blob: 1390fe993a138bd533128fb46e9ccf65d82b8b00 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
Sean Silvaa1190322015-08-06 22:56:48 +000086#. Constants, which are described in the section Constants_ below.
Sean Silvab084af42012-12-07 10:36:55 +000087
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Sean Silvaa1190322015-08-06 22:56:48 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000351 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000356 This calling convention attempts to make the code in the caller as
357 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
Sean Silva706fba52015-08-06 22:56:24 +0000494A model can also be specified in an alias, but then it only governs how
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000495the alias is accessed. It will not have any effect in the aliasee.
496
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000497For platforms without linker support of ELF TLS model, the -femulated-tls
498flag can be used to generate GCC compatible emulated TLS code.
499
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000500.. _namedtypes:
501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502Structure Types
503---------------
Sean Silvab084af42012-12-07 10:36:55 +0000504
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000505LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
Sean Silvaa1190322015-08-06 22:56:48 +0000506types <t_struct>`. Literal types are uniqued structurally, but identified types
507are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000508to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000509
Sean Silva706fba52015-08-06 22:56:24 +0000510An example of an identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000511
512.. code-block:: llvm
513
514 %mytype = type { %mytype*, i32 }
515
Sean Silvaa1190322015-08-06 22:56:48 +0000516Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000517literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000518
519.. _globalvars:
520
521Global Variables
522----------------
523
524Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525instead of run-time.
526
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000527Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000528
529Global variables in other translation units can also be declared, in which
530case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000531
Bob Wilson85b24f22014-06-12 20:40:33 +0000532Either global variable definitions or declarations may have an explicit section
533to be placed in and may have an optional explicit alignment specified.
534
Michael Gottesman006039c2013-01-31 05:48:48 +0000535A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000536the contents of the variable will **never** be modified (enabling better
537optimization, allowing the global data to be placed in the read-only
538section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000539initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000540variable.
541
542LLVM explicitly allows *declarations* of global variables to be marked
543constant, even if the final definition of the global is not. This
544capability can be used to enable slightly better optimization of the
545program, but requires the language definition to guarantee that
546optimizations based on the 'constantness' are valid for the translation
547units that do not include the definition.
548
549As SSA values, global variables define pointer values that are in scope
550(i.e. they dominate) all basic blocks in the program. Global variables
551always define a pointer to their "content" type because they describe a
552region of memory, and all memory objects in LLVM are accessed through
553pointers.
554
555Global variables can be marked with ``unnamed_addr`` which indicates
556that the address is not significant, only the content. Constants marked
557like this can be merged with other constants if they have the same
558initializer. Note that a constant with significant address *can* be
559merged with a ``unnamed_addr`` constant, the result being a constant
560whose address is significant.
561
562A global variable may be declared to reside in a target-specific
563numbered address space. For targets that support them, address spaces
564may affect how optimizations are performed and/or what target
565instructions are used to access the variable. The default address space
566is zero. The address space qualifier must precede any other attributes.
567
568LLVM allows an explicit section to be specified for globals. If the
569target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000570Additionally, the global can placed in a comdat if the target has the necessary
571support.
Sean Silvab084af42012-12-07 10:36:55 +0000572
Michael Gottesmane743a302013-02-04 03:22:00 +0000573By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000574variables defined within the module are not modified from their
Sean Silvaa1190322015-08-06 22:56:48 +0000575initial values before the start of the global initializer. This is
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000576true even for variables potentially accessible from outside the
577module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000578``@llvm.used`` or dllexported variables. This assumption may be suppressed
579by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000580
Sean Silvab084af42012-12-07 10:36:55 +0000581An explicit alignment may be specified for a global, which must be a
582power of 2. If not present, or if the alignment is set to zero, the
583alignment of the global is set by the target to whatever it feels
584convenient. If an explicit alignment is specified, the global is forced
585to have exactly that alignment. Targets and optimizers are not allowed
586to over-align the global if the global has an assigned section. In this
587case, the extra alignment could be observable: for example, code could
588assume that the globals are densely packed in their section and try to
589iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000590iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000591
Nico Rieck7157bb72014-01-14 15:22:47 +0000592Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
593
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000594Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000595:ref:`Thread Local Storage Model <tls_model>`.
596
Nico Rieck7157bb72014-01-14 15:22:47 +0000597Syntax::
598
599 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000600 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000601 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000602 [, section "name"] [, comdat [($name)]]
603 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000604
Sean Silvab084af42012-12-07 10:36:55 +0000605For example, the following defines a global in a numbered address space
606with an initializer, section, and alignment:
607
608.. code-block:: llvm
609
610 @G = addrspace(5) constant float 1.0, section "foo", align 4
611
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000612The following example just declares a global variable
613
614.. code-block:: llvm
615
616 @G = external global i32
617
Sean Silvab084af42012-12-07 10:36:55 +0000618The following example defines a thread-local global with the
619``initialexec`` TLS model:
620
621.. code-block:: llvm
622
623 @G = thread_local(initialexec) global i32 0, align 4
624
625.. _functionstructure:
626
627Functions
628---------
629
630LLVM function definitions consist of the "``define``" keyword, an
631optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000632style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
633an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000634an optional ``unnamed_addr`` attribute, a return type, an optional
635:ref:`parameter attribute <paramattrs>` for the return type, a function
636name, a (possibly empty) argument list (each with optional :ref:`parameter
637attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000638an optional section, an optional alignment,
639an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000640an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000641an optional :ref:`prologue <prologuedata>`,
642an optional :ref:`personality <personalityfn>`,
643an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000644
645LLVM function declarations consist of the "``declare``" keyword, an
646optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000647style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
648an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000649an optional ``unnamed_addr`` attribute, a return type, an optional
650:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000651name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000652:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
653and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000654
Bill Wendling6822ecb2013-10-27 05:09:12 +0000655A function definition contains a list of basic blocks, forming the CFG (Control
656Flow Graph) for the function. Each basic block may optionally start with a label
657(giving the basic block a symbol table entry), contains a list of instructions,
658and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
659function return). If an explicit label is not provided, a block is assigned an
660implicit numbered label, using the next value from the same counter as used for
661unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
662entry block does not have an explicit label, it will be assigned label "%0",
663then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000664
665The first basic block in a function is special in two ways: it is
666immediately executed on entrance to the function, and it is not allowed
667to have predecessor basic blocks (i.e. there can not be any branches to
668the entry block of a function). Because the block can have no
669predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
670
671LLVM allows an explicit section to be specified for functions. If the
672target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000673Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000674
675An explicit alignment may be specified for a function. If not present,
676or if the alignment is set to zero, the alignment of the function is set
677by the target to whatever it feels convenient. If an explicit alignment
678is specified, the function is forced to have at least that much
679alignment. All alignments must be a power of 2.
680
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000681If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000682be significant and two identical functions can be merged.
683
684Syntax::
685
Nico Rieck7157bb72014-01-14 15:22:47 +0000686 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000687 [cconv] [ret attrs]
688 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000689 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000690 [align N] [gc] [prefix Constant] [prologue Constant]
691 [personality Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000692
Sean Silva706fba52015-08-06 22:56:24 +0000693The argument list is a comma separated sequence of arguments where each
694argument is of the following form:
Dan Liew2661dfc2014-08-20 15:06:30 +0000695
696Syntax::
697
698 <type> [parameter Attrs] [name]
699
700
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000701.. _langref_aliases:
702
Sean Silvab084af42012-12-07 10:36:55 +0000703Aliases
704-------
705
Rafael Espindola64c1e182014-06-03 02:41:57 +0000706Aliases, unlike function or variables, don't create any new data. They
707are just a new symbol and metadata for an existing position.
708
709Aliases have a name and an aliasee that is either a global value or a
710constant expression.
711
Nico Rieck7157bb72014-01-14 15:22:47 +0000712Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000713:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
714<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000715
716Syntax::
717
Rafael Espindola464fe022014-07-30 22:51:54 +0000718 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000719
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000720The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000721``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000722might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000723
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000724Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000725the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
726to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728Since aliases are only a second name, some restrictions apply, of which
729some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000730
Rafael Espindola64c1e182014-06-03 02:41:57 +0000731* The expression defining the aliasee must be computable at assembly
732 time. Since it is just a name, no relocations can be used.
733
734* No alias in the expression can be weak as the possibility of the
735 intermediate alias being overridden cannot be represented in an
736 object file.
737
738* No global value in the expression can be a declaration, since that
739 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000740
David Majnemerdad0a642014-06-27 18:19:56 +0000741.. _langref_comdats:
742
743Comdats
744-------
745
746Comdat IR provides access to COFF and ELF object file COMDAT functionality.
747
Sean Silvaa1190322015-08-06 22:56:48 +0000748Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000749specify this key will only end up in the final object file if the linker chooses
Sean Silvaa1190322015-08-06 22:56:48 +0000750that key over some other key. Aliases are placed in the same COMDAT that their
David Majnemerdad0a642014-06-27 18:19:56 +0000751aliasee computes to, if any.
752
753Comdats have a selection kind to provide input on how the linker should
754choose between keys in two different object files.
755
756Syntax::
757
758 $<Name> = comdat SelectionKind
759
760The selection kind must be one of the following:
761
762``any``
763 The linker may choose any COMDAT key, the choice is arbitrary.
764``exactmatch``
765 The linker may choose any COMDAT key but the sections must contain the
766 same data.
767``largest``
768 The linker will choose the section containing the largest COMDAT key.
769``noduplicates``
770 The linker requires that only section with this COMDAT key exist.
771``samesize``
772 The linker may choose any COMDAT key but the sections must contain the
773 same amount of data.
774
775Note that the Mach-O platform doesn't support COMDATs and ELF only supports
776``any`` as a selection kind.
777
778Here is an example of a COMDAT group where a function will only be selected if
779the COMDAT key's section is the largest:
780
781.. code-block:: llvm
782
783 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000784 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000785
Rafael Espindola83a362c2015-01-06 22:55:16 +0000786 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000787 ret void
788 }
789
Rafael Espindola83a362c2015-01-06 22:55:16 +0000790As a syntactic sugar the ``$name`` can be omitted if the name is the same as
791the global name:
792
793.. code-block:: llvm
794
795 $foo = comdat any
796 @foo = global i32 2, comdat
797
798
David Majnemerdad0a642014-06-27 18:19:56 +0000799In a COFF object file, this will create a COMDAT section with selection kind
800``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
801and another COMDAT section with selection kind
802``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000803section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000804
805There are some restrictions on the properties of the global object.
806It, or an alias to it, must have the same name as the COMDAT group when
807targeting COFF.
808The contents and size of this object may be used during link-time to determine
809which COMDAT groups get selected depending on the selection kind.
810Because the name of the object must match the name of the COMDAT group, the
811linkage of the global object must not be local; local symbols can get renamed
812if a collision occurs in the symbol table.
813
814The combined use of COMDATS and section attributes may yield surprising results.
815For example:
816
817.. code-block:: llvm
818
819 $foo = comdat any
820 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000821 @g1 = global i32 42, section "sec", comdat($foo)
822 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000823
824From the object file perspective, this requires the creation of two sections
Sean Silvaa1190322015-08-06 22:56:48 +0000825with the same name. This is necessary because both globals belong to different
David Majnemerdad0a642014-06-27 18:19:56 +0000826COMDAT groups and COMDATs, at the object file level, are represented by
827sections.
828
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000829Note that certain IR constructs like global variables and functions may
830create COMDATs in the object file in addition to any which are specified using
Sean Silvaa1190322015-08-06 22:56:48 +0000831COMDAT IR. This arises when the code generator is configured to emit globals
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000832in individual sections (e.g. when `-data-sections` or `-function-sections`
833is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000834
Sean Silvab084af42012-12-07 10:36:55 +0000835.. _namedmetadatastructure:
836
837Named Metadata
838--------------
839
840Named metadata is a collection of metadata. :ref:`Metadata
841nodes <metadata>` (but not metadata strings) are the only valid
842operands for a named metadata.
843
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000844#. Named metadata are represented as a string of characters with the
845 metadata prefix. The rules for metadata names are the same as for
846 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
847 are still valid, which allows any character to be part of a name.
848
Sean Silvab084af42012-12-07 10:36:55 +0000849Syntax::
850
851 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000852 !0 = !{!"zero"}
853 !1 = !{!"one"}
854 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000855 ; A named metadata.
856 !name = !{!0, !1, !2}
857
858.. _paramattrs:
859
860Parameter Attributes
861--------------------
862
863The return type and each parameter of a function type may have a set of
864*parameter attributes* associated with them. Parameter attributes are
865used to communicate additional information about the result or
866parameters of a function. Parameter attributes are considered to be part
867of the function, not of the function type, so functions with different
868parameter attributes can have the same function type.
869
870Parameter attributes are simple keywords that follow the type specified.
871If multiple parameter attributes are needed, they are space separated.
872For example:
873
874.. code-block:: llvm
875
876 declare i32 @printf(i8* noalias nocapture, ...)
877 declare i32 @atoi(i8 zeroext)
878 declare signext i8 @returns_signed_char()
879
880Note that any attributes for the function result (``nounwind``,
881``readonly``) come immediately after the argument list.
882
883Currently, only the following parameter attributes are defined:
884
885``zeroext``
886 This indicates to the code generator that the parameter or return
887 value should be zero-extended to the extent required by the target's
888 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
889 the caller (for a parameter) or the callee (for a return value).
890``signext``
891 This indicates to the code generator that the parameter or return
892 value should be sign-extended to the extent required by the target's
893 ABI (which is usually 32-bits) by the caller (for a parameter) or
894 the callee (for a return value).
895``inreg``
896 This indicates that this parameter or return value should be treated
Sean Silva706fba52015-08-06 22:56:24 +0000897 in a special target-dependent fashion while emitting code for
Sean Silvab084af42012-12-07 10:36:55 +0000898 a function call or return (usually, by putting it in a register as
899 opposed to memory, though some targets use it to distinguish between
900 two different kinds of registers). Use of this attribute is
901 target-specific.
902``byval``
903 This indicates that the pointer parameter should really be passed by
904 value to the function. The attribute implies that a hidden copy of
905 the pointee is made between the caller and the callee, so the callee
906 is unable to modify the value in the caller. This attribute is only
907 valid on LLVM pointer arguments. It is generally used to pass
908 structs and arrays by value, but is also valid on pointers to
909 scalars. The copy is considered to belong to the caller not the
910 callee (for example, ``readonly`` functions should not write to
911 ``byval`` parameters). This is not a valid attribute for return
912 values.
913
914 The byval attribute also supports specifying an alignment with the
915 align attribute. It indicates the alignment of the stack slot to
916 form and the known alignment of the pointer specified to the call
917 site. If the alignment is not specified, then the code generator
918 makes a target-specific assumption.
919
Reid Klecknera534a382013-12-19 02:14:12 +0000920.. _attr_inalloca:
921
922``inalloca``
923
Reid Kleckner60d3a832014-01-16 22:59:24 +0000924 The ``inalloca`` argument attribute allows the caller to take the
Sean Silvaa1190322015-08-06 22:56:48 +0000925 address of outgoing stack arguments. An ``inalloca`` argument must
Reid Kleckner436c42e2014-01-17 23:58:17 +0000926 be a pointer to stack memory produced by an ``alloca`` instruction.
927 The alloca, or argument allocation, must also be tagged with the
Sean Silvaa1190322015-08-06 22:56:48 +0000928 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000929 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000930
Reid Kleckner436c42e2014-01-17 23:58:17 +0000931 An argument allocation may be used by a call at most once because
Sean Silvaa1190322015-08-06 22:56:48 +0000932 the call may deallocate it. The ``inalloca`` attribute cannot be
Reid Kleckner436c42e2014-01-17 23:58:17 +0000933 used in conjunction with other attributes that affect argument
Sean Silvaa1190322015-08-06 22:56:48 +0000934 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
Reid Klecknerf5b76512014-01-31 23:50:57 +0000935 ``inalloca`` attribute also disables LLVM's implicit lowering of
936 large aggregate return values, which means that frontend authors
937 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000938
Reid Kleckner60d3a832014-01-16 22:59:24 +0000939 When the call site is reached, the argument allocation must have
940 been the most recent stack allocation that is still live, or the
Sean Silvaa1190322015-08-06 22:56:48 +0000941 results are undefined. It is possible to allocate additional stack
Reid Kleckner60d3a832014-01-16 22:59:24 +0000942 space after an argument allocation and before its call site, but it
943 must be cleared off with :ref:`llvm.stackrestore
944 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000945
946 See :doc:`InAlloca` for more information on how to use this
947 attribute.
948
Sean Silvab084af42012-12-07 10:36:55 +0000949``sret``
950 This indicates that the pointer parameter specifies the address of a
951 structure that is the return value of the function in the source
952 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000953 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000954 not to trap and to be properly aligned. This may only be applied to
955 the first parameter. This is not a valid attribute for return
956 values.
Sean Silva1703e702014-04-08 21:06:22 +0000957
Hal Finkelccc70902014-07-22 16:58:55 +0000958``align <n>``
959 This indicates that the pointer value may be assumed by the optimizer to
960 have the specified alignment.
961
962 Note that this attribute has additional semantics when combined with the
963 ``byval`` attribute.
964
Sean Silva1703e702014-04-08 21:06:22 +0000965.. _noalias:
966
Sean Silvab084af42012-12-07 10:36:55 +0000967``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000968 This indicates that objects accessed via pointer values
969 :ref:`based <pointeraliasing>` on the argument or return value are not also
970 accessed, during the execution of the function, via pointer values not
971 *based* on the argument or return value. The attribute on a return value
972 also has additional semantics described below. The caller shares the
973 responsibility with the callee for ensuring that these requirements are met.
974 For further details, please see the discussion of the NoAlias response in
975 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000976
977 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000978 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000979
980 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000981 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
982 attribute on return values are stronger than the semantics of the attribute
983 when used on function arguments. On function return values, the ``noalias``
984 attribute indicates that the function acts like a system memory allocation
985 function, returning a pointer to allocated storage disjoint from the
986 storage for any other object accessible to the caller.
987
Sean Silvab084af42012-12-07 10:36:55 +0000988``nocapture``
989 This indicates that the callee does not make any copies of the
990 pointer that outlive the callee itself. This is not a valid
991 attribute for return values.
992
993.. _nest:
994
995``nest``
996 This indicates that the pointer parameter can be excised using the
997 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000998 attribute for return values and can only be applied to one parameter.
999
1000``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001001 This indicates that the function always returns the argument as its return
1002 value. This is an optimization hint to the code generator when generating
1003 the caller, allowing tail call optimization and omission of register saves
1004 and restores in some cases; it is not checked or enforced when generating
1005 the callee. The parameter and the function return type must be valid
1006 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1007 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001008
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001009``nonnull``
1010 This indicates that the parameter or return pointer is not null. This
1011 attribute may only be applied to pointer typed parameters. This is not
1012 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001013 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001014 is non-null.
1015
Hal Finkelb0407ba2014-07-18 15:51:28 +00001016``dereferenceable(<n>)``
1017 This indicates that the parameter or return pointer is dereferenceable. This
1018 attribute may only be applied to pointer typed parameters. A pointer that
1019 is dereferenceable can be loaded from speculatively without a risk of
1020 trapping. The number of bytes known to be dereferenceable must be provided
1021 in parentheses. It is legal for the number of bytes to be less than the
1022 size of the pointee type. The ``nonnull`` attribute does not imply
1023 dereferenceability (consider a pointer to one element past the end of an
1024 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1025 ``addrspace(0)`` (which is the default address space).
1026
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001027``dereferenceable_or_null(<n>)``
1028 This indicates that the parameter or return value isn't both
1029 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
Sean Silvaa1190322015-08-06 22:56:48 +00001030 time. All non-null pointers tagged with
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001031 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1032 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1033 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1034 and in other address spaces ``dereferenceable_or_null(<n>)``
1035 implies that a pointer is at least one of ``dereferenceable(<n>)``
1036 or ``null`` (i.e. it may be both ``null`` and
Sean Silvaa1190322015-08-06 22:56:48 +00001037 ``dereferenceable(<n>)``). This attribute may only be applied to
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001038 pointer typed parameters.
1039
Sean Silvab084af42012-12-07 10:36:55 +00001040.. _gc:
1041
Philip Reamesf80bbff2015-02-25 23:45:20 +00001042Garbage Collector Strategy Names
1043--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001044
Philip Reamesf80bbff2015-02-25 23:45:20 +00001045Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001046string:
1047
1048.. code-block:: llvm
1049
1050 define void @f() gc "name" { ... }
1051
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001052The supported values of *name* includes those :ref:`built in to LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00001053<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001054strategy will cause the compiler to alter its output in order to support the
Sean Silvaa1190322015-08-06 22:56:48 +00001055named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001056garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001057which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001058
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001059.. _prefixdata:
1060
1061Prefix Data
1062-----------
1063
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001064Prefix data is data associated with a function which the code
1065generator will emit immediately before the function's entrypoint.
1066The purpose of this feature is to allow frontends to associate
1067language-specific runtime metadata with specific functions and make it
1068available through the function pointer while still allowing the
1069function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001070
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001071To access the data for a given function, a program may bitcast the
1072function pointer to a pointer to the constant's type and dereference
Sean Silvaa1190322015-08-06 22:56:48 +00001073index -1. This implies that the IR symbol points just past the end of
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001074the prefix data. For instance, take the example of a function annotated
1075with a single ``i32``,
1076
1077.. code-block:: llvm
1078
1079 define void @f() prefix i32 123 { ... }
1080
1081The prefix data can be referenced as,
1082
1083.. code-block:: llvm
1084
David Blaikie16a97eb2015-03-04 22:02:58 +00001085 %0 = bitcast void* () @f to i32*
1086 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001087 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001088
1089Prefix data is laid out as if it were an initializer for a global variable
Sean Silvaa1190322015-08-06 22:56:48 +00001090of the prefix data's type. The function will be placed such that the
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001091beginning of the prefix data is aligned. This means that if the size
1092of the prefix data is not a multiple of the alignment size, the
1093function's entrypoint will not be aligned. If alignment of the
1094function's entrypoint is desired, padding must be added to the prefix
1095data.
1096
Sean Silvaa1190322015-08-06 22:56:48 +00001097A function may have prefix data but no body. This has similar semantics
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001098to the ``available_externally`` linkage in that the data may be used by the
1099optimizers but will not be emitted in the object file.
1100
1101.. _prologuedata:
1102
1103Prologue Data
1104-------------
1105
1106The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1107be inserted prior to the function body. This can be used for enabling
1108function hot-patching and instrumentation.
1109
1110To maintain the semantics of ordinary function calls, the prologue data must
Sean Silvaa1190322015-08-06 22:56:48 +00001111have a particular format. Specifically, it must begin with a sequence of
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001112bytes which decode to a sequence of machine instructions, valid for the
1113module's target, which transfer control to the point immediately succeeding
Sean Silvaa1190322015-08-06 22:56:48 +00001114the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001115the inliner and other passes to reason about the semantics of the function
Sean Silvaa1190322015-08-06 22:56:48 +00001116definition without needing to reason about the prologue data. Obviously this
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001117makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001118
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001119A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001120which encodes the ``nop`` instruction:
1121
1122.. code-block:: llvm
1123
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001124 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001125
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001126Generally prologue data can be formed by encoding a relative branch instruction
1127which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001128x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1129
1130.. code-block:: llvm
1131
1132 %0 = type <{ i8, i8, i8* }>
1133
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001134 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001135
Sean Silvaa1190322015-08-06 22:56:48 +00001136A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001137to the ``available_externally`` linkage in that the data may be used by the
1138optimizers but will not be emitted in the object file.
1139
David Majnemer7fddecc2015-06-17 20:52:32 +00001140.. _personalityfn:
1141
1142Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001143--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001144
1145The ``personality`` attribute permits functions to specify what function
1146to use for exception handling.
1147
Bill Wendling63b88192013-02-06 06:52:58 +00001148.. _attrgrp:
1149
1150Attribute Groups
1151----------------
1152
1153Attribute groups are groups of attributes that are referenced by objects within
1154the IR. They are important for keeping ``.ll`` files readable, because a lot of
1155functions will use the same set of attributes. In the degenerative case of a
1156``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1157group will capture the important command line flags used to build that file.
1158
1159An attribute group is a module-level object. To use an attribute group, an
1160object references the attribute group's ID (e.g. ``#37``). An object may refer
1161to more than one attribute group. In that situation, the attributes from the
1162different groups are merged.
1163
1164Here is an example of attribute groups for a function that should always be
1165inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1166
1167.. code-block:: llvm
1168
1169 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001170 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001171
1172 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001173 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001174
1175 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1176 define void @f() #0 #1 { ... }
1177
Sean Silvab084af42012-12-07 10:36:55 +00001178.. _fnattrs:
1179
1180Function Attributes
1181-------------------
1182
1183Function attributes are set to communicate additional information about
1184a function. Function attributes are considered to be part of the
1185function, not of the function type, so functions with different function
1186attributes can have the same function type.
1187
1188Function attributes are simple keywords that follow the type specified.
1189If multiple attributes are needed, they are space separated. For
1190example:
1191
1192.. code-block:: llvm
1193
1194 define void @f() noinline { ... }
1195 define void @f() alwaysinline { ... }
1196 define void @f() alwaysinline optsize { ... }
1197 define void @f() optsize { ... }
1198
Sean Silvab084af42012-12-07 10:36:55 +00001199``alignstack(<n>)``
1200 This attribute indicates that, when emitting the prologue and
1201 epilogue, the backend should forcibly align the stack pointer.
1202 Specify the desired alignment, which must be a power of two, in
1203 parentheses.
1204``alwaysinline``
1205 This attribute indicates that the inliner should attempt to inline
1206 this function into callers whenever possible, ignoring any active
1207 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001208``builtin``
1209 This indicates that the callee function at a call site should be
1210 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001211 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001212 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001213 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001214``cold``
1215 This attribute indicates that this function is rarely called. When
1216 computing edge weights, basic blocks post-dominated by a cold
1217 function call are also considered to be cold; and, thus, given low
1218 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001219``convergent``
1220 This attribute indicates that the callee is dependent on a convergent
1221 thread execution pattern under certain parallel execution models.
1222 Transformations that are execution model agnostic may only move or
1223 tranform this call if the final location is control equivalent to its
1224 original position in the program, where control equivalence is defined as
1225 A dominates B and B post-dominates A, or vice versa.
Sean Silvab084af42012-12-07 10:36:55 +00001226``inlinehint``
1227 This attribute indicates that the source code contained a hint that
1228 inlining this function is desirable (such as the "inline" keyword in
1229 C/C++). It is just a hint; it imposes no requirements on the
1230 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001231``jumptable``
1232 This attribute indicates that the function should be added to a
1233 jump-instruction table at code-generation time, and that all address-taken
1234 references to this function should be replaced with a reference to the
1235 appropriate jump-instruction-table function pointer. Note that this creates
1236 a new pointer for the original function, which means that code that depends
1237 on function-pointer identity can break. So, any function annotated with
1238 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001239``minsize``
1240 This attribute suggests that optimization passes and code generator
1241 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001242 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001243 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001244``naked``
1245 This attribute disables prologue / epilogue emission for the
1246 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001247``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001248 This indicates that the callee function at a call site is not recognized as
1249 a built-in function. LLVM will retain the original call and not replace it
1250 with equivalent code based on the semantics of the built-in function, unless
1251 the call site uses the ``builtin`` attribute. This is valid at call sites
1252 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001253``noduplicate``
1254 This attribute indicates that calls to the function cannot be
1255 duplicated. A call to a ``noduplicate`` function may be moved
1256 within its parent function, but may not be duplicated within
1257 its parent function.
1258
1259 A function containing a ``noduplicate`` call may still
1260 be an inlining candidate, provided that the call is not
1261 duplicated by inlining. That implies that the function has
1262 internal linkage and only has one call site, so the original
1263 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001264``noimplicitfloat``
1265 This attributes disables implicit floating point instructions.
1266``noinline``
1267 This attribute indicates that the inliner should never inline this
1268 function in any situation. This attribute may not be used together
1269 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001270``nonlazybind``
1271 This attribute suppresses lazy symbol binding for the function. This
1272 may make calls to the function faster, at the cost of extra program
1273 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001274``noredzone``
1275 This attribute indicates that the code generator should not use a
1276 red zone, even if the target-specific ABI normally permits it.
1277``noreturn``
1278 This function attribute indicates that the function never returns
1279 normally. This produces undefined behavior at runtime if the
1280 function ever does dynamically return.
1281``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001282 This function attribute indicates that the function never raises an
1283 exception. If the function does raise an exception, its runtime
1284 behavior is undefined. However, functions marked nounwind may still
1285 trap or generate asynchronous exceptions. Exception handling schemes
1286 that are recognized by LLVM to handle asynchronous exceptions, such
1287 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001288``optnone``
1289 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001290 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001291 exception of interprocedural optimization passes.
1292 This attribute cannot be used together with the ``alwaysinline``
1293 attribute; this attribute is also incompatible
1294 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001295
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001296 This attribute requires the ``noinline`` attribute to be specified on
1297 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001298 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001299 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001300``optsize``
1301 This attribute suggests that optimization passes and code generator
1302 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001303 and otherwise do optimizations specifically to reduce code size as
1304 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001305``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001306 On a function, this attribute indicates that the function computes its
1307 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001308 without dereferencing any pointer arguments or otherwise accessing
1309 any mutable state (e.g. memory, control registers, etc) visible to
1310 caller functions. It does not write through any pointer arguments
1311 (including ``byval`` arguments) and never changes any state visible
1312 to callers. This means that it cannot unwind exceptions by calling
1313 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001314
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001315 On an argument, this attribute indicates that the function does not
1316 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001317 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001318``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001319 On a function, this attribute indicates that the function does not write
1320 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001321 modify any state (e.g. memory, control registers, etc) visible to
1322 caller functions. It may dereference pointer arguments and read
1323 state that may be set in the caller. A readonly function always
1324 returns the same value (or unwinds an exception identically) when
1325 called with the same set of arguments and global state. It cannot
1326 unwind an exception by calling the ``C++`` exception throwing
1327 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001328
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001329 On an argument, this attribute indicates that the function does not write
1330 through this pointer argument, even though it may write to the memory that
1331 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001332``argmemonly``
1333 This attribute indicates that the only memory accesses inside function are
1334 loads and stores from objects pointed to by its pointer-typed arguments,
1335 with arbitrary offsets. Or in other words, all memory operations in the
1336 function can refer to memory only using pointers based on its function
1337 arguments.
1338 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1339 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001340``returns_twice``
1341 This attribute indicates that this function can return twice. The C
1342 ``setjmp`` is an example of such a function. The compiler disables
1343 some optimizations (like tail calls) in the caller of these
1344 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001345``safestack``
1346 This attribute indicates that
1347 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1348 protection is enabled for this function.
1349
1350 If a function that has a ``safestack`` attribute is inlined into a
1351 function that doesn't have a ``safestack`` attribute or which has an
1352 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1353 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001354``sanitize_address``
1355 This attribute indicates that AddressSanitizer checks
1356 (dynamic address safety analysis) are enabled for this function.
1357``sanitize_memory``
1358 This attribute indicates that MemorySanitizer checks (dynamic detection
1359 of accesses to uninitialized memory) are enabled for this function.
1360``sanitize_thread``
1361 This attribute indicates that ThreadSanitizer checks
1362 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001363``ssp``
1364 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001365 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001366 placed on the stack before the local variables that's checked upon
1367 return from the function to see if it has been overwritten. A
1368 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001369 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001370
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001371 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1372 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1373 - Calls to alloca() with variable sizes or constant sizes greater than
1374 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001375
Josh Magee24c7f062014-02-01 01:36:16 +00001376 Variables that are identified as requiring a protector will be arranged
1377 on the stack such that they are adjacent to the stack protector guard.
1378
Sean Silvab084af42012-12-07 10:36:55 +00001379 If a function that has an ``ssp`` attribute is inlined into a
1380 function that doesn't have an ``ssp`` attribute, then the resulting
1381 function will have an ``ssp`` attribute.
1382``sspreq``
1383 This attribute indicates that the function should *always* emit a
1384 stack smashing protector. This overrides the ``ssp`` function
1385 attribute.
1386
Josh Magee24c7f062014-02-01 01:36:16 +00001387 Variables that are identified as requiring a protector will be arranged
1388 on the stack such that they are adjacent to the stack protector guard.
1389 The specific layout rules are:
1390
1391 #. Large arrays and structures containing large arrays
1392 (``>= ssp-buffer-size``) are closest to the stack protector.
1393 #. Small arrays and structures containing small arrays
1394 (``< ssp-buffer-size``) are 2nd closest to the protector.
1395 #. Variables that have had their address taken are 3rd closest to the
1396 protector.
1397
Sean Silvab084af42012-12-07 10:36:55 +00001398 If a function that has an ``sspreq`` attribute is inlined into a
1399 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001400 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1401 an ``sspreq`` attribute.
1402``sspstrong``
1403 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001404 protector. This attribute causes a strong heuristic to be used when
Sean Silvaa1190322015-08-06 22:56:48 +00001405 determining if a function needs stack protectors. The strong heuristic
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001406 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001407
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001408 - Arrays of any size and type
1409 - Aggregates containing an array of any size and type.
1410 - Calls to alloca().
1411 - Local variables that have had their address taken.
1412
Josh Magee24c7f062014-02-01 01:36:16 +00001413 Variables that are identified as requiring a protector will be arranged
1414 on the stack such that they are adjacent to the stack protector guard.
1415 The specific layout rules are:
1416
1417 #. Large arrays and structures containing large arrays
1418 (``>= ssp-buffer-size``) are closest to the stack protector.
1419 #. Small arrays and structures containing small arrays
1420 (``< ssp-buffer-size``) are 2nd closest to the protector.
1421 #. Variables that have had their address taken are 3rd closest to the
1422 protector.
1423
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001424 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001425
1426 If a function that has an ``sspstrong`` attribute is inlined into a
1427 function that doesn't have an ``sspstrong`` attribute, then the
1428 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001429``"thunk"``
1430 This attribute indicates that the function will delegate to some other
1431 function with a tail call. The prototype of a thunk should not be used for
1432 optimization purposes. The caller is expected to cast the thunk prototype to
1433 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001434``uwtable``
1435 This attribute indicates that the ABI being targeted requires that
Sean Silva706fba52015-08-06 22:56:24 +00001436 an unwind table entry be produced for this function even if we can
Sean Silvab084af42012-12-07 10:36:55 +00001437 show that no exceptions passes by it. This is normally the case for
1438 the ELF x86-64 abi, but it can be disabled for some compilation
1439 units.
Sean Silvab084af42012-12-07 10:36:55 +00001440
1441.. _moduleasm:
1442
1443Module-Level Inline Assembly
1444----------------------------
1445
1446Modules may contain "module-level inline asm" blocks, which corresponds
1447to the GCC "file scope inline asm" blocks. These blocks are internally
1448concatenated by LLVM and treated as a single unit, but may be separated
1449in the ``.ll`` file if desired. The syntax is very simple:
1450
1451.. code-block:: llvm
1452
1453 module asm "inline asm code goes here"
1454 module asm "more can go here"
1455
1456The strings can contain any character by escaping non-printable
1457characters. The escape sequence used is simply "\\xx" where "xx" is the
1458two digit hex code for the number.
1459
James Y Knightbc832ed2015-07-08 18:08:36 +00001460Note that the assembly string *must* be parseable by LLVM's integrated assembler
1461(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001462
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001463.. _langref_datalayout:
1464
Sean Silvab084af42012-12-07 10:36:55 +00001465Data Layout
1466-----------
1467
1468A module may specify a target specific data layout string that specifies
1469how data is to be laid out in memory. The syntax for the data layout is
1470simply:
1471
1472.. code-block:: llvm
1473
1474 target datalayout = "layout specification"
1475
1476The *layout specification* consists of a list of specifications
1477separated by the minus sign character ('-'). Each specification starts
1478with a letter and may include other information after the letter to
1479define some aspect of the data layout. The specifications accepted are
1480as follows:
1481
1482``E``
1483 Specifies that the target lays out data in big-endian form. That is,
1484 the bits with the most significance have the lowest address
1485 location.
1486``e``
1487 Specifies that the target lays out data in little-endian form. That
1488 is, the bits with the least significance have the lowest address
1489 location.
1490``S<size>``
1491 Specifies the natural alignment of the stack in bits. Alignment
1492 promotion of stack variables is limited to the natural stack
1493 alignment to avoid dynamic stack realignment. The stack alignment
1494 must be a multiple of 8-bits. If omitted, the natural stack
1495 alignment defaults to "unspecified", which does not prevent any
1496 alignment promotions.
1497``p[n]:<size>:<abi>:<pref>``
1498 This specifies the *size* of a pointer and its ``<abi>`` and
1499 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Sean Silva706fba52015-08-06 22:56:24 +00001500 bits. The address space, ``n``, is optional, and if not specified,
Sean Silvaa1190322015-08-06 22:56:48 +00001501 denotes the default address space 0. The value of ``n`` must be
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001502 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001503``i<size>:<abi>:<pref>``
1504 This specifies the alignment for an integer type of a given bit
1505 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1506``v<size>:<abi>:<pref>``
1507 This specifies the alignment for a vector type of a given bit
1508 ``<size>``.
1509``f<size>:<abi>:<pref>``
1510 This specifies the alignment for a floating point type of a given bit
1511 ``<size>``. Only values of ``<size>`` that are supported by the target
1512 will work. 32 (float) and 64 (double) are supported on all targets; 80
1513 or 128 (different flavors of long double) are also supported on some
1514 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001515``a:<abi>:<pref>``
1516 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001517``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001518 If present, specifies that llvm names are mangled in the output. The
1519 options are
1520
1521 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1522 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1523 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1524 symbols get a ``_`` prefix.
1525 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1526 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001527``n<size1>:<size2>:<size3>...``
1528 This specifies a set of native integer widths for the target CPU in
1529 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1530 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1531 this set are considered to support most general arithmetic operations
1532 efficiently.
1533
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001534On every specification that takes a ``<abi>:<pref>``, specifying the
1535``<pref>`` alignment is optional. If omitted, the preceding ``:``
1536should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1537
Sean Silvab084af42012-12-07 10:36:55 +00001538When constructing the data layout for a given target, LLVM starts with a
1539default set of specifications which are then (possibly) overridden by
1540the specifications in the ``datalayout`` keyword. The default
1541specifications are given in this list:
1542
1543- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001544- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1545- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1546 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001547- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001548- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1549- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1550- ``i16:16:16`` - i16 is 16-bit aligned
1551- ``i32:32:32`` - i32 is 32-bit aligned
1552- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1553 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001554- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001555- ``f32:32:32`` - float is 32-bit aligned
1556- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001557- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001558- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1559- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001560- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001561
1562When LLVM is determining the alignment for a given type, it uses the
1563following rules:
1564
1565#. If the type sought is an exact match for one of the specifications,
1566 that specification is used.
1567#. If no match is found, and the type sought is an integer type, then
1568 the smallest integer type that is larger than the bitwidth of the
1569 sought type is used. If none of the specifications are larger than
1570 the bitwidth then the largest integer type is used. For example,
1571 given the default specifications above, the i7 type will use the
1572 alignment of i8 (next largest) while both i65 and i256 will use the
1573 alignment of i64 (largest specified).
1574#. If no match is found, and the type sought is a vector type, then the
1575 largest vector type that is smaller than the sought vector type will
1576 be used as a fall back. This happens because <128 x double> can be
1577 implemented in terms of 64 <2 x double>, for example.
1578
1579The function of the data layout string may not be what you expect.
1580Notably, this is not a specification from the frontend of what alignment
1581the code generator should use.
1582
1583Instead, if specified, the target data layout is required to match what
1584the ultimate *code generator* expects. This string is used by the
1585mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001586what the ultimate code generator uses. There is no way to generate IR
1587that does not embed this target-specific detail into the IR. If you
1588don't specify the string, the default specifications will be used to
1589generate a Data Layout and the optimization phases will operate
1590accordingly and introduce target specificity into the IR with respect to
1591these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001592
Bill Wendling5cc90842013-10-18 23:41:25 +00001593.. _langref_triple:
1594
1595Target Triple
1596-------------
1597
1598A module may specify a target triple string that describes the target
1599host. The syntax for the target triple is simply:
1600
1601.. code-block:: llvm
1602
1603 target triple = "x86_64-apple-macosx10.7.0"
1604
1605The *target triple* string consists of a series of identifiers delimited
1606by the minus sign character ('-'). The canonical forms are:
1607
1608::
1609
1610 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1611 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1612
1613This information is passed along to the backend so that it generates
1614code for the proper architecture. It's possible to override this on the
1615command line with the ``-mtriple`` command line option.
1616
Sean Silvab084af42012-12-07 10:36:55 +00001617.. _pointeraliasing:
1618
1619Pointer Aliasing Rules
1620----------------------
1621
1622Any memory access must be done through a pointer value associated with
1623an address range of the memory access, otherwise the behavior is
1624undefined. Pointer values are associated with address ranges according
1625to the following rules:
1626
1627- A pointer value is associated with the addresses associated with any
1628 value it is *based* on.
1629- An address of a global variable is associated with the address range
1630 of the variable's storage.
1631- The result value of an allocation instruction is associated with the
1632 address range of the allocated storage.
1633- A null pointer in the default address-space is associated with no
1634 address.
1635- An integer constant other than zero or a pointer value returned from
1636 a function not defined within LLVM may be associated with address
1637 ranges allocated through mechanisms other than those provided by
1638 LLVM. Such ranges shall not overlap with any ranges of addresses
1639 allocated by mechanisms provided by LLVM.
1640
1641A pointer value is *based* on another pointer value according to the
1642following rules:
1643
1644- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001645 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001646- The result value of a ``bitcast`` is *based* on the operand of the
1647 ``bitcast``.
