blob: c5035984f3b71ccaad737f898d4a01b4dcc16ab5 [file] [log] [blame]
Sean Silvab084af42012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
Rafael Espindola08013342013-12-07 19:34:20 +00007 :depth: 4
Sean Silvab084af42012-12-07 10:36:55 +00008
Sean Silvab084af42012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
Sean Silva9d01a5b2015-01-07 21:35:14 +000078 '``[%@][-a-zA-Z$._][-a-zA-Z$._0-9]*``'. Identifiers that require other
Sean Silvab084af42012-12-07 10:36:55 +000079 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
Hans Wennborg85e06532014-07-30 20:02:08 +000082 be used in a name value, even quotes themselves. The ``"\01"`` prefix
83 can be used on global variables to suppress mangling.
Sean Silvab084af42012-12-07 10:36:55 +000084#. Unnamed values are represented as an unsigned numeric value with
85 their prefix. For example, ``%12``, ``@2``, ``%44``.
86#. Constants, which are described in the section Constants_ below.
87
88LLVM requires that values start with a prefix for two reasons: Compilers
89don't need to worry about name clashes with reserved words, and the set
90of reserved words may be expanded in the future without penalty.
91Additionally, unnamed identifiers allow a compiler to quickly come up
92with a temporary variable without having to avoid symbol table
93conflicts.
94
95Reserved words in LLVM are very similar to reserved words in other
96languages. There are keywords for different opcodes ('``add``',
97'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
98'``i32``', etc...), and others. These reserved words cannot conflict
99with variable names, because none of them start with a prefix character
100(``'%'`` or ``'@'``).
101
102Here is an example of LLVM code to multiply the integer variable
103'``%X``' by 8:
104
105The easy way:
106
107.. code-block:: llvm
108
109 %result = mul i32 %X, 8
110
111After strength reduction:
112
113.. code-block:: llvm
114
Dmitri Gribenko675911d2013-01-26 13:30:13 +0000115 %result = shl i32 %X, 3
Sean Silvab084af42012-12-07 10:36:55 +0000116
117And the hard way:
118
119.. code-block:: llvm
120
Tim Northover675a0962014-06-13 14:24:23 +0000121 %0 = add i32 %X, %X ; yields i32:%0
122 %1 = add i32 %0, %0 ; yields i32:%1
Sean Silvab084af42012-12-07 10:36:55 +0000123 %result = add i32 %1, %1
124
125This last way of multiplying ``%X`` by 8 illustrates several important
126lexical features of LLVM:
127
128#. Comments are delimited with a '``;``' and go until the end of line.
129#. Unnamed temporaries are created when the result of a computation is
130 not assigned to a named value.
Sean Silva8ca11782013-05-20 23:31:12 +0000131#. Unnamed temporaries are numbered sequentially (using a per-function
Dan Liew2661dfc2014-08-20 15:06:30 +0000132 incrementing counter, starting with 0). Note that basic blocks and unnamed
133 function parameters are included in this numbering. For example, if the
134 entry basic block is not given a label name and all function parameters are
135 named, then it will get number 0.
Sean Silvab084af42012-12-07 10:36:55 +0000136
137It also shows a convention that we follow in this document. When
138demonstrating instructions, we will follow an instruction with a comment
139that defines the type and name of value produced.
140
141High Level Structure
142====================
143
144Module Structure
145----------------
146
147LLVM programs are composed of ``Module``'s, each of which is a
148translation unit of the input programs. Each module consists of
149functions, global variables, and symbol table entries. Modules may be
150combined together with the LLVM linker, which merges function (and
151global variable) definitions, resolves forward declarations, and merges
152symbol table entries. Here is an example of the "hello world" module:
153
154.. code-block:: llvm
155
Michael Liaoa7699082013-03-06 18:24:34 +0000156 ; Declare the string constant as a global constant.
