to the
9706nearest integer.
9707
9708Arguments:
9709""""""""""
9710
9711The argument and return value are floating point numbers of the same
9712type.
9713
9714Semantics:
9715""""""""""
9716
9717This function returns the same values as the libm ``round``
9718functions would, and handles error conditions in the same way.
9719
Sean Silvab084af42012-12-07 10:36:55 +00009720Bit Manipulation Intrinsics
9721---------------------------
9722
9723LLVM provides intrinsics for a few important bit manipulation
9724operations. These allow efficient code generation for some algorithms.
9725
9726'``llvm.bswap.*``' Intrinsics
9727^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9728
9729Syntax:
9730"""""""
9731
9732This is an overloaded intrinsic function. You can use bswap on any
9733integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
9734
9735::
9736
9737 declare i16 @llvm.bswap.i16(i16 <id>)
9738 declare i32 @llvm.bswap.i32(i32 <id>)
9739 declare i64 @llvm.bswap.i64(i64 <id>)
9740
9741Overview:
9742"""""""""
9743
9744The '``llvm.bswap``' family of intrinsics is used to byte swap integer
9745values with an even number of bytes (positive multiple of 16 bits).
9746These are useful for performing operations on data that is not in the
9747target's native byte order.
9748
9749Semantics:
9750""""""""""
9751
9752The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
9753and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
9754intrinsic returns an i32 value that has the four bytes of the input i32
9755swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
9756returned i32 will have its bytes in 3, 2, 1, 0 order. The
9757``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
9758concept to additional even-byte lengths (6 bytes, 8 bytes and more,
9759respectively).
9760
9761'``llvm.ctpop.*``' Intrinsic
9762^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9763
9764Syntax:
9765"""""""
9766
9767This is an overloaded intrinsic. You can use llvm.ctpop on any integer
9768bit width, or on any vector with integer elements. Not all targets
9769support all bit widths or vector types, however.
9770
9771::
9772
9773 declare i8 @llvm.ctpop.i8(i8 <src>)
9774 declare i16 @llvm.ctpop.i16(i16 <src>)
9775 declare i32 @llvm.ctpop.i32(i32 <src>)
9776 declare i64 @llvm.ctpop.i64(i64 <src>)
9777 declare i256 @llvm.ctpop.i256(i256 <src>)
9778 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
9779
9780Overview:
9781"""""""""
9782
9783The '``llvm.ctpop``' family of intrinsics counts the number of bits set
9784in a value.
9785
9786Arguments:
9787""""""""""
9788
9789The only argument is the value to be counted. The argument may be of any
9790integer type, or a vector with integer elements. The return type must
9791match the argument type.
9792
9793Semantics:
9794""""""""""
9795
9796The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
9797each element of a vector.
9798
9799'``llvm.ctlz.*``' Intrinsic
9800^^^^^^^^^^^^^^^^^^^^^^^^^^^
9801
9802Syntax:
9803"""""""
9804
9805This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
9806integer bit width, or any vector whose elements are integers. Not all
9807targets support all bit widths or vector types, however.
9808
9809::
9810
9811 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
9812 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
9813 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
9814 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
9815 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
9816 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
9817
9818Overview:
9819"""""""""
9820
9821The '``llvm.ctlz``' family of intrinsic functions counts the number of
9822leading zeros in a variable.
9823
9824Arguments:
9825""""""""""
9826
9827The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00009828any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00009829type must match the first argument type.
9830
9831The second argument must be a constant and is a flag to indicate whether
9832the intrinsic should ensure that a zero as the first argument produces a
9833defined result. Historically some architectures did not provide a
9834defined result for zero values as efficiently, and many algorithms are
9835now predicated on avoiding zero-value inputs.
9836
9837Semantics:
9838""""""""""
9839
9840The '``llvm.ctlz``' intrinsic counts the leading (most significant)
9841zeros in a variable, or within each element of the vector. If
9842``src == 0`` then the result is the size in bits of the type of ``src``
9843if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
9844``llvm.ctlz(i32 2) = 30``.
9845
9846'``llvm.cttz.*``' Intrinsic
9847^^^^^^^^^^^^^^^^^^^^^^^^^^^
9848
9849Syntax:
9850"""""""
9851
9852This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
9853integer bit width, or any vector of integer elements. Not all targets
9854support all bit widths or vector types, however.
9855
9856::
9857
9858 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
9859 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
9860 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
9861 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
9862 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
9863 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
9864
9865Overview:
9866"""""""""
9867
9868The '``llvm.cttz``' family of intrinsic functions counts the number of
9869trailing zeros.
9870
9871Arguments:
9872""""""""""
9873
9874The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00009875any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00009876type must match the first argument type.
9877
9878The second argument must be a constant and is a flag to indicate whether
9879the intrinsic should ensure that a zero as the first argument produces a
9880defined result. Historically some architectures did not provide a
9881defined result for zero values as efficiently, and many algorithms are
9882now predicated on avoiding zero-value inputs.