1648- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1649 values that contribute (directly or indirectly) to the computation of
1650 the pointer's value.
1651- The "*based* on" relationship is transitive.
1652
1653Note that this definition of *"based"* is intentionally similar to the
1654definition of *"based"* in C99, though it is slightly weaker.
1655
1656LLVM IR does not associate types with memory. The result type of a
1657``load`` merely indicates the size and alignment of the memory from
1658which to load, as well as the interpretation of the value. The first
1659operand type of a ``store`` similarly only indicates the size and
1660alignment of the store.
1661
1662Consequently, type-based alias analysis, aka TBAA, aka
1663``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1664:ref:`Metadata <metadata>` may be used to encode additional information
1665which specialized optimization passes may use to implement type-based
1666alias analysis.
1667
1668.. _volatile:
1669
1670Volatile Memory Accesses
1671------------------------
1672
1673Certain memory accesses, such as :ref:`load <i_load>`'s,
1674:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1675marked ``volatile``. The optimizers must not change the number of
1676volatile operations or change their order of execution relative to other
1677volatile operations. The optimizers *may* change the order of volatile
1678operations relative to non-volatile operations. This is not Java's
1679"volatile" and has no cross-thread synchronization behavior.
1680
Andrew Trick89fc5a62013-01-30 21:19:35 +00001681IR-level volatile loads and stores cannot safely be optimized into
1682llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1683flagged volatile. Likewise, the backend should never split or merge
1684target-legal volatile load/store instructions.
1685
Andrew Trick7e6f9282013-01-31 00:49:39 +00001686.. admonition:: Rationale
1687
1688 Platforms may rely on volatile loads and stores of natively supported
1689 data width to be executed as single instruction. For example, in C
1690 this holds for an l-value of volatile primitive type with native
1691 hardware support, but not necessarily for aggregate types. The
1692 frontend upholds these expectations, which are intentionally
Sean Silva706fba52015-08-06 22:56:24 +00001693 unspecified in the IR. The rules above ensure that IR transformations
Andrew Trick7e6f9282013-01-31 00:49:39 +00001694 do not violate the frontend's contract with the language.
1695
Sean Silvab084af42012-12-07 10:36:55 +00001696.. _memmodel:
1697
1698Memory Model for Concurrent Operations
1699--------------------------------------
1700
1701The LLVM IR does not define any way to start parallel threads of
1702execution or to register signal handlers. Nonetheless, there are
1703platform-specific ways to create them, and we define LLVM IR's behavior
1704in their presence. This model is inspired by the C++0x memory model.
1705
1706For a more informal introduction to this model, see the :doc:`Atomics`.
1707
1708We define a *happens-before* partial order as the least partial order
1709that
1710
1711- Is a superset of single-thread program order, and
1712- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1713 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1714 techniques, like pthread locks, thread creation, thread joining,
1715 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1716 Constraints <ordering>`).
1717
1718Note that program order does not introduce *happens-before* edges
1719between a thread and signals executing inside that thread.
1720
1721Every (defined) read operation (load instructions, memcpy, atomic
1722loads/read-modify-writes, etc.) R reads a series of bytes written by
1723(defined) write operations (store instructions, atomic
1724stores/read-modify-writes, memcpy, etc.). For the purposes of this
1725section, initialized globals are considered to have a write of the
1726initializer which is atomic and happens before any other read or write
1727of the memory in question. For each byte of a read R, R\ :sub:`byte`
1728may see any write to the same byte, except:
1729
1730- If write\ :sub:`1` happens before write\ :sub:`2`, and
1731 write\ :sub:`2` happens before R\ :sub:`byte`, then
1732 R\ :sub:`byte` does not see write\ :sub:`1`.
1733- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1734 R\ :sub:`byte` does not see write\ :sub:`3`.
1735
1736Given that definition, R\ :sub:`byte` is defined as follows:
1737
1738- If R is volatile, the result is target-dependent. (Volatile is
1739 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001740 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001741 like normal memory. It does not generally provide cross-thread
1742 synchronization.)
1743- Otherwise, if there is no write to the same byte that happens before
1744 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1745- Otherwise, if R\ :sub:`byte` may see exactly one write,
1746 R\ :sub:`byte` returns the value written by that write.
1747- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1748 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1749 Memory Ordering Constraints <ordering>` section for additional
1750 constraints on how the choice is made.
1751- Otherwise R\ :sub:`byte` returns ``undef``.
1752
1753R returns the value composed of the series of bytes it read. This
1754implies that some bytes within the value may be ``undef`` **without**
1755the entire value being ``undef``. Note that this only defines the
1756semantics of the operation; it doesn't mean that targets will emit more
1757than one instruction to read the series of bytes.
1758
1759Note that in cases where none of the atomic intrinsics are used, this
1760model places only one restriction on IR transformations on top of what
1761is required for single-threaded execution: introducing a store to a byte
1762which might not otherwise be stored is not allowed in general.
1763(Specifically, in the case where another thread might write to and read
1764from an address, introducing a store can change a load that may see
1765exactly one write into a load that may see multiple writes.)
1766
1767.. _ordering:
1768
1769Atomic Memory Ordering Constraints
1770----------------------------------
1771
1772Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1773:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1774:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001775ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001776the same address they *synchronize with*. These semantics are borrowed
1777from Java and C++0x, but are somewhat more colloquial. If these
1778descriptions aren't precise enough, check those specs (see spec
1779references in the :doc:`atomics guide <Atomics>`).
1780:ref:`fence <i_fence>` instructions treat these orderings somewhat
1781differently since they don't take an address. See that instruction's
1782documentation for details.
1783
1784For a simpler introduction to the ordering constraints, see the
1785:doc:`Atomics`.
1786
1787``unordered``
1788 The set of values that can be read is governed by the happens-before
1789 partial order. A value cannot be read unless some operation wrote
1790 it. This is intended to provide a guarantee strong enough to model
1791 Java's non-volatile shared variables. This ordering cannot be
1792 specified for read-modify-write operations; it is not strong enough
1793 to make them atomic in any interesting way.
1794``monotonic``
1795 In addition to the guarantees of ``unordered``, there is a single
1796 total order for modifications by ``monotonic`` operations on each
1797 address. All modification orders must be compatible with the
1798 happens-before order. There is no guarantee that the modification
1799 orders can be combined to a global total order for the whole program
1800 (and this often will not be possible). The read in an atomic
1801 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1802 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1803 order immediately before the value it writes. If one atomic read
1804 happens before another atomic read of the same address, the later
1805 read must see the same value or a later value in the address's
1806 modification order. This disallows reordering of ``monotonic`` (or
1807 stronger) operations on the same address. If an address is written
1808 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1809 read that address repeatedly, the other threads must eventually see
1810 the write. This corresponds to the C++0x/C1x
1811 ``memory_order_relaxed``.
1812``acquire``
1813 In addition to the guarantees of ``monotonic``, a
1814 *synchronizes-with* edge may be formed with a ``release`` operation.
1815 This is intended to model C++'s ``memory_order_acquire``.
1816``release``
1817 In addition to the guarantees of ``monotonic``, if this operation
1818 writes a value which is subsequently read by an ``acquire``
1819 operation, it *synchronizes-with* that operation. (This isn't a
1820 complete description; see the C++0x definition of a release
1821 sequence.) This corresponds to the C++0x/C1x
1822 ``memory_order_release``.
1823``acq_rel`` (acquire+release)
1824 Acts as both an ``acquire`` and ``release`` operation on its
1825 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1826``seq_cst`` (sequentially consistent)
1827 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001828 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001829 writes), there is a global total order on all
1830 sequentially-consistent operations on all addresses, which is
1831 consistent with the *happens-before* partial order and with the
1832 modification orders of all the affected addresses. Each
1833 sequentially-consistent read sees the last preceding write to the
1834 same address in this global order. This corresponds to the C++0x/C1x
1835 ``memory_order_seq_cst`` and Java volatile.
1836
1837.. _singlethread:
1838
1839If an atomic operation is marked ``singlethread``, it only *synchronizes
1840with* or participates in modification and seq\_cst total orderings with
1841other operations running in the same thread (for example, in signal
1842handlers).
1843
1844.. _fastmath:
1845
1846Fast-Math Flags
1847---------------
1848
1849LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1850:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00001851:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
1852be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00001853
1854``nnan``
1855 No NaNs - Allow optimizations to assume the arguments and result are not
1856 NaN. Such optimizations are required to retain defined behavior over
1857 NaNs, but the value of the result is undefined.
1858
1859``ninf``
1860 No Infs - Allow optimizations to assume the arguments and result are not
1861 +/-Inf. Such optimizations are required to retain defined behavior over
1862 +/-Inf, but the value of the result is undefined.
1863
1864``nsz``
1865 No Signed Zeros - Allow optimizations to treat the sign of a zero
1866 argument or result as insignificant.
1867
1868``arcp``
1869 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1870 argument rather than perform division.
1871
1872``fast``
1873 Fast - Allow algebraically equivalent transformations that may
1874 dramatically change results in floating point (e.g. reassociate). This
1875 flag implies all the others.
1876
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001877.. _uselistorder:
1878
1879Use-list Order Directives
1880-------------------------
1881
1882Use-list directives encode the in-memory order of each use-list, allowing the
Sean Silvaa1190322015-08-06 22:56:48 +00001883order to be recreated. ``<order-indexes>`` is a comma-separated list of
1884indexes that are assigned to the referenced value's uses. The referenced
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001885value's use-list is immediately sorted by these indexes.
1886
Sean Silvaa1190322015-08-06 22:56:48 +00001887Use-list directives may appear at function scope or global scope. They are not
1888instructions, and have no effect on the semantics of the IR. When they're at
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001889function scope, they must appear after the terminator of the final basic block.
1890
1891If basic blocks have their address taken via ``blockaddress()`` expressions,
1892``uselistorder_bb`` can be used to reorder their use-lists from outside their
1893function's scope.
1894
1895:Syntax:
1896
1897::
1898
1899 uselistorder <ty> <value>, { <order-indexes> }
1900 uselistorder_bb @function, %block { <order-indexes> }
1901
1902:Examples:
1903
1904::
1905
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001906 define void @foo(i32 %arg1, i32 %arg2) {
1907 entry:
1908 ; ... instructions ...
1909 bb:
1910 ; ... instructions ...
1911
1912 ; At function scope.
1913 uselistorder i32 %arg1, { 1, 0, 2 }
1914 uselistorder label %bb, { 1, 0 }
1915 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001916
1917 ; At global scope.
1918 uselistorder i32* @global, { 1, 2, 0 }
1919 uselistorder i32 7, { 1, 0 }
1920 uselistorder i32 (i32) @bar, { 1, 0 }
1921 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1922
Sean Silvab084af42012-12-07 10:36:55 +00001923.. _typesystem:
1924
1925Type System
1926===========
1927
1928The LLVM type system is one of the most important features of the
1929intermediate representation. Being typed enables a number of
1930optimizations to be performed on the intermediate representation
1931directly, without having to do extra analyses on the side before the
1932transformation. A strong type system makes it easier to read the
1933generated code and enables novel analyses and transformations that are
1934not feasible to perform on normal three address code representations.
1935
Rafael Espindola08013342013-12-07 19:34:20 +00001936.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001937
Rafael Espindola08013342013-12-07 19:34:20 +00001938Void Type
1939---------
Sean Silvab084af42012-12-07 10:36:55 +00001940
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001941:Overview:
1942
Rafael Espindola08013342013-12-07 19:34:20 +00001943
1944The void type does not represent any value and has no size.
1945
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001946:Syntax:
1947
Rafael Espindola08013342013-12-07 19:34:20 +00001948
1949::
1950
1951 void
Sean Silvab084af42012-12-07 10:36:55 +00001952
1953
Rafael Espindola08013342013-12-07 19:34:20 +00001954.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001955
Rafael Espindola08013342013-12-07 19:34:20 +00001956Function Type
1957-------------
Sean Silvab084af42012-12-07 10:36:55 +00001958
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001959:Overview:
1960
Sean Silvab084af42012-12-07 10:36:55 +00001961
Rafael Espindola08013342013-12-07 19:34:20 +00001962The function type can be thought of as a function signature. It consists of a
1963return type and a list of formal parameter types. The return type of a function
1964type is a void type or first class type --- except for :ref:`label <t_label>`
1965and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001966
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001967:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001968
Rafael Espindola08013342013-12-07 19:34:20 +00001969::
Sean Silvab084af42012-12-07 10:36:55 +00001970
Rafael Espindola08013342013-12-07 19:34:20 +00001971 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001972
Rafael Espindola08013342013-12-07 19:34:20 +00001973...where '``<parameter list>``' is a comma-separated list of type
1974specifiers. Optionally, the parameter list may include a type ``...``, which
Sean Silvaa1190322015-08-06 22:56:48 +00001975indicates that the function takes a variable number of arguments. Variable
Rafael Espindola08013342013-12-07 19:34:20 +00001976argument functions can access their arguments with the :ref:`variable argument
Sean Silvaa1190322015-08-06 22:56:48 +00001977handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
Rafael Espindola08013342013-12-07 19:34:20 +00001978except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001979
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001980:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001981
Rafael Espindola08013342013-12-07 19:34:20 +00001982+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1983| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1984+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1985| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1986+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1987| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1988+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1989| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1990+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1991
1992.. _t_firstclass:
1993
1994First Class Types
1995-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001996
1997The :ref:`first class <t_firstclass>` types are perhaps the most important.
1998Values of these types are the only ones which can be produced by
1999instructions.
2000
Rafael Espindola08013342013-12-07 19:34:20 +00002001.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002002
Rafael Espindola08013342013-12-07 19:34:20 +00002003Single Value Types
2004^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002005
Rafael Espindola08013342013-12-07 19:34:20 +00002006These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002007
2008.. _t_integer:
2009
2010Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002011""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002012
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002013:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002014
2015The integer type is a very simple type that simply specifies an
2016arbitrary bit width for the integer type desired. Any bit width from 1
2017bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2018
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002019:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002020
2021::
2022
2023 iN
2024
2025The number of bits the integer will occupy is specified by the ``N``
2026value.
2027
2028Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002029*********
Sean Silvab084af42012-12-07 10:36:55 +00002030
2031+----------------+------------------------------------------------+
2032| ``i1`` | a single-bit integer. |
2033+----------------+------------------------------------------------+
2034| ``i32`` | a 32-bit integer. |
2035+----------------+------------------------------------------------+
2036| ``i1942652`` | a really big integer of over 1 million bits. |
2037+----------------+------------------------------------------------+
2038
2039.. _t_floating:
2040
2041Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002042""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002043
2044.. list-table::
2045 :header-rows: 1
2046
2047 * - Type
2048 - Description
2049
2050 * - ``half``
2051 - 16-bit floating point value
2052
2053 * - ``float``
2054 - 32-bit floating point value
2055
2056 * - ``double``
2057 - 64-bit floating point value
2058
2059 * - ``fp128``
2060 - 128-bit floating point value (112-bit mantissa)
2061
2062 * - ``x86_fp80``
2063 - 80-bit floating point value (X87)
2064
2065 * - ``ppc_fp128``
2066 - 128-bit floating point value (two 64-bits)
2067
Reid Kleckner9a16d082014-03-05 02:41:37 +00002068X86_mmx Type
2069""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002070
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002071:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002072
Reid Kleckner9a16d082014-03-05 02:41:37 +00002073The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002074machine. The operations allowed on it are quite limited: parameters and
2075return values, load and store, and bitcast. User-specified MMX
2076instructions are represented as intrinsic or asm calls with arguments
2077and/or results of this type. There are no arrays, vectors or constants
2078of this type.
2079
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002080:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002081
2082::
2083
Reid Kleckner9a16d082014-03-05 02:41:37 +00002084 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002085
Sean Silvab084af42012-12-07 10:36:55 +00002086
Rafael Espindola08013342013-12-07 19:34:20 +00002087.. _t_pointer:
2088
2089Pointer Type
2090""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002091
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002092:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002093
Rafael Espindola08013342013-12-07 19:34:20 +00002094The pointer type is used to specify memory locations. Pointers are
2095commonly used to reference objects in memory.
2096
2097Pointer types may have an optional address space attribute defining the
2098numbered address space where the pointed-to object resides. The default
2099address space is number zero. The semantics of non-zero address spaces
2100are target-specific.
2101
2102Note that LLVM does not permit pointers to void (``void*``) nor does it
2103permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002104
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002105:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002106
2107::
2108
Rafael Espindola08013342013-12-07 19:34:20 +00002109 <type> *
2110
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002111:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002112
2113+-------------------------+--------------------------------------------------------------------------------------------------------------+
2114| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2115+-------------------------+--------------------------------------------------------------------------------------------------------------+
2116| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2117+-------------------------+--------------------------------------------------------------------------------------------------------------+
2118| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2119+-------------------------+--------------------------------------------------------------------------------------------------------------+
2120
2121.. _t_vector:
2122
2123Vector Type
2124"""""""""""
2125
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002126:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002127
2128A vector type is a simple derived type that represents a vector of
2129elements. Vector types are used when multiple primitive data are
2130operated in parallel using a single instruction (SIMD). A vector type
2131requires a size (number of elements) and an underlying primitive data
2132type. Vector types are considered :ref:`first class <t_firstclass>`.
2133
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002134:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002135
2136::
2137
2138 < <# elements> x <elementtype> >
2139
2140The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002141elementtype may be any integer, floating point or pointer type. Vectors
2142of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002143
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002144:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002145
2146+-------------------+--------------------------------------------------+
2147| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2148+-------------------+--------------------------------------------------+
2149| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2150+-------------------+--------------------------------------------------+
2151| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2152+-------------------+--------------------------------------------------+
2153| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2154+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002155
2156.. _t_label:
2157
2158Label Type
2159^^^^^^^^^^
2160
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002161:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002162
2163The label type represents code labels.
2164
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002165:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002166
2167::
2168
2169 label
2170
2171.. _t_metadata:
2172
2173Metadata Type
2174^^^^^^^^^^^^^
2175
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002176:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002177
2178The metadata type represents embedded metadata. No derived types may be
2179created from metadata except for :ref:`function <t_function>` arguments.
2180
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002181:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002182
2183::
2184
2185 metadata
2186
Sean Silvab084af42012-12-07 10:36:55 +00002187.. _t_aggregate:
2188
2189Aggregate Types
2190^^^^^^^^^^^^^^^
2191
2192Aggregate Types are a subset of derived types that can contain multiple
2193member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2194aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2195aggregate types.
2196
2197.. _t_array:
2198
2199Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002200""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002201
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002202:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002203
2204The array type is a very simple derived type that arranges elements
2205sequentially in memory. The array type requires a size (number of
2206elements) and an underlying data type.
2207
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002208:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002209
2210::
2211
2212 [<# elements> x <elementtype>]
2213
2214The number of elements is a constant integer value; ``elementtype`` may
2215be any type with a size.
2216
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002217:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002218
2219+------------------+--------------------------------------+
2220| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2221+------------------+--------------------------------------+
2222| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2223+------------------+--------------------------------------+
2224| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2225+------------------+--------------------------------------+
2226
2227Here are some examples of multidimensional arrays:
2228
2229+-----------------------------+----------------------------------------------------------+
2230| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2231+-----------------------------+----------------------------------------------------------+
2232| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2233+-----------------------------+----------------------------------------------------------+
2234| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2235+-----------------------------+----------------------------------------------------------+
2236
2237There is no restriction on indexing beyond the end of the array implied
2238by a static type (though there are restrictions on indexing beyond the
2239bounds of an allocated object in some cases). This means that
2240single-dimension 'variable sized array' addressing can be implemented in
2241LLVM with a zero length array type. An implementation of 'pascal style
2242arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2243example.
2244
Sean Silvab084af42012-12-07 10:36:55 +00002245.. _t_struct:
2246
2247Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002248""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002249
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002250:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002251
2252The structure type is used to represent a collection of data members
2253together in memory. The elements of a structure may be any type that has
2254a size.
2255
2256Structures in memory are accessed using '``load``' and '``store``' by
2257getting a pointer to a field with the '``getelementptr``' instruction.
2258Structures in registers are accessed using the '``extractvalue``' and
2259'``insertvalue``' instructions.
2260
2261Structures may optionally be "packed" structures, which indicate that
2262the alignment of the struct is one byte, and that there is no padding
2263between the elements. In non-packed structs, padding between field types
2264is inserted as defined by the DataLayout string in the module, which is
2265required to match what the underlying code generator expects.
2266
2267Structures can either be "literal" or "identified". A literal structure
2268is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2269identified types are always defined at the top level with a name.
2270Literal types are uniqued by their contents and can never be recursive
2271or opaque since there is no way to write one. Identified types can be
2272recursive, can be opaqued, and are never uniqued.
2273
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002274:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002275
2276::
2277
2278 %T1 = type { <type list> } ; Identified normal struct type
2279 %T2 = type <{ <type list> }> ; Identified packed struct type
2280
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002281:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002282
2283+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2284| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2285+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002286| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002287+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2288| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2289+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2290
2291.. _t_opaque:
2292
2293Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002294""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002295
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002296:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002297
2298Opaque structure types are used to represent named structure types that
2299do not have a body specified. This corresponds (for example) to the C
2300notion of a forward declared structure.
2301
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002302:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002303
2304::
2305
2306 %X = type opaque
2307 %52 = type opaque
2308
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002309:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002310
2311+--------------+-------------------+
2312| ``opaque`` | An opaque type. |
2313+--------------+-------------------+
2314
Sean Silva1703e702014-04-08 21:06:22 +00002315.. _constants:
2316
Sean Silvab084af42012-12-07 10:36:55 +00002317Constants
2318=========
2319
2320LLVM has several different basic types of constants. This section
2321describes them all and their syntax.
2322
2323Simple Constants
2324----------------
2325
2326**Boolean constants**
2327 The two strings '``true``' and '``false``' are both valid constants
2328 of the ``i1`` type.
2329**Integer constants**
2330 Standard integers (such as '4') are constants of the
2331 :ref:`integer <t_integer>` type. Negative numbers may be used with
2332 integer types.
2333**Floating point constants**
2334 Floating point constants use standard decimal notation (e.g.
2335 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2336 hexadecimal notation (see below). The assembler requires the exact
2337 decimal value of a floating-point constant. For example, the
2338 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2339 decimal in binary. Floating point constants must have a :ref:`floating
2340 point <t_floating>` type.
2341**Null pointer constants**
2342 The identifier '``null``' is recognized as a null pointer constant
2343 and must be of :ref:`pointer type <t_pointer>`.
2344
2345The one non-intuitive notation for constants is the hexadecimal form of
2346floating point constants. For example, the form
2347'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2348than) '``double 4.5e+15``'. The only time hexadecimal floating point
2349constants are required (and the only time that they are generated by the
2350disassembler) is when a floating point constant must be emitted but it
2351cannot be represented as a decimal floating point number in a reasonable
2352number of digits. For example, NaN's, infinities, and other special
2353values are represented in their IEEE hexadecimal format so that assembly
2354and disassembly do not cause any bits to change in the constants.
2355
2356When using the hexadecimal form, constants of types half, float, and
2357double are represented using the 16-digit form shown above (which
2358matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002359must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002360precision, respectively. Hexadecimal format is always used for long
2361double, and there are three forms of long double. The 80-bit format used
2362by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2363128-bit format used by PowerPC (two adjacent doubles) is represented by
2364``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002365represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2366will only work if they match the long double format on your target.
2367The IEEE 16-bit format (half precision) is represented by ``0xH``
2368followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2369(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002370
Reid Kleckner9a16d082014-03-05 02:41:37 +00002371There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002372
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002373.. _complexconstants:
2374
Sean Silvab084af42012-12-07 10:36:55 +00002375Complex Constants
2376-----------------
2377
2378Complex constants are a (potentially recursive) combination of simple
2379constants and smaller complex constants.
2380
2381**Structure constants**
2382 Structure constants are represented with notation similar to
2383 structure type definitions (a comma separated list of elements,
2384 surrounded by braces (``{}``)). For example:
2385 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2386 "``@G = external global i32``". Structure constants must have
2387 :ref:`structure type <t_struct>`, and the number and types of elements
2388 must match those specified by the type.
2389**Array constants**
2390 Array constants are represented with notation similar to array type
2391 definitions (a comma separated list of elements, surrounded by
2392 square brackets (``[]``)). For example:
2393 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2394 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002395 match those specified by the type. As a special case, character array
2396 constants may also be represented as a double-quoted string using the ``c``
2397 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002398**Vector constants**
2399 Vector constants are represented with notation similar to vector
2400 type definitions (a comma separated list of elements, surrounded by
2401 less-than/greater-than's (``<>``)). For example:
2402 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2403 must have :ref:`vector type <t_vector>`, and the number and types of
2404 elements must match those specified by the type.
2405**Zero initialization**
2406 The string '``zeroinitializer``' can be used to zero initialize a
2407 value to zero of *any* type, including scalar and
2408 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2409 having to print large zero initializers (e.g. for large arrays) and
2410 is always exactly equivalent to using explicit zero initializers.
2411**Metadata node**
Sean Silvaa1190322015-08-06 22:56:48 +00002412 A metadata node is a constant tuple without types. For example:
2413 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002414 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2415 Unlike other typed constants that are meant to be interpreted as part of
2416 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002417 information such as debug info.
2418
2419Global Variable and Function Addresses
2420--------------------------------------
2421
2422The addresses of :ref:`global variables <globalvars>` and
2423:ref:`functions <functionstructure>` are always implicitly valid
2424(link-time) constants. These constants are explicitly referenced when
2425the :ref:`identifier for the global <identifiers>` is used and always have
2426:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2427file:
2428
2429.. code-block:: llvm
2430
2431 @X = global i32 17
2432 @Y = global i32 42
2433 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2434
2435.. _undefvalues:
2436
2437Undefined Values
2438----------------
2439
2440The string '``undef``' can be used anywhere a constant is expected, and
2441indicates that the user of the value may receive an unspecified
2442bit-pattern. Undefined values may be of any type (other than '``label``'
2443or '``void``') and be used anywhere a constant is permitted.
2444
2445Undefined values are useful because they indicate to the compiler that
2446the program is well defined no matter what value is used. This gives the
2447compiler more freedom to optimize. Here are some examples of
2448(potentially surprising) transformations that are valid (in pseudo IR):
2449
2450.. code-block:: llvm
2451
2452 %A = add %X, undef
2453 %B = sub %X, undef
2454 %C = xor %X, undef
2455 Safe:
2456 %A = undef
2457 %B = undef
2458 %C = undef
2459
2460This is safe because all of the output bits are affected by the undef
2461bits. Any output bit can have a zero or one depending on the input bits.
2462
2463.. code-block:: llvm
2464
2465 %A = or %X, undef
2466 %B = and %X, undef
2467 Safe:
2468 %A = -1
2469 %B = 0
2470 Unsafe:
2471 %A = undef
2472 %B = undef
2473
2474These logical operations have bits that are not always affected by the
2475input. For example, if ``%X`` has a zero bit, then the output of the
2476'``and``' operation will always be a zero for that bit, no matter what
2477the corresponding bit from the '``undef``' is. As such, it is unsafe to
2478optimize or assume that the result of the '``and``' is '``undef``'.
2479However, it is safe to assume that all bits of the '``undef``' could be
24800, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2481all the bits of the '``undef``' operand to the '``or``' could be set,
2482allowing the '``or``' to be folded to -1.
2483
2484.. code-block:: llvm
2485
2486 %A = select undef, %X, %Y
2487 %B = select undef, 42, %Y
2488 %C = select %X, %Y, undef
2489 Safe:
2490 %A = %X (or %Y)
2491 %B = 42 (or %Y)
2492 %C = %Y
2493 Unsafe:
2494 %A = undef
2495 %B = undef
2496 %C = undef
2497
2498This set of examples shows that undefined '``select``' (and conditional
2499branch) conditions can go *either way*, but they have to come from one
2500of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2501both known to have a clear low bit, then ``%A`` would have to have a
2502cleared low bit. However, in the ``%C`` example, the optimizer is
2503allowed to assume that the '``undef``' operand could be the same as
2504``%Y``, allowing the whole '``select``' to be eliminated.
2505
2506.. code-block:: llvm
2507
2508 %A = xor undef, undef
2509
2510 %B = undef
2511 %C = xor %B, %B
2512
2513 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002514 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002515 %F = icmp gte %D, 4
2516
2517 Safe:
2518 %A = undef
2519 %B = undef
2520 %C = undef
2521 %D = undef
2522 %E = undef
2523 %F = undef
2524
2525This example points out that two '``undef``' operands are not
2526necessarily the same. This can be surprising to people (and also matches
2527C semantics) where they assume that "``X^X``" is always zero, even if
2528``X`` is undefined. This isn't true for a number of reasons, but the
2529short answer is that an '``undef``' "variable" can arbitrarily change
2530its value over its "live range". This is true because the variable
2531doesn't actually *have a live range*. Instead, the value is logically
2532read from arbitrary registers that happen to be around when needed, so
2533the value is not necessarily consistent over time. In fact, ``%A`` and
2534``%C`` need to have the same semantics or the core LLVM "replace all
2535uses with" concept would not hold.
2536
2537.. code-block:: llvm
2538
2539 %A = fdiv undef, %X
2540 %B = fdiv %X, undef
2541 Safe:
2542 %A = undef
2543 b: unreachable
2544
2545These examples show the crucial difference between an *undefined value*
2546and *undefined behavior*. An undefined value (like '``undef``') is
2547allowed to have an arbitrary bit-pattern. This means that the ``%A``
2548operation can be constant folded to '``undef``', because the '``undef``'
2549could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2550However, in the second example, we can make a more aggressive
2551assumption: because the ``undef`` is allowed to be an arbitrary value,
2552we are allowed to assume that it could be zero. Since a divide by zero
2553has *undefined behavior*, we are allowed to assume that the operation
2554does not execute at all. This allows us to delete the divide and all
2555code after it. Because the undefined operation "can't happen", the
2556optimizer can assume that it occurs in dead code.
2557
2558.. code-block:: llvm
2559
2560 a: store undef -> %X
2561 b: store %X -> undef
2562 Safe:
2563 a: <deleted>
2564 b: unreachable
2565
2566These examples reiterate the ``fdiv`` example: a store *of* an undefined
2567value can be assumed to not have any effect; we can assume that the
2568value is overwritten with bits that happen to match what was already
2569there. However, a store *to* an undefined location could clobber
2570arbitrary memory, therefore, it has undefined behavior.
2571
2572.. _poisonvalues:
2573
2574Poison Values
2575-------------
2576
2577Poison values are similar to :ref:`undef values <undefvalues>`, however
2578they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002579that cannot evoke side effects has nevertheless detected a condition
2580that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002581
2582There is currently no way of representing a poison value in the IR; they
2583only exist when produced by operations such as :ref:`add <i_add>` with
2584the ``nsw`` flag.
2585
2586Poison value behavior is defined in terms of value *dependence*:
2587
2588- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2589- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2590 their dynamic predecessor basic block.
2591- Function arguments depend on the corresponding actual argument values
2592 in the dynamic callers of their functions.
2593- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2594 instructions that dynamically transfer control back to them.
2595- :ref:`Invoke <i_invoke>` instructions depend on the
2596 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2597 call instructions that dynamically transfer control back to them.
2598- Non-volatile loads and stores depend on the most recent stores to all
2599 of the referenced memory addresses, following the order in the IR
2600 (including loads and stores implied by intrinsics such as
2601 :ref:`@llvm.memcpy <int_memcpy>`.)
2602- An instruction with externally visible side effects depends on the
2603 most recent preceding instruction with externally visible side
2604 effects, following the order in the IR. (This includes :ref:`volatile
2605 operations <volatile>`.)
2606- An instruction *control-depends* on a :ref:`terminator
2607 instruction <terminators>` if the terminator instruction has
2608 multiple successors and the instruction is always executed when
2609 control transfers to one of the successors, and may not be executed
2610 when control is transferred to another.
2611- Additionally, an instruction also *control-depends* on a terminator
2612 instruction if the set of instructions it otherwise depends on would
2613 be different if the terminator had transferred control to a different
2614 successor.
2615- Dependence is transitive.
2616
Richard Smith32dbdf62014-07-31 04:25:36 +00002617Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2618with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002619on a poison value has undefined behavior.
2620
2621Here are some examples:
2622
2623.. code-block:: llvm
2624
2625 entry:
2626 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2627 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002628 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002629 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2630
2631 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002632 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002633
2634 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2635
2636 %narrowaddr = bitcast i32* @g to i16*
2637 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002638 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2639 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002640
2641 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2642 br i1 %cmp, label %true, label %end ; Branch to either destination.
2643
2644 true:
2645 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2646 ; it has undefined behavior.
2647 br label %end
2648
2649 end:
2650 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2651 ; Both edges into this PHI are
2652 ; control-dependent on %cmp, so this
2653 ; always results in a poison value.
2654
2655 store volatile i32 0, i32* @g ; This would depend on the store in %true
2656 ; if %cmp is true, or the store in %entry
2657 ; otherwise, so this is undefined behavior.
2658
2659 br i1 %cmp, label %second_true, label %second_end
2660 ; The same branch again, but this time the
2661 ; true block doesn't have side effects.
2662
2663 second_true:
2664 ; No side effects!
2665 ret void
2666
2667 second_end:
2668 store volatile i32 0, i32* @g ; This time, the instruction always depends
2669 ; on the store in %end. Also, it is
2670 ; control-equivalent to %end, so this is
2671 ; well-defined (ignoring earlier undefined
2672 ; behavior in this example).
2673
2674.. _blockaddress:
2675
2676Addresses of Basic Blocks
2677-------------------------
2678
2679``blockaddress(@function, %block)``
2680
2681The '``blockaddress``' constant computes the address of the specified
2682basic block in the specified function, and always has an ``i8*`` type.
2683Taking the address of the entry block is illegal.
2684
2685This value only has defined behavior when used as an operand to the
2686':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2687against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002688undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002689no label is equal to the null pointer. This may be passed around as an
2690opaque pointer sized value as long as the bits are not inspected. This
2691allows ``ptrtoint`` and arithmetic to be performed on these values so
2692long as the original value is reconstituted before the ``indirectbr``
2693instruction.
2694
2695Finally, some targets may provide defined semantics when using the value
2696as the operand to an inline assembly, but that is target specific.
2697
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002698.. _constantexprs:
2699
Sean Silvab084af42012-12-07 10:36:55 +00002700Constant Expressions
2701--------------------
2702
2703Constant expressions are used to allow expressions involving other
2704constants to be used as constants. Constant expressions may be of any
2705:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2706that does not have side effects (e.g. load and call are not supported).
2707The following is the syntax for constant expressions:
2708
2709``trunc (CST to TYPE)``
2710 Truncate a constant to another type. The bit size of CST must be
2711 larger than the bit size of TYPE. Both types must be integers.
2712``zext (CST to TYPE)``
2713 Zero extend a constant to another type. The bit size of CST must be
2714 smaller than the bit size of TYPE. Both types must be integers.
2715``sext (CST to TYPE)``
2716 Sign extend a constant to another type. The bit size of CST must be
2717 smaller than the bit size of TYPE. Both types must be integers.
2718``fptrunc (CST to TYPE)``
2719 Truncate a floating point constant to another floating point type.
2720 The size of CST must be larger than the size of TYPE. Both types
2721 must be floating point.
2722``fpext (CST to TYPE)``
2723 Floating point extend a constant to another type. The size of CST
2724 must be smaller or equal to the size of TYPE. Both types must be
2725 floating point.
2726``fptoui (CST to TYPE)``
2727 Convert a floating point constant to the corresponding unsigned
2728 integer constant. TYPE must be a scalar or vector integer type. CST
2729 must be of scalar or vector floating point type. Both CST and TYPE
2730 must be scalars, or vectors of the same number of elements. If the
2731 value won't fit in the integer type, the results are undefined.
2732``fptosi (CST to TYPE)``
2733 Convert a floating point constant to the corresponding signed
2734 integer constant. TYPE must be a scalar or vector integer type. CST
2735 must be of scalar or vector floating point type. Both CST and TYPE
2736 must be scalars, or vectors of the same number of elements. If the
2737 value won't fit in the integer type, the results are undefined.
2738``uitofp (CST to TYPE)``
2739 Convert an unsigned integer constant to the corresponding floating
2740 point constant. TYPE must be a scalar or vector floating point type.
2741 CST must be of scalar or vector integer type. Both CST and TYPE must
2742 be scalars, or vectors of the same number of elements. If the value
2743 won't fit in the floating point type, the results are undefined.
2744``sitofp (CST to TYPE)``
2745 Convert a signed integer constant to the corresponding floating
2746 point constant. TYPE must be a scalar or vector floating point type.
2747 CST must be of scalar or vector integer type. Both CST and TYPE must
2748 be scalars, or vectors of the same number of elements. If the value
2749 won't fit in the floating point type, the results are undefined.
2750``ptrtoint (CST to TYPE)``
2751 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002752 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002753 pointer type. The ``CST`` value is zero extended, truncated, or
2754 unchanged to make it fit in ``TYPE``.
2755``inttoptr (CST to TYPE)``
2756 Convert an integer constant to a pointer constant. TYPE must be a
2757 pointer type. CST must be of integer type. The CST value is zero
2758 extended, truncated, or unchanged to make it fit in a pointer size.
2759 This one is *really* dangerous!
2760``bitcast (CST to TYPE)``
2761 Convert a constant, CST, to another TYPE. The constraints of the
2762 operands are the same as those for the :ref:`bitcast
2763 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002764``addrspacecast (CST to TYPE)``
2765 Convert a constant pointer or constant vector of pointer, CST, to another
2766 TYPE in a different address space. The constraints of the operands are the
2767 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002768``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002769 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2770 constants. As with the :ref:`getelementptr <i_getelementptr>`
2771 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002772 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002773``select (COND, VAL1, VAL2)``
2774 Perform the :ref:`select operation <i_select>` on constants.
2775``icmp COND (VAL1, VAL2)``
2776 Performs the :ref:`icmp operation <i_icmp>` on constants.
2777``fcmp COND (VAL1, VAL2)``
2778 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2779``extractelement (VAL, IDX)``
2780 Perform the :ref:`extractelement operation <i_extractelement>` on
2781 constants.
2782``insertelement (VAL, ELT, IDX)``
2783 Perform the :ref:`insertelement operation <i_insertelement>` on
2784 constants.
2785``shufflevector (VEC1, VEC2, IDXMASK)``
2786 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2787 constants.
2788``extractvalue (VAL, IDX0, IDX1, ...)``
2789 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2790 constants. The index list is interpreted in a similar manner as
2791 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2792 least one index value must be specified.
2793``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2794 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2795 The index list is interpreted in a similar manner as indices in a
2796 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2797 value must be specified.
2798``OPCODE (LHS, RHS)``
2799 Perform the specified operation of the LHS and RHS constants. OPCODE
2800 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2801 binary <bitwiseops>` operations. The constraints on operands are
2802 the same as those for the corresponding instruction (e.g. no bitwise
2803 operations on floating point values are allowed).
2804
2805Other Values
2806============
2807
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002808.. _inlineasmexprs:
2809
Sean Silvab084af42012-12-07 10:36:55 +00002810Inline Assembler Expressions
2811----------------------------
2812
2813LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00002814Inline Assembly <moduleasm>`) through the use of a special value. This value
2815represents the inline assembler as a template string (containing the
2816instructions to emit), a list of operand constraints (stored as a string), a
2817flag that indicates whether or not the inline asm expression has side effects,
2818and a flag indicating whether the function containing the asm needs to align its
2819stack conservatively.
2820
2821The template string supports argument substitution of the operands using "``$``"
2822followed by a number, to indicate substitution of the given register/memory
2823location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
2824be used, where ``MODIFIER`` is a target-specific annotation for how to print the
2825operand (See :ref:`inline-asm-modifiers`).
2826
2827A literal "``$``" may be included by using "``$$``" in the template. To include
2828other special characters into the output, the usual "``\XX``" escapes may be
2829used, just as in other strings. Note that after template substitution, the
2830resulting assembly string is parsed by LLVM's integrated assembler unless it is
2831disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
2832syntax known to LLVM.
2833
2834LLVM's support for inline asm is modeled closely on the requirements of Clang's
2835GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
2836modifier codes listed here are similar or identical to those in GCC's inline asm
2837support. However, to be clear, the syntax of the template and constraint strings
2838described here is *not* the same as the syntax accepted by GCC and Clang, and,
2839while most constraint letters are passed through as-is by Clang, some get
2840translated to other codes when converting from the C source to the LLVM
2841assembly.
2842
2843An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00002844
2845.. code-block:: llvm
2846
2847 i32 (i32) asm "bswap $0", "=r,r"
2848
2849Inline assembler expressions may **only** be used as the callee operand
2850of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2851Thus, typically we have:
2852
2853.. code-block:: llvm
2854
2855 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2856
2857Inline asms with side effects not visible in the constraint list must be
2858marked as having side effects. This is done through the use of the
2859'``sideeffect``' keyword, like so:
2860
2861.. code-block:: llvm
2862
2863 call void asm sideeffect "eieio", ""()
2864
2865In some cases inline asms will contain code that will not work unless
2866the stack is aligned in some way, such as calls or SSE instructions on
2867x86, yet will not contain code that does that alignment within the asm.
2868The compiler should make conservative assumptions about what the asm
2869might contain and should generate its usual stack alignment code in the
2870prologue if the '``alignstack``' keyword is present:
2871
2872.. code-block:: llvm
2873
2874 call void asm alignstack "eieio", ""()
2875
2876Inline asms also support using non-standard assembly dialects. The
2877assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2878the inline asm is using the Intel dialect. Currently, ATT and Intel are
2879the only supported dialects. An example is:
2880
2881.. code-block:: llvm
2882
2883 call void asm inteldialect "eieio", ""()
2884
2885If multiple keywords appear the '``sideeffect``' keyword must come
2886first, the '``alignstack``' keyword second and the '``inteldialect``'
2887keyword last.