157 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvab084af42012-12-07 10:36:55 +0000158
Michael Liaoa7699082013-03-06 18:24:34 +0000159 ; External declaration of the puts function
160 declare i32 @puts(i8* nocapture) nounwind
Sean Silvab084af42012-12-07 10:36:55 +0000161
162 ; Definition of main function
Michael Liaoa7699082013-03-06 18:24:34 +0000163 define i32 @main() { ; i32()*
164 ; Convert [13 x i8]* to i8 *...
David Blaikie16a97eb2015-03-04 22:02:58 +0000165 %cast210 = getelementptr [13 x i8], [13 x i8]* @.str, i64 0, i64 0
Sean Silvab084af42012-12-07 10:36:55 +0000166
Michael Liaoa7699082013-03-06 18:24:34 +0000167 ; Call puts function to write out the string to stdout.
Sean Silvab084af42012-12-07 10:36:55 +0000168 call i32 @puts(i8* %cast210)
Michael Liaoa7699082013-03-06 18:24:34 +0000169 ret i32 0
Sean Silvab084af42012-12-07 10:36:55 +0000170 }
171
172 ; Named metadata
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000173 !0 = !{i32 42, null, !"string"}
Nick Lewyckya0de40a2014-08-13 04:54:05 +0000174 !foo = !{!0}
Sean Silvab084af42012-12-07 10:36:55 +0000175
176This example is made up of a :ref:`global variable <globalvars>` named
177"``.str``", an external declaration of the "``puts``" function, a
178:ref:`function definition <functionstructure>` for "``main``" and
179:ref:`named metadata <namedmetadatastructure>` "``foo``".
180
181In general, a module is made up of a list of global values (where both
182functions and global variables are global values). Global values are
183represented by a pointer to a memory location (in this case, a pointer
184to an array of char, and a pointer to a function), and have one of the
185following :ref:`linkage types <linkage>`.
186
187.. _linkage:
188
189Linkage Types
190-------------
191
192All Global Variables and Functions have one of the following types of
193linkage:
194
195``private``
196 Global values with "``private``" linkage are only directly
197 accessible by objects in the current module. In particular, linking
198 code into a module with an private global value may cause the
199 private to be renamed as necessary to avoid collisions. Because the
200 symbol is private to the module, all references can be updated. This
201 doesn't show up in any symbol table in the object file.
Sean Silvab084af42012-12-07 10:36:55 +0000202``internal``
203 Similar to private, but the value shows as a local symbol
204 (``STB_LOCAL`` in the case of ELF) in the object file. This
205 corresponds to the notion of the '``static``' keyword in C.
206``available_externally``
207 Globals with "``available_externally``" linkage are never emitted
208 into the object file corresponding to the LLVM module. They exist to
209 allow inlining and other optimizations to take place given knowledge
210 of the definition of the global, which is known to be somewhere
211 outside the module. Globals with ``available_externally`` linkage
212 are allowed to be discarded at will, and are otherwise the same as
213 ``linkonce_odr``. This linkage type is only allowed on definitions,
214 not declarations.
215``linkonce``
216 Globals with "``linkonce``" linkage are merged with other globals of
217 the same name when linkage occurs. This can be used to implement
218 some forms of inline functions, templates, or other code which must
219 be generated in each translation unit that uses it, but where the
220 body may be overridden with a more definitive definition later.
221 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
222 that ``linkonce`` linkage does not actually allow the optimizer to
223 inline the body of this function into callers because it doesn't
224 know if this definition of the function is the definitive definition
225 within the program or whether it will be overridden by a stronger
226 definition. To enable inlining and other optimizations, use
227 "``linkonce_odr``" linkage.
228``weak``
229 "``weak``" linkage has the same merging semantics as ``linkonce``
230 linkage, except that unreferenced globals with ``weak`` linkage may
231 not be discarded. This is used for globals that are declared "weak"
232 in C source code.
233``common``
234 "``common``" linkage is most similar to "``weak``" linkage, but they
235 are used for tentative definitions in C, such as "``int X;``" at
236 global scope. Symbols with "``common``" linkage are merged in the
237 same way as ``weak symbols``, and they may not be deleted if
238 unreferenced. ``common`` symbols may not have an explicit section,
239 must have a zero initializer, and may not be marked
240 ':ref:`constant <globalvars>`'. Functions and aliases may not have
241 common linkage.