9883
9884Semantics:
9885""""""""""
9886
9887The '``llvm.cttz``' intrinsic counts the trailing (least significant)
9888zeros in a variable, or within each element of a vector. If ``src == 0``
9889then the result is the size in bits of the type of ``src`` if
9890``is_zero_undef == 0`` and ``undef`` otherwise. For example,
9891``llvm.cttz(2) = 1``.
9892
Philip Reames34843ae2015-03-05 05:55:55 +00009893.. _int_overflow:
9894
Sean Silvab084af42012-12-07 10:36:55 +00009895Arithmetic with Overflow Intrinsics
9896-----------------------------------
9897
9898LLVM provides intrinsics for some arithmetic with overflow operations.
9899
9900'``llvm.sadd.with.overflow.*``' Intrinsics
9901^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9902
9903Syntax:
9904"""""""
9905
9906This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
9907on any integer bit width.
9908
9909::
9910
9911 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
9912 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
9913 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
9914
9915Overview:
9916"""""""""
9917
9918The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
9919a signed addition of the two arguments, and indicate whether an overflow
9920occurred during the signed summation.
9921
9922Arguments:
9923""""""""""
9924
9925The arguments (%a and %b) and the first element of the result structure
9926may be of integer types of any bit width, but they must have the same
9927bit width. The second element of the result structure must be of type
9928``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
9929addition.
9930
9931Semantics:
9932""""""""""
9933
9934The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009935a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00009936first element of which is the signed summation, and the second element
9937of which is a bit specifying if the signed summation resulted in an
9938overflow.
9939
9940Examples:
9941"""""""""
9942
9943.. code-block:: llvm
9944
9945 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
9946 %sum = extractvalue {i32, i1} %res, 0
9947 %obit = extractvalue {i32, i1} %res, 1
9948 br i1 %obit, label %overflow, label %normal
9949
9950'``llvm.uadd.with.overflow.*``' Intrinsics
9951^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9952
9953Syntax:
9954"""""""
9955
9956This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
9957on any integer bit width.
9958
9959::
9960
9961 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
9962 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
9963 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
9964
9965Overview:
9966"""""""""
9967
9968The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
9969an unsigned addition of the two arguments, and indicate whether a carry
9970occurred during the unsigned summation.
9971
9972Arguments:
9973""""""""""
9974
9975The arguments (%a and %b) and the first element of the result structure
9976may be of integer types of any bit width, but they must have the same
9977bit width. The second element of the result structure must be of type
9978``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9979addition.
9980
9981Semantics:
9982""""""""""
9983
9984The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009985an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00009986first element of which is the sum, and the second element of which is a
9987bit specifying if the unsigned summation resulted in a carry.
9988
9989Examples:
9990"""""""""
9991
9992.. code-block:: llvm
9993
9994 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
9995 %sum = extractvalue {i32, i1} %res, 0
9996 %obit = extractvalue {i32, i1} %res, 1
9997 br i1 %obit, label %carry, label %normal
9998
9999'``llvm.ssub.with.overflow.*``' Intrinsics
10000^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10001
10002Syntax:
10003"""""""
10004
10005This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10006on any integer bit width.
10007
10008::
10009
10010 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10011 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10012 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10013
10014Overview:
10015"""""""""
10016
10017The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10018a signed subtraction of the two arguments, and indicate whether an
10019overflow occurred during the signed subtraction.
10020
10021Arguments:
10022""""""""""
10023
10024The arguments (%a and %b) and the first element of the result structure
10025may be of integer types of any bit width, but they must have the same
10026bit width. The second element of the result structure must be of type
10027``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10028subtraction.
10029
10030Semantics:
10031""""""""""
10032
10033The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010034a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010035first element of which is the subtraction, and the second element of
10036which is a bit specifying if the signed subtraction resulted in an
10037overflow.
10038
10039Examples:
10040"""""""""
10041
10042.. code-block:: llvm
10043
10044 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10045 %sum = extractvalue {i32, i1} %res, 0
10046 %obit = extractvalue {i32, i1} %res, 1
10047 br i1 %obit, label %overflow, label %normal
10048
10049'``llvm.usub.with.overflow.*``' Intrinsics
10050^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10051
10052Syntax:
10053"""""""
10054
10055This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10056on any integer bit width.
10057
10058::
10059
10060 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10061 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10062 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10063
10064Overview:
10065"""""""""
10066
10067The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10068an unsigned subtraction of the two arguments, and indicate whether an
10069overflow occurred during the unsigned subtraction.
10070
10071Arguments:
10072""""""""""
10073
10074The arguments (%a and %b) and the first element of the result structure
10075may be of integer types of any bit width, but they must have the same
10076bit width. The second element of the result structure must be of type
10077``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10078subtraction.
10079
10080Semantics:
10081""""""""""
10082
10083The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010084an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010085the first element of which is the subtraction, and the second element of
10086which is a bit specifying if the unsigned subtraction resulted in an
10087overflow.