2888
James Y Knightbc832ed2015-07-08 18:08:36 +00002889Inline Asm Constraint String
2890^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2891
2892The constraint list is a comma-separated string, each element containing one or
2893more constraint codes.
2894
2895For each element in the constraint list an appropriate register or memory
2896operand will be chosen, and it will be made available to assembly template
2897string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
2898second, etc.
2899
2900There are three different types of constraints, which are distinguished by a
2901prefix symbol in front of the constraint code: Output, Input, and Clobber. The
2902constraints must always be given in that order: outputs first, then inputs, then
2903clobbers. They cannot be intermingled.
2904
2905There are also three different categories of constraint codes:
2906
2907- Register constraint. This is either a register class, or a fixed physical
2908 register. This kind of constraint will allocate a register, and if necessary,
2909 bitcast the argument or result to the appropriate type.
2910- Memory constraint. This kind of constraint is for use with an instruction
2911 taking a memory operand. Different constraints allow for different addressing
2912 modes used by the target.
2913- Immediate value constraint. This kind of constraint is for an integer or other
2914 immediate value which can be rendered directly into an instruction. The
2915 various target-specific constraints allow the selection of a value in the
2916 proper range for the instruction you wish to use it with.
2917
2918Output constraints
2919""""""""""""""""""
2920
2921Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
2922indicates that the assembly will write to this operand, and the operand will
2923then be made available as a return value of the ``asm`` expression. Output
2924constraints do not consume an argument from the call instruction. (Except, see
2925below about indirect outputs).
2926
2927Normally, it is expected that no output locations are written to by the assembly
2928expression until *all* of the inputs have been read. As such, LLVM may assign
2929the same register to an output and an input. If this is not safe (e.g. if the
2930assembly contains two instructions, where the first writes to one output, and
2931the second reads an input and writes to a second output), then the "``&``"
2932modifier must be used (e.g. "``=&r``") to specify that the output is an
2933"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
2934will not use the same register for any inputs (other than an input tied to this
2935output).
2936
2937Input constraints
2938"""""""""""""""""
2939
2940Input constraints do not have a prefix -- just the constraint codes. Each input
2941constraint will consume one argument from the call instruction. It is not
2942permitted for the asm to write to any input register or memory location (unless
2943that input is tied to an output). Note also that multiple inputs may all be
2944assigned to the same register, if LLVM can determine that they necessarily all
2945contain the same value.
2946
2947Instead of providing a Constraint Code, input constraints may also "tie"
2948themselves to an output constraint, by providing an integer as the constraint
2949string. Tied inputs still consume an argument from the call instruction, and
2950take up a position in the asm template numbering as is usual -- they will simply
2951be constrained to always use the same register as the output they've been tied
2952to. For example, a constraint string of "``=r,0``" says to assign a register for
2953output, and use that register as an input as well (it being the 0'th
2954constraint).
2955
2956It is permitted to tie an input to an "early-clobber" output. In that case, no
2957*other* input may share the same register as the input tied to the early-clobber
2958(even when the other input has the same value).
2959
2960You may only tie an input to an output which has a register constraint, not a
2961memory constraint. Only a single input may be tied to an output.
2962
2963There is also an "interesting" feature which deserves a bit of explanation: if a
2964register class constraint allocates a register which is too small for the value
2965type operand provided as input, the input value will be split into multiple
2966registers, and all of them passed to the inline asm.
2967
2968However, this feature is often not as useful as you might think.
2969
2970Firstly, the registers are *not* guaranteed to be consecutive. So, on those
2971architectures that have instructions which operate on multiple consecutive
2972instructions, this is not an appropriate way to support them. (e.g. the 32-bit
2973SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
2974hardware then loads into both the named register, and the next register. This
2975feature of inline asm would not be useful to support that.)
2976
2977A few of the targets provide a template string modifier allowing explicit access
2978to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
2979``D``). On such an architecture, you can actually access the second allocated
2980register (yet, still, not any subsequent ones). But, in that case, you're still
2981probably better off simply splitting the value into two separate operands, for
2982clarity. (e.g. see the description of the ``A`` constraint on X86, which,
2983despite existing only for use with this feature, is not really a good idea to
2984use)
2985
2986Indirect inputs and outputs
2987"""""""""""""""""""""""""""
2988
2989Indirect output or input constraints can be specified by the "``*``" modifier
2990(which goes after the "``=``" in case of an output). This indicates that the asm
2991will write to or read from the contents of an *address* provided as an input
2992argument. (Note that in this way, indirect outputs act more like an *input* than
2993an output: just like an input, they consume an argument of the call expression,
2994rather than producing a return value. An indirect output constraint is an
2995"output" only in that the asm is expected to write to the contents of the input
2996memory location, instead of just read from it).
2997
2998This is most typically used for memory constraint, e.g. "``=*m``", to pass the
2999address of a variable as a value.
3000
3001It is also possible to use an indirect *register* constraint, but only on output
3002(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3003value normally, and then, separately emit a store to the address provided as
3004input, after the provided inline asm. (It's not clear what value this
3005functionality provides, compared to writing the store explicitly after the asm
3006statement, and it can only produce worse code, since it bypasses many
3007optimization passes. I would recommend not using it.)
3008
3009
3010Clobber constraints
3011"""""""""""""""""""
3012
3013A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3014consume an input operand, nor generate an output. Clobbers cannot use any of the
3015general constraint code letters -- they may use only explicit register
3016constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3017"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3018memory locations -- not only the memory pointed to by a declared indirect
3019output.
3020
3021
3022Constraint Codes
3023""""""""""""""""
3024After a potential prefix comes constraint code, or codes.
3025
3026A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3027followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3028(e.g. "``{eax}``").
3029
3030The one and two letter constraint codes are typically chosen to be the same as
3031GCC's constraint codes.
3032
3033A single constraint may include one or more than constraint code in it, leaving
3034it up to LLVM to choose which one to use. This is included mainly for
3035compatibility with the translation of GCC inline asm coming from clang.
3036
3037There are two ways to specify alternatives, and either or both may be used in an
3038inline asm constraint list:
3039
30401) Append the codes to each other, making a constraint code set. E.g. "``im``"
3041 or "``{eax}m``". This means "choose any of the options in the set". The
3042 choice of constraint is made independently for each constraint in the
3043 constraint list.
3044
30452) Use "``|``" between constraint code sets, creating alternatives. Every
3046 constraint in the constraint list must have the same number of alternative
3047 sets. With this syntax, the same alternative in *all* of the items in the
3048 constraint list will be chosen together.
3049
3050Putting those together, you might have a two operand constraint string like
3051``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3052operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3053may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3054
3055However, the use of either of the alternatives features is *NOT* recommended, as
3056LLVM is not able to make an intelligent choice about which one to use. (At the
3057point it currently needs to choose, not enough information is available to do so
3058in a smart way.) Thus, it simply tries to make a choice that's most likely to
3059compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3060always choose to use memory, not registers). And, if given multiple registers,
3061or multiple register classes, it will simply choose the first one. (In fact, it
3062doesn't currently even ensure explicitly specified physical registers are
3063unique, so specifying multiple physical registers as alternatives, like
3064``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3065intended.)
3066
3067Supported Constraint Code List
3068""""""""""""""""""""""""""""""
3069
3070The constraint codes are, in general, expected to behave the same way they do in
3071GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3072inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3073and GCC likely indicates a bug in LLVM.
3074
3075Some constraint codes are typically supported by all targets:
3076
3077- ``r``: A register in the target's general purpose register class.
3078- ``m``: A memory address operand. It is target-specific what addressing modes
3079 are supported, typical examples are register, or register + register offset,
3080 or register + immediate offset (of some target-specific size).
3081- ``i``: An integer constant (of target-specific width). Allows either a simple
3082 immediate, or a relocatable value.
3083- ``n``: An integer constant -- *not* including relocatable values.
3084- ``s``: An integer constant, but allowing *only* relocatable values.
3085- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3086 useful to pass a label for an asm branch or call.
3087
3088 .. FIXME: but that surely isn't actually okay to jump out of an asm
3089 block without telling llvm about the control transfer???)
3090
3091- ``{register-name}``: Requires exactly the named physical register.
3092
3093Other constraints are target-specific:
3094
3095AArch64:
3096
3097- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3098- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3099 i.e. 0 to 4095 with optional shift by 12.
3100- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3101 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3102- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3103 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3104- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3105 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3106- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3107 32-bit register. This is a superset of ``K``: in addition to the bitmask
3108 immediate, also allows immediate integers which can be loaded with a single
3109 ``MOVZ`` or ``MOVL`` instruction.
3110- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3111 64-bit register. This is a superset of ``L``.
3112- ``Q``: Memory address operand must be in a single register (no
3113 offsets). (However, LLVM currently does this for the ``m`` constraint as
3114 well.)
3115- ``r``: A 32 or 64-bit integer register (W* or X*).
3116- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3117- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3118
3119AMDGPU:
3120
3121- ``r``: A 32 or 64-bit integer register.
3122- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3123- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3124
3125
3126All ARM modes:
3127
3128- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3129 operand. Treated the same as operand ``m``, at the moment.
3130
3131ARM and ARM's Thumb2 mode:
3132
3133- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3134- ``I``: An immediate integer valid for a data-processing instruction.
3135- ``J``: An immediate integer between -4095 and 4095.
3136- ``K``: An immediate integer whose bitwise inverse is valid for a
3137 data-processing instruction. (Can be used with template modifier "``B``" to
3138 print the inverted value).
3139- ``L``: An immediate integer whose negation is valid for a data-processing
3140 instruction. (Can be used with template modifier "``n``" to print the negated
3141 value).
3142- ``M``: A power of two or a integer between 0 and 32.
3143- ``N``: Invalid immediate constraint.
3144- ``O``: Invalid immediate constraint.
3145- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3146- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3147 as ``r``.
3148- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3149 invalid.
3150- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3151 ``d0-d31``, or ``q0-q15``.
3152- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3153 ``d0-d7``, or ``q0-q3``.
3154- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3155 ``s0-s31``.
3156
3157ARM's Thumb1 mode:
3158
3159- ``I``: An immediate integer between 0 and 255.
3160- ``J``: An immediate integer between -255 and -1.
3161- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3162 some amount.
3163- ``L``: An immediate integer between -7 and 7.
3164- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3165- ``N``: An immediate integer between 0 and 31.
3166- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3167- ``r``: A low 32-bit GPR register (``r0-r7``).
3168- ``l``: A low 32-bit GPR register (``r0-r7``).
3169- ``h``: A high GPR register (``r0-r7``).
3170- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3171 ``d0-d31``, or ``q0-q15``.
3172- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3173 ``d0-d7``, or ``q0-q3``.
3174- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3175 ``s0-s31``.
3176
3177
3178Hexagon:
3179
3180- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3181 at the moment.
3182- ``r``: A 32 or 64-bit register.
3183
3184MSP430:
3185
3186- ``r``: An 8 or 16-bit register.
3187
3188MIPS:
3189
3190- ``I``: An immediate signed 16-bit integer.
3191- ``J``: An immediate integer zero.
3192- ``K``: An immediate unsigned 16-bit integer.
3193- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3194- ``N``: An immediate integer between -65535 and -1.
3195- ``O``: An immediate signed 15-bit integer.
3196- ``P``: An immediate integer between 1 and 65535.
3197- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3198 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3199- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3200 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3201 ``m``.
3202- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3203 ``sc`` instruction on the given subtarget (details vary).
3204- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3205- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003206 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3207 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003208- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3209 ``25``).
3210- ``l``: The ``lo`` register, 32 or 64-bit.
3211- ``x``: Invalid.
3212
3213NVPTX:
3214
3215- ``b``: A 1-bit integer register.
3216- ``c`` or ``h``: A 16-bit integer register.
3217- ``r``: A 32-bit integer register.
3218- ``l`` or ``N``: A 64-bit integer register.
3219- ``f``: A 32-bit float register.
3220- ``d``: A 64-bit float register.
3221
3222
3223PowerPC:
3224
3225- ``I``: An immediate signed 16-bit integer.
3226- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3227- ``K``: An immediate unsigned 16-bit integer.
3228- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3229- ``M``: An immediate integer greater than 31.
3230- ``N``: An immediate integer that is an exact power of 2.
3231- ``O``: The immediate integer constant 0.
3232- ``P``: An immediate integer constant whose negation is a signed 16-bit
3233 constant.
3234- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3235 treated the same as ``m``.
3236- ``r``: A 32 or 64-bit integer register.
3237- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3238 ``R1-R31``).
3239- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3240 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3241- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3242 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3243 altivec vector register (``V0-V31``).
3244
3245 .. FIXME: is this a bug that v accepts QPX registers? I think this
3246 is supposed to only use the altivec vector registers?
3247
3248- ``y``: Condition register (``CR0-CR7``).
3249- ``wc``: An individual CR bit in a CR register.
3250- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3251 register set (overlapping both the floating-point and vector register files).
3252- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3253 set.
3254
3255Sparc:
3256
3257- ``I``: An immediate 13-bit signed integer.
3258- ``r``: A 32-bit integer register.
3259
3260SystemZ:
3261
3262- ``I``: An immediate unsigned 8-bit integer.
3263- ``J``: An immediate unsigned 12-bit integer.
3264- ``K``: An immediate signed 16-bit integer.
3265- ``L``: An immediate signed 20-bit integer.
3266- ``M``: An immediate integer 0x7fffffff.
3267- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3268 ``m``, at the moment.
3269- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3270- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3271 address context evaluates as zero).
3272- ``h``: A 32-bit value in the high part of a 64bit data register
3273 (LLVM-specific)
3274- ``f``: A 32, 64, or 128-bit floating point register.
3275
3276X86:
3277
3278- ``I``: An immediate integer between 0 and 31.
3279- ``J``: An immediate integer between 0 and 64.
3280- ``K``: An immediate signed 8-bit integer.
3281- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3282 0xffffffff.
3283- ``M``: An immediate integer between 0 and 3.
3284- ``N``: An immediate unsigned 8-bit integer.
3285- ``O``: An immediate integer between 0 and 127.
3286- ``e``: An immediate 32-bit signed integer.
3287- ``Z``: An immediate 32-bit unsigned integer.
3288- ``o``, ``v``: Treated the same as ``m``, at the moment.
3289- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3290 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3291 registers, and on X86-64, it is all of the integer registers.
3292- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3293 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3294- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3295- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3296 existed since i386, and can be accessed without the REX prefix.
3297- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3298- ``y``: A 64-bit MMX register, if MMX is enabled.
3299- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3300 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3301 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3302 512-bit vector operand in an AVX512 register, Otherwise, an error.
3303- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3304- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3305 32-bit mode, a 64-bit integer operand will get split into two registers). It
3306 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3307 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3308 you're better off splitting it yourself, before passing it to the asm
3309 statement.
3310
3311XCore:
3312
3313- ``r``: A 32-bit integer register.
3314
3315
3316.. _inline-asm-modifiers:
3317
3318Asm template argument modifiers
3319^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3320
3321In the asm template string, modifiers can be used on the operand reference, like
3322"``${0:n}``".
3323
3324The modifiers are, in general, expected to behave the same way they do in
3325GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3326inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3327and GCC likely indicates a bug in LLVM.
3328
3329Target-independent:
3330
Sean Silvaa1190322015-08-06 22:56:48 +00003331- ``c``: Print an immediate integer constant unadorned, without
James Y Knightbc832ed2015-07-08 18:08:36 +00003332 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3333- ``n``: Negate and print immediate integer constant unadorned, without the
3334 target-specific immediate punctuation (e.g. no ``$`` prefix).
3335- ``l``: Print as an unadorned label, without the target-specific label
3336 punctuation (e.g. no ``$`` prefix).
3337
3338AArch64:
3339
3340- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3341 instead of ``x30``, print ``w30``.
3342- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3343- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3344 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3345 ``v*``.
3346
3347AMDGPU:
3348
3349- ``r``: No effect.
3350
3351ARM:
3352
3353- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3354 register).
3355- ``P``: No effect.
3356- ``q``: No effect.
3357- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3358 as ``d4[1]`` instead of ``s9``)
3359- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3360 prefix.
3361- ``L``: Print the low 16-bits of an immediate integer constant.
3362- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3363 register operands subsequent to the specified one (!), so use carefully.
3364- ``Q``: Print the low-order register of a register-pair, or the low-order
3365 register of a two-register operand.
3366- ``R``: Print the high-order register of a register-pair, or the high-order
3367 register of a two-register operand.
3368- ``H``: Print the second register of a register-pair. (On a big-endian system,
3369 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3370 to ``R``.)
3371
3372 .. FIXME: H doesn't currently support printing the second register
3373 of a two-register operand.
3374
3375- ``e``: Print the low doubleword register of a NEON quad register.
3376- ``f``: Print the high doubleword register of a NEON quad register.
3377- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3378 adornment.
3379
3380Hexagon:
3381
3382- ``L``: Print the second register of a two-register operand. Requires that it
3383 has been allocated consecutively to the first.
3384
3385 .. FIXME: why is it restricted to consecutive ones? And there's
3386 nothing that ensures that happens, is there?
3387
3388- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3389 nothing. Used to print 'addi' vs 'add' instructions.
3390
3391MSP430:
3392
3393No additional modifiers.
3394
3395MIPS:
3396
3397- ``X``: Print an immediate integer as hexadecimal
3398- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3399- ``d``: Print an immediate integer as decimal.
3400- ``m``: Subtract one and print an immediate integer as decimal.
3401- ``z``: Print $0 if an immediate zero, otherwise print normally.
3402- ``L``: Print the low-order register of a two-register operand, or prints the
3403 address of the low-order word of a double-word memory operand.
3404
3405 .. FIXME: L seems to be missing memory operand support.
3406
3407- ``M``: Print the high-order register of a two-register operand, or prints the
3408 address of the high-order word of a double-word memory operand.
3409
3410 .. FIXME: M seems to be missing memory operand support.
3411
3412- ``D``: Print the second register of a two-register operand, or prints the
3413 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3414 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3415 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003416- ``w``: No effect. Provided for compatibility with GCC which requires this
3417 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3418 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003419
3420NVPTX:
3421
3422- ``r``: No effect.
3423
3424PowerPC:
3425
3426- ``L``: Print the second register of a two-register operand. Requires that it
3427 has been allocated consecutively to the first.
3428
3429 .. FIXME: why is it restricted to consecutive ones? And there's
3430 nothing that ensures that happens, is there?
3431
3432- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3433 nothing. Used to print 'addi' vs 'add' instructions.
3434- ``y``: For a memory operand, prints formatter for a two-register X-form
3435 instruction. (Currently always prints ``r0,OPERAND``).
3436- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3437 otherwise. (NOTE: LLVM does not support update form, so this will currently
3438 always print nothing)
3439- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3440 not support indexed form, so this will currently always print nothing)
3441
3442Sparc:
3443
3444- ``r``: No effect.
3445
3446SystemZ:
3447
3448SystemZ implements only ``n``, and does *not* support any of the other
3449target-independent modifiers.
3450
3451X86:
3452
3453- ``c``: Print an unadorned integer or symbol name. (The latter is
3454 target-specific behavior for this typically target-independent modifier).
3455- ``A``: Print a register name with a '``*``' before it.
3456- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3457 operand.
3458- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3459 memory operand.
3460- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3461 operand.
3462- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3463 operand.
3464- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3465 available, otherwise the 32-bit register name; do nothing on a memory operand.
3466- ``n``: Negate and print an unadorned integer, or, for operands other than an
3467 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3468 the operand. (The behavior for relocatable symbol expressions is a
3469 target-specific behavior for this typically target-independent modifier)
3470- ``H``: Print a memory reference with additional offset +8.
3471- ``P``: Print a memory reference or operand for use as the argument of a call
3472 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3473
3474XCore:
3475
3476No additional modifiers.
3477
3478
Sean Silvab084af42012-12-07 10:36:55 +00003479Inline Asm Metadata
3480^^^^^^^^^^^^^^^^^^^
3481
3482The call instructions that wrap inline asm nodes may have a
3483"``!srcloc``" MDNode attached to it that contains a list of constant
3484integers. If present, the code generator will use the integer as the
3485location cookie value when report errors through the ``LLVMContext``
3486error reporting mechanisms. This allows a front-end to correlate backend
3487errors that occur with inline asm back to the source code that produced
3488it. For example:
3489
3490.. code-block:: llvm
3491
3492 call void asm sideeffect "something bad", ""(), !srcloc !42
3493 ...
3494 !42 = !{ i32 1234567 }
3495
3496It is up to the front-end to make sense of the magic numbers it places
3497in the IR. If the MDNode contains multiple constants, the code generator
3498will use the one that corresponds to the line of the asm that the error
3499occurs on.
3500
3501.. _metadata:
3502
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003503Metadata
3504========
Sean Silvab084af42012-12-07 10:36:55 +00003505
3506LLVM IR allows metadata to be attached to instructions in the program
3507that can convey extra information about the code to the optimizers and
3508code generator. One example application of metadata is source-level
3509debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003510
Sean Silvaa1190322015-08-06 22:56:48 +00003511Metadata does not have a type, and is not a value. If referenced from a
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003512``call`` instruction, it uses the ``metadata`` type.
3513
3514All metadata are identified in syntax by a exclamation point ('``!``').
3515
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003516.. _metadata-string:
3517
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003518Metadata Nodes and Metadata Strings
3519-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003520
3521A metadata string is a string surrounded by double quotes. It can
3522contain any character by escaping non-printable characters with
3523"``\xx``" where "``xx``" is the two digit hex code. For example:
3524"``!"test\00"``".
3525
3526Metadata nodes are represented with notation similar to structure
3527constants (a comma separated list of elements, surrounded by braces and
3528preceded by an exclamation point). Metadata nodes can have any values as
3529their operand. For example:
3530
3531.. code-block:: llvm
3532
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003533 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003534
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003535Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3536
3537.. code-block:: llvm
3538
3539 !0 = distinct !{!"test\00", i32 10}
3540
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003541``distinct`` nodes are useful when nodes shouldn't be merged based on their
Sean Silvaa1190322015-08-06 22:56:48 +00003542content. They can also occur when transformations cause uniquing collisions
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003543when metadata operands change.
3544
Sean Silvab084af42012-12-07 10:36:55 +00003545A :ref:`named metadata <namedmetadatastructure>` is a collection of
3546metadata nodes, which can be looked up in the module symbol table. For
3547example:
3548
3549.. code-block:: llvm
3550
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003551 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003552
3553Metadata can be used as function arguments. Here ``llvm.dbg.value``
3554function is using two metadata arguments:
3555
3556.. code-block:: llvm
3557
3558 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3559
3560Metadata can be attached with an instruction. Here metadata ``!21`` is
3561attached to the ``add`` instruction using the ``!dbg`` identifier:
3562
3563.. code-block:: llvm
3564
3565 %indvar.next = add i64 %indvar, 1, !dbg !21
3566
3567More information about specific metadata nodes recognized by the
3568optimizers and code generator is found below.
3569
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003570.. _specialized-metadata:
3571
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003572Specialized Metadata Nodes
3573^^^^^^^^^^^^^^^^^^^^^^^^^^
3574
3575Specialized metadata nodes are custom data structures in metadata (as opposed
Sean Silvaa1190322015-08-06 22:56:48 +00003576to generic tuples). Their fields are labelled, and can be specified in any
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003577order.
3578
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003579These aren't inherently debug info centric, but currently all the specialized
3580metadata nodes are related to debug info.
3581
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003582.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003583
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003584DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003585"""""""""""""
3586
Sean Silvaa1190322015-08-06 22:56:48 +00003587``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003588``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
3589tuples containing the debug info to be emitted along with the compile unit,
3590regardless of code optimizations (some nodes are only emitted if there are
3591references to them from instructions).
3592
3593.. code-block:: llvm
3594
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003595 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003596 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3597 splitDebugFilename: "abc.debug", emissionKind: 1,
3598 enums: !2, retainedTypes: !3, subprograms: !4,
3599 globals: !5, imports: !6)
3600
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003601Compile unit descriptors provide the root scope for objects declared in a
Sean Silvaa1190322015-08-06 22:56:48 +00003602specific compilation unit. File descriptors are defined using this scope.
3603These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003604keep track of subprograms, global variables, type information, and imported
3605entities (declarations and namespaces).
3606
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003607.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003608
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003609DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003610""""""
3611
Sean Silvaa1190322015-08-06 22:56:48 +00003612``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003613
3614.. code-block:: llvm
3615
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003616 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003617
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003618Files are sometimes used in ``scope:`` fields, and are the only valid target
3619for ``file:`` fields.
3620
Michael Kuperstein605308a2015-05-14 10:58:59 +00003621.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003622
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003623DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003624"""""""""""
3625
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003626``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Sean Silvaa1190322015-08-06 22:56:48 +00003627``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003628
3629.. code-block:: llvm
3630
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003631 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003632 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003633 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003634
Sean Silvaa1190322015-08-06 22:56:48 +00003635The ``encoding:`` describes the details of the type. Usually it's one of the
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003636following:
3637
3638.. code-block:: llvm
3639
3640 DW_ATE_address = 1
3641 DW_ATE_boolean = 2
3642 DW_ATE_float = 4
3643 DW_ATE_signed = 5
3644 DW_ATE_signed_char = 6
3645 DW_ATE_unsigned = 7
3646 DW_ATE_unsigned_char = 8
3647
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003648.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003649
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003650DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003651""""""""""""""""
3652
Sean Silvaa1190322015-08-06 22:56:48 +00003653``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003654refers to a tuple; the first operand is the return type, while the rest are the
Sean Silvaa1190322015-08-06 22:56:48 +00003655types of the formal arguments in order. If the first operand is ``null``, that
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003656represents a function with no return value (such as ``void foo() {}`` in C++).
3657
3658.. code-block:: llvm
3659
3660 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3661 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003662 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003663
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003664.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003665
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003666DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003667"""""""""""""
3668
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003669``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003670qualified types.
3671
3672.. code-block:: llvm
3673
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003674 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003675 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003676 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003677 align: 32)
3678
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003679The following ``tag:`` values are valid:
3680
3681.. code-block:: llvm
3682
3683 DW_TAG_formal_parameter = 5
3684 DW_TAG_member = 13
3685 DW_TAG_pointer_type = 15
3686 DW_TAG_reference_type = 16
3687 DW_TAG_typedef = 22
3688 DW_TAG_ptr_to_member_type = 31
3689 DW_TAG_const_type = 38
3690 DW_TAG_volatile_type = 53
3691 DW_TAG_restrict_type = 55
3692
3693``DW_TAG_member`` is used to define a member of a :ref:`composite type
Sean Silvaa1190322015-08-06 22:56:48 +00003694<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
3695is the ``baseType:``. The ``offset:`` is the member's bit offset.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003696``DW_TAG_formal_parameter`` is used to define a member which is a formal
3697argument of a subprogram.
3698
3699``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3700
3701``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3702``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3703``baseType:``.
3704
3705Note that the ``void *`` type is expressed as a type derived from NULL.
3706
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003707.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003708
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003709DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003710"""""""""""""""
3711
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003712``DICompositeType`` nodes represent types composed of other types, like
Sean Silvaa1190322015-08-06 22:56:48 +00003713structures and unions. ``elements:`` points to a tuple of the composed types.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003714
3715If the source language supports ODR, the ``identifier:`` field gives the unique
Sean Silvaa1190322015-08-06 22:56:48 +00003716identifier used for type merging between modules. When specified, other types
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003717can refer to composite types indirectly via a :ref:`metadata string
3718<metadata-string>` that matches their identifier.
3719
3720.. code-block:: llvm
3721
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003722 !0 = !DIEnumerator(name: "SixKind", value: 7)
3723 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3724 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3725 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003726 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3727 elements: !{!0, !1, !2})
3728
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003729The following ``tag:`` values are valid:
3730
3731.. code-block:: llvm
3732
3733 DW_TAG_array_type = 1
3734 DW_TAG_class_type = 2
3735 DW_TAG_enumeration_type = 4
3736 DW_TAG_structure_type = 19
3737 DW_TAG_union_type = 23
3738 DW_TAG_subroutine_type = 21
3739 DW_TAG_inheritance = 28
3740
3741
3742For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003743descriptors <DISubrange>`, each representing the range of subscripts at that
Sean Silvaa1190322015-08-06 22:56:48 +00003744level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003745array type is a native packed vector.
3746
3747For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003748descriptors <DIEnumerator>`, each representing the definition of an enumeration
Sean Silvaa1190322015-08-06 22:56:48 +00003749value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003750``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003751
3752For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3753``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003754<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003755
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003756.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003757
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003758DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003759""""""""""
3760
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003761``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
Sean Silvaa1190322015-08-06 22:56:48 +00003762:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003763
3764.. code-block:: llvm
3765
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003766 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3767 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3768 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003769
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003770.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003771
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003772DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003773""""""""""""
3774
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003775``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3776variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003777
3778.. code-block:: llvm
3779
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003780 !0 = !DIEnumerator(name: "SixKind", value: 7)
3781 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3782 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003783
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003784DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003785"""""""""""""""""""""""
3786
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003787``DITemplateTypeParameter`` nodes represent type parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003788language constructs. They are used (optionally) in :ref:`DICompositeType` and
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003789:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003790
3791.. code-block:: llvm
3792
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003793 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003794
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003795DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003796""""""""""""""""""""""""
3797
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003798``DITemplateValueParameter`` nodes represent value parameters to generic source
Sean Silvaa1190322015-08-06 22:56:48 +00003799language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003800but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
Sean Silvaa1190322015-08-06 22:56:48 +00003801``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003802:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003803
3804.. code-block:: llvm
3805
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003806 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003807
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003808DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003809"""""""""""
3810
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003811``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003812
3813.. code-block:: llvm
3814
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003815 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003816
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003817DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003818""""""""""""""""
3819
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003820``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003821
3822.. code-block:: llvm
3823
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003824 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003825 file: !2, line: 7, type: !3, isLocal: true,
3826 isDefinition: false, variable: i32* @foo,
3827 declaration: !4)
3828
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003829All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003830:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003831
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003832.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003833
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003834DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003835""""""""""""
3836
Sean Silvaa1190322015-08-06 22:56:48 +00003837``DISubprogram`` nodes represent functions from the source language. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003838``variables:`` field points at :ref:`variables <DILocalVariable>` that must be
Sean Silvaa1190322015-08-06 22:56:48 +00003839retained, even if their IR counterparts are optimized out of the IR. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003840``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003841
3842.. code-block:: llvm
3843
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003844 !0 = !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003845 file: !2, line: 7, type: !3, isLocal: true,
3846 isDefinition: false, scopeLine: 8, containingType: !4,
3847 virtuality: DW_VIRTUALITY_pure_virtual, virtualIndex: 10,
3848 flags: DIFlagPrototyped, isOptimized: true,
3849 function: void ()* @_Z3foov,
3850 templateParams: !5, declaration: !6, variables: !7)
3851
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003852.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003853
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003854DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003855""""""""""""""
3856
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003857``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
Sean Silvaa1190322015-08-06 22:56:48 +00003858<DISubprogram>`. The line number and column numbers are used to dinstinguish
3859two lexical blocks at same depth. They are valid targets for ``scope:``
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003860fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003861
3862.. code-block:: llvm
3863
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003864 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003865
3866Usually lexical blocks are ``distinct`` to prevent node merging based on
3867operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003868
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003869.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003870
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003871DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003872""""""""""""""""""
3873
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003874``DILexicalBlockFile`` nodes are used to discriminate between sections of a
Sean Silvaa1190322015-08-06 22:56:48 +00003875:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003876indicate textual inclusion, or the ``discriminator:`` field can be used to
3877discriminate between control flow within a single block in the source language.
3878
3879.. code-block:: llvm
3880
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003881 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
3882 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
3883 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003884
Michael Kuperstein605308a2015-05-14 10:58:59 +00003885.. _DILocation:
3886
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003887DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003888""""""""""
3889
Sean Silvaa1190322015-08-06 22:56:48 +00003890``DILocation`` nodes represent source debug locations. The ``scope:`` field is
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003891mandatory, and points at an :ref:`DILexicalBlockFile`, an
3892:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003893
3894.. code-block:: llvm
3895
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003896 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003897
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003898.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003899
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003900DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003901"""""""""""""""
3902
Sean Silvaa1190322015-08-06 22:56:48 +00003903``DILocalVariable`` nodes represent local variables in the source language. If
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00003904the ``arg:`` field is set to non-zero, then this variable is a subprogram
3905parameter, and it will be included in the ``variables:`` field of its
3906:ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003907
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003908.. code-block:: llvm
3909
Duncan P. N. Exon Smithed013cd2015-07-31 18:58:39 +00003910 !0 = !DILocalVariable(name: "this", arg: 1, scope: !3, file: !2, line: 7,
3911 type: !3, flags: DIFlagArtificial)
3912 !1 = !DILocalVariable(name: "x", arg: 2, scope: !4, file: !2, line: 7,
3913 type: !3)
3914 !2 = !DILocalVariable(name: "y", scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003915
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003916DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003917""""""""""""
3918
Sean Silvaa1190322015-08-06 22:56:48 +00003919``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003920:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
3921describe how the referenced LLVM variable relates to the source language
3922variable.
3923
3924The current supported vocabulary is limited:
3925
3926- ``DW_OP_deref`` dereferences the working expression.
3927- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
3928- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
3929 here, respectively) of the variable piece from the working expression.
3930
3931.. code-block:: llvm
3932
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003933 !0 = !DIExpression(DW_OP_deref)
3934 !1 = !DIExpression(DW_OP_plus, 3)
3935 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
3936 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003937
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003938DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003939""""""""""""""
3940
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003941``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003942
3943.. code-block:: llvm
3944
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003945 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003946 getter: "getFoo", attributes: 7, type: !2)
3947
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003948DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003949""""""""""""""""
3950
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003951``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003952compile unit.
3953
3954.. code-block:: llvm
3955
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003956 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003957 entity: !1, line: 7)
3958
Sean Silvab084af42012-12-07 10:36:55 +00003959'``tbaa``' Metadata
3960^^^^^^^^^^^^^^^^^^^
3961
3962In LLVM IR, memory does not have types, so LLVM's own type system is not
3963suitable for doing TBAA. Instead, metadata is added to the IR to
3964describe a type system of a higher level language. This can be used to
3965implement typical C/C++ TBAA, but it can also be used to implement
3966custom alias analysis behavior for other languages.
3967
3968The current metadata format is very simple. TBAA metadata nodes have up
3969to three fields, e.g.:
3970
3971.. code-block:: llvm
3972
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003973 !0 = !{ !"an example type tree" }
3974 !1 = !{ !"int", !0 }
3975 !2 = !{ !"float", !0 }
3976 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003977
3978The first field is an identity field. It can be any value, usually a
3979metadata string, which uniquely identifies the type. The most important
3980name in the tree is the name of the root node. Two trees with different
3981root node names are entirely disjoint, even if they have leaves with
3982common names.
3983
3984The second field identifies the type's parent node in the tree, or is
3985null or omitted for a root node. A type is considered to alias all of
3986its descendants and all of its ancestors in the tree. Also, a type is
3987considered to alias all types in other trees, so that bitcode produced
3988from multiple front-ends is handled conservatively.
3989
3990If the third field is present, it's an integer which if equal to 1
3991indicates that the type is "constant" (meaning
3992``pointsToConstantMemory`` should return true; see `other useful
3993AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
3994
3995'``tbaa.struct``' Metadata
3996^^^^^^^^^^^^^^^^^^^^^^^^^^
3997
3998The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
3999aggregate assignment operations in C and similar languages, however it
4000is defined to copy a contiguous region of memory, which is more than
4001strictly necessary for aggregate types which contain holes due to
4002padding. Also, it doesn't contain any TBAA information about the fields
4003of the aggregate.
4004
4005``!tbaa.struct`` metadata can describe which memory subregions in a
4006memcpy are padding and what the TBAA tags of the struct are.
4007
4008The current metadata format is very simple. ``!tbaa.struct`` metadata
4009nodes are a list of operands which are in conceptual groups of three.
4010For each group of three, the first operand gives the byte offset of a
4011field in bytes, the second gives its size in bytes, and the third gives
4012its tbaa tag. e.g.:
4013
4014.. code-block:: llvm
4015
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004016 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004017
4018This describes a struct with two fields. The first is at offset 0 bytes
4019with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4020and has size 4 bytes and has tbaa tag !2.
4021
4022Note that the fields need not be contiguous. In this example, there is a
40234 byte gap between the two fields. This gap represents padding which
4024does not carry useful data and need not be preserved.
4025
Hal Finkel94146652014-07-24 14:25:39 +00004026'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004028
4029``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4030noalias memory-access sets. This means that some collection of memory access
4031instructions (loads, stores, memory-accessing calls, etc.) that carry
4032``noalias`` metadata can specifically be specified not to alias with some other
4033collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004034Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004035a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004036of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004037subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004038instruction's ``noalias`` list, then the two memory accesses are assumed not to
4039alias.
Hal Finkel94146652014-07-24 14:25:39 +00004040
Hal Finkel029cde62014-07-25 15:50:02 +00004041The metadata identifying each domain is itself a list containing one or two
4042entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00004043string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004044self-reference can be used to create globally unique domain names. A
4045descriptive string may optionally be provided as a second list entry.
4046
4047The metadata identifying each scope is also itself a list containing two or
4048three entries. The first entry is the name of the scope. Note that if the name
4049is a string then it can be combined accross functions and translation units. A
4050self-reference can be used to create globally unique scope names. A metadata
4051reference to the scope's domain is the second entry. A descriptive string may
4052optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004053
4054For example,
4055
4056.. code-block:: llvm
4057
Hal Finkel029cde62014-07-25 15:50:02 +00004058 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004059 !0 = !{!0}
4060 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004061
Hal Finkel029cde62014-07-25 15:50:02 +00004062 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004063 !2 = !{!2, !0}
4064 !3 = !{!3, !0}
4065 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004066
Hal Finkel029cde62014-07-25 15:50:02 +00004067 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004068 !5 = !{!4} ; A list containing only scope !4
4069 !6 = !{!4, !3, !2}
4070 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004071
4072 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004073 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004074 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004075
Hal Finkel029cde62014-07-25 15:50:02 +00004076 ; These two instructions also don't alias (for domain !1, the set of scopes
4077 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004078 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004079 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004080
Adam Nemet0a8416f2015-05-11 08:30:28 +00004081 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004082 ; the !noalias list is not a superset of, or equal to, the scopes in the
4083 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004084 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004085 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004086
Sean Silvab084af42012-12-07 10:36:55 +00004087'``fpmath``' Metadata
4088^^^^^^^^^^^^^^^^^^^^^
4089
4090``fpmath`` metadata may be attached to any instruction of floating point
4091type. It can be used to express the maximum acceptable error in the
4092result of that instruction, in ULPs, thus potentially allowing the
4093compiler to use a more efficient but less accurate method of computing
4094it. ULP is defined as follows:
4095
4096 If ``x`` is a real number that lies between two finite consecutive
4097 floating-point numbers ``a`` and ``b``, without being equal to one
4098 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4099 distance between the two non-equal finite floating-point numbers
4100 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4101
4102The metadata node shall consist of a single positive floating point
4103number representing the maximum relative error, for example:
4104
4105.. code-block:: llvm
4106
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004107 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004108
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004109.. _range-metadata:
4110
Sean Silvab084af42012-12-07 10:36:55 +00004111'``range``' Metadata
4112^^^^^^^^^^^^^^^^^^^^
4113
Jingyue Wu37fcb592014-06-19 16:50:16 +00004114``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4115integer types. It expresses the possible ranges the loaded value or the value
4116returned by the called function at this call site is in. The ranges are
4117represented with a flattened list of integers. The loaded value or the value
4118returned is known to be in the union of the ranges defined by each consecutive
4119pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004120
4121- The type must match the type loaded by the instruction.
4122- The pair ``a,b`` represents the range ``[a,b)``.
4123- Both ``a`` and ``b`` are constants.
4124- The range is allowed to wrap.
4125- The range should not represent the full or empty set. That is,
4126 ``a!=b``.
4127
4128In addition, the pairs must be in signed order of the lower bound and
4129they must be non-contiguous.
4130
4131Examples:
4132
4133.. code-block:: llvm
4134
David Blaikiec7aabbb2015-03-04 22:06:14 +00004135 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4136 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004137 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4138 %d = invoke i8 @bar() to label %cont
4139 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004140 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004141 !0 = !{ i8 0, i8 2 }
4142 !1 = !{ i8 255, i8 2 }
4143 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4144 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004145
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004146'``llvm.loop``'
4147^^^^^^^^^^^^^^^
4148
4149It is sometimes useful to attach information to loop constructs. Currently,
4150loop metadata is implemented as metadata attached to the branch instruction
4151in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004152guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004153specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004154
4155The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004156itself to avoid merging it with any other identifier metadata, e.g.,
4157during module linkage or function inlining. That is, each loop should refer
4158to their own identification metadata even if they reside in separate functions.