242
243.. _linkage_appending:
244
245``appending``
246 "``appending``" linkage may only be applied to global variables of
247 pointer to array type. When two global variables with appending
248 linkage are linked together, the two global arrays are appended
249 together. This is the LLVM, typesafe, equivalent of having the
250 system linker append together "sections" with identical names when
251 .o files are linked.
252``extern_weak``
253 The semantics of this linkage follow the ELF object file model: the
254 symbol is weak until linked, if not linked, the symbol becomes null
255 instead of being an undefined reference.
256``linkonce_odr``, ``weak_odr``
257 Some languages allow differing globals to be merged, such as two
258 functions with different semantics. Other languages, such as
259 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000260 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvab084af42012-12-07 10:36:55 +0000261 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
262 global will only be merged with equivalent globals. These linkage
263 types are otherwise the same as their non-``odr`` versions.
Sean Silvab084af42012-12-07 10:36:55 +0000264``external``
265 If none of the above identifiers are used, the global is externally
266 visible, meaning that it participates in linkage and can be used to
267 resolve external symbol references.
268
Sean Silvab084af42012-12-07 10:36:55 +0000269It is illegal for a function *declaration* to have any linkage type
Nico Rieck7157bb72014-01-14 15:22:47 +0000270other than ``external`` or ``extern_weak``.
Sean Silvab084af42012-12-07 10:36:55 +0000271
Sean Silvab084af42012-12-07 10:36:55 +0000272.. _callingconv:
273
274Calling Conventions
275-------------------
276
277LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
278:ref:`invokes <i_invoke>` can all have an optional calling convention
279specified for the call. The calling convention of any pair of dynamic
280caller/callee must match, or the behavior of the program is undefined.
281The following calling conventions are supported by LLVM, and more may be
282added in the future:
283
284"``ccc``" - The C calling convention
285 This calling convention (the default if no other calling convention
286 is specified) matches the target C calling conventions. This calling
287 convention supports varargs function calls and tolerates some
288 mismatch in the declared prototype and implemented declaration of
289 the function (as does normal C).
290"``fastcc``" - The fast calling convention
291 This calling convention attempts to make calls as fast as possible
292 (e.g. by passing things in registers). This calling convention
293 allows the target to use whatever tricks it wants to produce fast
294 code for the target, without having to conform to an externally
295 specified ABI (Application Binary Interface). `Tail calls can only
296 be optimized when this, the GHC or the HiPE convention is
297 used. <CodeGenerator.html#id80>`_ This calling convention does not
298 support varargs and requires the prototype of all callees to exactly
299 match the prototype of the function definition.
300"``coldcc``" - The cold calling convention
301 This calling convention attempts to make code in the caller as
302 efficient as possible under the assumption that the call is not
303 commonly executed. As such, these calls often preserve all registers
304 so that the call does not break any live ranges in the caller side.
305 This calling convention does not support varargs and requires the
306 prototype of all callees to exactly match the prototype of the
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000307 function definition. Furthermore the inliner doesn't consider such function
308 calls for inlining.
Sean Silvab084af42012-12-07 10:36:55 +0000309"``cc 10``" - GHC convention
310 This calling convention has been implemented specifically for use by
311 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
312 It passes everything in registers, going to extremes to achieve this
313 by disabling callee save registers. This calling convention should
314 not be used lightly but only for specific situations such as an
315 alternative to the *register pinning* performance technique often
316 used when implementing functional programming languages. At the
317 moment only X86 supports this convention and it has the following
318 limitations:
319
320 - On *X86-32* only supports up to 4 bit type parameters. No
321 floating point types are supported.
322 - On *X86-64* only supports up to 10 bit type parameters and 6
323 floating point parameters.
324
325 This calling convention supports `tail call
326 optimization <CodeGenerator.html#id80>`_ but requires both the
327 caller and callee are using it.