10088
10089Examples:
10090"""""""""
10091
10092.. code-block:: llvm
10093
10094 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10095 %sum = extractvalue {i32, i1} %res, 0
10096 %obit = extractvalue {i32, i1} %res, 1
10097 br i1 %obit, label %overflow, label %normal
10098
10099'``llvm.smul.with.overflow.*``' Intrinsics
10100^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10101
10102Syntax:
10103"""""""
10104
10105This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10106on any integer bit width.
10107
10108::
10109
10110 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10111 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10112 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10113
10114Overview:
10115"""""""""
10116
10117The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10118a signed multiplication of the two arguments, and indicate whether an
10119overflow occurred during the signed multiplication.
10120
10121Arguments:
10122""""""""""
10123
10124The arguments (%a and %b) and the first element of the result structure
10125may be of integer types of any bit width, but they must have the same
10126bit width. The second element of the result structure must be of type
10127``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10128multiplication.
10129
10130Semantics:
10131""""""""""
10132
10133The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010134a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010135the first element of which is the multiplication, and the second element
10136of which is a bit specifying if the signed multiplication resulted in an
10137overflow.
10138
10139Examples:
10140"""""""""
10141
10142.. code-block:: llvm
10143
10144 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10145 %sum = extractvalue {i32, i1} %res, 0
10146 %obit = extractvalue {i32, i1} %res, 1
10147 br i1 %obit, label %overflow, label %normal
10148
10149'``llvm.umul.with.overflow.*``' Intrinsics
10150^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10151
10152Syntax:
10153"""""""
10154
10155This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10156on any integer bit width.
10157
10158::
10159
10160 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10161 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10162 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10163
10164Overview:
10165"""""""""
10166
10167The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10168a unsigned multiplication of the two arguments, and indicate whether an
10169overflow occurred during the unsigned multiplication.
10170
10171Arguments:
10172""""""""""
10173
10174The arguments (%a and %b) and the first element of the result structure
10175may be of integer types of any bit width, but they must have the same
10176bit width. The second element of the result structure must be of type
10177``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10178multiplication.
10179
10180Semantics:
10181""""""""""
10182
10183The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010184an unsigned multiplication of the two arguments. They return a structure ---
10185the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010186element of which is a bit specifying if the unsigned multiplication
10187resulted in an overflow.
10188
10189Examples:
10190"""""""""
10191
10192.. code-block:: llvm
10193
10194 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10195 %sum = extractvalue {i32, i1} %res, 0
10196 %obit = extractvalue {i32, i1} %res, 1
10197 br i1 %obit, label %overflow, label %normal
10198
10199Specialised Arithmetic Intrinsics
10200---------------------------------
10201
Owen Anderson1056a922015-07-11 07:01:27 +000010202'``llvm.canonicalize.*``' Intrinsic
10203^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10204
10205Syntax:
10206"""""""
10207
10208::
10209
10210 declare float @llvm.canonicalize.f32(float %a)
10211 declare double @llvm.canonicalize.f64(double %b)
10212
10213Overview:
10214"""""""""
10215
10216The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
10217encoding of a floating point number. This canonicalization is useful for
10218implementing certain numeric primitives such as frexp. The canonical encoding is
10219defined by IEEE-754-2008 to be:
10220
10221::
10222
10223 2.1.8 canonical encoding: The preferred encoding of a floating-point
10224 representation in a format. Applied to declets, significands of finite
10225 numbers, infinities, and NaNs, especially in decimal formats.
10226
10227This operation can also be considered equivalent to the IEEE-754-2008
10228conversion of a floating-point value to the same format. NaNs are handled
10229according to section 6.2.
10230
10231Examples of non-canonical encodings:
10232
10233- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
10234 converted to a canonical representation per hardware-specific protocol.
10235- Many normal decimal floating point numbers have non-canonical alternative
10236 encodings.
10237- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
10238 These are treated as non-canonical encodings of zero and with be flushed to
10239 a zero of the same sign by this operation.
10240
10241Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
10242default exception handling must signal an invalid exception, and produce a
10243quiet NaN result.
10244
10245This function should always be implementable as multiplication by 1.0, provided
10246that the compiler does not constant fold the operation. Likewise, division by
102471.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
10248-0.0 is also sufficient provided that the rounding mode is not -Infinity.
10249
10250``@llvm.canonicalize`` must preserve the equality relation. That is:
10251
10252- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
10253- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
10254 to ``(x == y)``
10255
10256Additionally, the sign of zero must be conserved:
10257``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
10258
10259The payload bits of a NaN must be conserved, with two exceptions.
10260First, environments which use only a single canonical representation of NaN
10261must perform said canonicalization. Second, SNaNs must be quieted per the
10262usual methods.
10263
10264The canonicalization operation may be optimized away if:
10265
10266- The input is known to be canonical. For example, it was produced by a
10267 floating-point operation that is required by the standard to be canonical.
10268- The result is consumed only by (or fused with) other floating-point
10269 operations. That is, the bits of the floating point value are not examined.
