blob: 2030c475b09ce877d83360cb098afebc47f96784 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000351 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000356 This calling convention attempts to make the code in the caller as
357 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
Chih-Hung Hsieh1e859582015-07-28 16:24:05 +0000497For platforms without linker support of ELF TLS model, the -femulated-tls
498flag can be used to generate GCC compatible emulated TLS code.
499
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000500.. _namedtypes:
501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502Structure Types
503---------------
Sean Silvab084af42012-12-07 10:36:55 +0000504
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000505LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
506types <t_struct>`. Literal types are uniqued structurally, but identified types
507are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000508to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000509
510An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000511
512.. code-block:: llvm
513
514 %mytype = type { %mytype*, i32 }
515
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000516Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
517literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000518
519.. _globalvars:
520
521Global Variables
522----------------
523
524Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525instead of run-time.
526
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000527Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000528
529Global variables in other translation units can also be declared, in which
530case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000531
Bob Wilson85b24f22014-06-12 20:40:33 +0000532Either global variable definitions or declarations may have an explicit section
533to be placed in and may have an optional explicit alignment specified.
534
Michael Gottesman006039c2013-01-31 05:48:48 +0000535A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000536the contents of the variable will **never** be modified (enabling better
537optimization, allowing the global data to be placed in the read-only
538section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000539initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000540variable.
541
542LLVM explicitly allows *declarations* of global variables to be marked
543constant, even if the final definition of the global is not. This
544capability can be used to enable slightly better optimization of the
545program, but requires the language definition to guarantee that
546optimizations based on the 'constantness' are valid for the translation
547units that do not include the definition.
548
549As SSA values, global variables define pointer values that are in scope
550(i.e. they dominate) all basic blocks in the program. Global variables
551always define a pointer to their "content" type because they describe a
552region of memory, and all memory objects in LLVM are accessed through
553pointers.
554
555Global variables can be marked with ``unnamed_addr`` which indicates
556that the address is not significant, only the content. Constants marked
557like this can be merged with other constants if they have the same
558initializer. Note that a constant with significant address *can* be
559merged with a ``unnamed_addr`` constant, the result being a constant
560whose address is significant.
561
562A global variable may be declared to reside in a target-specific
563numbered address space. For targets that support them, address spaces
564may affect how optimizations are performed and/or what target
565instructions are used to access the variable. The default address space
566is zero. The address space qualifier must precede any other attributes.
567
568LLVM allows an explicit section to be specified for globals. If the
569target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000570Additionally, the global can placed in a comdat if the target has the necessary
571support.
Sean Silvab084af42012-12-07 10:36:55 +0000572
Michael Gottesmane743a302013-02-04 03:22:00 +0000573By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000574variables defined within the module are not modified from their
575initial values before the start of the global initializer. This is
576true even for variables potentially accessible from outside the
577module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000578``@llvm.used`` or dllexported variables. This assumption may be suppressed
579by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000580
Sean Silvab084af42012-12-07 10:36:55 +0000581An explicit alignment may be specified for a global, which must be a
582power of 2. If not present, or if the alignment is set to zero, the
583alignment of the global is set by the target to whatever it feels
584convenient. If an explicit alignment is specified, the global is forced
585to have exactly that alignment. Targets and optimizers are not allowed
586to over-align the global if the global has an assigned section. In this
587case, the extra alignment could be observable: for example, code could
588assume that the globals are densely packed in their section and try to
589iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000590iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000591
Nico Rieck7157bb72014-01-14 15:22:47 +0000592Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
593
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000594Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000595:ref:`Thread Local Storage Model <tls_model>`.
596
Nico Rieck7157bb72014-01-14 15:22:47 +0000597Syntax::
598
599 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000600 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000601 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000602 [, section "name"] [, comdat [($name)]]
603 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000604
Sean Silvab084af42012-12-07 10:36:55 +0000605For example, the following defines a global in a numbered address space
606with an initializer, section, and alignment:
607
608.. code-block:: llvm
609
610 @G = addrspace(5) constant float 1.0, section "foo", align 4
611
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000612The following example just declares a global variable
613
614.. code-block:: llvm
615
616 @G = external global i32
617
Sean Silvab084af42012-12-07 10:36:55 +0000618The following example defines a thread-local global with the
619``initialexec`` TLS model:
620
621.. code-block:: llvm
622
623 @G = thread_local(initialexec) global i32 0, align 4
624
625.. _functionstructure:
626
627Functions
628---------
629
630LLVM function definitions consist of the "``define``" keyword, an
631optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000632style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
633an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000634an optional ``unnamed_addr`` attribute, a return type, an optional
635:ref:`parameter attribute <paramattrs>` for the return type, a function
636name, a (possibly empty) argument list (each with optional :ref:`parameter
637attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000638an optional section, an optional alignment,
639an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000640an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000641an optional :ref:`prologue <prologuedata>`,
642an optional :ref:`personality <personalityfn>`,
643an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000644
645LLVM function declarations consist of the "``declare``" keyword, an
646optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000647style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
648an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000649an optional ``unnamed_addr`` attribute, a return type, an optional
650:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000651name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000652:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
653and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000654
Bill Wendling6822ecb2013-10-27 05:09:12 +0000655A function definition contains a list of basic blocks, forming the CFG (Control
656Flow Graph) for the function. Each basic block may optionally start with a label
657(giving the basic block a symbol table entry), contains a list of instructions,
658and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
659function return). If an explicit label is not provided, a block is assigned an
660implicit numbered label, using the next value from the same counter as used for
661unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
662entry block does not have an explicit label, it will be assigned label "%0",
663then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000664
665The first basic block in a function is special in two ways: it is
666immediately executed on entrance to the function, and it is not allowed
667to have predecessor basic blocks (i.e. there can not be any branches to
668the entry block of a function). Because the block can have no
669predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
670
671LLVM allows an explicit section to be specified for functions. If the
672target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000673Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000674
675An explicit alignment may be specified for a function. If not present,
676or if the alignment is set to zero, the alignment of the function is set
677by the target to whatever it feels convenient. If an explicit alignment
678is specified, the function is forced to have at least that much
679alignment. All alignments must be a power of 2.
680
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000681If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000682be significant and two identical functions can be merged.
683
684Syntax::
685
Nico Rieck7157bb72014-01-14 15:22:47 +0000686 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000687 [cconv] [ret attrs]
688 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000689 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000690 [align N] [gc] [prefix Constant] [prologue Constant]
691 [personality Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000692
Dan Liew2661dfc2014-08-20 15:06:30 +0000693The argument list is a comma seperated sequence of arguments where each
694argument is of the following form
695
696Syntax::
697
698 <type> [parameter Attrs] [name]
699
700
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000701.. _langref_aliases:
702
Sean Silvab084af42012-12-07 10:36:55 +0000703Aliases
704-------
705
Rafael Espindola64c1e182014-06-03 02:41:57 +0000706Aliases, unlike function or variables, don't create any new data. They
707are just a new symbol and metadata for an existing position.
708
709Aliases have a name and an aliasee that is either a global value or a
710constant expression.
711
Nico Rieck7157bb72014-01-14 15:22:47 +0000712Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000713:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
714<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000715
716Syntax::
717
Rafael Espindola464fe022014-07-30 22:51:54 +0000718 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000719
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000720The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000721``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000722might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000723
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000724Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000725the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
726to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728Since aliases are only a second name, some restrictions apply, of which
729some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000730
Rafael Espindola64c1e182014-06-03 02:41:57 +0000731* The expression defining the aliasee must be computable at assembly
732 time. Since it is just a name, no relocations can be used.
733
734* No alias in the expression can be weak as the possibility of the
735 intermediate alias being overridden cannot be represented in an
736 object file.
737
738* No global value in the expression can be a declaration, since that
739 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000740
David Majnemerdad0a642014-06-27 18:19:56 +0000741.. _langref_comdats:
742
743Comdats
744-------
745
746Comdat IR provides access to COFF and ELF object file COMDAT functionality.
747
Richard Smith32dbdf62014-07-31 04:25:36 +0000748Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000749specify this key will only end up in the final object file if the linker chooses
750that key over some other key. Aliases are placed in the same COMDAT that their
751aliasee computes to, if any.
752
753Comdats have a selection kind to provide input on how the linker should
754choose between keys in two different object files.
755
756Syntax::
757
758 $<Name> = comdat SelectionKind
759
760The selection kind must be one of the following:
761
762``any``
763 The linker may choose any COMDAT key, the choice is arbitrary.
764``exactmatch``
765 The linker may choose any COMDAT key but the sections must contain the
766 same data.
767``largest``
768 The linker will choose the section containing the largest COMDAT key.
769``noduplicates``
770 The linker requires that only section with this COMDAT key exist.
771``samesize``
772 The linker may choose any COMDAT key but the sections must contain the
773 same amount of data.
774
775Note that the Mach-O platform doesn't support COMDATs and ELF only supports
776``any`` as a selection kind.
777
778Here is an example of a COMDAT group where a function will only be selected if
779the COMDAT key's section is the largest:
780
781.. code-block:: llvm
782
783 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000784 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000785
Rafael Espindola83a362c2015-01-06 22:55:16 +0000786 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000787 ret void
788 }
789
Rafael Espindola83a362c2015-01-06 22:55:16 +0000790As a syntactic sugar the ``$name`` can be omitted if the name is the same as
791the global name:
792
793.. code-block:: llvm
794
795 $foo = comdat any
796 @foo = global i32 2, comdat
797
798
David Majnemerdad0a642014-06-27 18:19:56 +0000799In a COFF object file, this will create a COMDAT section with selection kind
800``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
801and another COMDAT section with selection kind
802``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000803section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000804
805There are some restrictions on the properties of the global object.
806It, or an alias to it, must have the same name as the COMDAT group when
807targeting COFF.
808The contents and size of this object may be used during link-time to determine
809which COMDAT groups get selected depending on the selection kind.
810Because the name of the object must match the name of the COMDAT group, the
811linkage of the global object must not be local; local symbols can get renamed
812if a collision occurs in the symbol table.
813
814The combined use of COMDATS and section attributes may yield surprising results.
815For example:
816
817.. code-block:: llvm
818
819 $foo = comdat any
820 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000821 @g1 = global i32 42, section "sec", comdat($foo)
822 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000823
824From the object file perspective, this requires the creation of two sections
825with the same name. This is necessary because both globals belong to different
826COMDAT groups and COMDATs, at the object file level, are represented by
827sections.
828
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000829Note that certain IR constructs like global variables and functions may
830create COMDATs in the object file in addition to any which are specified using
831COMDAT IR. This arises when the code generator is configured to emit globals
832in individual sections (e.g. when `-data-sections` or `-function-sections`
833is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000834
Sean Silvab084af42012-12-07 10:36:55 +0000835.. _namedmetadatastructure:
836
837Named Metadata
838--------------
839
840Named metadata is a collection of metadata. :ref:`Metadata
841nodes <metadata>` (but not metadata strings) are the only valid
842operands for a named metadata.
843
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000844#. Named metadata are represented as a string of characters with the
845 metadata prefix. The rules for metadata names are the same as for
846 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
847 are still valid, which allows any character to be part of a name.
848
Sean Silvab084af42012-12-07 10:36:55 +0000849Syntax::
850
851 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000852 !0 = !{!"zero"}
853 !1 = !{!"one"}
854 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000855 ; A named metadata.
856 !name = !{!0, !1, !2}
857
858.. _paramattrs:
859
860Parameter Attributes
861--------------------
862
863The return type and each parameter of a function type may have a set of
864*parameter attributes* associated with them. Parameter attributes are
865used to communicate additional information about the result or
866parameters of a function. Parameter attributes are considered to be part
867of the function, not of the function type, so functions with different
868parameter attributes can have the same function type.
869
870Parameter attributes are simple keywords that follow the type specified.
871If multiple parameter attributes are needed, they are space separated.
872For example:
873
874.. code-block:: llvm
875
876 declare i32 @printf(i8* noalias nocapture, ...)
877 declare i32 @atoi(i8 zeroext)
878 declare signext i8 @returns_signed_char()
879
880Note that any attributes for the function result (``nounwind``,
881``readonly``) come immediately after the argument list.
882
883Currently, only the following parameter attributes are defined:
884
885``zeroext``
886 This indicates to the code generator that the parameter or return
887 value should be zero-extended to the extent required by the target's
888 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
889 the caller (for a parameter) or the callee (for a return value).
890``signext``
891 This indicates to the code generator that the parameter or return
892 value should be sign-extended to the extent required by the target's
893 ABI (which is usually 32-bits) by the caller (for a parameter) or
894 the callee (for a return value).
895``inreg``
896 This indicates that this parameter or return value should be treated
897 in a special target-dependent fashion during while emitting code for
898 a function call or return (usually, by putting it in a register as
899 opposed to memory, though some targets use it to distinguish between
900 two different kinds of registers). Use of this attribute is
901 target-specific.
902``byval``
903 This indicates that the pointer parameter should really be passed by
904 value to the function. The attribute implies that a hidden copy of
905 the pointee is made between the caller and the callee, so the callee
906 is unable to modify the value in the caller. This attribute is only
907 valid on LLVM pointer arguments. It is generally used to pass
908 structs and arrays by value, but is also valid on pointers to
909 scalars. The copy is considered to belong to the caller not the
910 callee (for example, ``readonly`` functions should not write to
911 ``byval`` parameters). This is not a valid attribute for return
912 values.
913
914 The byval attribute also supports specifying an alignment with the
915 align attribute. It indicates the alignment of the stack slot to
916 form and the known alignment of the pointer specified to the call
917 site. If the alignment is not specified, then the code generator
918 makes a target-specific assumption.
919
Reid Klecknera534a382013-12-19 02:14:12 +0000920.. _attr_inalloca:
921
922``inalloca``
923
Reid Kleckner60d3a832014-01-16 22:59:24 +0000924 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000925 address of outgoing stack arguments. An ``inalloca`` argument must
926 be a pointer to stack memory produced by an ``alloca`` instruction.
927 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000928 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000929 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000930
Reid Kleckner436c42e2014-01-17 23:58:17 +0000931 An argument allocation may be used by a call at most once because
932 the call may deallocate it. The ``inalloca`` attribute cannot be
933 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000934 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
935 ``inalloca`` attribute also disables LLVM's implicit lowering of
936 large aggregate return values, which means that frontend authors
937 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000938
Reid Kleckner60d3a832014-01-16 22:59:24 +0000939 When the call site is reached, the argument allocation must have
940 been the most recent stack allocation that is still live, or the
941 results are undefined. It is possible to allocate additional stack
942 space after an argument allocation and before its call site, but it
943 must be cleared off with :ref:`llvm.stackrestore
944 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000945
946 See :doc:`InAlloca` for more information on how to use this
947 attribute.
948
Sean Silvab084af42012-12-07 10:36:55 +0000949``sret``
950 This indicates that the pointer parameter specifies the address of a
951 structure that is the return value of the function in the source
952 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000953 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000954 not to trap and to be properly aligned. This may only be applied to
955 the first parameter. This is not a valid attribute for return
956 values.
Sean Silva1703e702014-04-08 21:06:22 +0000957
Hal Finkelccc70902014-07-22 16:58:55 +0000958``align <n>``
959 This indicates that the pointer value may be assumed by the optimizer to
960 have the specified alignment.
961
962 Note that this attribute has additional semantics when combined with the
963 ``byval`` attribute.
964
Sean Silva1703e702014-04-08 21:06:22 +0000965.. _noalias:
966
Sean Silvab084af42012-12-07 10:36:55 +0000967``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000968 This indicates that objects accessed via pointer values
969 :ref:`based <pointeraliasing>` on the argument or return value are not also
970 accessed, during the execution of the function, via pointer values not
971 *based* on the argument or return value. The attribute on a return value
972 also has additional semantics described below. The caller shares the
973 responsibility with the callee for ensuring that these requirements are met.
974 For further details, please see the discussion of the NoAlias response in
975 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000976
977 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000978 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000979
980 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000981 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
982 attribute on return values are stronger than the semantics of the attribute
983 when used on function arguments. On function return values, the ``noalias``
984 attribute indicates that the function acts like a system memory allocation
985 function, returning a pointer to allocated storage disjoint from the
986 storage for any other object accessible to the caller.
987
Sean Silvab084af42012-12-07 10:36:55 +0000988``nocapture``
989 This indicates that the callee does not make any copies of the
990 pointer that outlive the callee itself. This is not a valid
991 attribute for return values.
992
993.. _nest:
994
995``nest``
996 This indicates that the pointer parameter can be excised using the
997 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000998 attribute for return values and can only be applied to one parameter.
999
1000``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +00001001 This indicates that the function always returns the argument as its return
1002 value. This is an optimization hint to the code generator when generating
1003 the caller, allowing tail call optimization and omission of register saves
1004 and restores in some cases; it is not checked or enforced when generating
1005 the callee. The parameter and the function return type must be valid
1006 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1007 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001008
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001009``nonnull``
1010 This indicates that the parameter or return pointer is not null. This
1011 attribute may only be applied to pointer typed parameters. This is not
1012 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001013 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001014 is non-null.
1015
Hal Finkelb0407ba2014-07-18 15:51:28 +00001016``dereferenceable(<n>)``
1017 This indicates that the parameter or return pointer is dereferenceable. This
1018 attribute may only be applied to pointer typed parameters. A pointer that
1019 is dereferenceable can be loaded from speculatively without a risk of
1020 trapping. The number of bytes known to be dereferenceable must be provided
1021 in parentheses. It is legal for the number of bytes to be less than the
1022 size of the pointee type. The ``nonnull`` attribute does not imply
1023 dereferenceability (consider a pointer to one element past the end of an
1024 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1025 ``addrspace(0)`` (which is the default address space).
1026
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001027``dereferenceable_or_null(<n>)``
1028 This indicates that the parameter or return value isn't both
1029 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
1030 time. All non-null pointers tagged with
1031 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1032 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1033 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1034 and in other address spaces ``dereferenceable_or_null(<n>)``
1035 implies that a pointer is at least one of ``dereferenceable(<n>)``
1036 or ``null`` (i.e. it may be both ``null`` and
1037 ``dereferenceable(<n>)``). This attribute may only be applied to
1038 pointer typed parameters.
1039
Sean Silvab084af42012-12-07 10:36:55 +00001040.. _gc:
1041
Philip Reamesf80bbff2015-02-25 23:45:20 +00001042Garbage Collector Strategy Names
1043--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001044
Philip Reamesf80bbff2015-02-25 23:45:20 +00001045Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001046string:
1047
1048.. code-block:: llvm
1049
1050 define void @f() gc "name" { ... }
1051
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001052The supported values of *name* includes those :ref:`built in to LLVM
Philip Reamesf80bbff2015-02-25 23:45:20 +00001053<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001054strategy will cause the compiler to alter its output in order to support the
1055named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001056garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001057which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001058
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001059.. _prefixdata:
1060
1061Prefix Data
1062-----------
1063
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001064Prefix data is data associated with a function which the code
1065generator will emit immediately before the function's entrypoint.
1066The purpose of this feature is to allow frontends to associate
1067language-specific runtime metadata with specific functions and make it
1068available through the function pointer while still allowing the
1069function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001070
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001071To access the data for a given function, a program may bitcast the
1072function pointer to a pointer to the constant's type and dereference
1073index -1. This implies that the IR symbol points just past the end of
1074the prefix data. For instance, take the example of a function annotated
1075with a single ``i32``,
1076
1077.. code-block:: llvm
1078
1079 define void @f() prefix i32 123 { ... }
1080
1081The prefix data can be referenced as,
1082
1083.. code-block:: llvm
1084
David Blaikie16a97eb2015-03-04 22:02:58 +00001085 %0 = bitcast void* () @f to i32*
1086 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001087 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001088
1089Prefix data is laid out as if it were an initializer for a global variable
1090of the prefix data's type. The function will be placed such that the
1091beginning of the prefix data is aligned. This means that if the size
1092of the prefix data is not a multiple of the alignment size, the
1093function's entrypoint will not be aligned. If alignment of the
1094function's entrypoint is desired, padding must be added to the prefix
1095data.
1096
1097A function may have prefix data but no body. This has similar semantics
1098to the ``available_externally`` linkage in that the data may be used by the
1099optimizers but will not be emitted in the object file.
1100
1101.. _prologuedata:
1102
1103Prologue Data
1104-------------
1105
1106The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1107be inserted prior to the function body. This can be used for enabling
1108function hot-patching and instrumentation.
1109
1110To maintain the semantics of ordinary function calls, the prologue data must
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001111have a particular format. Specifically, it must begin with a sequence of
1112bytes which decode to a sequence of machine instructions, valid for the
1113module's target, which transfer control to the point immediately succeeding
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001114the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001115the inliner and other passes to reason about the semantics of the function
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001116definition without needing to reason about the prologue data. Obviously this
1117makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001118
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001119A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001120which encodes the ``nop`` instruction:
1121
1122.. code-block:: llvm
1123
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001124 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001125
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001126Generally prologue data can be formed by encoding a relative branch instruction
1127which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001128x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1129
1130.. code-block:: llvm
1131
1132 %0 = type <{ i8, i8, i8* }>
1133
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001134 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001135
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001136A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001137to the ``available_externally`` linkage in that the data may be used by the
1138optimizers but will not be emitted in the object file.
1139
David Majnemer7fddecc2015-06-17 20:52:32 +00001140.. _personalityfn:
1141
1142Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001143--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001144
1145The ``personality`` attribute permits functions to specify what function
1146to use for exception handling.
1147
Bill Wendling63b88192013-02-06 06:52:58 +00001148.. _attrgrp:
1149
1150Attribute Groups
1151----------------
1152
1153Attribute groups are groups of attributes that are referenced by objects within
1154the IR. They are important for keeping ``.ll`` files readable, because a lot of
1155functions will use the same set of attributes. In the degenerative case of a
1156``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1157group will capture the important command line flags used to build that file.
1158
1159An attribute group is a module-level object. To use an attribute group, an
1160object references the attribute group's ID (e.g. ``#37``). An object may refer
1161to more than one attribute group. In that situation, the attributes from the
1162different groups are merged.
1163
1164Here is an example of attribute groups for a function that should always be
1165inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1166
1167.. code-block:: llvm
1168
1169 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001170 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001171
1172 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001173 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001174
1175 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1176 define void @f() #0 #1 { ... }
1177
Sean Silvab084af42012-12-07 10:36:55 +00001178.. _fnattrs:
1179
1180Function Attributes
1181-------------------
1182
1183Function attributes are set to communicate additional information about
1184a function. Function attributes are considered to be part of the
1185function, not of the function type, so functions with different function
1186attributes can have the same function type.
1187
1188Function attributes are simple keywords that follow the type specified.
1189If multiple attributes are needed, they are space separated. For
1190example:
1191
1192.. code-block:: llvm
1193
1194 define void @f() noinline { ... }
1195 define void @f() alwaysinline { ... }
1196 define void @f() alwaysinline optsize { ... }
1197 define void @f() optsize { ... }
1198
Sean Silvab084af42012-12-07 10:36:55 +00001199``alignstack(<n>)``
1200 This attribute indicates that, when emitting the prologue and
1201 epilogue, the backend should forcibly align the stack pointer.
1202 Specify the desired alignment, which must be a power of two, in
1203 parentheses.
1204``alwaysinline``
1205 This attribute indicates that the inliner should attempt to inline
1206 this function into callers whenever possible, ignoring any active
1207 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001208``builtin``
1209 This indicates that the callee function at a call site should be
1210 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001211 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001212 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001213 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001214``cold``
1215 This attribute indicates that this function is rarely called. When
1216 computing edge weights, basic blocks post-dominated by a cold
1217 function call are also considered to be cold; and, thus, given low
1218 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001219``convergent``
1220 This attribute indicates that the callee is dependent on a convergent
1221 thread execution pattern under certain parallel execution models.
1222 Transformations that are execution model agnostic may only move or
1223 tranform this call if the final location is control equivalent to its
1224 original position in the program, where control equivalence is defined as
1225 A dominates B and B post-dominates A, or vice versa.
Sean Silvab084af42012-12-07 10:36:55 +00001226``inlinehint``
1227 This attribute indicates that the source code contained a hint that
1228 inlining this function is desirable (such as the "inline" keyword in
1229 C/C++). It is just a hint; it imposes no requirements on the
1230 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001231``jumptable``
1232 This attribute indicates that the function should be added to a
1233 jump-instruction table at code-generation time, and that all address-taken
1234 references to this function should be replaced with a reference to the
1235 appropriate jump-instruction-table function pointer. Note that this creates
1236 a new pointer for the original function, which means that code that depends
1237 on function-pointer identity can break. So, any function annotated with
1238 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001239``minsize``
1240 This attribute suggests that optimization passes and code generator
1241 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001242 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001243 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001244``naked``
1245 This attribute disables prologue / epilogue emission for the
1246 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001247``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001248 This indicates that the callee function at a call site is not recognized as
1249 a built-in function. LLVM will retain the original call and not replace it
1250 with equivalent code based on the semantics of the built-in function, unless
1251 the call site uses the ``builtin`` attribute. This is valid at call sites
1252 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001253``noduplicate``
1254 This attribute indicates that calls to the function cannot be
1255 duplicated. A call to a ``noduplicate`` function may be moved
1256 within its parent function, but may not be duplicated within
1257 its parent function.
1258
1259 A function containing a ``noduplicate`` call may still
1260 be an inlining candidate, provided that the call is not
1261 duplicated by inlining. That implies that the function has
1262 internal linkage and only has one call site, so the original
1263 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001264``noimplicitfloat``
1265 This attributes disables implicit floating point instructions.
1266``noinline``
1267 This attribute indicates that the inliner should never inline this
1268 function in any situation. This attribute may not be used together
1269 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001270``nonlazybind``
1271 This attribute suppresses lazy symbol binding for the function. This
1272 may make calls to the function faster, at the cost of extra program
1273 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001274``noredzone``
1275 This attribute indicates that the code generator should not use a
1276 red zone, even if the target-specific ABI normally permits it.
1277``noreturn``
1278 This function attribute indicates that the function never returns
1279 normally. This produces undefined behavior at runtime if the
1280 function ever does dynamically return.
1281``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001282 This function attribute indicates that the function never raises an
1283 exception. If the function does raise an exception, its runtime
1284 behavior is undefined. However, functions marked nounwind may still
1285 trap or generate asynchronous exceptions. Exception handling schemes
1286 that are recognized by LLVM to handle asynchronous exceptions, such
1287 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001288``optnone``
1289 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001290 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001291 exception of interprocedural optimization passes.
1292 This attribute cannot be used together with the ``alwaysinline``
1293 attribute; this attribute is also incompatible
1294 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001295
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001296 This attribute requires the ``noinline`` attribute to be specified on
1297 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001298 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001299 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001300``optsize``
1301 This attribute suggests that optimization passes and code generator
1302 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001303 and otherwise do optimizations specifically to reduce code size as
1304 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001305``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001306 On a function, this attribute indicates that the function computes its
1307 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001308 without dereferencing any pointer arguments or otherwise accessing
1309 any mutable state (e.g. memory, control registers, etc) visible to
1310 caller functions. It does not write through any pointer arguments
1311 (including ``byval`` arguments) and never changes any state visible
1312 to callers. This means that it cannot unwind exceptions by calling
1313 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001314
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001315 On an argument, this attribute indicates that the function does not
1316 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001317 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001318``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001319 On a function, this attribute indicates that the function does not write
1320 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001321 modify any state (e.g. memory, control registers, etc) visible to
1322 caller functions. It may dereference pointer arguments and read
1323 state that may be set in the caller. A readonly function always
1324 returns the same value (or unwinds an exception identically) when
1325 called with the same set of arguments and global state. It cannot
1326 unwind an exception by calling the ``C++`` exception throwing
1327 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001328
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001329 On an argument, this attribute indicates that the function does not write
1330 through this pointer argument, even though it may write to the memory that
1331 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001332``argmemonly``
1333 This attribute indicates that the only memory accesses inside function are
1334 loads and stores from objects pointed to by its pointer-typed arguments,
1335 with arbitrary offsets. Or in other words, all memory operations in the
1336 function can refer to memory only using pointers based on its function
1337 arguments.
1338 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1339 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001340``returns_twice``
1341 This attribute indicates that this function can return twice. The C
1342 ``setjmp`` is an example of such a function. The compiler disables
1343 some optimizations (like tail calls) in the caller of these
1344 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001345``safestack``
1346 This attribute indicates that
1347 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1348 protection is enabled for this function.
1349
1350 If a function that has a ``safestack`` attribute is inlined into a
1351 function that doesn't have a ``safestack`` attribute or which has an
1352 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1353 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001354``sanitize_address``
1355 This attribute indicates that AddressSanitizer checks
1356 (dynamic address safety analysis) are enabled for this function.
1357``sanitize_memory``
1358 This attribute indicates that MemorySanitizer checks (dynamic detection
1359 of accesses to uninitialized memory) are enabled for this function.
1360``sanitize_thread``
1361 This attribute indicates that ThreadSanitizer checks
1362 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001363``ssp``
1364 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001365 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001366 placed on the stack before the local variables that's checked upon
1367 return from the function to see if it has been overwritten. A
1368 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001369 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001370
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001371 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1372 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1373 - Calls to alloca() with variable sizes or constant sizes greater than
1374 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001375
Josh Magee24c7f062014-02-01 01:36:16 +00001376 Variables that are identified as requiring a protector will be arranged
1377 on the stack such that they are adjacent to the stack protector guard.
1378
Sean Silvab084af42012-12-07 10:36:55 +00001379 If a function that has an ``ssp`` attribute is inlined into a
1380 function that doesn't have an ``ssp`` attribute, then the resulting
1381 function will have an ``ssp`` attribute.
1382``sspreq``
1383 This attribute indicates that the function should *always* emit a
1384 stack smashing protector. This overrides the ``ssp`` function
1385 attribute.
1386
Josh Magee24c7f062014-02-01 01:36:16 +00001387 Variables that are identified as requiring a protector will be arranged
1388 on the stack such that they are adjacent to the stack protector guard.
1389 The specific layout rules are:
1390
1391 #. Large arrays and structures containing large arrays
1392 (``>= ssp-buffer-size``) are closest to the stack protector.
1393 #. Small arrays and structures containing small arrays
1394 (``< ssp-buffer-size``) are 2nd closest to the protector.
1395 #. Variables that have had their address taken are 3rd closest to the
1396 protector.
1397
Sean Silvab084af42012-12-07 10:36:55 +00001398 If a function that has an ``sspreq`` attribute is inlined into a
1399 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001400 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1401 an ``sspreq`` attribute.
1402``sspstrong``
1403 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001404 protector. This attribute causes a strong heuristic to be used when
1405 determining if a function needs stack protectors. The strong heuristic
1406 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001407
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001408 - Arrays of any size and type
1409 - Aggregates containing an array of any size and type.
1410 - Calls to alloca().
1411 - Local variables that have had their address taken.
1412
Josh Magee24c7f062014-02-01 01:36:16 +00001413 Variables that are identified as requiring a protector will be arranged
1414 on the stack such that they are adjacent to the stack protector guard.
1415 The specific layout rules are:
1416
1417 #. Large arrays and structures containing large arrays
1418 (``>= ssp-buffer-size``) are closest to the stack protector.
1419 #. Small arrays and structures containing small arrays
1420 (``< ssp-buffer-size``) are 2nd closest to the protector.
1421 #. Variables that have had their address taken are 3rd closest to the
1422 protector.
1423
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001424 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001425
1426 If a function that has an ``sspstrong`` attribute is inlined into a
1427 function that doesn't have an ``sspstrong`` attribute, then the
1428 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001429``"thunk"``
1430 This attribute indicates that the function will delegate to some other
1431 function with a tail call. The prototype of a thunk should not be used for
1432 optimization purposes. The caller is expected to cast the thunk prototype to
1433 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001434``uwtable``
1435 This attribute indicates that the ABI being targeted requires that
1436 an unwind table entry be produce for this function even if we can
1437 show that no exceptions passes by it. This is normally the case for
1438 the ELF x86-64 abi, but it can be disabled for some compilation
1439 units.
Sean Silvab084af42012-12-07 10:36:55 +00001440
1441.. _moduleasm:
1442
1443Module-Level Inline Assembly
1444----------------------------
1445
1446Modules may contain "module-level inline asm" blocks, which corresponds
1447to the GCC "file scope inline asm" blocks. These blocks are internally
1448concatenated by LLVM and treated as a single unit, but may be separated
1449in the ``.ll`` file if desired. The syntax is very simple:
1450
1451.. code-block:: llvm
1452
1453 module asm "inline asm code goes here"
1454 module asm "more can go here"
1455
1456The strings can contain any character by escaping non-printable
1457characters. The escape sequence used is simply "\\xx" where "xx" is the
1458two digit hex code for the number.
1459
James Y Knightbc832ed2015-07-08 18:08:36 +00001460Note that the assembly string *must* be parseable by LLVM's integrated assembler
1461(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001462
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001463.. _langref_datalayout:
1464
Sean Silvab084af42012-12-07 10:36:55 +00001465Data Layout
1466-----------
1467
1468A module may specify a target specific data layout string that specifies
1469how data is to be laid out in memory. The syntax for the data layout is
1470simply:
1471
1472.. code-block:: llvm
1473
1474 target datalayout = "layout specification"
1475
1476The *layout specification* consists of a list of specifications
1477separated by the minus sign character ('-'). Each specification starts
1478with a letter and may include other information after the letter to
1479define some aspect of the data layout. The specifications accepted are
1480as follows:
1481
1482``E``
1483 Specifies that the target lays out data in big-endian form. That is,
1484 the bits with the most significance have the lowest address
1485 location.
1486``e``
1487 Specifies that the target lays out data in little-endian form. That
1488 is, the bits with the least significance have the lowest address
1489 location.
1490``S<size>``
1491 Specifies the natural alignment of the stack in bits. Alignment
1492 promotion of stack variables is limited to the natural stack
1493 alignment to avoid dynamic stack realignment. The stack alignment
1494 must be a multiple of 8-bits. If omitted, the natural stack
1495 alignment defaults to "unspecified", which does not prevent any
1496 alignment promotions.
1497``p[n]:<size>:<abi>:<pref>``
1498 This specifies the *size* of a pointer and its ``<abi>`` and
1499 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001500 bits. The address space, ``n`` is optional, and if not specified,
1501 denotes the default address space 0. The value of ``n`` must be
1502 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001503``i<size>:<abi>:<pref>``
1504 This specifies the alignment for an integer type of a given bit
1505 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1506``v<size>:<abi>:<pref>``
1507 This specifies the alignment for a vector type of a given bit
1508 ``<size>``.
1509``f<size>:<abi>:<pref>``
1510 This specifies the alignment for a floating point type of a given bit
1511 ``<size>``. Only values of ``<size>`` that are supported by the target
1512 will work. 32 (float) and 64 (double) are supported on all targets; 80
1513 or 128 (different flavors of long double) are also supported on some
1514 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001515``a:<abi>:<pref>``
1516 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001517``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001518 If present, specifies that llvm names are mangled in the output. The
1519 options are
1520
1521 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1522 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1523 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1524 symbols get a ``_`` prefix.
1525 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1526 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001527``n<size1>:<size2>:<size3>...``
1528 This specifies a set of native integer widths for the target CPU in
1529 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1530 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1531 this set are considered to support most general arithmetic operations
1532 efficiently.
1533
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001534On every specification that takes a ``<abi>:<pref>``, specifying the
1535``<pref>`` alignment is optional. If omitted, the preceding ``:``
1536should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1537
Sean Silvab084af42012-12-07 10:36:55 +00001538When constructing the data layout for a given target, LLVM starts with a
1539default set of specifications which are then (possibly) overridden by
1540the specifications in the ``datalayout`` keyword. The default
1541specifications are given in this list:
1542
1543- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001544- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1545- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1546 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001547- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001548- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1549- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1550- ``i16:16:16`` - i16 is 16-bit aligned
1551- ``i32:32:32`` - i32 is 32-bit aligned
1552- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1553 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001554- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001555- ``f32:32:32`` - float is 32-bit aligned
1556- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001557- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001558- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1559- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001560- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001561
1562When LLVM is determining the alignment for a given type, it uses the
1563following rules:
1564
1565#. If the type sought is an exact match for one of the specifications,
1566 that specification is used.
1567#. If no match is found, and the type sought is an integer type, then
1568 the smallest integer type that is larger than the bitwidth of the
1569 sought type is used. If none of the specifications are larger than
1570 the bitwidth then the largest integer type is used. For example,
1571 given the default specifications above, the i7 type will use the
1572 alignment of i8 (next largest) while both i65 and i256 will use the
1573 alignment of i64 (largest specified).
1574#. If no match is found, and the type sought is a vector type, then the
1575 largest vector type that is smaller than the sought vector type will
1576 be used as a fall back. This happens because <128 x double> can be
1577 implemented in terms of 64 <2 x double>, for example.
1578
1579The function of the data layout string may not be what you expect.
1580Notably, this is not a specification from the frontend of what alignment
1581the code generator should use.
1582
1583Instead, if specified, the target data layout is required to match what
1584the ultimate *code generator* expects. This string is used by the
1585mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001586what the ultimate code generator uses. There is no way to generate IR
1587that does not embed this target-specific detail into the IR. If you
1588don't specify the string, the default specifications will be used to
1589generate a Data Layout and the optimization phases will operate
1590accordingly and introduce target specificity into the IR with respect to
1591these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001592
Bill Wendling5cc90842013-10-18 23:41:25 +00001593.. _langref_triple:
1594
1595Target Triple
1596-------------
1597
1598A module may specify a target triple string that describes the target
1599host. The syntax for the target triple is simply:
1600
1601.. code-block:: llvm
1602
1603 target triple = "x86_64-apple-macosx10.7.0"
1604
1605The *target triple* string consists of a series of identifiers delimited
1606by the minus sign character ('-'). The canonical forms are:
1607
1608::
1609
1610 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1611 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1612
1613This information is passed along to the backend so that it generates
1614code for the proper architecture. It's possible to override this on the
1615command line with the ``-mtriple`` command line option.
1616
Sean Silvab084af42012-12-07 10:36:55 +00001617.. _pointeraliasing:
1618
1619Pointer Aliasing Rules
1620----------------------
1621
1622Any memory access must be done through a pointer value associated with
1623an address range of the memory access, otherwise the behavior is
1624undefined. Pointer values are associated with address ranges according
1625to the following rules:
1626
1627- A pointer value is associated with the addresses associated with any
1628 value it is *based* on.
1629- An address of a global variable is associated with the address range
1630 of the variable's storage.
1631- The result value of an allocation instruction is associated with the
1632 address range of the allocated storage.
1633- A null pointer in the default address-space is associated with no
1634 address.
1635- An integer constant other than zero or a pointer value returned from
1636 a function not defined within LLVM may be associated with address
1637 ranges allocated through mechanisms other than those provided by
1638 LLVM. Such ranges shall not overlap with any ranges of addresses
1639 allocated by mechanisms provided by LLVM.
1640
1641A pointer value is *based* on another pointer value according to the
1642following rules:
1643
1644- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001645 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001646- The result value of a ``bitcast`` is *based* on the operand of the
1647 ``bitcast``.
1648- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1649 values that contribute (directly or indirectly) to the computation of
1650 the pointer's value.
1651- The "*based* on" relationship is transitive.
1652
1653Note that this definition of *"based"* is intentionally similar to the
1654definition of *"based"* in C99, though it is slightly weaker.
1655
1656LLVM IR does not associate types with memory. The result type of a
1657``load`` merely indicates the size and alignment of the memory from
1658which to load, as well as the interpretation of the value. The first
1659operand type of a ``store`` similarly only indicates the size and
1660alignment of the store.
1661
1662Consequently, type-based alias analysis, aka TBAA, aka
1663``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1664:ref:`Metadata <metadata>` may be used to encode additional information
1665which specialized optimization passes may use to implement type-based
1666alias analysis.
1667
1668.. _volatile:
1669
1670Volatile Memory Accesses
1671------------------------
1672
1673Certain memory accesses, such as :ref:`load <i_load>`'s,
1674:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1675marked ``volatile``. The optimizers must not change the number of
1676volatile operations or change their order of execution relative to other
1677volatile operations. The optimizers *may* change the order of volatile
1678operations relative to non-volatile operations. This is not Java's
1679"volatile" and has no cross-thread synchronization behavior.
1680
Andrew Trick89fc5a62013-01-30 21:19:35 +00001681IR-level volatile loads and stores cannot safely be optimized into
1682llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1683flagged volatile. Likewise, the backend should never split or merge
1684target-legal volatile load/store instructions.
1685
Andrew Trick7e6f9282013-01-31 00:49:39 +00001686.. admonition:: Rationale
1687
1688 Platforms may rely on volatile loads and stores of natively supported
1689 data width to be executed as single instruction. For example, in C
1690 this holds for an l-value of volatile primitive type with native
1691 hardware support, but not necessarily for aggregate types. The
1692 frontend upholds these expectations, which are intentionally
1693 unspecified in the IR. The rules above ensure that IR transformation
1694 do not violate the frontend's contract with the language.