4159The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004160constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004161
4162.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004163
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004164 !0 = !{!0}
4165 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004166
Mark Heffernan893752a2014-07-18 19:24:51 +00004167The loop identifier metadata can be used to specify additional
4168per-loop metadata. Any operands after the first operand can be treated
4169as user-defined metadata. For example the ``llvm.loop.unroll.count``
4170suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004171
Paul Redmond5fdf8362013-05-28 20:00:34 +00004172.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004173
Paul Redmond5fdf8362013-05-28 20:00:34 +00004174 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4175 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004176 !0 = !{!0, !1}
4177 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004178
Mark Heffernan9d20e422014-07-21 23:11:03 +00004179'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4180^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004181
Mark Heffernan9d20e422014-07-21 23:11:03 +00004182Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4183used to control per-loop vectorization and interleaving parameters such as
Sean Silvaa1190322015-08-06 22:56:48 +00004184vectorization width and interleave count. These metadata should be used in
4185conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004186``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4187optimization hints and the optimizer will only interleave and vectorize loops if
Sean Silvaa1190322015-08-06 22:56:48 +00004188it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
Mark Heffernan9d20e422014-07-21 23:11:03 +00004189which contains information about loop-carried memory dependencies can be helpful
4190in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004191
Mark Heffernan9d20e422014-07-21 23:11:03 +00004192'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004193^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4194
Mark Heffernan9d20e422014-07-21 23:11:03 +00004195This metadata suggests an interleave count to the loop interleaver.
4196The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004197second operand is an integer specifying the interleave count. For
4198example:
4199
4200.. code-block:: llvm
4201
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004202 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004203
Mark Heffernan9d20e422014-07-21 23:11:03 +00004204Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
Sean Silvaa1190322015-08-06 22:56:48 +00004205multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
Mark Heffernan9d20e422014-07-21 23:11:03 +00004206then the interleave count will be determined automatically.
4207
4208'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004209^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004210
4211This metadata selectively enables or disables vectorization for the loop. The
4212first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
Sean Silvaa1190322015-08-06 22:56:48 +00004213is a bit. If the bit operand value is 1 vectorization is enabled. A value of
Mark Heffernan9d20e422014-07-21 23:11:03 +000042140 disables vectorization:
4215
4216.. code-block:: llvm
4217
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004218 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4219 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004220
4221'``llvm.loop.vectorize.width``' Metadata
4222^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4223
4224This metadata sets the target width of the vectorizer. The first
4225operand is the string ``llvm.loop.vectorize.width`` and the second
4226operand is an integer specifying the width. For example:
4227
4228.. code-block:: llvm
4229
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004230 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004231
4232Note that setting ``llvm.loop.vectorize.width`` to 1 disables
Sean Silvaa1190322015-08-06 22:56:48 +00004233vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
Mark Heffernan893752a2014-07-18 19:24:51 +000042340 or if the loop does not have this metadata the width will be
4235determined automatically.
4236
4237'``llvm.loop.unroll``'
4238^^^^^^^^^^^^^^^^^^^^^^
4239
4240Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4241optimization hints such as the unroll factor. ``llvm.loop.unroll``
4242metadata should be used in conjunction with ``llvm.loop`` loop
4243identification metadata. The ``llvm.loop.unroll`` metadata are only
4244optimization hints and the unrolling will only be performed if the
4245optimizer believes it is safe to do so.
4246
Mark Heffernan893752a2014-07-18 19:24:51 +00004247'``llvm.loop.unroll.count``' Metadata
4248^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4249
4250This metadata suggests an unroll factor to the loop unroller. The
4251first operand is the string ``llvm.loop.unroll.count`` and the second
4252operand is a positive integer specifying the unroll factor. For
4253example:
4254
4255.. code-block:: llvm
4256
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004257 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004258
4259If the trip count of the loop is less than the unroll count the loop
4260will be partially unrolled.
4261
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004262'``llvm.loop.unroll.disable``' Metadata
4263^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4264
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004265This metadata disables loop unrolling. The metadata has a single operand
Sean Silvaa1190322015-08-06 22:56:48 +00004266which is the string ``llvm.loop.unroll.disable``. For example:
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004267
4268.. code-block:: llvm
4269
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004270 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004271
Kevin Qin715b01e2015-03-09 06:14:18 +00004272'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004273^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004274
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004275This metadata disables runtime loop unrolling. The metadata has a single
Sean Silvaa1190322015-08-06 22:56:48 +00004276operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
Kevin Qin715b01e2015-03-09 06:14:18 +00004277
4278.. code-block:: llvm
4279
4280 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4281
Mark Heffernan89391542015-08-10 17:28:08 +00004282'``llvm.loop.unroll.enable``' Metadata
4283^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4284
4285This metadata suggests that the loop should be fully unrolled if the trip count
4286is known at compile time and partially unrolled if the trip count is not known
4287at compile time. The metadata has a single operand which is the string
4288``llvm.loop.unroll.enable``. For example:
4289
4290.. code-block:: llvm
4291
4292 !0 = !{!"llvm.loop.unroll.enable"}
4293
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004294'``llvm.loop.unroll.full``' Metadata
4295^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4296
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004297This metadata suggests that the loop should be unrolled fully. The
4298metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004299For example:
4300
4301.. code-block:: llvm
4302
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004303 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004304
4305'``llvm.mem``'
4306^^^^^^^^^^^^^^^
4307
4308Metadata types used to annotate memory accesses with information helpful
4309for optimizations are prefixed with ``llvm.mem``.
4310
4311'``llvm.mem.parallel_loop_access``' Metadata
4312^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4313
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004314The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4315or metadata containing a list of loop identifiers for nested loops.
4316The metadata is attached to memory accessing instructions and denotes that
4317no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004318with the same loop identifier.
4319
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004320Precisely, given two instructions ``m1`` and ``m2`` that both have the
4321``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4322set of loops associated with that metadata, respectively, then there is no loop
4323carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004324``L2``.
4325
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004326As a special case, if all memory accessing instructions in a loop have
4327``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4328loop has no loop carried memory dependences and is considered to be a parallel
4329loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004330
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004331Note that if not all memory access instructions have such metadata referring to
4332the loop, then the loop is considered not being trivially parallel. Additional
Sean Silvaa1190322015-08-06 22:56:48 +00004333memory dependence analysis is required to make that determination. As a fail
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004334safe mechanism, this causes loops that were originally parallel to be considered
4335sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004336insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004337
4338Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004339both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004340metadata types that refer to the same loop identifier metadata.
4341
4342.. code-block:: llvm
4343
4344 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004345 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004346 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004347 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004348 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004349 ...
4350 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004351
4352 for.end:
4353 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004354 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004355
4356It is also possible to have nested parallel loops. In that case the
4357memory accesses refer to a list of loop identifier metadata nodes instead of
4358the loop identifier metadata node directly:
4359
4360.. code-block:: llvm
4361
4362 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004363 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004364 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004365 ...
4366 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004367
4368 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004369 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004370 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004371 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004372 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004373 ...
4374 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004375
4376 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004377 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004378 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004379 ...
4380 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004381
4382 outer.for.end: ; preds = %for.body
4383 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004384 !0 = !{!1, !2} ; a list of loop identifiers
4385 !1 = !{!1} ; an identifier for the inner loop
4386 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004387
Peter Collingbournee6909c82015-02-20 20:30:47 +00004388'``llvm.bitsets``'
4389^^^^^^^^^^^^^^^^^^
4390
4391The ``llvm.bitsets`` global metadata is used to implement
4392:doc:`bitsets <BitSets>`.
4393
Sean Silvab084af42012-12-07 10:36:55 +00004394Module Flags Metadata
4395=====================
4396
4397Information about the module as a whole is difficult to convey to LLVM's
4398subsystems. The LLVM IR isn't sufficient to transmit this information.
4399The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004400this. These flags are in the form of key / value pairs --- much like a
4401dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004402look it up.
4403
4404The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4405Each triplet has the following form:
4406
4407- The first element is a *behavior* flag, which specifies the behavior
4408 when two (or more) modules are merged together, and it encounters two
4409 (or more) metadata with the same ID. The supported behaviors are
4410 described below.
4411- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004412 metadata. Each module may only have one flag entry for each unique ID (not
4413 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004414- The third element is the value of the flag.
4415
4416When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004417``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4418each unique metadata ID string, there will be exactly one entry in the merged
4419modules ``llvm.module.flags`` metadata table, and the value for that entry will
4420be determined by the merge behavior flag, as described below. The only exception
4421is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004422
4423The following behaviors are supported:
4424
4425.. list-table::
4426 :header-rows: 1
4427 :widths: 10 90
4428
4429 * - Value
4430 - Behavior
4431
4432 * - 1
4433 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004434 Emits an error if two values disagree, otherwise the resulting value
4435 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004436
4437 * - 2
4438 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004439 Emits a warning if two values disagree. The result value will be the
4440 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004441
4442 * - 3
4443 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004444 Adds a requirement that another module flag be present and have a
4445 specified value after linking is performed. The value must be a
4446 metadata pair, where the first element of the pair is the ID of the
4447 module flag to be restricted, and the second element of the pair is
4448 the value the module flag should be restricted to. This behavior can
4449 be used to restrict the allowable results (via triggering of an
4450 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004451
4452 * - 4
4453 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004454 Uses the specified value, regardless of the behavior or value of the
4455 other module. If both modules specify **Override**, but the values
4456 differ, an error will be emitted.
4457
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004458 * - 5
4459 - **Append**
4460 Appends the two values, which are required to be metadata nodes.
4461
4462 * - 6
4463 - **AppendUnique**
4464 Appends the two values, which are required to be metadata
4465 nodes. However, duplicate entries in the second list are dropped
4466 during the append operation.
4467
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004468It is an error for a particular unique flag ID to have multiple behaviors,
4469except in the case of **Require** (which adds restrictions on another metadata
4470value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004471
4472An example of module flags:
4473
4474.. code-block:: llvm
4475
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004476 !0 = !{ i32 1, !"foo", i32 1 }
4477 !1 = !{ i32 4, !"bar", i32 37 }
4478 !2 = !{ i32 2, !"qux", i32 42 }
4479 !3 = !{ i32 3, !"qux",
4480 !{
4481 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004482 }
4483 }
4484 !llvm.module.flags = !{ !0, !1, !2, !3 }
4485
4486- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4487 if two or more ``!"foo"`` flags are seen is to emit an error if their
4488 values are not equal.
4489
4490- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4491 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004492 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004493
4494- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4495 behavior if two or more ``!"qux"`` flags are seen is to emit a
4496 warning if their values are not equal.
4497
4498- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4499
4500 ::
4501
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004502 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004503
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004504 The behavior is to emit an error if the ``llvm.module.flags`` does not
4505 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4506 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004507
4508Objective-C Garbage Collection Module Flags Metadata
4509----------------------------------------------------
4510
4511On the Mach-O platform, Objective-C stores metadata about garbage
4512collection in a special section called "image info". The metadata
4513consists of a version number and a bitmask specifying what types of
4514garbage collection are supported (if any) by the file. If two or more
4515modules are linked together their garbage collection metadata needs to
4516be merged rather than appended together.
4517
4518The Objective-C garbage collection module flags metadata consists of the
4519following key-value pairs:
4520
4521.. list-table::
4522 :header-rows: 1
4523 :widths: 30 70
4524
4525 * - Key
4526 - Value
4527
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004528 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004529 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004530
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004531 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004532 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004533 always 0.
4534
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004535 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004536 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004537 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4538 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4539 Objective-C ABI version 2.
4540
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004541 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004542 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004543 not. Valid values are 0, for no garbage collection, and 2, for garbage
4544 collection supported.
4545
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004546 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004547 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004548 If present, its value must be 6. This flag requires that the
4549 ``Objective-C Garbage Collection`` flag have the value 2.
4550
4551Some important flag interactions:
4552
4553- If a module with ``Objective-C Garbage Collection`` set to 0 is
4554 merged with a module with ``Objective-C Garbage Collection`` set to
4555 2, then the resulting module has the
4556 ``Objective-C Garbage Collection`` flag set to 0.
4557- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4558 merged with a module with ``Objective-C GC Only`` set to 6.
4559
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004560Automatic Linker Flags Module Flags Metadata
4561--------------------------------------------
4562
4563Some targets support embedding flags to the linker inside individual object
4564files. Typically this is used in conjunction with language extensions which
4565allow source files to explicitly declare the libraries they depend on, and have
4566these automatically be transmitted to the linker via object files.
4567
4568These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004569using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004570to be ``AppendUnique``, and the value for the key is expected to be a metadata
4571node which should be a list of other metadata nodes, each of which should be a
4572list of metadata strings defining linker options.
4573
4574For example, the following metadata section specifies two separate sets of
4575linker options, presumably to link against ``libz`` and the ``Cocoa``
4576framework::
4577
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004578 !0 = !{ i32 6, !"Linker Options",
4579 !{
4580 !{ !"-lz" },
4581 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004582 !llvm.module.flags = !{ !0 }
4583
4584The metadata encoding as lists of lists of options, as opposed to a collapsed
4585list of options, is chosen so that the IR encoding can use multiple option
4586strings to specify e.g., a single library, while still having that specifier be
4587preserved as an atomic element that can be recognized by a target specific
4588assembly writer or object file emitter.
4589
4590Each individual option is required to be either a valid option for the target's
4591linker, or an option that is reserved by the target specific assembly writer or
4592object file emitter. No other aspect of these options is defined by the IR.
4593
Oliver Stannard5dc29342014-06-20 10:08:11 +00004594C type width Module Flags Metadata
4595----------------------------------
4596
4597The ARM backend emits a section into each generated object file describing the
4598options that it was compiled with (in a compiler-independent way) to prevent
4599linking incompatible objects, and to allow automatic library selection. Some
4600of these options are not visible at the IR level, namely wchar_t width and enum
4601width.
4602
4603To pass this information to the backend, these options are encoded in module
4604flags metadata, using the following key-value pairs:
4605
4606.. list-table::
4607 :header-rows: 1
4608 :widths: 30 70
4609
4610 * - Key
4611 - Value
4612
4613 * - short_wchar
4614 - * 0 --- sizeof(wchar_t) == 4
4615 * 1 --- sizeof(wchar_t) == 2
4616
4617 * - short_enum
4618 - * 0 --- Enums are at least as large as an ``int``.
4619 * 1 --- Enums are stored in the smallest integer type which can
4620 represent all of its values.
4621
4622For example, the following metadata section specifies that the module was
4623compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4624enum is the smallest type which can represent all of its values::
4625
4626 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004627 !0 = !{i32 1, !"short_wchar", i32 1}
4628 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004629
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004630.. _intrinsicglobalvariables:
4631
Sean Silvab084af42012-12-07 10:36:55 +00004632Intrinsic Global Variables
4633==========================
4634
4635LLVM has a number of "magic" global variables that contain data that
4636affect code generation or other IR semantics. These are documented here.
4637All globals of this sort should have a section specified as
4638"``llvm.metadata``". This section and all globals that start with
4639"``llvm.``" are reserved for use by LLVM.
4640
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004641.. _gv_llvmused:
4642
Sean Silvab084af42012-12-07 10:36:55 +00004643The '``llvm.used``' Global Variable
4644-----------------------------------
4645
Rafael Espindola74f2e462013-04-22 14:58:02 +00004646The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004647:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004648pointers to named global variables, functions and aliases which may optionally
4649have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004650use of it is:
4651
4652.. code-block:: llvm
4653
4654 @X = global i8 4
4655 @Y = global i32 123
4656
4657 @llvm.used = appending global [2 x i8*] [
4658 i8* @X,
4659 i8* bitcast (i32* @Y to i8*)
4660 ], section "llvm.metadata"
4661
Rafael Espindola74f2e462013-04-22 14:58:02 +00004662If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4663and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004664symbol that it cannot see (which is why they have to be named). For example, if
4665a variable has internal linkage and no references other than that from the
4666``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4667references from inline asms and other things the compiler cannot "see", and
4668corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004669
4670On some targets, the code generator must emit a directive to the
4671assembler or object file to prevent the assembler and linker from
4672molesting the symbol.
4673
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004674.. _gv_llvmcompilerused:
4675
Sean Silvab084af42012-12-07 10:36:55 +00004676The '``llvm.compiler.used``' Global Variable
4677--------------------------------------------
4678
4679The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4680directive, except that it only prevents the compiler from touching the
4681symbol. On targets that support it, this allows an intelligent linker to
4682optimize references to the symbol without being impeded as it would be
4683by ``@llvm.used``.
4684
4685This is a rare construct that should only be used in rare circumstances,
4686and should not be exposed to source languages.
4687
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004688.. _gv_llvmglobalctors:
4689
Sean Silvab084af42012-12-07 10:36:55 +00004690The '``llvm.global_ctors``' Global Variable
4691-------------------------------------------
4692
4693.. code-block:: llvm
4694
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004695 %0 = type { i32, void ()*, i8* }
4696 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004697
4698The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004699functions, priorities, and an optional associated global or function.
4700The functions referenced by this array will be called in ascending order
4701of priority (i.e. lowest first) when the module is loaded. The order of
4702functions with the same priority is not defined.
4703
4704If the third field is present, non-null, and points to a global variable
4705or function, the initializer function will only run if the associated
4706data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004707
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004708.. _llvmglobaldtors:
4709
Sean Silvab084af42012-12-07 10:36:55 +00004710The '``llvm.global_dtors``' Global Variable
4711-------------------------------------------
4712
4713.. code-block:: llvm
4714
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004715 %0 = type { i32, void ()*, i8* }
4716 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004717
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004718The ``@llvm.global_dtors`` array contains a list of destructor
4719functions, priorities, and an optional associated global or function.
4720The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004721order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004722order of functions with the same priority is not defined.
4723
4724If the third field is present, non-null, and points to a global variable
4725or function, the destructor function will only run if the associated
4726data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004727
4728Instruction Reference
4729=====================
4730
4731The LLVM instruction set consists of several different classifications
4732of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4733instructions <binaryops>`, :ref:`bitwise binary
4734instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4735:ref:`other instructions <otherops>`.
4736
4737.. _terminators:
4738
4739Terminator Instructions
4740-----------------------
4741
4742As mentioned :ref:`previously <functionstructure>`, every basic block in a
4743program ends with a "Terminator" instruction, which indicates which
4744block should be executed after the current block is finished. These
4745terminator instructions typically yield a '``void``' value: they produce
4746control flow, not values (the one exception being the
4747':ref:`invoke <i_invoke>`' instruction).
4748
4749The terminator instructions are: ':ref:`ret <i_ret>`',
4750':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
4751':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer654e1302015-07-31 17:58:14 +00004752':ref:`resume <i_resume>`', ':ref:`catchpad <i_catchpad>`',
4753':ref:`catchendpad <i_catchendpad>`',
4754':ref:`catchret <i_catchret>`',
4755':ref:`cleanupret <i_cleanupret>`',
4756':ref:`terminatepad <i_terminatepad>`',
4757and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00004758
4759.. _i_ret:
4760
4761'``ret``' Instruction
4762^^^^^^^^^^^^^^^^^^^^^
4763
4764Syntax:
4765"""""""
4766
4767::
4768
4769 ret <type> <value> ; Return a value from a non-void function
4770 ret void ; Return from void function
4771
4772Overview:
4773"""""""""
4774
4775The '``ret``' instruction is used to return control flow (and optionally
4776a value) from a function back to the caller.
4777
4778There are two forms of the '``ret``' instruction: one that returns a
4779value and then causes control flow, and one that just causes control
4780flow to occur.
4781
4782Arguments:
4783""""""""""
4784
4785The '``ret``' instruction optionally accepts a single argument, the
4786return value. The type of the return value must be a ':ref:`first
4787class <t_firstclass>`' type.
4788
4789A function is not :ref:`well formed <wellformed>` if it it has a non-void
4790return type and contains a '``ret``' instruction with no return value or
4791a return value with a type that does not match its type, or if it has a
4792void return type and contains a '``ret``' instruction with a return
4793value.
4794
4795Semantics:
4796""""""""""
4797
4798When the '``ret``' instruction is executed, control flow returns back to
4799the calling function's context. If the caller is a
4800":ref:`call <i_call>`" instruction, execution continues at the
4801instruction after the call. If the caller was an
4802":ref:`invoke <i_invoke>`" instruction, execution continues at the
4803beginning of the "normal" destination block. If the instruction returns
4804a value, that value shall set the call or invoke instruction's return
4805value.
4806
4807Example:
4808""""""""
4809
4810.. code-block:: llvm
4811
4812 ret i32 5 ; Return an integer value of 5
4813 ret void ; Return from a void function
4814 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
4815
4816.. _i_br:
4817
4818'``br``' Instruction
4819^^^^^^^^^^^^^^^^^^^^
4820
4821Syntax:
4822"""""""
4823
4824::
4825
4826 br i1 <cond>, label <iftrue>, label <iffalse>
4827 br label <dest> ; Unconditional branch
4828
4829Overview:
4830"""""""""
4831
4832The '``br``' instruction is used to cause control flow to transfer to a
4833different basic block in the current function. There are two forms of
4834this instruction, corresponding to a conditional branch and an
4835unconditional branch.
4836
4837Arguments:
4838""""""""""
4839
4840The conditional branch form of the '``br``' instruction takes a single
4841'``i1``' value and two '``label``' values. The unconditional form of the
4842'``br``' instruction takes a single '``label``' value as a target.
4843
4844Semantics:
4845""""""""""
4846
4847Upon execution of a conditional '``br``' instruction, the '``i1``'
4848argument is evaluated. If the value is ``true``, control flows to the
4849'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
4850to the '``iffalse``' ``label`` argument.
4851
4852Example:
4853""""""""
4854
4855.. code-block:: llvm
4856
4857 Test:
4858 %cond = icmp eq i32 %a, %b
4859 br i1 %cond, label %IfEqual, label %IfUnequal
4860 IfEqual:
4861 ret i32 1
4862 IfUnequal:
4863 ret i32 0
4864
4865.. _i_switch:
4866
4867'``switch``' Instruction
4868^^^^^^^^^^^^^^^^^^^^^^^^
4869
4870Syntax:
4871"""""""
4872
4873::
4874
4875 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
4876
4877Overview:
4878"""""""""
4879
4880The '``switch``' instruction is used to transfer control flow to one of
4881several different places. It is a generalization of the '``br``'
4882instruction, allowing a branch to occur to one of many possible
4883destinations.
4884
4885Arguments:
4886""""""""""
4887
4888The '``switch``' instruction uses three parameters: an integer
4889comparison value '``value``', a default '``label``' destination, and an
4890array of pairs of comparison value constants and '``label``'s. The table
4891is not allowed to contain duplicate constant entries.
4892
4893Semantics:
4894""""""""""
4895
4896The ``switch`` instruction specifies a table of values and destinations.
4897When the '``switch``' instruction is executed, this table is searched
4898for the given value. If the value is found, control flow is transferred
4899to the corresponding destination; otherwise, control flow is transferred
4900to the default destination.
4901
4902Implementation:
4903"""""""""""""""
4904
4905Depending on properties of the target machine and the particular
4906``switch`` instruction, this instruction may be code generated in
4907different ways. For example, it could be generated as a series of
4908chained conditional branches or with a lookup table.
4909
4910Example:
4911""""""""
4912
4913.. code-block:: llvm
4914
4915 ; Emulate a conditional br instruction
4916 %Val = zext i1 %value to i32
4917 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
4918
4919 ; Emulate an unconditional br instruction
4920 switch i32 0, label %dest [ ]
4921
4922 ; Implement a jump table:
4923 switch i32 %val, label %otherwise [ i32 0, label %onzero
4924 i32 1, label %onone
4925 i32 2, label %ontwo ]
4926
4927.. _i_indirectbr:
4928
4929'``indirectbr``' Instruction
4930^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4931
4932Syntax:
4933"""""""
4934
4935::
4936
4937 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
4938
4939Overview:
4940"""""""""
4941
4942The '``indirectbr``' instruction implements an indirect branch to a
4943label within the current function, whose address is specified by
4944"``address``". Address must be derived from a
4945:ref:`blockaddress <blockaddress>` constant.
4946
4947Arguments:
4948""""""""""
4949
4950The '``address``' argument is the address of the label to jump to. The
4951rest of the arguments indicate the full set of possible destinations
4952that the address may point to. Blocks are allowed to occur multiple
4953times in the destination list, though this isn't particularly useful.
4954
4955This destination list is required so that dataflow analysis has an
4956accurate understanding of the CFG.
4957
4958Semantics:
4959""""""""""
4960
4961Control transfers to the block specified in the address argument. All
4962possible destination blocks must be listed in the label list, otherwise
4963this instruction has undefined behavior. This implies that jumps to
4964labels defined in other functions have undefined behavior as well.
4965
4966Implementation:
4967"""""""""""""""
4968
4969This is typically implemented with a jump through a register.
4970
4971Example:
4972""""""""
4973
4974.. code-block:: llvm
4975
4976 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
4977
4978.. _i_invoke:
4979
4980'``invoke``' Instruction
4981^^^^^^^^^^^^^^^^^^^^^^^^
4982
4983Syntax:
4984"""""""
4985
4986::
4987
4988 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
4989 to label <normal label> unwind label <exception label>
4990
4991Overview:
4992"""""""""
4993
4994The '``invoke``' instruction causes control to transfer to a specified
4995function, with the possibility of control flow transfer to either the
4996'``normal``' label or the '``exception``' label. If the callee function
4997returns with the "``ret``" instruction, control flow will return to the
4998"normal" label. If the callee (or any indirect callees) returns via the
4999":ref:`resume <i_resume>`" instruction or other exception handling
5000mechanism, control is interrupted and continued at the dynamically
5001nearest "exception" label.
5002
5003The '``exception``' label is a `landing
5004pad <ExceptionHandling.html#overview>`_ for the exception. As such,
5005'``exception``' label is required to have the
5006":ref:`landingpad <i_landingpad>`" instruction, which contains the
5007information about the behavior of the program after unwinding happens,
5008as its first non-PHI instruction. The restrictions on the
5009"``landingpad``" instruction's tightly couples it to the "``invoke``"
5010instruction, so that the important information contained within the
5011"``landingpad``" instruction can't be lost through normal code motion.
5012
5013Arguments:
5014""""""""""
5015
5016This instruction requires several arguments:
5017
5018#. The optional "cconv" marker indicates which :ref:`calling
5019 convention <callingconv>` the call should use. If none is
5020 specified, the call defaults to using C calling conventions.
5021#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5022 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5023 are valid here.
5024#. '``ptr to function ty``': shall be the signature of the pointer to
5025 function value being invoked. In most cases, this is a direct
5026 function invocation, but indirect ``invoke``'s are just as possible,
5027 branching off an arbitrary pointer to function value.
5028#. '``function ptr val``': An LLVM value containing a pointer to a
5029 function to be invoked.
5030#. '``function args``': argument list whose types match the function
5031 signature argument types and parameter attributes. All arguments must
5032 be of :ref:`first class <t_firstclass>` type. If the function signature
5033 indicates the function accepts a variable number of arguments, the
5034 extra arguments can be specified.
5035#. '``normal label``': the label reached when the called function
5036 executes a '``ret``' instruction.
5037#. '``exception label``': the label reached when a callee returns via
5038 the :ref:`resume <i_resume>` instruction or other exception handling
5039 mechanism.
5040#. The optional :ref:`function attributes <fnattrs>` list. Only
5041 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5042 attributes are valid here.
5043
5044Semantics:
5045""""""""""
5046
5047This instruction is designed to operate as a standard '``call``'
5048instruction in most regards. The primary difference is that it
5049establishes an association with a label, which is used by the runtime
5050library to unwind the stack.
5051
5052This instruction is used in languages with destructors to ensure that
5053proper cleanup is performed in the case of either a ``longjmp`` or a
5054thrown exception. Additionally, this is important for implementation of
5055'``catch``' clauses in high-level languages that support them.
5056
5057For the purposes of the SSA form, the definition of the value returned
5058by the '``invoke``' instruction is deemed to occur on the edge from the
5059current block to the "normal" label. If the callee unwinds then no
5060return value is available.
5061
5062Example:
5063""""""""
5064
5065.. code-block:: llvm
5066
5067 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005068 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005069 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005070 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005071
5072.. _i_resume:
5073
5074'``resume``' Instruction
5075^^^^^^^^^^^^^^^^^^^^^^^^
5076
5077Syntax:
5078"""""""
5079
5080::
5081
5082 resume <type> <value>
5083
5084Overview:
5085"""""""""
5086
5087The '``resume``' instruction is a terminator instruction that has no
5088successors.
5089
5090Arguments:
5091""""""""""
5092
5093The '``resume``' instruction requires one argument, which must have the
5094same type as the result of any '``landingpad``' instruction in the same
5095function.
5096
5097Semantics:
5098""""""""""
5099
5100The '``resume``' instruction resumes propagation of an existing
5101(in-flight) exception whose unwinding was interrupted with a
5102:ref:`landingpad <i_landingpad>` instruction.
5103
5104Example:
5105""""""""
5106
5107.. code-block:: llvm
5108
5109 resume { i8*, i32 } %exn
5110
David Majnemer654e1302015-07-31 17:58:14 +00005111.. _i_catchpad:
5112
5113'``catchpad``' Instruction
5114^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5115
5116Syntax:
5117"""""""
5118
5119::
5120
5121 <resultval> = catchpad <resultty> [<args>*]
5122 to label <normal label> unwind label <exception label>
5123
5124Overview:
5125"""""""""
5126
5127The '``catchpad``' instruction is used by `LLVM's exception handling
5128system <ExceptionHandling.html#overview>`_ to specify that a basic block
5129is a catch block --- one where a personality routine attempts to transfer
5130control to catch an exception.
5131The ``args`` correspond to whatever information the personality
5132routine requires to know if this is an appropriate place to catch the
Sean Silvaa1190322015-08-06 22:56:48 +00005133exception. Control is tranfered to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005134``catchpad`` is not an appropriate handler for the in-flight exception.
5135The ``normal`` label should contain the code found in the ``catch``
5136portion of a ``try``/``catch`` sequence. It defines values supplied by
5137the :ref:`personality function <personalityfn>` upon re-entry to the
5138function. The ``resultval`` has the type ``resultty``.
5139
5140Arguments:
5141""""""""""
5142
5143The instruction takes a list of arbitrary values which are interpreted
5144by the :ref:`personality function <personalityfn>`.
5145
5146The ``catchpad`` must be provided a ``normal`` label to transfer control
5147to if the ``catchpad`` matches the exception and an ``exception``
5148label to transfer control to if it doesn't.
5149
5150Semantics:
5151""""""""""
5152
5153The '``catchpad``' instruction defines the values which are set by the
5154:ref:`personality function <personalityfn>` upon re-entry to the function, and
5155therefore the "result type" of the ``catchpad`` instruction. As with
5156calling conventions, how the personality function results are
5157represented in LLVM IR is target specific.
5158
5159When the call stack is being unwound due to an exception being thrown,
5160the exception is compared against the ``args``. If it doesn't match,
5161then control is transfered to the ``exception`` basic block.
5162
5163The ``catchpad`` instruction has several restrictions:
5164
5165- A catch block is a basic block which is the unwind destination of
5166 an exceptional instruction.
5167- A catch block must have a '``catchpad``' instruction as its
5168 first non-PHI instruction.
5169- A catch block's ``exception`` edge must refer to a catch block or a
5170 catch-end block.
5171- There can be only one '``catchpad``' instruction within the
5172 catch block.
5173- A basic block that is not a catch block may not include a
5174 '``catchpad``' instruction.
5175- It is undefined behavior for control to transfer from a ``catchpad`` to a
5176 ``cleanupret`` without first executing a ``catchret`` and a subsequent
5177 ``cleanuppad``.
5178- It is undefined behavior for control to transfer from a ``catchpad`` to a
5179 ``ret`` without first executing a ``catchret``.
5180
5181Example:
5182""""""""
5183
5184.. code-block:: llvm
5185
5186 ;; A catch block which can catch an integer.
5187 %res = catchpad { i8*, i32 } [i8** @_ZTIi]
5188 to label %int.handler unwind label %terminate
5189
5190.. _i_catchendpad:
5191
5192'``catchendpad``' Instruction
5193^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5194
5195Syntax:
5196"""""""
5197
5198::
5199
5200 catchendpad unwind label <nextaction>
5201 catchendpad unwind to caller
5202
5203Overview:
5204"""""""""
5205
5206The '``catchendpad``' instruction is used by `LLVM's exception handling
5207system <ExceptionHandling.html#overview>`_ to communicate to the
5208:ref:`personality function <personalityfn>` which invokes are associated
5209with a chain of :ref:`catchpad <i_catchpad>` instructions.
5210
5211The ``nextaction`` label indicates where control should transfer to if
5212none of the ``catchpad`` instructions are suitable for catching the
5213in-flight exception.
5214
5215If a ``nextaction`` label is not present, the instruction unwinds out of
Sean Silvaa1190322015-08-06 22:56:48 +00005216its parent function. The
David Majnemer654e1302015-07-31 17:58:14 +00005217:ref:`personality function <personalityfn>` will continue processing
5218exception handling actions in the caller.
5219
5220Arguments:
5221""""""""""
5222
5223The instruction optionally takes a label, ``nextaction``, indicating
5224where control should transfer to if none of the preceding
5225``catchpad`` instructions are suitable for the in-flight exception.
5226
5227Semantics:
5228""""""""""
5229
5230When the call stack is being unwound due to an exception being thrown
5231and none of the constituent ``catchpad`` instructions match, then
Sean Silvaa1190322015-08-06 22:56:48 +00005232control is transfered to ``nextaction`` if it is present. If it is not
David Majnemer654e1302015-07-31 17:58:14 +00005233present, control is transfered to the caller.
5234
5235The ``catchendpad`` instruction has several restrictions:
5236
5237- A catch-end block is a basic block which is the unwind destination of
5238 an exceptional instruction.
5239- A catch-end block must have a '``catchendpad``' instruction as its
5240 first non-PHI instruction.
5241- There can be only one '``catchendpad``' instruction within the
5242 catch block.
5243- A basic block that is not a catch-end block may not include a
5244 '``catchendpad``' instruction.
5245- Exactly one catch block may unwind to a ``catchendpad``.
5246- The unwind target of invokes between a ``catchpad`` and a
5247 corresponding ``catchret`` must be its ``catchendpad``.
5248
5249Example:
5250""""""""
5251
5252.. code-block:: llvm
5253
5254 catchendpad unwind label %terminate
5255 catchendpad unwind to caller
5256
5257.. _i_catchret:
5258
5259'``catchret``' Instruction
5260^^^^^^^^^^^^^^^^^^^^^^^^^^
5261
5262Syntax:
5263"""""""
5264
5265::
5266
5267 catchret label <normal>
5268
5269Overview:
5270"""""""""
5271
5272The '``catchret``' instruction is a terminator instruction that has a
5273single successor.
5274
5275
5276Arguments:
5277""""""""""
5278
5279The '``catchret``' instruction requires one argument which specifies
5280where control will transfer to next.
5281
5282Semantics:
5283""""""""""
5284
5285The '``catchret``' instruction ends the existing (in-flight) exception
5286whose unwinding was interrupted with a
5287:ref:`catchpad <i_catchpad>` instruction.
5288The :ref:`personality function <personalityfn>` gets a chance to execute
5289arbitrary code to, for example, run a C++ destructor.
5290Control then transfers to ``normal``.
5291
5292Example:
5293""""""""
5294
5295.. code-block:: llvm
5296
5297 catchret label %continue
5298
5299.. _i_cleanupret:
5300
5301'``cleanupret``' Instruction
5302^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5303
5304Syntax:
5305"""""""
5306
5307::
5308
5309 cleanupret <type> <value> unwind label <continue>
5310 cleanupret <type> <value> unwind to caller
5311
5312Overview:
5313"""""""""
5314
5315The '``cleanupret``' instruction is a terminator instruction that has
5316an optional successor.
5317
5318
5319Arguments:
5320""""""""""
5321
5322The '``cleanupret``' instruction requires one argument, which must have the
5323same type as the result of any '``cleanuppad``' instruction in the same
Sean Silvaa1190322015-08-06 22:56:48 +00005324function. It also has an optional successor, ``continue``.
David Majnemer654e1302015-07-31 17:58:14 +00005325
5326Semantics:
5327""""""""""
5328
5329The '``cleanupret``' instruction indicates to the
5330:ref:`personality function <personalityfn>` that one
5331:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5332It transfers control to ``continue`` or unwinds out of the function.
5333
5334Example:
5335""""""""
5336
5337.. code-block:: llvm
5338
5339 cleanupret void unwind to caller
5340 cleanupret { i8*, i32 } %exn unwind label %continue
5341
5342.. _i_terminatepad:
5343
5344'``terminatepad``' Instruction
5345^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5346
5347Syntax:
5348"""""""
5349
5350::
5351
5352 terminatepad [<args>*] unwind label <exception label>
5353 terminatepad [<args>*] unwind to caller
5354
5355Overview:
5356"""""""""
5357
5358The '``terminatepad``' instruction is used by `LLVM's exception handling
5359system <ExceptionHandling.html#overview>`_ to specify that a basic block
5360is a terminate block --- one where a personality routine may decide to
5361terminate the program.
5362The ``args`` correspond to whatever information the personality
5363routine requires to know if this is an appropriate place to terminate the
Sean Silvaa1190322015-08-06 22:56:48 +00005364program. Control is transferred to the ``exception`` label if the
David Majnemer654e1302015-07-31 17:58:14 +00005365personality routine decides not to terminate the program for the
5366in-flight exception.
5367
5368Arguments:
5369""""""""""
5370
5371The instruction takes a list of arbitrary values which are interpreted
5372by the :ref:`personality function <personalityfn>`.
5373
5374The ``terminatepad`` may be given an ``exception`` label to
5375transfer control to if the in-flight exception matches the ``args``.
5376
5377Semantics:
5378""""""""""
5379
5380When the call stack is being unwound due to an exception being thrown,
5381the exception is compared against the ``args``. If it matches,
Sean Silvaa1190322015-08-06 22:56:48 +00005382then control is transfered to the ``exception`` basic block. Otherwise,
5383the program is terminated via personality-specific means. Typically,
David Majnemer654e1302015-07-31 17:58:14 +00005384the first argument to ``terminatepad`` specifies what function the
5385personality should defer to in order to terminate the program.
5386
5387The ``terminatepad`` instruction has several restrictions:
5388
5389- A terminate block is a basic block which is the unwind destination of
5390 an exceptional instruction.
5391- A terminate block must have a '``terminatepad``' instruction as its
5392 first non-PHI instruction.
5393- There can be only one '``terminatepad``' instruction within the
5394 terminate block.
5395- A basic block that is not a terminate block may not include a
5396 '``terminatepad``' instruction.
5397
5398Example:
5399""""""""
5400
5401.. code-block:: llvm
5402
5403 ;; A terminate block which only permits integers.
5404 terminatepad [i8** @_ZTIi] unwind label %continue
5405
Sean Silvab084af42012-12-07 10:36:55 +00005406.. _i_unreachable:
5407
5408'``unreachable``' Instruction
5409^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5410
5411Syntax:
5412"""""""
5413
5414::
5415
5416 unreachable
5417
5418Overview:
5419"""""""""
5420
5421The '``unreachable``' instruction has no defined semantics. This
5422instruction is used to inform the optimizer that a particular portion of
5423the code is not reachable. This can be used to indicate that the code
5424after a no-return function cannot be reached, and other facts.
5425
5426Semantics:
5427""""""""""
5428
5429The '``unreachable``' instruction has no defined semantics.
5430
5431.. _binaryops:
5432
5433Binary Operations
5434-----------------
5435
5436Binary operators are used to do most of the computation in a program.
5437They require two operands of the same type, execute an operation on
5438them, and produce a single value. The operands might represent multiple
5439data, as is the case with the :ref:`vector <t_vector>` data type. The
5440result value has the same type as its operands.
5441
5442There are several different binary operators:
5443
5444.. _i_add:
5445
5446'``add``' Instruction
5447^^^^^^^^^^^^^^^^^^^^^
5448
5449Syntax:
5450"""""""
5451
5452::
5453
Tim Northover675a0962014-06-13 14:24:23 +00005454 <result> = add <ty> <op1>, <op2> ; yields ty:result
5455 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5456 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5457 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005458
5459Overview:
5460"""""""""
5461
5462The '``add``' instruction returns the sum of its two operands.
5463
5464Arguments:
5465""""""""""
5466
5467The two arguments to the '``add``' instruction must be
5468:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5469arguments must have identical types.
5470
5471Semantics:
5472""""""""""
5473
5474The value produced is the integer sum of the two operands.
5475
5476If the sum has unsigned overflow, the result returned is the
5477mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5478the result.
5479
5480Because LLVM integers use a two's complement representation, this
5481instruction is appropriate for both signed and unsigned integers.
5482
5483``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5484respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5485result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5486unsigned and/or signed overflow, respectively, occurs.
5487
5488Example:
5489""""""""
5490
5491.. code-block:: llvm
5492
Tim Northover675a0962014-06-13 14:24:23 +00005493 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005494
5495.. _i_fadd:
5496
5497'``fadd``' Instruction
5498^^^^^^^^^^^^^^^^^^^^^^
5499
5500Syntax:
5501"""""""
5502
5503::
5504
Tim Northover675a0962014-06-13 14:24:23 +00005505 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005506
5507Overview:
5508"""""""""
5509
5510The '``fadd``' instruction returns the sum of its two operands.
5511
5512Arguments:
5513""""""""""
5514
5515The two arguments to the '``fadd``' instruction must be :ref:`floating
5516point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5517Both arguments must have identical types.
5518
5519Semantics:
5520""""""""""
5521
5522The value produced is the floating point sum of the two operands. This
5523instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5524which are optimization hints to enable otherwise unsafe floating point
5525optimizations:
5526
5527Example:
5528""""""""
5529
5530.. code-block:: llvm
5531
Tim Northover675a0962014-06-13 14:24:23 +00005532 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005533
5534'``sub``' Instruction
5535^^^^^^^^^^^^^^^^^^^^^
5536
5537Syntax:
5538"""""""
5539
5540::
5541
Tim Northover675a0962014-06-13 14:24:23 +00005542 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5543 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5544 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5545 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005546
5547Overview:
5548"""""""""
5549
5550The '``sub``' instruction returns the difference of its two operands.