10270
Sean Silvab084af42012-12-07 10:36:55 +000010271'``llvm.fmuladd.*``' Intrinsic
10272^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10273
10274Syntax:
10275"""""""
10276
10277::
10278
10279 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
10280 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
10281
10282Overview:
10283"""""""""
10284
10285The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000010286expressions that can be fused if the code generator determines that (a) the
10287target instruction set has support for a fused operation, and (b) that the
10288fused operation is more efficient than the equivalent, separate pair of mul
10289and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000010290
10291Arguments:
10292""""""""""
10293
10294The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
10295multiplicands, a and b, and an addend c.
10296
10297Semantics:
10298""""""""""
10299
10300The expression:
10301
10302::
10303
10304 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
10305
10306is equivalent to the expression a \* b + c, except that rounding will
10307not be performed between the multiplication and addition steps if the
10308code generator fuses the operations. Fusion is not guaranteed, even if
10309the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010310corresponding llvm.fma.\* intrinsic function should be used
10311instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000010312
10313Examples:
10314"""""""""
10315
10316.. code-block:: llvm
10317
Tim Northover675a0962014-06-13 14:24:23 +000010318 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000010319
10320Half Precision Floating Point Intrinsics
10321----------------------------------------
10322
10323For most target platforms, half precision floating point is a
10324storage-only format. This means that it is a dense encoding (in memory)
10325but does not support computation in the format.
10326
10327This means that code must first load the half-precision floating point
10328value as an i16, then convert it to float with
10329:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
10330then be performed on the float value (including extending to double
10331etc). To store the value back to memory, it is first converted to float
10332if needed, then converted to i16 with
10333:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
10334i16 value.
10335
10336.. _int_convert_to_fp16:
10337
10338'``llvm.convert.to.fp16``' Intrinsic
10339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10340
10341Syntax:
10342"""""""
10343
10344::
10345
Tim Northoverfd7e4242014-07-17 10:51:23 +000010346 declare i16 @llvm.convert.to.fp16.f32(float %a)
10347 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000010348
10349Overview:
10350"""""""""
10351
Tim Northoverfd7e4242014-07-17 10:51:23 +000010352The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
10353conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000010354
10355Arguments:
10356""""""""""
10357
10358The intrinsic function contains single argument - the value to be
10359converted.
10360
10361Semantics:
10362""""""""""
10363
Tim Northoverfd7e4242014-07-17 10:51:23 +000010364The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
10365conventional floating point format to half precision floating point format. The
10366return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000010367
10368Examples:
10369"""""""""
10370
10371.. code-block:: llvm
10372
Tim Northoverfd7e4242014-07-17 10:51:23 +000010373 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000010374 store i16 %res, i16* @x, align 2
10375
10376.. _int_convert_from_fp16:
10377
10378'``llvm.convert.from.fp16``' Intrinsic
10379^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10380
10381Syntax:
10382"""""""
10383
10384::
10385
Tim Northoverfd7e4242014-07-17 10:51:23 +000010386 declare float @llvm.convert.from.fp16.f32(i16 %a)
10387 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000010388
10389Overview:
10390"""""""""
10391
10392The '``llvm.convert.from.fp16``' intrinsic function performs a
10393conversion from half precision floating point format to single precision
10394floating point format.
10395
10396Arguments:
10397""""""""""
10398
10399The intrinsic function contains single argument - the value to be
10400converted.
10401
10402Semantics:
10403""""""""""
10404
10405The '``llvm.convert.from.fp16``' intrinsic function performs a
10406conversion from half single precision floating point format to single
10407precision floating point format. The input half-float value is
10408represented by an ``i16`` value.
10409
10410Examples:
10411"""""""""
10412
10413.. code-block:: llvm
10414
David Blaikiec7aabbb2015-03-04 22:06:14 +000010415 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000010416 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000010417
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000010418.. _dbg_intrinsics:
10419
Sean Silvab084af42012-12-07 10:36:55 +000010420Debugger Intrinsics
10421-------------------
10422
10423The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
10424prefix), are described in the `LLVM Source Level
10425Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
10426document.
10427
10428Exception Handling Intrinsics
10429-----------------------------
10430
10431The LLVM exception handling intrinsics (which all start with
10432``llvm.eh.`` prefix), are described in the `LLVM Exception
10433Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
10434
10435.. _int_trampoline:
10436
10437Trampoline Intrinsics
10438---------------------
10439
10440These intrinsics make it possible to excise one parameter, marked with
10441the :ref:`nest <nest>` attribute, from a function. The result is a
10442callable function pointer lacking the nest parameter - the caller does
10443not need to provide a value for it. Instead, the value to use is stored
10444in advance in a "trampoline", a block of memory usually allocated on the
10445stack, which also contains code to splice the nest value into the
10446argument list. This is used to implement the GCC nested function address
10447extension.
10448
10449For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
10450then the resulting function pointer has signature ``i32 (i32, i32)*``.
10451It can be created as follows:
10452
10453.. code-block:: llvm
10454
10455 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000010456 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000010457 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
10458 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
10459 %fp = bitcast i8* %p to i32 (i32, i32)*
10460
10461The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
10462``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
10463
10464.. _int_it:
10465
10466'``llvm.init.trampoline``' Intrinsic
10467^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10468
10469Syntax:
10470"""""""
10471
10472::
10473
10474 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
10475
10476Overview:
10477"""""""""
10478
10479This fills the memory pointed to by ``tramp`` with executable code,
10480turning it into a trampoline.