1695
Sean Silvab084af42012-12-07 10:36:55 +00001696.. _memmodel:
1697
1698Memory Model for Concurrent Operations
1699--------------------------------------
1700
1701The LLVM IR does not define any way to start parallel threads of
1702execution or to register signal handlers. Nonetheless, there are
1703platform-specific ways to create them, and we define LLVM IR's behavior
1704in their presence. This model is inspired by the C++0x memory model.
1705
1706For a more informal introduction to this model, see the :doc:`Atomics`.
1707
1708We define a *happens-before* partial order as the least partial order
1709that
1710
1711- Is a superset of single-thread program order, and
1712- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1713 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1714 techniques, like pthread locks, thread creation, thread joining,
1715 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1716 Constraints <ordering>`).
1717
1718Note that program order does not introduce *happens-before* edges
1719between a thread and signals executing inside that thread.
1720
1721Every (defined) read operation (load instructions, memcpy, atomic
1722loads/read-modify-writes, etc.) R reads a series of bytes written by
1723(defined) write operations (store instructions, atomic
1724stores/read-modify-writes, memcpy, etc.). For the purposes of this
1725section, initialized globals are considered to have a write of the
1726initializer which is atomic and happens before any other read or write
1727of the memory in question. For each byte of a read R, R\ :sub:`byte`
1728may see any write to the same byte, except:
1729
1730- If write\ :sub:`1` happens before write\ :sub:`2`, and
1731 write\ :sub:`2` happens before R\ :sub:`byte`, then
1732 R\ :sub:`byte` does not see write\ :sub:`1`.
1733- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1734 R\ :sub:`byte` does not see write\ :sub:`3`.
1735
1736Given that definition, R\ :sub:`byte` is defined as follows:
1737
1738- If R is volatile, the result is target-dependent. (Volatile is
1739 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001740 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001741 like normal memory. It does not generally provide cross-thread
1742 synchronization.)
1743- Otherwise, if there is no write to the same byte that happens before
1744 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1745- Otherwise, if R\ :sub:`byte` may see exactly one write,
1746 R\ :sub:`byte` returns the value written by that write.
1747- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1748 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1749 Memory Ordering Constraints <ordering>` section for additional
1750 constraints on how the choice is made.
1751- Otherwise R\ :sub:`byte` returns ``undef``.
1752
1753R returns the value composed of the series of bytes it read. This
1754implies that some bytes within the value may be ``undef`` **without**
1755the entire value being ``undef``. Note that this only defines the
1756semantics of the operation; it doesn't mean that targets will emit more
1757than one instruction to read the series of bytes.
1758
1759Note that in cases where none of the atomic intrinsics are used, this
1760model places only one restriction on IR transformations on top of what
1761is required for single-threaded execution: introducing a store to a byte
1762which might not otherwise be stored is not allowed in general.
1763(Specifically, in the case where another thread might write to and read
1764from an address, introducing a store can change a load that may see
1765exactly one write into a load that may see multiple writes.)
1766
1767.. _ordering:
1768
1769Atomic Memory Ordering Constraints
1770----------------------------------
1771
1772Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1773:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1774:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001775ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001776the same address they *synchronize with*. These semantics are borrowed
1777from Java and C++0x, but are somewhat more colloquial. If these
1778descriptions aren't precise enough, check those specs (see spec
1779references in the :doc:`atomics guide <Atomics>`).
1780:ref:`fence <i_fence>` instructions treat these orderings somewhat
1781differently since they don't take an address. See that instruction's
1782documentation for details.
1783
1784For a simpler introduction to the ordering constraints, see the
1785:doc:`Atomics`.
1786
1787``unordered``
1788 The set of values that can be read is governed by the happens-before
1789 partial order. A value cannot be read unless some operation wrote
1790 it. This is intended to provide a guarantee strong enough to model
1791 Java's non-volatile shared variables. This ordering cannot be
1792 specified for read-modify-write operations; it is not strong enough
1793 to make them atomic in any interesting way.
1794``monotonic``
1795 In addition to the guarantees of ``unordered``, there is a single
1796 total order for modifications by ``monotonic`` operations on each
1797 address. All modification orders must be compatible with the
1798 happens-before order. There is no guarantee that the modification
1799 orders can be combined to a global total order for the whole program
1800 (and this often will not be possible). The read in an atomic
1801 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1802 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1803 order immediately before the value it writes. If one atomic read
1804 happens before another atomic read of the same address, the later
1805 read must see the same value or a later value in the address's
1806 modification order. This disallows reordering of ``monotonic`` (or
1807 stronger) operations on the same address. If an address is written
1808 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1809 read that address repeatedly, the other threads must eventually see
1810 the write. This corresponds to the C++0x/C1x
1811 ``memory_order_relaxed``.
1812``acquire``
1813 In addition to the guarantees of ``monotonic``, a
1814 *synchronizes-with* edge may be formed with a ``release`` operation.
1815 This is intended to model C++'s ``memory_order_acquire``.
1816``release``
1817 In addition to the guarantees of ``monotonic``, if this operation
1818 writes a value which is subsequently read by an ``acquire``
1819 operation, it *synchronizes-with* that operation. (This isn't a
1820 complete description; see the C++0x definition of a release
1821 sequence.) This corresponds to the C++0x/C1x
1822 ``memory_order_release``.
1823``acq_rel`` (acquire+release)
1824 Acts as both an ``acquire`` and ``release`` operation on its
1825 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1826``seq_cst`` (sequentially consistent)
1827 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001828 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001829 writes), there is a global total order on all
1830 sequentially-consistent operations on all addresses, which is
1831 consistent with the *happens-before* partial order and with the
1832 modification orders of all the affected addresses. Each
1833 sequentially-consistent read sees the last preceding write to the
1834 same address in this global order. This corresponds to the C++0x/C1x
1835 ``memory_order_seq_cst`` and Java volatile.
1836
1837.. _singlethread:
1838
1839If an atomic operation is marked ``singlethread``, it only *synchronizes
1840with* or participates in modification and seq\_cst total orderings with
1841other operations running in the same thread (for example, in signal
1842handlers).
1843
1844.. _fastmath:
1845
1846Fast-Math Flags
1847---------------
1848
1849LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1850:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00001851:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
1852be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00001853
1854``nnan``
1855 No NaNs - Allow optimizations to assume the arguments and result are not
1856 NaN. Such optimizations are required to retain defined behavior over
1857 NaNs, but the value of the result is undefined.
1858
1859``ninf``
1860 No Infs - Allow optimizations to assume the arguments and result are not
1861 +/-Inf. Such optimizations are required to retain defined behavior over
1862 +/-Inf, but the value of the result is undefined.
1863
1864``nsz``
1865 No Signed Zeros - Allow optimizations to treat the sign of a zero
1866 argument or result as insignificant.
1867
1868``arcp``
1869 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1870 argument rather than perform division.
1871
1872``fast``
1873 Fast - Allow algebraically equivalent transformations that may
1874 dramatically change results in floating point (e.g. reassociate). This
1875 flag implies all the others.
1876
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001877.. _uselistorder:
1878
1879Use-list Order Directives
1880-------------------------
1881
1882Use-list directives encode the in-memory order of each use-list, allowing the
1883order to be recreated. ``<order-indexes>`` is a comma-separated list of
1884indexes that are assigned to the referenced value's uses. The referenced
1885value's use-list is immediately sorted by these indexes.
1886
1887Use-list directives may appear at function scope or global scope. They are not
1888instructions, and have no effect on the semantics of the IR. When they're at
1889function scope, they must appear after the terminator of the final basic block.
1890
1891If basic blocks have their address taken via ``blockaddress()`` expressions,
1892``uselistorder_bb`` can be used to reorder their use-lists from outside their
1893function's scope.
1894
1895:Syntax:
1896
1897::
1898
1899 uselistorder <ty> <value>, { <order-indexes> }
1900 uselistorder_bb @function, %block { <order-indexes> }
1901
1902:Examples:
1903
1904::
1905
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001906 define void @foo(i32 %arg1, i32 %arg2) {
1907 entry:
1908 ; ... instructions ...
1909 bb:
1910 ; ... instructions ...
1911
1912 ; At function scope.
1913 uselistorder i32 %arg1, { 1, 0, 2 }
1914 uselistorder label %bb, { 1, 0 }
1915 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001916
1917 ; At global scope.
1918 uselistorder i32* @global, { 1, 2, 0 }
1919 uselistorder i32 7, { 1, 0 }
1920 uselistorder i32 (i32) @bar, { 1, 0 }
1921 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1922
Sean Silvab084af42012-12-07 10:36:55 +00001923.. _typesystem:
1924
1925Type System
1926===========
1927
1928The LLVM type system is one of the most important features of the
1929intermediate representation. Being typed enables a number of
1930optimizations to be performed on the intermediate representation
1931directly, without having to do extra analyses on the side before the
1932transformation. A strong type system makes it easier to read the
1933generated code and enables novel analyses and transformations that are
1934not feasible to perform on normal three address code representations.
1935
Rafael Espindola08013342013-12-07 19:34:20 +00001936.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001937
Rafael Espindola08013342013-12-07 19:34:20 +00001938Void Type
1939---------
Sean Silvab084af42012-12-07 10:36:55 +00001940
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001941:Overview:
1942
Rafael Espindola08013342013-12-07 19:34:20 +00001943
1944The void type does not represent any value and has no size.
1945
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001946:Syntax:
1947
Rafael Espindola08013342013-12-07 19:34:20 +00001948
1949::
1950
1951 void
Sean Silvab084af42012-12-07 10:36:55 +00001952
1953
Rafael Espindola08013342013-12-07 19:34:20 +00001954.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001955
Rafael Espindola08013342013-12-07 19:34:20 +00001956Function Type
1957-------------
Sean Silvab084af42012-12-07 10:36:55 +00001958
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001959:Overview:
1960
Sean Silvab084af42012-12-07 10:36:55 +00001961
Rafael Espindola08013342013-12-07 19:34:20 +00001962The function type can be thought of as a function signature. It consists of a
1963return type and a list of formal parameter types. The return type of a function
1964type is a void type or first class type --- except for :ref:`label <t_label>`
1965and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001966
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001967:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001968
Rafael Espindola08013342013-12-07 19:34:20 +00001969::
Sean Silvab084af42012-12-07 10:36:55 +00001970
Rafael Espindola08013342013-12-07 19:34:20 +00001971 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001972
Rafael Espindola08013342013-12-07 19:34:20 +00001973...where '``<parameter list>``' is a comma-separated list of type
1974specifiers. Optionally, the parameter list may include a type ``...``, which
1975indicates that the function takes a variable number of arguments. Variable
1976argument functions can access their arguments with the :ref:`variable argument
1977handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1978except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001979
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001980:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001981
Rafael Espindola08013342013-12-07 19:34:20 +00001982+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1983| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1984+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1985| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1986+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1987| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1988+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1989| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1990+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1991
1992.. _t_firstclass:
1993
1994First Class Types
1995-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001996
1997The :ref:`first class <t_firstclass>` types are perhaps the most important.
1998Values of these types are the only ones which can be produced by
1999instructions.
2000
Rafael Espindola08013342013-12-07 19:34:20 +00002001.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00002002
Rafael Espindola08013342013-12-07 19:34:20 +00002003Single Value Types
2004^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002005
Rafael Espindola08013342013-12-07 19:34:20 +00002006These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002007
2008.. _t_integer:
2009
2010Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002011""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002012
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002013:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002014
2015The integer type is a very simple type that simply specifies an
2016arbitrary bit width for the integer type desired. Any bit width from 1
2017bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2018
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002019:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002020
2021::
2022
2023 iN
2024
2025The number of bits the integer will occupy is specified by the ``N``
2026value.
2027
2028Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002029*********
Sean Silvab084af42012-12-07 10:36:55 +00002030
2031+----------------+------------------------------------------------+
2032| ``i1`` | a single-bit integer. |
2033+----------------+------------------------------------------------+
2034| ``i32`` | a 32-bit integer. |
2035+----------------+------------------------------------------------+
2036| ``i1942652`` | a really big integer of over 1 million bits. |
2037+----------------+------------------------------------------------+
2038
2039.. _t_floating:
2040
2041Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002042""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002043
2044.. list-table::
2045 :header-rows: 1
2046
2047 * - Type
2048 - Description
2049
2050 * - ``half``
2051 - 16-bit floating point value
2052
2053 * - ``float``
2054 - 32-bit floating point value
2055
2056 * - ``double``
2057 - 64-bit floating point value
2058
2059 * - ``fp128``
2060 - 128-bit floating point value (112-bit mantissa)
2061
2062 * - ``x86_fp80``
2063 - 80-bit floating point value (X87)
2064
2065 * - ``ppc_fp128``
2066 - 128-bit floating point value (two 64-bits)
2067
Reid Kleckner9a16d082014-03-05 02:41:37 +00002068X86_mmx Type
2069""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002070
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002071:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002072
Reid Kleckner9a16d082014-03-05 02:41:37 +00002073The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002074machine. The operations allowed on it are quite limited: parameters and
2075return values, load and store, and bitcast. User-specified MMX
2076instructions are represented as intrinsic or asm calls with arguments
2077and/or results of this type. There are no arrays, vectors or constants
2078of this type.
2079
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002080:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002081
2082::
2083
Reid Kleckner9a16d082014-03-05 02:41:37 +00002084 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002085
Sean Silvab084af42012-12-07 10:36:55 +00002086
Rafael Espindola08013342013-12-07 19:34:20 +00002087.. _t_pointer:
2088
2089Pointer Type
2090""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002091
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002092:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002093
Rafael Espindola08013342013-12-07 19:34:20 +00002094The pointer type is used to specify memory locations. Pointers are
2095commonly used to reference objects in memory.
2096
2097Pointer types may have an optional address space attribute defining the
2098numbered address space where the pointed-to object resides. The default
2099address space is number zero. The semantics of non-zero address spaces
2100are target-specific.
2101
2102Note that LLVM does not permit pointers to void (``void*``) nor does it
2103permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002104
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002105:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002106
2107::
2108
Rafael Espindola08013342013-12-07 19:34:20 +00002109 <type> *
2110
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002111:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002112
2113+-------------------------+--------------------------------------------------------------------------------------------------------------+
2114| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2115+-------------------------+--------------------------------------------------------------------------------------------------------------+
2116| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2117+-------------------------+--------------------------------------------------------------------------------------------------------------+
2118| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2119+-------------------------+--------------------------------------------------------------------------------------------------------------+
2120
2121.. _t_vector:
2122
2123Vector Type
2124"""""""""""
2125
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002126:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002127
2128A vector type is a simple derived type that represents a vector of
2129elements. Vector types are used when multiple primitive data are
2130operated in parallel using a single instruction (SIMD). A vector type
2131requires a size (number of elements) and an underlying primitive data
2132type. Vector types are considered :ref:`first class <t_firstclass>`.
2133
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002134:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002135
2136::
2137
2138 < <# elements> x <elementtype> >
2139
2140The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002141elementtype may be any integer, floating point or pointer type. Vectors
2142of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002143
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002144:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002145
2146+-------------------+--------------------------------------------------+
2147| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2148+-------------------+--------------------------------------------------+
2149| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2150+-------------------+--------------------------------------------------+
2151| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2152+-------------------+--------------------------------------------------+
2153| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2154+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002155
2156.. _t_label:
2157
2158Label Type
2159^^^^^^^^^^
2160
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002161:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002162
2163The label type represents code labels.
2164
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002165:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002166
2167::
2168
2169 label
2170
2171.. _t_metadata:
2172
2173Metadata Type
2174^^^^^^^^^^^^^
2175
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002176:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002177
2178The metadata type represents embedded metadata. No derived types may be
2179created from metadata except for :ref:`function <t_function>` arguments.
2180
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002181:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002182
2183::
2184
2185 metadata
2186
Sean Silvab084af42012-12-07 10:36:55 +00002187.. _t_aggregate:
2188
2189Aggregate Types
2190^^^^^^^^^^^^^^^
2191
2192Aggregate Types are a subset of derived types that can contain multiple
2193member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2194aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2195aggregate types.
2196
2197.. _t_array:
2198
2199Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002200""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002201
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002202:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002203
2204The array type is a very simple derived type that arranges elements
2205sequentially in memory. The array type requires a size (number of
2206elements) and an underlying data type.
2207
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002208:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002209
2210::
2211
2212 [<# elements> x <elementtype>]
2213
2214The number of elements is a constant integer value; ``elementtype`` may
2215be any type with a size.
2216
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002217:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002218
2219+------------------+--------------------------------------+
2220| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2221+------------------+--------------------------------------+
2222| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2223+------------------+--------------------------------------+
2224| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2225+------------------+--------------------------------------+
2226
2227Here are some examples of multidimensional arrays:
2228
2229+-----------------------------+----------------------------------------------------------+
2230| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2231+-----------------------------+----------------------------------------------------------+
2232| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2233+-----------------------------+----------------------------------------------------------+
2234| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2235+-----------------------------+----------------------------------------------------------+
2236
2237There is no restriction on indexing beyond the end of the array implied
2238by a static type (though there are restrictions on indexing beyond the
2239bounds of an allocated object in some cases). This means that
2240single-dimension 'variable sized array' addressing can be implemented in
2241LLVM with a zero length array type. An implementation of 'pascal style
2242arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2243example.
2244
Sean Silvab084af42012-12-07 10:36:55 +00002245.. _t_struct:
2246
2247Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002248""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002249
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002250:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002251
2252The structure type is used to represent a collection of data members
2253together in memory. The elements of a structure may be any type that has
2254a size.
2255
2256Structures in memory are accessed using '``load``' and '``store``' by
2257getting a pointer to a field with the '``getelementptr``' instruction.
2258Structures in registers are accessed using the '``extractvalue``' and
2259'``insertvalue``' instructions.
2260
2261Structures may optionally be "packed" structures, which indicate that
2262the alignment of the struct is one byte, and that there is no padding
2263between the elements. In non-packed structs, padding between field types
2264is inserted as defined by the DataLayout string in the module, which is
2265required to match what the underlying code generator expects.
2266
2267Structures can either be "literal" or "identified". A literal structure
2268is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2269identified types are always defined at the top level with a name.
2270Literal types are uniqued by their contents and can never be recursive
2271or opaque since there is no way to write one. Identified types can be
2272recursive, can be opaqued, and are never uniqued.
2273
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002274:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002275
2276::
2277
2278 %T1 = type { <type list> } ; Identified normal struct type
2279 %T2 = type <{ <type list> }> ; Identified packed struct type
2280
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002281:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002282
2283+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2284| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2285+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002286| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002287+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2288| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2289+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2290
2291.. _t_opaque:
2292
2293Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002294""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002295
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002296:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002297
2298Opaque structure types are used to represent named structure types that
2299do not have a body specified. This corresponds (for example) to the C
2300notion of a forward declared structure.
2301
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002302:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002303
2304::
2305
2306 %X = type opaque
2307 %52 = type opaque
2308
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002309:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002310
2311+--------------+-------------------+
2312| ``opaque`` | An opaque type. |
2313+--------------+-------------------+
2314
Sean Silva1703e702014-04-08 21:06:22 +00002315.. _constants:
2316
Sean Silvab084af42012-12-07 10:36:55 +00002317Constants
2318=========
2319
2320LLVM has several different basic types of constants. This section
2321describes them all and their syntax.
2322
2323Simple Constants
2324----------------
2325
2326**Boolean constants**
2327 The two strings '``true``' and '``false``' are both valid constants
2328 of the ``i1`` type.
2329**Integer constants**
2330 Standard integers (such as '4') are constants of the
2331 :ref:`integer <t_integer>` type. Negative numbers may be used with
2332 integer types.
2333**Floating point constants**
2334 Floating point constants use standard decimal notation (e.g.
2335 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2336 hexadecimal notation (see below). The assembler requires the exact
2337 decimal value of a floating-point constant. For example, the
2338 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2339 decimal in binary. Floating point constants must have a :ref:`floating
2340 point <t_floating>` type.
2341**Null pointer constants**
2342 The identifier '``null``' is recognized as a null pointer constant
2343 and must be of :ref:`pointer type <t_pointer>`.
2344
2345The one non-intuitive notation for constants is the hexadecimal form of
2346floating point constants. For example, the form
2347'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2348than) '``double 4.5e+15``'. The only time hexadecimal floating point
2349constants are required (and the only time that they are generated by the
2350disassembler) is when a floating point constant must be emitted but it
2351cannot be represented as a decimal floating point number in a reasonable
2352number of digits. For example, NaN's, infinities, and other special
2353values are represented in their IEEE hexadecimal format so that assembly
2354and disassembly do not cause any bits to change in the constants.
2355
2356When using the hexadecimal form, constants of types half, float, and
2357double are represented using the 16-digit form shown above (which
2358matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002359must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002360precision, respectively. Hexadecimal format is always used for long
2361double, and there are three forms of long double. The 80-bit format used
2362by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2363128-bit format used by PowerPC (two adjacent doubles) is represented by
2364``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002365represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2366will only work if they match the long double format on your target.
2367The IEEE 16-bit format (half precision) is represented by ``0xH``
2368followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2369(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002370
Reid Kleckner9a16d082014-03-05 02:41:37 +00002371There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002372
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002373.. _complexconstants:
2374
Sean Silvab084af42012-12-07 10:36:55 +00002375Complex Constants
2376-----------------
2377
2378Complex constants are a (potentially recursive) combination of simple
2379constants and smaller complex constants.
2380
2381**Structure constants**
2382 Structure constants are represented with notation similar to
2383 structure type definitions (a comma separated list of elements,
2384 surrounded by braces (``{}``)). For example:
2385 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2386 "``@G = external global i32``". Structure constants must have
2387 :ref:`structure type <t_struct>`, and the number and types of elements
2388 must match those specified by the type.
2389**Array constants**
2390 Array constants are represented with notation similar to array type
2391 definitions (a comma separated list of elements, surrounded by
2392 square brackets (``[]``)). For example:
2393 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2394 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002395 match those specified by the type. As a special case, character array
2396 constants may also be represented as a double-quoted string using the ``c``
2397 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002398**Vector constants**
2399 Vector constants are represented with notation similar to vector
2400 type definitions (a comma separated list of elements, surrounded by
2401 less-than/greater-than's (``<>``)). For example:
2402 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2403 must have :ref:`vector type <t_vector>`, and the number and types of
2404 elements must match those specified by the type.
2405**Zero initialization**
2406 The string '``zeroinitializer``' can be used to zero initialize a
2407 value to zero of *any* type, including scalar and
2408 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2409 having to print large zero initializers (e.g. for large arrays) and
2410 is always exactly equivalent to using explicit zero initializers.
2411**Metadata node**
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002412 A metadata node is a constant tuple without types. For example:
2413 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
2414 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2415 Unlike other typed constants that are meant to be interpreted as part of
2416 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002417 information such as debug info.
2418
2419Global Variable and Function Addresses
2420--------------------------------------
2421
2422The addresses of :ref:`global variables <globalvars>` and
2423:ref:`functions <functionstructure>` are always implicitly valid
2424(link-time) constants. These constants are explicitly referenced when
2425the :ref:`identifier for the global <identifiers>` is used and always have
2426:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2427file:
2428
2429.. code-block:: llvm
2430
2431 @X = global i32 17
2432 @Y = global i32 42
2433 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2434
2435.. _undefvalues:
2436
2437Undefined Values
2438----------------
2439
2440The string '``undef``' can be used anywhere a constant is expected, and
2441indicates that the user of the value may receive an unspecified
2442bit-pattern. Undefined values may be of any type (other than '``label``'
2443or '``void``') and be used anywhere a constant is permitted.
2444
2445Undefined values are useful because they indicate to the compiler that
2446the program is well defined no matter what value is used. This gives the
2447compiler more freedom to optimize. Here are some examples of
2448(potentially surprising) transformations that are valid (in pseudo IR):
2449
2450.. code-block:: llvm
2451
2452 %A = add %X, undef
2453 %B = sub %X, undef
2454 %C = xor %X, undef
2455 Safe:
2456 %A = undef
2457 %B = undef
2458 %C = undef
2459
2460This is safe because all of the output bits are affected by the undef
2461bits. Any output bit can have a zero or one depending on the input bits.
2462
2463.. code-block:: llvm
2464
2465 %A = or %X, undef
2466 %B = and %X, undef
2467 Safe:
2468 %A = -1
2469 %B = 0
2470 Unsafe:
2471 %A = undef
2472 %B = undef
2473
2474These logical operations have bits that are not always affected by the
2475input. For example, if ``%X`` has a zero bit, then the output of the
2476'``and``' operation will always be a zero for that bit, no matter what
2477the corresponding bit from the '``undef``' is. As such, it is unsafe to
2478optimize or assume that the result of the '``and``' is '``undef``'.
2479However, it is safe to assume that all bits of the '``undef``' could be
24800, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2481all the bits of the '``undef``' operand to the '``or``' could be set,
2482allowing the '``or``' to be folded to -1.
2483
2484.. code-block:: llvm
2485
2486 %A = select undef, %X, %Y
2487 %B = select undef, 42, %Y
2488 %C = select %X, %Y, undef
2489 Safe:
2490 %A = %X (or %Y)
2491 %B = 42 (or %Y)
2492 %C = %Y
2493 Unsafe:
2494 %A = undef
2495 %B = undef
2496 %C = undef
2497
2498This set of examples shows that undefined '``select``' (and conditional
2499branch) conditions can go *either way*, but they have to come from one
2500of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2501both known to have a clear low bit, then ``%A`` would have to have a
2502cleared low bit. However, in the ``%C`` example, the optimizer is
2503allowed to assume that the '``undef``' operand could be the same as
2504``%Y``, allowing the whole '``select``' to be eliminated.
2505
2506.. code-block:: llvm
2507
2508 %A = xor undef, undef
2509
2510 %B = undef
2511 %C = xor %B, %B
2512
2513 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002514 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002515 %F = icmp gte %D, 4
2516
2517 Safe:
2518 %A = undef
2519 %B = undef
2520 %C = undef
2521 %D = undef
2522 %E = undef
2523 %F = undef
2524
2525This example points out that two '``undef``' operands are not
2526necessarily the same. This can be surprising to people (and also matches
2527C semantics) where they assume that "``X^X``" is always zero, even if
2528``X`` is undefined. This isn't true for a number of reasons, but the
2529short answer is that an '``undef``' "variable" can arbitrarily change
2530its value over its "live range". This is true because the variable
2531doesn't actually *have a live range*. Instead, the value is logically
2532read from arbitrary registers that happen to be around when needed, so
2533the value is not necessarily consistent over time. In fact, ``%A`` and
2534``%C`` need to have the same semantics or the core LLVM "replace all
2535uses with" concept would not hold.
2536
2537.. code-block:: llvm
2538
2539 %A = fdiv undef, %X
2540 %B = fdiv %X, undef
2541 Safe:
2542 %A = undef
2543 b: unreachable
2544
2545These examples show the crucial difference between an *undefined value*
2546and *undefined behavior*. An undefined value (like '``undef``') is
2547allowed to have an arbitrary bit-pattern. This means that the ``%A``
2548operation can be constant folded to '``undef``', because the '``undef``'
2549could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2550However, in the second example, we can make a more aggressive
2551assumption: because the ``undef`` is allowed to be an arbitrary value,
2552we are allowed to assume that it could be zero. Since a divide by zero
2553has *undefined behavior*, we are allowed to assume that the operation
2554does not execute at all. This allows us to delete the divide and all
2555code after it. Because the undefined operation "can't happen", the
2556optimizer can assume that it occurs in dead code.
2557
2558.. code-block:: llvm
2559
2560 a: store undef -> %X
2561 b: store %X -> undef
2562 Safe:
2563 a: <deleted>
2564 b: unreachable
2565
2566These examples reiterate the ``fdiv`` example: a store *of* an undefined
2567value can be assumed to not have any effect; we can assume that the
2568value is overwritten with bits that happen to match what was already
2569there. However, a store *to* an undefined location could clobber
2570arbitrary memory, therefore, it has undefined behavior.
2571
2572.. _poisonvalues:
2573
2574Poison Values
2575-------------
2576
2577Poison values are similar to :ref:`undef values <undefvalues>`, however
2578they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002579that cannot evoke side effects has nevertheless detected a condition
2580that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002581
2582There is currently no way of representing a poison value in the IR; they
2583only exist when produced by operations such as :ref:`add <i_add>` with
2584the ``nsw`` flag.
2585
2586Poison value behavior is defined in terms of value *dependence*:
2587
2588- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2589- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2590 their dynamic predecessor basic block.
2591- Function arguments depend on the corresponding actual argument values
2592 in the dynamic callers of their functions.
2593- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2594 instructions that dynamically transfer control back to them.
2595- :ref:`Invoke <i_invoke>` instructions depend on the
2596 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2597 call instructions that dynamically transfer control back to them.
2598- Non-volatile loads and stores depend on the most recent stores to all
2599 of the referenced memory addresses, following the order in the IR
2600 (including loads and stores implied by intrinsics such as
2601 :ref:`@llvm.memcpy <int_memcpy>`.)
2602- An instruction with externally visible side effects depends on the
2603 most recent preceding instruction with externally visible side
2604 effects, following the order in the IR. (This includes :ref:`volatile
2605 operations <volatile>`.)
2606- An instruction *control-depends* on a :ref:`terminator
2607 instruction <terminators>` if the terminator instruction has
2608 multiple successors and the instruction is always executed when
2609 control transfers to one of the successors, and may not be executed
2610 when control is transferred to another.
2611- Additionally, an instruction also *control-depends* on a terminator
2612 instruction if the set of instructions it otherwise depends on would
2613 be different if the terminator had transferred control to a different
2614 successor.
2615- Dependence is transitive.
2616
Richard Smith32dbdf62014-07-31 04:25:36 +00002617Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2618with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002619on a poison value has undefined behavior.
2620
2621Here are some examples:
2622
2623.. code-block:: llvm
2624
2625 entry:
2626 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2627 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002628 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002629 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2630
2631 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002632 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002633
2634 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2635
2636 %narrowaddr = bitcast i32* @g to i16*
2637 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002638 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2639 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002640
2641 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2642 br i1 %cmp, label %true, label %end ; Branch to either destination.
2643
2644 true:
2645 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2646 ; it has undefined behavior.
2647 br label %end
2648
2649 end:
2650 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2651 ; Both edges into this PHI are
2652 ; control-dependent on %cmp, so this
2653 ; always results in a poison value.
2654
2655 store volatile i32 0, i32* @g ; This would depend on the store in %true
2656 ; if %cmp is true, or the store in %entry
2657 ; otherwise, so this is undefined behavior.
2658
2659 br i1 %cmp, label %second_true, label %second_end
2660 ; The same branch again, but this time the
2661 ; true block doesn't have side effects.
2662
2663 second_true:
2664 ; No side effects!
2665 ret void
2666
2667 second_end:
2668 store volatile i32 0, i32* @g ; This time, the instruction always depends
2669 ; on the store in %end. Also, it is
2670 ; control-equivalent to %end, so this is
2671 ; well-defined (ignoring earlier undefined
2672 ; behavior in this example).
2673
2674.. _blockaddress:
2675
2676Addresses of Basic Blocks
2677-------------------------
2678
2679``blockaddress(@function, %block)``
2680
2681The '``blockaddress``' constant computes the address of the specified
2682basic block in the specified function, and always has an ``i8*`` type.
2683Taking the address of the entry block is illegal.
2684
2685This value only has defined behavior when used as an operand to the
2686':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2687against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002688undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002689no label is equal to the null pointer. This may be passed around as an
2690opaque pointer sized value as long as the bits are not inspected. This
2691allows ``ptrtoint`` and arithmetic to be performed on these values so
2692long as the original value is reconstituted before the ``indirectbr``
2693instruction.
2694
2695Finally, some targets may provide defined semantics when using the value
2696as the operand to an inline assembly, but that is target specific.
2697
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002698.. _constantexprs:
2699
Sean Silvab084af42012-12-07 10:36:55 +00002700Constant Expressions
2701--------------------
2702
2703Constant expressions are used to allow expressions involving other
2704constants to be used as constants. Constant expressions may be of any
2705:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2706that does not have side effects (e.g. load and call are not supported).
2707The following is the syntax for constant expressions:
2708
2709``trunc (CST to TYPE)``
2710 Truncate a constant to another type. The bit size of CST must be
2711 larger than the bit size of TYPE. Both types must be integers.
2712``zext (CST to TYPE)``
2713 Zero extend a constant to another type. The bit size of CST must be
2714 smaller than the bit size of TYPE. Both types must be integers.
2715``sext (CST to TYPE)``
2716 Sign extend a constant to another type. The bit size of CST must be
2717 smaller than the bit size of TYPE. Both types must be integers.
2718``fptrunc (CST to TYPE)``
2719 Truncate a floating point constant to another floating point type.
2720 The size of CST must be larger than the size of TYPE. Both types
2721 must be floating point.
2722``fpext (CST to TYPE)``
2723 Floating point extend a constant to another type. The size of CST
2724 must be smaller or equal to the size of TYPE. Both types must be
2725 floating point.
2726``fptoui (CST to TYPE)``
2727 Convert a floating point constant to the corresponding unsigned
2728 integer constant. TYPE must be a scalar or vector integer type. CST
2729 must be of scalar or vector floating point type. Both CST and TYPE
2730 must be scalars, or vectors of the same number of elements. If the
2731 value won't fit in the integer type, the results are undefined.
2732``fptosi (CST to TYPE)``
2733 Convert a floating point constant to the corresponding signed
2734 integer constant. TYPE must be a scalar or vector integer type. CST
2735 must be of scalar or vector floating point type. Both CST and TYPE
2736 must be scalars, or vectors of the same number of elements. If the
2737 value won't fit in the integer type, the results are undefined.
2738``uitofp (CST to TYPE)``
2739 Convert an unsigned integer constant to the corresponding floating
2740 point constant. TYPE must be a scalar or vector floating point type.
2741 CST must be of scalar or vector integer type. Both CST and TYPE must
2742 be scalars, or vectors of the same number of elements. If the value
2743 won't fit in the floating point type, the results are undefined.
2744``sitofp (CST to TYPE)``
2745 Convert a signed integer constant to the corresponding floating
2746 point constant. TYPE must be a scalar or vector floating point type.
2747 CST must be of scalar or vector integer type. Both CST and TYPE must
2748 be scalars, or vectors of the same number of elements. If the value
2749 won't fit in the floating point type, the results are undefined.
2750``ptrtoint (CST to TYPE)``
2751 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002752 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002753 pointer type. The ``CST`` value is zero extended, truncated, or
2754 unchanged to make it fit in ``TYPE``.
2755``inttoptr (CST to TYPE)``
2756 Convert an integer constant to a pointer constant. TYPE must be a
2757 pointer type. CST must be of integer type. The CST value is zero
2758 extended, truncated, or unchanged to make it fit in a pointer size.
2759 This one is *really* dangerous!
2760``bitcast (CST to TYPE)``
2761 Convert a constant, CST, to another TYPE. The constraints of the
2762 operands are the same as those for the :ref:`bitcast
2763 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002764``addrspacecast (CST to TYPE)``
2765 Convert a constant pointer or constant vector of pointer, CST, to another
2766 TYPE in a different address space. The constraints of the operands are the
2767 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002768``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002769 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2770 constants. As with the :ref:`getelementptr <i_getelementptr>`
2771 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002772 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002773``select (COND, VAL1, VAL2)``
2774 Perform the :ref:`select operation <i_select>` on constants.
2775``icmp COND (VAL1, VAL2)``
2776 Performs the :ref:`icmp operation <i_icmp>` on constants.
2777``fcmp COND (VAL1, VAL2)``
2778 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2779``extractelement (VAL, IDX)``
2780 Perform the :ref:`extractelement operation <i_extractelement>` on
2781 constants.
2782``insertelement (VAL, ELT, IDX)``
2783 Perform the :ref:`insertelement operation <i_insertelement>` on
2784 constants.
2785``shufflevector (VEC1, VEC2, IDXMASK)``
2786 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2787 constants.
2788``extractvalue (VAL, IDX0, IDX1, ...)``
2789 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2790 constants. The index list is interpreted in a similar manner as
2791 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2792 least one index value must be specified.
2793``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2794 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2795 The index list is interpreted in a similar manner as indices in a
2796 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2797 value must be specified.
2798``OPCODE (LHS, RHS)``
2799 Perform the specified operation of the LHS and RHS constants. OPCODE
2800 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2801 binary <bitwiseops>` operations. The constraints on operands are
2802 the same as those for the corresponding instruction (e.g. no bitwise
2803 operations on floating point values are allowed).
2804
2805Other Values
2806============
2807
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002808.. _inlineasmexprs:
2809
Sean Silvab084af42012-12-07 10:36:55 +00002810Inline Assembler Expressions
2811----------------------------
2812
2813LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00002814Inline Assembly <moduleasm>`) through the use of a special value. This value
2815represents the inline assembler as a template string (containing the
2816instructions to emit), a list of operand constraints (stored as a string), a
2817flag that indicates whether or not the inline asm expression has side effects,
2818and a flag indicating whether the function containing the asm needs to align its
2819stack conservatively.
2820
2821The template string supports argument substitution of the operands using "``$``"
2822followed by a number, to indicate substitution of the given register/memory
2823location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
2824be used, where ``MODIFIER`` is a target-specific annotation for how to print the
2825operand (See :ref:`inline-asm-modifiers`).
2826
2827A literal "``$``" may be included by using "``$$``" in the template. To include
2828other special characters into the output, the usual "``\XX``" escapes may be
2829used, just as in other strings. Note that after template substitution, the
2830resulting assembly string is parsed by LLVM's integrated assembler unless it is
2831disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
2832syntax known to LLVM.
2833
2834LLVM's support for inline asm is modeled closely on the requirements of Clang's
2835GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
2836modifier codes listed here are similar or identical to those in GCC's inline asm
2837support. However, to be clear, the syntax of the template and constraint strings
2838described here is *not* the same as the syntax accepted by GCC and Clang, and,
2839while most constraint letters are passed through as-is by Clang, some get
2840translated to other codes when converting from the C source to the LLVM
2841assembly.
2842
2843An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00002844
2845.. code-block:: llvm
2846
2847 i32 (i32) asm "bswap $0", "=r,r"
2848
2849Inline assembler expressions may **only** be used as the callee operand
2850of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2851Thus, typically we have:
2852
2853.. code-block:: llvm
2854
2855 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2856
2857Inline asms with side effects not visible in the constraint list must be
2858marked as having side effects. This is done through the use of the
2859'``sideeffect``' keyword, like so:
2860
2861.. code-block:: llvm
2862
2863 call void asm sideeffect "eieio", ""()
2864
2865In some cases inline asms will contain code that will not work unless
2866the stack is aligned in some way, such as calls or SSE instructions on
2867x86, yet will not contain code that does that alignment within the asm.
2868The compiler should make conservative assumptions about what the asm
2869might contain and should generate its usual stack alignment code in the
2870prologue if the '``alignstack``' keyword is present:
2871
2872.. code-block:: llvm
2873
2874 call void asm alignstack "eieio", ""()
2875
2876Inline asms also support using non-standard assembly dialects. The
2877assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2878the inline asm is using the Intel dialect. Currently, ATT and Intel are
2879the only supported dialects. An example is:
2880
2881.. code-block:: llvm
2882
2883 call void asm inteldialect "eieio", ""()
2884
2885If multiple keywords appear the '``sideeffect``' keyword must come
2886first, the '``alignstack``' keyword second and the '``inteldialect``'
2887keyword last.
2888
James Y Knightbc832ed2015-07-08 18:08:36 +00002889Inline Asm Constraint String
2890^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2891
2892The constraint list is a comma-separated string, each element containing one or
2893more constraint codes.
2894
2895For each element in the constraint list an appropriate register or memory
2896operand will be chosen, and it will be made available to assembly template
2897string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
2898second, etc.
2899
2900There are three different types of constraints, which are distinguished by a
2901prefix symbol in front of the constraint code: Output, Input, and Clobber. The
2902constraints must always be given in that order: outputs first, then inputs, then
2903clobbers. They cannot be intermingled.
2904
2905There are also three different categories of constraint codes:
2906
2907- Register constraint. This is either a register class, or a fixed physical
2908 register. This kind of constraint will allocate a register, and if necessary,
2909 bitcast the argument or result to the appropriate type.
2910- Memory constraint. This kind of constraint is for use with an instruction
2911 taking a memory operand. Different constraints allow for different addressing
2912 modes used by the target.
2913- Immediate value constraint. This kind of constraint is for an integer or other
2914 immediate value which can be rendered directly into an instruction. The
2915 various target-specific constraints allow the selection of a value in the
2916 proper range for the instruction you wish to use it with.
2917
2918Output constraints
2919""""""""""""""""""
2920
2921Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
2922indicates that the assembly will write to this operand, and the operand will
2923then be made available as a return value of the ``asm`` expression. Output
2924constraints do not consume an argument from the call instruction. (Except, see
2925below about indirect outputs).