5551
5552Note that the '``sub``' instruction is used to represent the '``neg``'
5553instruction present in most other intermediate representations.
5554
5555Arguments:
5556""""""""""
5557
5558The two arguments to the '``sub``' instruction must be
5559:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5560arguments must have identical types.
5561
5562Semantics:
5563""""""""""
5564
5565The value produced is the integer difference of the two operands.
5566
5567If the difference has unsigned overflow, the result returned is the
5568mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5569the result.
5570
5571Because LLVM integers use a two's complement representation, this
5572instruction is appropriate for both signed and unsigned integers.
5573
5574``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5575respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5576result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5577unsigned and/or signed overflow, respectively, occurs.
5578
5579Example:
5580""""""""
5581
5582.. code-block:: llvm
5583
Tim Northover675a0962014-06-13 14:24:23 +00005584 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5585 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005586
5587.. _i_fsub:
5588
5589'``fsub``' Instruction
5590^^^^^^^^^^^^^^^^^^^^^^
5591
5592Syntax:
5593"""""""
5594
5595::
5596
Tim Northover675a0962014-06-13 14:24:23 +00005597 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005598
5599Overview:
5600"""""""""
5601
5602The '``fsub``' instruction returns the difference of its two operands.
5603
5604Note that the '``fsub``' instruction is used to represent the '``fneg``'
5605instruction present in most other intermediate representations.
5606
5607Arguments:
5608""""""""""
5609
5610The two arguments to the '``fsub``' instruction must be :ref:`floating
5611point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5612Both arguments must have identical types.
5613
5614Semantics:
5615""""""""""
5616
5617The value produced is the floating point difference of the two operands.
5618This instruction can also take any number of :ref:`fast-math
5619flags <fastmath>`, which are optimization hints to enable otherwise
5620unsafe floating point optimizations:
5621
5622Example:
5623""""""""
5624
5625.. code-block:: llvm
5626
Tim Northover675a0962014-06-13 14:24:23 +00005627 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5628 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005629
5630'``mul``' Instruction
5631^^^^^^^^^^^^^^^^^^^^^
5632
5633Syntax:
5634"""""""
5635
5636::
5637
Tim Northover675a0962014-06-13 14:24:23 +00005638 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5639 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5640 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5641 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005642
5643Overview:
5644"""""""""
5645
5646The '``mul``' instruction returns the product of its two operands.
5647
5648Arguments:
5649""""""""""
5650
5651The two arguments to the '``mul``' instruction must be
5652:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5653arguments must have identical types.
5654
5655Semantics:
5656""""""""""
5657
5658The value produced is the integer product of the two operands.
5659
5660If the result of the multiplication has unsigned overflow, the result
5661returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5662bit width of the result.
5663
5664Because LLVM integers use a two's complement representation, and the
5665result is the same width as the operands, this instruction returns the
5666correct result for both signed and unsigned integers. If a full product
5667(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5668sign-extended or zero-extended as appropriate to the width of the full
5669product.
5670
5671``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5672respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5673result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5674unsigned and/or signed overflow, respectively, occurs.
5675
5676Example:
5677""""""""
5678
5679.. code-block:: llvm
5680
Tim Northover675a0962014-06-13 14:24:23 +00005681 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005682
5683.. _i_fmul:
5684
5685'``fmul``' Instruction
5686^^^^^^^^^^^^^^^^^^^^^^
5687
5688Syntax:
5689"""""""
5690
5691::
5692
Tim Northover675a0962014-06-13 14:24:23 +00005693 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005694
5695Overview:
5696"""""""""
5697
5698The '``fmul``' instruction returns the product of its two operands.
5699
5700Arguments:
5701""""""""""
5702
5703The two arguments to the '``fmul``' instruction must be :ref:`floating
5704point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5705Both arguments must have identical types.
5706
5707Semantics:
5708""""""""""
5709
5710The value produced is the floating point product of the two operands.
5711This instruction can also take any number of :ref:`fast-math
5712flags <fastmath>`, which are optimization hints to enable otherwise
5713unsafe floating point optimizations:
5714
5715Example:
5716""""""""
5717
5718.. code-block:: llvm
5719
Tim Northover675a0962014-06-13 14:24:23 +00005720 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005721
5722'``udiv``' Instruction
5723^^^^^^^^^^^^^^^^^^^^^^
5724
5725Syntax:
5726"""""""
5727
5728::
5729
Tim Northover675a0962014-06-13 14:24:23 +00005730 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5731 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005732
5733Overview:
5734"""""""""
5735
5736The '``udiv``' instruction returns the quotient of its two operands.
5737
5738Arguments:
5739""""""""""
5740
5741The two arguments to the '``udiv``' instruction must be
5742:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5743arguments must have identical types.
5744
5745Semantics:
5746""""""""""
5747
5748The value produced is the unsigned integer quotient of the two operands.
5749
5750Note that unsigned integer division and signed integer division are
5751distinct operations; for signed integer division, use '``sdiv``'.
5752
5753Division by zero leads to undefined behavior.
5754
5755If the ``exact`` keyword is present, the result value of the ``udiv`` is
5756a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5757such, "((a udiv exact b) mul b) == a").
5758
5759Example:
5760""""""""
5761
5762.. code-block:: llvm
5763
Tim Northover675a0962014-06-13 14:24:23 +00005764 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005765
5766'``sdiv``' Instruction
5767^^^^^^^^^^^^^^^^^^^^^^
5768
5769Syntax:
5770"""""""
5771
5772::
5773
Tim Northover675a0962014-06-13 14:24:23 +00005774 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
5775 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005776
5777Overview:
5778"""""""""
5779
5780The '``sdiv``' instruction returns the quotient of its two operands.
5781
5782Arguments:
5783""""""""""
5784
5785The two arguments to the '``sdiv``' instruction must be
5786:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5787arguments must have identical types.
5788
5789Semantics:
5790""""""""""
5791
5792The value produced is the signed integer quotient of the two operands
5793rounded towards zero.
5794
5795Note that signed integer division and unsigned integer division are
5796distinct operations; for unsigned integer division, use '``udiv``'.
5797
5798Division by zero leads to undefined behavior. Overflow also leads to
5799undefined behavior; this is a rare case, but can occur, for example, by
5800doing a 32-bit division of -2147483648 by -1.
5801
5802If the ``exact`` keyword is present, the result value of the ``sdiv`` is
5803a :ref:`poison value <poisonvalues>` if the result would be rounded.
5804
5805Example:
5806""""""""
5807
5808.. code-block:: llvm
5809
Tim Northover675a0962014-06-13 14:24:23 +00005810 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005811
5812.. _i_fdiv:
5813
5814'``fdiv``' Instruction
5815^^^^^^^^^^^^^^^^^^^^^^
5816
5817Syntax:
5818"""""""
5819
5820::
5821
Tim Northover675a0962014-06-13 14:24:23 +00005822 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005823
5824Overview:
5825"""""""""
5826
5827The '``fdiv``' instruction returns the quotient of its two operands.
5828
5829Arguments:
5830""""""""""
5831
5832The two arguments to the '``fdiv``' instruction must be :ref:`floating
5833point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5834Both arguments must have identical types.
5835
5836Semantics:
5837""""""""""
5838
5839The value produced is the floating point quotient of the two operands.
5840This instruction can also take any number of :ref:`fast-math
5841flags <fastmath>`, which are optimization hints to enable otherwise
5842unsafe floating point optimizations:
5843
5844Example:
5845""""""""
5846
5847.. code-block:: llvm
5848
Tim Northover675a0962014-06-13 14:24:23 +00005849 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005850
5851'``urem``' Instruction
5852^^^^^^^^^^^^^^^^^^^^^^
5853
5854Syntax:
5855"""""""
5856
5857::
5858
Tim Northover675a0962014-06-13 14:24:23 +00005859 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005860
5861Overview:
5862"""""""""
5863
5864The '``urem``' instruction returns the remainder from the unsigned
5865division of its two arguments.
5866
5867Arguments:
5868""""""""""
5869
5870The two arguments to the '``urem``' instruction must be
5871:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5872arguments must have identical types.
5873
5874Semantics:
5875""""""""""
5876
5877This instruction returns the unsigned integer *remainder* of a division.
5878This instruction always performs an unsigned division to get the
5879remainder.
5880
5881Note that unsigned integer remainder and signed integer remainder are
5882distinct operations; for signed integer remainder, use '``srem``'.
5883
5884Taking the remainder of a division by zero leads to undefined behavior.
5885
5886Example:
5887""""""""
5888
5889.. code-block:: llvm
5890
Tim Northover675a0962014-06-13 14:24:23 +00005891 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005892
5893'``srem``' Instruction
5894^^^^^^^^^^^^^^^^^^^^^^
5895
5896Syntax:
5897"""""""
5898
5899::
5900
Tim Northover675a0962014-06-13 14:24:23 +00005901 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005902
5903Overview:
5904"""""""""
5905
5906The '``srem``' instruction returns the remainder from the signed
5907division of its two operands. This instruction can also take
5908:ref:`vector <t_vector>` versions of the values in which case the elements
5909must be integers.
5910
5911Arguments:
5912""""""""""
5913
5914The two arguments to the '``srem``' instruction must be
5915:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5916arguments must have identical types.
5917
5918Semantics:
5919""""""""""
5920
5921This instruction returns the *remainder* of a division (where the result
5922is either zero or has the same sign as the dividend, ``op1``), not the
5923*modulo* operator (where the result is either zero or has the same sign
5924as the divisor, ``op2``) of a value. For more information about the
5925difference, see `The Math
5926Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
5927table of how this is implemented in various languages, please see
5928`Wikipedia: modulo
5929operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
5930
5931Note that signed integer remainder and unsigned integer remainder are
5932distinct operations; for unsigned integer remainder, use '``urem``'.
5933
5934Taking the remainder of a division by zero leads to undefined behavior.
5935Overflow also leads to undefined behavior; this is a rare case, but can
5936occur, for example, by taking the remainder of a 32-bit division of
5937-2147483648 by -1. (The remainder doesn't actually overflow, but this
5938rule lets srem be implemented using instructions that return both the
5939result of the division and the remainder.)
5940
5941Example:
5942""""""""
5943
5944.. code-block:: llvm
5945
Tim Northover675a0962014-06-13 14:24:23 +00005946 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005947
5948.. _i_frem:
5949
5950'``frem``' Instruction
5951^^^^^^^^^^^^^^^^^^^^^^
5952
5953Syntax:
5954"""""""
5955
5956::
5957
Tim Northover675a0962014-06-13 14:24:23 +00005958 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005959
5960Overview:
5961"""""""""
5962
5963The '``frem``' instruction returns the remainder from the division of
5964its two operands.
5965
5966Arguments:
5967""""""""""
5968
5969The two arguments to the '``frem``' instruction must be :ref:`floating
5970point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5971Both arguments must have identical types.
5972
5973Semantics:
5974""""""""""
5975
5976This instruction returns the *remainder* of a division. The remainder
5977has the same sign as the dividend. This instruction can also take any
5978number of :ref:`fast-math flags <fastmath>`, which are optimization hints
5979to enable otherwise unsafe floating point optimizations:
5980
5981Example:
5982""""""""
5983
5984.. code-block:: llvm
5985
Tim Northover675a0962014-06-13 14:24:23 +00005986 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005987
5988.. _bitwiseops:
5989
5990Bitwise Binary Operations
5991-------------------------
5992
5993Bitwise binary operators are used to do various forms of bit-twiddling
5994in a program. They are generally very efficient instructions and can
5995commonly be strength reduced from other instructions. They require two
5996operands of the same type, execute an operation on them, and produce a
5997single value. The resulting value is the same type as its operands.
5998
5999'``shl``' Instruction
6000^^^^^^^^^^^^^^^^^^^^^
6001
6002Syntax:
6003"""""""
6004
6005::
6006
Tim Northover675a0962014-06-13 14:24:23 +00006007 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6008 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6009 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6010 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006011
6012Overview:
6013"""""""""
6014
6015The '``shl``' instruction returns the first operand shifted to the left
6016a specified number of bits.
6017
6018Arguments:
6019""""""""""
6020
6021Both arguments to the '``shl``' instruction must be the same
6022:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6023'``op2``' is treated as an unsigned value.
6024
6025Semantics:
6026""""""""""
6027
6028The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6029where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006030dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006031``op1``, the result is undefined. If the arguments are vectors, each
6032vector element of ``op1`` is shifted by the corresponding shift amount
6033in ``op2``.
6034
6035If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6036value <poisonvalues>` if it shifts out any non-zero bits. If the
6037``nsw`` keyword is present, then the shift produces a :ref:`poison
6038value <poisonvalues>` if it shifts out any bits that disagree with the
6039resultant sign bit. As such, NUW/NSW have the same semantics as they
6040would if the shift were expressed as a mul instruction with the same
6041nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6042
6043Example:
6044""""""""
6045
6046.. code-block:: llvm
6047
Tim Northover675a0962014-06-13 14:24:23 +00006048 <result> = shl i32 4, %var ; yields i32: 4 << %var
6049 <result> = shl i32 4, 2 ; yields i32: 16
6050 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006051 <result> = shl i32 1, 32 ; undefined
6052 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6053
6054'``lshr``' Instruction
6055^^^^^^^^^^^^^^^^^^^^^^
6056
6057Syntax:
6058"""""""
6059
6060::
6061
Tim Northover675a0962014-06-13 14:24:23 +00006062 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6063 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006064
6065Overview:
6066"""""""""
6067
6068The '``lshr``' instruction (logical shift right) returns the first
6069operand shifted to the right a specified number of bits with zero fill.
6070
6071Arguments:
6072""""""""""
6073
6074Both arguments to the '``lshr``' instruction must be the same
6075:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6076'``op2``' is treated as an unsigned value.
6077
6078Semantics:
6079""""""""""
6080
6081This instruction always performs a logical shift right operation. The
6082most significant bits of the result will be filled with zero bits after
6083the shift. If ``op2`` is (statically or dynamically) equal to or larger
6084than the number of bits in ``op1``, the result is undefined. If the
6085arguments are vectors, each vector element of ``op1`` is shifted by the
6086corresponding shift amount in ``op2``.
6087
6088If the ``exact`` keyword is present, the result value of the ``lshr`` is
6089a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6090non-zero.
6091
6092Example:
6093""""""""
6094
6095.. code-block:: llvm
6096
Tim Northover675a0962014-06-13 14:24:23 +00006097 <result> = lshr i32 4, 1 ; yields i32:result = 2
6098 <result> = lshr i32 4, 2 ; yields i32:result = 1
6099 <result> = lshr i8 4, 3 ; yields i8:result = 0
6100 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006101 <result> = lshr i32 1, 32 ; undefined
6102 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6103
6104'``ashr``' Instruction
6105^^^^^^^^^^^^^^^^^^^^^^
6106
6107Syntax:
6108"""""""
6109
6110::
6111
Tim Northover675a0962014-06-13 14:24:23 +00006112 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6113 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006114
6115Overview:
6116"""""""""
6117
6118The '``ashr``' instruction (arithmetic shift right) returns the first
6119operand shifted to the right a specified number of bits with sign
6120extension.
6121
6122Arguments:
6123""""""""""
6124
6125Both arguments to the '``ashr``' instruction must be the same
6126:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6127'``op2``' is treated as an unsigned value.
6128
6129Semantics:
6130""""""""""
6131
6132This instruction always performs an arithmetic shift right operation,
6133The most significant bits of the result will be filled with the sign bit
6134of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6135than the number of bits in ``op1``, the result is undefined. If the
6136arguments are vectors, each vector element of ``op1`` is shifted by the
6137corresponding shift amount in ``op2``.
6138
6139If the ``exact`` keyword is present, the result value of the ``ashr`` is
6140a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6141non-zero.
6142
6143Example:
6144""""""""
6145
6146.. code-block:: llvm
6147
Tim Northover675a0962014-06-13 14:24:23 +00006148 <result> = ashr i32 4, 1 ; yields i32:result = 2
6149 <result> = ashr i32 4, 2 ; yields i32:result = 1
6150 <result> = ashr i8 4, 3 ; yields i8:result = 0
6151 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006152 <result> = ashr i32 1, 32 ; undefined
6153 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6154
6155'``and``' Instruction
6156^^^^^^^^^^^^^^^^^^^^^
6157
6158Syntax:
6159"""""""
6160
6161::
6162
Tim Northover675a0962014-06-13 14:24:23 +00006163 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006164
6165Overview:
6166"""""""""
6167
6168The '``and``' instruction returns the bitwise logical and of its two
6169operands.
6170
6171Arguments:
6172""""""""""
6173
6174The two arguments to the '``and``' instruction must be
6175:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6176arguments must have identical types.
6177
6178Semantics:
6179""""""""""
6180
6181The truth table used for the '``and``' instruction is:
6182
6183+-----+-----+-----+
6184| In0 | In1 | Out |
6185+-----+-----+-----+
6186| 0 | 0 | 0 |
6187+-----+-----+-----+
6188| 0 | 1 | 0 |
6189+-----+-----+-----+
6190| 1 | 0 | 0 |
6191+-----+-----+-----+
6192| 1 | 1 | 1 |
6193+-----+-----+-----+
6194
6195Example:
6196""""""""
6197
6198.. code-block:: llvm
6199
Tim Northover675a0962014-06-13 14:24:23 +00006200 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6201 <result> = and i32 15, 40 ; yields i32:result = 8
6202 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006203
6204'``or``' Instruction
6205^^^^^^^^^^^^^^^^^^^^
6206
6207Syntax:
6208"""""""
6209
6210::
6211
Tim Northover675a0962014-06-13 14:24:23 +00006212 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006213
6214Overview:
6215"""""""""
6216
6217The '``or``' instruction returns the bitwise logical inclusive or of its
6218two operands.
6219
6220Arguments:
6221""""""""""
6222
6223The two arguments to the '``or``' instruction must be
6224:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6225arguments must have identical types.
6226
6227Semantics:
6228""""""""""
6229
6230The truth table used for the '``or``' instruction is:
6231
6232+-----+-----+-----+
6233| In0 | In1 | Out |
6234+-----+-----+-----+
6235| 0 | 0 | 0 |
6236+-----+-----+-----+
6237| 0 | 1 | 1 |
6238+-----+-----+-----+
6239| 1 | 0 | 1 |
6240+-----+-----+-----+
6241| 1 | 1 | 1 |
6242+-----+-----+-----+
6243
6244Example:
6245""""""""
6246
6247::
6248
Tim Northover675a0962014-06-13 14:24:23 +00006249 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6250 <result> = or i32 15, 40 ; yields i32:result = 47
6251 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006252
6253'``xor``' Instruction
6254^^^^^^^^^^^^^^^^^^^^^
6255
6256Syntax:
6257"""""""
6258
6259::
6260
Tim Northover675a0962014-06-13 14:24:23 +00006261 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006262
6263Overview:
6264"""""""""
6265
6266The '``xor``' instruction returns the bitwise logical exclusive or of
6267its two operands. The ``xor`` is used to implement the "one's
6268complement" operation, which is the "~" operator in C.
6269
6270Arguments:
6271""""""""""
6272
6273The two arguments to the '``xor``' instruction must be
6274:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6275arguments must have identical types.
6276
6277Semantics:
6278""""""""""
6279
6280The truth table used for the '``xor``' instruction is:
6281
6282+-----+-----+-----+
6283| In0 | In1 | Out |
6284+-----+-----+-----+
6285| 0 | 0 | 0 |
6286+-----+-----+-----+
6287| 0 | 1 | 1 |
6288+-----+-----+-----+
6289| 1 | 0 | 1 |
6290+-----+-----+-----+
6291| 1 | 1 | 0 |
6292+-----+-----+-----+
6293
6294Example:
6295""""""""
6296
6297.. code-block:: llvm
6298
Tim Northover675a0962014-06-13 14:24:23 +00006299 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6300 <result> = xor i32 15, 40 ; yields i32:result = 39
6301 <result> = xor i32 4, 8 ; yields i32:result = 12
6302 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006303
6304Vector Operations
6305-----------------
6306
6307LLVM supports several instructions to represent vector operations in a
6308target-independent manner. These instructions cover the element-access
6309and vector-specific operations needed to process vectors effectively.
6310While LLVM does directly support these vector operations, many
6311sophisticated algorithms will want to use target-specific intrinsics to
6312take full advantage of a specific target.
6313
6314.. _i_extractelement:
6315
6316'``extractelement``' Instruction
6317^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6318
6319Syntax:
6320"""""""
6321
6322::
6323
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006324 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006325
6326Overview:
6327"""""""""
6328
6329The '``extractelement``' instruction extracts a single scalar element
6330from a vector at a specified index.
6331
6332Arguments:
6333""""""""""
6334
6335The first operand of an '``extractelement``' instruction is a value of
6336:ref:`vector <t_vector>` type. The second operand is an index indicating
6337the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006338variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006339
6340Semantics:
6341""""""""""
6342
6343The result is a scalar of the same type as the element type of ``val``.
6344Its value is the value at position ``idx`` of ``val``. If ``idx``
6345exceeds the length of ``val``, the results are undefined.
6346
6347Example:
6348""""""""
6349
6350.. code-block:: llvm
6351
6352 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6353
6354.. _i_insertelement:
6355
6356'``insertelement``' Instruction
6357^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6358
6359Syntax:
6360"""""""
6361
6362::
6363
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006364 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006365
6366Overview:
6367"""""""""
6368
6369The '``insertelement``' instruction inserts a scalar element into a
6370vector at a specified index.
6371
6372Arguments:
6373""""""""""
6374
6375The first operand of an '``insertelement``' instruction is a value of
6376:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6377type must equal the element type of the first operand. The third operand
6378is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006379index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006380
6381Semantics:
6382""""""""""
6383
6384The result is a vector of the same type as ``val``. Its element values
6385are those of ``val`` except at position ``idx``, where it gets the value
6386``elt``. If ``idx`` exceeds the length of ``val``, the results are
6387undefined.
6388
6389Example:
6390""""""""
6391
6392.. code-block:: llvm
6393
6394 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6395
6396.. _i_shufflevector:
6397
6398'``shufflevector``' Instruction
6399^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6400
6401Syntax:
6402"""""""
6403
6404::
6405
6406 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6407
6408Overview:
6409"""""""""
6410
6411The '``shufflevector``' instruction constructs a permutation of elements
6412from two input vectors, returning a vector with the same element type as
6413the input and length that is the same as the shuffle mask.
6414
6415Arguments:
6416""""""""""
6417
6418The first two operands of a '``shufflevector``' instruction are vectors
6419with the same type. The third argument is a shuffle mask whose element
6420type is always 'i32'. The result of the instruction is a vector whose
6421length is the same as the shuffle mask and whose element type is the
6422same as the element type of the first two operands.
6423
6424The shuffle mask operand is required to be a constant vector with either
6425constant integer or undef values.
6426
6427Semantics:
6428""""""""""
6429
6430The elements of the two input vectors are numbered from left to right
6431across both of the vectors. The shuffle mask operand specifies, for each
6432element of the result vector, which element of the two input vectors the
6433result element gets. The element selector may be undef (meaning "don't
6434care") and the second operand may be undef if performing a shuffle from
6435only one vector.
6436
6437Example:
6438""""""""
6439
6440.. code-block:: llvm
6441
6442 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6443 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6444 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6445 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6446 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6447 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6448 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6449 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6450
6451Aggregate Operations
6452--------------------
6453
6454LLVM supports several instructions for working with
6455:ref:`aggregate <t_aggregate>` values.
6456
6457.. _i_extractvalue:
6458
6459'``extractvalue``' Instruction
6460^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6461
6462Syntax:
6463"""""""
6464
6465::
6466
6467 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6468
6469Overview:
6470"""""""""
6471
6472The '``extractvalue``' instruction extracts the value of a member field
6473from an :ref:`aggregate <t_aggregate>` value.
6474
6475Arguments:
6476""""""""""
6477
6478The first operand of an '``extractvalue``' instruction is a value of
6479:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
6480constant indices to specify which value to extract in a similar manner
6481as indices in a '``getelementptr``' instruction.
6482
6483The major differences to ``getelementptr`` indexing are:
6484
6485- Since the value being indexed is not a pointer, the first index is
6486 omitted and assumed to be zero.
6487- At least one index must be specified.
6488- Not only struct indices but also array indices must be in bounds.
6489
6490Semantics:
6491""""""""""
6492
6493The result is the value at the position in the aggregate specified by
6494the index operands.
6495
6496Example:
6497""""""""
6498
6499.. code-block:: llvm
6500
6501 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6502
6503.. _i_insertvalue:
6504
6505'``insertvalue``' Instruction
6506^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6507
6508Syntax:
6509"""""""
6510
6511::
6512
6513 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6514
6515Overview:
6516"""""""""
6517
6518The '``insertvalue``' instruction inserts a value into a member field in
6519an :ref:`aggregate <t_aggregate>` value.
6520
6521Arguments:
6522""""""""""
6523
6524The first operand of an '``insertvalue``' instruction is a value of
6525:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6526a first-class value to insert. The following operands are constant
6527indices indicating the position at which to insert the value in a
6528similar manner as indices in a '``extractvalue``' instruction. The value
6529to insert must have the same type as the value identified by the
6530indices.
6531
6532Semantics:
6533""""""""""
6534
6535The result is an aggregate of the same type as ``val``. Its value is
6536that of ``val`` except that the value at the position specified by the
6537indices is that of ``elt``.
6538
6539Example:
6540""""""""
6541
6542.. code-block:: llvm
6543
6544 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6545 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006546 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006547
6548.. _memoryops:
6549
6550Memory Access and Addressing Operations
6551---------------------------------------
6552
6553A key design point of an SSA-based representation is how it represents
6554memory. In LLVM, no memory locations are in SSA form, which makes things
6555very simple. This section describes how to read, write, and allocate
6556memory in LLVM.
6557
6558.. _i_alloca:
6559
6560'``alloca``' Instruction
6561^^^^^^^^^^^^^^^^^^^^^^^^
6562
6563Syntax:
6564"""""""
6565
6566::
6567
Tim Northover675a0962014-06-13 14:24:23 +00006568 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006569
6570Overview:
6571"""""""""
6572
6573The '``alloca``' instruction allocates memory on the stack frame of the
6574currently executing function, to be automatically released when this
6575function returns to its caller. The object is always allocated in the
6576generic address space (address space zero).
6577
6578Arguments:
6579""""""""""
6580
6581The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6582bytes of memory on the runtime stack, returning a pointer of the
6583appropriate type to the program. If "NumElements" is specified, it is
6584the number of elements allocated, otherwise "NumElements" is defaulted
6585to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006586allocation is guaranteed to be aligned to at least that boundary. The
6587alignment may not be greater than ``1 << 29``. If not specified, or if
6588zero, the target can choose to align the allocation on any convenient
6589boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006590
6591'``type``' may be any sized type.
6592
6593Semantics:
6594""""""""""
6595
6596Memory is allocated; a pointer is returned. The operation is undefined
6597if there is insufficient stack space for the allocation. '``alloca``'d
6598memory is automatically released when the function returns. The
6599'``alloca``' instruction is commonly used to represent automatic
6600variables that must have an address available. When the function returns
6601(either with the ``ret`` or ``resume`` instructions), the memory is
6602reclaimed. Allocating zero bytes is legal, but the result is undefined.
6603The order in which memory is allocated (ie., which way the stack grows)
6604is not specified.
6605
6606Example:
6607""""""""
6608
6609.. code-block:: llvm
6610
Tim Northover675a0962014-06-13 14:24:23 +00006611 %ptr = alloca i32 ; yields i32*:ptr
6612 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6613 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6614 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006615
6616.. _i_load:
6617
6618'``load``' Instruction
6619^^^^^^^^^^^^^^^^^^^^^^
6620
6621Syntax:
6622"""""""
6623
6624::
6625
Sanjoy Dasf9995472015-05-19 20:10:19 +00006626 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>][, !dereferenceable !<index>][, !dereferenceable_or_null !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006627 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
6628 !<index> = !{ i32 1 }
6629
6630Overview:
6631"""""""""
6632
6633The '``load``' instruction is used to read from memory.
6634
6635Arguments:
6636""""""""""
6637
Eli Bendersky239a78b2013-04-17 20:17:08 +00006638The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006639from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006640class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6641then the optimizer is not allowed to modify the number or order of
6642execution of this ``load`` with other :ref:`volatile
6643operations <volatile>`.
6644
6645If the ``load`` is marked as ``atomic``, it takes an extra
6646:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6647``release`` and ``acq_rel`` orderings are not valid on ``load``
6648instructions. Atomic loads produce :ref:`defined <memmodel>` results
6649when they may see multiple atomic stores. The type of the pointee must
6650be an integer type whose bit width is a power of two greater than or
6651equal to eight and less than or equal to a target-specific size limit.
6652``align`` must be explicitly specified on atomic loads, and the load has
6653undefined behavior if the alignment is not set to a value which is at
6654least the size in bytes of the pointee. ``!nontemporal`` does not have
6655any defined semantics for atomic loads.
6656
6657The optional constant ``align`` argument specifies the alignment of the
6658operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006659or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006660alignment for the target. It is the responsibility of the code emitter
6661to ensure that the alignment information is correct. Overestimating the
6662alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006663may produce less efficient code. An alignment of 1 is always safe. The
6664maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006665
6666The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006667metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006668``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006669metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006670that this load is not expected to be reused in the cache. The code
6671generator may select special instructions to save cache bandwidth, such
6672as the ``MOVNT`` instruction on x86.
6673
6674The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006675metadata name ``<index>`` corresponding to a metadata node with no
6676entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006677instruction tells the optimizer and code generator that the address
6678operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006679Being invariant does not imply that a location is dereferenceable,
6680but it does imply that once the location is known dereferenceable
6681its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006682
Philip Reamescdb72f32014-10-20 22:40:55 +00006683The optional ``!nonnull`` metadata must reference a single
6684metadata name ``<index>`` corresponding to a metadata node with no
6685entries. The existence of the ``!nonnull`` metadata on the
6686instruction tells the optimizer that the value loaded is known to
Sean Silvaa1190322015-08-06 22:56:48 +00006687never be null. This is analogous to the ''nonnull'' attribute
6688on parameters and return values. This metadata can only be applied
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006689to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006690
Sanjoy Dasf9995472015-05-19 20:10:19 +00006691The optional ``!dereferenceable`` metadata must reference a single
6692metadata name ``<index>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006693entry. The existence of the ``!dereferenceable`` metadata on the instruction
Sanjoy Dasf9995472015-05-19 20:10:19 +00006694tells the optimizer that the value loaded is known to be dereferenceable.
Sean Silva706fba52015-08-06 22:56:24 +00006695The number of bytes known to be dereferenceable is specified by the integer
6696value in the metadata node. This is analogous to the ''dereferenceable''
6697attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006698to loads of a pointer type.
6699
6700The optional ``!dereferenceable_or_null`` metadata must reference a single
6701metadata name ``<index>`` corresponding to a metadata node with one ``i64``
Sean Silva706fba52015-08-06 22:56:24 +00006702entry. The existence of the ``!dereferenceable_or_null`` metadata on the
Sanjoy Dasf9995472015-05-19 20:10:19 +00006703instruction tells the optimizer that the value loaded is known to be either
6704dereferenceable or null.
Sean Silva706fba52015-08-06 22:56:24 +00006705The number of bytes known to be dereferenceable is specified by the integer
6706value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6707attribute on parameters and return values. This metadata can only be applied
Sanjoy Dasf9995472015-05-19 20:10:19 +00006708to loads of a pointer type.
6709
Sean Silvab084af42012-12-07 10:36:55 +00006710Semantics:
6711""""""""""
6712
6713The location of memory pointed to is loaded. If the value being loaded
6714is of scalar type then the number of bytes read does not exceed the
6715minimum number of bytes needed to hold all bits of the type. For
6716example, loading an ``i24`` reads at most three bytes. When loading a
6717value of a type like ``i20`` with a size that is not an integral number
6718of bytes, the result is undefined if the value was not originally
6719written using a store of the same type.
6720
6721Examples:
6722"""""""""
6723
6724.. code-block:: llvm
6725
Tim Northover675a0962014-06-13 14:24:23 +00006726 %ptr = alloca i32 ; yields i32*:ptr
6727 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006728 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006729
6730.. _i_store:
6731
6732'``store``' Instruction
6733^^^^^^^^^^^^^^^^^^^^^^^
6734
6735Syntax:
6736"""""""
6737
6738::
6739
Tim Northover675a0962014-06-13 14:24:23 +00006740 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
6741 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006742
6743Overview:
6744"""""""""
6745
6746The '``store``' instruction is used to write to memory.
6747
6748Arguments:
6749""""""""""
6750
Eli Benderskyca380842013-04-17 17:17:20 +00006751There are two arguments to the ``store`` instruction: a value to store
6752and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00006753operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00006754the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00006755then the optimizer is not allowed to modify the number or order of
6756execution of this ``store`` with other :ref:`volatile
6757operations <volatile>`.
6758
6759If the ``store`` is marked as ``atomic``, it takes an extra
6760:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6761``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
6762instructions. Atomic loads produce :ref:`defined <memmodel>` results
6763when they may see multiple atomic stores. The type of the pointee must
6764be an integer type whose bit width is a power of two greater than or
6765equal to eight and less than or equal to a target-specific size limit.
6766``align`` must be explicitly specified on atomic stores, and the store
6767has undefined behavior if the alignment is not set to a value which is
6768at least the size in bytes of the pointee. ``!nontemporal`` does not
6769have any defined semantics for atomic stores.
6770
Eli Benderskyca380842013-04-17 17:17:20 +00006771The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00006772operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00006773or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006774alignment for the target. It is the responsibility of the code emitter
6775to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00006776alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00006777alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006778safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006779
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006780The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00006781name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006782value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00006783tells the optimizer and code generator that this load is not expected to
6784be reused in the cache. The code generator may select special
6785instructions to save cache bandwidth, such as the MOVNT instruction on
6786x86.
6787
6788Semantics:
6789""""""""""
6790
Eli Benderskyca380842013-04-17 17:17:20 +00006791The contents of memory are updated to contain ``<value>`` at the
6792location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00006793of scalar type then the number of bytes written does not exceed the
6794minimum number of bytes needed to hold all bits of the type. For
6795example, storing an ``i24`` writes at most three bytes. When writing a
6796value of a type like ``i20`` with a size that is not an integral number
6797of bytes, it is unspecified what happens to the extra bits that do not
6798belong to the type, but they will typically be overwritten.
6799
6800Example:
6801""""""""
6802
6803.. code-block:: llvm
6804
Tim Northover675a0962014-06-13 14:24:23 +00006805 %ptr = alloca i32 ; yields i32*:ptr
6806 store i32 3, i32* %ptr ; yields void
6807 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006808
6809.. _i_fence:
6810
6811'``fence``' Instruction
6812^^^^^^^^^^^^^^^^^^^^^^^
6813
6814Syntax:
6815"""""""
6816
6817::
6818
Tim Northover675a0962014-06-13 14:24:23 +00006819 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006820
6821Overview:
6822"""""""""
6823
6824The '``fence``' instruction is used to introduce happens-before edges
6825between operations.
6826
6827Arguments:
6828""""""""""
6829
6830'``fence``' instructions take an :ref:`ordering <ordering>` argument which
6831defines what *synchronizes-with* edges they add. They can only be given
6832``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
6833
6834Semantics:
6835""""""""""
6836
6837A fence A which has (at least) ``release`` ordering semantics
6838*synchronizes with* a fence B with (at least) ``acquire`` ordering
6839semantics if and only if there exist atomic operations X and Y, both
6840operating on some atomic object M, such that A is sequenced before X, X
6841modifies M (either directly or through some side effect of a sequence
6842headed by X), Y is sequenced before B, and Y observes M. This provides a
6843*happens-before* dependency between A and B. Rather than an explicit
6844``fence``, one (but not both) of the atomic operations X or Y might
6845provide a ``release`` or ``acquire`` (resp.) ordering constraint and
6846still *synchronize-with* the explicit ``fence`` and establish the
6847*happens-before* edge.
6848
6849A ``fence`` which has ``seq_cst`` ordering, in addition to having both
6850``acquire`` and ``release`` semantics specified above, participates in
6851the global program order of other ``seq_cst`` operations and/or fences.
6852
6853The optional ":ref:`singlethread <singlethread>`" argument specifies
6854that the fence only synchronizes with other fences in the same thread.
6855(This is useful for interacting with signal handlers.)
6856
6857Example:
6858""""""""
6859
6860.. code-block:: llvm
6861
Tim Northover675a0962014-06-13 14:24:23 +00006862 fence acquire ; yields void
6863 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006864
6865.. _i_cmpxchg:
6866
6867'``cmpxchg``' Instruction
6868^^^^^^^^^^^^^^^^^^^^^^^^^
6869
6870Syntax:
6871"""""""
6872
6873::
6874
Tim Northover675a0962014-06-13 14:24:23 +00006875 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00006876
6877Overview:
6878"""""""""
6879
6880The '``cmpxchg``' instruction is used to atomically modify memory. It
6881loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00006882equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00006883
6884Arguments:
6885""""""""""
6886
6887There are three arguments to the '``cmpxchg``' instruction: an address
6888to operate on, a value to compare to the value currently be at that
6889address, and a new value to place at that address if the compared values
6890are equal. The type of '<cmp>' must be an integer type whose bit width
6891is a power of two greater than or equal to eight and less than or equal
6892to a target-specific size limit. '<cmp>' and '<new>' must have the same
6893type, and the type of '<pointer>' must be a pointer to that type. If the
6894``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
6895to modify the number or order of execution of this ``cmpxchg`` with
6896other :ref:`volatile operations <volatile>`.
6897
Tim Northovere94a5182014-03-11 10:48:52 +00006898The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00006899``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
6900must be at least ``monotonic``, the ordering constraint on failure must be no
6901stronger than that on success, and the failure ordering cannot be either
6902``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00006903
6904The optional "``singlethread``" argument declares that the ``cmpxchg``
6905is only atomic with respect to code (usually signal handlers) running in
6906the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
6907respect to all other code in the system.
6908
6909The pointer passed into cmpxchg must have alignment greater than or
6910equal to the size in memory of the operand.
6911
6912Semantics:
6913""""""""""
6914
Tim Northover420a2162014-06-13 14:24:07 +00006915The contents of memory at the location specified by the '``<pointer>``' operand
6916is read and compared to '``<cmp>``'; if the read value is the equal, the
6917'``<new>``' is written. The original value at the location is returned, together
6918with a flag indicating success (true) or failure (false).
6919
6920If the cmpxchg operation is marked as ``weak`` then a spurious failure is
6921permitted: the operation may not write ``<new>`` even if the comparison
6922matched.
6923
6924If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
6925if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00006926
Tim Northovere94a5182014-03-11 10:48:52 +00006927A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
6928identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
6929load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00006930
6931Example:
6932""""""""
6933
6934.. code-block:: llvm
6935
6936 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00006937 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00006938 br label %loop
6939
6940 loop:
6941 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
6942 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00006943 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00006944 %value_loaded = extractvalue { i32, i1 } %val_success, 0
6945 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00006946 br i1 %success, label %done, label %loop
6947
6948 done:
6949 ...
6950
6951.. _i_atomicrmw:
6952
6953'``atomicrmw``' Instruction
6954^^^^^^^^^^^^^^^^^^^^^^^^^^^
6955
6956Syntax:
6957"""""""
6958
6959::
6960
Tim Northover675a0962014-06-13 14:24:23 +00006961 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00006962
6963Overview:
6964"""""""""
6965
6966The '``atomicrmw``' instruction is used to atomically modify memory.
6967
6968Arguments:
6969""""""""""
6970
6971There are three arguments to the '``atomicrmw``' instruction: an
6972operation to apply, an address whose value to modify, an argument to the
6973operation. The operation must be one of the following keywords:
6974
6975- xchg
6976- add
6977- sub
6978- and
6979- nand
6980- or
6981- xor
6982- max
6983- min
6984- umax
6985- umin
6986
6987The type of '<value>' must be an integer type whose bit width is a power
6988of two greater than or equal to eight and less than or equal to a
6989target-specific size limit. The type of the '``<pointer>``' operand must
6990be a pointer to that type. If the ``atomicrmw`` is marked as
6991``volatile``, then the optimizer is not allowed to modify the number or
6992order of execution of this ``atomicrmw`` with other :ref:`volatile
6993operations <volatile>`.
6994
6995Semantics:
6996""""""""""
6997
6998The contents of memory at the location specified by the '``<pointer>``'
6999operand are atomically read, modified, and written back. The original
7000value at the location is returned. The modification is specified by the
7001operation argument:
7002
7003- xchg: ``*ptr = val``
7004- add: ``*ptr = *ptr + val``
7005- sub: ``*ptr = *ptr - val``
7006- and: ``*ptr = *ptr & val``
7007- nand: ``*ptr = ~(*ptr & val)``
7008- or: ``*ptr = *ptr | val``
7009- xor: ``*ptr = *ptr ^ val``
7010- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7011- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7012- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7013 comparison)
7014- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7015 comparison)
7016
7017Example:
7018""""""""
7019
7020.. code-block:: llvm
7021
Tim Northover675a0962014-06-13 14:24:23 +00007022 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007023
7024.. _i_getelementptr:
7025
7026'``getelementptr``' Instruction
7027^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7028
7029Syntax:
7030"""""""
7031
7032::
7033
David Blaikie16a97eb2015-03-04 22:02:58 +00007034 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7035 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7036 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007037
7038Overview:
7039"""""""""
7040
7041The '``getelementptr``' instruction is used to get the address of a
7042subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007043address calculation only and does not access memory. The instruction can also
7044be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007045
7046Arguments:
7047""""""""""
7048
David Blaikie16a97eb2015-03-04 22:02:58 +00007049The first argument is always a type used as the basis for the calculations.