10481
10482Arguments:
10483""""""""""
10484
10485The ``llvm.init.trampoline`` intrinsic takes three arguments, all
10486pointers. The ``tramp`` argument must point to a sufficiently large and
10487sufficiently aligned block of memory; this memory is written to by the
10488intrinsic. Note that the size and the alignment are target-specific -
10489LLVM currently provides no portable way of determining them, so a
10490front-end that generates this intrinsic needs to have some
10491target-specific knowledge. The ``func`` argument must hold a function
10492bitcast to an ``i8*``.
10493
10494Semantics:
10495""""""""""
10496
10497The block of memory pointed to by ``tramp`` is filled with target
10498dependent code, turning it into a function. Then ``tramp`` needs to be
10499passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
10500be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
10501function's signature is the same as that of ``func`` with any arguments
10502marked with the ``nest`` attribute removed. At most one such ``nest``
10503argument is allowed, and it must be of pointer type. Calling the new
10504function is equivalent to calling ``func`` with the same argument list,
10505but with ``nval`` used for the missing ``nest`` argument. If, after
10506calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
10507modified, then the effect of any later call to the returned function
10508pointer is undefined.
10509
10510.. _int_at:
10511
10512'``llvm.adjust.trampoline``' Intrinsic
10513^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10514
10515Syntax:
10516"""""""
10517
10518::
10519
10520 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
10521
10522Overview:
10523"""""""""
10524
10525This performs any required machine-specific adjustment to the address of
10526a trampoline (passed as ``tramp``).
10527
10528Arguments:
10529""""""""""
10530
10531``tramp`` must point to a block of memory which already has trampoline
10532code filled in by a previous call to
10533:ref:`llvm.init.trampoline <int_it>`.
10534
10535Semantics:
10536""""""""""
10537
10538On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000010539different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000010540intrinsic returns the executable address corresponding to ``tramp``
10541after performing the required machine specific adjustments. The pointer
10542returned can then be :ref:`bitcast and executed <int_trampoline>`.
10543
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000010544.. _int_mload_mstore:
10545
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010546Masked Vector Load and Store Intrinsics
10547---------------------------------------
10548
10549LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
10550
10551.. _int_mload:
10552
10553'``llvm.masked.load.*``' Intrinsics
10554^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10555
10556Syntax:
10557"""""""
10558This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
10559
10560::
10561
10562 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
10563 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
10564
10565Overview:
10566"""""""""
10567
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000010568Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010569
10570
10571Arguments:
10572""""""""""
10573
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000010574The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010575
10576
10577Semantics:
10578""""""""""
10579
10580The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
10581The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
10582
10583
10584::
10585
10586 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010587
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010588 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000010589 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000010590 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010591
10592.. _int_mstore:
10593
10594'``llvm.masked.store.*``' Intrinsics
10595^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10596
10597Syntax:
10598"""""""
10599This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
10600
10601::
10602
10603 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
10604 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
10605
10606Overview:
10607"""""""""
10608
10609Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
10610
10611Arguments:
10612""""""""""
10613
10614The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
10615
10616
10617Semantics:
10618""""""""""
10619
10620The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
10621The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
10622
10623::
10624
10625 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010626
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000010627 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000010628 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010629 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
10630 store <16 x float> %res, <16 x float>* %ptr, align 4
10631
10632
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000010633Masked Vector Gather and Scatter Intrinsics
10634-------------------------------------------
10635
10636LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
10637
10638.. _int_mgather:
10639
10640'``llvm.masked.gather.*``' Intrinsics
10641^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10642
10643Syntax:
10644"""""""
10645This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer or floating point data type gathered together into one vector.
10646
10647::
10648
10649 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
10650 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
10651
10652Overview:
10653"""""""""
10654
10655Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
10656
10657
10658Arguments:
10659""""""""""
10660
10661The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
10662
10663
10664Semantics:
10665""""""""""
10666
10667The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
10668The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
10669
10670
10671::
10672
10673 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
10674
10675 ;; The gather with all-true mask is equivalent to the following instruction sequence
10676 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
10677 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
10678 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
10679 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
10680
10681 %val0 = load double, double* %ptr0, align 8
10682 %val1 = load double, double* %ptr1, align 8
10683 %val2 = load double, double* %ptr2, align 8
10684 %val3 = load double, double* %ptr3, align 8
10685
10686 %vec0 = insertelement <4 x double>undef, %val0, 0
10687 %vec01 = insertelement <4 x double>%vec0, %val1, 1
10688 %vec012 = insertelement <4 x double>%vec01, %val2, 2
10689 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
10690
10691.. _int_mscatter:
10692
10693'``llvm.masked.scatter.*``' Intrinsics
10694^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10695
10696Syntax:
10697"""""""
10698This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type. Each vector element is stored in an arbitrary memory addresses. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
10699
10700::
10701
10702 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
10703 declare void @llvm.masked.scatter.v16f32(<16 x i32> <value>, <16 x i32*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
10704
10705Overview:
10706"""""""""
10707
10708Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
10709
10710Arguments:
10711""""""""""
10712
10713The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
10714
10715
10716Semantics:
10717""""""""""
10718
10719The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergency. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
10720
10721::
10722
10723 ;; This instruction unconditionaly stores data vector in multiple addresses
10724 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
10725
10726 ;; It is equivalent to a list of scalar stores
10727 %val0 = extractelement <8 x i32> %value, i32 0
10728 %val1 = extractelement <8 x i32> %value, i32 1
10729 ..