2926
2927Normally, it is expected that no output locations are written to by the assembly
2928expression until *all* of the inputs have been read. As such, LLVM may assign
2929the same register to an output and an input. If this is not safe (e.g. if the
2930assembly contains two instructions, where the first writes to one output, and
2931the second reads an input and writes to a second output), then the "``&``"
2932modifier must be used (e.g. "``=&r``") to specify that the output is an
2933"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
2934will not use the same register for any inputs (other than an input tied to this
2935output).
2936
2937Input constraints
2938"""""""""""""""""
2939
2940Input constraints do not have a prefix -- just the constraint codes. Each input
2941constraint will consume one argument from the call instruction. It is not
2942permitted for the asm to write to any input register or memory location (unless
2943that input is tied to an output). Note also that multiple inputs may all be
2944assigned to the same register, if LLVM can determine that they necessarily all
2945contain the same value.
2946
2947Instead of providing a Constraint Code, input constraints may also "tie"
2948themselves to an output constraint, by providing an integer as the constraint
2949string. Tied inputs still consume an argument from the call instruction, and
2950take up a position in the asm template numbering as is usual -- they will simply
2951be constrained to always use the same register as the output they've been tied
2952to. For example, a constraint string of "``=r,0``" says to assign a register for
2953output, and use that register as an input as well (it being the 0'th
2954constraint).
2955
2956It is permitted to tie an input to an "early-clobber" output. In that case, no
2957*other* input may share the same register as the input tied to the early-clobber
2958(even when the other input has the same value).
2959
2960You may only tie an input to an output which has a register constraint, not a
2961memory constraint. Only a single input may be tied to an output.
2962
2963There is also an "interesting" feature which deserves a bit of explanation: if a
2964register class constraint allocates a register which is too small for the value
2965type operand provided as input, the input value will be split into multiple
2966registers, and all of them passed to the inline asm.
2967
2968However, this feature is often not as useful as you might think.
2969
2970Firstly, the registers are *not* guaranteed to be consecutive. So, on those
2971architectures that have instructions which operate on multiple consecutive
2972instructions, this is not an appropriate way to support them. (e.g. the 32-bit
2973SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
2974hardware then loads into both the named register, and the next register. This
2975feature of inline asm would not be useful to support that.)
2976
2977A few of the targets provide a template string modifier allowing explicit access
2978to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
2979``D``). On such an architecture, you can actually access the second allocated
2980register (yet, still, not any subsequent ones). But, in that case, you're still
2981probably better off simply splitting the value into two separate operands, for
2982clarity. (e.g. see the description of the ``A`` constraint on X86, which,
2983despite existing only for use with this feature, is not really a good idea to
2984use)
2985
2986Indirect inputs and outputs
2987"""""""""""""""""""""""""""
2988
2989Indirect output or input constraints can be specified by the "``*``" modifier
2990(which goes after the "``=``" in case of an output). This indicates that the asm
2991will write to or read from the contents of an *address* provided as an input
2992argument. (Note that in this way, indirect outputs act more like an *input* than
2993an output: just like an input, they consume an argument of the call expression,
2994rather than producing a return value. An indirect output constraint is an
2995"output" only in that the asm is expected to write to the contents of the input
2996memory location, instead of just read from it).
2997
2998This is most typically used for memory constraint, e.g. "``=*m``", to pass the
2999address of a variable as a value.
3000
3001It is also possible to use an indirect *register* constraint, but only on output
3002(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3003value normally, and then, separately emit a store to the address provided as
3004input, after the provided inline asm. (It's not clear what value this
3005functionality provides, compared to writing the store explicitly after the asm
3006statement, and it can only produce worse code, since it bypasses many
3007optimization passes. I would recommend not using it.)
3008
3009
3010Clobber constraints
3011"""""""""""""""""""
3012
3013A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3014consume an input operand, nor generate an output. Clobbers cannot use any of the
3015general constraint code letters -- they may use only explicit register
3016constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3017"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3018memory locations -- not only the memory pointed to by a declared indirect
3019output.
3020
3021
3022Constraint Codes
3023""""""""""""""""
3024After a potential prefix comes constraint code, or codes.
3025
3026A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3027followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3028(e.g. "``{eax}``").
3029
3030The one and two letter constraint codes are typically chosen to be the same as
3031GCC's constraint codes.
3032
3033A single constraint may include one or more than constraint code in it, leaving
3034it up to LLVM to choose which one to use. This is included mainly for
3035compatibility with the translation of GCC inline asm coming from clang.
3036
3037There are two ways to specify alternatives, and either or both may be used in an
3038inline asm constraint list:
3039
30401) Append the codes to each other, making a constraint code set. E.g. "``im``"
3041 or "``{eax}m``". This means "choose any of the options in the set". The
3042 choice of constraint is made independently for each constraint in the
3043 constraint list.
3044
30452) Use "``|``" between constraint code sets, creating alternatives. Every
3046 constraint in the constraint list must have the same number of alternative
3047 sets. With this syntax, the same alternative in *all* of the items in the
3048 constraint list will be chosen together.
3049
3050Putting those together, you might have a two operand constraint string like
3051``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3052operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3053may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3054
3055However, the use of either of the alternatives features is *NOT* recommended, as
3056LLVM is not able to make an intelligent choice about which one to use. (At the
3057point it currently needs to choose, not enough information is available to do so
3058in a smart way.) Thus, it simply tries to make a choice that's most likely to
3059compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3060always choose to use memory, not registers). And, if given multiple registers,
3061or multiple register classes, it will simply choose the first one. (In fact, it
3062doesn't currently even ensure explicitly specified physical registers are
3063unique, so specifying multiple physical registers as alternatives, like
3064``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3065intended.)
3066
3067Supported Constraint Code List
3068""""""""""""""""""""""""""""""
3069
3070The constraint codes are, in general, expected to behave the same way they do in
3071GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3072inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3073and GCC likely indicates a bug in LLVM.
3074
3075Some constraint codes are typically supported by all targets:
3076
3077- ``r``: A register in the target's general purpose register class.
3078- ``m``: A memory address operand. It is target-specific what addressing modes
3079 are supported, typical examples are register, or register + register offset,
3080 or register + immediate offset (of some target-specific size).
3081- ``i``: An integer constant (of target-specific width). Allows either a simple
3082 immediate, or a relocatable value.
3083- ``n``: An integer constant -- *not* including relocatable values.
3084- ``s``: An integer constant, but allowing *only* relocatable values.
3085- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3086 useful to pass a label for an asm branch or call.
3087
3088 .. FIXME: but that surely isn't actually okay to jump out of an asm
3089 block without telling llvm about the control transfer???)
3090
3091- ``{register-name}``: Requires exactly the named physical register.
3092
3093Other constraints are target-specific:
3094
3095AArch64:
3096
3097- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3098- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3099 i.e. 0 to 4095 with optional shift by 12.
3100- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3101 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3102- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3103 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3104- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3105 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3106- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3107 32-bit register. This is a superset of ``K``: in addition to the bitmask
3108 immediate, also allows immediate integers which can be loaded with a single
3109 ``MOVZ`` or ``MOVL`` instruction.
3110- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3111 64-bit register. This is a superset of ``L``.
3112- ``Q``: Memory address operand must be in a single register (no
3113 offsets). (However, LLVM currently does this for the ``m`` constraint as
3114 well.)
3115- ``r``: A 32 or 64-bit integer register (W* or X*).
3116- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3117- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3118
3119AMDGPU:
3120
3121- ``r``: A 32 or 64-bit integer register.
3122- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3123- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3124
3125
3126All ARM modes:
3127
3128- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3129 operand. Treated the same as operand ``m``, at the moment.
3130
3131ARM and ARM's Thumb2 mode:
3132
3133- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3134- ``I``: An immediate integer valid for a data-processing instruction.
3135- ``J``: An immediate integer between -4095 and 4095.
3136- ``K``: An immediate integer whose bitwise inverse is valid for a
3137 data-processing instruction. (Can be used with template modifier "``B``" to
3138 print the inverted value).
3139- ``L``: An immediate integer whose negation is valid for a data-processing
3140 instruction. (Can be used with template modifier "``n``" to print the negated
3141 value).
3142- ``M``: A power of two or a integer between 0 and 32.
3143- ``N``: Invalid immediate constraint.
3144- ``O``: Invalid immediate constraint.
3145- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3146- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3147 as ``r``.
3148- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3149 invalid.
3150- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3151 ``d0-d31``, or ``q0-q15``.
3152- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3153 ``d0-d7``, or ``q0-q3``.
3154- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3155 ``s0-s31``.
3156
3157ARM's Thumb1 mode:
3158
3159- ``I``: An immediate integer between 0 and 255.
3160- ``J``: An immediate integer between -255 and -1.
3161- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3162 some amount.
3163- ``L``: An immediate integer between -7 and 7.
3164- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3165- ``N``: An immediate integer between 0 and 31.
3166- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3167- ``r``: A low 32-bit GPR register (``r0-r7``).
3168- ``l``: A low 32-bit GPR register (``r0-r7``).
3169- ``h``: A high GPR register (``r0-r7``).
3170- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3171 ``d0-d31``, or ``q0-q15``.
3172- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3173 ``d0-d7``, or ``q0-q3``.
3174- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3175 ``s0-s31``.
3176
3177
3178Hexagon:
3179
3180- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3181 at the moment.
3182- ``r``: A 32 or 64-bit register.
3183
3184MSP430:
3185
3186- ``r``: An 8 or 16-bit register.
3187
3188MIPS:
3189
3190- ``I``: An immediate signed 16-bit integer.
3191- ``J``: An immediate integer zero.
3192- ``K``: An immediate unsigned 16-bit integer.
3193- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3194- ``N``: An immediate integer between -65535 and -1.
3195- ``O``: An immediate signed 15-bit integer.
3196- ``P``: An immediate integer between 1 and 65535.
3197- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3198 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3199- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3200 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3201 ``m``.
3202- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3203 ``sc`` instruction on the given subtarget (details vary).
3204- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3205- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003206 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3207 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003208- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3209 ``25``).
3210- ``l``: The ``lo`` register, 32 or 64-bit.
3211- ``x``: Invalid.
3212
3213NVPTX:
3214
3215- ``b``: A 1-bit integer register.
3216- ``c`` or ``h``: A 16-bit integer register.
3217- ``r``: A 32-bit integer register.
3218- ``l`` or ``N``: A 64-bit integer register.
3219- ``f``: A 32-bit float register.
3220- ``d``: A 64-bit float register.
3221
3222
3223PowerPC:
3224
3225- ``I``: An immediate signed 16-bit integer.
3226- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3227- ``K``: An immediate unsigned 16-bit integer.
3228- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3229- ``M``: An immediate integer greater than 31.
3230- ``N``: An immediate integer that is an exact power of 2.
3231- ``O``: The immediate integer constant 0.
3232- ``P``: An immediate integer constant whose negation is a signed 16-bit
3233 constant.
3234- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3235 treated the same as ``m``.
3236- ``r``: A 32 or 64-bit integer register.
3237- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3238 ``R1-R31``).
3239- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3240 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3241- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3242 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3243 altivec vector register (``V0-V31``).
3244
3245 .. FIXME: is this a bug that v accepts QPX registers? I think this
3246 is supposed to only use the altivec vector registers?
3247
3248- ``y``: Condition register (``CR0-CR7``).
3249- ``wc``: An individual CR bit in a CR register.
3250- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3251 register set (overlapping both the floating-point and vector register files).
3252- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3253 set.
3254
3255Sparc:
3256
3257- ``I``: An immediate 13-bit signed integer.
3258- ``r``: A 32-bit integer register.
3259
3260SystemZ:
3261
3262- ``I``: An immediate unsigned 8-bit integer.
3263- ``J``: An immediate unsigned 12-bit integer.
3264- ``K``: An immediate signed 16-bit integer.
3265- ``L``: An immediate signed 20-bit integer.
3266- ``M``: An immediate integer 0x7fffffff.
3267- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3268 ``m``, at the moment.
3269- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3270- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3271 address context evaluates as zero).
3272- ``h``: A 32-bit value in the high part of a 64bit data register
3273 (LLVM-specific)
3274- ``f``: A 32, 64, or 128-bit floating point register.
3275
3276X86:
3277
3278- ``I``: An immediate integer between 0 and 31.
3279- ``J``: An immediate integer between 0 and 64.
3280- ``K``: An immediate signed 8-bit integer.
3281- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3282 0xffffffff.
3283- ``M``: An immediate integer between 0 and 3.
3284- ``N``: An immediate unsigned 8-bit integer.
3285- ``O``: An immediate integer between 0 and 127.
3286- ``e``: An immediate 32-bit signed integer.
3287- ``Z``: An immediate 32-bit unsigned integer.
3288- ``o``, ``v``: Treated the same as ``m``, at the moment.
3289- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3290 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3291 registers, and on X86-64, it is all of the integer registers.
3292- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3293 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3294- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3295- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3296 existed since i386, and can be accessed without the REX prefix.
3297- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3298- ``y``: A 64-bit MMX register, if MMX is enabled.
3299- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3300 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3301 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3302 512-bit vector operand in an AVX512 register, Otherwise, an error.
3303- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3304- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3305 32-bit mode, a 64-bit integer operand will get split into two registers). It
3306 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3307 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3308 you're better off splitting it yourself, before passing it to the asm
3309 statement.
3310
3311XCore:
3312
3313- ``r``: A 32-bit integer register.
3314
3315
3316.. _inline-asm-modifiers:
3317
3318Asm template argument modifiers
3319^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3320
3321In the asm template string, modifiers can be used on the operand reference, like
3322"``${0:n}``".
3323
3324The modifiers are, in general, expected to behave the same way they do in
3325GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3326inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3327and GCC likely indicates a bug in LLVM.
3328
3329Target-independent:
3330
3331- ``c``: Print an immediate integer constant unadorned, without
3332 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3333- ``n``: Negate and print immediate integer constant unadorned, without the
3334 target-specific immediate punctuation (e.g. no ``$`` prefix).
3335- ``l``: Print as an unadorned label, without the target-specific label
3336 punctuation (e.g. no ``$`` prefix).
3337
3338AArch64:
3339
3340- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3341 instead of ``x30``, print ``w30``.
3342- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3343- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3344 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3345 ``v*``.
3346
3347AMDGPU:
3348
3349- ``r``: No effect.
3350
3351ARM:
3352
3353- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3354 register).
3355- ``P``: No effect.
3356- ``q``: No effect.
3357- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3358 as ``d4[1]`` instead of ``s9``)
3359- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3360 prefix.
3361- ``L``: Print the low 16-bits of an immediate integer constant.
3362- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3363 register operands subsequent to the specified one (!), so use carefully.
3364- ``Q``: Print the low-order register of a register-pair, or the low-order
3365 register of a two-register operand.
3366- ``R``: Print the high-order register of a register-pair, or the high-order
3367 register of a two-register operand.
3368- ``H``: Print the second register of a register-pair. (On a big-endian system,
3369 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3370 to ``R``.)
3371
3372 .. FIXME: H doesn't currently support printing the second register
3373 of a two-register operand.
3374
3375- ``e``: Print the low doubleword register of a NEON quad register.
3376- ``f``: Print the high doubleword register of a NEON quad register.
3377- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3378 adornment.
3379
3380Hexagon:
3381
3382- ``L``: Print the second register of a two-register operand. Requires that it
3383 has been allocated consecutively to the first.
3384
3385 .. FIXME: why is it restricted to consecutive ones? And there's
3386 nothing that ensures that happens, is there?
3387
3388- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3389 nothing. Used to print 'addi' vs 'add' instructions.
3390
3391MSP430:
3392
3393No additional modifiers.
3394
3395MIPS:
3396
3397- ``X``: Print an immediate integer as hexadecimal
3398- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3399- ``d``: Print an immediate integer as decimal.
3400- ``m``: Subtract one and print an immediate integer as decimal.
3401- ``z``: Print $0 if an immediate zero, otherwise print normally.
3402- ``L``: Print the low-order register of a two-register operand, or prints the
3403 address of the low-order word of a double-word memory operand.
3404
3405 .. FIXME: L seems to be missing memory operand support.
3406
3407- ``M``: Print the high-order register of a two-register operand, or prints the
3408 address of the high-order word of a double-word memory operand.
3409
3410 .. FIXME: M seems to be missing memory operand support.
3411
3412- ``D``: Print the second register of a two-register operand, or prints the
3413 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3414 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3415 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003416- ``w``: No effect. Provided for compatibility with GCC which requires this
3417 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3418 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003419
3420NVPTX:
3421
3422- ``r``: No effect.
3423
3424PowerPC:
3425
3426- ``L``: Print the second register of a two-register operand. Requires that it
3427 has been allocated consecutively to the first.
3428
3429 .. FIXME: why is it restricted to consecutive ones? And there's
3430 nothing that ensures that happens, is there?
3431
3432- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3433 nothing. Used to print 'addi' vs 'add' instructions.
3434- ``y``: For a memory operand, prints formatter for a two-register X-form
3435 instruction. (Currently always prints ``r0,OPERAND``).
3436- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3437 otherwise. (NOTE: LLVM does not support update form, so this will currently
3438 always print nothing)
3439- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3440 not support indexed form, so this will currently always print nothing)
3441
3442Sparc:
3443
3444- ``r``: No effect.
3445
3446SystemZ:
3447
3448SystemZ implements only ``n``, and does *not* support any of the other
3449target-independent modifiers.
3450
3451X86:
3452
3453- ``c``: Print an unadorned integer or symbol name. (The latter is
3454 target-specific behavior for this typically target-independent modifier).
3455- ``A``: Print a register name with a '``*``' before it.
3456- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3457 operand.
3458- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3459 memory operand.
3460- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3461 operand.
3462- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3463 operand.
3464- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3465 available, otherwise the 32-bit register name; do nothing on a memory operand.
3466- ``n``: Negate and print an unadorned integer, or, for operands other than an
3467 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3468 the operand. (The behavior for relocatable symbol expressions is a
3469 target-specific behavior for this typically target-independent modifier)
3470- ``H``: Print a memory reference with additional offset +8.
3471- ``P``: Print a memory reference or operand for use as the argument of a call
3472 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3473
3474XCore:
3475
3476No additional modifiers.
3477
3478
Sean Silvab084af42012-12-07 10:36:55 +00003479Inline Asm Metadata
3480^^^^^^^^^^^^^^^^^^^
3481
3482The call instructions that wrap inline asm nodes may have a
3483"``!srcloc``" MDNode attached to it that contains a list of constant
3484integers. If present, the code generator will use the integer as the
3485location cookie value when report errors through the ``LLVMContext``
3486error reporting mechanisms. This allows a front-end to correlate backend
3487errors that occur with inline asm back to the source code that produced
3488it. For example:
3489
3490.. code-block:: llvm
3491
3492 call void asm sideeffect "something bad", ""(), !srcloc !42
3493 ...
3494 !42 = !{ i32 1234567 }
3495
3496It is up to the front-end to make sense of the magic numbers it places
3497in the IR. If the MDNode contains multiple constants, the code generator
3498will use the one that corresponds to the line of the asm that the error
3499occurs on.
3500
3501.. _metadata:
3502
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003503Metadata
3504========
Sean Silvab084af42012-12-07 10:36:55 +00003505
3506LLVM IR allows metadata to be attached to instructions in the program
3507that can convey extra information about the code to the optimizers and
3508code generator. One example application of metadata is source-level
3509debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003510
3511Metadata does not have a type, and is not a value. If referenced from a
3512``call`` instruction, it uses the ``metadata`` type.
3513
3514All metadata are identified in syntax by a exclamation point ('``!``').
3515
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003516.. _metadata-string:
3517
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003518Metadata Nodes and Metadata Strings
3519-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003520
3521A metadata string is a string surrounded by double quotes. It can
3522contain any character by escaping non-printable characters with
3523"``\xx``" where "``xx``" is the two digit hex code. For example:
3524"``!"test\00"``".
3525
3526Metadata nodes are represented with notation similar to structure
3527constants (a comma separated list of elements, surrounded by braces and
3528preceded by an exclamation point). Metadata nodes can have any values as
3529their operand. For example:
3530
3531.. code-block:: llvm
3532
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003533 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003534
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003535Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3536
3537.. code-block:: llvm
3538
3539 !0 = distinct !{!"test\00", i32 10}
3540
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003541``distinct`` nodes are useful when nodes shouldn't be merged based on their
3542content. They can also occur when transformations cause uniquing collisions
3543when metadata operands change.
3544
Sean Silvab084af42012-12-07 10:36:55 +00003545A :ref:`named metadata <namedmetadatastructure>` is a collection of
3546metadata nodes, which can be looked up in the module symbol table. For
3547example:
3548
3549.. code-block:: llvm
3550
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003551 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003552
3553Metadata can be used as function arguments. Here ``llvm.dbg.value``
3554function is using two metadata arguments:
3555
3556.. code-block:: llvm
3557
3558 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3559
3560Metadata can be attached with an instruction. Here metadata ``!21`` is
3561attached to the ``add`` instruction using the ``!dbg`` identifier:
3562
3563.. code-block:: llvm
3564
3565 %indvar.next = add i64 %indvar, 1, !dbg !21
3566
3567More information about specific metadata nodes recognized by the
3568optimizers and code generator is found below.
3569
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003570.. _specialized-metadata:
3571
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003572Specialized Metadata Nodes
3573^^^^^^^^^^^^^^^^^^^^^^^^^^
3574
3575Specialized metadata nodes are custom data structures in metadata (as opposed
3576to generic tuples). Their fields are labelled, and can be specified in any
3577order.
3578
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003579These aren't inherently debug info centric, but currently all the specialized
3580metadata nodes are related to debug info.
3581
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003582.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003583
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003584DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003585"""""""""""""
3586
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003587``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003588``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
3589tuples containing the debug info to be emitted along with the compile unit,
3590regardless of code optimizations (some nodes are only emitted if there are
3591references to them from instructions).
3592
3593.. code-block:: llvm
3594
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003595 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003596 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3597 splitDebugFilename: "abc.debug", emissionKind: 1,
3598 enums: !2, retainedTypes: !3, subprograms: !4,
3599 globals: !5, imports: !6)
3600
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003601Compile unit descriptors provide the root scope for objects declared in a
3602specific compilation unit. File descriptors are defined using this scope.
3603These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
3604keep track of subprograms, global variables, type information, and imported
3605entities (declarations and namespaces).
3606
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003607.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003608
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003609DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003610""""""
3611
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003612``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003613
3614.. code-block:: llvm
3615
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003616 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003617
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003618Files are sometimes used in ``scope:`` fields, and are the only valid target
3619for ``file:`` fields.
3620
Michael Kuperstein605308a2015-05-14 10:58:59 +00003621.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003622
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003623DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003624"""""""""""
3625
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003626``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003627``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003628
3629.. code-block:: llvm
3630
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003631 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003632 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003633 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003634
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003635The ``encoding:`` describes the details of the type. Usually it's one of the
3636following:
3637
3638.. code-block:: llvm
3639
3640 DW_ATE_address = 1
3641 DW_ATE_boolean = 2
3642 DW_ATE_float = 4
3643 DW_ATE_signed = 5
3644 DW_ATE_signed_char = 6
3645 DW_ATE_unsigned = 7
3646 DW_ATE_unsigned_char = 8
3647
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003648.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003649
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003650DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003651""""""""""""""""
3652
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003653``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003654refers to a tuple; the first operand is the return type, while the rest are the
3655types of the formal arguments in order. If the first operand is ``null``, that
3656represents a function with no return value (such as ``void foo() {}`` in C++).
3657
3658.. code-block:: llvm
3659
3660 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3661 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003662 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003663
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003664.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003665
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003666DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003667"""""""""""""
3668
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003669``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003670qualified types.
3671
3672.. code-block:: llvm
3673
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003674 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003675 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003676 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003677 align: 32)
3678
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003679The following ``tag:`` values are valid:
3680
3681.. code-block:: llvm
3682
3683 DW_TAG_formal_parameter = 5
3684 DW_TAG_member = 13
3685 DW_TAG_pointer_type = 15
3686 DW_TAG_reference_type = 16
3687 DW_TAG_typedef = 22
3688 DW_TAG_ptr_to_member_type = 31
3689 DW_TAG_const_type = 38
3690 DW_TAG_volatile_type = 53
3691 DW_TAG_restrict_type = 55
3692
3693``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003694<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003695is the ``baseType:``. The ``offset:`` is the member's bit offset.
3696``DW_TAG_formal_parameter`` is used to define a member which is a formal
3697argument of a subprogram.
3698
3699``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3700
3701``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3702``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3703``baseType:``.
3704
3705Note that the ``void *`` type is expressed as a type derived from NULL.
3706
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003707.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003708
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003709DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003710"""""""""""""""
3711
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003712``DICompositeType`` nodes represent types composed of other types, like
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003713structures and unions. ``elements:`` points to a tuple of the composed types.
3714
3715If the source language supports ODR, the ``identifier:`` field gives the unique
3716identifier used for type merging between modules. When specified, other types
3717can refer to composite types indirectly via a :ref:`metadata string
3718<metadata-string>` that matches their identifier.
3719
3720.. code-block:: llvm
3721
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003722 !0 = !DIEnumerator(name: "SixKind", value: 7)
3723 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3724 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3725 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003726 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3727 elements: !{!0, !1, !2})
3728
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003729The following ``tag:`` values are valid:
3730
3731.. code-block:: llvm
3732
3733 DW_TAG_array_type = 1
3734 DW_TAG_class_type = 2
3735 DW_TAG_enumeration_type = 4
3736 DW_TAG_structure_type = 19
3737 DW_TAG_union_type = 23
3738 DW_TAG_subroutine_type = 21
3739 DW_TAG_inheritance = 28
3740
3741
3742For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003743descriptors <DISubrange>`, each representing the range of subscripts at that
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003744level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
3745array type is a native packed vector.
3746
3747For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003748descriptors <DIEnumerator>`, each representing the definition of an enumeration
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003749value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003750``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003751
3752For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3753``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003754<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003755
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003756.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003757
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003758DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003759""""""""""
3760
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003761``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
3762:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003763
3764.. code-block:: llvm
3765
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003766 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3767 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3768 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003769
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003770.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003771
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003772DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003773""""""""""""
3774
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003775``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3776variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003777
3778.. code-block:: llvm
3779
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003780 !0 = !DIEnumerator(name: "SixKind", value: 7)
3781 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3782 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003783
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003784DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003785"""""""""""""""""""""""
3786
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003787``DITemplateTypeParameter`` nodes represent type parameters to generic source
3788language constructs. They are used (optionally) in :ref:`DICompositeType` and
3789:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003790
3791.. code-block:: llvm
3792
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003793 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003794
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003795DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003796""""""""""""""""""""""""
3797
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003798``DITemplateValueParameter`` nodes represent value parameters to generic source
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003799language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
3800but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
3801``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003802:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003803
3804.. code-block:: llvm
3805
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003806 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003807
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003808DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003809"""""""""""
3810
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003811``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003812
3813.. code-block:: llvm
3814
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003815 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003816
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003817DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003818""""""""""""""""
3819
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003820``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003821
3822.. code-block:: llvm
3823
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003824 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003825 file: !2, line: 7, type: !3, isLocal: true,
3826 isDefinition: false, variable: i32* @foo,
3827 declaration: !4)
3828
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003829All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003830:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003831
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003832.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003833
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003834DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003835""""""""""""
3836
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003837``DISubprogram`` nodes represent functions from the source language. The
3838``variables:`` field points at :ref:`variables <DILocalVariable>` that must be
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003839retained, even if their IR counterparts are optimized out of the IR. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003840``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003841
3842.. code-block:: llvm
3843
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003844 !0 = !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003845 file: !2, line: 7, type: !3, isLocal: true,
3846 isDefinition: false, scopeLine: 8, containingType: !4,
3847 virtuality: DW_VIRTUALITY_pure_virtual, virtualIndex: 10,
3848 flags: DIFlagPrototyped, isOptimized: true,
3849 function: void ()* @_Z3foov,
3850 templateParams: !5, declaration: !6, variables: !7)
3851
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003852.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003853
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003854DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003855""""""""""""""
3856
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003857``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
3858<DISubprogram>`. The line number and column numbers are used to dinstinguish
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003859two lexical blocks at same depth. They are valid targets for ``scope:``
3860fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003861
3862.. code-block:: llvm
3863
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003864 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003865
3866Usually lexical blocks are ``distinct`` to prevent node merging based on
3867operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003868
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003869.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003870
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003871DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003872""""""""""""""""""
3873
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003874``DILexicalBlockFile`` nodes are used to discriminate between sections of a
3875:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003876indicate textual inclusion, or the ``discriminator:`` field can be used to
3877discriminate between control flow within a single block in the source language.
3878
3879.. code-block:: llvm
3880
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003881 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
3882 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
3883 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003884
Michael Kuperstein605308a2015-05-14 10:58:59 +00003885.. _DILocation:
3886
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003887DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003888""""""""""
3889
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003890``DILocation`` nodes represent source debug locations. The ``scope:`` field is
3891mandatory, and points at an :ref:`DILexicalBlockFile`, an
3892:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003893
3894.. code-block:: llvm
3895
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003896 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003897
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003898.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003899
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003900DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003901"""""""""""""""
3902
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003903``DILocalVariable`` nodes represent local variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003904Instead of ``DW_TAG_variable``, they use LLVM-specific fake tags to
3905discriminate between local variables (``DW_TAG_auto_variable``) and subprogram
3906arguments (``DW_TAG_arg_variable``). In the latter case, the ``arg:`` field
3907specifies the argument position, and this variable will be included in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003908``variables:`` field of its :ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003909
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003910.. code-block:: llvm
3911
Duncan P. N. Exon Smith56b893b2015-07-24 23:59:25 +00003912 !0 = !DILocalVariable(tag: DW_TAG_arg_variable, name: "this", arg: 1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003913 scope: !3, file: !2, line: 7, type: !3,
Duncan P. N. Exon Smith62e0f452015-04-15 22:29:27 +00003914 flags: DIFlagArtificial)
Duncan P. N. Exon Smith56b893b2015-07-24 23:59:25 +00003915 !1 = !DILocalVariable(tag: DW_TAG_arg_variable, name: "x", arg: 2,
Duncan P. N. Exon Smith62e0f452015-04-15 22:29:27 +00003916 scope: !4, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smith56b893b2015-07-24 23:59:25 +00003917 !2 = !DILocalVariable(tag: DW_TAG_auto_variable, name: "y",
Duncan P. N. Exon Smith62e0f452015-04-15 22:29:27 +00003918 scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003919
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003920DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003921""""""""""""
3922
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003923``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003924:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
3925describe how the referenced LLVM variable relates to the source language
3926variable.
3927
3928The current supported vocabulary is limited:
3929
3930- ``DW_OP_deref`` dereferences the working expression.
3931- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
3932- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
3933 here, respectively) of the variable piece from the working expression.
3934
3935.. code-block:: llvm
3936
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003937 !0 = !DIExpression(DW_OP_deref)
3938 !1 = !DIExpression(DW_OP_plus, 3)
3939 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
3940 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003941
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003942DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003943""""""""""""""
3944
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003945``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003946
3947.. code-block:: llvm
3948
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003949 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003950 getter: "getFoo", attributes: 7, type: !2)
3951
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003952DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003953""""""""""""""""
3954
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003955``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003956compile unit.
3957
3958.. code-block:: llvm
3959
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003960 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003961 entity: !1, line: 7)
3962
Sean Silvab084af42012-12-07 10:36:55 +00003963'``tbaa``' Metadata
3964^^^^^^^^^^^^^^^^^^^
3965
3966In LLVM IR, memory does not have types, so LLVM's own type system is not
3967suitable for doing TBAA. Instead, metadata is added to the IR to
3968describe a type system of a higher level language. This can be used to
3969implement typical C/C++ TBAA, but it can also be used to implement
3970custom alias analysis behavior for other languages.
3971
3972The current metadata format is very simple. TBAA metadata nodes have up
3973to three fields, e.g.:
3974
3975.. code-block:: llvm
3976
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003977 !0 = !{ !"an example type tree" }
3978 !1 = !{ !"int", !0 }
3979 !2 = !{ !"float", !0 }
3980 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003981
3982The first field is an identity field. It can be any value, usually a
3983metadata string, which uniquely identifies the type. The most important
3984name in the tree is the name of the root node. Two trees with different
3985root node names are entirely disjoint, even if they have leaves with
3986common names.
3987
3988The second field identifies the type's parent node in the tree, or is
3989null or omitted for a root node. A type is considered to alias all of
3990its descendants and all of its ancestors in the tree. Also, a type is
3991considered to alias all types in other trees, so that bitcode produced
3992from multiple front-ends is handled conservatively.
3993
3994If the third field is present, it's an integer which if equal to 1
3995indicates that the type is "constant" (meaning
3996``pointsToConstantMemory`` should return true; see `other useful
3997AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
3998
3999'``tbaa.struct``' Metadata
4000^^^^^^^^^^^^^^^^^^^^^^^^^^
4001
4002The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4003aggregate assignment operations in C and similar languages, however it
4004is defined to copy a contiguous region of memory, which is more than
4005strictly necessary for aggregate types which contain holes due to
4006padding. Also, it doesn't contain any TBAA information about the fields
4007of the aggregate.
4008
4009``!tbaa.struct`` metadata can describe which memory subregions in a
4010memcpy are padding and what the TBAA tags of the struct are.
4011
4012The current metadata format is very simple. ``!tbaa.struct`` metadata
4013nodes are a list of operands which are in conceptual groups of three.
4014For each group of three, the first operand gives the byte offset of a
4015field in bytes, the second gives its size in bytes, and the third gives
4016its tbaa tag. e.g.:
4017
4018.. code-block:: llvm
4019
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004020 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004021
4022This describes a struct with two fields. The first is at offset 0 bytes
4023with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4024and has size 4 bytes and has tbaa tag !2.
4025
4026Note that the fields need not be contiguous. In this example, there is a
40274 byte gap between the two fields. This gap represents padding which
4028does not carry useful data and need not be preserved.
4029
Hal Finkel94146652014-07-24 14:25:39 +00004030'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004031^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004032
4033``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4034noalias memory-access sets. This means that some collection of memory access
4035instructions (loads, stores, memory-accessing calls, etc.) that carry
4036``noalias`` metadata can specifically be specified not to alias with some other
4037collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004038Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004039a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004040of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004041subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004042instruction's ``noalias`` list, then the two memory accesses are assumed not to
4043alias.
Hal Finkel94146652014-07-24 14:25:39 +00004044
Hal Finkel029cde62014-07-25 15:50:02 +00004045The metadata identifying each domain is itself a list containing one or two
4046entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00004047string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004048self-reference can be used to create globally unique domain names. A
4049descriptive string may optionally be provided as a second list entry.
4050
4051The metadata identifying each scope is also itself a list containing two or
4052three entries. The first entry is the name of the scope. Note that if the name
4053is a string then it can be combined accross functions and translation units. A
4054self-reference can be used to create globally unique scope names. A metadata
4055reference to the scope's domain is the second entry. A descriptive string may
4056optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004057
4058For example,
4059
4060.. code-block:: llvm
4061
Hal Finkel029cde62014-07-25 15:50:02 +00004062 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004063 !0 = !{!0}
4064 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004065
Hal Finkel029cde62014-07-25 15:50:02 +00004066 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004067 !2 = !{!2, !0}
4068 !3 = !{!3, !0}
4069 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004070
Hal Finkel029cde62014-07-25 15:50:02 +00004071 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004072 !5 = !{!4} ; A list containing only scope !4
4073 !6 = !{!4, !3, !2}
4074 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004075
4076 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004077 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004078 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004079
Hal Finkel029cde62014-07-25 15:50:02 +00004080 ; These two instructions also don't alias (for domain !1, the set of scopes
4081 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004082 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004083 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004084
Adam Nemet0a8416f2015-05-11 08:30:28 +00004085 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004086 ; the !noalias list is not a superset of, or equal to, the scopes in the
4087 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004088 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004089 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004090
Sean Silvab084af42012-12-07 10:36:55 +00004091'``fpmath``' Metadata
4092^^^^^^^^^^^^^^^^^^^^^
4093
4094``fpmath`` metadata may be attached to any instruction of floating point
4095type. It can be used to express the maximum acceptable error in the
4096result of that instruction, in ULPs, thus potentially allowing the
4097compiler to use a more efficient but less accurate method of computing
4098it. ULP is defined as follows:
4099
4100 If ``x`` is a real number that lies between two finite consecutive
4101 floating-point numbers ``a`` and ``b``, without being equal to one
4102 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4103 distance between the two non-equal finite floating-point numbers
4104 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4105
4106The metadata node shall consist of a single positive floating point
4107number representing the maximum relative error, for example:
4108
4109.. code-block:: llvm
4110
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004111 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004112
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004113.. _range-metadata:
4114
Sean Silvab084af42012-12-07 10:36:55 +00004115'``range``' Metadata
4116^^^^^^^^^^^^^^^^^^^^
4117
Jingyue Wu37fcb592014-06-19 16:50:16 +00004118``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4119integer types. It expresses the possible ranges the loaded value or the value
4120returned by the called function at this call site is in. The ranges are
4121represented with a flattened list of integers. The loaded value or the value
4122returned is known to be in the union of the ranges defined by each consecutive
4123pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004124
4125- The type must match the type loaded by the instruction.
4126- The pair ``a,b`` represents the range ``[a,b)``.
4127- Both ``a`` and ``b`` are constants.
4128- The range is allowed to wrap.
4129- The range should not represent the full or empty set. That is,
4130 ``a!=b``.
4131
4132In addition, the pairs must be in signed order of the lower bound and
4133they must be non-contiguous.
4134
4135Examples:
4136
4137.. code-block:: llvm
4138
David Blaikiec7aabbb2015-03-04 22:06:14 +00004139 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4140 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004141 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4142 %d = invoke i8 @bar() to label %cont
4143 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004144 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004145 !0 = !{ i8 0, i8 2 }
4146 !1 = !{ i8 255, i8 2 }
4147 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4148 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004149
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004150'``llvm.loop``'
4151^^^^^^^^^^^^^^^
4152
4153It is sometimes useful to attach information to loop constructs. Currently,
4154loop metadata is implemented as metadata attached to the branch instruction
4155in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004156guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004157specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004158
4159The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004160itself to avoid merging it with any other identifier metadata, e.g.,
4161during module linkage or function inlining. That is, each loop should refer
4162to their own identification metadata even if they reside in separate functions.
4163The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004164constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004165
4166.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004167
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004168 !0 = !{!0}
4169 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004170
Mark Heffernan893752a2014-07-18 19:24:51 +00004171The loop identifier metadata can be used to specify additional
4172per-loop metadata. Any operands after the first operand can be treated
4173as user-defined metadata. For example the ``llvm.loop.unroll.count``
4174suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004175
Paul Redmond5fdf8362013-05-28 20:00:34 +00004176.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004177
Paul Redmond5fdf8362013-05-28 20:00:34 +00004178 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4179 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004180 !0 = !{!0, !1}
4181 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004182
Mark Heffernan9d20e422014-07-21 23:11:03 +00004183'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4184^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004185
Mark Heffernan9d20e422014-07-21 23:11:03 +00004186Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4187used to control per-loop vectorization and interleaving parameters such as
4188vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00004189conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004190``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4191optimization hints and the optimizer will only interleave and vectorize loops if
4192it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
4193which contains information about loop-carried memory dependencies can be helpful
4194in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004195
Mark Heffernan9d20e422014-07-21 23:11:03 +00004196'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004197^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4198
Mark Heffernan9d20e422014-07-21 23:11:03 +00004199This metadata suggests an interleave count to the loop interleaver.
4200The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004201second operand is an integer specifying the interleave count. For
4202example:
4203
4204.. code-block:: llvm
4205
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004206 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004207
Mark Heffernan9d20e422014-07-21 23:11:03 +00004208Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
4209multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
4210then the interleave count will be determined automatically.
4211
4212'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004213^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004214
4215This metadata selectively enables or disables vectorization for the loop. The
4216first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
4217is a bit. If the bit operand value is 1 vectorization is enabled. A value of
42180 disables vectorization:
4219
4220.. code-block:: llvm
4221
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004222 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4223 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004224
4225'``llvm.loop.vectorize.width``' Metadata
4226^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4227
4228This metadata sets the target width of the vectorizer. The first
4229operand is the string ``llvm.loop.vectorize.width`` and the second
4230operand is an integer specifying the width. For example:
4231
4232.. code-block:: llvm
4233
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004234 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004235
4236Note that setting ``llvm.loop.vectorize.width`` to 1 disables
4237vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
42380 or if the loop does not have this metadata the width will be
4239determined automatically.
4240
4241'``llvm.loop.unroll``'
4242^^^^^^^^^^^^^^^^^^^^^^
4243
4244Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4245optimization hints such as the unroll factor. ``llvm.loop.unroll``
4246metadata should be used in conjunction with ``llvm.loop`` loop
4247identification metadata. The ``llvm.loop.unroll`` metadata are only
4248optimization hints and the unrolling will only be performed if the
4249optimizer believes it is safe to do so.