328"``cc 11``" - The HiPE calling convention
329 This calling convention has been implemented specifically for use by
330 the `High-Performance Erlang
331 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
332 native code compiler of the `Ericsson's Open Source Erlang/OTP
333 system <http://www.erlang.org/download.shtml>`_. It uses more
334 registers for argument passing than the ordinary C calling
335 convention and defines no callee-saved registers. The calling
336 convention properly supports `tail call
337 optimization <CodeGenerator.html#id80>`_ but requires that both the
338 caller and the callee use it. It uses a *register pinning*
339 mechanism, similar to GHC's convention, for keeping frequently
340 accessed runtime components pinned to specific hardware registers.
341 At the moment only X86 supports this convention (both 32 and 64
342 bit).
Andrew Trick5e029ce2013-12-24 02:57:25 +0000343"``webkit_jscc``" - WebKit's JavaScript calling convention
344 This calling convention has been implemented for `WebKit FTL JIT
345 <https://trac.webkit.org/wiki/FTLJIT>`_. It passes arguments on the
346 stack right to left (as cdecl does), and returns a value in the
347 platform's customary return register.
348"``anyregcc``" - Dynamic calling convention for code patching
349 This is a special convention that supports patching an arbitrary code
350 sequence in place of a call site. This convention forces the call
Eli Bendersky45324ce2015-04-02 15:20:04 +0000351 arguments into registers but allows them to be dynamically
Andrew Trick5e029ce2013-12-24 02:57:25 +0000352 allocated. This can currently only be used with calls to
353 llvm.experimental.patchpoint because only this intrinsic records
354 the location of its arguments in a side table. See :doc:`StackMaps`.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000355"``preserve_mostcc``" - The `PreserveMost` calling convention
Eli Bendersky45324ce2015-04-02 15:20:04 +0000356 This calling convention attempts to make the code in the caller as
357 unintrusive as possible. This convention behaves identically to the `C`
Juergen Ributzkae6250132014-01-17 19:47:03 +0000358 calling convention on how arguments and return values are passed, but it
359 uses a different set of caller/callee-saved registers. This alleviates the
360 burden of saving and recovering a large register set before and after the
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000361 call in the caller. If the arguments are passed in callee-saved registers,
362 then they will be preserved by the callee across the call. This doesn't
363 apply for values returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000364
365 - On X86-64 the callee preserves all general purpose registers, except for
366 R11. R11 can be used as a scratch register. Floating-point registers
367 (XMMs/YMMs) are not preserved and need to be saved by the caller.
368
369 The idea behind this convention is to support calls to runtime functions
370 that have a hot path and a cold path. The hot path is usually a small piece
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000371 of code that doesn't use many registers. The cold path might need to call out to
Juergen Ributzkae6250132014-01-17 19:47:03 +0000372 another function and therefore only needs to preserve the caller-saved
Juergen Ributzka5d05ed12014-01-17 22:24:35 +0000373 registers, which haven't already been saved by the caller. The
374 `PreserveMost` calling convention is very similar to the `cold` calling
375 convention in terms of caller/callee-saved registers, but they are used for
376 different types of function calls. `coldcc` is for function calls that are
377 rarely executed, whereas `preserve_mostcc` function calls are intended to be
378 on the hot path and definitely executed a lot. Furthermore `preserve_mostcc`
379 doesn't prevent the inliner from inlining the function call.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000380
381 This calling convention will be used by a future version of the ObjectiveC
382 runtime and should therefore still be considered experimental at this time.
383 Although this convention was created to optimize certain runtime calls to
384 the ObjectiveC runtime, it is not limited to this runtime and might be used
385 by other runtimes in the future too. The current implementation only
386 supports X86-64, but the intention is to support more architectures in the
387 future.
388"``preserve_allcc``" - The `PreserveAll` calling convention
389 This calling convention attempts to make the code in the caller even less
390 intrusive than the `PreserveMost` calling convention. This calling
391 convention also behaves identical to the `C` calling convention on how
392 arguments and return values are passed, but it uses a different set of
393 caller/callee-saved registers. This removes the burden of saving and
Juergen Ributzka980f2dc2014-01-30 02:39:00 +0000394 recovering a large register set before and after the call in the caller. If
395 the arguments are passed in callee-saved registers, then they will be
396 preserved by the callee across the call. This doesn't apply for values
397 returned in callee-saved registers.