10730 %val7 = extractelement <8 x i32> %value, i32 7
10731 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
10732 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
10733 ..
10734 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
10735 ;; Note: the order of the following stores is important when they overlap:
10736 store i32 %val0, i32* %ptr0, align 4
10737 store i32 %val1, i32* %ptr1, align 4
10738 ..
10739 store i32 %val7, i32* %ptr7, align 4
10740
10741
Sean Silvab084af42012-12-07 10:36:55 +000010742Memory Use Markers
10743------------------
10744
Sanjay Patel69bf48e2014-07-04 19:40:43 +000010745This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000010746memory objects and ranges where variables are immutable.
10747
Reid Klecknera534a382013-12-19 02:14:12 +000010748.. _int_lifestart:
10749
Sean Silvab084af42012-12-07 10:36:55 +000010750'``llvm.lifetime.start``' Intrinsic
10751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10752
10753Syntax:
10754"""""""
10755
10756::
10757
10758 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
10759
10760Overview:
10761"""""""""
10762
10763The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
10764object's lifetime.
10765
10766Arguments:
10767""""""""""
10768
10769The first argument is a constant integer representing the size of the
10770object, or -1 if it is variable sized. The second argument is a pointer
10771to the object.
10772
10773Semantics:
10774""""""""""
10775
10776This intrinsic indicates that before this point in the code, the value
10777of the memory pointed to by ``ptr`` is dead. This means that it is known
10778to never be used and has an undefined value. A load from the pointer
10779that precedes this intrinsic can be replaced with ``'undef'``.
10780
Reid Klecknera534a382013-12-19 02:14:12 +000010781.. _int_lifeend:
10782
Sean Silvab084af42012-12-07 10:36:55 +000010783'``llvm.lifetime.end``' Intrinsic
10784^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10785
10786Syntax:
10787"""""""
10788
10789::
10790
10791 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
10792
10793Overview:
10794"""""""""
10795
10796The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
10797object's lifetime.
10798
10799Arguments:
10800""""""""""
10801
10802The first argument is a constant integer representing the size of the
10803object, or -1 if it is variable sized. The second argument is a pointer
10804to the object.
10805
10806Semantics:
10807""""""""""
10808
10809This intrinsic indicates that after this point in the code, the value of
10810the memory pointed to by ``ptr`` is dead. This means that it is known to
10811never be used and has an undefined value. Any stores into the memory
10812object following this intrinsic may be removed as dead.
10813
10814'``llvm.invariant.start``' Intrinsic
10815^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10816
10817Syntax:
10818"""""""
10819
10820::
10821
10822 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
10823
10824Overview:
10825"""""""""
10826
10827The '``llvm.invariant.start``' intrinsic specifies that the contents of
10828a memory object will not change.
10829
10830Arguments:
10831""""""""""
10832
10833The first argument is a constant integer representing the size of the
10834object, or -1 if it is variable sized. The second argument is a pointer
10835to the object.
10836
10837Semantics:
10838""""""""""
10839
10840This intrinsic indicates that until an ``llvm.invariant.end`` that uses
10841the return value, the referenced memory location is constant and
10842unchanging.
10843
10844'``llvm.invariant.end``' Intrinsic
10845^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10846
10847Syntax:
10848"""""""
10849
10850::
10851
10852 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
10853
10854Overview:
10855"""""""""
10856
10857The '``llvm.invariant.end``' intrinsic specifies that the contents of a
10858memory object are mutable.
10859
10860Arguments:
10861""""""""""
10862
10863The first argument is the matching ``llvm.invariant.start`` intrinsic.
10864The second argument is a constant integer representing the size of the
10865object, or -1 if it is variable sized and the third argument is a
10866pointer to the object.
10867
10868Semantics:
10869""""""""""
10870
10871This intrinsic indicates that the memory is mutable again.
10872
10873General Intrinsics
10874------------------
10875
10876This class of intrinsics is designed to be generic and has no specific
10877purpose.
10878
10879'``llvm.var.annotation``' Intrinsic
10880^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10881
10882Syntax:
10883"""""""
10884
10885::
10886
10887 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
10888
10889Overview:
10890"""""""""
10891
10892The '``llvm.var.annotation``' intrinsic.
10893
10894Arguments:
10895""""""""""
10896
10897The first argument is a pointer to a value, the second is a pointer to a
10898global string, the third is a pointer to a global string which is the
10899source file name, and the last argument is the line number.