4250
Mark Heffernan893752a2014-07-18 19:24:51 +00004251'``llvm.loop.unroll.count``' Metadata
4252^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4253
4254This metadata suggests an unroll factor to the loop unroller. The
4255first operand is the string ``llvm.loop.unroll.count`` and the second
4256operand is a positive integer specifying the unroll factor. For
4257example:
4258
4259.. code-block:: llvm
4260
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004261 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004262
4263If the trip count of the loop is less than the unroll count the loop
4264will be partially unrolled.
4265
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004266'``llvm.loop.unroll.disable``' Metadata
4267^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4268
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004269This metadata disables loop unrolling. The metadata has a single operand
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004270which is the string ``llvm.loop.unroll.disable``. For example:
4271
4272.. code-block:: llvm
4273
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004274 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004275
Kevin Qin715b01e2015-03-09 06:14:18 +00004276'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004277^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004278
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004279This metadata disables runtime loop unrolling. The metadata has a single
Kevin Qin715b01e2015-03-09 06:14:18 +00004280operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
4281
4282.. code-block:: llvm
4283
4284 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4285
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004286'``llvm.loop.unroll.full``' Metadata
4287^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4288
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004289This metadata suggests that the loop should be unrolled fully. The
4290metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004291For example:
4292
4293.. code-block:: llvm
4294
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004295 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004296
4297'``llvm.mem``'
4298^^^^^^^^^^^^^^^
4299
4300Metadata types used to annotate memory accesses with information helpful
4301for optimizations are prefixed with ``llvm.mem``.
4302
4303'``llvm.mem.parallel_loop_access``' Metadata
4304^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4305
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004306The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4307or metadata containing a list of loop identifiers for nested loops.
4308The metadata is attached to memory accessing instructions and denotes that
4309no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004310with the same loop identifier.
4311
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004312Precisely, given two instructions ``m1`` and ``m2`` that both have the
4313``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4314set of loops associated with that metadata, respectively, then there is no loop
4315carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004316``L2``.
4317
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004318As a special case, if all memory accessing instructions in a loop have
4319``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4320loop has no loop carried memory dependences and is considered to be a parallel
4321loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004322
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004323Note that if not all memory access instructions have such metadata referring to
4324the loop, then the loop is considered not being trivially parallel. Additional
4325memory dependence analysis is required to make that determination. As a fail
4326safe mechanism, this causes loops that were originally parallel to be considered
4327sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004328insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004329
4330Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004331both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004332metadata types that refer to the same loop identifier metadata.
4333
4334.. code-block:: llvm
4335
4336 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004337 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004338 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004339 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004340 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004341 ...
4342 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004343
4344 for.end:
4345 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004346 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004347
4348It is also possible to have nested parallel loops. In that case the
4349memory accesses refer to a list of loop identifier metadata nodes instead of
4350the loop identifier metadata node directly:
4351
4352.. code-block:: llvm
4353
4354 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004355 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004356 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004357 ...
4358 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004359
4360 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004361 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004362 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004363 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004364 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004365 ...
4366 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004367
4368 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004369 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004370 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004371 ...
4372 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004373
4374 outer.for.end: ; preds = %for.body
4375 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004376 !0 = !{!1, !2} ; a list of loop identifiers
4377 !1 = !{!1} ; an identifier for the inner loop
4378 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004379
Peter Collingbournee6909c82015-02-20 20:30:47 +00004380'``llvm.bitsets``'
4381^^^^^^^^^^^^^^^^^^
4382
4383The ``llvm.bitsets`` global metadata is used to implement
4384:doc:`bitsets <BitSets>`.
4385
Sean Silvab084af42012-12-07 10:36:55 +00004386Module Flags Metadata
4387=====================
4388
4389Information about the module as a whole is difficult to convey to LLVM's
4390subsystems. The LLVM IR isn't sufficient to transmit this information.
4391The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004392this. These flags are in the form of key / value pairs --- much like a
4393dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004394look it up.
4395
4396The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4397Each triplet has the following form:
4398
4399- The first element is a *behavior* flag, which specifies the behavior
4400 when two (or more) modules are merged together, and it encounters two
4401 (or more) metadata with the same ID. The supported behaviors are
4402 described below.
4403- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004404 metadata. Each module may only have one flag entry for each unique ID (not
4405 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004406- The third element is the value of the flag.
4407
4408When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004409``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4410each unique metadata ID string, there will be exactly one entry in the merged
4411modules ``llvm.module.flags`` metadata table, and the value for that entry will
4412be determined by the merge behavior flag, as described below. The only exception
4413is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004414
4415The following behaviors are supported:
4416
4417.. list-table::
4418 :header-rows: 1
4419 :widths: 10 90
4420
4421 * - Value
4422 - Behavior
4423
4424 * - 1
4425 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004426 Emits an error if two values disagree, otherwise the resulting value
4427 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004428
4429 * - 2
4430 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004431 Emits a warning if two values disagree. The result value will be the
4432 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004433
4434 * - 3
4435 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004436 Adds a requirement that another module flag be present and have a
4437 specified value after linking is performed. The value must be a
4438 metadata pair, where the first element of the pair is the ID of the
4439 module flag to be restricted, and the second element of the pair is
4440 the value the module flag should be restricted to. This behavior can
4441 be used to restrict the allowable results (via triggering of an
4442 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004443
4444 * - 4
4445 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004446 Uses the specified value, regardless of the behavior or value of the
4447 other module. If both modules specify **Override**, but the values
4448 differ, an error will be emitted.
4449
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004450 * - 5
4451 - **Append**
4452 Appends the two values, which are required to be metadata nodes.
4453
4454 * - 6
4455 - **AppendUnique**
4456 Appends the two values, which are required to be metadata
4457 nodes. However, duplicate entries in the second list are dropped
4458 during the append operation.
4459
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004460It is an error for a particular unique flag ID to have multiple behaviors,
4461except in the case of **Require** (which adds restrictions on another metadata
4462value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004463
4464An example of module flags:
4465
4466.. code-block:: llvm
4467
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004468 !0 = !{ i32 1, !"foo", i32 1 }
4469 !1 = !{ i32 4, !"bar", i32 37 }
4470 !2 = !{ i32 2, !"qux", i32 42 }
4471 !3 = !{ i32 3, !"qux",
4472 !{
4473 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004474 }
4475 }
4476 !llvm.module.flags = !{ !0, !1, !2, !3 }
4477
4478- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4479 if two or more ``!"foo"`` flags are seen is to emit an error if their
4480 values are not equal.
4481
4482- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4483 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004484 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004485
4486- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4487 behavior if two or more ``!"qux"`` flags are seen is to emit a
4488 warning if their values are not equal.
4489
4490- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4491
4492 ::
4493
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004494 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004495
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004496 The behavior is to emit an error if the ``llvm.module.flags`` does not
4497 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4498 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004499
4500Objective-C Garbage Collection Module Flags Metadata
4501----------------------------------------------------
4502
4503On the Mach-O platform, Objective-C stores metadata about garbage
4504collection in a special section called "image info". The metadata
4505consists of a version number and a bitmask specifying what types of
4506garbage collection are supported (if any) by the file. If two or more
4507modules are linked together their garbage collection metadata needs to
4508be merged rather than appended together.
4509
4510The Objective-C garbage collection module flags metadata consists of the
4511following key-value pairs:
4512
4513.. list-table::
4514 :header-rows: 1
4515 :widths: 30 70
4516
4517 * - Key
4518 - Value
4519
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004520 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004521 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004522
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004523 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004524 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004525 always 0.
4526
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004527 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004528 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004529 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4530 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4531 Objective-C ABI version 2.
4532
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004533 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004534 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004535 not. Valid values are 0, for no garbage collection, and 2, for garbage
4536 collection supported.
4537
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004538 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004539 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004540 If present, its value must be 6. This flag requires that the
4541 ``Objective-C Garbage Collection`` flag have the value 2.
4542
4543Some important flag interactions:
4544
4545- If a module with ``Objective-C Garbage Collection`` set to 0 is
4546 merged with a module with ``Objective-C Garbage Collection`` set to
4547 2, then the resulting module has the
4548 ``Objective-C Garbage Collection`` flag set to 0.
4549- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4550 merged with a module with ``Objective-C GC Only`` set to 6.
4551
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004552Automatic Linker Flags Module Flags Metadata
4553--------------------------------------------
4554
4555Some targets support embedding flags to the linker inside individual object
4556files. Typically this is used in conjunction with language extensions which
4557allow source files to explicitly declare the libraries they depend on, and have
4558these automatically be transmitted to the linker via object files.
4559
4560These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004561using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004562to be ``AppendUnique``, and the value for the key is expected to be a metadata
4563node which should be a list of other metadata nodes, each of which should be a
4564list of metadata strings defining linker options.
4565
4566For example, the following metadata section specifies two separate sets of
4567linker options, presumably to link against ``libz`` and the ``Cocoa``
4568framework::
4569
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004570 !0 = !{ i32 6, !"Linker Options",
4571 !{
4572 !{ !"-lz" },
4573 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004574 !llvm.module.flags = !{ !0 }
4575
4576The metadata encoding as lists of lists of options, as opposed to a collapsed
4577list of options, is chosen so that the IR encoding can use multiple option
4578strings to specify e.g., a single library, while still having that specifier be
4579preserved as an atomic element that can be recognized by a target specific
4580assembly writer or object file emitter.
4581
4582Each individual option is required to be either a valid option for the target's
4583linker, or an option that is reserved by the target specific assembly writer or
4584object file emitter. No other aspect of these options is defined by the IR.
4585
Oliver Stannard5dc29342014-06-20 10:08:11 +00004586C type width Module Flags Metadata
4587----------------------------------
4588
4589The ARM backend emits a section into each generated object file describing the
4590options that it was compiled with (in a compiler-independent way) to prevent
4591linking incompatible objects, and to allow automatic library selection. Some
4592of these options are not visible at the IR level, namely wchar_t width and enum
4593width.
4594
4595To pass this information to the backend, these options are encoded in module
4596flags metadata, using the following key-value pairs:
4597
4598.. list-table::
4599 :header-rows: 1
4600 :widths: 30 70
4601
4602 * - Key
4603 - Value
4604
4605 * - short_wchar
4606 - * 0 --- sizeof(wchar_t) == 4
4607 * 1 --- sizeof(wchar_t) == 2
4608
4609 * - short_enum
4610 - * 0 --- Enums are at least as large as an ``int``.
4611 * 1 --- Enums are stored in the smallest integer type which can
4612 represent all of its values.
4613
4614For example, the following metadata section specifies that the module was
4615compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4616enum is the smallest type which can represent all of its values::
4617
4618 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004619 !0 = !{i32 1, !"short_wchar", i32 1}
4620 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004621
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004622.. _intrinsicglobalvariables:
4623
Sean Silvab084af42012-12-07 10:36:55 +00004624Intrinsic Global Variables
4625==========================
4626
4627LLVM has a number of "magic" global variables that contain data that
4628affect code generation or other IR semantics. These are documented here.
4629All globals of this sort should have a section specified as
4630"``llvm.metadata``". This section and all globals that start with
4631"``llvm.``" are reserved for use by LLVM.
4632
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004633.. _gv_llvmused:
4634
Sean Silvab084af42012-12-07 10:36:55 +00004635The '``llvm.used``' Global Variable
4636-----------------------------------
4637
Rafael Espindola74f2e462013-04-22 14:58:02 +00004638The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004639:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004640pointers to named global variables, functions and aliases which may optionally
4641have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004642use of it is:
4643
4644.. code-block:: llvm
4645
4646 @X = global i8 4
4647 @Y = global i32 123
4648
4649 @llvm.used = appending global [2 x i8*] [
4650 i8* @X,
4651 i8* bitcast (i32* @Y to i8*)
4652 ], section "llvm.metadata"
4653
Rafael Espindola74f2e462013-04-22 14:58:02 +00004654If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4655and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004656symbol that it cannot see (which is why they have to be named). For example, if
4657a variable has internal linkage and no references other than that from the
4658``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4659references from inline asms and other things the compiler cannot "see", and
4660corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004661
4662On some targets, the code generator must emit a directive to the
4663assembler or object file to prevent the assembler and linker from
4664molesting the symbol.
4665
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004666.. _gv_llvmcompilerused:
4667
Sean Silvab084af42012-12-07 10:36:55 +00004668The '``llvm.compiler.used``' Global Variable
4669--------------------------------------------
4670
4671The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4672directive, except that it only prevents the compiler from touching the
4673symbol. On targets that support it, this allows an intelligent linker to
4674optimize references to the symbol without being impeded as it would be
4675by ``@llvm.used``.
4676
4677This is a rare construct that should only be used in rare circumstances,
4678and should not be exposed to source languages.
4679
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004680.. _gv_llvmglobalctors:
4681
Sean Silvab084af42012-12-07 10:36:55 +00004682The '``llvm.global_ctors``' Global Variable
4683-------------------------------------------
4684
4685.. code-block:: llvm
4686
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004687 %0 = type { i32, void ()*, i8* }
4688 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004689
4690The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004691functions, priorities, and an optional associated global or function.
4692The functions referenced by this array will be called in ascending order
4693of priority (i.e. lowest first) when the module is loaded. The order of
4694functions with the same priority is not defined.
4695
4696If the third field is present, non-null, and points to a global variable
4697or function, the initializer function will only run if the associated
4698data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004699
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004700.. _llvmglobaldtors:
4701
Sean Silvab084af42012-12-07 10:36:55 +00004702The '``llvm.global_dtors``' Global Variable
4703-------------------------------------------
4704
4705.. code-block:: llvm
4706
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004707 %0 = type { i32, void ()*, i8* }
4708 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004709
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004710The ``@llvm.global_dtors`` array contains a list of destructor
4711functions, priorities, and an optional associated global or function.
4712The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004713order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004714order of functions with the same priority is not defined.
4715
4716If the third field is present, non-null, and points to a global variable
4717or function, the destructor function will only run if the associated
4718data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004719
4720Instruction Reference
4721=====================
4722
4723The LLVM instruction set consists of several different classifications
4724of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4725instructions <binaryops>`, :ref:`bitwise binary
4726instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4727:ref:`other instructions <otherops>`.
4728
4729.. _terminators:
4730
4731Terminator Instructions
4732-----------------------
4733
4734As mentioned :ref:`previously <functionstructure>`, every basic block in a
4735program ends with a "Terminator" instruction, which indicates which
4736block should be executed after the current block is finished. These
4737terminator instructions typically yield a '``void``' value: they produce
4738control flow, not values (the one exception being the
4739':ref:`invoke <i_invoke>`' instruction).
4740
4741The terminator instructions are: ':ref:`ret <i_ret>`',
4742':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
4743':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemer654e1302015-07-31 17:58:14 +00004744':ref:`resume <i_resume>`', ':ref:`catchpad <i_catchpad>`',
4745':ref:`catchendpad <i_catchendpad>`',
4746':ref:`catchret <i_catchret>`',
4747':ref:`cleanupret <i_cleanupret>`',
4748':ref:`terminatepad <i_terminatepad>`',
4749and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00004750
4751.. _i_ret:
4752
4753'``ret``' Instruction
4754^^^^^^^^^^^^^^^^^^^^^
4755
4756Syntax:
4757"""""""
4758
4759::
4760
4761 ret <type> <value> ; Return a value from a non-void function
4762 ret void ; Return from void function
4763
4764Overview:
4765"""""""""
4766
4767The '``ret``' instruction is used to return control flow (and optionally
4768a value) from a function back to the caller.
4769
4770There are two forms of the '``ret``' instruction: one that returns a
4771value and then causes control flow, and one that just causes control
4772flow to occur.
4773
4774Arguments:
4775""""""""""
4776
4777The '``ret``' instruction optionally accepts a single argument, the
4778return value. The type of the return value must be a ':ref:`first
4779class <t_firstclass>`' type.
4780
4781A function is not :ref:`well formed <wellformed>` if it it has a non-void
4782return type and contains a '``ret``' instruction with no return value or
4783a return value with a type that does not match its type, or if it has a
4784void return type and contains a '``ret``' instruction with a return
4785value.
4786
4787Semantics:
4788""""""""""
4789
4790When the '``ret``' instruction is executed, control flow returns back to
4791the calling function's context. If the caller is a
4792":ref:`call <i_call>`" instruction, execution continues at the
4793instruction after the call. If the caller was an
4794":ref:`invoke <i_invoke>`" instruction, execution continues at the
4795beginning of the "normal" destination block. If the instruction returns
4796a value, that value shall set the call or invoke instruction's return
4797value.
4798
4799Example:
4800""""""""
4801
4802.. code-block:: llvm
4803
4804 ret i32 5 ; Return an integer value of 5
4805 ret void ; Return from a void function
4806 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
4807
4808.. _i_br:
4809
4810'``br``' Instruction
4811^^^^^^^^^^^^^^^^^^^^
4812
4813Syntax:
4814"""""""
4815
4816::
4817
4818 br i1 <cond>, label <iftrue>, label <iffalse>
4819 br label <dest> ; Unconditional branch
4820
4821Overview:
4822"""""""""
4823
4824The '``br``' instruction is used to cause control flow to transfer to a
4825different basic block in the current function. There are two forms of
4826this instruction, corresponding to a conditional branch and an
4827unconditional branch.
4828
4829Arguments:
4830""""""""""
4831
4832The conditional branch form of the '``br``' instruction takes a single
4833'``i1``' value and two '``label``' values. The unconditional form of the
4834'``br``' instruction takes a single '``label``' value as a target.
4835
4836Semantics:
4837""""""""""
4838
4839Upon execution of a conditional '``br``' instruction, the '``i1``'
4840argument is evaluated. If the value is ``true``, control flows to the
4841'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
4842to the '``iffalse``' ``label`` argument.
4843
4844Example:
4845""""""""
4846
4847.. code-block:: llvm
4848
4849 Test:
4850 %cond = icmp eq i32 %a, %b
4851 br i1 %cond, label %IfEqual, label %IfUnequal
4852 IfEqual:
4853 ret i32 1
4854 IfUnequal:
4855 ret i32 0
4856
4857.. _i_switch:
4858
4859'``switch``' Instruction
4860^^^^^^^^^^^^^^^^^^^^^^^^
4861
4862Syntax:
4863"""""""
4864
4865::
4866
4867 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
4868
4869Overview:
4870"""""""""
4871
4872The '``switch``' instruction is used to transfer control flow to one of
4873several different places. It is a generalization of the '``br``'
4874instruction, allowing a branch to occur to one of many possible
4875destinations.
4876
4877Arguments:
4878""""""""""
4879
4880The '``switch``' instruction uses three parameters: an integer
4881comparison value '``value``', a default '``label``' destination, and an
4882array of pairs of comparison value constants and '``label``'s. The table
4883is not allowed to contain duplicate constant entries.
4884
4885Semantics:
4886""""""""""
4887
4888The ``switch`` instruction specifies a table of values and destinations.
4889When the '``switch``' instruction is executed, this table is searched
4890for the given value. If the value is found, control flow is transferred
4891to the corresponding destination; otherwise, control flow is transferred
4892to the default destination.
4893
4894Implementation:
4895"""""""""""""""
4896
4897Depending on properties of the target machine and the particular
4898``switch`` instruction, this instruction may be code generated in
4899different ways. For example, it could be generated as a series of
4900chained conditional branches or with a lookup table.
4901
4902Example:
4903""""""""
4904
4905.. code-block:: llvm
4906
4907 ; Emulate a conditional br instruction
4908 %Val = zext i1 %value to i32
4909 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
4910
4911 ; Emulate an unconditional br instruction
4912 switch i32 0, label %dest [ ]
4913
4914 ; Implement a jump table:
4915 switch i32 %val, label %otherwise [ i32 0, label %onzero
4916 i32 1, label %onone
4917 i32 2, label %ontwo ]
4918
4919.. _i_indirectbr:
4920
4921'``indirectbr``' Instruction
4922^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4923
4924Syntax:
4925"""""""
4926
4927::
4928
4929 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
4930
4931Overview:
4932"""""""""
4933
4934The '``indirectbr``' instruction implements an indirect branch to a
4935label within the current function, whose address is specified by
4936"``address``". Address must be derived from a
4937:ref:`blockaddress <blockaddress>` constant.
4938
4939Arguments:
4940""""""""""
4941
4942The '``address``' argument is the address of the label to jump to. The
4943rest of the arguments indicate the full set of possible destinations
4944that the address may point to. Blocks are allowed to occur multiple
4945times in the destination list, though this isn't particularly useful.
4946
4947This destination list is required so that dataflow analysis has an
4948accurate understanding of the CFG.
4949
4950Semantics:
4951""""""""""
4952
4953Control transfers to the block specified in the address argument. All
4954possible destination blocks must be listed in the label list, otherwise
4955this instruction has undefined behavior. This implies that jumps to
4956labels defined in other functions have undefined behavior as well.
4957
4958Implementation:
4959"""""""""""""""
4960
4961This is typically implemented with a jump through a register.
4962
4963Example:
4964""""""""
4965
4966.. code-block:: llvm
4967
4968 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
4969
4970.. _i_invoke:
4971
4972'``invoke``' Instruction
4973^^^^^^^^^^^^^^^^^^^^^^^^
4974
4975Syntax:
4976"""""""
4977
4978::
4979
4980 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
4981 to label <normal label> unwind label <exception label>
4982
4983Overview:
4984"""""""""
4985
4986The '``invoke``' instruction causes control to transfer to a specified
4987function, with the possibility of control flow transfer to either the
4988'``normal``' label or the '``exception``' label. If the callee function
4989returns with the "``ret``" instruction, control flow will return to the
4990"normal" label. If the callee (or any indirect callees) returns via the
4991":ref:`resume <i_resume>`" instruction or other exception handling
4992mechanism, control is interrupted and continued at the dynamically
4993nearest "exception" label.
4994
4995The '``exception``' label is a `landing
4996pad <ExceptionHandling.html#overview>`_ for the exception. As such,
4997'``exception``' label is required to have the
4998":ref:`landingpad <i_landingpad>`" instruction, which contains the
4999information about the behavior of the program after unwinding happens,
5000as its first non-PHI instruction. The restrictions on the
5001"``landingpad``" instruction's tightly couples it to the "``invoke``"
5002instruction, so that the important information contained within the
5003"``landingpad``" instruction can't be lost through normal code motion.
5004
5005Arguments:
5006""""""""""
5007
5008This instruction requires several arguments:
5009
5010#. The optional "cconv" marker indicates which :ref:`calling
5011 convention <callingconv>` the call should use. If none is
5012 specified, the call defaults to using C calling conventions.
5013#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5014 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5015 are valid here.
5016#. '``ptr to function ty``': shall be the signature of the pointer to
5017 function value being invoked. In most cases, this is a direct
5018 function invocation, but indirect ``invoke``'s are just as possible,
5019 branching off an arbitrary pointer to function value.
5020#. '``function ptr val``': An LLVM value containing a pointer to a
5021 function to be invoked.
5022#. '``function args``': argument list whose types match the function
5023 signature argument types and parameter attributes. All arguments must
5024 be of :ref:`first class <t_firstclass>` type. If the function signature
5025 indicates the function accepts a variable number of arguments, the
5026 extra arguments can be specified.
5027#. '``normal label``': the label reached when the called function
5028 executes a '``ret``' instruction.
5029#. '``exception label``': the label reached when a callee returns via
5030 the :ref:`resume <i_resume>` instruction or other exception handling
5031 mechanism.
5032#. The optional :ref:`function attributes <fnattrs>` list. Only
5033 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5034 attributes are valid here.
5035
5036Semantics:
5037""""""""""
5038
5039This instruction is designed to operate as a standard '``call``'
5040instruction in most regards. The primary difference is that it
5041establishes an association with a label, which is used by the runtime
5042library to unwind the stack.
5043
5044This instruction is used in languages with destructors to ensure that
5045proper cleanup is performed in the case of either a ``longjmp`` or a
5046thrown exception. Additionally, this is important for implementation of
5047'``catch``' clauses in high-level languages that support them.
5048
5049For the purposes of the SSA form, the definition of the value returned
5050by the '``invoke``' instruction is deemed to occur on the edge from the
5051current block to the "normal" label. If the callee unwinds then no
5052return value is available.
5053
5054Example:
5055""""""""
5056
5057.. code-block:: llvm
5058
5059 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005060 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005061 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005062 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005063
5064.. _i_resume:
5065
5066'``resume``' Instruction
5067^^^^^^^^^^^^^^^^^^^^^^^^
5068
5069Syntax:
5070"""""""
5071
5072::
5073
5074 resume <type> <value>
5075
5076Overview:
5077"""""""""
5078
5079The '``resume``' instruction is a terminator instruction that has no
5080successors.
5081
5082Arguments:
5083""""""""""
5084
5085The '``resume``' instruction requires one argument, which must have the
5086same type as the result of any '``landingpad``' instruction in the same
5087function.
5088
5089Semantics:
5090""""""""""
5091
5092The '``resume``' instruction resumes propagation of an existing
5093(in-flight) exception whose unwinding was interrupted with a
5094:ref:`landingpad <i_landingpad>` instruction.
5095
5096Example:
5097""""""""
5098
5099.. code-block:: llvm
5100
5101 resume { i8*, i32 } %exn
5102
David Majnemer654e1302015-07-31 17:58:14 +00005103.. _i_catchpad:
5104
5105'``catchpad``' Instruction
5106^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5107
5108Syntax:
5109"""""""
5110
5111::
5112
5113 <resultval> = catchpad <resultty> [<args>*]
5114 to label <normal label> unwind label <exception label>
5115
5116Overview:
5117"""""""""
5118
5119The '``catchpad``' instruction is used by `LLVM's exception handling
5120system <ExceptionHandling.html#overview>`_ to specify that a basic block
5121is a catch block --- one where a personality routine attempts to transfer
5122control to catch an exception.
5123The ``args`` correspond to whatever information the personality
5124routine requires to know if this is an appropriate place to catch the
5125exception. Control is tranfered to the ``exception`` label if the
5126``catchpad`` is not an appropriate handler for the in-flight exception.
5127The ``normal`` label should contain the code found in the ``catch``
5128portion of a ``try``/``catch`` sequence. It defines values supplied by
5129the :ref:`personality function <personalityfn>` upon re-entry to the
5130function. The ``resultval`` has the type ``resultty``.
5131
5132Arguments:
5133""""""""""
5134
5135The instruction takes a list of arbitrary values which are interpreted
5136by the :ref:`personality function <personalityfn>`.
5137
5138The ``catchpad`` must be provided a ``normal`` label to transfer control
5139to if the ``catchpad`` matches the exception and an ``exception``
5140label to transfer control to if it doesn't.
5141
5142Semantics:
5143""""""""""
5144
5145The '``catchpad``' instruction defines the values which are set by the
5146:ref:`personality function <personalityfn>` upon re-entry to the function, and
5147therefore the "result type" of the ``catchpad`` instruction. As with
5148calling conventions, how the personality function results are
5149represented in LLVM IR is target specific.
5150
5151When the call stack is being unwound due to an exception being thrown,
5152the exception is compared against the ``args``. If it doesn't match,
5153then control is transfered to the ``exception`` basic block.
5154
5155The ``catchpad`` instruction has several restrictions:
5156
5157- A catch block is a basic block which is the unwind destination of
5158 an exceptional instruction.
5159- A catch block must have a '``catchpad``' instruction as its
5160 first non-PHI instruction.
5161- A catch block's ``exception`` edge must refer to a catch block or a
5162 catch-end block.
5163- There can be only one '``catchpad``' instruction within the
5164 catch block.
5165- A basic block that is not a catch block may not include a
5166 '``catchpad``' instruction.
5167- It is undefined behavior for control to transfer from a ``catchpad`` to a
5168 ``cleanupret`` without first executing a ``catchret`` and a subsequent
5169 ``cleanuppad``.
5170- It is undefined behavior for control to transfer from a ``catchpad`` to a
5171 ``ret`` without first executing a ``catchret``.
5172
5173Example:
5174""""""""
5175
5176.. code-block:: llvm
5177
5178 ;; A catch block which can catch an integer.
5179 %res = catchpad { i8*, i32 } [i8** @_ZTIi]
5180 to label %int.handler unwind label %terminate
5181
5182.. _i_catchendpad:
5183
5184'``catchendpad``' Instruction
5185^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5186
5187Syntax:
5188"""""""
5189
5190::
5191
5192 catchendpad unwind label <nextaction>
5193 catchendpad unwind to caller
5194
5195Overview:
5196"""""""""
5197
5198The '``catchendpad``' instruction is used by `LLVM's exception handling
5199system <ExceptionHandling.html#overview>`_ to communicate to the
5200:ref:`personality function <personalityfn>` which invokes are associated
5201with a chain of :ref:`catchpad <i_catchpad>` instructions.
5202
5203The ``nextaction`` label indicates where control should transfer to if
5204none of the ``catchpad`` instructions are suitable for catching the
5205in-flight exception.
5206
5207If a ``nextaction`` label is not present, the instruction unwinds out of
5208its parent function. The
5209:ref:`personality function <personalityfn>` will continue processing
5210exception handling actions in the caller.
5211
5212Arguments:
5213""""""""""
5214
5215The instruction optionally takes a label, ``nextaction``, indicating
5216where control should transfer to if none of the preceding
5217``catchpad`` instructions are suitable for the in-flight exception.
5218
5219Semantics:
5220""""""""""
5221
5222When the call stack is being unwound due to an exception being thrown
5223and none of the constituent ``catchpad`` instructions match, then
5224control is transfered to ``nextaction`` if it is present. If it is not
5225present, control is transfered to the caller.
5226
5227The ``catchendpad`` instruction has several restrictions:
5228
5229- A catch-end block is a basic block which is the unwind destination of
5230 an exceptional instruction.
5231- A catch-end block must have a '``catchendpad``' instruction as its
5232 first non-PHI instruction.
5233- There can be only one '``catchendpad``' instruction within the
5234 catch block.
5235- A basic block that is not a catch-end block may not include a
5236 '``catchendpad``' instruction.
5237- Exactly one catch block may unwind to a ``catchendpad``.
5238- The unwind target of invokes between a ``catchpad`` and a
5239 corresponding ``catchret`` must be its ``catchendpad``.
5240
5241Example:
5242""""""""
5243
5244.. code-block:: llvm
5245
5246 catchendpad unwind label %terminate
5247 catchendpad unwind to caller
5248
5249.. _i_catchret:
5250
5251'``catchret``' Instruction
5252^^^^^^^^^^^^^^^^^^^^^^^^^^
5253
5254Syntax:
5255"""""""
5256
5257::
5258
5259 catchret label <normal>
5260
5261Overview:
5262"""""""""
5263
5264The '``catchret``' instruction is a terminator instruction that has a
5265single successor.
5266
5267
5268Arguments:
5269""""""""""
5270
5271The '``catchret``' instruction requires one argument which specifies
5272where control will transfer to next.
5273
5274Semantics:
5275""""""""""
5276
5277The '``catchret``' instruction ends the existing (in-flight) exception
5278whose unwinding was interrupted with a
5279:ref:`catchpad <i_catchpad>` instruction.
5280The :ref:`personality function <personalityfn>` gets a chance to execute
5281arbitrary code to, for example, run a C++ destructor.
5282Control then transfers to ``normal``.
5283
5284Example:
5285""""""""
5286
5287.. code-block:: llvm
5288
5289 catchret label %continue
5290
5291.. _i_cleanupret:
5292
5293'``cleanupret``' Instruction
5294^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5295
5296Syntax:
5297"""""""
5298
5299::
5300
5301 cleanupret <type> <value> unwind label <continue>
5302 cleanupret <type> <value> unwind to caller
5303
5304Overview:
5305"""""""""
5306
5307The '``cleanupret``' instruction is a terminator instruction that has
5308an optional successor.
5309
5310
5311Arguments:
5312""""""""""
5313
5314The '``cleanupret``' instruction requires one argument, which must have the
5315same type as the result of any '``cleanuppad``' instruction in the same
5316function. It also has an optional successor, ``continue``.
5317
5318Semantics:
5319""""""""""
5320
5321The '``cleanupret``' instruction indicates to the
5322:ref:`personality function <personalityfn>` that one
5323:ref:`cleanuppad <i_cleanuppad>` it transferred control to has ended.
5324It transfers control to ``continue`` or unwinds out of the function.
5325
5326Example:
5327""""""""
5328
5329.. code-block:: llvm
5330
5331 cleanupret void unwind to caller
5332 cleanupret { i8*, i32 } %exn unwind label %continue
5333
5334.. _i_terminatepad:
5335
5336'``terminatepad``' Instruction
5337^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5338
5339Syntax:
5340"""""""
5341
5342::
5343
5344 terminatepad [<args>*] unwind label <exception label>
5345 terminatepad [<args>*] unwind to caller
5346
5347Overview:
5348"""""""""
5349
5350The '``terminatepad``' instruction is used by `LLVM's exception handling
5351system <ExceptionHandling.html#overview>`_ to specify that a basic block
5352is a terminate block --- one where a personality routine may decide to
5353terminate the program.
5354The ``args`` correspond to whatever information the personality
5355routine requires to know if this is an appropriate place to terminate the
5356program. Control is transferred to the ``exception`` label if the
5357personality routine decides not to terminate the program for the
5358in-flight exception.
5359
5360Arguments:
5361""""""""""
5362
5363The instruction takes a list of arbitrary values which are interpreted
5364by the :ref:`personality function <personalityfn>`.
5365
5366The ``terminatepad`` may be given an ``exception`` label to
5367transfer control to if the in-flight exception matches the ``args``.
5368
5369Semantics:
5370""""""""""
5371
5372When the call stack is being unwound due to an exception being thrown,
5373the exception is compared against the ``args``. If it matches,
5374then control is transfered to the ``exception`` basic block. Otherwise,
5375the program is terminated via personality-specific means. Typically,
5376the first argument to ``terminatepad`` specifies what function the
5377personality should defer to in order to terminate the program.
5378
5379The ``terminatepad`` instruction has several restrictions:
5380
5381- A terminate block is a basic block which is the unwind destination of
5382 an exceptional instruction.
5383- A terminate block must have a '``terminatepad``' instruction as its
5384 first non-PHI instruction.
5385- There can be only one '``terminatepad``' instruction within the
5386 terminate block.
5387- A basic block that is not a terminate block may not include a
5388 '``terminatepad``' instruction.
5389
5390Example:
5391""""""""
5392
5393.. code-block:: llvm
5394
5395 ;; A terminate block which only permits integers.
5396 terminatepad [i8** @_ZTIi] unwind label %continue
5397
Sean Silvab084af42012-12-07 10:36:55 +00005398.. _i_unreachable:
5399
5400'``unreachable``' Instruction
5401^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5402
5403Syntax:
5404"""""""
5405
5406::
5407
5408 unreachable
5409
5410Overview:
5411"""""""""
5412
5413The '``unreachable``' instruction has no defined semantics. This
5414instruction is used to inform the optimizer that a particular portion of
5415the code is not reachable. This can be used to indicate that the code
5416after a no-return function cannot be reached, and other facts.
5417
5418Semantics:
5419""""""""""
5420
5421The '``unreachable``' instruction has no defined semantics.
5422
5423.. _binaryops:
5424
5425Binary Operations
5426-----------------
5427
5428Binary operators are used to do most of the computation in a program.
5429They require two operands of the same type, execute an operation on
5430them, and produce a single value. The operands might represent multiple
5431data, as is the case with the :ref:`vector <t_vector>` data type. The
5432result value has the same type as its operands.
5433
5434There are several different binary operators:
5435
5436.. _i_add:
5437
5438'``add``' Instruction
5439^^^^^^^^^^^^^^^^^^^^^
5440
5441Syntax:
5442"""""""
5443
5444::
5445
Tim Northover675a0962014-06-13 14:24:23 +00005446 <result> = add <ty> <op1>, <op2> ; yields ty:result
5447 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5448 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5449 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005450
5451Overview:
5452"""""""""
5453
5454The '``add``' instruction returns the sum of its two operands.
5455
5456Arguments:
5457""""""""""
5458
5459The two arguments to the '``add``' instruction must be
5460:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5461arguments must have identical types.
5462
5463Semantics:
5464""""""""""
5465
5466The value produced is the integer sum of the two operands.
5467
5468If the sum has unsigned overflow, the result returned is the
5469mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5470the result.
5471
5472Because LLVM integers use a two's complement representation, this
5473instruction is appropriate for both signed and unsigned integers.
5474
5475``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5476respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5477result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5478unsigned and/or signed overflow, respectively, occurs.
5479
5480Example:
5481""""""""
5482
5483.. code-block:: llvm
5484
Tim Northover675a0962014-06-13 14:24:23 +00005485 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005486
5487.. _i_fadd:
5488
5489'``fadd``' Instruction
5490^^^^^^^^^^^^^^^^^^^^^^
5491
5492Syntax:
5493"""""""
5494
5495::
5496
Tim Northover675a0962014-06-13 14:24:23 +00005497 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005498
5499Overview:
5500"""""""""
5501
5502The '``fadd``' instruction returns the sum of its two operands.
5503
5504Arguments:
5505""""""""""
5506
5507The two arguments to the '``fadd``' instruction must be :ref:`floating
5508point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5509Both arguments must have identical types.
5510
5511Semantics:
5512""""""""""
5513
5514The value produced is the floating point sum of the two operands. This
5515instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5516which are optimization hints to enable otherwise unsafe floating point
5517optimizations:
5518
5519Example:
5520""""""""
5521
5522.. code-block:: llvm
5523
Tim Northover675a0962014-06-13 14:24:23 +00005524 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005525
5526'``sub``' Instruction
5527^^^^^^^^^^^^^^^^^^^^^
5528
5529Syntax:
5530"""""""
5531
5532::
5533
Tim Northover675a0962014-06-13 14:24:23 +00005534 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5535 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5536 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5537 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005538
5539Overview:
5540"""""""""
5541
5542The '``sub``' instruction returns the difference of its two operands.
5543
5544Note that the '``sub``' instruction is used to represent the '``neg``'
5545instruction present in most other intermediate representations.
5546
5547Arguments:
5548""""""""""
5549
5550The two arguments to the '``sub``' instruction must be
5551:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5552arguments must have identical types.
5553
5554Semantics:
5555""""""""""
5556
5557The value produced is the integer difference of the two operands.
5558
5559If the difference has unsigned overflow, the result returned is the
5560mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5561the result.
5562
5563Because LLVM integers use a two's complement representation, this
5564instruction is appropriate for both signed and unsigned integers.
5565
5566``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5567respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5568result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5569unsigned and/or signed overflow, respectively, occurs.
5570
5571Example:
5572""""""""
5573
5574.. code-block:: llvm
5575
Tim Northover675a0962014-06-13 14:24:23 +00005576 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5577 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005578
5579.. _i_fsub:
5580
5581'``fsub``' Instruction
5582^^^^^^^^^^^^^^^^^^^^^^
5583
5584Syntax:
5585"""""""
5586
5587::
5588
Tim Northover675a0962014-06-13 14:24:23 +00005589 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005590
5591Overview:
5592"""""""""
5593
5594The '``fsub``' instruction returns the difference of its two operands.
5595
5596Note that the '``fsub``' instruction is used to represent the '``fneg``'
5597instruction present in most other intermediate representations.
5598
5599Arguments:
5600""""""""""
5601
5602The two arguments to the '``fsub``' instruction must be :ref:`floating
5603point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5604Both arguments must have identical types.
5605
5606Semantics:
5607""""""""""
5608
5609The value produced is the floating point difference of the two operands.
5610This instruction can also take any number of :ref:`fast-math
5611flags <fastmath>`, which are optimization hints to enable otherwise
5612unsafe floating point optimizations:
5613
5614Example:
5615""""""""
5616
5617.. code-block:: llvm
5618
Tim Northover675a0962014-06-13 14:24:23 +00005619 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5620 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005621
5622'``mul``' Instruction
5623^^^^^^^^^^^^^^^^^^^^^
5624
5625Syntax:
5626"""""""
5627
5628::
5629
Tim Northover675a0962014-06-13 14:24:23 +00005630 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5631 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5632 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5633 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005634
5635Overview:
5636"""""""""
5637
5638The '``mul``' instruction returns the product of its two operands.
5639
5640Arguments:
5641""""""""""
5642
5643The two arguments to the '``mul``' instruction must be
5644:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5645arguments must have identical types.
5646
5647Semantics:
5648""""""""""
5649
5650The value produced is the integer product of the two operands.
5651
5652If the result of the multiplication has unsigned overflow, the result
5653returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5654bit width of the result.
5655
5656Because LLVM integers use a two's complement representation, and the
5657result is the same width as the operands, this instruction returns the
5658correct result for both signed and unsigned integers. If a full product
5659(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5660sign-extended or zero-extended as appropriate to the width of the full
5661product.