Juergen Ributzkae6250132014-01-17 19:47:03 +0000398
399 - On X86-64 the callee preserves all general purpose registers, except for
400 R11. R11 can be used as a scratch register. Furthermore it also preserves
401 all floating-point registers (XMMs/YMMs).
402
403 The idea behind this convention is to support calls to runtime functions
404 that don't need to call out to any other functions.
405
406 This calling convention, like the `PreserveMost` calling convention, will be
407 used by a future version of the ObjectiveC runtime and should be considered
408 experimental at this time.
Sean Silvab084af42012-12-07 10:36:55 +0000409"``cc <n>``" - Numbered convention
410 Any calling convention may be specified by number, allowing
411 target-specific calling conventions to be used. Target specific
412 calling conventions start at 64.
413
414More calling conventions can be added/defined on an as-needed basis, to
415support Pascal conventions or any other well-known target-independent
416convention.
417
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000418.. _visibilitystyles:
419
Sean Silvab084af42012-12-07 10:36:55 +0000420Visibility Styles
421-----------------
422
423All Global Variables and Functions have one of the following visibility
424styles:
425
426"``default``" - Default style
427 On targets that use the ELF object file format, default visibility
428 means that the declaration is visible to other modules and, in
429 shared libraries, means that the declared entity may be overridden.
430 On Darwin, default visibility means that the declaration is visible
431 to other modules. Default visibility corresponds to "external
432 linkage" in the language.
433"``hidden``" - Hidden style
434 Two declarations of an object with hidden visibility refer to the
435 same object if they are in the same shared object. Usually, hidden
436 visibility indicates that the symbol will not be placed into the
437 dynamic symbol table, so no other module (executable or shared
438 library) can reference it directly.
439"``protected``" - Protected style
440 On ELF, protected visibility indicates that the symbol will be
441 placed in the dynamic symbol table, but that references within the
442 defining module will bind to the local symbol. That is, the symbol
443 cannot be overridden by another module.
444
Duncan P. N. Exon Smithb80de102014-05-07 22:57:20 +0000445A symbol with ``internal`` or ``private`` linkage must have ``default``
446visibility.
447
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000448.. _dllstorageclass:
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000449
Nico Rieck7157bb72014-01-14 15:22:47 +0000450DLL Storage Classes
451-------------------
452
453All Global Variables, Functions and Aliases can have one of the following
454DLL storage class:
455
456``dllimport``
457 "``dllimport``" causes the compiler to reference a function or variable via
458 a global pointer to a pointer that is set up by the DLL exporting the
459 symbol. On Microsoft Windows targets, the pointer name is formed by
460 combining ``__imp_`` and the function or variable name.
461``dllexport``
462 "``dllexport``" causes the compiler to provide a global pointer to a pointer
463 in a DLL, so that it can be referenced with the ``dllimport`` attribute. On
464 Microsoft Windows targets, the pointer name is formed by combining
465 ``__imp_`` and the function or variable name. Since this storage class
466 exists for defining a dll interface, the compiler, assembler and linker know
467 it is externally referenced and must refrain from deleting the symbol.
468
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000469.. _tls_model:
470
471Thread Local Storage Models
472---------------------------
473
474A variable may be defined as ``thread_local``, which means that it will
475not be shared by threads (each thread will have a separated copy of the
476variable). Not all targets support thread-local variables. Optionally, a
477TLS model may be specified:
478
479``localdynamic``
480 For variables that are only used within the current shared library.
481``initialexec``
482 For variables in modules that will not be loaded dynamically.
483``localexec``
484 For variables defined in the executable and only used within it.
485
486If no explicit model is given, the "general dynamic" model is used.