10900
10901Semantics:
10902""""""""""
10903
10904This intrinsic allows annotation of local variables with arbitrary
10905strings. This can be useful for special purpose optimizations that want
10906to look for these annotations. These have no other defined use; they are
10907ignored by code generation and optimization.
10908
Michael Gottesman88d18832013-03-26 00:34:27 +000010909'``llvm.ptr.annotation.*``' Intrinsic
10910^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10911
10912Syntax:
10913"""""""
10914
10915This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
10916pointer to an integer of any width. *NOTE* you must specify an address space for
10917the pointer. The identifier for the default address space is the integer
10918'``0``'.
10919
10920::
10921
10922 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
10923 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
10924 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
10925 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
10926 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
10927
10928Overview:
10929"""""""""
10930
10931The '``llvm.ptr.annotation``' intrinsic.
10932
10933Arguments:
10934""""""""""
10935
10936The first argument is a pointer to an integer value of arbitrary bitwidth
10937(result of some expression), the second is a pointer to a global string, the
10938third is a pointer to a global string which is the source file name, and the
10939last argument is the line number. It returns the value of the first argument.
10940
10941Semantics:
10942""""""""""
10943
10944This intrinsic allows annotation of a pointer to an integer with arbitrary
10945strings. This can be useful for special purpose optimizations that want to look
10946for these annotations. These have no other defined use; they are ignored by code
10947generation and optimization.
10948
Sean Silvab084af42012-12-07 10:36:55 +000010949'``llvm.annotation.*``' Intrinsic
10950^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10951
10952Syntax:
10953"""""""
10954
10955This is an overloaded intrinsic. You can use '``llvm.annotation``' on
10956any integer bit width.
10957
10958::
10959
10960 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
10961 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
10962 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
10963 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
10964 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
10965
10966Overview:
10967"""""""""
10968
10969The '``llvm.annotation``' intrinsic.
10970
10971Arguments:
10972""""""""""
10973
10974The first argument is an integer value (result of some expression), the
10975second is a pointer to a global string, the third is a pointer to a
10976global string which is the source file name, and the last argument is
10977the line number. It returns the value of the first argument.
10978
10979Semantics:
10980""""""""""
10981
10982This intrinsic allows annotations to be put on arbitrary expressions
10983with arbitrary strings. This can be useful for special purpose
10984optimizations that want to look for these annotations. These have no
10985other defined use; they are ignored by code generation and optimization.
10986
10987'``llvm.trap``' Intrinsic
10988^^^^^^^^^^^^^^^^^^^^^^^^^
10989
10990Syntax:
10991"""""""
10992
10993::
10994
10995 declare void @llvm.trap() noreturn nounwind
10996
10997Overview:
10998"""""""""
10999
11000The '``llvm.trap``' intrinsic.
11001
11002Arguments:
11003""""""""""
11004
11005None.
11006
11007Semantics:
11008""""""""""
11009
11010This intrinsic is lowered to the target dependent trap instruction. If
11011the target does not have a trap instruction, this intrinsic will be
11012lowered to a call of the ``abort()`` function.
11013
11014'``llvm.debugtrap``' Intrinsic
11015^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11016
11017Syntax:
11018"""""""
11019
11020::
11021
11022 declare void @llvm.debugtrap() nounwind
11023
11024Overview:
11025"""""""""
11026
11027The '``llvm.debugtrap``' intrinsic.
11028
11029Arguments:
11030""""""""""
11031
11032None.
11033
11034Semantics:
11035""""""""""
11036
11037This intrinsic is lowered to code which is intended to cause an
11038execution trap with the intention of requesting the attention of a
11039debugger.
11040
11041'``llvm.stackprotector``' Intrinsic
11042^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11043
11044Syntax:
11045"""""""
11046
11047::
11048
11049 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11050
11051Overview:
11052"""""""""
11053
11054The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11055onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11056is placed on the stack before local variables.
11057
11058Arguments:
11059""""""""""
11060
11061The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11062The first argument is the value loaded from the stack guard
11063``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11064enough space to hold the value of the guard.
11065
11066Semantics:
11067""""""""""
11068
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011069This intrinsic causes the prologue/epilogue inserter to force the position of
11070the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11071to ensure that if a local variable on the stack is overwritten, it will destroy
11072the value of the guard. When the function exits, the guard on the stack is
11073checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11074different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11075calling the ``__stack_chk_fail()`` function.
11076
11077'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011078^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011079
11080Syntax:
11081"""""""
11082
11083::
11084
11085 declare void @llvm.stackprotectorcheck(i8** <guard>)
11086
11087Overview:
11088"""""""""
11089
11090The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011091created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011092``__stack_chk_fail()`` function.
11093
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011094Arguments:
11095""""""""""
11096
11097The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11098the variable ``@__stack_chk_guard``.
11099
11100Semantics:
11101""""""""""
11102
11103This intrinsic is provided to perform the stack protector check by comparing
11104``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11105values do not match call the ``__stack_chk_fail()`` function.