5662
5663``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5664respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5665result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5666unsigned and/or signed overflow, respectively, occurs.
5667
5668Example:
5669""""""""
5670
5671.. code-block:: llvm
5672
Tim Northover675a0962014-06-13 14:24:23 +00005673 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005674
5675.. _i_fmul:
5676
5677'``fmul``' Instruction
5678^^^^^^^^^^^^^^^^^^^^^^
5679
5680Syntax:
5681"""""""
5682
5683::
5684
Tim Northover675a0962014-06-13 14:24:23 +00005685 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005686
5687Overview:
5688"""""""""
5689
5690The '``fmul``' instruction returns the product of its two operands.
5691
5692Arguments:
5693""""""""""
5694
5695The two arguments to the '``fmul``' instruction must be :ref:`floating
5696point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5697Both arguments must have identical types.
5698
5699Semantics:
5700""""""""""
5701
5702The value produced is the floating point product of the two operands.
5703This instruction can also take any number of :ref:`fast-math
5704flags <fastmath>`, which are optimization hints to enable otherwise
5705unsafe floating point optimizations:
5706
5707Example:
5708""""""""
5709
5710.. code-block:: llvm
5711
Tim Northover675a0962014-06-13 14:24:23 +00005712 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005713
5714'``udiv``' Instruction
5715^^^^^^^^^^^^^^^^^^^^^^
5716
5717Syntax:
5718"""""""
5719
5720::
5721
Tim Northover675a0962014-06-13 14:24:23 +00005722 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5723 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005724
5725Overview:
5726"""""""""
5727
5728The '``udiv``' instruction returns the quotient of its two operands.
5729
5730Arguments:
5731""""""""""
5732
5733The two arguments to the '``udiv``' instruction must be
5734:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5735arguments must have identical types.
5736
5737Semantics:
5738""""""""""
5739
5740The value produced is the unsigned integer quotient of the two operands.
5741
5742Note that unsigned integer division and signed integer division are
5743distinct operations; for signed integer division, use '``sdiv``'.
5744
5745Division by zero leads to undefined behavior.
5746
5747If the ``exact`` keyword is present, the result value of the ``udiv`` is
5748a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5749such, "((a udiv exact b) mul b) == a").
5750
5751Example:
5752""""""""
5753
5754.. code-block:: llvm
5755
Tim Northover675a0962014-06-13 14:24:23 +00005756 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005757
5758'``sdiv``' Instruction
5759^^^^^^^^^^^^^^^^^^^^^^
5760
5761Syntax:
5762"""""""
5763
5764::
5765
Tim Northover675a0962014-06-13 14:24:23 +00005766 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
5767 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005768
5769Overview:
5770"""""""""
5771
5772The '``sdiv``' instruction returns the quotient of its two operands.
5773
5774Arguments:
5775""""""""""
5776
5777The two arguments to the '``sdiv``' instruction must be
5778:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5779arguments must have identical types.
5780
5781Semantics:
5782""""""""""
5783
5784The value produced is the signed integer quotient of the two operands
5785rounded towards zero.
5786
5787Note that signed integer division and unsigned integer division are
5788distinct operations; for unsigned integer division, use '``udiv``'.
5789
5790Division by zero leads to undefined behavior. Overflow also leads to
5791undefined behavior; this is a rare case, but can occur, for example, by
5792doing a 32-bit division of -2147483648 by -1.
5793
5794If the ``exact`` keyword is present, the result value of the ``sdiv`` is
5795a :ref:`poison value <poisonvalues>` if the result would be rounded.
5796
5797Example:
5798""""""""
5799
5800.. code-block:: llvm
5801
Tim Northover675a0962014-06-13 14:24:23 +00005802 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005803
5804.. _i_fdiv:
5805
5806'``fdiv``' Instruction
5807^^^^^^^^^^^^^^^^^^^^^^
5808
5809Syntax:
5810"""""""
5811
5812::
5813
Tim Northover675a0962014-06-13 14:24:23 +00005814 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005815
5816Overview:
5817"""""""""
5818
5819The '``fdiv``' instruction returns the quotient of its two operands.
5820
5821Arguments:
5822""""""""""
5823
5824The two arguments to the '``fdiv``' instruction must be :ref:`floating
5825point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5826Both arguments must have identical types.
5827
5828Semantics:
5829""""""""""
5830
5831The value produced is the floating point quotient of the two operands.
5832This instruction can also take any number of :ref:`fast-math
5833flags <fastmath>`, which are optimization hints to enable otherwise
5834unsafe floating point optimizations:
5835
5836Example:
5837""""""""
5838
5839.. code-block:: llvm
5840
Tim Northover675a0962014-06-13 14:24:23 +00005841 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005842
5843'``urem``' Instruction
5844^^^^^^^^^^^^^^^^^^^^^^
5845
5846Syntax:
5847"""""""
5848
5849::
5850
Tim Northover675a0962014-06-13 14:24:23 +00005851 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005852
5853Overview:
5854"""""""""
5855
5856The '``urem``' instruction returns the remainder from the unsigned
5857division of its two arguments.
5858
5859Arguments:
5860""""""""""
5861
5862The two arguments to the '``urem``' instruction must be
5863:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5864arguments must have identical types.
5865
5866Semantics:
5867""""""""""
5868
5869This instruction returns the unsigned integer *remainder* of a division.
5870This instruction always performs an unsigned division to get the
5871remainder.
5872
5873Note that unsigned integer remainder and signed integer remainder are
5874distinct operations; for signed integer remainder, use '``srem``'.
5875
5876Taking the remainder of a division by zero leads to undefined behavior.
5877
5878Example:
5879""""""""
5880
5881.. code-block:: llvm
5882
Tim Northover675a0962014-06-13 14:24:23 +00005883 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005884
5885'``srem``' Instruction
5886^^^^^^^^^^^^^^^^^^^^^^
5887
5888Syntax:
5889"""""""
5890
5891::
5892
Tim Northover675a0962014-06-13 14:24:23 +00005893 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005894
5895Overview:
5896"""""""""
5897
5898The '``srem``' instruction returns the remainder from the signed
5899division of its two operands. This instruction can also take
5900:ref:`vector <t_vector>` versions of the values in which case the elements
5901must be integers.
5902
5903Arguments:
5904""""""""""
5905
5906The two arguments to the '``srem``' instruction must be
5907:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5908arguments must have identical types.
5909
5910Semantics:
5911""""""""""
5912
5913This instruction returns the *remainder* of a division (where the result
5914is either zero or has the same sign as the dividend, ``op1``), not the
5915*modulo* operator (where the result is either zero or has the same sign
5916as the divisor, ``op2``) of a value. For more information about the
5917difference, see `The Math
5918Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
5919table of how this is implemented in various languages, please see
5920`Wikipedia: modulo
5921operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
5922
5923Note that signed integer remainder and unsigned integer remainder are
5924distinct operations; for unsigned integer remainder, use '``urem``'.
5925
5926Taking the remainder of a division by zero leads to undefined behavior.
5927Overflow also leads to undefined behavior; this is a rare case, but can
5928occur, for example, by taking the remainder of a 32-bit division of
5929-2147483648 by -1. (The remainder doesn't actually overflow, but this
5930rule lets srem be implemented using instructions that return both the
5931result of the division and the remainder.)
5932
5933Example:
5934""""""""
5935
5936.. code-block:: llvm
5937
Tim Northover675a0962014-06-13 14:24:23 +00005938 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005939
5940.. _i_frem:
5941
5942'``frem``' Instruction
5943^^^^^^^^^^^^^^^^^^^^^^
5944
5945Syntax:
5946"""""""
5947
5948::
5949
Tim Northover675a0962014-06-13 14:24:23 +00005950 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005951
5952Overview:
5953"""""""""
5954
5955The '``frem``' instruction returns the remainder from the division of
5956its two operands.
5957
5958Arguments:
5959""""""""""
5960
5961The two arguments to the '``frem``' instruction must be :ref:`floating
5962point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5963Both arguments must have identical types.
5964
5965Semantics:
5966""""""""""
5967
5968This instruction returns the *remainder* of a division. The remainder
5969has the same sign as the dividend. This instruction can also take any
5970number of :ref:`fast-math flags <fastmath>`, which are optimization hints
5971to enable otherwise unsafe floating point optimizations:
5972
5973Example:
5974""""""""
5975
5976.. code-block:: llvm
5977
Tim Northover675a0962014-06-13 14:24:23 +00005978 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005979
5980.. _bitwiseops:
5981
5982Bitwise Binary Operations
5983-------------------------
5984
5985Bitwise binary operators are used to do various forms of bit-twiddling
5986in a program. They are generally very efficient instructions and can
5987commonly be strength reduced from other instructions. They require two
5988operands of the same type, execute an operation on them, and produce a
5989single value. The resulting value is the same type as its operands.
5990
5991'``shl``' Instruction
5992^^^^^^^^^^^^^^^^^^^^^
5993
5994Syntax:
5995"""""""
5996
5997::
5998
Tim Northover675a0962014-06-13 14:24:23 +00005999 <result> = shl <ty> <op1>, <op2> ; yields ty:result
6000 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
6001 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
6002 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006003
6004Overview:
6005"""""""""
6006
6007The '``shl``' instruction returns the first operand shifted to the left
6008a specified number of bits.
6009
6010Arguments:
6011""""""""""
6012
6013Both arguments to the '``shl``' instruction must be the same
6014:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6015'``op2``' is treated as an unsigned value.
6016
6017Semantics:
6018""""""""""
6019
6020The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
6021where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00006022dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00006023``op1``, the result is undefined. If the arguments are vectors, each
6024vector element of ``op1`` is shifted by the corresponding shift amount
6025in ``op2``.
6026
6027If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
6028value <poisonvalues>` if it shifts out any non-zero bits. If the
6029``nsw`` keyword is present, then the shift produces a :ref:`poison
6030value <poisonvalues>` if it shifts out any bits that disagree with the
6031resultant sign bit. As such, NUW/NSW have the same semantics as they
6032would if the shift were expressed as a mul instruction with the same
6033nsw/nuw bits in (mul %op1, (shl 1, %op2)).
6034
6035Example:
6036""""""""
6037
6038.. code-block:: llvm
6039
Tim Northover675a0962014-06-13 14:24:23 +00006040 <result> = shl i32 4, %var ; yields i32: 4 << %var
6041 <result> = shl i32 4, 2 ; yields i32: 16
6042 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00006043 <result> = shl i32 1, 32 ; undefined
6044 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
6045
6046'``lshr``' Instruction
6047^^^^^^^^^^^^^^^^^^^^^^
6048
6049Syntax:
6050"""""""
6051
6052::
6053
Tim Northover675a0962014-06-13 14:24:23 +00006054 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
6055 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006056
6057Overview:
6058"""""""""
6059
6060The '``lshr``' instruction (logical shift right) returns the first
6061operand shifted to the right a specified number of bits with zero fill.
6062
6063Arguments:
6064""""""""""
6065
6066Both arguments to the '``lshr``' instruction must be the same
6067:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6068'``op2``' is treated as an unsigned value.
6069
6070Semantics:
6071""""""""""
6072
6073This instruction always performs a logical shift right operation. The
6074most significant bits of the result will be filled with zero bits after
6075the shift. If ``op2`` is (statically or dynamically) equal to or larger
6076than the number of bits in ``op1``, the result is undefined. If the
6077arguments are vectors, each vector element of ``op1`` is shifted by the
6078corresponding shift amount in ``op2``.
6079
6080If the ``exact`` keyword is present, the result value of the ``lshr`` is
6081a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6082non-zero.
6083
6084Example:
6085""""""""
6086
6087.. code-block:: llvm
6088
Tim Northover675a0962014-06-13 14:24:23 +00006089 <result> = lshr i32 4, 1 ; yields i32:result = 2
6090 <result> = lshr i32 4, 2 ; yields i32:result = 1
6091 <result> = lshr i8 4, 3 ; yields i8:result = 0
6092 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00006093 <result> = lshr i32 1, 32 ; undefined
6094 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
6095
6096'``ashr``' Instruction
6097^^^^^^^^^^^^^^^^^^^^^^
6098
6099Syntax:
6100"""""""
6101
6102::
6103
Tim Northover675a0962014-06-13 14:24:23 +00006104 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
6105 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006106
6107Overview:
6108"""""""""
6109
6110The '``ashr``' instruction (arithmetic shift right) returns the first
6111operand shifted to the right a specified number of bits with sign
6112extension.
6113
6114Arguments:
6115""""""""""
6116
6117Both arguments to the '``ashr``' instruction must be the same
6118:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
6119'``op2``' is treated as an unsigned value.
6120
6121Semantics:
6122""""""""""
6123
6124This instruction always performs an arithmetic shift right operation,
6125The most significant bits of the result will be filled with the sign bit
6126of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
6127than the number of bits in ``op1``, the result is undefined. If the
6128arguments are vectors, each vector element of ``op1`` is shifted by the
6129corresponding shift amount in ``op2``.
6130
6131If the ``exact`` keyword is present, the result value of the ``ashr`` is
6132a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
6133non-zero.
6134
6135Example:
6136""""""""
6137
6138.. code-block:: llvm
6139
Tim Northover675a0962014-06-13 14:24:23 +00006140 <result> = ashr i32 4, 1 ; yields i32:result = 2
6141 <result> = ashr i32 4, 2 ; yields i32:result = 1
6142 <result> = ashr i8 4, 3 ; yields i8:result = 0
6143 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00006144 <result> = ashr i32 1, 32 ; undefined
6145 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
6146
6147'``and``' Instruction
6148^^^^^^^^^^^^^^^^^^^^^
6149
6150Syntax:
6151"""""""
6152
6153::
6154
Tim Northover675a0962014-06-13 14:24:23 +00006155 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006156
6157Overview:
6158"""""""""
6159
6160The '``and``' instruction returns the bitwise logical and of its two
6161operands.
6162
6163Arguments:
6164""""""""""
6165
6166The two arguments to the '``and``' instruction must be
6167:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6168arguments must have identical types.
6169
6170Semantics:
6171""""""""""
6172
6173The truth table used for the '``and``' instruction is:
6174
6175+-----+-----+-----+
6176| In0 | In1 | Out |
6177+-----+-----+-----+
6178| 0 | 0 | 0 |
6179+-----+-----+-----+
6180| 0 | 1 | 0 |
6181+-----+-----+-----+
6182| 1 | 0 | 0 |
6183+-----+-----+-----+
6184| 1 | 1 | 1 |
6185+-----+-----+-----+
6186
6187Example:
6188""""""""
6189
6190.. code-block:: llvm
6191
Tim Northover675a0962014-06-13 14:24:23 +00006192 <result> = and i32 4, %var ; yields i32:result = 4 & %var
6193 <result> = and i32 15, 40 ; yields i32:result = 8
6194 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00006195
6196'``or``' Instruction
6197^^^^^^^^^^^^^^^^^^^^
6198
6199Syntax:
6200"""""""
6201
6202::
6203
Tim Northover675a0962014-06-13 14:24:23 +00006204 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006205
6206Overview:
6207"""""""""
6208
6209The '``or``' instruction returns the bitwise logical inclusive or of its
6210two operands.
6211
6212Arguments:
6213""""""""""
6214
6215The two arguments to the '``or``' instruction must be
6216:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6217arguments must have identical types.
6218
6219Semantics:
6220""""""""""
6221
6222The truth table used for the '``or``' instruction is:
6223
6224+-----+-----+-----+
6225| In0 | In1 | Out |
6226+-----+-----+-----+
6227| 0 | 0 | 0 |
6228+-----+-----+-----+
6229| 0 | 1 | 1 |
6230+-----+-----+-----+
6231| 1 | 0 | 1 |
6232+-----+-----+-----+
6233| 1 | 1 | 1 |
6234+-----+-----+-----+
6235
6236Example:
6237""""""""
6238
6239::
6240
Tim Northover675a0962014-06-13 14:24:23 +00006241 <result> = or i32 4, %var ; yields i32:result = 4 | %var
6242 <result> = or i32 15, 40 ; yields i32:result = 47
6243 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00006244
6245'``xor``' Instruction
6246^^^^^^^^^^^^^^^^^^^^^
6247
6248Syntax:
6249"""""""
6250
6251::
6252
Tim Northover675a0962014-06-13 14:24:23 +00006253 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00006254
6255Overview:
6256"""""""""
6257
6258The '``xor``' instruction returns the bitwise logical exclusive or of
6259its two operands. The ``xor`` is used to implement the "one's
6260complement" operation, which is the "~" operator in C.
6261
6262Arguments:
6263""""""""""
6264
6265The two arguments to the '``xor``' instruction must be
6266:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
6267arguments must have identical types.
6268
6269Semantics:
6270""""""""""
6271
6272The truth table used for the '``xor``' instruction is:
6273
6274+-----+-----+-----+
6275| In0 | In1 | Out |
6276+-----+-----+-----+
6277| 0 | 0 | 0 |
6278+-----+-----+-----+
6279| 0 | 1 | 1 |
6280+-----+-----+-----+
6281| 1 | 0 | 1 |
6282+-----+-----+-----+
6283| 1 | 1 | 0 |
6284+-----+-----+-----+
6285
6286Example:
6287""""""""
6288
6289.. code-block:: llvm
6290
Tim Northover675a0962014-06-13 14:24:23 +00006291 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
6292 <result> = xor i32 15, 40 ; yields i32:result = 39
6293 <result> = xor i32 4, 8 ; yields i32:result = 12
6294 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00006295
6296Vector Operations
6297-----------------
6298
6299LLVM supports several instructions to represent vector operations in a
6300target-independent manner. These instructions cover the element-access
6301and vector-specific operations needed to process vectors effectively.
6302While LLVM does directly support these vector operations, many
6303sophisticated algorithms will want to use target-specific intrinsics to
6304take full advantage of a specific target.
6305
6306.. _i_extractelement:
6307
6308'``extractelement``' Instruction
6309^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6310
6311Syntax:
6312"""""""
6313
6314::
6315
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006316 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006317
6318Overview:
6319"""""""""
6320
6321The '``extractelement``' instruction extracts a single scalar element
6322from a vector at a specified index.
6323
6324Arguments:
6325""""""""""
6326
6327The first operand of an '``extractelement``' instruction is a value of
6328:ref:`vector <t_vector>` type. The second operand is an index indicating
6329the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006330variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006331
6332Semantics:
6333""""""""""
6334
6335The result is a scalar of the same type as the element type of ``val``.
6336Its value is the value at position ``idx`` of ``val``. If ``idx``
6337exceeds the length of ``val``, the results are undefined.
6338
6339Example:
6340""""""""
6341
6342.. code-block:: llvm
6343
6344 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6345
6346.. _i_insertelement:
6347
6348'``insertelement``' Instruction
6349^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6350
6351Syntax:
6352"""""""
6353
6354::
6355
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006356 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006357
6358Overview:
6359"""""""""
6360
6361The '``insertelement``' instruction inserts a scalar element into a
6362vector at a specified index.
6363
6364Arguments:
6365""""""""""
6366
6367The first operand of an '``insertelement``' instruction is a value of
6368:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6369type must equal the element type of the first operand. The third operand
6370is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006371index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006372
6373Semantics:
6374""""""""""
6375
6376The result is a vector of the same type as ``val``. Its element values
6377are those of ``val`` except at position ``idx``, where it gets the value
6378``elt``. If ``idx`` exceeds the length of ``val``, the results are
6379undefined.
6380
6381Example:
6382""""""""
6383
6384.. code-block:: llvm
6385
6386 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6387
6388.. _i_shufflevector:
6389
6390'``shufflevector``' Instruction
6391^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6392
6393Syntax:
6394"""""""
6395
6396::
6397
6398 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6399
6400Overview:
6401"""""""""
6402
6403The '``shufflevector``' instruction constructs a permutation of elements
6404from two input vectors, returning a vector with the same element type as
6405the input and length that is the same as the shuffle mask.
6406
6407Arguments:
6408""""""""""
6409
6410The first two operands of a '``shufflevector``' instruction are vectors
6411with the same type. The third argument is a shuffle mask whose element
6412type is always 'i32'. The result of the instruction is a vector whose
6413length is the same as the shuffle mask and whose element type is the
6414same as the element type of the first two operands.
6415
6416The shuffle mask operand is required to be a constant vector with either
6417constant integer or undef values.
6418
6419Semantics:
6420""""""""""
6421
6422The elements of the two input vectors are numbered from left to right
6423across both of the vectors. The shuffle mask operand specifies, for each
6424element of the result vector, which element of the two input vectors the
6425result element gets. The element selector may be undef (meaning "don't
6426care") and the second operand may be undef if performing a shuffle from
6427only one vector.
6428
6429Example:
6430""""""""
6431
6432.. code-block:: llvm
6433
6434 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6435 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6436 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6437 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6438 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6439 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6440 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6441 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6442
6443Aggregate Operations
6444--------------------
6445
6446LLVM supports several instructions for working with
6447:ref:`aggregate <t_aggregate>` values.
6448
6449.. _i_extractvalue:
6450
6451'``extractvalue``' Instruction
6452^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6453
6454Syntax:
6455"""""""
6456
6457::
6458
6459 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6460
6461Overview:
6462"""""""""
6463
6464The '``extractvalue``' instruction extracts the value of a member field
6465from an :ref:`aggregate <t_aggregate>` value.
6466
6467Arguments:
6468""""""""""
6469
6470The first operand of an '``extractvalue``' instruction is a value of
6471:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
6472constant indices to specify which value to extract in a similar manner
6473as indices in a '``getelementptr``' instruction.
6474
6475The major differences to ``getelementptr`` indexing are:
6476
6477- Since the value being indexed is not a pointer, the first index is
6478 omitted and assumed to be zero.
6479- At least one index must be specified.
6480- Not only struct indices but also array indices must be in bounds.
6481
6482Semantics:
6483""""""""""
6484
6485The result is the value at the position in the aggregate specified by
6486the index operands.
6487
6488Example:
6489""""""""
6490
6491.. code-block:: llvm
6492
6493 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6494
6495.. _i_insertvalue:
6496
6497'``insertvalue``' Instruction
6498^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6499
6500Syntax:
6501"""""""
6502
6503::
6504
6505 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6506
6507Overview:
6508"""""""""
6509
6510The '``insertvalue``' instruction inserts a value into a member field in
6511an :ref:`aggregate <t_aggregate>` value.
6512
6513Arguments:
6514""""""""""
6515
6516The first operand of an '``insertvalue``' instruction is a value of
6517:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6518a first-class value to insert. The following operands are constant
6519indices indicating the position at which to insert the value in a
6520similar manner as indices in a '``extractvalue``' instruction. The value
6521to insert must have the same type as the value identified by the
6522indices.
6523
6524Semantics:
6525""""""""""
6526
6527The result is an aggregate of the same type as ``val``. Its value is
6528that of ``val`` except that the value at the position specified by the
6529indices is that of ``elt``.
6530
6531Example:
6532""""""""
6533
6534.. code-block:: llvm
6535
6536 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6537 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006538 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006539
6540.. _memoryops:
6541
6542Memory Access and Addressing Operations
6543---------------------------------------
6544
6545A key design point of an SSA-based representation is how it represents
6546memory. In LLVM, no memory locations are in SSA form, which makes things
6547very simple. This section describes how to read, write, and allocate
6548memory in LLVM.
6549
6550.. _i_alloca:
6551
6552'``alloca``' Instruction
6553^^^^^^^^^^^^^^^^^^^^^^^^
6554
6555Syntax:
6556"""""""
6557
6558::
6559
Tim Northover675a0962014-06-13 14:24:23 +00006560 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006561
6562Overview:
6563"""""""""
6564
6565The '``alloca``' instruction allocates memory on the stack frame of the
6566currently executing function, to be automatically released when this
6567function returns to its caller. The object is always allocated in the
6568generic address space (address space zero).
6569
6570Arguments:
6571""""""""""
6572
6573The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6574bytes of memory on the runtime stack, returning a pointer of the
6575appropriate type to the program. If "NumElements" is specified, it is
6576the number of elements allocated, otherwise "NumElements" is defaulted
6577to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006578allocation is guaranteed to be aligned to at least that boundary. The
6579alignment may not be greater than ``1 << 29``. If not specified, or if
6580zero, the target can choose to align the allocation on any convenient
6581boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006582
6583'``type``' may be any sized type.
6584
6585Semantics:
6586""""""""""
6587
6588Memory is allocated; a pointer is returned. The operation is undefined
6589if there is insufficient stack space for the allocation. '``alloca``'d
6590memory is automatically released when the function returns. The
6591'``alloca``' instruction is commonly used to represent automatic
6592variables that must have an address available. When the function returns
6593(either with the ``ret`` or ``resume`` instructions), the memory is
6594reclaimed. Allocating zero bytes is legal, but the result is undefined.
6595The order in which memory is allocated (ie., which way the stack grows)
6596is not specified.
6597
6598Example:
6599""""""""
6600
6601.. code-block:: llvm
6602
Tim Northover675a0962014-06-13 14:24:23 +00006603 %ptr = alloca i32 ; yields i32*:ptr
6604 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6605 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6606 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006607
6608.. _i_load:
6609
6610'``load``' Instruction
6611^^^^^^^^^^^^^^^^^^^^^^
6612
6613Syntax:
6614"""""""
6615
6616::
6617
Sanjoy Dasf9995472015-05-19 20:10:19 +00006618 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>][, !dereferenceable !<index>][, !dereferenceable_or_null !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006619 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
6620 !<index> = !{ i32 1 }
6621
6622Overview:
6623"""""""""
6624
6625The '``load``' instruction is used to read from memory.
6626
6627Arguments:
6628""""""""""
6629
Eli Bendersky239a78b2013-04-17 20:17:08 +00006630The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006631from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006632class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6633then the optimizer is not allowed to modify the number or order of
6634execution of this ``load`` with other :ref:`volatile
6635operations <volatile>`.
6636
6637If the ``load`` is marked as ``atomic``, it takes an extra
6638:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6639``release`` and ``acq_rel`` orderings are not valid on ``load``
6640instructions. Atomic loads produce :ref:`defined <memmodel>` results
6641when they may see multiple atomic stores. The type of the pointee must
6642be an integer type whose bit width is a power of two greater than or
6643equal to eight and less than or equal to a target-specific size limit.
6644``align`` must be explicitly specified on atomic loads, and the load has
6645undefined behavior if the alignment is not set to a value which is at
6646least the size in bytes of the pointee. ``!nontemporal`` does not have
6647any defined semantics for atomic loads.
6648
6649The optional constant ``align`` argument specifies the alignment of the
6650operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006651or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006652alignment for the target. It is the responsibility of the code emitter
6653to ensure that the alignment information is correct. Overestimating the
6654alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006655may produce less efficient code. An alignment of 1 is always safe. The
6656maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006657
6658The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006659metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006660``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006661metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006662that this load is not expected to be reused in the cache. The code
6663generator may select special instructions to save cache bandwidth, such
6664as the ``MOVNT`` instruction on x86.
6665
6666The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006667metadata name ``<index>`` corresponding to a metadata node with no
6668entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006669instruction tells the optimizer and code generator that the address
6670operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006671Being invariant does not imply that a location is dereferenceable,
6672but it does imply that once the location is known dereferenceable
6673its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006674
Philip Reamescdb72f32014-10-20 22:40:55 +00006675The optional ``!nonnull`` metadata must reference a single
6676metadata name ``<index>`` corresponding to a metadata node with no
6677entries. The existence of the ``!nonnull`` metadata on the
6678instruction tells the optimizer that the value loaded is known to
6679never be null. This is analogous to the ''nonnull'' attribute
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006680on parameters and return values. This metadata can only be applied
6681to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006682
Sanjoy Dasf9995472015-05-19 20:10:19 +00006683The optional ``!dereferenceable`` metadata must reference a single
6684metadata name ``<index>`` corresponding to a metadata node with one ``i64``
6685entry. The existence of the ``!dereferenceable`` metadata on the instruction
6686tells the optimizer that the value loaded is known to be dereferenceable.
6687The number of bytes known to be dereferenceable is specified by the integer
6688value in the metadata node. This is analogous to the ''dereferenceable''
6689attribute on parameters and return values. This metadata can only be applied
6690to loads of a pointer type.
6691
6692The optional ``!dereferenceable_or_null`` metadata must reference a single
6693metadata name ``<index>`` corresponding to a metadata node with one ``i64``
6694entry. The existence of the ``!dereferenceable_or_null`` metadata on the
6695instruction tells the optimizer that the value loaded is known to be either
6696dereferenceable or null.
6697The number of bytes known to be dereferenceable is specified by the integer
6698value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6699attribute on parameters and return values. This metadata can only be applied
6700to loads of a pointer type.
6701
Sean Silvab084af42012-12-07 10:36:55 +00006702Semantics:
6703""""""""""
6704
6705The location of memory pointed to is loaded. If the value being loaded
6706is of scalar type then the number of bytes read does not exceed the
6707minimum number of bytes needed to hold all bits of the type. For
6708example, loading an ``i24`` reads at most three bytes. When loading a
6709value of a type like ``i20`` with a size that is not an integral number
6710of bytes, the result is undefined if the value was not originally
6711written using a store of the same type.
6712
6713Examples:
6714"""""""""
6715
6716.. code-block:: llvm
6717
Tim Northover675a0962014-06-13 14:24:23 +00006718 %ptr = alloca i32 ; yields i32*:ptr
6719 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006720 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006721
6722.. _i_store:
6723
6724'``store``' Instruction
6725^^^^^^^^^^^^^^^^^^^^^^^
6726
6727Syntax:
6728"""""""
6729
6730::
6731
Tim Northover675a0962014-06-13 14:24:23 +00006732 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
6733 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006734
6735Overview:
6736"""""""""
6737
6738The '``store``' instruction is used to write to memory.
6739
6740Arguments:
6741""""""""""
6742
Eli Benderskyca380842013-04-17 17:17:20 +00006743There are two arguments to the ``store`` instruction: a value to store
6744and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00006745operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00006746the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00006747then the optimizer is not allowed to modify the number or order of
6748execution of this ``store`` with other :ref:`volatile
6749operations <volatile>`.
6750
6751If the ``store`` is marked as ``atomic``, it takes an extra
6752:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6753``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
6754instructions. Atomic loads produce :ref:`defined <memmodel>` results
6755when they may see multiple atomic stores. The type of the pointee must
6756be an integer type whose bit width is a power of two greater than or
6757equal to eight and less than or equal to a target-specific size limit.
6758``align`` must be explicitly specified on atomic stores, and the store
6759has undefined behavior if the alignment is not set to a value which is
6760at least the size in bytes of the pointee. ``!nontemporal`` does not
6761have any defined semantics for atomic stores.
6762
Eli Benderskyca380842013-04-17 17:17:20 +00006763The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00006764operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00006765or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006766alignment for the target. It is the responsibility of the code emitter
6767to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00006768alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00006769alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006770safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006771
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006772The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00006773name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006774value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00006775tells the optimizer and code generator that this load is not expected to
6776be reused in the cache. The code generator may select special
6777instructions to save cache bandwidth, such as the MOVNT instruction on
6778x86.
6779
6780Semantics:
6781""""""""""
6782
Eli Benderskyca380842013-04-17 17:17:20 +00006783The contents of memory are updated to contain ``<value>`` at the
6784location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00006785of scalar type then the number of bytes written does not exceed the
6786minimum number of bytes needed to hold all bits of the type. For
6787example, storing an ``i24`` writes at most three bytes. When writing a
6788value of a type like ``i20`` with a size that is not an integral number
6789of bytes, it is unspecified what happens to the extra bits that do not
6790belong to the type, but they will typically be overwritten.
6791
6792Example:
6793""""""""
6794
6795.. code-block:: llvm
6796
Tim Northover675a0962014-06-13 14:24:23 +00006797 %ptr = alloca i32 ; yields i32*:ptr
6798 store i32 3, i32* %ptr ; yields void
6799 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006800
6801.. _i_fence:
6802
6803'``fence``' Instruction
6804^^^^^^^^^^^^^^^^^^^^^^^
6805
6806Syntax:
6807"""""""
6808
6809::
6810
Tim Northover675a0962014-06-13 14:24:23 +00006811 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006812
6813Overview:
6814"""""""""
6815
6816The '``fence``' instruction is used to introduce happens-before edges
6817between operations.
6818
6819Arguments:
6820""""""""""
6821
6822'``fence``' instructions take an :ref:`ordering <ordering>` argument which
6823defines what *synchronizes-with* edges they add. They can only be given
6824``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
6825
6826Semantics:
6827""""""""""
6828
6829A fence A which has (at least) ``release`` ordering semantics
6830*synchronizes with* a fence B with (at least) ``acquire`` ordering
6831semantics if and only if there exist atomic operations X and Y, both
6832operating on some atomic object M, such that A is sequenced before X, X
6833modifies M (either directly or through some side effect of a sequence
6834headed by X), Y is sequenced before B, and Y observes M. This provides a
6835*happens-before* dependency between A and B. Rather than an explicit
6836``fence``, one (but not both) of the atomic operations X or Y might
6837provide a ``release`` or ``acquire`` (resp.) ordering constraint and
6838still *synchronize-with* the explicit ``fence`` and establish the
6839*happens-before* edge.
6840
6841A ``fence`` which has ``seq_cst`` ordering, in addition to having both
6842``acquire`` and ``release`` semantics specified above, participates in
6843the global program order of other ``seq_cst`` operations and/or fences.
6844
6845The optional ":ref:`singlethread <singlethread>`" argument specifies
6846that the fence only synchronizes with other fences in the same thread.
6847(This is useful for interacting with signal handlers.)
6848
6849Example:
6850""""""""
6851
6852.. code-block:: llvm
6853
Tim Northover675a0962014-06-13 14:24:23 +00006854 fence acquire ; yields void
6855 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006856
6857.. _i_cmpxchg:
6858
6859'``cmpxchg``' Instruction
6860^^^^^^^^^^^^^^^^^^^^^^^^^
6861
6862Syntax:
6863"""""""
6864
6865::
6866
Tim Northover675a0962014-06-13 14:24:23 +00006867 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00006868
6869Overview:
6870"""""""""
6871
6872The '``cmpxchg``' instruction is used to atomically modify memory. It
6873loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00006874equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00006875
6876Arguments:
6877""""""""""
6878
6879There are three arguments to the '``cmpxchg``' instruction: an address
6880to operate on, a value to compare to the value currently be at that
6881address, and a new value to place at that address if the compared values
6882are equal. The type of '<cmp>' must be an integer type whose bit width
6883is a power of two greater than or equal to eight and less than or equal
6884to a target-specific size limit. '<cmp>' and '<new>' must have the same
6885type, and the type of '<pointer>' must be a pointer to that type. If the
6886``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
6887to modify the number or order of execution of this ``cmpxchg`` with
6888other :ref:`volatile operations <volatile>`.
6889
Tim Northovere94a5182014-03-11 10:48:52 +00006890The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00006891``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
6892must be at least ``monotonic``, the ordering constraint on failure must be no
6893stronger than that on success, and the failure ordering cannot be either
6894``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00006895
6896The optional "``singlethread``" argument declares that the ``cmpxchg``
6897is only atomic with respect to code (usually signal handlers) running in
6898the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
6899respect to all other code in the system.
6900
6901The pointer passed into cmpxchg must have alignment greater than or
6902equal to the size in memory of the operand.
6903
6904Semantics:
6905""""""""""
6906
Tim Northover420a2162014-06-13 14:24:07 +00006907The contents of memory at the location specified by the '``<pointer>``' operand
6908is read and compared to '``<cmp>``'; if the read value is the equal, the
6909'``<new>``' is written. The original value at the location is returned, together
6910with a flag indicating success (true) or failure (false).
6911
6912If the cmpxchg operation is marked as ``weak`` then a spurious failure is
6913permitted: the operation may not write ``<new>`` even if the comparison
6914matched.
6915
6916If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
6917if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00006918
Tim Northovere94a5182014-03-11 10:48:52 +00006919A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
6920identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
6921load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00006922
6923Example:
6924""""""""
6925
6926.. code-block:: llvm
6927
6928 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00006929 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00006930 br label %loop
6931
6932 loop:
6933 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
6934 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00006935 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00006936 %value_loaded = extractvalue { i32, i1 } %val_success, 0
6937 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00006938 br i1 %success, label %done, label %loop
6939
6940 done:
6941 ...
6942
6943.. _i_atomicrmw:
6944
6945'``atomicrmw``' Instruction
6946^^^^^^^^^^^^^^^^^^^^^^^^^^^
6947
6948Syntax:
6949"""""""
6950
6951::
6952
Tim Northover675a0962014-06-13 14:24:23 +00006953 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00006954
6955Overview:
6956"""""""""
6957
6958The '``atomicrmw``' instruction is used to atomically modify memory.
6959
6960Arguments:
6961""""""""""
6962
6963There are three arguments to the '``atomicrmw``' instruction: an
6964operation to apply, an address whose value to modify, an argument to the
6965operation. The operation must be one of the following keywords:
6966
6967- xchg
6968- add
6969- sub
6970- and
6971- nand
6972- or
6973- xor
6974- max
6975- min
6976- umax
6977- umin
6978
6979The type of '<value>' must be an integer type whose bit width is a power
6980of two greater than or equal to eight and less than or equal to a
6981target-specific size limit. The type of the '``<pointer>``' operand must
6982be a pointer to that type. If the ``atomicrmw`` is marked as
6983``volatile``, then the optimizer is not allowed to modify the number or
6984order of execution of this ``atomicrmw`` with other :ref:`volatile
6985operations <volatile>`.
6986
6987Semantics:
6988""""""""""
6989
6990The contents of memory at the location specified by the '``<pointer>``'
6991operand are atomically read, modified, and written back. The original
6992value at the location is returned. The modification is specified by the
6993operation argument:
6994
6995- xchg: ``*ptr = val``
6996- add: ``*ptr = *ptr + val``
6997- sub: ``*ptr = *ptr - val``
6998- and: ``*ptr = *ptr & val``
6999- nand: ``*ptr = ~(*ptr & val)``
7000- or: ``*ptr = *ptr | val``
7001- xor: ``*ptr = *ptr ^ val``
7002- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
7003- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
7004- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
7005 comparison)
7006- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
7007 comparison)
7008
7009Example:
7010""""""""
7011
7012.. code-block:: llvm
7013
Tim Northover675a0962014-06-13 14:24:23 +00007014 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00007015
7016.. _i_getelementptr:
7017
7018'``getelementptr``' Instruction
7019^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7020
7021Syntax:
7022"""""""
7023
7024::
7025
David Blaikie16a97eb2015-03-04 22:02:58 +00007026 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7027 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
7028 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00007029
7030Overview:
7031"""""""""
7032
7033The '``getelementptr``' instruction is used to get the address of a
7034subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007035address calculation only and does not access memory. The instruction can also
7036be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00007037
7038Arguments:
7039""""""""""
7040
David Blaikie16a97eb2015-03-04 22:02:58 +00007041The first argument is always a type used as the basis for the calculations.
7042The second argument is always a pointer or a vector of pointers, and is the
7043base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00007044that indicate which of the elements of the aggregate object are indexed.
7045The interpretation of each index is dependent on the type being indexed
7046into. The first index always indexes the pointer value given as the
7047first argument, the second index indexes a value of the type pointed to
7048(not necessarily the value directly pointed to, since the first index
7049can be non-zero), etc. The first type indexed into must be a pointer
7050value, subsequent types can be arrays, vectors, and structs. Note that
7051subsequent types being indexed into can never be pointers, since that
7052would require loading the pointer before continuing calculation.
7053
7054The type of each index argument depends on the type it is indexing into.
7055When indexing into a (optionally packed) structure, only ``i32`` integer
7056**constants** are allowed (when using a vector of indices they must all
7057be the **same** ``i32`` integer constant). When indexing into an array,
7058pointer or vector, integers of any width are allowed, and they are not
7059required to be constant. These integers are treated as signed values
7060where relevant.
7061
7062For example, let's consider a C code fragment and how it gets compiled
7063to LLVM:
7064
7065.. code-block:: c
7066
7067 struct RT {
7068 char A;
7069 int B[10][20];
7070 char C;
7071 };
7072 struct ST {
7073 int X;
7074 double Y;
7075 struct RT Z;
7076 };
7077
7078 int *foo(struct ST *s) {
7079 return &s[1].Z.B[5][13];
7080 }
7081
7082The LLVM code generated by Clang is:
7083
7084.. code-block:: llvm
7085
7086 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
7087 %struct.ST = type { i32, double, %struct.RT }
7088
7089 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
7090 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00007091 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00007092 ret i32* %arrayidx
7093 }
7094
7095Semantics:
7096""""""""""
7097
7098In the example above, the first index is indexing into the
7099'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
7100= '``{ i32, double, %struct.RT }``' type, a structure. The second index
7101indexes into the third element of the structure, yielding a
7102'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
7103structure. The third index indexes into the second element of the
7104structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
7105dimensions of the array are subscripted into, yielding an '``i32``'
7106type. The '``getelementptr``' instruction returns a pointer to this
7107element, thus computing a value of '``i32*``' type.