487
488The models correspond to the ELF TLS models; see `ELF Handling For
489Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
490more information on under which circumstances the different models may
491be used. The target may choose a different TLS model if the specified
492model is not supported, or if a better choice of model can be made.
493
494A model can also be specified in a alias, but then it only governs how
495the alias is accessed. It will not have any effect in the aliasee.
496
Rafael Espindola3bc64d52014-05-26 21:30:40 +0000497.. _namedtypes:
498
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000499Structure Types
500---------------
Sean Silvab084af42012-12-07 10:36:55 +0000501
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000502LLVM IR allows you to specify both "identified" and "literal" :ref:`structure
503types <t_struct>`. Literal types are uniqued structurally, but identified types
504are never uniqued. An :ref:`opaque structural type <t_opaque>` can also be used
Richard Smith32dbdf62014-07-31 04:25:36 +0000505to forward declare a type that is not yet available.
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000506
507An example of a identified structure specification is:
Sean Silvab084af42012-12-07 10:36:55 +0000508
509.. code-block:: llvm
510
511 %mytype = type { %mytype*, i32 }
512
Reid Kleckner7c84d1d2014-03-05 02:21:50 +0000513Prior to the LLVM 3.0 release, identified types were structurally uniqued. Only
514literal types are uniqued in recent versions of LLVM.
Sean Silvab084af42012-12-07 10:36:55 +0000515
516.. _globalvars:
517
518Global Variables
519----------------
520
521Global variables define regions of memory allocated at compilation time
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000522instead of run-time.
523
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000524Global variable definitions must be initialized.
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000525
526Global variables in other translation units can also be declared, in which
527case they don't have an initializer.
Sean Silvab084af42012-12-07 10:36:55 +0000528
Bob Wilson85b24f22014-06-12 20:40:33 +0000529Either global variable definitions or declarations may have an explicit section
530to be placed in and may have an optional explicit alignment specified.
531
Michael Gottesman006039c2013-01-31 05:48:48 +0000532A variable may be defined as a global ``constant``, which indicates that
Sean Silvab084af42012-12-07 10:36:55 +0000533the contents of the variable will **never** be modified (enabling better
534optimization, allowing the global data to be placed in the read-only
535section of an executable, etc). Note that variables that need runtime
Michael Gottesman1cffcf742013-01-31 05:44:04 +0000536initialization cannot be marked ``constant`` as there is a store to the
Sean Silvab084af42012-12-07 10:36:55 +0000537variable.
538
539LLVM explicitly allows *declarations* of global variables to be marked
540constant, even if the final definition of the global is not. This
541capability can be used to enable slightly better optimization of the
542program, but requires the language definition to guarantee that
543optimizations based on the 'constantness' are valid for the translation
544units that do not include the definition.
545
546As SSA values, global variables define pointer values that are in scope
547(i.e. they dominate) all basic blocks in the program. Global variables
548always define a pointer to their "content" type because they describe a
549region of memory, and all memory objects in LLVM are accessed through
550pointers.
551
552Global variables can be marked with ``unnamed_addr`` which indicates
553that the address is not significant, only the content. Constants marked
554like this can be merged with other constants if they have the same
555initializer. Note that a constant with significant address *can* be
556merged with a ``unnamed_addr`` constant, the result being a constant
557whose address is significant.
558
559A global variable may be declared to reside in a target-specific
560numbered address space. For targets that support them, address spaces
561may affect how optimizations are performed and/or what target
562instructions are used to access the variable. The default address space
563is zero. The address space qualifier must precede any other attributes.
564
565LLVM allows an explicit section to be specified for globals. If the
566target supports it, it will emit globals to the section specified.
David Majnemerdad0a642014-06-27 18:19:56 +0000567Additionally, the global can placed in a comdat if the target has the necessary
568support.
Sean Silvab084af42012-12-07 10:36:55 +0000569
Michael Gottesmane743a302013-02-04 03:22:00 +0000570By default, global initializers are optimized by assuming that global
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000571variables defined within the module are not modified from their
572initial values before the start of the global initializer. This is
573true even for variables potentially accessible from outside the
574module, including those with external linkage or appearing in
Yunzhong Gaof5b769e2013-12-05 18:37:54 +0000575``@llvm.used`` or dllexported variables. This assumption may be suppressed
576by marking the variable with ``externally_initialized``.