11106
11107The reason to provide this as an IR level intrinsic instead of implementing it
11108via other IR operations is that in order to perform this operation at the IR
11109level without an intrinsic, one would need to create additional basic blocks to
11110handle the success/failure cases. This makes it difficult to stop the stack
11111protector check from disrupting sibling tail calls in Codegen. With this
11112intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011113codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011114
Sean Silvab084af42012-12-07 10:36:55 +000011115'``llvm.objectsize``' Intrinsic
11116^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11117
11118Syntax:
11119"""""""
11120
11121::
11122
11123 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11124 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11125
11126Overview:
11127"""""""""
11128
11129The ``llvm.objectsize`` intrinsic is designed to provide information to
11130the optimizers to determine at compile time whether a) an operation
11131(like memcpy) will overflow a buffer that corresponds to an object, or
11132b) that a runtime check for overflow isn't necessary. An object in this
11133context means an allocation of a specific class, structure, array, or
11134other object.
11135
11136Arguments:
11137""""""""""
11138
11139The ``llvm.objectsize`` intrinsic takes two arguments. The first
11140argument is a pointer to or into the ``object``. The second argument is
11141a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11142or -1 (if false) when the object size is unknown. The second argument
11143only accepts constants.
11144
11145Semantics:
11146""""""""""
11147
11148The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11149the size of the object concerned. If the size cannot be determined at
11150compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11151on the ``min`` argument).
11152
11153'``llvm.expect``' Intrinsic
11154^^^^^^^^^^^^^^^^^^^^^^^^^^^
11155
11156Syntax:
11157"""""""
11158
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011159This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11160integer bit width.
11161
Sean Silvab084af42012-12-07 10:36:55 +000011162::
11163
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011164 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011165 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11166 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11167
11168Overview:
11169"""""""""
11170
11171The ``llvm.expect`` intrinsic provides information about expected (the
11172most probable) value of ``val``, which can be used by optimizers.
11173
11174Arguments:
11175""""""""""
11176
11177The ``llvm.expect`` intrinsic takes two arguments. The first argument is
11178a value. The second argument is an expected value, this needs to be a
11179constant value, variables are not allowed.
11180
11181Semantics:
11182""""""""""
11183
11184This intrinsic is lowered to the ``val``.
11185
Philip Reamese0e90832015-04-26 22:23:12 +000011186.. _int_assume:
11187
Hal Finkel93046912014-07-25 21:13:35 +000011188'``llvm.assume``' Intrinsic
11189^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11190
11191Syntax:
11192"""""""
11193
11194::
11195
11196 declare void @llvm.assume(i1 %cond)
11197
11198Overview:
11199"""""""""
11200
11201The ``llvm.assume`` allows the optimizer to assume that the provided
11202condition is true. This information can then be used in simplifying other parts
11203of the code.
11204
11205Arguments:
11206""""""""""
11207
11208The condition which the optimizer may assume is always true.
11209
11210Semantics:
11211""""""""""
11212
11213The intrinsic allows the optimizer to assume that the provided condition is
11214always true whenever the control flow reaches the intrinsic call. No code is
11215generated for this intrinsic, and instructions that contribute only to the
11216provided condition are not used for code generation. If the condition is
11217violated during execution, the behavior is undefined.
11218
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011219Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000011220used by the ``llvm.assume`` intrinsic in order to preserve the instructions
11221only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011222if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000011223sufficient overall improvement in code quality. For this reason,
11224``llvm.assume`` should not be used to document basic mathematical invariants
11225that the optimizer can otherwise deduce or facts that are of little use to the
11226optimizer.
11227
Peter Collingbournee6909c82015-02-20 20:30:47 +000011228.. _bitset.test:
11229
11230'``llvm.bitset.test``' Intrinsic
11231^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11232
11233Syntax:
11234"""""""
11235
11236::
11237
11238 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
11239
11240
11241Arguments:
11242""""""""""
11243
11244The first argument is a pointer to be tested. The second argument is a
11245metadata string containing the name of a :doc:`bitset <BitSets>`.
11246
11247Overview:
11248"""""""""
11249
11250The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
11251member of the given bitset.
11252
Sean Silvab084af42012-12-07 10:36:55 +000011253'``llvm.donothing``' Intrinsic
11254^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11255
11256Syntax:
11257"""""""
11258
11259::
11260
11261 declare void @llvm.donothing() nounwind readnone
11262
11263Overview:
11264"""""""""
11265
Juergen Ributzkac9161192014-10-23 22:36:13 +000011266The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
11267two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
11268with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000011269
11270Arguments:
11271""""""""""
11272
11273None.
11274
11275Semantics:
11276""""""""""
11277
11278This intrinsic does nothing, and it's removed by optimizers and ignored
11279by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000011280
11281Stack Map Intrinsics
11282--------------------
11283
11284LLVM provides experimental intrinsics to support runtime patching
11285mechanisms commonly desired in dynamic language JITs. These intrinsics
11286are described in :doc:`StackMaps`.