7108
7109Note that it is perfectly legal to index partially through a structure,
7110returning a pointer to an inner element. Because of this, the LLVM code
7111for the given testcase is equivalent to:
7112
7113.. code-block:: llvm
7114
7115 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00007116 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
7117 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
7118 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
7119 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
7120 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00007121 ret i32* %t5
7122 }
7123
7124If the ``inbounds`` keyword is present, the result value of the
7125``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
7126pointer is not an *in bounds* address of an allocated object, or if any
7127of the addresses that would be formed by successive addition of the
7128offsets implied by the indices to the base address with infinitely
7129precise signed arithmetic are not an *in bounds* address of that
7130allocated object. The *in bounds* addresses for an allocated object are
7131all the addresses that point into the object, plus the address one byte
7132past the end. In cases where the base is a vector of pointers the
7133``inbounds`` keyword applies to each of the computations element-wise.
7134
7135If the ``inbounds`` keyword is not present, the offsets are added to the
7136base address with silently-wrapping two's complement arithmetic. If the
7137offsets have a different width from the pointer, they are sign-extended
7138or truncated to the width of the pointer. The result value of the
7139``getelementptr`` may be outside the object pointed to by the base
7140pointer. The result value may not necessarily be used to access memory
7141though, even if it happens to point into allocated storage. See the
7142:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
7143information.
7144
7145The getelementptr instruction is often confusing. For some more insight
7146into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
7147
7148Example:
7149""""""""
7150
7151.. code-block:: llvm
7152
7153 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007154 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007155 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007156 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007157 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007158 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00007159 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00007160 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00007161
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007162Vector of pointers:
7163"""""""""""""""""""
7164
7165The ``getelementptr`` returns a vector of pointers, instead of a single address,
7166when one or more of its arguments is a vector. In such cases, all vector
7167arguments should have the same number of elements, and every scalar argument
7168will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00007169
7170.. code-block:: llvm
7171
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00007172 ; All arguments are vectors:
7173 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
7174 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
7175
7176 ; Add the same scalar offset to each pointer of a vector:
7177 ; A[i] = ptrs[i] + offset*sizeof(i8)
7178 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
7179
7180 ; Add distinct offsets to the same pointer:
7181 ; A[i] = ptr + offsets[i]*sizeof(i8)
7182 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
7183
7184 ; In all cases described above the type of the result is <4 x i8*>
7185
7186The two following instructions are equivalent:
7187
7188.. code-block:: llvm
7189
7190 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7191 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
7192 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
7193 <4 x i32> %ind4,
7194 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
7195
7196 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
7197 i32 2, i32 1, <4 x i32> %ind4, i64 13
7198
7199Let's look at the C code, where the vector version of ``getelementptr``
7200makes sense:
7201
7202.. code-block:: c
7203
7204 // Let's assume that we vectorize the following loop:
7205 double *A, B; int *C;
7206 for (int i = 0; i < size; ++i) {
7207 A[i] = B[C[i]];
7208 }
7209
7210.. code-block:: llvm
7211
7212 ; get pointers for 8 elements from array B
7213 %ptrs = getelementptr double, double* %B, <8 x i32> %C
7214 ; load 8 elements from array B into A
7215 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
7216 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00007217
7218Conversion Operations
7219---------------------
7220
7221The instructions in this category are the conversion instructions
7222(casting) which all take a single operand and a type. They perform
7223various bit conversions on the operand.
7224
7225'``trunc .. to``' Instruction
7226^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7227
7228Syntax:
7229"""""""
7230
7231::
7232
7233 <result> = trunc <ty> <value> to <ty2> ; yields ty2
7234
7235Overview:
7236"""""""""
7237
7238The '``trunc``' instruction truncates its operand to the type ``ty2``.
7239
7240Arguments:
7241""""""""""
7242
7243The '``trunc``' instruction takes a value to trunc, and a type to trunc
7244it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
7245of the same number of integers. The bit size of the ``value`` must be
7246larger than the bit size of the destination type, ``ty2``. Equal sized
7247types are not allowed.
7248
7249Semantics:
7250""""""""""
7251
7252The '``trunc``' instruction truncates the high order bits in ``value``
7253and converts the remaining bits to ``ty2``. Since the source size must
7254be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
7255It will always truncate bits.
7256
7257Example:
7258""""""""
7259
7260.. code-block:: llvm
7261
7262 %X = trunc i32 257 to i8 ; yields i8:1
7263 %Y = trunc i32 123 to i1 ; yields i1:true
7264 %Z = trunc i32 122 to i1 ; yields i1:false
7265 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
7266
7267'``zext .. to``' Instruction
7268^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7269
7270Syntax:
7271"""""""
7272
7273::
7274
7275 <result> = zext <ty> <value> to <ty2> ; yields ty2
7276
7277Overview:
7278"""""""""
7279
7280The '``zext``' instruction zero extends its operand to type ``ty2``.
7281
7282Arguments:
7283""""""""""
7284
7285The '``zext``' instruction takes a value to cast, and a type to cast it
7286to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7287the same number of integers. The bit size of the ``value`` must be
7288smaller than the bit size of the destination type, ``ty2``.
7289
7290Semantics:
7291""""""""""
7292
7293The ``zext`` fills the high order bits of the ``value`` with zero bits
7294until it reaches the size of the destination type, ``ty2``.
7295
7296When zero extending from i1, the result will always be either 0 or 1.
7297
7298Example:
7299""""""""
7300
7301.. code-block:: llvm
7302
7303 %X = zext i32 257 to i64 ; yields i64:257
7304 %Y = zext i1 true to i32 ; yields i32:1
7305 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7306
7307'``sext .. to``' Instruction
7308^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7309
7310Syntax:
7311"""""""
7312
7313::
7314
7315 <result> = sext <ty> <value> to <ty2> ; yields ty2
7316
7317Overview:
7318"""""""""
7319
7320The '``sext``' sign extends ``value`` to the type ``ty2``.
7321
7322Arguments:
7323""""""""""
7324
7325The '``sext``' instruction takes a value to cast, and a type to cast it
7326to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7327the same number of integers. The bit size of the ``value`` must be
7328smaller than the bit size of the destination type, ``ty2``.
7329
7330Semantics:
7331""""""""""
7332
7333The '``sext``' instruction performs a sign extension by copying the sign
7334bit (highest order bit) of the ``value`` until it reaches the bit size
7335of the type ``ty2``.
7336
7337When sign extending from i1, the extension always results in -1 or 0.
7338
7339Example:
7340""""""""
7341
7342.. code-block:: llvm
7343
7344 %X = sext i8 -1 to i16 ; yields i16 :65535
7345 %Y = sext i1 true to i32 ; yields i32:-1
7346 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7347
7348'``fptrunc .. to``' Instruction
7349^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7350
7351Syntax:
7352"""""""
7353
7354::
7355
7356 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7357
7358Overview:
7359"""""""""
7360
7361The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7362
7363Arguments:
7364""""""""""
7365
7366The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7367value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7368The size of ``value`` must be larger than the size of ``ty2``. This
7369implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7370
7371Semantics:
7372""""""""""
7373
7374The '``fptrunc``' instruction truncates a ``value`` from a larger
7375:ref:`floating point <t_floating>` type to a smaller :ref:`floating
7376point <t_floating>` type. If the value cannot fit within the
7377destination type, ``ty2``, then the results are undefined.
7378
7379Example:
7380""""""""
7381
7382.. code-block:: llvm
7383
7384 %X = fptrunc double 123.0 to float ; yields float:123.0
7385 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7386
7387'``fpext .. to``' Instruction
7388^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7389
7390Syntax:
7391"""""""
7392
7393::
7394
7395 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7396
7397Overview:
7398"""""""""
7399
7400The '``fpext``' extends a floating point ``value`` to a larger floating
7401point value.
7402
7403Arguments:
7404""""""""""
7405
7406The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7407``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7408to. The source type must be smaller than the destination type.
7409
7410Semantics:
7411""""""""""
7412
7413The '``fpext``' instruction extends the ``value`` from a smaller
7414:ref:`floating point <t_floating>` type to a larger :ref:`floating
7415point <t_floating>` type. The ``fpext`` cannot be used to make a
7416*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7417*no-op cast* for a floating point cast.
7418
7419Example:
7420""""""""
7421
7422.. code-block:: llvm
7423
7424 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7425 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7426
7427'``fptoui .. to``' Instruction
7428^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7429
7430Syntax:
7431"""""""
7432
7433::
7434
7435 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7436
7437Overview:
7438"""""""""
7439
7440The '``fptoui``' converts a floating point ``value`` to its unsigned
7441integer equivalent of type ``ty2``.
7442
7443Arguments:
7444""""""""""
7445
7446The '``fptoui``' instruction takes a value to cast, which must be a
7447scalar or vector :ref:`floating point <t_floating>` value, and a type to
7448cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7449``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7450type with the same number of elements as ``ty``
7451
7452Semantics:
7453""""""""""
7454
7455The '``fptoui``' instruction converts its :ref:`floating
7456point <t_floating>` operand into the nearest (rounding towards zero)
7457unsigned integer value. If the value cannot fit in ``ty2``, the results
7458are undefined.
7459
7460Example:
7461""""""""
7462
7463.. code-block:: llvm
7464
7465 %X = fptoui double 123.0 to i32 ; yields i32:123
7466 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7467 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7468
7469'``fptosi .. to``' Instruction
7470^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7471
7472Syntax:
7473"""""""
7474
7475::
7476
7477 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7478
7479Overview:
7480"""""""""
7481
7482The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7483``value`` to type ``ty2``.
7484
7485Arguments:
7486""""""""""
7487
7488The '``fptosi``' instruction takes a value to cast, which must be a
7489scalar or vector :ref:`floating point <t_floating>` value, and a type to
7490cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7491``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7492type with the same number of elements as ``ty``
7493
7494Semantics:
7495""""""""""
7496
7497The '``fptosi``' instruction converts its :ref:`floating
7498point <t_floating>` operand into the nearest (rounding towards zero)
7499signed integer value. If the value cannot fit in ``ty2``, the results
7500are undefined.
7501
7502Example:
7503""""""""
7504
7505.. code-block:: llvm
7506
7507 %X = fptosi double -123.0 to i32 ; yields i32:-123
7508 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7509 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7510
7511'``uitofp .. to``' Instruction
7512^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7513
7514Syntax:
7515"""""""
7516
7517::
7518
7519 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7520
7521Overview:
7522"""""""""
7523
7524The '``uitofp``' instruction regards ``value`` as an unsigned integer
7525and converts that value to the ``ty2`` type.
7526
7527Arguments:
7528""""""""""
7529
7530The '``uitofp``' instruction takes a value to cast, which must be a
7531scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7532``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7533``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7534type with the same number of elements as ``ty``
7535
7536Semantics:
7537""""""""""
7538
7539The '``uitofp``' instruction interprets its operand as an unsigned
7540integer quantity and converts it to the corresponding floating point
7541value. If the value cannot fit in the floating point value, the results
7542are undefined.
7543
7544Example:
7545""""""""
7546
7547.. code-block:: llvm
7548
7549 %X = uitofp i32 257 to float ; yields float:257.0
7550 %Y = uitofp i8 -1 to double ; yields double:255.0
7551
7552'``sitofp .. to``' Instruction
7553^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7554
7555Syntax:
7556"""""""
7557
7558::
7559
7560 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7561
7562Overview:
7563"""""""""
7564
7565The '``sitofp``' instruction regards ``value`` as a signed integer and
7566converts that value to the ``ty2`` type.
7567
7568Arguments:
7569""""""""""
7570
7571The '``sitofp``' instruction takes a value to cast, which must be a
7572scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7573``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7574``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7575type with the same number of elements as ``ty``
7576
7577Semantics:
7578""""""""""
7579
7580The '``sitofp``' instruction interprets its operand as a signed integer
7581quantity and converts it to the corresponding floating point value. If
7582the value cannot fit in the floating point value, the results are
7583undefined.
7584
7585Example:
7586""""""""
7587
7588.. code-block:: llvm
7589
7590 %X = sitofp i32 257 to float ; yields float:257.0
7591 %Y = sitofp i8 -1 to double ; yields double:-1.0
7592
7593.. _i_ptrtoint:
7594
7595'``ptrtoint .. to``' Instruction
7596^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7597
7598Syntax:
7599"""""""
7600
7601::
7602
7603 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7604
7605Overview:
7606"""""""""
7607
7608The '``ptrtoint``' instruction converts the pointer or a vector of
7609pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7610
7611Arguments:
7612""""""""""
7613
7614The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007615a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007616type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7617a vector of integers type.
7618
7619Semantics:
7620""""""""""
7621
7622The '``ptrtoint``' instruction converts ``value`` to integer type
7623``ty2`` by interpreting the pointer value as an integer and either
7624truncating or zero extending that value to the size of the integer type.
7625If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7626``value`` is larger than ``ty2`` then a truncation is done. If they are
7627the same size, then nothing is done (*no-op cast*) other than a type
7628change.
7629
7630Example:
7631""""""""
7632
7633.. code-block:: llvm
7634
7635 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7636 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7637 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7638
7639.. _i_inttoptr:
7640
7641'``inttoptr .. to``' Instruction
7642^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7643
7644Syntax:
7645"""""""
7646
7647::
7648
7649 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7650
7651Overview:
7652"""""""""
7653
7654The '``inttoptr``' instruction converts an integer ``value`` to a
7655pointer type, ``ty2``.
7656
7657Arguments:
7658""""""""""
7659
7660The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7661cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7662type.
7663
7664Semantics:
7665""""""""""
7666
7667The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7668applying either a zero extension or a truncation depending on the size
7669of the integer ``value``. If ``value`` is larger than the size of a
7670pointer then a truncation is done. If ``value`` is smaller than the size
7671of a pointer then a zero extension is done. If they are the same size,
7672nothing is done (*no-op cast*).
7673
7674Example:
7675""""""""
7676
7677.. code-block:: llvm
7678
7679 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7680 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7681 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7682 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7683
7684.. _i_bitcast:
7685
7686'``bitcast .. to``' Instruction
7687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7688
7689Syntax:
7690"""""""
7691
7692::
7693
7694 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7695
7696Overview:
7697"""""""""
7698
7699The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7700changing any bits.
7701
7702Arguments:
7703""""""""""
7704
7705The '``bitcast``' instruction takes a value to cast, which must be a
7706non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007707also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7708bit sizes of ``value`` and the destination type, ``ty2``, must be
7709identical. If the source type is a pointer, the destination type must
7710also be a pointer of the same size. This instruction supports bitwise
7711conversion of vectors to integers and to vectors of other types (as
7712long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007713
7714Semantics:
7715""""""""""
7716
Matt Arsenault24b49c42013-07-31 17:49:08 +00007717The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7718is always a *no-op cast* because no bits change with this
7719conversion. The conversion is done as if the ``value`` had been stored
7720to memory and read back as type ``ty2``. Pointer (or vector of
7721pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007722pointers) types with the same address space through this instruction.
7723To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7724or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007725
7726Example:
7727""""""""
7728
7729.. code-block:: llvm
7730
7731 %X = bitcast i8 255 to i8 ; yields i8 :-1
7732 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7733 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7734 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7735
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007736.. _i_addrspacecast:
7737
7738'``addrspacecast .. to``' Instruction
7739^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7740
7741Syntax:
7742"""""""
7743
7744::
7745
7746 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
7747
7748Overview:
7749"""""""""
7750
7751The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
7752address space ``n`` to type ``pty2`` in address space ``m``.
7753
7754Arguments:
7755""""""""""
7756
7757The '``addrspacecast``' instruction takes a pointer or vector of pointer value
7758to cast and a pointer type to cast it to, which must have a different
7759address space.
7760
7761Semantics:
7762""""""""""
7763
7764The '``addrspacecast``' instruction converts the pointer value
7765``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00007766value modification, depending on the target and the address space
7767pair. Pointer conversions within the same address space must be
7768performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007769conversion is legal then both result and operand refer to the same memory
7770location.
7771
7772Example:
7773""""""""
7774
7775.. code-block:: llvm
7776
Matt Arsenault9c13dd02013-11-15 22:43:50 +00007777 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
7778 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
7779 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007780
Sean Silvab084af42012-12-07 10:36:55 +00007781.. _otherops:
7782
7783Other Operations
7784----------------
7785
7786The instructions in this category are the "miscellaneous" instructions,
7787which defy better classification.
7788
7789.. _i_icmp:
7790
7791'``icmp``' Instruction
7792^^^^^^^^^^^^^^^^^^^^^^
7793
7794Syntax:
7795"""""""
7796
7797::
7798
Tim Northover675a0962014-06-13 14:24:23 +00007799 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00007800
7801Overview:
7802"""""""""
7803
7804The '``icmp``' instruction returns a boolean value or a vector of
7805boolean values based on comparison of its two integer, integer vector,
7806pointer, or pointer vector operands.
7807
7808Arguments:
7809""""""""""
7810
7811The '``icmp``' instruction takes three operands. The first operand is
7812the condition code indicating the kind of comparison to perform. It is
7813not a value, just a keyword. The possible condition code are:
7814
7815#. ``eq``: equal
7816#. ``ne``: not equal
7817#. ``ugt``: unsigned greater than
7818#. ``uge``: unsigned greater or equal
7819#. ``ult``: unsigned less than
7820#. ``ule``: unsigned less or equal
7821#. ``sgt``: signed greater than
7822#. ``sge``: signed greater or equal
7823#. ``slt``: signed less than
7824#. ``sle``: signed less or equal
7825
7826The remaining two arguments must be :ref:`integer <t_integer>` or
7827:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
7828must also be identical types.
7829
7830Semantics:
7831""""""""""
7832
7833The '``icmp``' compares ``op1`` and ``op2`` according to the condition
7834code given as ``cond``. The comparison performed always yields either an
7835:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
7836
7837#. ``eq``: yields ``true`` if the operands are equal, ``false``
7838 otherwise. No sign interpretation is necessary or performed.
7839#. ``ne``: yields ``true`` if the operands are unequal, ``false``
7840 otherwise. No sign interpretation is necessary or performed.
7841#. ``ugt``: interprets the operands as unsigned values and yields
7842 ``true`` if ``op1`` is greater than ``op2``.
7843#. ``uge``: interprets the operands as unsigned values and yields
7844 ``true`` if ``op1`` is greater than or equal to ``op2``.
7845#. ``ult``: interprets the operands as unsigned values and yields
7846 ``true`` if ``op1`` is less than ``op2``.
7847#. ``ule``: interprets the operands as unsigned values and yields
7848 ``true`` if ``op1`` is less than or equal to ``op2``.
7849#. ``sgt``: interprets the operands as signed values and yields ``true``
7850 if ``op1`` is greater than ``op2``.
7851#. ``sge``: interprets the operands as signed values and yields ``true``
7852 if ``op1`` is greater than or equal to ``op2``.
7853#. ``slt``: interprets the operands as signed values and yields ``true``
7854 if ``op1`` is less than ``op2``.
7855#. ``sle``: interprets the operands as signed values and yields ``true``
7856 if ``op1`` is less than or equal to ``op2``.
7857
7858If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
7859are compared as if they were integers.
7860
7861If the operands are integer vectors, then they are compared element by
7862element. The result is an ``i1`` vector with the same number of elements
7863as the values being compared. Otherwise, the result is an ``i1``.
7864
7865Example:
7866""""""""
7867
7868.. code-block:: llvm
7869
7870 <result> = icmp eq i32 4, 5 ; yields: result=false
7871 <result> = icmp ne float* %X, %X ; yields: result=false
7872 <result> = icmp ult i16 4, 5 ; yields: result=true
7873 <result> = icmp sgt i16 4, 5 ; yields: result=false
7874 <result> = icmp ule i16 -4, 5 ; yields: result=false
7875 <result> = icmp sge i16 4, 5 ; yields: result=false
7876
7877Note that the code generator does not yet support vector types with the
7878``icmp`` instruction.
7879
7880.. _i_fcmp:
7881
7882'``fcmp``' Instruction
7883^^^^^^^^^^^^^^^^^^^^^^
7884
7885Syntax:
7886"""""""
7887
7888::
7889
James Molloy88eb5352015-07-10 12:52:00 +00007890 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00007891
7892Overview:
7893"""""""""
7894
7895The '``fcmp``' instruction returns a boolean value or vector of boolean
7896values based on comparison of its operands.
7897
7898If the operands are floating point scalars, then the result type is a
7899boolean (:ref:`i1 <t_integer>`).
7900
7901If the operands are floating point vectors, then the result type is a
7902vector of boolean with the same number of elements as the operands being
7903compared.
7904
7905Arguments:
7906""""""""""
7907
7908The '``fcmp``' instruction takes three operands. The first operand is
7909the condition code indicating the kind of comparison to perform. It is
7910not a value, just a keyword. The possible condition code are:
7911
7912#. ``false``: no comparison, always returns false
7913#. ``oeq``: ordered and equal
7914#. ``ogt``: ordered and greater than
7915#. ``oge``: ordered and greater than or equal
7916#. ``olt``: ordered and less than
7917#. ``ole``: ordered and less than or equal
7918#. ``one``: ordered and not equal
7919#. ``ord``: ordered (no nans)
7920#. ``ueq``: unordered or equal
7921#. ``ugt``: unordered or greater than
7922#. ``uge``: unordered or greater than or equal
7923#. ``ult``: unordered or less than
7924#. ``ule``: unordered or less than or equal
7925#. ``une``: unordered or not equal
7926#. ``uno``: unordered (either nans)
7927#. ``true``: no comparison, always returns true
7928
7929*Ordered* means that neither operand is a QNAN while *unordered* means
7930that either operand may be a QNAN.
7931
7932Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
7933point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
7934type. They must have identical types.
7935
7936Semantics:
7937""""""""""
7938
7939The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
7940condition code given as ``cond``. If the operands are vectors, then the
7941vectors are compared element by element. Each comparison performed
7942always yields an :ref:`i1 <t_integer>` result, as follows:
7943
7944#. ``false``: always yields ``false``, regardless of operands.
7945#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
7946 is equal to ``op2``.
7947#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
7948 is greater than ``op2``.
7949#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
7950 is greater than or equal to ``op2``.
7951#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
7952 is less than ``op2``.
7953#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
7954 is less than or equal to ``op2``.
7955#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
7956 is not equal to ``op2``.
7957#. ``ord``: yields ``true`` if both operands are not a QNAN.
7958#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
7959 equal to ``op2``.
7960#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
7961 greater than ``op2``.
7962#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
7963 greater than or equal to ``op2``.
7964#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
7965 less than ``op2``.
7966#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
7967 less than or equal to ``op2``.
7968#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
7969 not equal to ``op2``.
7970#. ``uno``: yields ``true`` if either operand is a QNAN.
7971#. ``true``: always yields ``true``, regardless of operands.
7972
James Molloy88eb5352015-07-10 12:52:00 +00007973The ``fcmp`` instruction can also optionally take any number of
7974:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
7975otherwise unsafe floating point optimizations.
7976
7977Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
7978only flags that have any effect on its semantics are those that allow
7979assumptions to be made about the values of input arguments; namely
7980``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
7981
Sean Silvab084af42012-12-07 10:36:55 +00007982Example:
7983""""""""
7984
7985.. code-block:: llvm
7986
7987 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
7988 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
7989 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
7990 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
7991
7992Note that the code generator does not yet support vector types with the
7993``fcmp`` instruction.
7994
7995.. _i_phi:
7996
7997'``phi``' Instruction
7998^^^^^^^^^^^^^^^^^^^^^
7999
8000Syntax:
8001"""""""
8002
8003::
8004
8005 <result> = phi <ty> [ <val0>, <label0>], ...
8006
8007Overview:
8008"""""""""
8009
8010The '``phi``' instruction is used to implement the φ node in the SSA
8011graph representing the function.
8012
8013Arguments:
8014""""""""""
8015
8016The type of the incoming values is specified with the first type field.
8017After this, the '``phi``' instruction takes a list of pairs as
8018arguments, with one pair for each predecessor basic block of the current
8019block. Only values of :ref:`first class <t_firstclass>` type may be used as
8020the value arguments to the PHI node. Only labels may be used as the
8021label arguments.
8022
8023There must be no non-phi instructions between the start of a basic block
8024and the PHI instructions: i.e. PHI instructions must be first in a basic
8025block.
8026
8027For the purposes of the SSA form, the use of each incoming value is
8028deemed to occur on the edge from the corresponding predecessor block to
8029the current block (but after any definition of an '``invoke``'
8030instruction's return value on the same edge).
8031
8032Semantics:
8033""""""""""
8034
8035At runtime, the '``phi``' instruction logically takes on the value
8036specified by the pair corresponding to the predecessor basic block that
8037executed just prior to the current block.
8038
8039Example:
8040""""""""
8041
8042.. code-block:: llvm
8043
8044 Loop: ; Infinite loop that counts from 0 on up...
8045 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
8046 %nextindvar = add i32 %indvar, 1
8047 br label %Loop
8048
8049.. _i_select:
8050
8051'``select``' Instruction
8052^^^^^^^^^^^^^^^^^^^^^^^^
8053
8054Syntax:
8055"""""""
8056
8057::
8058
8059 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
8060
8061 selty is either i1 or {<N x i1>}
8062
8063Overview:
8064"""""""""
8065
8066The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00008067condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00008068
8069Arguments:
8070""""""""""
8071
8072The '``select``' instruction requires an 'i1' value or a vector of 'i1'
8073values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00008074class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00008075
8076Semantics:
8077""""""""""
8078
8079If the condition is an i1 and it evaluates to 1, the instruction returns
8080the first value argument; otherwise, it returns the second value
8081argument.
8082
8083If the condition is a vector of i1, then the value arguments must be
8084vectors of the same size, and the selection is done element by element.
8085
David Majnemer40a0b592015-03-03 22:45:47 +00008086If the condition is an i1 and the value arguments are vectors of the
8087same size, then an entire vector is selected.
8088
Sean Silvab084af42012-12-07 10:36:55 +00008089Example:
8090""""""""
8091
8092.. code-block:: llvm
8093
8094 %X = select i1 true, i8 17, i8 42 ; yields i8:17
8095
8096.. _i_call:
8097
8098'``call``' Instruction
8099^^^^^^^^^^^^^^^^^^^^^^
8100
8101Syntax:
8102"""""""
8103
8104::
8105
Reid Kleckner5772b772014-04-24 20:14:34 +00008106 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00008107
8108Overview:
8109"""""""""
8110
8111The '``call``' instruction represents a simple function call.
8112
8113Arguments:
8114""""""""""
8115
8116This instruction requires several arguments:
8117
Reid Kleckner5772b772014-04-24 20:14:34 +00008118#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
8119 should perform tail call optimization. The ``tail`` marker is a hint that
8120 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
8121 means that the call must be tail call optimized in order for the program to
8122 be correct. The ``musttail`` marker provides these guarantees:
8123
8124 #. The call will not cause unbounded stack growth if it is part of a
8125 recursive cycle in the call graph.
8126 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
8127 forwarded in place.
8128
8129 Both markers imply that the callee does not access allocas or varargs from
8130 the caller. Calls marked ``musttail`` must obey the following additional
8131 rules:
8132
8133 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
8134 or a pointer bitcast followed by a ret instruction.
8135 - The ret instruction must return the (possibly bitcasted) value
8136 produced by the call or void.
8137 - The caller and callee prototypes must match. Pointer types of
8138 parameters or return types may differ in pointee type, but not
8139 in address space.
8140 - The calling conventions of the caller and callee must match.
8141 - All ABI-impacting function attributes, such as sret, byval, inreg,
8142 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00008143 - The callee must be varargs iff the caller is varargs. Bitcasting a
8144 non-varargs function to the appropriate varargs type is legal so
8145 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00008146
8147 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
8148 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00008149
8150 - Caller and callee both have the calling convention ``fastcc``.
8151 - The call is in tail position (ret immediately follows call and ret
8152 uses value of call or is void).
8153 - Option ``-tailcallopt`` is enabled, or
8154 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00008155 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00008156 met. <CodeGenerator.html#tailcallopt>`_
8157
8158#. The optional "cconv" marker indicates which :ref:`calling
8159 convention <callingconv>` the call should use. If none is
8160 specified, the call defaults to using C calling conventions. The
8161 calling convention of the call must match the calling convention of
8162 the target function, or else the behavior is undefined.
8163#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
8164 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
8165 are valid here.
8166#. '``ty``': the type of the call instruction itself which is also the
8167 type of the return value. Functions that return no value are marked
8168 ``void``.
8169#. '``fnty``': shall be the signature of the pointer to function value
8170 being invoked. The argument types must match the types implied by
8171 this signature. This type can be omitted if the function is not
8172 varargs and if the function type does not return a pointer to a
8173 function.
8174#. '``fnptrval``': An LLVM value containing a pointer to a function to
8175 be invoked. In most cases, this is a direct function invocation, but
8176 indirect ``call``'s are just as possible, calling an arbitrary pointer
8177 to function value.
8178#. '``function args``': argument list whose types match the function
8179 signature argument types and parameter attributes. All arguments must
8180 be of :ref:`first class <t_firstclass>` type. If the function signature
8181 indicates the function accepts a variable number of arguments, the
8182 extra arguments can be specified.
8183#. The optional :ref:`function attributes <fnattrs>` list. Only
8184 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
8185 attributes are valid here.
8186
8187Semantics:
8188""""""""""
8189
8190The '``call``' instruction is used to cause control flow to transfer to
8191a specified function, with its incoming arguments bound to the specified
8192values. Upon a '``ret``' instruction in the called function, control
8193flow continues with the instruction after the function call, and the
8194return value of the function is bound to the result argument.
8195
8196Example:
8197""""""""
8198
8199.. code-block:: llvm
8200
8201 %retval = call i32 @test(i32 %argc)
8202 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
8203 %X = tail call i32 @foo() ; yields i32
8204 %Y = tail call fastcc i32 @foo() ; yields i32
8205 call void %foo(i8 97 signext)
8206
8207 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00008208 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00008209 %gr = extractvalue %struct.A %r, 0 ; yields i32
8210 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
8211 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
8212 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
8213
8214llvm treats calls to some functions with names and arguments that match
8215the standard C99 library as being the C99 library functions, and may
8216perform optimizations or generate code for them under that assumption.
8217This is something we'd like to change in the future to provide better
8218support for freestanding environments and non-C-based languages.
8219
8220.. _i_va_arg:
8221
8222'``va_arg``' Instruction
8223^^^^^^^^^^^^^^^^^^^^^^^^
8224
8225Syntax:
8226"""""""
8227
8228::
8229
8230 <resultval> = va_arg <va_list*> <arglist>, <argty>
8231
8232Overview:
8233"""""""""
8234
8235The '``va_arg``' instruction is used to access arguments passed through
8236the "variable argument" area of a function call. It is used to implement
8237the ``va_arg`` macro in C.
8238
8239Arguments:
8240""""""""""
8241
8242This instruction takes a ``va_list*`` value and the type of the
8243argument. It returns a value of the specified argument type and
8244increments the ``va_list`` to point to the next argument. The actual
8245type of ``va_list`` is target specific.
8246
8247Semantics:
8248""""""""""
8249
8250The '``va_arg``' instruction loads an argument of the specified type
8251from the specified ``va_list`` and causes the ``va_list`` to point to
8252the next argument. For more information, see the variable argument
8253handling :ref:`Intrinsic Functions <int_varargs>`.
8254
8255It is legal for this instruction to be called in a function which does
8256not take a variable number of arguments, for example, the ``vfprintf``
8257function.
8258
8259``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
8260function <intrinsics>` because it takes a type as an argument.
8261
8262Example:
8263""""""""
8264
8265See the :ref:`variable argument processing <int_varargs>` section.
8266
8267Note that the code generator does not yet fully support va\_arg on many
8268targets. Also, it does not currently support va\_arg with aggregate
8269types on any target.
8270
8271.. _i_landingpad:
8272
8273'``landingpad``' Instruction
8274^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8275
8276Syntax:
8277"""""""
8278
8279::
8280
David Majnemer7fddecc2015-06-17 20:52:32 +00008281 <resultval> = landingpad <resultty> <clause>+
8282 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00008283
8284 <clause> := catch <type> <value>
8285 <clause> := filter <array constant type> <array constant>
8286
8287Overview:
8288"""""""""
8289
8290The '``landingpad``' instruction is used by `LLVM's exception handling
8291system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008292is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00008293code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00008294defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00008295re-entry to the function. The ``resultval`` has the type ``resultty``.
8296
8297Arguments:
8298""""""""""
8299
David Majnemer7fddecc2015-06-17 20:52:32 +00008300The optional
Sean Silvab084af42012-12-07 10:36:55 +00008301``cleanup`` flag indicates that the landing pad block is a cleanup.
8302
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008303A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008304contains the global variable representing the "type" that may be caught
8305or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8306clause takes an array constant as its argument. Use
8307"``[0 x i8**] undef``" for a filter which cannot throw. The
8308'``landingpad``' instruction must contain *at least* one ``clause`` or
8309the ``cleanup`` flag.
8310
8311Semantics:
8312""""""""""
8313
8314The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008315:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008316therefore the "result type" of the ``landingpad`` instruction. As with
8317calling conventions, how the personality function results are
8318represented in LLVM IR is target specific.
8319
8320The clauses are applied in order from top to bottom. If two
8321``landingpad`` instructions are merged together through inlining, the
8322clauses from the calling function are appended to the list of clauses.
8323When the call stack is being unwound due to an exception being thrown,
8324the exception is compared against each ``clause`` in turn. If it doesn't
8325match any of the clauses, and the ``cleanup`` flag is not set, then
8326unwinding continues further up the call stack.
8327
8328The ``landingpad`` instruction has several restrictions:
8329
8330- A landing pad block is a basic block which is the unwind destination
8331 of an '``invoke``' instruction.
8332- A landing pad block must have a '``landingpad``' instruction as its
8333 first non-PHI instruction.
8334- There can be only one '``landingpad``' instruction within the landing
8335 pad block.
8336- A basic block that is not a landing pad block may not include a
8337 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008338
8339Example:
8340""""""""
8341
8342.. code-block:: llvm
8343
8344 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008345 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008346 catch i8** @_ZTIi
8347 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008348 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008349 cleanup
8350 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008351 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008352 catch i8** @_ZTIi
8353 filter [1 x i8**] [@_ZTId]
8354
David Majnemer654e1302015-07-31 17:58:14 +00008355.. _i_cleanuppad:
8356
8357'``cleanuppad``' Instruction
8358^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8359
8360Syntax:
8361"""""""
8362
8363::
8364
8365 <resultval> = cleanuppad <resultty> [<args>*]
8366
8367Overview:
8368"""""""""
8369
8370The '``cleanuppad``' instruction is used by `LLVM's exception handling
8371system <ExceptionHandling.html#overview>`_ to specify that a basic block
8372is a cleanup block --- one where a personality routine attempts to
8373transfer control to run cleanup actions.
8374The ``args`` correspond to whatever additional
8375information the :ref:`personality function <personalityfn>` requires to
8376execute the cleanup.
8377The ``resultval`` has the type ``resultty``.
8378
8379Arguments:
8380""""""""""
8381
8382The instruction takes a list of arbitrary values which are interpreted
8383by the :ref:`personality function <personalityfn>`.
8384
8385Semantics:
8386""""""""""
8387
8388The '``cleanuppad``' instruction defines the values which are set by the
8389:ref:`personality function <personalityfn>` upon re-entry to the function, and
8390therefore the "result type" of the ``cleanuppad`` instruction. As with
8391calling conventions, how the personality function results are
8392represented in LLVM IR is target specific.
8393
8394When the call stack is being unwound due to an exception being thrown,
8395the :ref:`personality function <personalityfn>` transfers control to the
8396``cleanuppad`` with the aid of the personality-specific arguments.
8397
8398The ``cleanuppad`` instruction has several restrictions:
8399
8400- A cleanup block is a basic block which is the unwind destination of
8401 an exceptional instruction.
8402- A cleanup block must have a '``cleanuppad``' instruction as its
8403 first non-PHI instruction.
8404- There can be only one '``cleanuppad``' instruction within the
8405 cleanup block.
8406- A basic block that is not a cleanup block may not include a
8407 '``cleanuppad``' instruction.
8408- It is undefined behavior for control to transfer from a ``cleanuppad`` to a
8409 ``catchret`` without first executing a ``cleanupret`` and a subsequent
8410 ``catchpad``.
8411- It is undefined behavior for control to transfer from a ``cleanuppad`` to a
8412 ``ret`` without first executing a ``cleanupret``.
8413
8414Example:
8415""""""""
8416
8417.. code-block:: llvm
8418
8419 %res = cleanuppad { i8*, i32 } [label %nextaction]
8420
Sean Silvab084af42012-12-07 10:36:55 +00008421.. _intrinsics:
8422
8423Intrinsic Functions
8424===================
8425
8426LLVM supports the notion of an "intrinsic function". These functions
8427have well known names and semantics and are required to follow certain
8428restrictions. Overall, these intrinsics represent an extension mechanism
8429for the LLVM language that does not require changing all of the
8430transformations in LLVM when adding to the language (or the bitcode
8431reader/writer, the parser, etc...).
8432
8433Intrinsic function names must all start with an "``llvm.``" prefix. This
8434prefix is reserved in LLVM for intrinsic names; thus, function names may
8435not begin with this prefix. Intrinsic functions must always be external
8436functions: you cannot define the body of intrinsic functions. Intrinsic
8437functions may only be used in call or invoke instructions: it is illegal
8438to take the address of an intrinsic function. Additionally, because
8439intrinsic functions are part of the LLVM language, it is required if any
8440are added that they be documented here.
8441
8442Some intrinsic functions can be overloaded, i.e., the intrinsic
8443represents a family of functions that perform the same operation but on
8444different data types. Because LLVM can represent over 8 million
8445different integer types, overloading is used commonly to allow an
8446intrinsic function to operate on any integer type. One or more of the
8447argument types or the result type can be overloaded to accept any
8448integer type. Argument types may also be defined as exactly matching a
8449previous argument's type or the result type. This allows an intrinsic
8450function which accepts multiple arguments, but needs all of them to be
8451of the same type, to only be overloaded with respect to a single
8452argument or the result.
8453
8454Overloaded intrinsics will have the names of its overloaded argument
8455types encoded into its function name, each preceded by a period. Only
8456those types which are overloaded result in a name suffix. Arguments
8457whose type is matched against another type do not. For example, the
8458``llvm.ctpop`` function can take an integer of any width and returns an
8459integer of exactly the same integer width. This leads to a family of
8460functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8461``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8462overloaded, and only one type suffix is required. Because the argument's
8463type is matched against the return type, it does not require its own
8464name suffix.
8465
8466To learn how to add an intrinsic function, please see the `Extending
8467LLVM Guide <ExtendingLLVM.html>`_.
8468
8469.. _int_varargs:
8470
8471Variable Argument Handling Intrinsics
8472-------------------------------------
8473
8474Variable argument support is defined in LLVM with the
8475:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8476functions. These functions are related to the similarly named macros
8477defined in the ``<stdarg.h>`` header file.
8478
8479All of these functions operate on arguments that use a target-specific
8480value type "``va_list``". The LLVM assembly language reference manual
8481does not define what this type is, so all transformations should be
8482prepared to handle these functions regardless of the type used.
8483
8484This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8485variable argument handling intrinsic functions are used.
8486
8487.. code-block:: llvm
8488
Tim Northoverab60bb92014-11-02 01:21:51 +00008489 ; This struct is different for every platform. For most platforms,
8490 ; it is merely an i8*.
8491 %struct.va_list = type { i8* }
8492
8493 ; For Unix x86_64 platforms, va_list is the following struct:
8494 ; %struct.va_list = type { i32, i32, i8*, i8* }
8495
Sean Silvab084af42012-12-07 10:36:55 +00008496 define i32 @test(i32 %X, ...) {
8497 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008498 %ap = alloca %struct.va_list
8499 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008500 call void @llvm.va_start(i8* %ap2)
8501
8502 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008503 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008504
8505 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8506 %aq = alloca i8*
8507 %aq2 = bitcast i8** %aq to i8*
8508 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8509 call void @llvm.va_end(i8* %aq2)
8510
8511 ; Stop processing of arguments.
8512 call void @llvm.va_end(i8* %ap2)
8513 ret i32 %tmp
8514 }
8515
8516 declare void @llvm.va_start(i8*)
8517 declare void @llvm.va_copy(i8*, i8*)
8518 declare void @llvm.va_end(i8*)
8519
8520.. _int_va_start:
8521
8522'``llvm.va_start``' Intrinsic
8523^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8524
8525Syntax:
8526"""""""
8527
8528::
8529
Nick Lewycky04f6de02013-09-11 22:04:52 +00008530 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008531
8532Overview:
8533"""""""""
8534
8535The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8536subsequent use by ``va_arg``.
8537
8538Arguments:
8539""""""""""
8540
8541The argument is a pointer to a ``va_list`` element to initialize.