Michael Gottesmanef2bc772013-02-03 09:57:15 +0000577
Sean Silvab084af42012-12-07 10:36:55 +0000578An explicit alignment may be specified for a global, which must be a
579power of 2. If not present, or if the alignment is set to zero, the
580alignment of the global is set by the target to whatever it feels
581convenient. If an explicit alignment is specified, the global is forced
582to have exactly that alignment. Targets and optimizers are not allowed
583to over-align the global if the global has an assigned section. In this
584case, the extra alignment could be observable: for example, code could
585assume that the globals are densely packed in their section and try to
586iterate over them as an array, alignment padding would break this
Reid Kleckner15fe7a52014-07-15 01:16:09 +0000587iteration. The maximum alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +0000588
Nico Rieck7157bb72014-01-14 15:22:47 +0000589Globals can also have a :ref:`DLL storage class <dllstorageclass>`.
590
Peter Collingbourne69ba0162015-02-04 00:42:45 +0000591Variables and aliases can have a
Rafael Espindola59f7eba2014-05-28 18:15:43 +0000592:ref:`Thread Local Storage Model <tls_model>`.
593
Nico Rieck7157bb72014-01-14 15:22:47 +0000594Syntax::
595
596 [@<GlobalVarName> =] [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal]
Rafael Espindola28f3ca62014-06-09 21:21:33 +0000597 [unnamed_addr] [AddrSpace] [ExternallyInitialized]
Bob Wilson85b24f22014-06-12 20:40:33 +0000598 <global | constant> <Type> [<InitializerConstant>]
Rafael Espindola83a362c2015-01-06 22:55:16 +0000599 [, section "name"] [, comdat [($name)]]
600 [, align <Alignment>]
Nico Rieck7157bb72014-01-14 15:22:47 +0000601
Sean Silvab084af42012-12-07 10:36:55 +0000602For example, the following defines a global in a numbered address space
603with an initializer, section, and alignment:
604
605.. code-block:: llvm
606
607 @G = addrspace(5) constant float 1.0, section "foo", align 4
608
Rafael Espindola5d1b7452013-10-29 13:44:11 +0000609The following example just declares a global variable
610
611.. code-block:: llvm
612
613 @G = external global i32
614
Sean Silvab084af42012-12-07 10:36:55 +0000615The following example defines a thread-local global with the
616``initialexec`` TLS model:
617
618.. code-block:: llvm
619
620 @G = thread_local(initialexec) global i32 0, align 4
621
622.. _functionstructure:
623
624Functions
625---------
626
627LLVM function definitions consist of the "``define``" keyword, an
628optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000629style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
630an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000631an optional ``unnamed_addr`` attribute, a return type, an optional
632:ref:`parameter attribute <paramattrs>` for the return type, a function
633name, a (possibly empty) argument list (each with optional :ref:`parameter
634attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
David Majnemerdad0a642014-06-27 18:19:56 +0000635an optional section, an optional alignment,
636an optional :ref:`comdat <langref_comdats>`,
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000637an optional :ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
David Majnemer7fddecc2015-06-17 20:52:32 +0000638an optional :ref:`prologue <prologuedata>`,
639an optional :ref:`personality <personalityfn>`,
640an opening curly brace, a list of basic blocks, and a closing curly brace.
Sean Silvab084af42012-12-07 10:36:55 +0000641
642LLVM function declarations consist of the "``declare``" keyword, an
643optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
Nico Rieck7157bb72014-01-14 15:22:47 +0000644style <visibility>`, an optional :ref:`DLL storage class <dllstorageclass>`,
645an optional :ref:`calling convention <callingconv>`,
Sean Silvab084af42012-12-07 10:36:55 +0000646an optional ``unnamed_addr`` attribute, a return type, an optional
647:ref:`parameter attribute <paramattrs>` for the return type, a function
Peter Collingbourne3fa50f92013-09-16 01:08:15 +0000648name, a possibly empty list of arguments, an optional alignment, an optional
Peter Collingbourne51d2de72014-12-03 02:08:38 +0000649:ref:`garbage collector name <gc>`, an optional :ref:`prefix <prefixdata>`,
650and an optional :ref:`prologue <prologuedata>`.