7050The second argument is always a pointer or a vector of pointers, and is the
7051base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007052that indicate which of the elements of the aggregate object are indexed.
7053The interpretation of each index is dependent on the type being indexed
7054into. The first index always indexes the pointer value given as the
7055first argument, the second index indexes a value of the type pointed to
7056(not necessarily the value directly pointed to, since the first index
7057can be non-zero), etc. The first type indexed into must be a pointer
7058value, subsequent types can be arrays, vectors, and structs. Note that
7059subsequent types being indexed into can never be pointers, since that
7060would require loading the pointer before continuing calculation.
7061
7062The type of each index argument depends on the type it is indexing into.
7063When indexing into a (optionally packed) structure, only ``i32`` integer
7064**constants** are allowed (when using a vector of indices they must all
7065be the **same** ``i32`` integer constant). When indexing into an array,
7066pointer or vector, integers of any width are allowed, and they are not
7067required to be constant. These integers are treated as signed values
7068where relevant.
7069
7070For example, let's consider a C code fragment and how it gets compiled
7071to LLVM:
7072
7073.. code-block:: c
7074
7075 struct RT {
7076 char A;
7077 int B[10][20];
7078 char C;
7079 };
7080 struct ST {
7081 int X;
7082 double Y;
7083 struct RT Z;
7084 };
7085
7086 int *foo(struct ST *s) {
7087 return &s[1].Z.B[5][13];
7088 }
7089
7090The LLVM code generated by Clang is:
7091
7092.. code-block:: llvm
7093
7094 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7095 %struct.ST = type { i32, double, %struct.RT }
7096
7097 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7098 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007099 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007100 ret i32* %arrayidx
7101 }
7102
7103Semantics:
7104""""""""""
7105
7106In the example above, the first index is indexing into the
7107'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7108= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7109indexes into the third element of the structure, yielding a
7110'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7111structure. The third index indexes into the second element of the
7112structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7113dimensions of the array are subscripted into, yielding an '``i32``'
7114type. The '``getelementptr``' instruction returns a pointer to this
7115element, thus computing a value of '``i32*``' type.
7116
7117Note that it is perfectly legal to index partially through a structure,
7118returning a pointer to an inner element. Because of this, the LLVM code
7119for the given testcase is equivalent to:
7120
7121.. code-block:: llvm
7122
7123 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007124 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7125 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7126 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7127 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7128 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007129 ret i32* %t5
7130 }
7131
7132If the ``inbounds`` keyword is present, the result value of the
7133``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7134pointer is not an *in bounds* address of an allocated object, or if any
7135of the addresses that would be formed by successive addition of the
7136offsets implied by the indices to the base address with infinitely
7137precise signed arithmetic are not an *in bounds* address of that
7138allocated object. The *in bounds* addresses for an allocated object are
7139all the addresses that point into the object, plus the address one byte
7140past the end. In cases where the base is a vector of pointers the
7141``inbounds`` keyword applies to each of the computations element-wise.
7142
7143If the ``inbounds`` keyword is not present, the offsets are added to the
7144base address with silently-wrapping two's complement arithmetic. If the
7145offsets have a different width from the pointer, they are sign-extended
7146or truncated to the width of the pointer. The result value of the
7147``getelementptr`` may be outside the object pointed to by the base
7148pointer. The result value may not necessarily be used to access memory
7149though, even if it happens to point into allocated storage. See the
7150:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7151information.
7152
7153The getelementptr instruction is often confusing. For some more insight
7154into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7155
7156Example:
7157""""""""
7158
7159.. code-block:: llvm
7160
7161 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007162 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007163 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007164 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007165 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007166 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007167 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007168 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007169
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007170Vector of pointers:
7171"""""""""""""""""""
7172
7173The ``getelementptr`` returns a vector of pointers, instead of a single address,
7174when one or more of its arguments is a vector. In such cases, all vector
7175arguments should have the same number of elements, and every scalar argument
7176will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007177
7178.. code-block:: llvm
7179
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007180 ; All arguments are vectors:
7181 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7182 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007183
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007184 ; Add the same scalar offset to each pointer of a vector:
7185 ; A[i] = ptrs[i] + offset*sizeof(i8)
7186 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
Sean Silva706fba52015-08-06 22:56:24 +00007187
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007188 ; Add distinct offsets to the same pointer:
7189 ; A[i] = ptr + offsets[i]*sizeof(i8)
7190 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
Sean Silva706fba52015-08-06 22:56:24 +00007191
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007192 ; In all cases described above the type of the result is <4 x i8*>
7193
7194The two following instructions are equivalent:
7195
7196.. code-block:: llvm
7197
7198 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7199 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7200 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7201 <4 x i32> %ind4,
7202 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
Sean Silva706fba52015-08-06 22:56:24 +00007203
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007204 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7205 i32 2, i32 1, <4 x i32> %ind4, i64 13
7206
7207Let's look at the C code, where the vector version of ``getelementptr``
7208makes sense:
7209
7210.. code-block:: c
7211
7212 // Let's assume that we vectorize the following loop:
7213 double *A, B; int *C;
7214 for (int i = 0; i < size; ++i) {
7215 A[i] = B[C[i]];
7216 }
7217
7218.. code-block:: llvm
7219
7220 ; get pointers for 8 elements from array B
7221 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7222 ; load 8 elements from array B into A
7223 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7224 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007225
7226Conversion Operations
7227---------------------
7228
7229The instructions in this category are the conversion instructions
7230(casting) which all take a single operand and a type. They perform
7231various bit conversions on the operand.
7232
7233'``trunc .. to``' Instruction
7234^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7235
7236Syntax:
7237"""""""
7238
7239::
7240
7241 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7242
7243Overview:
7244"""""""""
7245
7246The '``trunc``' instruction truncates its operand to the type ``ty2``.
7247
7248Arguments:
7249""""""""""
7250
7251The '``trunc``' instruction takes a value to trunc, and a type to trunc
7252it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7253of the same number of integers. The bit size of the ``value`` must be
7254larger than the bit size of the destination type, ``ty2``. Equal sized
7255types are not allowed.
7256
7257Semantics:
7258""""""""""
7259
7260The '``trunc``' instruction truncates the high order bits in ``value``
7261and converts the remaining bits to ``ty2``. Since the source size must
7262be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7263It will always truncate bits.
7264
7265Example:
7266""""""""
7267
7268.. code-block:: llvm
7269
7270 %X = trunc i32 257 to i8 ; yields i8:1
7271 %Y = trunc i32 123 to i1 ; yields i1:true
7272 %Z = trunc i32 122 to i1 ; yields i1:false
7273 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7274
7275'``zext .. to``' Instruction
7276^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7277
7278Syntax:
7279"""""""
7280
7281::
7282
7283 <result> = zext <ty> <value> to <ty2> ; yields ty2
7284
7285Overview:
7286"""""""""
7287
7288The '``zext``' instruction zero extends its operand to type ``ty2``.
7289
7290Arguments:
7291""""""""""
7292
7293The '``zext``' instruction takes a value to cast, and a type to cast it
7294to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7295the same number of integers. The bit size of the ``value`` must be
7296smaller than the bit size of the destination type, ``ty2``.
7297
7298Semantics:
7299""""""""""
7300
7301The ``zext`` fills the high order bits of the ``value`` with zero bits
7302until it reaches the size of the destination type, ``ty2``.
7303
7304When zero extending from i1, the result will always be either 0 or 1.
7305
7306Example:
7307""""""""
7308
7309.. code-block:: llvm
7310
7311 %X = zext i32 257 to i64 ; yields i64:257
7312 %Y = zext i1 true to i32 ; yields i32:1
7313 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7314
7315'``sext .. to``' Instruction
7316^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7317
7318Syntax:
7319"""""""
7320
7321::
7322
7323 <result> = sext <ty> <value> to <ty2> ; yields ty2
7324
7325Overview:
7326"""""""""
7327
7328The '``sext``' sign extends ``value`` to the type ``ty2``.
7329
7330Arguments:
7331""""""""""
7332
7333The '``sext``' instruction takes a value to cast, and a type to cast it
7334to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7335the same number of integers. The bit size of the ``value`` must be
7336smaller than the bit size of the destination type, ``ty2``.
7337
7338Semantics:
7339""""""""""
7340
7341The '``sext``' instruction performs a sign extension by copying the sign
7342bit (highest order bit) of the ``value`` until it reaches the bit size
7343of the type ``ty2``.
7344
7345When sign extending from i1, the extension always results in -1 or 0.
7346
7347Example:
7348""""""""
7349
7350.. code-block:: llvm
7351
7352 %X = sext i8 -1 to i16 ; yields i16 :65535
7353 %Y = sext i1 true to i32 ; yields i32:-1
7354 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7355
7356'``fptrunc .. to``' Instruction
7357^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7358
7359Syntax:
7360"""""""
7361
7362::
7363
7364 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7365
7366Overview:
7367"""""""""
7368
7369The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7370
7371Arguments:
7372""""""""""
7373
7374The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7375value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7376The size of ``value`` must be larger than the size of ``ty2``. This
7377implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7378
7379Semantics:
7380""""""""""
7381
7382The '``fptrunc``' instruction truncates a ``value`` from a larger
7383:ref:`floating point <t_floating>` type to a smaller :ref:`floating
7384point <t_floating>` type. If the value cannot fit within the
7385destination type, ``ty2``, then the results are undefined.
7386
7387Example:
7388""""""""
7389
7390.. code-block:: llvm
7391
7392 %X = fptrunc double 123.0 to float ; yields float:123.0
7393 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7394
7395'``fpext .. to``' Instruction
7396^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7397
7398Syntax:
7399"""""""
7400
7401::
7402
7403 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7404
7405Overview:
7406"""""""""
7407
7408The '``fpext``' extends a floating point ``value`` to a larger floating
7409point value.
7410
7411Arguments:
7412""""""""""
7413
7414The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7415``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7416to. The source type must be smaller than the destination type.
7417
7418Semantics:
7419""""""""""
7420
7421The '``fpext``' instruction extends the ``value`` from a smaller
7422:ref:`floating point <t_floating>` type to a larger :ref:`floating
7423point <t_floating>` type. The ``fpext`` cannot be used to make a
7424*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7425*no-op cast* for a floating point cast.
7426
7427Example:
7428""""""""
7429
7430.. code-block:: llvm
7431
7432 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7433 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7434
7435'``fptoui .. to``' Instruction
7436^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7437
7438Syntax:
7439"""""""
7440
7441::
7442
7443 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7444
7445Overview:
7446"""""""""
7447
7448The '``fptoui``' converts a floating point ``value`` to its unsigned
7449integer equivalent of type ``ty2``.
7450
7451Arguments:
7452""""""""""
7453
7454The '``fptoui``' instruction takes a value to cast, which must be a
7455scalar or vector :ref:`floating point <t_floating>` value, and a type to
7456cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7457``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7458type with the same number of elements as ``ty``
7459
7460Semantics:
7461""""""""""
7462
7463The '``fptoui``' instruction converts its :ref:`floating
7464point <t_floating>` operand into the nearest (rounding towards zero)
7465unsigned integer value. If the value cannot fit in ``ty2``, the results
7466are undefined.
7467
7468Example:
7469""""""""
7470
7471.. code-block:: llvm
7472
7473 %X = fptoui double 123.0 to i32 ; yields i32:123
7474 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7475 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7476
7477'``fptosi .. to``' Instruction
7478^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7479
7480Syntax:
7481"""""""
7482
7483::
7484
7485 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7486
7487Overview:
7488"""""""""
7489
7490The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7491``value`` to type ``ty2``.
7492
7493Arguments:
7494""""""""""
7495
7496The '``fptosi``' instruction takes a value to cast, which must be a
7497scalar or vector :ref:`floating point <t_floating>` value, and a type to
7498cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7499``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7500type with the same number of elements as ``ty``
7501
7502Semantics:
7503""""""""""
7504
7505The '``fptosi``' instruction converts its :ref:`floating
7506point <t_floating>` operand into the nearest (rounding towards zero)
7507signed integer value. If the value cannot fit in ``ty2``, the results
7508are undefined.
7509
7510Example:
7511""""""""
7512
7513.. code-block:: llvm
7514
7515 %X = fptosi double -123.0 to i32 ; yields i32:-123
7516 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7517 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7518
7519'``uitofp .. to``' Instruction
7520^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7521
7522Syntax:
7523"""""""
7524
7525::
7526
7527 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7528
7529Overview:
7530"""""""""
7531
7532The '``uitofp``' instruction regards ``value`` as an unsigned integer
7533and converts that value to the ``ty2`` type.
7534
7535Arguments:
7536""""""""""
7537
7538The '``uitofp``' instruction takes a value to cast, which must be a
7539scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7540``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7541``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7542type with the same number of elements as ``ty``
7543
7544Semantics:
7545""""""""""
7546
7547The '``uitofp``' instruction interprets its operand as an unsigned
7548integer quantity and converts it to the corresponding floating point
7549value. If the value cannot fit in the floating point value, the results
7550are undefined.
7551
7552Example:
7553""""""""
7554
7555.. code-block:: llvm
7556
7557 %X = uitofp i32 257 to float ; yields float:257.0
7558 %Y = uitofp i8 -1 to double ; yields double:255.0
7559
7560'``sitofp .. to``' Instruction
7561^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7562
7563Syntax:
7564"""""""
7565
7566::
7567
7568 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7569
7570Overview:
7571"""""""""
7572
7573The '``sitofp``' instruction regards ``value`` as a signed integer and
7574converts that value to the ``ty2`` type.
7575
7576Arguments:
7577""""""""""
7578
7579The '``sitofp``' instruction takes a value to cast, which must be a
7580scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7581``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7582``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7583type with the same number of elements as ``ty``
7584
7585Semantics:
7586""""""""""
7587
7588The '``sitofp``' instruction interprets its operand as a signed integer
7589quantity and converts it to the corresponding floating point value. If
7590the value cannot fit in the floating point value, the results are
7591undefined.
7592
7593Example:
7594""""""""
7595
7596.. code-block:: llvm
7597
7598 %X = sitofp i32 257 to float ; yields float:257.0
7599 %Y = sitofp i8 -1 to double ; yields double:-1.0
7600
7601.. _i_ptrtoint:
7602
7603'``ptrtoint .. to``' Instruction
7604^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7605
7606Syntax:
7607"""""""
7608
7609::
7610
7611 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7612
7613Overview:
7614"""""""""
7615
7616The '``ptrtoint``' instruction converts the pointer or a vector of
7617pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7618
7619Arguments:
7620""""""""""
7621
7622The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007623a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007624type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7625a vector of integers type.
7626
7627Semantics:
7628""""""""""
7629
7630The '``ptrtoint``' instruction converts ``value`` to integer type
7631``ty2`` by interpreting the pointer value as an integer and either
7632truncating or zero extending that value to the size of the integer type.
7633If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7634``value`` is larger than ``ty2`` then a truncation is done. If they are
7635the same size, then nothing is done (*no-op cast*) other than a type
7636change.
7637
7638Example:
7639""""""""
7640
7641.. code-block:: llvm
7642
7643 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7644 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7645 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7646
7647.. _i_inttoptr:
7648
7649'``inttoptr .. to``' Instruction
7650^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7651
7652Syntax:
7653"""""""
7654
7655::
7656
7657 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7658
7659Overview:
7660"""""""""
7661
7662The '``inttoptr``' instruction converts an integer ``value`` to a
7663pointer type, ``ty2``.
7664
7665Arguments:
7666""""""""""
7667
7668The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7669cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7670type.
7671
7672Semantics:
7673""""""""""
7674
7675The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7676applying either a zero extension or a truncation depending on the size
7677of the integer ``value``. If ``value`` is larger than the size of a
7678pointer then a truncation is done. If ``value`` is smaller than the size
7679of a pointer then a zero extension is done. If they are the same size,
7680nothing is done (*no-op cast*).
7681
7682Example:
7683""""""""
7684
7685.. code-block:: llvm
7686
7687 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7688 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7689 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7690 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7691
7692.. _i_bitcast:
7693
7694'``bitcast .. to``' Instruction
7695^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7696
7697Syntax:
7698"""""""
7699
7700::
7701
7702 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7703
7704Overview:
7705"""""""""
7706
7707The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7708changing any bits.
7709
7710Arguments:
7711""""""""""
7712
7713The '``bitcast``' instruction takes a value to cast, which must be a
7714non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007715also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7716bit sizes of ``value`` and the destination type, ``ty2``, must be
Sean Silvaa1190322015-08-06 22:56:48 +00007717identical. If the source type is a pointer, the destination type must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007718also be a pointer of the same size. This instruction supports bitwise
7719conversion of vectors to integers and to vectors of other types (as
7720long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007721
7722Semantics:
7723""""""""""
7724
Matt Arsenault24b49c42013-07-31 17:49:08 +00007725The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7726is always a *no-op cast* because no bits change with this
7727conversion. The conversion is done as if the ``value`` had been stored
7728to memory and read back as type ``ty2``. Pointer (or vector of
7729pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007730pointers) types with the same address space through this instruction.
7731To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7732or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007733
7734Example:
7735""""""""
7736
7737.. code-block:: llvm
7738
7739 %X = bitcast i8 255 to i8 ; yields i8 :-1
7740 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7741 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7742 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7743
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007744.. _i_addrspacecast:
7745
7746'``addrspacecast .. to``' Instruction
7747^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7748
7749Syntax:
7750"""""""
7751
7752::
7753
7754 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
7755
7756Overview:
7757"""""""""
7758
7759The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
7760address space ``n`` to type ``pty2`` in address space ``m``.
7761
7762Arguments:
7763""""""""""
7764
7765The '``addrspacecast``' instruction takes a pointer or vector of pointer value
7766to cast and a pointer type to cast it to, which must have a different
7767address space.
7768
7769Semantics:
7770""""""""""
7771
7772The '``addrspacecast``' instruction converts the pointer value
7773``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00007774value modification, depending on the target and the address space
7775pair. Pointer conversions within the same address space must be
7776performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007777conversion is legal then both result and operand refer to the same memory
7778location.
7779
7780Example:
7781""""""""
7782
7783.. code-block:: llvm
7784
Matt Arsenault9c13dd02013-11-15 22:43:50 +00007785 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
7786 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
7787 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007788
Sean Silvab084af42012-12-07 10:36:55 +00007789.. _otherops:
7790
7791Other Operations
7792----------------
7793
7794The instructions in this category are the "miscellaneous" instructions,
7795which defy better classification.
7796
7797.. _i_icmp:
7798
7799'``icmp``' Instruction
7800^^^^^^^^^^^^^^^^^^^^^^
7801
7802Syntax:
7803"""""""
7804
7805::
7806
Tim Northover675a0962014-06-13 14:24:23 +00007807 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00007808
7809Overview:
7810"""""""""
7811
7812The '``icmp``' instruction returns a boolean value or a vector of
7813boolean values based on comparison of its two integer, integer vector,
7814pointer, or pointer vector operands.
7815
7816Arguments:
7817""""""""""
7818
7819The '``icmp``' instruction takes three operands. The first operand is
7820the condition code indicating the kind of comparison to perform. It is
7821not a value, just a keyword. The possible condition code are:
7822
7823#. ``eq``: equal
7824#. ``ne``: not equal
7825#. ``ugt``: unsigned greater than
7826#. ``uge``: unsigned greater or equal
7827#. ``ult``: unsigned less than
7828#. ``ule``: unsigned less or equal
7829#. ``sgt``: signed greater than
7830#. ``sge``: signed greater or equal
7831#. ``slt``: signed less than
7832#. ``sle``: signed less or equal
7833
7834The remaining two arguments must be :ref:`integer <t_integer>` or
7835:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
7836must also be identical types.
7837
7838Semantics:
7839""""""""""
7840
7841The '``icmp``' compares ``op1`` and ``op2`` according to the condition
7842code given as ``cond``. The comparison performed always yields either an
7843:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
7844
7845#. ``eq``: yields ``true`` if the operands are equal, ``false``
7846 otherwise. No sign interpretation is necessary or performed.
7847#. ``ne``: yields ``true`` if the operands are unequal, ``false``
7848 otherwise. No sign interpretation is necessary or performed.
7849#. ``ugt``: interprets the operands as unsigned values and yields
7850 ``true`` if ``op1`` is greater than ``op2``.
7851#. ``uge``: interprets the operands as unsigned values and yields
7852 ``true`` if ``op1`` is greater than or equal to ``op2``.
7853#. ``ult``: interprets the operands as unsigned values and yields
7854 ``true`` if ``op1`` is less than ``op2``.
7855#. ``ule``: interprets the operands as unsigned values and yields
7856 ``true`` if ``op1`` is less than or equal to ``op2``.
7857#. ``sgt``: interprets the operands as signed values and yields ``true``
7858 if ``op1`` is greater than ``op2``.
7859#. ``sge``: interprets the operands as signed values and yields ``true``
7860 if ``op1`` is greater than or equal to ``op2``.
7861#. ``slt``: interprets the operands as signed values and yields ``true``
7862 if ``op1`` is less than ``op2``.
7863#. ``sle``: interprets the operands as signed values and yields ``true``
7864 if ``op1`` is less than or equal to ``op2``.
7865
7866If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
7867are compared as if they were integers.
7868
7869If the operands are integer vectors, then they are compared element by
7870element. The result is an ``i1`` vector with the same number of elements
7871as the values being compared. Otherwise, the result is an ``i1``.
7872
7873Example:
7874""""""""
7875
7876.. code-block:: llvm
7877
7878 <result> = icmp eq i32 4, 5 ; yields: result=false
7879 <result> = icmp ne float* %X, %X ; yields: result=false
7880 <result> = icmp ult i16 4, 5 ; yields: result=true
7881 <result> = icmp sgt i16 4, 5 ; yields: result=false
7882 <result> = icmp ule i16 -4, 5 ; yields: result=false
7883 <result> = icmp sge i16 4, 5 ; yields: result=false
7884
7885Note that the code generator does not yet support vector types with the
7886``icmp`` instruction.
7887
7888.. _i_fcmp:
7889
7890'``fcmp``' Instruction
7891^^^^^^^^^^^^^^^^^^^^^^
7892
7893Syntax:
7894"""""""
7895
7896::
7897
James Molloy88eb5352015-07-10 12:52:00 +00007898 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00007899
7900Overview:
7901"""""""""
7902
7903The '``fcmp``' instruction returns a boolean value or vector of boolean
7904values based on comparison of its operands.
7905
7906If the operands are floating point scalars, then the result type is a
7907boolean (:ref:`i1 <t_integer>`).
7908
7909If the operands are floating point vectors, then the result type is a
7910vector of boolean with the same number of elements as the operands being
7911compared.
7912
7913Arguments:
7914""""""""""
7915
7916The '``fcmp``' instruction takes three operands. The first operand is
7917the condition code indicating the kind of comparison to perform. It is
7918not a value, just a keyword. The possible condition code are:
7919
7920#. ``false``: no comparison, always returns false
7921#. ``oeq``: ordered and equal
7922#. ``ogt``: ordered and greater than
7923#. ``oge``: ordered and greater than or equal
7924#. ``olt``: ordered and less than
7925#. ``ole``: ordered and less than or equal
7926#. ``one``: ordered and not equal
7927#. ``ord``: ordered (no nans)
7928#. ``ueq``: unordered or equal
7929#. ``ugt``: unordered or greater than
7930#. ``uge``: unordered or greater than or equal
7931#. ``ult``: unordered or less than
7932#. ``ule``: unordered or less than or equal
7933#. ``une``: unordered or not equal
7934#. ``uno``: unordered (either nans)
7935#. ``true``: no comparison, always returns true
7936
7937*Ordered* means that neither operand is a QNAN while *unordered* means
7938that either operand may be a QNAN.
7939
7940Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
7941point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
7942type. They must have identical types.
7943
7944Semantics:
7945""""""""""
7946
7947The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
7948condition code given as ``cond``. If the operands are vectors, then the
7949vectors are compared element by element. Each comparison performed
7950always yields an :ref:`i1 <t_integer>` result, as follows:
7951
7952#. ``false``: always yields ``false``, regardless of operands.
7953#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
7954 is equal to ``op2``.
7955#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
7956 is greater than ``op2``.
7957#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
7958 is greater than or equal to ``op2``.
7959#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
7960 is less than ``op2``.
7961#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
7962 is less than or equal to ``op2``.
7963#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
7964 is not equal to ``op2``.
7965#. ``ord``: yields ``true`` if both operands are not a QNAN.
7966#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
7967 equal to ``op2``.
7968#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
7969 greater than ``op2``.
7970#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
7971 greater than or equal to ``op2``.
7972#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
7973 less than ``op2``.
7974#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
7975 less than or equal to ``op2``.
7976#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
7977 not equal to ``op2``.
7978#. ``uno``: yields ``true`` if either operand is a QNAN.
7979#. ``true``: always yields ``true``, regardless of operands.
7980
James Molloy88eb5352015-07-10 12:52:00 +00007981The ``fcmp`` instruction can also optionally take any number of
7982:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
7983otherwise unsafe floating point optimizations.
7984
7985Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
7986only flags that have any effect on its semantics are those that allow
7987assumptions to be made about the values of input arguments; namely
7988``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
7989
Sean Silvab084af42012-12-07 10:36:55 +00007990Example:
7991""""""""
7992
7993.. code-block:: llvm
7994
7995 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
7996 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
7997 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
7998 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
7999
8000Note that the code generator does not yet support vector types with the
8001``fcmp`` instruction.
8002
8003.. _i_phi:
8004
8005'``phi``' Instruction
8006^^^^^^^^^^^^^^^^^^^^^
8007
8008Syntax:
8009"""""""
8010
8011::
8012
8013 <result> = phi <ty> [ <val0>, <label0>], ...
8014
8015Overview:
8016"""""""""
8017
8018The '``phi``' instruction is used to implement the φ node in the SSA
8019graph representing the function.
8020
8021Arguments:
8022""""""""""
8023
8024The type of the incoming values is specified with the first type field.
8025After this, the '``phi``' instruction takes a list of pairs as
8026arguments, with one pair for each predecessor basic block of the current
8027block. Only values of :ref:`first class <t_firstclass>` type may be used as
8028the value arguments to the PHI node. Only labels may be used as the
8029label arguments.
8030
8031There must be no non-phi instructions between the start of a basic block
8032and the PHI instructions: i.e. PHI instructions must be first in a basic
8033block.
8034
8035For the purposes of the SSA form, the use of each incoming value is
8036deemed to occur on the edge from the corresponding predecessor block to
8037the current block (but after any definition of an '``invoke``'
8038instruction's return value on the same edge).
8039
8040Semantics:
8041""""""""""
8042
8043At runtime, the '``phi``' instruction logically takes on the value
8044specified by the pair corresponding to the predecessor basic block that
8045executed just prior to the current block.
8046
8047Example:
8048""""""""
8049
8050.. code-block:: llvm
8051
8052 Loop: ; Infinite loop that counts from 0 on up...
8053 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8054 %nextindvar = add i32 %indvar, 1
8055 br label %Loop
8056
8057.. _i_select:
8058
8059'``select``' Instruction
8060^^^^^^^^^^^^^^^^^^^^^^^^
8061
8062Syntax:
8063"""""""
8064
8065::
8066
8067 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8068
8069 selty is either i1 or {<N x i1>}
8070
8071Overview:
8072"""""""""
8073
8074The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008075condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008076
8077Arguments:
8078""""""""""
8079
8080The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8081values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008082class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008083
8084Semantics:
8085""""""""""
8086
8087If the condition is an i1 and it evaluates to 1, the instruction returns
8088the first value argument; otherwise, it returns the second value
8089argument.
8090
8091If the condition is a vector of i1, then the value arguments must be
8092vectors of the same size, and the selection is done element by element.
8093
David Majnemer40a0b592015-03-03 22:45:47 +00008094If the condition is an i1 and the value arguments are vectors of the
8095same size, then an entire vector is selected.
8096
Sean Silvab084af42012-12-07 10:36:55 +00008097Example:
8098""""""""
8099
8100.. code-block:: llvm
8101
8102 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8103
8104.. _i_call:
8105
8106'``call``' Instruction
8107^^^^^^^^^^^^^^^^^^^^^^
8108
8109Syntax:
8110"""""""
8111
8112::
8113
Reid Kleckner5772b772014-04-24 20:14:34 +00008114 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00008115
8116Overview:
8117"""""""""
8118
8119The '``call``' instruction represents a simple function call.
8120
8121Arguments:
8122""""""""""
8123
8124This instruction requires several arguments:
8125
Reid Kleckner5772b772014-04-24 20:14:34 +00008126#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
Sean Silvaa1190322015-08-06 22:56:48 +00008127 should perform tail call optimization. The ``tail`` marker is a hint that
8128 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
Reid Kleckner5772b772014-04-24 20:14:34 +00008129 means that the call must be tail call optimized in order for the program to
Sean Silvaa1190322015-08-06 22:56:48 +00008130 be correct. The ``musttail`` marker provides these guarantees:
Reid Kleckner5772b772014-04-24 20:14:34 +00008131
8132 #. The call will not cause unbounded stack growth if it is part of a
8133 recursive cycle in the call graph.
8134 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8135 forwarded in place.
8136
8137 Both markers imply that the callee does not access allocas or varargs from
Sean Silvaa1190322015-08-06 22:56:48 +00008138 the caller. Calls marked ``musttail`` must obey the following additional
Reid Kleckner5772b772014-04-24 20:14:34 +00008139 rules:
8140
8141 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8142 or a pointer bitcast followed by a ret instruction.
8143 - The ret instruction must return the (possibly bitcasted) value
8144 produced by the call or void.
Sean Silvaa1190322015-08-06 22:56:48 +00008145 - The caller and callee prototypes must match. Pointer types of
Reid Kleckner5772b772014-04-24 20:14:34 +00008146 parameters or return types may differ in pointee type, but not
8147 in address space.
8148 - The calling conventions of the caller and callee must match.
8149 - All ABI-impacting function attributes, such as sret, byval, inreg,
8150 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008151 - The callee must be varargs iff the caller is varargs. Bitcasting a
8152 non-varargs function to the appropriate varargs type is legal so
8153 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008154
8155 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8156 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008157
8158 - Caller and callee both have the calling convention ``fastcc``.
8159 - The call is in tail position (ret immediately follows call and ret
8160 uses value of call or is void).
8161 - Option ``-tailcallopt`` is enabled, or
8162 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008163 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008164 met. <CodeGenerator.html#tailcallopt>`_
8165
8166#. The optional "cconv" marker indicates which :ref:`calling
8167 convention <callingconv>` the call should use. If none is
8168 specified, the call defaults to using C calling conventions. The
8169 calling convention of the call must match the calling convention of
8170 the target function, or else the behavior is undefined.
8171#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8172 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8173 are valid here.
8174#. '``ty``': the type of the call instruction itself which is also the
8175 type of the return value. Functions that return no value are marked
8176 ``void``.
8177#. '``fnty``': shall be the signature of the pointer to function value
8178 being invoked. The argument types must match the types implied by
8179 this signature. This type can be omitted if the function is not
8180 varargs and if the function type does not return a pointer to a
8181 function.
8182#. '``fnptrval``': An LLVM value containing a pointer to a function to
8183 be invoked. In most cases, this is a direct function invocation, but
8184 indirect ``call``'s are just as possible, calling an arbitrary pointer
8185 to function value.
8186#. '``function args``': argument list whose types match the function
8187 signature argument types and parameter attributes. All arguments must
8188 be of :ref:`first class <t_firstclass>` type. If the function signature
8189 indicates the function accepts a variable number of arguments, the
8190 extra arguments can be specified.
8191#. The optional :ref:`function attributes <fnattrs>` list. Only
8192 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8193 attributes are valid here.
8194
8195Semantics:
8196""""""""""
8197
8198The '``call``' instruction is used to cause control flow to transfer to
8199a specified function, with its incoming arguments bound to the specified
8200values. Upon a '``ret``' instruction in the called function, control
8201flow continues with the instruction after the function call, and the
8202return value of the function is bound to the result argument.
8203
8204Example:
8205""""""""
8206
8207.. code-block:: llvm
8208
8209 %retval = call i32 @test(i32 %argc)
8210 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8211 %X = tail call i32 @foo() ; yields i32
8212 %Y = tail call fastcc i32 @foo() ; yields i32
8213 call void %foo(i8 97 signext)
8214
8215 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008216 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008217 %gr = extractvalue %struct.A %r, 0 ; yields i32
8218 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8219 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8220 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8221
8222llvm treats calls to some functions with names and arguments that match
8223the standard C99 library as being the C99 library functions, and may
8224perform optimizations or generate code for them under that assumption.
8225This is something we'd like to change in the future to provide better
8226support for freestanding environments and non-C-based languages.
8227
8228.. _i_va_arg:
8229
8230'``va_arg``' Instruction
8231^^^^^^^^^^^^^^^^^^^^^^^^
8232
8233Syntax:
8234"""""""
8235
8236::
8237
8238 <resultval> = va_arg <va_list*> <arglist>, <argty>
8239
8240Overview:
8241"""""""""
8242
8243The '``va_arg``' instruction is used to access arguments passed through
8244the "variable argument" area of a function call. It is used to implement
8245the ``va_arg`` macro in C.
8246
8247Arguments:
8248""""""""""
8249
8250This instruction takes a ``va_list*`` value and the type of the
8251argument. It returns a value of the specified argument type and
8252increments the ``va_list`` to point to the next argument. The actual
8253type of ``va_list`` is target specific.
8254
8255Semantics:
8256""""""""""
8257
8258The '``va_arg``' instruction loads an argument of the specified type
8259from the specified ``va_list`` and causes the ``va_list`` to point to
8260the next argument. For more information, see the variable argument
8261handling :ref:`Intrinsic Functions <int_varargs>`.
8262
8263It is legal for this instruction to be called in a function which does
8264not take a variable number of arguments, for example, the ``vfprintf``
8265function.
8266
8267``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8268function <intrinsics>` because it takes a type as an argument.
8269
8270Example:
8271""""""""
8272
8273See the :ref:`variable argument processing <int_varargs>` section.
8274
8275Note that the code generator does not yet fully support va\_arg on many
8276targets. Also, it does not currently support va\_arg with aggregate
8277types on any target.
8278
8279.. _i_landingpad:
8280
8281'``landingpad``' Instruction
8282^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8283
8284Syntax:
8285"""""""
8286
8287::
8288
David Majnemer7fddecc2015-06-17 20:52:32 +00008289 <resultval> = landingpad <resultty> <clause>+
8290 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008291
8292 <clause> := catch <type> <value>
8293 <clause> := filter <array constant type> <array constant>
8294
8295Overview:
8296"""""""""
8297
8298The '``landingpad``' instruction is used by `LLVM's exception handling
8299system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008300is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008301code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008302defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008303re-entry to the function. The ``resultval`` has the type ``resultty``.
8304
8305Arguments:
8306""""""""""
8307
David Majnemer7fddecc2015-06-17 20:52:32 +00008308The optional
Sean Silvab084af42012-12-07 10:36:55 +00008309``cleanup`` flag indicates that the landing pad block is a cleanup.
8310
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008311A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008312contains the global variable representing the "type" that may be caught
8313or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8314clause takes an array constant as its argument. Use
8315"``[0 x i8**] undef``" for a filter which cannot throw. The
8316'``landingpad``' instruction must contain *at least* one ``clause`` or
8317the ``cleanup`` flag.
8318
8319Semantics:
8320""""""""""
8321
8322The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008323:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008324therefore the "result type" of the ``landingpad`` instruction. As with
8325calling conventions, how the personality function results are
8326represented in LLVM IR is target specific.
8327
8328The clauses are applied in order from top to bottom. If two
8329``landingpad`` instructions are merged together through inlining, the
8330clauses from the calling function are appended to the list of clauses.
8331When the call stack is being unwound due to an exception being thrown,
8332the exception is compared against each ``clause`` in turn. If it doesn't
8333match any of the clauses, and the ``cleanup`` flag is not set, then
8334unwinding continues further up the call stack.
8335
8336The ``landingpad`` instruction has several restrictions:
8337
8338- A landing pad block is a basic block which is the unwind destination
8339 of an '``invoke``' instruction.
8340- A landing pad block must have a '``landingpad``' instruction as its
8341 first non-PHI instruction.
8342- There can be only one '``landingpad``' instruction within the landing
8343 pad block.
8344- A basic block that is not a landing pad block may not include a
8345 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008346
8347Example:
8348""""""""
8349
8350.. code-block:: llvm
8351
8352 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008353 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008354 catch i8** @_ZTIi
8355 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008356 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008357 cleanup
8358 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008359 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008360 catch i8** @_ZTIi
8361 filter [1 x i8**] [@_ZTId]
8362
David Majnemer654e1302015-07-31 17:58:14 +00008363.. _i_cleanuppad:
8364
8365'``cleanuppad``' Instruction
8366^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8367
8368Syntax:
8369"""""""
8370
8371::
8372
8373 <resultval> = cleanuppad <resultty> [<args>*]
8374
8375Overview:
8376"""""""""
8377
8378The '``cleanuppad``' instruction is used by `LLVM's exception handling
8379system <ExceptionHandling.html#overview>`_ to specify that a basic block
8380is a cleanup block --- one where a personality routine attempts to
8381transfer control to run cleanup actions.
8382The ``args`` correspond to whatever additional
8383information the :ref:`personality function <personalityfn>` requires to
8384execute the cleanup.
8385The ``resultval`` has the type ``resultty``.
8386
8387Arguments:
8388""""""""""
8389
8390The instruction takes a list of arbitrary values which are interpreted
8391by the :ref:`personality function <personalityfn>`.
8392
8393Semantics:
8394""""""""""
8395
8396The '``cleanuppad``' instruction defines the values which are set by the
8397:ref:`personality function <personalityfn>` upon re-entry to the function, and
8398therefore the "result type" of the ``cleanuppad`` instruction. As with
8399calling conventions, how the personality function results are
8400represented in LLVM IR is target specific.
8401
8402When the call stack is being unwound due to an exception being thrown,
8403the :ref:`personality function <personalityfn>` transfers control to the
8404``cleanuppad`` with the aid of the personality-specific arguments.
8405
8406The ``cleanuppad`` instruction has several restrictions:
8407
8408- A cleanup block is a basic block which is the unwind destination of
8409 an exceptional instruction.
8410- A cleanup block must have a '``cleanuppad``' instruction as its
8411 first non-PHI instruction.
8412- There can be only one '``cleanuppad``' instruction within the
8413 cleanup block.
8414- A basic block that is not a cleanup block may not include a
8415 '``cleanuppad``' instruction.
8416- It is undefined behavior for control to transfer from a ``cleanuppad`` to a
8417 ``catchret`` without first executing a ``cleanupret`` and a subsequent
8418 ``catchpad``.
8419- It is undefined behavior for control to transfer from a ``cleanuppad`` to a
8420 ``ret`` without first executing a ``cleanupret``.
8421
8422Example:
8423""""""""
8424
8425.. code-block:: llvm
8426
8427 %res = cleanuppad { i8*, i32 } [label %nextaction]
8428
Sean Silvab084af42012-12-07 10:36:55 +00008429.. _intrinsics:
8430
8431Intrinsic Functions
8432===================
8433
8434LLVM supports the notion of an "intrinsic function". These functions
8435have well known names and semantics and are required to follow certain
8436restrictions. Overall, these intrinsics represent an extension mechanism
8437for the LLVM language that does not require changing all of the
8438transformations in LLVM when adding to the language (or the bitcode
8439reader/writer, the parser, etc...).
8440
8441Intrinsic function names must all start with an "``llvm.``" prefix. This
8442prefix is reserved in LLVM for intrinsic names; thus, function names may
8443not begin with this prefix. Intrinsic functions must always be external
8444functions: you cannot define the body of intrinsic functions. Intrinsic
8445functions may only be used in call or invoke instructions: it is illegal
8446to take the address of an intrinsic function. Additionally, because
8447intrinsic functions are part of the LLVM language, it is required if any
8448are added that they be documented here.
8449
8450Some intrinsic functions can be overloaded, i.e., the intrinsic
8451represents a family of functions that perform the same operation but on
8452different data types. Because LLVM can represent over 8 million
8453different integer types, overloading is used commonly to allow an
8454intrinsic function to operate on any integer type. One or more of the
8455argument types or the result type can be overloaded to accept any
8456integer type. Argument types may also be defined as exactly matching a
8457previous argument's type or the result type. This allows an intrinsic
8458function which accepts multiple arguments, but needs all of them to be
8459of the same type, to only be overloaded with respect to a single
8460argument or the result.
8461
8462Overloaded intrinsics will have the names of its overloaded argument
8463types encoded into its function name, each preceded by a period. Only
8464those types which are overloaded result in a name suffix. Arguments
8465whose type is matched against another type do not. For example, the
8466``llvm.ctpop`` function can take an integer of any width and returns an
8467integer of exactly the same integer width. This leads to a family of
8468functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8469``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8470overloaded, and only one type suffix is required. Because the argument's
8471type is matched against the return type, it does not require its own
8472name suffix.
8473
8474To learn how to add an intrinsic function, please see the `Extending
8475LLVM Guide <ExtendingLLVM.html>`_.
8476
8477.. _int_varargs:
8478
8479Variable Argument Handling Intrinsics
8480-------------------------------------
8481
8482Variable argument support is defined in LLVM with the
8483:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8484functions. These functions are related to the similarly named macros
8485defined in the ``<stdarg.h>`` header file.
8486
8487All of these functions operate on arguments that use a target-specific
8488value type "``va_list``". The LLVM assembly language reference manual
8489does not define what this type is, so all transformations should be
8490prepared to handle these functions regardless of the type used.