8542
8543Semantics:
8544""""""""""
8545
8546The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8547available in C. In a target-dependent way, it initializes the
8548``va_list`` element to which the argument points, so that the next call
8549to ``va_arg`` will produce the first variable argument passed to the
8550function. Unlike the C ``va_start`` macro, this intrinsic does not need
8551to know the last argument of the function as the compiler can figure
8552that out.
8553
8554'``llvm.va_end``' Intrinsic
8555^^^^^^^^^^^^^^^^^^^^^^^^^^^
8556
8557Syntax:
8558"""""""
8559
8560::
8561
8562 declare void @llvm.va_end(i8* <arglist>)
8563
8564Overview:
8565"""""""""
8566
8567The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8568initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8569
8570Arguments:
8571""""""""""
8572
8573The argument is a pointer to a ``va_list`` to destroy.
8574
8575Semantics:
8576""""""""""
8577
8578The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8579available in C. In a target-dependent way, it destroys the ``va_list``
8580element to which the argument points. Calls to
8581:ref:`llvm.va_start <int_va_start>` and
8582:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8583``llvm.va_end``.
8584
8585.. _int_va_copy:
8586
8587'``llvm.va_copy``' Intrinsic
8588^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8589
8590Syntax:
8591"""""""
8592
8593::
8594
8595 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8596
8597Overview:
8598"""""""""
8599
8600The '``llvm.va_copy``' intrinsic copies the current argument position
8601from the source argument list to the destination argument list.
8602
8603Arguments:
8604""""""""""
8605
8606The first argument is a pointer to a ``va_list`` element to initialize.
8607The second argument is a pointer to a ``va_list`` element to copy from.
8608
8609Semantics:
8610""""""""""
8611
8612The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8613available in C. In a target-dependent way, it copies the source
8614``va_list`` element into the destination ``va_list`` element. This
8615intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8616arbitrarily complex and require, for example, memory allocation.
8617
8618Accurate Garbage Collection Intrinsics
8619--------------------------------------
8620
Philip Reamesc5b0f562015-02-25 23:52:06 +00008621LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008622(GC) requires the frontend to generate code containing appropriate intrinsic
8623calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008624intrinsics in a manner which is appropriate for the target collector.
8625
Sean Silvab084af42012-12-07 10:36:55 +00008626These intrinsics allow identification of :ref:`GC roots on the
8627stack <int_gcroot>`, as well as garbage collector implementations that
8628require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008629Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008630these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008631details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008632
Philip Reamesf80bbff2015-02-25 23:45:20 +00008633Experimental Statepoint Intrinsics
8634^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8635
8636LLVM provides an second experimental set of intrinsics for describing garbage
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008637collection safepoints in compiled code. These intrinsics are an alternative
8638to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
8639:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
8640differences in approach are covered in the `Garbage Collection with LLVM
8641<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008642described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008643
8644.. _int_gcroot:
8645
8646'``llvm.gcroot``' Intrinsic
8647^^^^^^^^^^^^^^^^^^^^^^^^^^^
8648
8649Syntax:
8650"""""""
8651
8652::
8653
8654 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8655
8656Overview:
8657"""""""""
8658
8659The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8660the code generator, and allows some metadata to be associated with it.
8661
8662Arguments:
8663""""""""""
8664
8665The first argument specifies the address of a stack object that contains
8666the root pointer. The second pointer (which must be either a constant or
8667a global value address) contains the meta-data to be associated with the
8668root.
8669
8670Semantics:
8671""""""""""
8672
8673At runtime, a call to this intrinsic stores a null pointer into the
8674"ptrloc" location. At compile-time, the code generator generates
8675information to allow the runtime to find the pointer at GC safe points.
8676The '``llvm.gcroot``' intrinsic may only be used in a function which
8677:ref:`specifies a GC algorithm <gc>`.
8678
8679.. _int_gcread:
8680
8681'``llvm.gcread``' Intrinsic
8682^^^^^^^^^^^^^^^^^^^^^^^^^^^
8683
8684Syntax:
8685"""""""
8686
8687::
8688
8689 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
8690
8691Overview:
8692"""""""""
8693
8694The '``llvm.gcread``' intrinsic identifies reads of references from heap
8695locations, allowing garbage collector implementations that require read
8696barriers.
8697
8698Arguments:
8699""""""""""
8700
8701The second argument is the address to read from, which should be an
8702address allocated from the garbage collector. The first object is a
8703pointer to the start of the referenced object, if needed by the language
8704runtime (otherwise null).
8705
8706Semantics:
8707""""""""""
8708
8709The '``llvm.gcread``' intrinsic has the same semantics as a load
8710instruction, but may be replaced with substantially more complex code by
8711the garbage collector runtime, as needed. The '``llvm.gcread``'
8712intrinsic may only be used in a function which :ref:`specifies a GC
8713algorithm <gc>`.
8714
8715.. _int_gcwrite:
8716
8717'``llvm.gcwrite``' Intrinsic
8718^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8719
8720Syntax:
8721"""""""
8722
8723::
8724
8725 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
8726
8727Overview:
8728"""""""""
8729
8730The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
8731locations, allowing garbage collector implementations that require write
8732barriers (such as generational or reference counting collectors).
8733
8734Arguments:
8735""""""""""
8736
8737The first argument is the reference to store, the second is the start of
8738the object to store it to, and the third is the address of the field of
8739Obj to store to. If the runtime does not require a pointer to the
8740object, Obj may be null.
8741
8742Semantics:
8743""""""""""
8744
8745The '``llvm.gcwrite``' intrinsic has the same semantics as a store
8746instruction, but may be replaced with substantially more complex code by
8747the garbage collector runtime, as needed. The '``llvm.gcwrite``'
8748intrinsic may only be used in a function which :ref:`specifies a GC
8749algorithm <gc>`.
8750
8751Code Generator Intrinsics
8752-------------------------
8753
8754These intrinsics are provided by LLVM to expose special features that
8755may only be implemented with code generator support.
8756
8757'``llvm.returnaddress``' Intrinsic
8758^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8759
8760Syntax:
8761"""""""
8762
8763::
8764
8765 declare i8 *@llvm.returnaddress(i32 <level>)
8766
8767Overview:
8768"""""""""
8769
8770The '``llvm.returnaddress``' intrinsic attempts to compute a
8771target-specific value indicating the return address of the current
8772function or one of its callers.
8773
8774Arguments:
8775""""""""""
8776
8777The argument to this intrinsic indicates which function to return the
8778address for. Zero indicates the calling function, one indicates its
8779caller, etc. The argument is **required** to be a constant integer
8780value.
8781
8782Semantics:
8783""""""""""
8784
8785The '``llvm.returnaddress``' intrinsic either returns a pointer
8786indicating the return address of the specified call frame, or zero if it
8787cannot be identified. The value returned by this intrinsic is likely to
8788be incorrect or 0 for arguments other than zero, so it should only be
8789used for debugging purposes.
8790
8791Note that calling this intrinsic does not prevent function inlining or
8792other aggressive transformations, so the value returned may not be that
8793of the obvious source-language caller.
8794
8795'``llvm.frameaddress``' Intrinsic
8796^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8797
8798Syntax:
8799"""""""
8800
8801::
8802
8803 declare i8* @llvm.frameaddress(i32 <level>)
8804
8805Overview:
8806"""""""""
8807
8808The '``llvm.frameaddress``' intrinsic attempts to return the
8809target-specific frame pointer value for the specified stack frame.
8810
8811Arguments:
8812""""""""""
8813
8814The argument to this intrinsic indicates which function to return the
8815frame pointer for. Zero indicates the calling function, one indicates
8816its caller, etc. The argument is **required** to be a constant integer
8817value.
8818
8819Semantics:
8820""""""""""
8821
8822The '``llvm.frameaddress``' intrinsic either returns a pointer
8823indicating the frame address of the specified call frame, or zero if it
8824cannot be identified. The value returned by this intrinsic is likely to
8825be incorrect or 0 for arguments other than zero, so it should only be
8826used for debugging purposes.
8827
8828Note that calling this intrinsic does not prevent function inlining or
8829other aggressive transformations, so the value returned may not be that
8830of the obvious source-language caller.
8831
Reid Kleckner60381792015-07-07 22:25:32 +00008832'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00008833^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8834
8835Syntax:
8836"""""""
8837
8838::
8839
Reid Kleckner60381792015-07-07 22:25:32 +00008840 declare void @llvm.localescape(...)
8841 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00008842
8843Overview:
8844"""""""""
8845
Reid Kleckner60381792015-07-07 22:25:32 +00008846The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
8847allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008848live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00008849computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00008850
8851Arguments:
8852""""""""""
8853
Reid Kleckner60381792015-07-07 22:25:32 +00008854All arguments to '``llvm.localescape``' must be pointers to static allocas or
8855casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008856once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00008857
Reid Kleckner60381792015-07-07 22:25:32 +00008858The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00008859bitcasted pointer to a function defined in the current module. The code
8860generator cannot determine the frame allocation offset of functions defined in
8861other modules.
8862
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00008863The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
8864call frame that is currently live. The return value of '``llvm.localaddress``'
8865is one way to produce such a value, but various runtimes also expose a suitable
8866pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00008867
Reid Kleckner60381792015-07-07 22:25:32 +00008868The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
8869'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008870
Reid Klecknere9b89312015-01-13 00:48:10 +00008871Semantics:
8872""""""""""
8873
Reid Kleckner60381792015-07-07 22:25:32 +00008874These intrinsics allow a group of functions to share access to a set of local
8875stack allocations of a one parent function. The parent function may call the
8876'``llvm.localescape``' intrinsic once from the function entry block, and the
8877child functions can use '``llvm.localrecover``' to access the escaped allocas.
8878The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
8879the escaped allocas are allocated, which would break attempts to use
8880'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00008881
Renato Golinc7aea402014-05-06 16:51:25 +00008882.. _int_read_register:
8883.. _int_write_register:
8884
8885'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
8886^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8887
8888Syntax:
8889"""""""
8890
8891::
8892
8893 declare i32 @llvm.read_register.i32(metadata)
8894 declare i64 @llvm.read_register.i64(metadata)
8895 declare void @llvm.write_register.i32(metadata, i32 @value)
8896 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00008897 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00008898
8899Overview:
8900"""""""""
8901
8902The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
8903provides access to the named register. The register must be valid on
8904the architecture being compiled to. The type needs to be compatible
8905with the register being read.
8906
8907Semantics:
8908""""""""""
8909
8910The '``llvm.read_register``' intrinsic returns the current value of the
8911register, where possible. The '``llvm.write_register``' intrinsic sets
8912the current value of the register, where possible.
8913
8914This is useful to implement named register global variables that need
8915to always be mapped to a specific register, as is common practice on
8916bare-metal programs including OS kernels.
8917
8918The compiler doesn't check for register availability or use of the used
8919register in surrounding code, including inline assembly. Because of that,
8920allocatable registers are not supported.
8921
8922Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00008923architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00008924work is needed to support other registers and even more so, allocatable
8925registers.
8926
Sean Silvab084af42012-12-07 10:36:55 +00008927.. _int_stacksave:
8928
8929'``llvm.stacksave``' Intrinsic
8930^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8931
8932Syntax:
8933"""""""
8934
8935::
8936
8937 declare i8* @llvm.stacksave()
8938
8939Overview:
8940"""""""""
8941
8942The '``llvm.stacksave``' intrinsic is used to remember the current state
8943of the function stack, for use with
8944:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
8945implementing language features like scoped automatic variable sized
8946arrays in C99.
8947
8948Semantics:
8949""""""""""
8950
8951This intrinsic returns a opaque pointer value that can be passed to
8952:ref:`llvm.stackrestore <int_stackrestore>`. When an
8953``llvm.stackrestore`` intrinsic is executed with a value saved from
8954``llvm.stacksave``, it effectively restores the state of the stack to
8955the state it was in when the ``llvm.stacksave`` intrinsic executed. In
8956practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
8957were allocated after the ``llvm.stacksave`` was executed.
8958
8959.. _int_stackrestore:
8960
8961'``llvm.stackrestore``' Intrinsic
8962^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8963
8964Syntax:
8965"""""""
8966
8967::
8968
8969 declare void @llvm.stackrestore(i8* %ptr)
8970
8971Overview:
8972"""""""""
8973
8974The '``llvm.stackrestore``' intrinsic is used to restore the state of
8975the function stack to the state it was in when the corresponding
8976:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
8977useful for implementing language features like scoped automatic variable
8978sized arrays in C99.
8979
8980Semantics:
8981""""""""""
8982
8983See the description for :ref:`llvm.stacksave <int_stacksave>`.
8984
8985'``llvm.prefetch``' Intrinsic
8986^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8987
8988Syntax:
8989"""""""
8990
8991::
8992
8993 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
8994
8995Overview:
8996"""""""""
8997
8998The '``llvm.prefetch``' intrinsic is a hint to the code generator to
8999insert a prefetch instruction if supported; otherwise, it is a noop.
9000Prefetches have no effect on the behavior of the program but can change
9001its performance characteristics.
9002
9003Arguments:
9004""""""""""
9005
9006``address`` is the address to be prefetched, ``rw`` is the specifier
9007determining if the fetch should be for a read (0) or write (1), and
9008``locality`` is a temporal locality specifier ranging from (0) - no
9009locality, to (3) - extremely local keep in cache. The ``cache type``
9010specifies whether the prefetch is performed on the data (1) or
9011instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
9012arguments must be constant integers.
9013
9014Semantics:
9015""""""""""
9016
9017This intrinsic does not modify the behavior of the program. In
9018particular, prefetches cannot trap and do not produce a value. On
9019targets that support this intrinsic, the prefetch can provide hints to
9020the processor cache for better performance.
9021
9022'``llvm.pcmarker``' Intrinsic
9023^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9024
9025Syntax:
9026"""""""
9027
9028::
9029
9030 declare void @llvm.pcmarker(i32 <id>)
9031
9032Overview:
9033"""""""""
9034
9035The '``llvm.pcmarker``' intrinsic is a method to export a Program
9036Counter (PC) in a region of code to simulators and other tools. The
9037method is target specific, but it is expected that the marker will use
9038exported symbols to transmit the PC of the marker. The marker makes no
9039guarantees that it will remain with any specific instruction after
9040optimizations. It is possible that the presence of a marker will inhibit
9041optimizations. The intended use is to be inserted after optimizations to
9042allow correlations of simulation runs.
9043
9044Arguments:
9045""""""""""
9046
9047``id`` is a numerical id identifying the marker.
9048
9049Semantics:
9050""""""""""
9051
9052This intrinsic does not modify the behavior of the program. Backends
9053that do not support this intrinsic may ignore it.
9054
9055'``llvm.readcyclecounter``' Intrinsic
9056^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9057
9058Syntax:
9059"""""""
9060
9061::
9062
9063 declare i64 @llvm.readcyclecounter()
9064
9065Overview:
9066"""""""""
9067
9068The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
9069counter register (or similar low latency, high accuracy clocks) on those
9070targets that support it. On X86, it should map to RDTSC. On Alpha, it
9071should map to RPCC. As the backing counters overflow quickly (on the
9072order of 9 seconds on alpha), this should only be used for small
9073timings.
9074
9075Semantics:
9076""""""""""
9077
9078When directly supported, reading the cycle counter should not modify any
9079memory. Implementations are allowed to either return a application
9080specific value or a system wide value. On backends without support, this
9081is lowered to a constant 0.
9082
Tim Northoverbc933082013-05-23 19:11:20 +00009083Note that runtime support may be conditional on the privilege-level code is
9084running at and the host platform.
9085
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009086'``llvm.clear_cache``' Intrinsic
9087^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9088
9089Syntax:
9090"""""""
9091
9092::
9093
9094 declare void @llvm.clear_cache(i8*, i8*)
9095
9096Overview:
9097"""""""""
9098
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009099The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
9100in the specified range to the execution unit of the processor. On
9101targets with non-unified instruction and data cache, the implementation
9102flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009103
9104Semantics:
9105""""""""""
9106
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009107On platforms with coherent instruction and data caches (e.g. x86), this
9108intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00009109cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009110instructions or a system call, if cache flushing requires special
9111privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009112
Sean Silvad02bf3e2014-04-07 22:29:53 +00009113The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009114time library.
Renato Golin93010e62014-03-26 14:01:32 +00009115
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00009116This instrinsic does *not* empty the instruction pipeline. Modifications
9117of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00009118
Justin Bogner61ba2e32014-12-08 18:02:35 +00009119'``llvm.instrprof_increment``' Intrinsic
9120^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9121
9122Syntax:
9123"""""""
9124
9125::
9126
9127 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
9128 i32 <num-counters>, i32 <index>)
9129
9130Overview:
9131"""""""""
9132
9133The '``llvm.instrprof_increment``' intrinsic can be emitted by a
9134frontend for use with instrumentation based profiling. These will be
9135lowered by the ``-instrprof`` pass to generate execution counts of a
9136program at runtime.
9137
9138Arguments:
9139""""""""""
9140
9141The first argument is a pointer to a global variable containing the
9142name of the entity being instrumented. This should generally be the
9143(mangled) function name for a set of counters.
9144
9145The second argument is a hash value that can be used by the consumer
9146of the profile data to detect changes to the instrumented source, and
9147the third is the number of counters associated with ``name``. It is an
9148error if ``hash`` or ``num-counters`` differ between two instances of
9149``instrprof_increment`` that refer to the same name.
9150
9151The last argument refers to which of the counters for ``name`` should
9152be incremented. It should be a value between 0 and ``num-counters``.
9153
9154Semantics:
9155""""""""""
9156
9157This intrinsic represents an increment of a profiling counter. It will
9158cause the ``-instrprof`` pass to generate the appropriate data
9159structures and the code to increment the appropriate value, in a
9160format that can be written out by a compiler runtime and consumed via
9161the ``llvm-profdata`` tool.
9162
Sean Silvab084af42012-12-07 10:36:55 +00009163Standard C Library Intrinsics
9164-----------------------------
9165
9166LLVM provides intrinsics for a few important standard C library
9167functions. These intrinsics allow source-language front-ends to pass
9168information about the alignment of the pointer arguments to the code
9169generator, providing opportunity for more efficient code generation.
9170
9171.. _int_memcpy:
9172
9173'``llvm.memcpy``' Intrinsic
9174^^^^^^^^^^^^^^^^^^^^^^^^^^^
9175
9176Syntax:
9177"""""""
9178
9179This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
9180integer bit width and for different address spaces. Not all targets
9181support all bit widths however.
9182
9183::
9184
9185 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9186 i32 <len>, i32 <align>, i1 <isvolatile>)
9187 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9188 i64 <len>, i32 <align>, i1 <isvolatile>)
9189
9190Overview:
9191"""""""""
9192
9193The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9194source location to the destination location.
9195
9196Note that, unlike the standard libc function, the ``llvm.memcpy.*``
9197intrinsics do not return a value, takes extra alignment/isvolatile
9198arguments and the pointers can be in specified address spaces.
9199
9200Arguments:
9201""""""""""
9202
9203The first argument is a pointer to the destination, the second is a
9204pointer to the source. The third argument is an integer argument
9205specifying the number of bytes to copy, the fourth argument is the
9206alignment of the source and destination locations, and the fifth is a
9207boolean indicating a volatile access.
9208
9209If the call to this intrinsic has an alignment value that is not 0 or 1,
9210then the caller guarantees that both the source and destination pointers
9211are aligned to that boundary.
9212
9213If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
9214a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9215very cleanly specified and it is unwise to depend on it.
9216
9217Semantics:
9218""""""""""
9219
9220The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
9221source location to the destination location, which are not allowed to
9222overlap. It copies "len" bytes of memory over. If the argument is known
9223to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00009224argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009225
9226'``llvm.memmove``' Intrinsic
9227^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9228
9229Syntax:
9230"""""""
9231
9232This is an overloaded intrinsic. You can use llvm.memmove on any integer
9233bit width and for different address space. Not all targets support all
9234bit widths however.
9235
9236::
9237
9238 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
9239 i32 <len>, i32 <align>, i1 <isvolatile>)
9240 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
9241 i64 <len>, i32 <align>, i1 <isvolatile>)
9242
9243Overview:
9244"""""""""
9245
9246The '``llvm.memmove.*``' intrinsics move a block of memory from the
9247source location to the destination location. It is similar to the
9248'``llvm.memcpy``' intrinsic but allows the two memory locations to
9249overlap.
9250
9251Note that, unlike the standard libc function, the ``llvm.memmove.*``
9252intrinsics do not return a value, takes extra alignment/isvolatile
9253arguments and the pointers can be in specified address spaces.
9254
9255Arguments:
9256""""""""""
9257
9258The first argument is a pointer to the destination, the second is a
9259pointer to the source. The third argument is an integer argument
9260specifying the number of bytes to copy, the fourth argument is the
9261alignment of the source and destination locations, and the fifth is a
9262boolean indicating a volatile access.
9263
9264If the call to this intrinsic has an alignment value that is not 0 or 1,
9265then the caller guarantees that the source and destination pointers are
9266aligned to that boundary.
9267
9268If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
9269is a :ref:`volatile operation <volatile>`. The detailed access behavior is
9270not very cleanly specified and it is unwise to depend on it.
9271
9272Semantics:
9273""""""""""
9274
9275The '``llvm.memmove.*``' intrinsics copy a block of memory from the
9276source location to the destination location, which may overlap. It
9277copies "len" bytes of memory over. If the argument is known to be
9278aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00009279otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009280
9281'``llvm.memset.*``' Intrinsics
9282^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9283
9284Syntax:
9285"""""""
9286
9287This is an overloaded intrinsic. You can use llvm.memset on any integer
9288bit width and for different address spaces. However, not all targets
9289support all bit widths.
9290
9291::
9292
9293 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
9294 i32 <len>, i32 <align>, i1 <isvolatile>)
9295 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
9296 i64 <len>, i32 <align>, i1 <isvolatile>)
9297
9298Overview:
9299"""""""""
9300
9301The '``llvm.memset.*``' intrinsics fill a block of memory with a
9302particular byte value.
9303
9304Note that, unlike the standard libc function, the ``llvm.memset``
9305intrinsic does not return a value and takes extra alignment/volatile
9306arguments. Also, the destination can be in an arbitrary address space.
9307
9308Arguments:
9309""""""""""
9310
9311The first argument is a pointer to the destination to fill, the second
9312is the byte value with which to fill it, the third argument is an
9313integer argument specifying the number of bytes to fill, and the fourth
9314argument is the known alignment of the destination location.
9315
9316If the call to this intrinsic has an alignment value that is not 0 or 1,
9317then the caller guarantees that the destination pointer is aligned to
9318that boundary.
9319
9320If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
9321a :ref:`volatile operation <volatile>`. The detailed access behavior is not
9322very cleanly specified and it is unwise to depend on it.
9323
9324Semantics:
9325""""""""""
9326
9327The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
9328at the destination location. If the argument is known to be aligned to
9329some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00009330it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00009331
9332'``llvm.sqrt.*``' Intrinsic
9333^^^^^^^^^^^^^^^^^^^^^^^^^^^
9334
9335Syntax:
9336"""""""
9337
9338This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
9339floating point or vector of floating point type. Not all targets support
9340all types however.
9341
9342::
9343
9344 declare float @llvm.sqrt.f32(float %Val)
9345 declare double @llvm.sqrt.f64(double %Val)
9346 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
9347 declare fp128 @llvm.sqrt.f128(fp128 %Val)
9348 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
9349
9350Overview:
9351"""""""""
9352
9353The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
9354returning the same value as the libm '``sqrt``' functions would. Unlike
9355``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
9356negative numbers other than -0.0 (which allows for better optimization,
9357because there is no need to worry about errno being set).
9358``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
9359
9360Arguments:
9361""""""""""
9362
9363The argument and return value are floating point numbers of the same
9364type.
9365
9366Semantics:
9367""""""""""
9368
9369This function returns the sqrt of the specified operand if it is a
9370nonnegative floating point number.
9371
9372'``llvm.powi.*``' Intrinsic
9373^^^^^^^^^^^^^^^^^^^^^^^^^^^
9374
9375Syntax:
9376"""""""
9377
9378This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9379floating point or vector of floating point type. Not all targets support
9380all types however.
9381
9382::
9383
9384 declare float @llvm.powi.f32(float %Val, i32 %power)
9385 declare double @llvm.powi.f64(double %Val, i32 %power)
9386 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9387 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9388 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9389
9390Overview:
9391"""""""""
9392
9393The '``llvm.powi.*``' intrinsics return the first operand raised to the
9394specified (positive or negative) power. The order of evaluation of
9395multiplications is not defined. When a vector of floating point type is
9396used, the second argument remains a scalar integer value.
9397
9398Arguments:
9399""""""""""
9400
9401The second argument is an integer power, and the first is a value to
9402raise to that power.
9403
9404Semantics:
9405""""""""""
9406
9407This function returns the first value raised to the second power with an
9408unspecified sequence of rounding operations.
9409
9410'``llvm.sin.*``' Intrinsic
9411^^^^^^^^^^^^^^^^^^^^^^^^^^
9412
9413Syntax:
9414"""""""
9415
9416This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9417floating point or vector of floating point type. Not all targets support
9418all types however.
9419
9420::
9421
9422 declare float @llvm.sin.f32(float %Val)
9423 declare double @llvm.sin.f64(double %Val)
9424 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9425 declare fp128 @llvm.sin.f128(fp128 %Val)
9426 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9427
9428Overview:
9429"""""""""
9430
9431The '``llvm.sin.*``' intrinsics return the sine of the operand.
9432
9433Arguments:
9434""""""""""
9435
9436The argument and return value are floating point numbers of the same
9437type.
9438
9439Semantics:
9440""""""""""
9441
9442This function returns the sine of the specified operand, returning the
9443same values as the libm ``sin`` functions would, and handles error
9444conditions in the same way.
9445
9446'``llvm.cos.*``' Intrinsic
9447^^^^^^^^^^^^^^^^^^^^^^^^^^
9448
9449Syntax:
9450"""""""
9451
9452This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9453floating point or vector of floating point type. Not all targets support
9454all types however.
9455
9456::
9457
9458 declare float @llvm.cos.f32(float %Val)
9459 declare double @llvm.cos.f64(double %Val)
9460 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9461 declare fp128 @llvm.cos.f128(fp128 %Val)
9462 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9463
9464Overview:
9465"""""""""
9466
9467The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9468
9469Arguments:
9470""""""""""
9471
9472The argument and return value are floating point numbers of the same
9473type.
9474
9475Semantics:
9476""""""""""
9477
9478This function returns the cosine of the specified operand, returning the
9479same values as the libm ``cos`` functions would, and handles error
9480conditions in the same way.
9481
9482'``llvm.pow.*``' Intrinsic
9483^^^^^^^^^^^^^^^^^^^^^^^^^^
9484
9485Syntax:
9486"""""""
9487
9488This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9489floating point or vector of floating point type. Not all targets support
9490all types however.
9491
9492::
9493
9494 declare float @llvm.pow.f32(float %Val, float %Power)
9495 declare double @llvm.pow.f64(double %Val, double %Power)
9496 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9497 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9498 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9499
9500Overview:
9501"""""""""
9502
9503The '``llvm.pow.*``' intrinsics return the first operand raised to the
9504specified (positive or negative) power.
9505
9506Arguments:
9507""""""""""
9508
9509The second argument is a floating point power, and the first is a value
9510to raise to that power.
9511
9512Semantics:
9513""""""""""
9514
9515This function returns the first value raised to the second power,
9516returning the same values as the libm ``pow`` functions would, and
9517handles error conditions in the same way.
9518
9519'``llvm.exp.*``' Intrinsic
9520^^^^^^^^^^^^^^^^^^^^^^^^^^
9521
9522Syntax:
9523"""""""
9524
9525This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9526floating point or vector of floating point type. Not all targets support
9527all types however.
9528
9529::
9530
9531 declare float @llvm.exp.f32(float %Val)
9532 declare double @llvm.exp.f64(double %Val)
9533 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9534 declare fp128 @llvm.exp.f128(fp128 %Val)
9535 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9536
9537Overview:
9538"""""""""
9539
9540The '``llvm.exp.*``' intrinsics perform the exp function.
9541
9542Arguments:
9543""""""""""
9544
9545The argument and return value are floating point numbers of the same
9546type.
9547
9548Semantics:
9549""""""""""
9550
9551This function returns the same values as the libm ``exp`` functions
9552would, and handles error conditions in the same way.
9553
9554'``llvm.exp2.*``' Intrinsic
9555^^^^^^^^^^^^^^^^^^^^^^^^^^^
9556
9557Syntax:
9558"""""""
9559
9560This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9561floating point or vector of floating point type. Not all targets support
9562all types however.
9563
9564::
9565
9566 declare float @llvm.exp2.f32(float %Val)
9567 declare double @llvm.exp2.f64(double %Val)
9568 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9569 declare fp128 @llvm.exp2.f128(fp128 %Val)
9570 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9571
9572Overview:
9573"""""""""
9574
9575The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9576
9577Arguments:
9578""""""""""
9579
9580The argument and return value are floating point numbers of the same
9581type.
9582
9583Semantics:
9584""""""""""
9585
9586This function returns the same values as the libm ``exp2`` functions
9587would, and handles error conditions in the same way.
9588
9589'``llvm.log.*``' Intrinsic
9590^^^^^^^^^^^^^^^^^^^^^^^^^^
9591
9592Syntax:
9593"""""""
9594
9595This is an overloaded intrinsic. You can use ``llvm.log`` on any
9596floating point or vector of floating point type. Not all targets support
9597all types however.
9598
9599::
9600
9601 declare float @llvm.log.f32(float %Val)
9602 declare double @llvm.log.f64(double %Val)
9603 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9604 declare fp128 @llvm.log.f128(fp128 %Val)
9605 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9606
9607Overview:
9608"""""""""
9609
9610The '``llvm.log.*``' intrinsics perform the log function.
9611
9612Arguments:
9613""""""""""
9614
9615The argument and return value are floating point numbers of the same
9616type.
9617
9618Semantics:
9619""""""""""
9620
9621This function returns the same values as the libm ``log`` functions
9622would, and handles error conditions in the same way.
9623
9624'``llvm.log10.*``' Intrinsic
9625^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9626
9627Syntax:
9628"""""""
9629
9630This is an overloaded intrinsic. You can use ``llvm.log10`` on any
9631floating point or vector of floating point type. Not all targets support
9632all types however.
9633
9634::
9635
9636 declare float @llvm.log10.f32(float %Val)
9637 declare double @llvm.log10.f64(double %Val)
9638 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
9639 declare fp128 @llvm.log10.f128(fp128 %Val)
9640 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
9641
9642Overview:
9643"""""""""
9644
9645The '``llvm.log10.*``' intrinsics perform the log10 function.
9646
9647Arguments:
9648""""""""""
9649
9650The argument and return value are floating point numbers of the same
9651type.
9652
9653Semantics:
9654""""""""""
9655
9656This function returns the same values as the libm ``log10`` functions
9657would, and handles error conditions in the same way.
9658
9659'``llvm.log2.*``' Intrinsic
9660^^^^^^^^^^^^^^^^^^^^^^^^^^^
9661
9662Syntax:
9663"""""""
9664
9665This is an overloaded intrinsic. You can use ``llvm.log2`` on any
9666floating point or vector of floating point type. Not all targets support
9667all types however.
9668
9669::
9670
9671 declare float @llvm.log2.f32(float %Val)
9672 declare double @llvm.log2.f64(double %Val)
9673 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
9674 declare fp128 @llvm.log2.f128(fp128 %Val)
9675 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
9676
9677Overview:
9678"""""""""
9679
9680The '``llvm.log2.*``' intrinsics perform the log2 function.
9681
9682Arguments:
9683""""""""""
9684
9685The argument and return value are floating point numbers of the same
9686type.
9687
9688Semantics:
9689""""""""""
9690
9691This function returns the same values as the libm ``log2`` functions
9692would, and handles error conditions in the same way.
9693
9694'``llvm.fma.*``' Intrinsic
9695^^^^^^^^^^^^^^^^^^^^^^^^^^
9696
9697Syntax:
9698"""""""
9699
9700This is an overloaded intrinsic. You can use ``llvm.fma`` on any
9701floating point or vector of floating point type. Not all targets support
9702all types however.
9703
9704::
9705
9706 declare float @llvm.fma.f32(float %a, float %b, float %c)
9707 declare double @llvm.fma.f64(double %a, double %b, double %c)
9708 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
9709 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
9710 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
9711
9712Overview:
9713"""""""""
9714
9715The '``llvm.fma.*``' intrinsics perform the fused multiply-add
9716operation.
9717
9718Arguments:
9719""""""""""
9720
9721The argument and return value are floating point numbers of the same
9722type.
9723
9724Semantics:
9725""""""""""
9726
9727This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009728would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00009729
9730'``llvm.fabs.*``' Intrinsic
9731^^^^^^^^^^^^^^^^^^^^^^^^^^^
9732
9733Syntax:
9734"""""""
9735
9736This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
9737floating point or vector of floating point type. Not all targets support
9738all types however.
9739
9740::
9741
9742 declare float @llvm.fabs.f32(float %Val)
9743 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009744 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00009745 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009746 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00009747
9748Overview:
9749"""""""""
9750
9751The '``llvm.fabs.*``' intrinsics return the absolute value of the
9752operand.
9753
9754Arguments:
9755""""""""""
9756
9757The argument and return value are floating point numbers of the same
9758type.
9759
9760Semantics:
9761""""""""""
9762
9763This function returns the same values as the libm ``fabs`` functions
9764would, and handles error conditions in the same way.
9765
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009766'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00009767^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009768
9769Syntax:
9770"""""""
9771
9772This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
9773floating point or vector of floating point type. Not all targets support
9774all types however.
9775
9776::
9777
Matt Arsenault64313c92014-10-22 18:25:02 +00009778 declare float @llvm.minnum.f32(float %Val0, float %Val1)
9779 declare double @llvm.minnum.f64(double %Val0, double %Val1)
9780 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
9781 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
9782 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009783
9784Overview:
9785"""""""""
9786
9787The '``llvm.minnum.*``' intrinsics return the minimum of the two
9788arguments.
9789
9790
9791Arguments:
9792""""""""""
9793
9794The arguments and return value are floating point numbers of the same
9795type.
9796
9797Semantics:
9798""""""""""
9799
9800Follows the IEEE-754 semantics for minNum, which also match for libm's
9801fmin.
9802
9803If either operand is a NaN, returns the other non-NaN operand. Returns
9804NaN only if both operands are NaN. If the operands compare equal,
9805returns a value that compares equal to both operands. This means that
9806fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
9807
9808'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00009809^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009810
9811Syntax:
9812"""""""
9813
9814This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
9815floating point or vector of floating point type. Not all targets support
9816all types however.
9817
9818::
9819
Matt Arsenault64313c92014-10-22 18:25:02 +00009820 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
9821 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
9822 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
9823 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
9824 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009825
9826Overview:
9827"""""""""
9828
9829The '``llvm.maxnum.*``' intrinsics return the maximum of the two
9830arguments.
9831
9832
9833Arguments:
9834""""""""""
9835
9836The arguments and return value are floating point numbers of the same
9837type.
9838
9839Semantics:
9840""""""""""
9841Follows the IEEE-754 semantics for maxNum, which also match for libm's
9842fmax.
9843
9844If either operand is a NaN, returns the other non-NaN operand. Returns
9845NaN only if both operands are NaN. If the operands compare equal,
9846returns a value that compares equal to both operands. This means that
9847fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
9848
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00009849'``llvm.copysign.*``' Intrinsic
9850^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9851
9852Syntax:
9853"""""""
9854
9855This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
9856floating point or vector of floating point type. Not all targets support
9857all types however.
9858
9859::
9860
9861 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
9862 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
9863 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
9864 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
9865 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
9866
9867Overview:
9868"""""""""
9869
9870The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
9871first operand and the sign of the second operand.
9872
9873Arguments:
9874""""""""""
9875
9876The arguments and return value are floating point numbers of the same
9877type.
9878
9879Semantics:
9880""""""""""
9881
9882This function returns the same values as the libm ``copysign``
9883functions would, and handles error conditions in the same way.
9884
Sean Silvab084af42012-12-07 10:36:55 +00009885'``llvm.floor.*``' Intrinsic
9886^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9887
9888Syntax:
9889"""""""
9890
9891This is an overloaded intrinsic. You can use ``llvm.floor`` on any
9892floating point or vector of floating point type. Not all targets support
9893all types however.
9894
9895::
9896
9897 declare float @llvm.floor.f32(float %Val)
9898 declare double @llvm.floor.f64(double %Val)
9899 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
9900 declare fp128 @llvm.floor.f128(fp128 %Val)
9901 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
9902
9903Overview:
9904"""""""""
9905
9906The '``llvm.floor.*``' intrinsics return the floor of the operand.
9907
9908Arguments:
9909""""""""""
9910
9911The argument and return value are floating point numbers of the same
9912type.
9913
9914Semantics:
9915""""""""""
9916
9917This function returns the same values as the libm ``floor`` functions
9918would, and handles error conditions in the same way.
9919
9920'``llvm.ceil.*``' Intrinsic
9921^^^^^^^^^^^^^^^^^^^^^^^^^^^
9922
9923Syntax:
9924"""""""
9925
9926This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
9927floating point or vector of floating point type. Not all targets support
9928all types however.
9929
9930::
9931
9932 declare float @llvm.ceil.f32(float %Val)
9933 declare double @llvm.ceil.f64(double %Val)
9934 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
9935 declare fp128 @llvm.ceil.f128(fp128 %Val)
9936 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
9937
9938Overview:
9939"""""""""
9940
9941The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
9942
9943Arguments:
9944""""""""""
9945
9946The argument and return value are floating point numbers of the same
9947type.
9948
9949Semantics:
9950""""""""""
9951
9952This function returns the same values as the libm ``ceil`` functions
9953would, and handles error conditions in the same way.
9954
9955'``llvm.trunc.*``' Intrinsic
9956^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9957
9958Syntax:
9959"""""""
9960
9961This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
9962floating point or vector of floating point type. Not all targets support
9963all types however.
9964
9965::
9966
9967 declare float @llvm.trunc.f32(float %Val)
9968 declare double @llvm.trunc.f64(double %Val)
9969 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
9970 declare fp128 @llvm.trunc.f128(fp128 %Val)
9971 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
9972
9973Overview:
9974"""""""""
9975
9976The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
9977nearest integer not larger in magnitude than the operand.
9978
9979Arguments:
9980""""""""""
9981
9982The argument and return value are floating point numbers of the same
9983type.
9984
9985Semantics:
9986""""""""""
9987
9988This function returns the same values as the libm ``trunc`` functions
9989would, and handles error conditions in the same way.
9990
9991'``llvm.rint.*``' Intrinsic
9992^^^^^^^^^^^^^^^^^^^^^^^^^^^
9993
9994Syntax:
9995"""""""
9996
9997This is an overloaded intrinsic. You can use ``llvm.rint`` on any
9998floating point or vector of floating point type. Not all targets support
9999all types however.
10000
10001::
10002
10003 declare float @llvm.rint.f32(float %Val)
10004 declare double @llvm.rint.f64(double %Val)
10005 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
10006 declare fp128 @llvm.rint.f128(fp128 %Val)
10007 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
10008
10009Overview:
10010"""""""""
10011
10012The '``llvm.rint.*``' intrinsics returns the operand rounded to the
10013nearest integer. It may raise an inexact floating-point exception if the
10014operand isn't an integer.
10015
10016Arguments:
10017""""""""""
10018
10019The argument and return value are floating point numbers of the same
10020type.
10021
10022Semantics:
10023""""""""""
10024
10025This function returns the same values as the libm ``rint`` functions
10026would, and handles error conditions in the same way.
10027
10028'``llvm.nearbyint.*``' Intrinsic
10029^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10030
10031Syntax:
10032"""""""
10033
10034This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
10035floating point or vector of floating point type. Not all targets support
10036all types however.
10037
10038::
10039
10040 declare float @llvm.nearbyint.f32(float %Val)
10041 declare double @llvm.nearbyint.f64(double %Val)
10042 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
10043 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
10044 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
10045
10046Overview:
10047"""""""""
10048
10049The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
10050nearest integer.
10051
10052Arguments:
10053""""""""""
10054
10055The argument and return value are floating point numbers of the same
10056type.
10057
10058Semantics:
10059""""""""""
10060
10061This function returns the same values as the libm ``nearbyint``
10062functions would, and handles error conditions in the same way.
10063
Hal Finkel171817e2013-08-07 22:49:12 +000010064'``llvm.round.*``' Intrinsic
10065^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10066
10067Syntax:
10068"""""""
10069
10070This is an overloaded intrinsic. You can use ``llvm.round`` on any
10071floating point or vector of floating point type. Not all targets support
10072all types however.
10073
10074::
10075
10076 declare float @llvm.round.f32(float %Val)
10077 declare double @llvm.round.f64(double %Val)
10078 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
10079 declare fp128 @llvm.round.f128(fp128 %Val)
10080 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
10081
10082Overview:
10083"""""""""
10084
10085The '``llvm.round.*``' intrinsics returns the operand rounded to the
10086nearest integer.