8491
8492This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8493variable argument handling intrinsic functions are used.
8494
8495.. code-block:: llvm
8496
Tim Northoverab60bb92014-11-02 01:21:51 +00008497 ; This struct is different for every platform. For most platforms,
8498 ; it is merely an i8*.
8499 %struct.va_list = type { i8* }
8500
8501 ; For Unix x86_64 platforms, va_list is the following struct:
8502 ; %struct.va_list = type { i32, i32, i8*, i8* }
8503
Sean Silvab084af42012-12-07 10:36:55 +00008504 define i32 @test(i32 %X, ...) {
8505 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008506 %ap = alloca %struct.va_list
8507 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008508 call void @llvm.va_start(i8* %ap2)
8509
8510 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008511 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008512
8513 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8514 %aq = alloca i8*
8515 %aq2 = bitcast i8** %aq to i8*
8516 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8517 call void @llvm.va_end(i8* %aq2)
8518
8519 ; Stop processing of arguments.
8520 call void @llvm.va_end(i8* %ap2)
8521 ret i32 %tmp
8522 }
8523
8524 declare void @llvm.va_start(i8*)
8525 declare void @llvm.va_copy(i8*, i8*)
8526 declare void @llvm.va_end(i8*)
8527
8528.. _int_va_start:
8529
8530'``llvm.va_start``' Intrinsic
8531^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8532
8533Syntax:
8534"""""""
8535
8536::
8537
Nick Lewycky04f6de02013-09-11 22:04:52 +00008538 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008539
8540Overview:
8541"""""""""
8542
8543The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8544subsequent use by ``va_arg``.
8545
8546Arguments:
8547""""""""""
8548
8549The argument is a pointer to a ``va_list`` element to initialize.
8550
8551Semantics:
8552""""""""""
8553
8554The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8555available in C. In a target-dependent way, it initializes the
8556``va_list`` element to which the argument points, so that the next call
8557to ``va_arg`` will produce the first variable argument passed to the
8558function. Unlike the C ``va_start`` macro, this intrinsic does not need
8559to know the last argument of the function as the compiler can figure
8560that out.
8561
8562'``llvm.va_end``' Intrinsic
8563^^^^^^^^^^^^^^^^^^^^^^^^^^^
8564
8565Syntax:
8566"""""""
8567
8568::
8569
8570 declare void @llvm.va_end(i8* <arglist>)
8571
8572Overview:
8573"""""""""
8574
8575The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8576initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8577
8578Arguments:
8579""""""""""
8580
8581The argument is a pointer to a ``va_list`` to destroy.
8582
8583Semantics:
8584""""""""""
8585
8586The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8587available in C. In a target-dependent way, it destroys the ``va_list``
8588element to which the argument points. Calls to
8589:ref:`llvm.va_start <int_va_start>` and
8590:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8591``llvm.va_end``.
8592
8593.. _int_va_copy:
8594
8595'``llvm.va_copy``' Intrinsic
8596^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8597
8598Syntax:
8599"""""""
8600
8601::
8602
8603 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8604
8605Overview:
8606"""""""""
8607
8608The '``llvm.va_copy``' intrinsic copies the current argument position
8609from the source argument list to the destination argument list.
8610
8611Arguments:
8612""""""""""
8613
8614The first argument is a pointer to a ``va_list`` element to initialize.
8615The second argument is a pointer to a ``va_list`` element to copy from.
8616
8617Semantics:
8618""""""""""
8619
8620The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8621available in C. In a target-dependent way, it copies the source
8622``va_list`` element into the destination ``va_list`` element. This
8623intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8624arbitrarily complex and require, for example, memory allocation.
8625
8626Accurate Garbage Collection Intrinsics
8627--------------------------------------
8628
Philip Reamesc5b0f562015-02-25 23:52:06 +00008629LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008630(GC) requires the frontend to generate code containing appropriate intrinsic
8631calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008632intrinsics in a manner which is appropriate for the target collector.
8633
Sean Silvab084af42012-12-07 10:36:55 +00008634These intrinsics allow identification of :ref:`GC roots on the
8635stack <int_gcroot>`, as well as garbage collector implementations that
8636require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008637Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008638these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008639details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008640
Philip Reamesf80bbff2015-02-25 23:45:20 +00008641Experimental Statepoint Intrinsics
8642^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8643
8644LLVM provides an second experimental set of intrinsics for describing garbage
Sean Silvaa1190322015-08-06 22:56:48 +00008645collection safepoints in compiled code. These intrinsics are an alternative
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008646to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
Sean Silvaa1190322015-08-06 22:56:48 +00008647:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008648differences in approach are covered in the `Garbage Collection with LLVM
Sean Silvaa1190322015-08-06 22:56:48 +00008649<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008650described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008651
8652.. _int_gcroot:
8653
8654'``llvm.gcroot``' Intrinsic
8655^^^^^^^^^^^^^^^^^^^^^^^^^^^
8656
8657Syntax:
8658"""""""
8659
8660::
8661
8662 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8663
8664Overview:
8665"""""""""
8666
8667The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8668the code generator, and allows some metadata to be associated with it.
8669
8670Arguments:
8671""""""""""
8672
8673The first argument specifies the address of a stack object that contains
8674the root pointer. The second pointer (which must be either a constant or
8675a global value address) contains the meta-data to be associated with the
8676root.
8677
8678Semantics:
8679""""""""""
8680
8681At runtime, a call to this intrinsic stores a null pointer into the
8682"ptrloc" location. At compile-time, the code generator generates
8683information to allow the runtime to find the pointer at GC safe points.
8684The '``llvm.gcroot``' intrinsic may only be used in a function which
8685:ref:`specifies a GC algorithm <gc>`.
8686
8687.. _int_gcread:
8688
8689'``llvm.gcread``' Intrinsic
8690^^^^^^^^^^^^^^^^^^^^^^^^^^^
8691
8692Syntax:
8693"""""""
8694
8695::
8696
8697 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
8698
8699Overview:
8700"""""""""
8701
8702The '``llvm.gcread``' intrinsic identifies reads of references from heap
8703locations, allowing garbage collector implementations that require read
8704barriers.
8705
8706Arguments:
8707""""""""""
8708
8709The second argument is the address to read from, which should be an
8710address allocated from the garbage collector. The first object is a
8711pointer to the start of the referenced object, if needed by the language
8712runtime (otherwise null).
8713
8714Semantics:
8715""""""""""
8716
8717The '``llvm.gcread``' intrinsic has the same semantics as a load
8718instruction, but may be replaced with substantially more complex code by
8719the garbage collector runtime, as needed. The '``llvm.gcread``'
8720intrinsic may only be used in a function which :ref:`specifies a GC
8721algorithm <gc>`.
8722
8723.. _int_gcwrite:
8724
8725'``llvm.gcwrite``' Intrinsic
8726^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8727
8728Syntax:
8729"""""""
8730
8731::
8732
8733 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
8734
8735Overview:
8736"""""""""
8737
8738The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
8739locations, allowing garbage collector implementations that require write
8740barriers (such as generational or reference counting collectors).
8741
8742Arguments:
8743""""""""""
8744
8745The first argument is the reference to store, the second is the start of
8746the object to store it to, and the third is the address of the field of
8747Obj to store to. If the runtime does not require a pointer to the
8748object, Obj may be null.
8749
8750Semantics:
8751""""""""""
8752
8753The '``llvm.gcwrite``' intrinsic has the same semantics as a store
8754instruction, but may be replaced with substantially more complex code by
8755the garbage collector runtime, as needed. The '``llvm.gcwrite``'
8756intrinsic may only be used in a function which :ref:`specifies a GC
8757algorithm <gc>`.
8758
8759Code Generator Intrinsics
8760-------------------------
8761
8762These intrinsics are provided by LLVM to expose special features that
8763may only be implemented with code generator support.
8764
8765'``llvm.returnaddress``' Intrinsic
8766^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8767
8768Syntax:
8769"""""""
8770
8771::
8772
8773 declare i8 *@llvm.returnaddress(i32 <level>)
8774
8775Overview:
8776"""""""""
8777
8778The '``llvm.returnaddress``' intrinsic attempts to compute a
8779target-specific value indicating the return address of the current
8780function or one of its callers.
8781
8782Arguments:
8783""""""""""
8784
8785The argument to this intrinsic indicates which function to return the
8786address for. Zero indicates the calling function, one indicates its
8787caller, etc. The argument is **required** to be a constant integer
8788value.
8789
8790Semantics:
8791""""""""""
8792
8793The '``llvm.returnaddress``' intrinsic either returns a pointer
8794indicating the return address of the specified call frame, or zero if it
8795cannot be identified. The value returned by this intrinsic is likely to
8796be incorrect or 0 for arguments other than zero, so it should only be
8797used for debugging purposes.
8798
8799Note that calling this intrinsic does not prevent function inlining or
8800other aggressive transformations, so the value returned may not be that
8801of the obvious source-language caller.
8802
8803'``llvm.frameaddress``' Intrinsic
8804^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8805
8806Syntax:
8807"""""""
8808
8809::
8810
8811 declare i8* @llvm.frameaddress(i32 <level>)
8812
8813Overview:
8814"""""""""
8815
8816The '``llvm.frameaddress``' intrinsic attempts to return the
8817target-specific frame pointer value for the specified stack frame.
8818
8819Arguments:
8820""""""""""
8821
8822The argument to this intrinsic indicates which function to return the
8823frame pointer for. Zero indicates the calling function, one indicates
8824its caller, etc. The argument is **required** to be a constant integer
8825value.
8826
8827Semantics:
8828""""""""""
8829
8830The '``llvm.frameaddress``' intrinsic either returns a pointer
8831indicating the frame address of the specified call frame, or zero if it
8832cannot be identified. The value returned by this intrinsic is likely to
8833be incorrect or 0 for arguments other than zero, so it should only be
8834used for debugging purposes.
8835
8836Note that calling this intrinsic does not prevent function inlining or
8837other aggressive transformations, so the value returned may not be that
8838of the obvious source-language caller.
8839
Reid Kleckner60381792015-07-07 22:25:32 +00008840'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00008841^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8842
8843Syntax:
8844"""""""
8845
8846::
8847
Reid Kleckner60381792015-07-07 22:25:32 +00008848 declare void @llvm.localescape(...)
8849 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00008850
8851Overview:
8852"""""""""
8853
Reid Kleckner60381792015-07-07 22:25:32 +00008854The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
8855allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008856live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00008857computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00008858
8859Arguments:
8860""""""""""
8861
Reid Kleckner60381792015-07-07 22:25:32 +00008862All arguments to '``llvm.localescape``' must be pointers to static allocas or
8863casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008864once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00008865
Reid Kleckner60381792015-07-07 22:25:32 +00008866The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00008867bitcasted pointer to a function defined in the current module. The code
8868generator cannot determine the frame allocation offset of functions defined in
8869other modules.
8870
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00008871The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
8872call frame that is currently live. The return value of '``llvm.localaddress``'
8873is one way to produce such a value, but various runtimes also expose a suitable
8874pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00008875
Reid Kleckner60381792015-07-07 22:25:32 +00008876The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
8877'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008878
Reid Klecknere9b89312015-01-13 00:48:10 +00008879Semantics:
8880""""""""""
8881
Reid Kleckner60381792015-07-07 22:25:32 +00008882These intrinsics allow a group of functions to share access to a set of local
8883stack allocations of a one parent function. The parent function may call the
8884'``llvm.localescape``' intrinsic once from the function entry block, and the
8885child functions can use '``llvm.localrecover``' to access the escaped allocas.
8886The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
8887the escaped allocas are allocated, which would break attempts to use
8888'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00008889
Renato Golinc7aea402014-05-06 16:51:25 +00008890.. _int_read_register:
8891.. _int_write_register:
8892
8893'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
8894^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8895
8896Syntax:
8897"""""""
8898
8899::
8900
8901 declare i32 @llvm.read_register.i32(metadata)
8902 declare i64 @llvm.read_register.i64(metadata)
8903 declare void @llvm.write_register.i32(metadata, i32 @value)
8904 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00008905 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00008906
8907Overview:
8908"""""""""
8909
8910The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
8911provides access to the named register. The register must be valid on
8912the architecture being compiled to. The type needs to be compatible
8913with the register being read.
8914
8915Semantics:
8916""""""""""
8917
8918The '``llvm.read_register``' intrinsic returns the current value of the
8919register, where possible. The '``llvm.write_register``' intrinsic sets
8920the current value of the register, where possible.
8921
8922This is useful to implement named register global variables that need
8923to always be mapped to a specific register, as is common practice on
8924bare-metal programs including OS kernels.
8925
8926The compiler doesn't check for register availability or use of the used
8927register in surrounding code, including inline assembly. Because of that,
8928allocatable registers are not supported.
8929
8930Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00008931architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00008932work is needed to support other registers and even more so, allocatable
8933registers.
8934
Sean Silvab084af42012-12-07 10:36:55 +00008935.. _int_stacksave:
8936
8937'``llvm.stacksave``' Intrinsic
8938^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8939
8940Syntax:
8941"""""""
8942
8943::
8944
8945 declare i8* @llvm.stacksave()
8946
8947Overview:
8948"""""""""
8949
8950The '``llvm.stacksave``' intrinsic is used to remember the current state
8951of the function stack, for use with
8952:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
8953implementing language features like scoped automatic variable sized
8954arrays in C99.
8955
8956Semantics:
8957""""""""""
8958
8959This intrinsic returns a opaque pointer value that can be passed to
8960:ref:`llvm.stackrestore <int_stackrestore>`. When an
8961``llvm.stackrestore`` intrinsic is executed with a value saved from
8962``llvm.stacksave``, it effectively restores the state of the stack to
8963the state it was in when the ``llvm.stacksave`` intrinsic executed. In
8964practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
8965were allocated after the ``llvm.stacksave`` was executed.
8966
8967.. _int_stackrestore:
8968
8969'``llvm.stackrestore``' Intrinsic
8970^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8971
8972Syntax:
8973"""""""
8974
8975::
8976
8977 declare void @llvm.stackrestore(i8* %ptr)
8978
8979Overview:
8980"""""""""
8981
8982The '``llvm.stackrestore``' intrinsic is used to restore the state of
8983the function stack to the state it was in when the corresponding
8984:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
8985useful for implementing language features like scoped automatic variable
8986sized arrays in C99.
8987
8988Semantics:
8989""""""""""
8990
8991See the description for :ref:`llvm.stacksave <int_stacksave>`.
8992
8993'``llvm.prefetch``' Intrinsic
8994^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8995
8996Syntax:
8997"""""""
8998
8999::
9000
9001 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
9002
9003Overview:
9004"""""""""
9005
9006The '``llvm.prefetch``' intrinsic is a hint to the code generator to
9007insert a prefetch instruction if supported; otherwise, it is a noop.
9008Prefetches have no effect on the behavior of the program but can change
9009its performance characteristics.
9010
9011Arguments:
9012""""""""""
9013
9014``address`` is the address to be prefetched, ``rw`` is the specifier
9015determining if the fetch should be for a read (0) or write (1), and
9016``locality`` is a temporal locality specifier ranging from (0) - no
9017locality, to (3) - extremely local keep in cache. The ``cache type``
9018specifies whether the prefetch is performed on the data (1) or
9019instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9020arguments must be constant integers.
9021
9022Semantics:
9023""""""""""
9024
9025This intrinsic does not modify the behavior of the program. In
9026particular, prefetches cannot trap and do not produce a value. On
9027targets that support this intrinsic, the prefetch can provide hints to
9028the processor cache for better performance.
9029
9030'``llvm.pcmarker``' Intrinsic
9031^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9032
9033Syntax:
9034"""""""
9035
9036::
9037
9038 declare void @llvm.pcmarker(i32 <id>)
9039
9040Overview:
9041"""""""""
9042
9043The '``llvm.pcmarker``' intrinsic is a method to export a Program
9044Counter (PC) in a region of code to simulators and other tools. The
9045method is target specific, but it is expected that the marker will use
9046exported symbols to transmit the PC of the marker. The marker makes no
9047guarantees that it will remain with any specific instruction after
9048optimizations. It is possible that the presence of a marker will inhibit
9049optimizations. The intended use is to be inserted after optimizations to
9050allow correlations of simulation runs.
9051
9052Arguments:
9053""""""""""
9054
9055``id`` is a numerical id identifying the marker.
9056
9057Semantics:
9058""""""""""
9059
9060This intrinsic does not modify the behavior of the program. Backends
9061that do not support this intrinsic may ignore it.
9062
9063'``llvm.readcyclecounter``' Intrinsic
9064^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9065
9066Syntax:
9067"""""""
9068
9069::
9070
9071 declare i64 @llvm.readcyclecounter()
9072
9073Overview:
9074"""""""""
9075
9076The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9077counter register (or similar low latency, high accuracy clocks) on those
9078targets that support it. On X86, it should map to RDTSC. On Alpha, it
9079should map to RPCC. As the backing counters overflow quickly (on the
9080order of 9 seconds on alpha), this should only be used for small
9081timings.
9082
9083Semantics:
9084""""""""""
9085
9086When directly supported, reading the cycle counter should not modify any
9087memory. Implementations are allowed to either return a application
9088specific value or a system wide value. On backends without support, this
9089is lowered to a constant 0.
9090
Tim Northoverbc933082013-05-23 19:11:20 +00009091Note that runtime support may be conditional on the privilege-level code is
9092running at and the host platform.
9093
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009094'``llvm.clear_cache``' Intrinsic
9095^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9096
9097Syntax:
9098"""""""
9099
9100::
9101
9102 declare void @llvm.clear_cache(i8*, i8*)
9103
9104Overview:
9105"""""""""
9106
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009107The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9108in the specified range to the execution unit of the processor. On
9109targets with non-unified instruction and data cache, the implementation
9110flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009111
9112Semantics:
9113""""""""""
9114
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009115On platforms with coherent instruction and data caches (e.g. x86), this
9116intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009117cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009118instructions or a system call, if cache flushing requires special
9119privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009120
Sean Silvad02bf3e2014-04-07 22:29:53 +00009121The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009122time library.
Renato Golin93010e62014-03-26 14:01:32 +00009123
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009124This instrinsic does *not* empty the instruction pipeline. Modifications
9125of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009126
Justin Bogner61ba2e32014-12-08 18:02:35 +00009127'``llvm.instrprof_increment``' Intrinsic
9128^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9129
9130Syntax:
9131"""""""
9132
9133::
9134
9135 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9136 i32 <num-counters>, i32 <index>)
9137
9138Overview:
9139"""""""""
9140
9141The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9142frontend for use with instrumentation based profiling. These will be
9143lowered by the ``-instrprof`` pass to generate execution counts of a
9144program at runtime.
9145
9146Arguments:
9147""""""""""
9148
9149The first argument is a pointer to a global variable containing the
9150name of the entity being instrumented. This should generally be the
9151(mangled) function name for a set of counters.
9152
9153The second argument is a hash value that can be used by the consumer
9154of the profile data to detect changes to the instrumented source, and
9155the third is the number of counters associated with ``name``. It is an
9156error if ``hash`` or ``num-counters`` differ between two instances of
9157``instrprof_increment`` that refer to the same name.
9158
9159The last argument refers to which of the counters for ``name`` should
9160be incremented. It should be a value between 0 and ``num-counters``.
9161
9162Semantics:
9163""""""""""
9164
9165This intrinsic represents an increment of a profiling counter. It will
9166cause the ``-instrprof`` pass to generate the appropriate data
9167structures and the code to increment the appropriate value, in a
9168format that can be written out by a compiler runtime and consumed via
9169the ``llvm-profdata`` tool.
9170
Sean Silvab084af42012-12-07 10:36:55 +00009171Standard C Library Intrinsics
9172-----------------------------
9173
9174LLVM provides intrinsics for a few important standard C library
9175functions. These intrinsics allow source-language front-ends to pass
9176information about the alignment of the pointer arguments to the code
9177generator, providing opportunity for more efficient code generation.
9178
9179.. _int_memcpy:
9180
9181'``llvm.memcpy``' Intrinsic
9182^^^^^^^^^^^^^^^^^^^^^^^^^^^
9183
9184Syntax:
9185"""""""
9186
9187This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9188integer bit width and for different address spaces. Not all targets
9189support all bit widths however.
9190
9191::
9192
9193 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9194 i32 <len>, i32 <align>, i1 <isvolatile>)
9195 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9196 i64 <len>, i32 <align>, i1 <isvolatile>)
9197
9198Overview:
9199"""""""""
9200
9201The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9202source location to the destination location.
9203
9204Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9205intrinsics do not return a value, takes extra alignment/isvolatile
9206arguments and the pointers can be in specified address spaces.
9207
9208Arguments:
9209""""""""""
9210
9211The first argument is a pointer to the destination, the second is a
9212pointer to the source. The third argument is an integer argument
9213specifying the number of bytes to copy, the fourth argument is the
9214alignment of the source and destination locations, and the fifth is a
9215boolean indicating a volatile access.
9216
9217If the call to this intrinsic has an alignment value that is not 0 or 1,
9218then the caller guarantees that both the source and destination pointers
9219are aligned to that boundary.
9220
9221If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9222a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9223very cleanly specified and it is unwise to depend on it.
9224
9225Semantics:
9226""""""""""
9227
9228The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9229source location to the destination location, which are not allowed to
9230overlap. It copies "len" bytes of memory over. If the argument is known
9231to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009232argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009233
9234'``llvm.memmove``' Intrinsic
9235^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9236
9237Syntax:
9238"""""""
9239
9240This is an overloaded intrinsic. You can use llvm.memmove on any integer
9241bit width and for different address space. Not all targets support all
9242bit widths however.
9243
9244::
9245
9246 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9247 i32 <len>, i32 <align>, i1 <isvolatile>)
9248 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9249 i64 <len>, i32 <align>, i1 <isvolatile>)
9250
9251Overview:
9252"""""""""
9253
9254The '``llvm.memmove.*``' intrinsics move a block of memory from the
9255source location to the destination location. It is similar to the
9256'``llvm.memcpy``' intrinsic but allows the two memory locations to
9257overlap.
9258
9259Note that, unlike the standard libc function, the ``llvm.memmove.*``
9260intrinsics do not return a value, takes extra alignment/isvolatile
9261arguments and the pointers can be in specified address spaces.
9262
9263Arguments:
9264""""""""""
9265
9266The first argument is a pointer to the destination, the second is a
9267pointer to the source. The third argument is an integer argument
9268specifying the number of bytes to copy, the fourth argument is the
9269alignment of the source and destination locations, and the fifth is a
9270boolean indicating a volatile access.
9271
9272If the call to this intrinsic has an alignment value that is not 0 or 1,
9273then the caller guarantees that the source and destination pointers are
9274aligned to that boundary.
9275
9276If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9277is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9278not very cleanly specified and it is unwise to depend on it.
9279
9280Semantics:
9281""""""""""
9282
9283The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9284source location to the destination location, which may overlap. It
9285copies "len" bytes of memory over. If the argument is known to be
9286aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009287otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009288
9289'``llvm.memset.*``' Intrinsics
9290^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9291
9292Syntax:
9293"""""""
9294
9295This is an overloaded intrinsic. You can use llvm.memset on any integer
9296bit width and for different address spaces. However, not all targets
9297support all bit widths.
9298
9299::
9300
9301 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9302 i32 <len>, i32 <align>, i1 <isvolatile>)
9303 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9304 i64 <len>, i32 <align>, i1 <isvolatile>)
9305
9306Overview:
9307"""""""""
9308
9309The '``llvm.memset.*``' intrinsics fill a block of memory with a
9310particular byte value.
9311
9312Note that, unlike the standard libc function, the ``llvm.memset``
9313intrinsic does not return a value and takes extra alignment/volatile
9314arguments. Also, the destination can be in an arbitrary address space.
9315
9316Arguments:
9317""""""""""
9318
9319The first argument is a pointer to the destination to fill, the second
9320is the byte value with which to fill it, the third argument is an
9321integer argument specifying the number of bytes to fill, and the fourth
9322argument is the known alignment of the destination location.
9323
9324If the call to this intrinsic has an alignment value that is not 0 or 1,
9325then the caller guarantees that the destination pointer is aligned to
9326that boundary.
9327
9328If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9329a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9330very cleanly specified and it is unwise to depend on it.
9331
9332Semantics:
9333""""""""""
9334
9335The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9336at the destination location. If the argument is known to be aligned to
9337some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009338it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009339
9340'``llvm.sqrt.*``' Intrinsic
9341^^^^^^^^^^^^^^^^^^^^^^^^^^^
9342
9343Syntax:
9344"""""""
9345
9346This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9347floating point or vector of floating point type. Not all targets support
9348all types however.
9349
9350::
9351
9352 declare float @llvm.sqrt.f32(float %Val)
9353 declare double @llvm.sqrt.f64(double %Val)
9354 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9355 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9356 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9357
9358Overview:
9359"""""""""
9360
9361The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9362returning the same value as the libm '``sqrt``' functions would. Unlike
9363``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9364negative numbers other than -0.0 (which allows for better optimization,
9365because there is no need to worry about errno being set).
9366``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9367
9368Arguments:
9369""""""""""
9370
9371The argument and return value are floating point numbers of the same
9372type.
9373
9374Semantics:
9375""""""""""
9376
9377This function returns the sqrt of the specified operand if it is a
9378nonnegative floating point number.
9379
9380'``llvm.powi.*``' Intrinsic
9381^^^^^^^^^^^^^^^^^^^^^^^^^^^
9382
9383Syntax:
9384"""""""
9385
9386This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9387floating point or vector of floating point type. Not all targets support
9388all types however.
9389
9390::
9391
9392 declare float @llvm.powi.f32(float %Val, i32 %power)
9393 declare double @llvm.powi.f64(double %Val, i32 %power)
9394 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9395 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9396 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9397
9398Overview:
9399"""""""""
9400
9401The '``llvm.powi.*``' intrinsics return the first operand raised to the
9402specified (positive or negative) power. The order of evaluation of
9403multiplications is not defined. When a vector of floating point type is
9404used, the second argument remains a scalar integer value.
9405
9406Arguments:
9407""""""""""
9408
9409The second argument is an integer power, and the first is a value to
9410raise to that power.
9411
9412Semantics:
9413""""""""""
9414
9415This function returns the first value raised to the second power with an
9416unspecified sequence of rounding operations.
9417
9418'``llvm.sin.*``' Intrinsic
9419^^^^^^^^^^^^^^^^^^^^^^^^^^
9420
9421Syntax:
9422"""""""
9423
9424This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9425floating point or vector of floating point type. Not all targets support
9426all types however.
9427
9428::
9429
9430 declare float @llvm.sin.f32(float %Val)
9431 declare double @llvm.sin.f64(double %Val)
9432 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9433 declare fp128 @llvm.sin.f128(fp128 %Val)
9434 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9435
9436Overview:
9437"""""""""
9438
9439The '``llvm.sin.*``' intrinsics return the sine of the operand.
9440
9441Arguments:
9442""""""""""
9443
9444The argument and return value are floating point numbers of the same
9445type.
9446
9447Semantics:
9448""""""""""
9449
9450This function returns the sine of the specified operand, returning the
9451same values as the libm ``sin`` functions would, and handles error
9452conditions in the same way.
9453
9454'``llvm.cos.*``' Intrinsic
9455^^^^^^^^^^^^^^^^^^^^^^^^^^
9456
9457Syntax:
9458"""""""
9459
9460This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9461floating point or vector of floating point type. Not all targets support
9462all types however.
9463
9464::
9465
9466 declare float @llvm.cos.f32(float %Val)
9467 declare double @llvm.cos.f64(double %Val)
9468 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9469 declare fp128 @llvm.cos.f128(fp128 %Val)
9470 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9471
9472Overview:
9473"""""""""
9474
9475The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9476
9477Arguments:
9478""""""""""
9479
9480The argument and return value are floating point numbers of the same
9481type.
9482
9483Semantics:
9484""""""""""
9485
9486This function returns the cosine of the specified operand, returning the
9487same values as the libm ``cos`` functions would, and handles error
9488conditions in the same way.
9489
9490'``llvm.pow.*``' Intrinsic
9491^^^^^^^^^^^^^^^^^^^^^^^^^^
9492
9493Syntax:
9494"""""""
9495
9496This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9497floating point or vector of floating point type. Not all targets support
9498all types however.
9499
9500::
9501
9502 declare float @llvm.pow.f32(float %Val, float %Power)
9503 declare double @llvm.pow.f64(double %Val, double %Power)
9504 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9505 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9506 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9507
9508Overview:
9509"""""""""
9510
9511The '``llvm.pow.*``' intrinsics return the first operand raised to the
9512specified (positive or negative) power.
9513
9514Arguments:
9515""""""""""
9516
9517The second argument is a floating point power, and the first is a value
9518to raise to that power.
9519
9520Semantics:
9521""""""""""
9522
9523This function returns the first value raised to the second power,
9524returning the same values as the libm ``pow`` functions would, and
9525handles error conditions in the same way.
9526
9527'``llvm.exp.*``' Intrinsic
9528^^^^^^^^^^^^^^^^^^^^^^^^^^
9529
9530Syntax:
9531"""""""
9532
9533This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9534floating point or vector of floating point type. Not all targets support
9535all types however.
9536
9537::
9538
9539 declare float @llvm.exp.f32(float %Val)
9540 declare double @llvm.exp.f64(double %Val)
9541 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9542 declare fp128 @llvm.exp.f128(fp128 %Val)
9543 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9544
9545Overview:
9546"""""""""
9547
9548The '``llvm.exp.*``' intrinsics perform the exp function.
9549
9550Arguments:
9551""""""""""
9552
9553The argument and return value are floating point numbers of the same
9554type.
9555
9556Semantics:
9557""""""""""
9558
9559This function returns the same values as the libm ``exp`` functions
9560would, and handles error conditions in the same way.
9561
9562'``llvm.exp2.*``' Intrinsic
9563^^^^^^^^^^^^^^^^^^^^^^^^^^^
9564
9565Syntax:
9566"""""""
9567
9568This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9569floating point or vector of floating point type. Not all targets support
9570all types however.
9571
9572::
9573
9574 declare float @llvm.exp2.f32(float %Val)
9575 declare double @llvm.exp2.f64(double %Val)
9576 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9577 declare fp128 @llvm.exp2.f128(fp128 %Val)
9578 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9579
9580Overview:
9581"""""""""
9582
9583The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9584
9585Arguments:
9586""""""""""
9587
9588The argument and return value are floating point numbers of the same
9589type.
9590
9591Semantics:
9592""""""""""
9593
9594This function returns the same values as the libm ``exp2`` functions
9595would, and handles error conditions in the same way.
9596
9597'``llvm.log.*``' Intrinsic
9598^^^^^^^^^^^^^^^^^^^^^^^^^^
9599
9600Syntax:
9601"""""""
9602
9603This is an overloaded intrinsic. You can use ``llvm.log`` on any
9604floating point or vector of floating point type. Not all targets support
9605all types however.
9606
9607::
9608
9609 declare float @llvm.log.f32(float %Val)
9610 declare double @llvm.log.f64(double %Val)
9611 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9612 declare fp128 @llvm.log.f128(fp128 %Val)
9613 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9614
9615Overview:
9616"""""""""
9617
9618The '``llvm.log.*``' intrinsics perform the log function.
9619
9620Arguments:
9621""""""""""
9622
9623The argument and return value are floating point numbers of the same
9624type.
9625
9626Semantics:
9627""""""""""
9628
9629This function returns the same values as the libm ``log`` functions
9630would, and handles error conditions in the same way.
9631
9632'``llvm.log10.*``' Intrinsic
9633^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9634
9635Syntax:
9636"""""""
9637
9638This is an overloaded intrinsic. You can use ``llvm.log10`` on any
9639floating point or vector of floating point type. Not all targets support
9640all types however.
9641
9642::
9643
9644 declare float @llvm.log10.f32(float %Val)
9645 declare double @llvm.log10.f64(double %Val)
9646 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
9647 declare fp128 @llvm.log10.f128(fp128 %Val)
9648 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
9649
9650Overview:
9651"""""""""
9652
9653The '``llvm.log10.*``' intrinsics perform the log10 function.
9654
9655Arguments:
9656""""""""""
9657
9658The argument and return value are floating point numbers of the same
9659type.
9660
9661Semantics:
9662""""""""""
9663
9664This function returns the same values as the libm ``log10`` functions
9665would, and handles error conditions in the same way.
9666
9667'``llvm.log2.*``' Intrinsic
9668^^^^^^^^^^^^^^^^^^^^^^^^^^^
9669
9670Syntax:
9671"""""""
9672
9673This is an overloaded intrinsic. You can use ``llvm.log2`` on any
9674floating point or vector of floating point type. Not all targets support
9675all types however.
9676
9677::
9678
9679 declare float @llvm.log2.f32(float %Val)
9680 declare double @llvm.log2.f64(double %Val)
9681 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
9682 declare fp128 @llvm.log2.f128(fp128 %Val)
9683 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
9684
9685Overview:
9686"""""""""
9687
9688The '``llvm.log2.*``' intrinsics perform the log2 function.
9689
9690Arguments:
9691""""""""""
9692
9693The argument and return value are floating point numbers of the same
9694type.
9695
9696Semantics:
9697""""""""""
9698
9699This function returns the same values as the libm ``log2`` functions
9700would, and handles error conditions in the same way.
9701
9702'``llvm.fma.*``' Intrinsic
9703^^^^^^^^^^^^^^^^^^^^^^^^^^
9704
9705Syntax:
9706"""""""
9707
9708This is an overloaded intrinsic. You can use ``llvm.fma`` on any
9709floating point or vector of floating point type. Not all targets support
9710all types however.
9711
9712::
9713
9714 declare float @llvm.fma.f32(float %a, float %b, float %c)
9715 declare double @llvm.fma.f64(double %a, double %b, double %c)
9716 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
9717 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
9718 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
9719
9720Overview:
9721"""""""""
9722
9723The '``llvm.fma.*``' intrinsics perform the fused multiply-add
9724operation.
9725
9726Arguments:
9727""""""""""
9728
9729The argument and return value are floating point numbers of the same
9730type.
9731
9732Semantics:
9733""""""""""
9734
9735This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009736would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00009737
9738'``llvm.fabs.*``' Intrinsic
9739^^^^^^^^^^^^^^^^^^^^^^^^^^^
9740
9741Syntax:
9742"""""""
9743
9744This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
9745floating point or vector of floating point type. Not all targets support
9746all types however.
9747
9748::
9749
9750 declare float @llvm.fabs.f32(float %Val)
9751 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009752 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00009753 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009754 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00009755
9756Overview:
9757"""""""""
9758
9759The '``llvm.fabs.*``' intrinsics return the absolute value of the
9760operand.
9761
9762Arguments:
9763""""""""""
9764
9765The argument and return value are floating point numbers of the same
9766type.
9767
9768Semantics:
9769""""""""""
9770
9771This function returns the same values as the libm ``fabs`` functions
9772would, and handles error conditions in the same way.
9773
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009774'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00009775^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009776
9777Syntax:
9778"""""""
9779
9780This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
9781floating point or vector of floating point type. Not all targets support
9782all types however.
9783
9784::
9785
Matt Arsenault64313c92014-10-22 18:25:02 +00009786 declare float @llvm.minnum.f32(float %Val0, float %Val1)
9787 declare double @llvm.minnum.f64(double %Val0, double %Val1)
9788 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
9789 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
9790 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009791
9792Overview:
9793"""""""""
9794
9795The '``llvm.minnum.*``' intrinsics return the minimum of the two
9796arguments.
9797
9798
9799Arguments:
9800""""""""""
9801
9802The arguments and return value are floating point numbers of the same
9803type.
9804
9805Semantics:
9806""""""""""
9807
9808Follows the IEEE-754 semantics for minNum, which also match for libm's
9809fmin.
9810
9811If either operand is a NaN, returns the other non-NaN operand. Returns
9812NaN only if both operands are NaN. If the operands compare equal,
9813returns a value that compares equal to both operands. This means that
9814fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
9815
9816'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00009817^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009818
9819Syntax:
9820"""""""
9821
9822This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
9823floating point or vector of floating point type. Not all targets support
9824all types however.
9825
9826::
9827
Matt Arsenault64313c92014-10-22 18:25:02 +00009828 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
9829 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
9830 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
9831 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
9832 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009833
9834Overview:
9835"""""""""
9836
9837The '``llvm.maxnum.*``' intrinsics return the maximum of the two
9838arguments.
9839
9840
9841Arguments:
9842""""""""""
9843
9844The arguments and return value are floating point numbers of the same
9845type.
9846
9847Semantics:
9848""""""""""
9849Follows the IEEE-754 semantics for maxNum, which also match for libm's
9850fmax.
9851
9852If either operand is a NaN, returns the other non-NaN operand. Returns
9853NaN only if both operands are NaN. If the operands compare equal,
9854returns a value that compares equal to both operands. This means that
9855fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
9856
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00009857'``llvm.copysign.*``' Intrinsic
9858^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9859
9860Syntax:
9861"""""""
9862
9863This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
9864floating point or vector of floating point type. Not all targets support
9865all types however.
9866
9867::
9868
9869 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
9870 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
9871 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
9872 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
9873 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
9874
9875Overview:
9876"""""""""
9877
9878The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
9879first operand and the sign of the second operand.
9880
9881Arguments:
9882""""""""""
9883
9884The arguments and return value are floating point numbers of the same
9885type.
9886
9887Semantics:
9888""""""""""
9889
9890This function returns the same values as the libm ``copysign``
9891functions would, and handles error conditions in the same way.
9892
Sean Silvab084af42012-12-07 10:36:55 +00009893'``llvm.floor.*``' Intrinsic
9894^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9895
9896Syntax:
9897"""""""
9898
9899This is an overloaded intrinsic. You can use ``llvm.floor`` on any
9900floating point or vector of floating point type. Not all targets support
9901all types however.
9902
9903::
9904
9905 declare float @llvm.floor.f32(float %Val)
9906 declare double @llvm.floor.f64(double %Val)
9907 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
9908 declare fp128 @llvm.floor.f128(fp128 %Val)
9909 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
9910
9911Overview:
9912"""""""""
9913
9914The '``llvm.floor.*``' intrinsics return the floor of the operand.
9915
9916Arguments:
9917""""""""""
9918
9919The argument and return value are floating point numbers of the same
9920type.
9921
9922Semantics:
9923""""""""""
9924
9925This function returns the same values as the libm ``floor`` functions
9926would, and handles error conditions in the same way.
9927
9928'``llvm.ceil.*``' Intrinsic
9929^^^^^^^^^^^^^^^^^^^^^^^^^^^
9930
9931Syntax:
9932"""""""
9933
9934This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
9935floating point or vector of floating point type. Not all targets support
9936all types however.
9937
9938::
9939
9940 declare float @llvm.ceil.f32(float %Val)
9941 declare double @llvm.ceil.f64(double %Val)
9942 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
9943 declare fp128 @llvm.ceil.f128(fp128 %Val)
9944 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
9945
9946Overview:
9947"""""""""
9948
9949The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
9950
9951Arguments:
9952""""""""""
9953
9954The argument and return value are floating point numbers of the same
9955type.
9956
9957Semantics:
9958""""""""""
9959
9960This function returns the same values as the libm ``ceil`` functions
9961would, and handles error conditions in the same way.
9962
9963'``llvm.trunc.*``' Intrinsic
9964^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9965
9966Syntax:
9967"""""""
9968
9969This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
9970floating point or vector of floating point type. Not all targets support
9971all types however.
9972
9973::
9974
9975 declare float @llvm.trunc.f32(float %Val)
9976 declare double @llvm.trunc.f64(double %Val)
9977 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
9978 declare fp128 @llvm.trunc.f128(fp128 %Val)
9979 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
9980
9981Overview:
9982"""""""""
9983
9984The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
9985nearest integer not larger in magnitude than the operand.
9986
9987Arguments:
9988""""""""""
9989
9990The argument and return value are floating point numbers of the same
9991type.
9992
9993Semantics:
9994""""""""""
9995
9996This function returns the same values as the libm ``trunc`` functions
9997would, and handles error conditions in the same way.
9998
9999'``llvm.rint.*``' Intrinsic
10000^^^^^^^^^^^^^^^^^^^^^^^^^^^
10001
10002Syntax:
10003"""""""
10004
10005This is an overloaded intrinsic. You can use ``llvm.rint`` on any
10006floating point or vector of floating point type. Not all targets support
10007all types however.
10008
10009::
10010
10011 declare float @llvm.rint.f32(float %Val)
10012 declare double @llvm.rint.f64(double %Val)
10013 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10014 declare fp128 @llvm.rint.f128(fp128 %Val)
10015 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10016
10017Overview:
10018"""""""""
10019
10020The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10021nearest integer. It may raise an inexact floating-point exception if the
10022operand isn't an integer.
10023
10024Arguments:
10025""""""""""
10026
10027The argument and return value are floating point numbers of the same
10028type.
10029
10030Semantics:
10031""""""""""
10032
10033This function returns the same values as the libm ``rint`` functions
10034would, and handles error conditions in the same way.
10035
10036'``llvm.nearbyint.*``' Intrinsic
10037^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10038
10039Syntax:
10040"""""""
10041
10042This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10043floating point or vector of floating point type. Not all targets support
10044all types however.
10045
10046::
10047
10048 declare float @llvm.nearbyint.f32(float %Val)
10049 declare double @llvm.nearbyint.f64(double %Val)
10050 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10051 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10052 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10053
10054Overview:
10055"""""""""
10056
10057The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10058nearest integer.
10059
10060Arguments:
10061""""""""""
10062
10063The argument and return value are floating point numbers of the same
10064type.
10065
10066Semantics:
10067""""""""""
10068
10069This function returns the same values as the libm ``nearbyint``
10070functions would, and handles error conditions in the same way.
10071
Hal Finkel171817e2013-08-07 22:49:12 +000010072'``llvm.round.*``' Intrinsic
10073^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10074
10075Syntax:
10076"""""""
10077
10078This is an overloaded intrinsic. You can use ``llvm.round`` on any
10079floating point or vector of floating point type. Not all targets support
10080all types however.
10081
10082::
10083
10084 declare float @llvm.round.f32(float %Val)
10085 declare double @llvm.round.f64(double %Val)
10086 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10087 declare fp128 @llvm.round.f128(fp128 %Val)
10088 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10089
10090Overview:
10091"""""""""
10092
10093The '``llvm.round.*``' intrinsics returns the operand rounded to the
10094nearest integer.
10095
10096Arguments:
10097""""""""""
10098
10099The argument and return value are floating point numbers of the same
10100type.
10101
10102Semantics:
10103""""""""""
10104
10105This function returns the same values as the libm ``round``
10106functions would, and handles error conditions in the same way.
10107
Sean Silvab084af42012-12-07 10:36:55 +000010108Bit Manipulation Intrinsics
10109---------------------------
10110
10111LLVM provides intrinsics for a few important bit manipulation
10112operations. These allow efficient code generation for some algorithms.
10113
10114'``llvm.bswap.*``' Intrinsics
10115^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10116
10117Syntax:
10118"""""""
10119
10120This is an overloaded intrinsic function. You can use bswap on any
10121integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10122
10123::
10124
10125 declare i16 @llvm.bswap.i16(i16 <id>)
10126 declare i32 @llvm.bswap.i32(i32 <id>)
10127 declare i64 @llvm.bswap.i64(i64 <id>)
10128
10129Overview:
10130"""""""""
10131
10132The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10133values with an even number of bytes (positive multiple of 16 bits).
10134These are useful for performing operations on data that is not in the
10135target's native byte order.
10136
10137Semantics:
10138""""""""""
10139
10140The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10141and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10142intrinsic returns an i32 value that has the four bytes of the input i32
10143swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10144returned i32 will have its bytes in 3, 2, 1, 0 order. The
10145``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10146concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10147respectively).
10148
10149'``llvm.ctpop.*``' Intrinsic
10150^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10151
10152Syntax:
10153"""""""
10154
10155This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10156bit width, or on any vector with integer elements. Not all targets
10157support all bit widths or vector types, however.
10158
10159::
10160
10161 declare i8 @llvm.ctpop.i8(i8 <src>)
10162 declare i16 @llvm.ctpop.i16(i16 <src>)
10163 declare i32 @llvm.ctpop.i32(i32 <src>)
10164 declare i64 @llvm.ctpop.i64(i64 <src>)
10165 declare i256 @llvm.ctpop.i256(i256 <src>)
10166 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10167
10168Overview:
10169"""""""""
10170
10171The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10172in a value.
10173
10174Arguments:
10175""""""""""
10176
10177The only argument is the value to be counted. The argument may be of any
10178integer type, or a vector with integer elements. The return type must
10179match the argument type.
10180
10181Semantics:
10182""""""""""
10183
10184The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10185each element of a vector.
10186
10187'``llvm.ctlz.*``' Intrinsic
10188^^^^^^^^^^^^^^^^^^^^^^^^^^^
10189
10190Syntax:
10191"""""""
10192
10193This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10194integer bit width, or any vector whose elements are integers. Not all
10195targets support all bit widths or vector types, however.
10196
10197::
10198
10199 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10200 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10201 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10202 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10203 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
10204 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10205
10206Overview:
10207"""""""""
10208
10209The '``llvm.ctlz``' family of intrinsic functions counts the number of
10210leading zeros in a variable.
10211
10212Arguments:
10213""""""""""
10214
10215The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010216any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010217type must match the first argument type.
10218
10219The second argument must be a constant and is a flag to indicate whether
10220the intrinsic should ensure that a zero as the first argument produces a
10221defined result. Historically some architectures did not provide a
10222defined result for zero values as efficiently, and many algorithms are
10223now predicated on avoiding zero-value inputs.
10224
10225Semantics:
10226""""""""""
10227
10228The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10229zeros in a variable, or within each element of the vector. If
10230``src == 0`` then the result is the size in bits of the type of ``src``
10231if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10232``llvm.ctlz(i32 2) = 30``.
10233
10234'``llvm.cttz.*``' Intrinsic
10235^^^^^^^^^^^^^^^^^^^^^^^^^^^
10236
10237Syntax:
10238"""""""
10239
10240This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10241integer bit width, or any vector of integer elements. Not all targets
10242support all bit widths or vector types, however.
10243
10244::
10245
10246 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10247 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10248 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10249 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10250 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
10251 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10252
10253Overview:
10254"""""""""
10255
10256The '``llvm.cttz``' family of intrinsic functions counts the number of
10257trailing zeros.
10258
10259Arguments:
10260""""""""""
10261
10262The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010263any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010264type must match the first argument type.
10265
10266The second argument must be a constant and is a flag to indicate whether
10267the intrinsic should ensure that a zero as the first argument produces a
10268defined result. Historically some architectures did not provide a
10269defined result for zero values as efficiently, and many algorithms are
10270now predicated on avoiding zero-value inputs.
10271
10272Semantics:
10273""""""""""
10274
10275The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10276zeros in a variable, or within each element of a vector. If ``src == 0``
10277then the result is the size in bits of the type of ``src`` if
10278``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10279``llvm.cttz(2) = 1``.
10280
Philip Reames34843ae2015-03-05 05:55:55 +000010281.. _int_overflow:
10282
Sean Silvab084af42012-12-07 10:36:55 +000010283Arithmetic with Overflow Intrinsics
10284-----------------------------------
10285
10286LLVM provides intrinsics for some arithmetic with overflow operations.
10287
10288'``llvm.sadd.with.overflow.*``' Intrinsics
10289^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10290
10291Syntax:
10292"""""""
10293
10294This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10295on any integer bit width.
10296
10297::
10298
10299 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10300 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10301 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10302
10303Overview:
10304"""""""""
10305
10306The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10307a signed addition of the two arguments, and indicate whether an overflow
10308occurred during the signed summation.
10309
10310Arguments:
10311""""""""""
10312
10313The arguments (%a and %b) and the first element of the result structure
10314may be of integer types of any bit width, but they must have the same
10315bit width. The second element of the result structure must be of type
10316``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10317addition.
10318
10319Semantics:
10320""""""""""
10321
10322The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010323a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010324first element of which is the signed summation, and the second element
10325of which is a bit specifying if the signed summation resulted in an
10326overflow.
10327
10328Examples:
10329"""""""""
10330
10331.. code-block:: llvm
10332
10333 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10334 %sum = extractvalue {i32, i1} %res, 0
10335 %obit = extractvalue {i32, i1} %res, 1
10336 br i1 %obit, label %overflow, label %normal
10337
10338'``llvm.uadd.with.overflow.*``' Intrinsics
10339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10340
10341Syntax:
10342"""""""
10343
10344This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10345on any integer bit width.
10346
10347::
10348
10349 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10350 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10351 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10352
10353Overview:
10354"""""""""
10355
10356The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10357an unsigned addition of the two arguments, and indicate whether a carry
10358occurred during the unsigned summation.
10359
10360Arguments:
10361""""""""""
10362
10363The arguments (%a and %b) and the first element of the result structure
10364may be of integer types of any bit width, but they must have the same
10365bit width. The second element of the result structure must be of type
10366``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10367addition.
10368
10369Semantics:
10370""""""""""
10371
10372The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010373an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010374first element of which is the sum, and the second element of which is a
10375bit specifying if the unsigned summation resulted in a carry.
10376
10377Examples:
10378"""""""""
10379
10380.. code-block:: llvm
10381
10382 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10383 %sum = extractvalue {i32, i1} %res, 0
10384 %obit = extractvalue {i32, i1} %res, 1
10385 br i1 %obit, label %carry, label %normal
10386
10387'``llvm.ssub.with.overflow.*``' Intrinsics
10388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10389
10390Syntax:
10391"""""""
10392
10393This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10394on any integer bit width.
10395
10396::
10397
10398 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10399 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10400 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10401
10402Overview:
10403"""""""""
10404
10405The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10406a signed subtraction of the two arguments, and indicate whether an
10407overflow occurred during the signed subtraction.
10408
10409Arguments:
10410""""""""""
10411
10412The arguments (%a and %b) and the first element of the result structure
10413may be of integer types of any bit width, but they must have the same
10414bit width. The second element of the result structure must be of type
10415``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10416subtraction.
10417
10418Semantics:
10419""""""""""
10420
10421The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010422a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010423first element of which is the subtraction, and the second element of
10424which is a bit specifying if the signed subtraction resulted in an
10425overflow.
10426
10427Examples:
10428"""""""""
10429
10430.. code-block:: llvm
10431
10432 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10433 %sum = extractvalue {i32, i1} %res, 0
10434 %obit = extractvalue {i32, i1} %res, 1
10435 br i1 %obit, label %overflow, label %normal
10436
10437'``llvm.usub.with.overflow.*``' Intrinsics
10438^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10439
10440Syntax:
10441"""""""
10442
10443This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10444on any integer bit width.
10445
10446::
10447
10448 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10449 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10450 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10451
10452Overview:
10453"""""""""
10454
10455The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10456an unsigned subtraction of the two arguments, and indicate whether an
10457overflow occurred during the unsigned subtraction.
10458
10459Arguments:
10460""""""""""
10461
10462The arguments (%a and %b) and the first element of the result structure
10463may be of integer types of any bit width, but they must have the same
10464bit width. The second element of the result structure must be of type
10465``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10466subtraction.
10467
10468Semantics:
10469""""""""""
10470
10471The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010472an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010473the first element of which is the subtraction, and the second element of
10474which is a bit specifying if the unsigned subtraction resulted in an
10475overflow.
10476
10477Examples:
10478"""""""""
10479
10480.. code-block:: llvm
10481
10482 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10483 %sum = extractvalue {i32, i1} %res, 0
10484 %obit = extractvalue {i32, i1} %res, 1
10485 br i1 %obit, label %overflow, label %normal
10486
10487'``llvm.smul.with.overflow.*``' Intrinsics
10488^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10489
10490Syntax:
10491"""""""
10492
10493This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10494on any integer bit width.
10495
10496::
10497
10498 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10499 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10500 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10501
10502Overview:
10503"""""""""
10504
10505The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10506a signed multiplication of the two arguments, and indicate whether an
10507overflow occurred during the signed multiplication.
10508
10509Arguments:
10510""""""""""
10511
10512The arguments (%a and %b) and the first element of the result structure
10513may be of integer types of any bit width, but they must have the same
10514bit width. The second element of the result structure must be of type
10515``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10516multiplication.
10517
10518Semantics:
10519""""""""""
10520
10521The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010522a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010523the first element of which is the multiplication, and the second element
10524of which is a bit specifying if the signed multiplication resulted in an
10525overflow.
10526
10527Examples:
10528"""""""""
10529
10530.. code-block:: llvm
10531
10532 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10533 %sum = extractvalue {i32, i1} %res, 0
10534 %obit = extractvalue {i32, i1} %res, 1
10535 br i1 %obit, label %overflow, label %normal
10536
10537'``llvm.umul.with.overflow.*``' Intrinsics
10538^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10539
10540Syntax:
10541"""""""
10542
10543This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10544on any integer bit width.
10545
10546::
10547
10548 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10549 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10550 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10551
10552Overview:
10553"""""""""
10554
10555The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10556a unsigned multiplication of the two arguments, and indicate whether an
10557overflow occurred during the unsigned multiplication.
10558
10559Arguments:
10560""""""""""
10561
10562The arguments (%a and %b) and the first element of the result structure
10563may be of integer types of any bit width, but they must have the same
10564bit width. The second element of the result structure must be of type
10565``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10566multiplication.
10567
10568Semantics:
10569""""""""""
10570
10571The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010572an unsigned multiplication of the two arguments. They return a structure ---
10573the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010574element of which is a bit specifying if the unsigned multiplication
10575resulted in an overflow.
10576
10577Examples:
10578"""""""""
10579
10580.. code-block:: llvm
10581
10582 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10583 %sum = extractvalue {i32, i1} %res, 0
10584 %obit = extractvalue {i32, i1} %res, 1
10585 br i1 %obit, label %overflow, label %normal
10586
10587Specialised Arithmetic Intrinsics
10588---------------------------------
10589
Owen Anderson1056a922015-07-11 07:01:27 +000010590'``llvm.canonicalize.*``' Intrinsic
10591^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10592
10593Syntax:
10594"""""""
10595
10596::
10597
10598 declare float @llvm.canonicalize.f32(float %a)
10599 declare double @llvm.canonicalize.f64(double %b)
10600
10601Overview:
10602"""""""""
10603
10604The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
Sean Silvaa1190322015-08-06 22:56:48 +000010605encoding of a floating point number. This canonicalization is useful for
Owen Anderson1056a922015-07-11 07:01:27 +000010606implementing certain numeric primitives such as frexp. The canonical encoding is
10607defined by IEEE-754-2008 to be:
10608
10609::
10610
10611 2.1.8 canonical encoding: The preferred encoding of a floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010612 representation in a format. Applied to declets, significands of finite
Owen Anderson1056a922015-07-11 07:01:27 +000010613 numbers, infinities, and NaNs, especially in decimal formats.
10614
10615This operation can also be considered equivalent to the IEEE-754-2008
Sean Silvaa1190322015-08-06 22:56:48 +000010616conversion of a floating-point value to the same format. NaNs are handled
Owen Anderson1056a922015-07-11 07:01:27 +000010617according to section 6.2.
10618
10619Examples of non-canonical encodings:
10620
Sean Silvaa1190322015-08-06 22:56:48 +000010621- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
Owen Anderson1056a922015-07-11 07:01:27 +000010622 converted to a canonical representation per hardware-specific protocol.
10623- Many normal decimal floating point numbers have non-canonical alternative
10624 encodings.
10625- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
10626 These are treated as non-canonical encodings of zero and with be flushed to
10627 a zero of the same sign by this operation.
10628
10629Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
10630default exception handling must signal an invalid exception, and produce a
10631quiet NaN result.
10632
10633This function should always be implementable as multiplication by 1.0, provided
Sean Silvaa1190322015-08-06 22:56:48 +000010634that the compiler does not constant fold the operation. Likewise, division by
106351.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
Owen Anderson1056a922015-07-11 07:01:27 +000010636-0.0 is also sufficient provided that the rounding mode is not -Infinity.
10637
Sean Silvaa1190322015-08-06 22:56:48 +000010638``@llvm.canonicalize`` must preserve the equality relation. That is:
Owen Anderson1056a922015-07-11 07:01:27 +000010639
10640- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
10641- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
10642 to ``(x == y)``
10643
10644Additionally, the sign of zero must be conserved:
10645``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
10646
10647The payload bits of a NaN must be conserved, with two exceptions.
10648First, environments which use only a single canonical representation of NaN
Sean Silvaa1190322015-08-06 22:56:48 +000010649must perform said canonicalization. Second, SNaNs must be quieted per the
Owen Anderson1056a922015-07-11 07:01:27 +000010650usual methods.
10651
10652The canonicalization operation may be optimized away if:
10653
Sean Silvaa1190322015-08-06 22:56:48 +000010654- The input is known to be canonical. For example, it was produced by a
Owen Anderson1056a922015-07-11 07:01:27 +000010655 floating-point operation that is required by the standard to be canonical.
10656- The result is consumed only by (or fused with) other floating-point
Sean Silvaa1190322015-08-06 22:56:48 +000010657 operations. That is, the bits of the floating point value are not examined.
Owen Anderson1056a922015-07-11 07:01:27 +000010658
Sean Silvab084af42012-12-07 10:36:55 +000010659'``llvm.fmuladd.*``' Intrinsic
10660^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10661
10662Syntax:
10663"""""""
10664
10665::
10666
10667 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
10668 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
10669
10670Overview:
10671"""""""""
10672
10673The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000010674expressions that can be fused if the code generator determines that (a) the
10675target instruction set has support for a fused operation, and (b) that the
10676fused operation is more efficient than the equivalent, separate pair of mul
10677and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000010678
10679Arguments:
10680""""""""""
10681
10682The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
10683multiplicands, a and b, and an addend c.
10684
10685Semantics:
10686""""""""""
10687
10688The expression:
10689
10690::
10691
10692 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
10693
10694is equivalent to the expression a \* b + c, except that rounding will
10695not be performed between the multiplication and addition steps if the
10696code generator fuses the operations. Fusion is not guaranteed, even if
10697the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010698corresponding llvm.fma.\* intrinsic function should be used
10699instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000010700
10701Examples:
10702"""""""""
10703
10704.. code-block:: llvm
10705
Tim Northover675a0962014-06-13 14:24:23 +000010706 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000010707
James Molloy7395a812015-07-16 15:22:46 +000010708
10709'``llvm.uabsdiff.*``' and '``llvm.sabsdiff.*``' Intrinsics
10710^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10711
10712Syntax:
10713"""""""
10714This is an overloaded intrinsic. The loaded data is a vector of any integer bit width.
10715
10716.. code-block:: llvm
10717
10718 declare <4 x integer> @llvm.uabsdiff.v4i32(<4 x integer> %a, <4 x integer> %b)
10719
10720
10721Overview:
10722"""""""""
10723
10724The ``llvm.uabsdiff`` intrinsic returns a vector result of the absolute difference of the two operands,
10725treating them both as unsigned integers.
10726
Sean Silvaa1190322015-08-06 22:56:48 +000010727The ``llvm.sabsdiff`` intrinsic returns a vector result of the absolute difference of the two operands,
James Molloy7395a812015-07-16 15:22:46 +000010728treating them both as signed integers.
10729
10730.. note::
10731
10732 These intrinsics are primarily used during the code generation stage of compilation.
10733 They are generated by compiler passes such as the Loop and SLP vectorizers.it is not
10734 recommended for users to create them manually.
10735
10736Arguments:
10737""""""""""
10738
10739Both intrinsics take two integer of the same bitwidth.
10740
10741Semantics:
10742""""""""""
10743
10744The expression::
10745
10746 call <4 x i32> @llvm.uabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
10747
10748is equivalent to::
10749
10750 %sub = sub <4 x i32> %a, %b
10751 %ispos = icmp ugt <4 x i32> %sub, <i32 -1, i32 -1, i32 -1, i32 -1>
10752 %neg = sub <4 x i32> zeroinitializer, %sub
10753 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
10754
10755Similarly the expression::
10756
10757 call <4 x i32> @llvm.sabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
10758
10759is equivalent to::
10760
10761 %sub = sub nsw <4 x i32> %a, %b
10762 %ispos = icmp sgt <4 x i32> %sub, <i32 -1, i32 -1, i32 -1, i32 -1>
10763 %neg = sub nsw <4 x i32> zeroinitializer, %sub
10764 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
10765
10766
Sean Silvab084af42012-12-07 10:36:55 +000010767Half Precision Floating Point Intrinsics
10768----------------------------------------
10769
10770For most target platforms, half precision floating point is a
10771storage-only format. This means that it is a dense encoding (in memory)
10772but does not support computation in the format.
10773
10774This means that code must first load the half-precision floating point
10775value as an i16, then convert it to float with
10776:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
10777then be performed on the float value (including extending to double
10778etc). To store the value back to memory, it is first converted to float
10779if needed, then converted to i16 with
10780:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
10781i16 value.
10782
10783.. _int_convert_to_fp16:
10784
10785'``llvm.convert.to.fp16``' Intrinsic
10786^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10787
10788Syntax:
10789"""""""
10790
10791::
10792
Tim Northoverfd7e4242014-07-17 10:51:23 +000010793 declare i16 @llvm.convert.to.fp16.f32(float %a)
10794 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000010795
10796Overview:
10797"""""""""
10798
Tim Northoverfd7e4242014-07-17 10:51:23 +000010799The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
10800conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000010801
10802Arguments:
10803""""""""""
10804
10805The intrinsic function contains single argument - the value to be
10806converted.
10807
10808Semantics:
10809""""""""""
10810
Tim Northoverfd7e4242014-07-17 10:51:23 +000010811The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
10812conventional floating point format to half precision floating point format. The
10813return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000010814
10815Examples:
10816"""""""""
10817
10818.. code-block:: llvm
10819
Tim Northoverfd7e4242014-07-17 10:51:23 +000010820 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000010821 store i16 %res, i16* @x, align 2
10822
10823.. _int_convert_from_fp16:
10824
10825'``llvm.convert.from.fp16``' Intrinsic
10826^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10827
10828Syntax:
10829"""""""
10830
10831::
10832
Tim Northoverfd7e4242014-07-17 10:51:23 +000010833 declare float @llvm.convert.from.fp16.f32(i16 %a)
10834 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000010835
10836Overview:
10837"""""""""
10838
10839The '``llvm.convert.from.fp16``' intrinsic function performs a
10840conversion from half precision floating point format to single precision
10841floating point format.
10842
10843Arguments:
10844""""""""""
10845
10846The intrinsic function contains single argument - the value to be
10847converted.
10848
10849Semantics:
10850""""""""""
10851
10852The '``llvm.convert.from.fp16``' intrinsic function performs a
10853conversion from half single precision floating point format to single
10854precision floating point format. The input half-float value is
10855represented by an ``i16`` value.
10856
10857Examples:
10858"""""""""
10859
10860.. code-block:: llvm
10861
David Blaikiec7aabbb2015-03-04 22:06:14 +000010862 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000010863 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000010864
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000010865.. _dbg_intrinsics:
10866
Sean Silvab084af42012-12-07 10:36:55 +000010867Debugger Intrinsics
10868-------------------
10869
10870The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
10871prefix), are described in the `LLVM Source Level
10872Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
10873document.
10874
10875Exception Handling Intrinsics
10876-----------------------------
10877
10878The LLVM exception handling intrinsics (which all start with
10879``llvm.eh.`` prefix), are described in the `LLVM Exception
10880Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
10881
10882.. _int_trampoline:
10883
10884Trampoline Intrinsics
10885---------------------
10886
10887These intrinsics make it possible to excise one parameter, marked with
10888the :ref:`nest <nest>` attribute, from a function. The result is a
10889callable function pointer lacking the nest parameter - the caller does
10890not need to provide a value for it. Instead, the value to use is stored
10891in advance in a "trampoline", a block of memory usually allocated on the
10892stack, which also contains code to splice the nest value into the
10893argument list. This is used to implement the GCC nested function address
10894extension.
10895
10896For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
10897then the resulting function pointer has signature ``i32 (i32, i32)*``.
10898It can be created as follows:
10899
10900.. code-block:: llvm
10901
10902 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000010903 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000010904 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
10905 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
10906 %fp = bitcast i8* %p to i32 (i32, i32)*
10907
10908The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
10909``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
10910
10911.. _int_it:
10912
10913'``llvm.init.trampoline``' Intrinsic
10914^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10915
10916Syntax:
10917"""""""
10918
10919::
10920
10921 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
10922
10923Overview:
10924"""""""""
10925
10926This fills the memory pointed to by ``tramp`` with executable code,
10927turning it into a trampoline.
10928
10929Arguments:
10930""""""""""
10931
10932The ``llvm.init.trampoline`` intrinsic takes three arguments, all
10933pointers. The ``tramp`` argument must point to a sufficiently large and
10934sufficiently aligned block of memory; this memory is written to by the
10935intrinsic. Note that the size and the alignment are target-specific -
10936LLVM currently provides no portable way of determining them, so a
10937front-end that generates this intrinsic needs to have some
10938target-specific knowledge. The ``func`` argument must hold a function
10939bitcast to an ``i8*``.
10940
10941Semantics:
10942""""""""""
10943
10944The block of memory pointed to by ``tramp`` is filled with target
10945dependent code, turning it into a function. Then ``tramp`` needs to be
10946passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
10947be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
10948function's signature is the same as that of ``func`` with any arguments
10949marked with the ``nest`` attribute removed. At most one such ``nest``
10950argument is allowed, and it must be of pointer type. Calling the new
10951function is equivalent to calling ``func`` with the same argument list,
10952but with ``nval`` used for the missing ``nest`` argument. If, after
10953calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
10954modified, then the effect of any later call to the returned function
10955pointer is undefined.
10956
10957.. _int_at:
10958
10959'``llvm.adjust.trampoline``' Intrinsic
10960^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10961
10962Syntax:
10963"""""""
10964
10965::
10966
10967 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
10968
10969Overview:
10970"""""""""
10971
10972This performs any required machine-specific adjustment to the address of
10973a trampoline (passed as ``tramp``).
10974
10975Arguments:
10976""""""""""
10977
10978``tramp`` must point to a block of memory which already has trampoline
10979code filled in by a previous call to
10980:ref:`llvm.init.trampoline <int_it>`.
10981
10982Semantics:
10983""""""""""
10984
10985On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000010986different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000010987intrinsic returns the executable address corresponding to ``tramp``
10988after performing the required machine specific adjustments. The pointer
10989returned can then be :ref:`bitcast and executed <int_trampoline>`.
10990
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000010991.. _int_mload_mstore:
10992
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010993Masked Vector Load and Store Intrinsics
10994---------------------------------------
10995
10996LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
10997
10998.. _int_mload:
10999
11000'``llvm.masked.load.*``' Intrinsics
11001^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11002
11003Syntax:
11004"""""""
11005This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
11006
11007::
11008
11009 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11010 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11011
11012Overview:
11013"""""""""
11014
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011015Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011016
11017
11018Arguments:
11019""""""""""
11020
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011021The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011022
11023
11024Semantics:
11025""""""""""
11026
11027The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11028The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11029
11030
11031::
11032
11033 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011034
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011035 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011036 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011037 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011038
11039.. _int_mstore:
11040
11041'``llvm.masked.store.*``' Intrinsics
11042^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11043
11044Syntax:
11045"""""""
11046This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
11047
11048::
11049
11050 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
11051 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
11052
11053Overview:
11054"""""""""
11055
11056Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11057
11058Arguments:
11059""""""""""
11060
11061The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11062
11063
11064Semantics:
11065""""""""""
11066
11067The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11068The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11069
11070::
11071
11072 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011073
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011074 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011075 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011076 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11077 store <16 x float> %res, <16 x float>* %ptr, align 4
11078
11079
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011080Masked Vector Gather and Scatter Intrinsics
11081-------------------------------------------
11082
11083LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11084
11085.. _int_mgather:
11086
11087'``llvm.masked.gather.*``' Intrinsics
11088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11089
11090Syntax:
11091"""""""
11092This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer or floating point data type gathered together into one vector.
11093
11094::
11095
11096 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11097 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11098
11099Overview:
11100"""""""""
11101
11102Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11103
11104
11105Arguments:
11106""""""""""
11107
11108The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11109
11110
11111Semantics:
11112""""""""""
11113
11114The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11115The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11116
11117
11118::
11119
11120 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11121
11122 ;; The gather with all-true mask is equivalent to the following instruction sequence
11123 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11124 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11125 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11126 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11127
11128 %val0 = load double, double* %ptr0, align 8
11129 %val1 = load double, double* %ptr1, align 8
11130 %val2 = load double, double* %ptr2, align 8
11131 %val3 = load double, double* %ptr3, align 8
11132
11133 %vec0 = insertelement <4 x double>undef, %val0, 0
11134 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11135 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11136 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11137
11138.. _int_mscatter:
11139
11140'``llvm.masked.scatter.*``' Intrinsics
11141^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11142
11143Syntax:
11144"""""""
11145This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type. Each vector element is stored in an arbitrary memory addresses. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
11146
11147::
11148
11149 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11150 declare void @llvm.masked.scatter.v16f32(<16 x i32> <value>, <16 x i32*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11151
11152Overview:
11153"""""""""
11154
11155Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11156
11157Arguments:
11158""""""""""
11159
11160The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11161
11162
11163Semantics:
11164""""""""""
11165
11166The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergency. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11167
11168::
11169
11170 ;; This instruction unconditionaly stores data vector in multiple addresses
11171 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11172
11173 ;; It is equivalent to a list of scalar stores
11174 %val0 = extractelement <8 x i32> %value, i32 0
11175 %val1 = extractelement <8 x i32> %value, i32 1
11176 ..
11177 %val7 = extractelement <8 x i32> %value, i32 7
11178 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11179 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11180 ..
11181 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11182 ;; Note: the order of the following stores is important when they overlap:
11183 store i32 %val0, i32* %ptr0, align 4
11184 store i32 %val1, i32* %ptr1, align 4
11185 ..
11186 store i32 %val7, i32* %ptr7, align 4
11187
11188
Sean Silvab084af42012-12-07 10:36:55 +000011189Memory Use Markers
11190------------------
11191
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011192This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011193memory objects and ranges where variables are immutable.
11194
Reid Klecknera534a382013-12-19 02:14:12 +000011195.. _int_lifestart:
11196
Sean Silvab084af42012-12-07 10:36:55 +000011197'``llvm.lifetime.start``' Intrinsic
11198^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11199
11200Syntax:
11201"""""""
11202
11203::
11204
11205 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11206
11207Overview:
11208"""""""""
11209
11210The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11211object's lifetime.
11212
11213Arguments:
11214""""""""""
11215
11216The first argument is a constant integer representing the size of the
11217object, or -1 if it is variable sized. The second argument is a pointer
11218to the object.
11219
11220Semantics:
11221""""""""""
11222
11223This intrinsic indicates that before this point in the code, the value
11224of the memory pointed to by ``ptr`` is dead. This means that it is known
11225to never be used and has an undefined value. A load from the pointer
11226that precedes this intrinsic can be replaced with ``'undef'``.
11227
Reid Klecknera534a382013-12-19 02:14:12 +000011228.. _int_lifeend:
11229
Sean Silvab084af42012-12-07 10:36:55 +000011230'``llvm.lifetime.end``' Intrinsic
11231^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11232
11233Syntax:
11234"""""""
11235
11236::
11237
11238 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11239
11240Overview:
11241"""""""""
11242
11243The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11244object's lifetime.
11245
11246Arguments:
11247""""""""""
11248
11249The first argument is a constant integer representing the size of the
11250object, or -1 if it is variable sized. The second argument is a pointer
11251to the object.
11252
11253Semantics:
11254""""""""""
11255
11256This intrinsic indicates that after this point in the code, the value of
11257the memory pointed to by ``ptr`` is dead. This means that it is known to
11258never be used and has an undefined value. Any stores into the memory
11259object following this intrinsic may be removed as dead.
11260
11261'``llvm.invariant.start``' Intrinsic
11262^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11263
11264Syntax:
11265"""""""
11266
11267::
11268
11269 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11270
11271Overview:
11272"""""""""
11273
11274The '``llvm.invariant.start``' intrinsic specifies that the contents of
11275a memory object will not change.
11276
11277Arguments:
11278""""""""""
11279
11280The first argument is a constant integer representing the size of the
11281object, or -1 if it is variable sized. The second argument is a pointer
11282to the object.
11283
11284Semantics:
11285""""""""""
11286
11287This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11288the return value, the referenced memory location is constant and
11289unchanging.
11290
11291'``llvm.invariant.end``' Intrinsic
11292^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11293
11294Syntax:
11295"""""""
11296
11297::
11298
11299 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11300
11301Overview:
11302"""""""""
11303
11304The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11305memory object are mutable.
11306
11307Arguments:
11308""""""""""
11309
11310The first argument is the matching ``llvm.invariant.start`` intrinsic.
11311The second argument is a constant integer representing the size of the
11312object, or -1 if it is variable sized and the third argument is a
11313pointer to the object.
11314
11315Semantics:
11316""""""""""
11317
11318This intrinsic indicates that the memory is mutable again.
11319
11320General Intrinsics
11321------------------
11322
11323This class of intrinsics is designed to be generic and has no specific
11324purpose.
11325
11326'``llvm.var.annotation``' Intrinsic
11327^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11328
11329Syntax:
11330"""""""
11331
11332::
11333
11334 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11335
11336Overview:
11337"""""""""
11338
11339The '``llvm.var.annotation``' intrinsic.
11340
11341Arguments:
11342""""""""""
11343
11344The first argument is a pointer to a value, the second is a pointer to a
11345global string, the third is a pointer to a global string which is the
11346source file name, and the last argument is the line number.
11347
11348Semantics:
11349""""""""""
11350
11351This intrinsic allows annotation of local variables with arbitrary
11352strings. This can be useful for special purpose optimizations that want
11353to look for these annotations. These have no other defined use; they are
11354ignored by code generation and optimization.
11355
Michael Gottesman88d18832013-03-26 00:34:27 +000011356'``llvm.ptr.annotation.*``' Intrinsic
11357^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11358
11359Syntax:
11360"""""""
11361
11362This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11363pointer to an integer of any width. *NOTE* you must specify an address space for
11364the pointer. The identifier for the default address space is the integer
11365'``0``'.
11366
11367::
11368
11369 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11370 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11371 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11372 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11373 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11374
11375Overview:
11376"""""""""
11377
11378The '``llvm.ptr.annotation``' intrinsic.
11379
11380Arguments:
11381""""""""""
11382
11383The first argument is a pointer to an integer value of arbitrary bitwidth
11384(result of some expression), the second is a pointer to a global string, the
11385third is a pointer to a global string which is the source file name, and the
11386last argument is the line number. It returns the value of the first argument.
11387
11388Semantics:
11389""""""""""
11390
11391This intrinsic allows annotation of a pointer to an integer with arbitrary
11392strings. This can be useful for special purpose optimizations that want to look
11393for these annotations. These have no other defined use; they are ignored by code
11394generation and optimization.
11395
Sean Silvab084af42012-12-07 10:36:55 +000011396'``llvm.annotation.*``' Intrinsic
11397^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11398
11399Syntax:
11400"""""""
11401
11402This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11403any integer bit width.
11404
11405::
11406
11407 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11408 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11409 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11410 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11411 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11412
11413Overview:
11414"""""""""
11415
11416The '``llvm.annotation``' intrinsic.
11417
11418Arguments:
11419""""""""""
11420
11421The first argument is an integer value (result of some expression), the
11422second is a pointer to a global string, the third is a pointer to a
11423global string which is the source file name, and the last argument is
11424the line number. It returns the value of the first argument.
11425
11426Semantics:
11427""""""""""
11428
11429This intrinsic allows annotations to be put on arbitrary expressions
11430with arbitrary strings. This can be useful for special purpose
11431optimizations that want to look for these annotations. These have no
11432other defined use; they are ignored by code generation and optimization.
11433
11434'``llvm.trap``' Intrinsic
11435^^^^^^^^^^^^^^^^^^^^^^^^^
11436
11437Syntax:
11438"""""""
11439
11440::
11441
11442 declare void @llvm.trap() noreturn nounwind
11443
11444Overview:
11445"""""""""
11446
11447The '``llvm.trap``' intrinsic.
11448
11449Arguments:
11450""""""""""
11451
11452None.
11453
11454Semantics:
11455""""""""""
11456
11457This intrinsic is lowered to the target dependent trap instruction. If
11458the target does not have a trap instruction, this intrinsic will be
11459lowered to a call of the ``abort()`` function.
11460
11461'``llvm.debugtrap``' Intrinsic
11462^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11463
11464Syntax:
11465"""""""
11466
11467::
11468
11469 declare void @llvm.debugtrap() nounwind
11470
11471Overview:
11472"""""""""
11473
11474The '``llvm.debugtrap``' intrinsic.
11475
11476Arguments:
11477""""""""""
11478
11479None.
11480
11481Semantics:
11482""""""""""
11483
11484This intrinsic is lowered to code which is intended to cause an
11485execution trap with the intention of requesting the attention of a
11486debugger.
11487
11488'``llvm.stackprotector``' Intrinsic
11489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11490
11491Syntax:
11492"""""""
11493
11494::
11495
11496 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11497
11498Overview:
11499"""""""""
11500
11501The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11502onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11503is placed on the stack before local variables.
11504
11505Arguments:
11506""""""""""
11507
11508The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11509The first argument is the value loaded from the stack guard
11510``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11511enough space to hold the value of the guard.
11512
11513Semantics:
11514""""""""""
11515
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011516This intrinsic causes the prologue/epilogue inserter to force the position of
11517the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11518to ensure that if a local variable on the stack is overwritten, it will destroy
11519the value of the guard. When the function exits, the guard on the stack is
11520checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11521different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11522calling the ``__stack_chk_fail()`` function.
11523
11524'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011526
11527Syntax:
11528"""""""
11529
11530::
11531
11532 declare void @llvm.stackprotectorcheck(i8** <guard>)
11533
11534Overview:
11535"""""""""
11536
11537The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011538created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011539``__stack_chk_fail()`` function.
11540
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011541Arguments:
11542""""""""""
11543
11544The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11545the variable ``@__stack_chk_guard``.
11546
11547Semantics:
11548""""""""""
11549
11550This intrinsic is provided to perform the stack protector check by comparing
11551``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11552values do not match call the ``__stack_chk_fail()`` function.
11553
11554The reason to provide this as an IR level intrinsic instead of implementing it
11555via other IR operations is that in order to perform this operation at the IR
11556level without an intrinsic, one would need to create additional basic blocks to
11557handle the success/failure cases. This makes it difficult to stop the stack
11558protector check from disrupting sibling tail calls in Codegen. With this
11559intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011560codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011561
Sean Silvab084af42012-12-07 10:36:55 +000011562'``llvm.objectsize``' Intrinsic
11563^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11564
11565Syntax:
11566"""""""
11567
11568::
11569
11570 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11571 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11572
11573Overview:
11574"""""""""
11575
11576The ``llvm.objectsize`` intrinsic is designed to provide information to
11577the optimizers to determine at compile time whether a) an operation
11578(like memcpy) will overflow a buffer that corresponds to an object, or
11579b) that a runtime check for overflow isn't necessary. An object in this
11580context means an allocation of a specific class, structure, array, or
11581other object.
11582
11583Arguments:
11584""""""""""
11585
11586The ``llvm.objectsize`` intrinsic takes two arguments. The first
11587argument is a pointer to or into the ``object``. The second argument is
11588a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11589or -1 (if false) when the object size is unknown. The second argument
11590only accepts constants.
11591
11592Semantics:
11593""""""""""
11594
11595The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11596the size of the object concerned. If the size cannot be determined at
11597compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11598on the ``min`` argument).
11599
11600'``llvm.expect``' Intrinsic
11601^^^^^^^^^^^^^^^^^^^^^^^^^^^
11602
11603Syntax:
11604"""""""
11605
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011606This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11607integer bit width.
11608
Sean Silvab084af42012-12-07 10:36:55 +000011609::
11610
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011611 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011612 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11613 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11614
11615Overview:
11616"""""""""
11617
11618The ``llvm.expect`` intrinsic provides information about expected (the
11619most probable) value of ``val``, which can be used by optimizers.
11620
11621Arguments:
11622""""""""""
11623
11624The ``llvm.expect`` intrinsic takes two arguments. The first argument is
11625a value. The second argument is an expected value, this needs to be a
11626constant value, variables are not allowed.
11627
11628Semantics:
11629""""""""""
11630
11631This intrinsic is lowered to the ``val``.
11632
Philip Reamese0e90832015-04-26 22:23:12 +000011633.. _int_assume:
11634
Hal Finkel93046912014-07-25 21:13:35 +000011635'``llvm.assume``' Intrinsic
11636^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11637
11638Syntax:
11639"""""""
11640
11641::
11642
11643 declare void @llvm.assume(i1 %cond)
11644
11645Overview:
11646"""""""""
11647
11648The ``llvm.assume`` allows the optimizer to assume that the provided
11649condition is true. This information can then be used in simplifying other parts
11650of the code.
11651
11652Arguments:
11653""""""""""
11654
11655The condition which the optimizer may assume is always true.
11656
11657Semantics:
11658""""""""""
11659
11660The intrinsic allows the optimizer to assume that the provided condition is
11661always true whenever the control flow reaches the intrinsic call. No code is
11662generated for this intrinsic, and instructions that contribute only to the
11663provided condition are not used for code generation. If the condition is
11664violated during execution, the behavior is undefined.
11665
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011666Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000011667used by the ``llvm.assume`` intrinsic in order to preserve the instructions
11668only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011669if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000011670sufficient overall improvement in code quality. For this reason,
11671``llvm.assume`` should not be used to document basic mathematical invariants
11672that the optimizer can otherwise deduce or facts that are of little use to the
11673optimizer.
11674
Peter Collingbournee6909c82015-02-20 20:30:47 +000011675.. _bitset.test:
11676
11677'``llvm.bitset.test``' Intrinsic
11678^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11679
11680Syntax:
11681"""""""
11682
11683::
11684
11685 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
11686
11687
11688Arguments:
11689""""""""""
11690
11691The first argument is a pointer to be tested. The second argument is a
11692metadata string containing the name of a :doc:`bitset <BitSets>`.
11693
11694Overview:
11695"""""""""
11696
11697The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
11698member of the given bitset.
11699
Sean Silvab084af42012-12-07 10:36:55 +000011700'``llvm.donothing``' Intrinsic
11701^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11702
11703Syntax:
11704"""""""
11705
11706::
11707
11708 declare void @llvm.donothing() nounwind readnone
11709
11710Overview:
11711"""""""""
11712
Juergen Ributzkac9161192014-10-23 22:36:13 +000011713The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
11714two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
11715with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000011716
11717Arguments:
11718""""""""""
11719
11720None.
11721
11722Semantics:
11723""""""""""
11724
11725This intrinsic does nothing, and it's removed by optimizers and ignored
11726by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000011727
11728Stack Map Intrinsics
11729--------------------
11730
11731LLVM provides experimental intrinsics to support runtime patching
11732mechanisms commonly desired in dynamic language JITs. These intrinsics
11733are described in :doc:`StackMaps`.