10087
10088Arguments:
10089""""""""""
10090
10091The argument and return value are floating point numbers of the same
10092type.
10093
10094Semantics:
10095""""""""""
10096
10097This function returns the same values as the libm ``round``
10098functions would, and handles error conditions in the same way.
10099
Sean Silvab084af42012-12-07 10:36:55 +000010100Bit Manipulation Intrinsics
10101---------------------------
10102
10103LLVM provides intrinsics for a few important bit manipulation
10104operations. These allow efficient code generation for some algorithms.
10105
10106'``llvm.bswap.*``' Intrinsics
10107^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10108
10109Syntax:
10110"""""""
10111
10112This is an overloaded intrinsic function. You can use bswap on any
10113integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
10114
10115::
10116
10117 declare i16 @llvm.bswap.i16(i16 <id>)
10118 declare i32 @llvm.bswap.i32(i32 <id>)
10119 declare i64 @llvm.bswap.i64(i64 <id>)
10120
10121Overview:
10122"""""""""
10123
10124The '``llvm.bswap``' family of intrinsics is used to byte swap integer
10125values with an even number of bytes (positive multiple of 16 bits).
10126These are useful for performing operations on data that is not in the
10127target's native byte order.
10128
10129Semantics:
10130""""""""""
10131
10132The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
10133and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
10134intrinsic returns an i32 value that has the four bytes of the input i32
10135swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
10136returned i32 will have its bytes in 3, 2, 1, 0 order. The
10137``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
10138concept to additional even-byte lengths (6 bytes, 8 bytes and more,
10139respectively).
10140
10141'``llvm.ctpop.*``' Intrinsic
10142^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10143
10144Syntax:
10145"""""""
10146
10147This is an overloaded intrinsic. You can use llvm.ctpop on any integer
10148bit width, or on any vector with integer elements. Not all targets
10149support all bit widths or vector types, however.
10150
10151::
10152
10153 declare i8 @llvm.ctpop.i8(i8 <src>)
10154 declare i16 @llvm.ctpop.i16(i16 <src>)
10155 declare i32 @llvm.ctpop.i32(i32 <src>)
10156 declare i64 @llvm.ctpop.i64(i64 <src>)
10157 declare i256 @llvm.ctpop.i256(i256 <src>)
10158 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
10159
10160Overview:
10161"""""""""
10162
10163The '``llvm.ctpop``' family of intrinsics counts the number of bits set
10164in a value.
10165
10166Arguments:
10167""""""""""
10168
10169The only argument is the value to be counted. The argument may be of any
10170integer type, or a vector with integer elements. The return type must
10171match the argument type.
10172
10173Semantics:
10174""""""""""
10175
10176The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
10177each element of a vector.
10178
10179'``llvm.ctlz.*``' Intrinsic
10180^^^^^^^^^^^^^^^^^^^^^^^^^^^
10181
10182Syntax:
10183"""""""
10184
10185This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
10186integer bit width, or any vector whose elements are integers. Not all
10187targets support all bit widths or vector types, however.
10188
10189::
10190
10191 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
10192 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
10193 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
10194 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
10195 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
10196 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10197
10198Overview:
10199"""""""""
10200
10201The '``llvm.ctlz``' family of intrinsic functions counts the number of
10202leading zeros in a variable.
10203
10204Arguments:
10205""""""""""
10206
10207The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010208any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010209type must match the first argument type.
10210
10211The second argument must be a constant and is a flag to indicate whether
10212the intrinsic should ensure that a zero as the first argument produces a
10213defined result. Historically some architectures did not provide a
10214defined result for zero values as efficiently, and many algorithms are
10215now predicated on avoiding zero-value inputs.
10216
10217Semantics:
10218""""""""""
10219
10220The '``llvm.ctlz``' intrinsic counts the leading (most significant)
10221zeros in a variable, or within each element of the vector. If
10222``src == 0`` then the result is the size in bits of the type of ``src``
10223if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10224``llvm.ctlz(i32 2) = 30``.
10225
10226'``llvm.cttz.*``' Intrinsic
10227^^^^^^^^^^^^^^^^^^^^^^^^^^^
10228
10229Syntax:
10230"""""""
10231
10232This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
10233integer bit width, or any vector of integer elements. Not all targets
10234support all bit widths or vector types, however.
10235
10236::
10237
10238 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
10239 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
10240 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
10241 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
10242 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
10243 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
10244
10245Overview:
10246"""""""""
10247
10248The '``llvm.cttz``' family of intrinsic functions counts the number of
10249trailing zeros.
10250
10251Arguments:
10252""""""""""
10253
10254The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +000010255any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +000010256type must match the first argument type.
10257
10258The second argument must be a constant and is a flag to indicate whether
10259the intrinsic should ensure that a zero as the first argument produces a
10260defined result. Historically some architectures did not provide a
10261defined result for zero values as efficiently, and many algorithms are
10262now predicated on avoiding zero-value inputs.
10263
10264Semantics:
10265""""""""""
10266
10267The '``llvm.cttz``' intrinsic counts the trailing (least significant)
10268zeros in a variable, or within each element of a vector. If ``src == 0``
10269then the result is the size in bits of the type of ``src`` if
10270``is_zero_undef == 0`` and ``undef`` otherwise. For example,
10271``llvm.cttz(2) = 1``.
10272
Philip Reames34843ae2015-03-05 05:55:55 +000010273.. _int_overflow:
10274
Sean Silvab084af42012-12-07 10:36:55 +000010275Arithmetic with Overflow Intrinsics
10276-----------------------------------
10277
10278LLVM provides intrinsics for some arithmetic with overflow operations.
10279
10280'``llvm.sadd.with.overflow.*``' Intrinsics
10281^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10282
10283Syntax:
10284"""""""
10285
10286This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
10287on any integer bit width.
10288
10289::
10290
10291 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
10292 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10293 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
10294
10295Overview:
10296"""""""""
10297
10298The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
10299a signed addition of the two arguments, and indicate whether an overflow
10300occurred during the signed summation.
10301
10302Arguments:
10303""""""""""
10304
10305The arguments (%a and %b) and the first element of the result structure
10306may be of integer types of any bit width, but they must have the same
10307bit width. The second element of the result structure must be of type
10308``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10309addition.
10310
10311Semantics:
10312""""""""""
10313
10314The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010315a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010316first element of which is the signed summation, and the second element
10317of which is a bit specifying if the signed summation resulted in an
10318overflow.
10319
10320Examples:
10321"""""""""
10322
10323.. code-block:: llvm
10324
10325 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
10326 %sum = extractvalue {i32, i1} %res, 0
10327 %obit = extractvalue {i32, i1} %res, 1
10328 br i1 %obit, label %overflow, label %normal
10329
10330'``llvm.uadd.with.overflow.*``' Intrinsics
10331^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10332
10333Syntax:
10334"""""""
10335
10336This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
10337on any integer bit width.
10338
10339::
10340
10341 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
10342 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10343 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
10344
10345Overview:
10346"""""""""
10347
10348The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
10349an unsigned addition of the two arguments, and indicate whether a carry
10350occurred during the unsigned summation.
10351
10352Arguments:
10353""""""""""
10354
10355The arguments (%a and %b) and the first element of the result structure
10356may be of integer types of any bit width, but they must have the same
10357bit width. The second element of the result structure must be of type
10358``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10359addition.
10360
10361Semantics:
10362""""""""""
10363
10364The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010365an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010366first element of which is the sum, and the second element of which is a
10367bit specifying if the unsigned summation resulted in a carry.
10368
10369Examples:
10370"""""""""
10371
10372.. code-block:: llvm
10373
10374 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10375 %sum = extractvalue {i32, i1} %res, 0
10376 %obit = extractvalue {i32, i1} %res, 1
10377 br i1 %obit, label %carry, label %normal
10378
10379'``llvm.ssub.with.overflow.*``' Intrinsics
10380^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10381
10382Syntax:
10383"""""""
10384
10385This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10386on any integer bit width.
10387
10388::
10389
10390 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10391 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10392 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10393
10394Overview:
10395"""""""""
10396
10397The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10398a signed subtraction of the two arguments, and indicate whether an
10399overflow occurred during the signed subtraction.
10400
10401Arguments:
10402""""""""""
10403
10404The arguments (%a and %b) and the first element of the result structure
10405may be of integer types of any bit width, but they must have the same
10406bit width. The second element of the result structure must be of type
10407``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10408subtraction.
10409
10410Semantics:
10411""""""""""
10412
10413The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010414a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010415first element of which is the subtraction, and the second element of
10416which is a bit specifying if the signed subtraction resulted in an
10417overflow.
10418
10419Examples:
10420"""""""""
10421
10422.. code-block:: llvm
10423
10424 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10425 %sum = extractvalue {i32, i1} %res, 0
10426 %obit = extractvalue {i32, i1} %res, 1
10427 br i1 %obit, label %overflow, label %normal
10428
10429'``llvm.usub.with.overflow.*``' Intrinsics
10430^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10431
10432Syntax:
10433"""""""
10434
10435This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10436on any integer bit width.
10437
10438::
10439
10440 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10441 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10442 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10443
10444Overview:
10445"""""""""
10446
10447The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10448an unsigned subtraction of the two arguments, and indicate whether an
10449overflow occurred during the unsigned subtraction.
10450
10451Arguments:
10452""""""""""
10453
10454The arguments (%a and %b) and the first element of the result structure
10455may be of integer types of any bit width, but they must have the same
10456bit width. The second element of the result structure must be of type
10457``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10458subtraction.
10459
10460Semantics:
10461""""""""""
10462
10463The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010464an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010465the first element of which is the subtraction, and the second element of
10466which is a bit specifying if the unsigned subtraction resulted in an
10467overflow.
10468
10469Examples:
10470"""""""""
10471
10472.. code-block:: llvm
10473
10474 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10475 %sum = extractvalue {i32, i1} %res, 0
10476 %obit = extractvalue {i32, i1} %res, 1
10477 br i1 %obit, label %overflow, label %normal
10478
10479'``llvm.smul.with.overflow.*``' Intrinsics
10480^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10481
10482Syntax:
10483"""""""
10484
10485This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10486on any integer bit width.
10487
10488::
10489
10490 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10491 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10492 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10493
10494Overview:
10495"""""""""
10496
10497The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10498a signed multiplication of the two arguments, and indicate whether an
10499overflow occurred during the signed multiplication.
10500
10501Arguments:
10502""""""""""
10503
10504The arguments (%a and %b) and the first element of the result structure
10505may be of integer types of any bit width, but they must have the same
10506bit width. The second element of the result structure must be of type
10507``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10508multiplication.
10509
10510Semantics:
10511""""""""""
10512
10513The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010514a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010515the first element of which is the multiplication, and the second element
10516of which is a bit specifying if the signed multiplication resulted in an
10517overflow.
10518
10519Examples:
10520"""""""""
10521
10522.. code-block:: llvm
10523
10524 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10525 %sum = extractvalue {i32, i1} %res, 0
10526 %obit = extractvalue {i32, i1} %res, 1
10527 br i1 %obit, label %overflow, label %normal
10528
10529'``llvm.umul.with.overflow.*``' Intrinsics
10530^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10531
10532Syntax:
10533"""""""
10534
10535This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10536on any integer bit width.
10537
10538::
10539
10540 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10541 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10542 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10543
10544Overview:
10545"""""""""
10546
10547The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10548a unsigned multiplication of the two arguments, and indicate whether an
10549overflow occurred during the unsigned multiplication.
10550
10551Arguments:
10552""""""""""
10553
10554The arguments (%a and %b) and the first element of the result structure
10555may be of integer types of any bit width, but they must have the same
10556bit width. The second element of the result structure must be of type
10557``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10558multiplication.
10559
10560Semantics:
10561""""""""""
10562
10563The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010564an unsigned multiplication of the two arguments. They return a structure ---
10565the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010566element of which is a bit specifying if the unsigned multiplication
10567resulted in an overflow.
10568
10569Examples:
10570"""""""""
10571
10572.. code-block:: llvm
10573
10574 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10575 %sum = extractvalue {i32, i1} %res, 0
10576 %obit = extractvalue {i32, i1} %res, 1
10577 br i1 %obit, label %overflow, label %normal
10578
10579Specialised Arithmetic Intrinsics
10580---------------------------------
10581
Owen Anderson1056a922015-07-11 07:01:27 +000010582'``llvm.canonicalize.*``' Intrinsic
10583^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10584
10585Syntax:
10586"""""""
10587
10588::
10589
10590 declare float @llvm.canonicalize.f32(float %a)
10591 declare double @llvm.canonicalize.f64(double %b)
10592
10593Overview:
10594"""""""""
10595
10596The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
10597encoding of a floating point number. This canonicalization is useful for
10598implementing certain numeric primitives such as frexp. The canonical encoding is
10599defined by IEEE-754-2008 to be:
10600
10601::
10602
10603 2.1.8 canonical encoding: The preferred encoding of a floating-point
10604 representation in a format. Applied to declets, significands of finite
10605 numbers, infinities, and NaNs, especially in decimal formats.
10606
10607This operation can also be considered equivalent to the IEEE-754-2008
10608conversion of a floating-point value to the same format. NaNs are handled
10609according to section 6.2.
10610
10611Examples of non-canonical encodings:
10612
10613- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
10614 converted to a canonical representation per hardware-specific protocol.
10615- Many normal decimal floating point numbers have non-canonical alternative
10616 encodings.
10617- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
10618 These are treated as non-canonical encodings of zero and with be flushed to
10619 a zero of the same sign by this operation.
10620
10621Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
10622default exception handling must signal an invalid exception, and produce a
10623quiet NaN result.
10624
10625This function should always be implementable as multiplication by 1.0, provided
10626that the compiler does not constant fold the operation. Likewise, division by
106271.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
10628-0.0 is also sufficient provided that the rounding mode is not -Infinity.
10629
10630``@llvm.canonicalize`` must preserve the equality relation. That is:
10631
10632- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
10633- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
10634 to ``(x == y)``
10635
10636Additionally, the sign of zero must be conserved:
10637``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
10638
10639The payload bits of a NaN must be conserved, with two exceptions.
10640First, environments which use only a single canonical representation of NaN
10641must perform said canonicalization. Second, SNaNs must be quieted per the
10642usual methods.
10643
10644The canonicalization operation may be optimized away if:
10645
10646- The input is known to be canonical. For example, it was produced by a
10647 floating-point operation that is required by the standard to be canonical.
10648- The result is consumed only by (or fused with) other floating-point
10649 operations. That is, the bits of the floating point value are not examined.
10650
Sean Silvab084af42012-12-07 10:36:55 +000010651'``llvm.fmuladd.*``' Intrinsic
10652^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10653
10654Syntax:
10655"""""""
10656
10657::
10658
10659 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
10660 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
10661
10662Overview:
10663"""""""""
10664
10665The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000010666expressions that can be fused if the code generator determines that (a) the
10667target instruction set has support for a fused operation, and (b) that the
10668fused operation is more efficient than the equivalent, separate pair of mul
10669and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000010670
10671Arguments:
10672""""""""""
10673
10674The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
10675multiplicands, a and b, and an addend c.
10676
10677Semantics:
10678""""""""""
10679
10680The expression:
10681
10682::
10683
10684 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
10685
10686is equivalent to the expression a \* b + c, except that rounding will
10687not be performed between the multiplication and addition steps if the
10688code generator fuses the operations. Fusion is not guaranteed, even if
10689the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010690corresponding llvm.fma.\* intrinsic function should be used
10691instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000010692
10693Examples:
10694"""""""""
10695
10696.. code-block:: llvm
10697
Tim Northover675a0962014-06-13 14:24:23 +000010698 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000010699
James Molloy7395a812015-07-16 15:22:46 +000010700
10701'``llvm.uabsdiff.*``' and '``llvm.sabsdiff.*``' Intrinsics
10702^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10703
10704Syntax:
10705"""""""
10706This is an overloaded intrinsic. The loaded data is a vector of any integer bit width.
10707
10708.. code-block:: llvm
10709
10710 declare <4 x integer> @llvm.uabsdiff.v4i32(<4 x integer> %a, <4 x integer> %b)
10711
10712
10713Overview:
10714"""""""""
10715
10716The ``llvm.uabsdiff`` intrinsic returns a vector result of the absolute difference of the two operands,
10717treating them both as unsigned integers.
10718
10719The ``llvm.sabsdiff`` intrinsic returns a vector result of the absolute difference of the two operands,
10720treating them both as signed integers.
10721
10722.. note::
10723
10724 These intrinsics are primarily used during the code generation stage of compilation.
10725 They are generated by compiler passes such as the Loop and SLP vectorizers.it is not
10726 recommended for users to create them manually.
10727
10728Arguments:
10729""""""""""
10730
10731Both intrinsics take two integer of the same bitwidth.
10732
10733Semantics:
10734""""""""""
10735
10736The expression::
10737
10738 call <4 x i32> @llvm.uabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
10739
10740is equivalent to::
10741
10742 %sub = sub <4 x i32> %a, %b
10743 %ispos = icmp ugt <4 x i32> %sub, <i32 -1, i32 -1, i32 -1, i32 -1>
10744 %neg = sub <4 x i32> zeroinitializer, %sub
10745 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
10746
10747Similarly the expression::
10748
10749 call <4 x i32> @llvm.sabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
10750
10751is equivalent to::
10752
10753 %sub = sub nsw <4 x i32> %a, %b
10754 %ispos = icmp sgt <4 x i32> %sub, <i32 -1, i32 -1, i32 -1, i32 -1>
10755 %neg = sub nsw <4 x i32> zeroinitializer, %sub
10756 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
10757
10758
Sean Silvab084af42012-12-07 10:36:55 +000010759Half Precision Floating Point Intrinsics
10760----------------------------------------
10761
10762For most target platforms, half precision floating point is a
10763storage-only format. This means that it is a dense encoding (in memory)
10764but does not support computation in the format.
10765
10766This means that code must first load the half-precision floating point
10767value as an i16, then convert it to float with
10768:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
10769then be performed on the float value (including extending to double
10770etc). To store the value back to memory, it is first converted to float
10771if needed, then converted to i16 with
10772:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
10773i16 value.
10774
10775.. _int_convert_to_fp16:
10776
10777'``llvm.convert.to.fp16``' Intrinsic
10778^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10779
10780Syntax:
10781"""""""
10782
10783::
10784
Tim Northoverfd7e4242014-07-17 10:51:23 +000010785 declare i16 @llvm.convert.to.fp16.f32(float %a)
10786 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000010787
10788Overview:
10789"""""""""
10790
Tim Northoverfd7e4242014-07-17 10:51:23 +000010791The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
10792conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000010793
10794Arguments:
10795""""""""""
10796
10797The intrinsic function contains single argument - the value to be
10798converted.
10799
10800Semantics:
10801""""""""""
10802
Tim Northoverfd7e4242014-07-17 10:51:23 +000010803The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
10804conventional floating point format to half precision floating point format. The
10805return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000010806
10807Examples:
10808"""""""""
10809
10810.. code-block:: llvm
10811
Tim Northoverfd7e4242014-07-17 10:51:23 +000010812 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000010813 store i16 %res, i16* @x, align 2
10814
10815.. _int_convert_from_fp16:
10816
10817'``llvm.convert.from.fp16``' Intrinsic
10818^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10819
10820Syntax:
10821"""""""
10822
10823::
10824
Tim Northoverfd7e4242014-07-17 10:51:23 +000010825 declare float @llvm.convert.from.fp16.f32(i16 %a)
10826 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000010827
10828Overview:
10829"""""""""
10830
10831The '``llvm.convert.from.fp16``' intrinsic function performs a
10832conversion from half precision floating point format to single precision
10833floating point format.
10834
10835Arguments:
10836""""""""""
10837
10838The intrinsic function contains single argument - the value to be
10839converted.
10840
10841Semantics:
10842""""""""""
10843
10844The '``llvm.convert.from.fp16``' intrinsic function performs a
10845conversion from half single precision floating point format to single
10846precision floating point format. The input half-float value is
10847represented by an ``i16`` value.
10848
10849Examples:
10850"""""""""
10851
10852.. code-block:: llvm
10853
David Blaikiec7aabbb2015-03-04 22:06:14 +000010854 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000010855 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000010856
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000010857.. _dbg_intrinsics:
10858
Sean Silvab084af42012-12-07 10:36:55 +000010859Debugger Intrinsics
10860-------------------
10861
10862The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
10863prefix), are described in the `LLVM Source Level
10864Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
10865document.
10866
10867Exception Handling Intrinsics
10868-----------------------------
10869
10870The LLVM exception handling intrinsics (which all start with
10871``llvm.eh.`` prefix), are described in the `LLVM Exception
10872Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
10873
10874.. _int_trampoline:
10875
10876Trampoline Intrinsics
10877---------------------
10878
10879These intrinsics make it possible to excise one parameter, marked with
10880the :ref:`nest <nest>` attribute, from a function. The result is a
10881callable function pointer lacking the nest parameter - the caller does
10882not need to provide a value for it. Instead, the value to use is stored
10883in advance in a "trampoline", a block of memory usually allocated on the
10884stack, which also contains code to splice the nest value into the
10885argument list. This is used to implement the GCC nested function address
10886extension.
10887
10888For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
10889then the resulting function pointer has signature ``i32 (i32, i32)*``.
10890It can be created as follows:
10891
10892.. code-block:: llvm
10893
10894 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000010895 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000010896 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
10897 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
10898 %fp = bitcast i8* %p to i32 (i32, i32)*
10899
10900The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
10901``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
10902
10903.. _int_it:
10904
10905'``llvm.init.trampoline``' Intrinsic
10906^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10907
10908Syntax:
10909"""""""
10910
10911::
10912
10913 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
10914
10915Overview:
10916"""""""""
10917
10918This fills the memory pointed to by ``tramp`` with executable code,
10919turning it into a trampoline.
10920
10921Arguments:
10922""""""""""
10923
10924The ``llvm.init.trampoline`` intrinsic takes three arguments, all
10925pointers. The ``tramp`` argument must point to a sufficiently large and
10926sufficiently aligned block of memory; this memory is written to by the
10927intrinsic. Note that the size and the alignment are target-specific -
10928LLVM currently provides no portable way of determining them, so a
10929front-end that generates this intrinsic needs to have some
10930target-specific knowledge. The ``func`` argument must hold a function
10931bitcast to an ``i8*``.
10932
10933Semantics:
10934""""""""""
10935
10936The block of memory pointed to by ``tramp`` is filled with target
10937dependent code, turning it into a function. Then ``tramp`` needs to be
10938passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
10939be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
10940function's signature is the same as that of ``func`` with any arguments
10941marked with the ``nest`` attribute removed. At most one such ``nest``
10942argument is allowed, and it must be of pointer type. Calling the new
10943function is equivalent to calling ``func`` with the same argument list,
10944but with ``nval`` used for the missing ``nest`` argument. If, after
10945calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
10946modified, then the effect of any later call to the returned function
10947pointer is undefined.
10948
10949.. _int_at:
10950
10951'``llvm.adjust.trampoline``' Intrinsic
10952^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10953
10954Syntax:
10955"""""""
10956
10957::
10958
10959 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
10960
10961Overview:
10962"""""""""
10963
10964This performs any required machine-specific adjustment to the address of
10965a trampoline (passed as ``tramp``).
10966
10967Arguments:
10968""""""""""
10969
10970``tramp`` must point to a block of memory which already has trampoline
10971code filled in by a previous call to
10972:ref:`llvm.init.trampoline <int_it>`.
10973
10974Semantics:
10975""""""""""
10976
10977On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000010978different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000010979intrinsic returns the executable address corresponding to ``tramp``
10980after performing the required machine specific adjustments. The pointer
10981returned can then be :ref:`bitcast and executed <int_trampoline>`.
10982
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000010983.. _int_mload_mstore:
10984
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010985Masked Vector Load and Store Intrinsics
10986---------------------------------------
10987
10988LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
10989
10990.. _int_mload:
10991
10992'``llvm.masked.load.*``' Intrinsics
10993^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10994
10995Syntax:
10996"""""""
10997This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
10998
10999::
11000
11001 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11002 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11003
11004Overview:
11005"""""""""
11006
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011007Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011008
11009
11010Arguments:
11011""""""""""
11012
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011013The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011014
11015
11016Semantics:
11017""""""""""
11018
11019The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
11020The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
11021
11022
11023::
11024
11025 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011026
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011027 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000011028 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011029 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011030
11031.. _int_mstore:
11032
11033'``llvm.masked.store.*``' Intrinsics
11034^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11035
11036Syntax:
11037"""""""
11038This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
11039
11040::
11041
11042 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
11043 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
11044
11045Overview:
11046"""""""""
11047
11048Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11049
11050Arguments:
11051""""""""""
11052
11053The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11054
11055
11056Semantics:
11057""""""""""
11058
11059The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11060The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
11061
11062::
11063
11064 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000011065
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000011066 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000011067 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000011068 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
11069 store <16 x float> %res, <16 x float>* %ptr, align 4
11070
11071
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000011072Masked Vector Gather and Scatter Intrinsics
11073-------------------------------------------
11074
11075LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
11076
11077.. _int_mgather:
11078
11079'``llvm.masked.gather.*``' Intrinsics
11080^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11081
11082Syntax:
11083"""""""
11084This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer or floating point data type gathered together into one vector.
11085
11086::
11087
11088 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
11089 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
11090
11091Overview:
11092"""""""""
11093
11094Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
11095
11096
11097Arguments:
11098""""""""""
11099
11100The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
11101
11102
11103Semantics:
11104""""""""""
11105
11106The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
11107The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
11108
11109
11110::
11111
11112 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
11113
11114 ;; The gather with all-true mask is equivalent to the following instruction sequence
11115 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
11116 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
11117 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
11118 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
11119
11120 %val0 = load double, double* %ptr0, align 8
11121 %val1 = load double, double* %ptr1, align 8
11122 %val2 = load double, double* %ptr2, align 8
11123 %val3 = load double, double* %ptr3, align 8
11124
11125 %vec0 = insertelement <4 x double>undef, %val0, 0
11126 %vec01 = insertelement <4 x double>%vec0, %val1, 1
11127 %vec012 = insertelement <4 x double>%vec01, %val2, 2
11128 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
11129
11130.. _int_mscatter:
11131
11132'``llvm.masked.scatter.*``' Intrinsics
11133^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11134
11135Syntax:
11136"""""""
11137This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type. Each vector element is stored in an arbitrary memory addresses. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
11138
11139::
11140
11141 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
11142 declare void @llvm.masked.scatter.v16f32(<16 x i32> <value>, <16 x i32*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
11143
11144Overview:
11145"""""""""
11146
11147Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
11148
11149Arguments:
11150""""""""""
11151
11152The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
11153
11154
11155Semantics:
11156""""""""""
11157
11158The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergency. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
11159
11160::
11161
11162 ;; This instruction unconditionaly stores data vector in multiple addresses
11163 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
11164
11165 ;; It is equivalent to a list of scalar stores
11166 %val0 = extractelement <8 x i32> %value, i32 0
11167 %val1 = extractelement <8 x i32> %value, i32 1
11168 ..
11169 %val7 = extractelement <8 x i32> %value, i32 7
11170 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
11171 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
11172 ..
11173 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
11174 ;; Note: the order of the following stores is important when they overlap:
11175 store i32 %val0, i32* %ptr0, align 4
11176 store i32 %val1, i32* %ptr1, align 4
11177 ..
11178 store i32 %val7, i32* %ptr7, align 4
11179
11180
Sean Silvab084af42012-12-07 10:36:55 +000011181Memory Use Markers
11182------------------
11183
Sanjay Patel69bf48e2014-07-04 19:40:43 +000011184This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000011185memory objects and ranges where variables are immutable.
11186
Reid Klecknera534a382013-12-19 02:14:12 +000011187.. _int_lifestart:
11188
Sean Silvab084af42012-12-07 10:36:55 +000011189'``llvm.lifetime.start``' Intrinsic
11190^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11191
11192Syntax:
11193"""""""
11194
11195::
11196
11197 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
11198
11199Overview:
11200"""""""""
11201
11202The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
11203object's lifetime.
11204
11205Arguments:
11206""""""""""
11207
11208The first argument is a constant integer representing the size of the
11209object, or -1 if it is variable sized. The second argument is a pointer
11210to the object.
11211
11212Semantics:
11213""""""""""
11214
11215This intrinsic indicates that before this point in the code, the value
11216of the memory pointed to by ``ptr`` is dead. This means that it is known
11217to never be used and has an undefined value. A load from the pointer
11218that precedes this intrinsic can be replaced with ``'undef'``.
11219
Reid Klecknera534a382013-12-19 02:14:12 +000011220.. _int_lifeend:
11221
Sean Silvab084af42012-12-07 10:36:55 +000011222'``llvm.lifetime.end``' Intrinsic
11223^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11224
11225Syntax:
11226"""""""
11227
11228::
11229
11230 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
11231
11232Overview:
11233"""""""""
11234
11235The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
11236object's lifetime.
11237
11238Arguments:
11239""""""""""
11240
11241The first argument is a constant integer representing the size of the
11242object, or -1 if it is variable sized. The second argument is a pointer
11243to the object.
11244
11245Semantics:
11246""""""""""
11247
11248This intrinsic indicates that after this point in the code, the value of
11249the memory pointed to by ``ptr`` is dead. This means that it is known to
11250never be used and has an undefined value. Any stores into the memory
11251object following this intrinsic may be removed as dead.
11252
11253'``llvm.invariant.start``' Intrinsic
11254^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11255
11256Syntax:
11257"""""""
11258
11259::
11260
11261 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
11262
11263Overview:
11264"""""""""
11265
11266The '``llvm.invariant.start``' intrinsic specifies that the contents of
11267a memory object will not change.
11268
11269Arguments:
11270""""""""""
11271
11272The first argument is a constant integer representing the size of the
11273object, or -1 if it is variable sized. The second argument is a pointer
11274to the object.
11275
11276Semantics:
11277""""""""""
11278
11279This intrinsic indicates that until an ``llvm.invariant.end`` that uses
11280the return value, the referenced memory location is constant and
11281unchanging.
11282
11283'``llvm.invariant.end``' Intrinsic
11284^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11285
11286Syntax:
11287"""""""
11288
11289::
11290
11291 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
11292
11293Overview:
11294"""""""""
11295
11296The '``llvm.invariant.end``' intrinsic specifies that the contents of a
11297memory object are mutable.
11298
11299Arguments:
11300""""""""""
11301
11302The first argument is the matching ``llvm.invariant.start`` intrinsic.
11303The second argument is a constant integer representing the size of the
11304object, or -1 if it is variable sized and the third argument is a
11305pointer to the object.
11306
11307Semantics:
11308""""""""""
11309
11310This intrinsic indicates that the memory is mutable again.
11311
11312General Intrinsics
11313------------------
11314
11315This class of intrinsics is designed to be generic and has no specific
11316purpose.
11317
11318'``llvm.var.annotation``' Intrinsic
11319^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11320
11321Syntax:
11322"""""""
11323
11324::
11325
11326 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11327
11328Overview:
11329"""""""""
11330
11331The '``llvm.var.annotation``' intrinsic.
11332
11333Arguments:
11334""""""""""
11335
11336The first argument is a pointer to a value, the second is a pointer to a
11337global string, the third is a pointer to a global string which is the
11338source file name, and the last argument is the line number.
11339
11340Semantics:
11341""""""""""
11342
11343This intrinsic allows annotation of local variables with arbitrary
11344strings. This can be useful for special purpose optimizations that want
11345to look for these annotations. These have no other defined use; they are
11346ignored by code generation and optimization.
11347
Michael Gottesman88d18832013-03-26 00:34:27 +000011348'``llvm.ptr.annotation.*``' Intrinsic
11349^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11350
11351Syntax:
11352"""""""
11353
11354This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
11355pointer to an integer of any width. *NOTE* you must specify an address space for
11356the pointer. The identifier for the default address space is the integer
11357'``0``'.
11358
11359::
11360
11361 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
11362 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
11363 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
11364 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
11365 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
11366
11367Overview:
11368"""""""""
11369
11370The '``llvm.ptr.annotation``' intrinsic.
11371
11372Arguments:
11373""""""""""
11374
11375The first argument is a pointer to an integer value of arbitrary bitwidth
11376(result of some expression), the second is a pointer to a global string, the
11377third is a pointer to a global string which is the source file name, and the
11378last argument is the line number. It returns the value of the first argument.
11379
11380Semantics:
11381""""""""""
11382
11383This intrinsic allows annotation of a pointer to an integer with arbitrary
11384strings. This can be useful for special purpose optimizations that want to look
11385for these annotations. These have no other defined use; they are ignored by code
11386generation and optimization.
11387
Sean Silvab084af42012-12-07 10:36:55 +000011388'``llvm.annotation.*``' Intrinsic
11389^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11390
11391Syntax:
11392"""""""
11393
11394This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11395any integer bit width.
11396
11397::
11398
11399 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11400 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11401 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11402 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11403 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11404
11405Overview:
11406"""""""""
11407
11408The '``llvm.annotation``' intrinsic.
11409
11410Arguments:
11411""""""""""
11412
11413The first argument is an integer value (result of some expression), the
11414second is a pointer to a global string, the third is a pointer to a
11415global string which is the source file name, and the last argument is
11416the line number. It returns the value of the first argument.
11417
11418Semantics:
11419""""""""""
11420
11421This intrinsic allows annotations to be put on arbitrary expressions
11422with arbitrary strings. This can be useful for special purpose
11423optimizations that want to look for these annotations. These have no
11424other defined use; they are ignored by code generation and optimization.
11425
11426'``llvm.trap``' Intrinsic
11427^^^^^^^^^^^^^^^^^^^^^^^^^
11428
11429Syntax:
11430"""""""
11431
11432::
11433
11434 declare void @llvm.trap() noreturn nounwind
11435
11436Overview:
11437"""""""""
11438
11439The '``llvm.trap``' intrinsic.
11440
11441Arguments:
11442""""""""""
11443
11444None.
11445
11446Semantics:
11447""""""""""
11448
11449This intrinsic is lowered to the target dependent trap instruction. If
11450the target does not have a trap instruction, this intrinsic will be
11451lowered to a call of the ``abort()`` function.
11452
11453'``llvm.debugtrap``' Intrinsic
11454^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11455
11456Syntax:
11457"""""""
11458
11459::
11460
11461 declare void @llvm.debugtrap() nounwind
11462
11463Overview:
11464"""""""""
11465
11466The '``llvm.debugtrap``' intrinsic.
11467
11468Arguments:
11469""""""""""
11470
11471None.
11472
11473Semantics:
11474""""""""""
11475
11476This intrinsic is lowered to code which is intended to cause an
11477execution trap with the intention of requesting the attention of a
11478debugger.
11479
11480'``llvm.stackprotector``' Intrinsic
11481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11482
11483Syntax:
11484"""""""
11485
11486::
11487
11488 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11489
11490Overview:
11491"""""""""
11492
11493The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11494onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11495is placed on the stack before local variables.
11496
11497Arguments:
11498""""""""""
11499
11500The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11501The first argument is the value loaded from the stack guard
11502``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11503enough space to hold the value of the guard.
11504
11505Semantics:
11506""""""""""
11507
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011508This intrinsic causes the prologue/epilogue inserter to force the position of
11509the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11510to ensure that if a local variable on the stack is overwritten, it will destroy
11511the value of the guard. When the function exits, the guard on the stack is
11512checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11513different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11514calling the ``__stack_chk_fail()`` function.
11515
11516'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011517^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011518
11519Syntax:
11520"""""""
11521
11522::
11523
11524 declare void @llvm.stackprotectorcheck(i8** <guard>)
11525
11526Overview:
11527"""""""""
11528
11529The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011530created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011531``__stack_chk_fail()`` function.
11532
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011533Arguments:
11534""""""""""
11535
11536The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11537the variable ``@__stack_chk_guard``.
11538
11539Semantics:
11540""""""""""
11541
11542This intrinsic is provided to perform the stack protector check by comparing
11543``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11544values do not match call the ``__stack_chk_fail()`` function.
11545
11546The reason to provide this as an IR level intrinsic instead of implementing it
11547via other IR operations is that in order to perform this operation at the IR
11548level without an intrinsic, one would need to create additional basic blocks to
11549handle the success/failure cases. This makes it difficult to stop the stack
11550protector check from disrupting sibling tail calls in Codegen. With this
11551intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011552codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011553
Sean Silvab084af42012-12-07 10:36:55 +000011554'``llvm.objectsize``' Intrinsic
11555^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11556
11557Syntax:
11558"""""""
11559
11560::
11561
11562 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11563 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11564
11565Overview:
11566"""""""""
11567
11568The ``llvm.objectsize`` intrinsic is designed to provide information to
11569the optimizers to determine at compile time whether a) an operation
11570(like memcpy) will overflow a buffer that corresponds to an object, or
11571b) that a runtime check for overflow isn't necessary. An object in this
11572context means an allocation of a specific class, structure, array, or
11573other object.
11574
11575Arguments:
11576""""""""""
11577
11578The ``llvm.objectsize`` intrinsic takes two arguments. The first
11579argument is a pointer to or into the ``object``. The second argument is
11580a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11581or -1 (if false) when the object size is unknown. The second argument
11582only accepts constants.
11583
11584Semantics:
11585""""""""""
11586
11587The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11588the size of the object concerned. If the size cannot be determined at
11589compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11590on the ``min`` argument).
11591
11592'``llvm.expect``' Intrinsic
11593^^^^^^^^^^^^^^^^^^^^^^^^^^^
11594
11595Syntax:
11596"""""""
11597
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011598This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11599integer bit width.
11600
Sean Silvab084af42012-12-07 10:36:55 +000011601::
11602
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011603 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011604 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11605 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11606
11607Overview:
11608"""""""""
11609
11610The ``llvm.expect`` intrinsic provides information about expected (the
11611most probable) value of ``val``, which can be used by optimizers.
11612
11613Arguments:
11614""""""""""
11615
11616The ``llvm.expect`` intrinsic takes two arguments. The first argument is
11617a value. The second argument is an expected value, this needs to be a
11618constant value, variables are not allowed.
11619
11620Semantics:
11621""""""""""
11622
11623This intrinsic is lowered to the ``val``.
11624
Philip Reamese0e90832015-04-26 22:23:12 +000011625.. _int_assume:
11626
Hal Finkel93046912014-07-25 21:13:35 +000011627'``llvm.assume``' Intrinsic
11628^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11629
11630Syntax:
11631"""""""
11632
11633::
11634
11635 declare void @llvm.assume(i1 %cond)
11636
11637Overview:
11638"""""""""
11639
11640The ``llvm.assume`` allows the optimizer to assume that the provided
11641condition is true. This information can then be used in simplifying other parts
11642of the code.
11643
11644Arguments:
11645""""""""""
11646
11647The condition which the optimizer may assume is always true.
11648
11649Semantics:
11650""""""""""
11651
11652The intrinsic allows the optimizer to assume that the provided condition is
11653always true whenever the control flow reaches the intrinsic call. No code is
11654generated for this intrinsic, and instructions that contribute only to the
11655provided condition are not used for code generation. If the condition is
11656violated during execution, the behavior is undefined.
11657
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011658Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000011659used by the ``llvm.assume`` intrinsic in order to preserve the instructions
11660only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011661if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000011662sufficient overall improvement in code quality. For this reason,
11663``llvm.assume`` should not be used to document basic mathematical invariants
11664that the optimizer can otherwise deduce or facts that are of little use to the
11665optimizer.
11666
Peter Collingbournee6909c82015-02-20 20:30:47 +000011667.. _bitset.test:
11668
11669'``llvm.bitset.test``' Intrinsic
11670^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11671
11672Syntax:
11673"""""""
11674
11675::
11676
11677 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
11678
11679
11680Arguments:
11681""""""""""
11682
11683The first argument is a pointer to be tested. The second argument is a
11684metadata string containing the name of a :doc:`bitset <BitSets>`.
11685
11686Overview:
11687"""""""""
11688
11689The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
11690member of the given bitset.
11691
Sean Silvab084af42012-12-07 10:36:55 +000011692'``llvm.donothing``' Intrinsic
11693^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11694
11695Syntax:
11696"""""""
11697
11698::
11699
11700 declare void @llvm.donothing() nounwind readnone
11701
11702Overview:
11703"""""""""
11704
Juergen Ributzkac9161192014-10-23 22:36:13 +000011705The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
11706two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
11707with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000011708
11709Arguments:
11710""""""""""
11711
11712None.
11713
11714Semantics:
11715""""""""""
11716
11717This intrinsic does nothing, and it's removed by optimizers and ignored
11718by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000011719
11720Stack Map Intrinsics
11721--------------------
11722
11723LLVM provides experimental intrinsics to support runtime patching
11724mechanisms commonly desired in dynamic language JITs. These intrinsics
11725are described in :doc:`StackMaps`.