Sean Silvab084af42012-12-07 10:36:55 +0000651
Bill Wendling6822ecb2013-10-27 05:09:12 +0000652A function definition contains a list of basic blocks, forming the CFG (Control
653Flow Graph) for the function. Each basic block may optionally start with a label
654(giving the basic block a symbol table entry), contains a list of instructions,
655and ends with a :ref:`terminator <terminators>` instruction (such as a branch or
656function return). If an explicit label is not provided, a block is assigned an
657implicit numbered label, using the next value from the same counter as used for
658unnamed temporaries (:ref:`see above<identifiers>`). For example, if a function
659entry block does not have an explicit label, it will be assigned label "%0",
660then the first unnamed temporary in that block will be "%1", etc.
Sean Silvab084af42012-12-07 10:36:55 +0000661
662The first basic block in a function is special in two ways: it is
663immediately executed on entrance to the function, and it is not allowed
664to have predecessor basic blocks (i.e. there can not be any branches to
665the entry block of a function). Because the block can have no
666predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
667
668LLVM allows an explicit section to be specified for functions. If the
669target supports it, it will emit functions to the section specified.
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000670Additionally, the function can be placed in a COMDAT.
Sean Silvab084af42012-12-07 10:36:55 +0000671
672An explicit alignment may be specified for a function. If not present,
673or if the alignment is set to zero, the alignment of the function is set
674by the target to whatever it feels convenient. If an explicit alignment
675is specified, the function is forced to have at least that much
676alignment. All alignments must be a power of 2.
677
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000678If the ``unnamed_addr`` attribute is given, the address is known to not
Sean Silvab084af42012-12-07 10:36:55 +0000679be significant and two identical functions can be merged.
680
681Syntax::
682
Nico Rieck7157bb72014-01-14 15:22:47 +0000683 define [linkage] [visibility] [DLLStorageClass]
Sean Silvab084af42012-12-07 10:36:55 +0000684 [cconv] [ret attrs]
685 <ResultType> @<FunctionName> ([argument list])
Rafael Espindola83a362c2015-01-06 22:55:16 +0000686 [unnamed_addr] [fn Attrs] [section "name"] [comdat [($name)]]
David Majnemer7fddecc2015-06-17 20:52:32 +0000687 [align N] [gc] [prefix Constant] [prologue Constant]
688 [personality Constant] { ... }
Sean Silvab084af42012-12-07 10:36:55 +0000689
Dan Liew2661dfc2014-08-20 15:06:30 +0000690The argument list is a comma seperated sequence of arguments where each
691argument is of the following form
692
693Syntax::
694
695 <type> [parameter Attrs] [name]
696
697
Eli Benderskyfdc529a2013-06-07 19:40:08 +0000698.. _langref_aliases:
699
Sean Silvab084af42012-12-07 10:36:55 +0000700Aliases
701-------
702
Rafael Espindola64c1e182014-06-03 02:41:57 +0000703Aliases, unlike function or variables, don't create any new data. They
704are just a new symbol and metadata for an existing position.
705
706Aliases have a name and an aliasee that is either a global value or a
707constant expression.
708
Nico Rieck7157bb72014-01-14 15:22:47 +0000709Aliases may have an optional :ref:`linkage type <linkage>`, an optional
Rafael Espindola64c1e182014-06-03 02:41:57 +0000710:ref:`visibility style <visibility>`, an optional :ref:`DLL storage class
711<dllstorageclass>` and an optional :ref:`tls model <tls_model>`.
Sean Silvab084af42012-12-07 10:36:55 +0000712
713Syntax::
714
Rafael Espindola464fe022014-07-30 22:51:54 +0000715 @<Name> = [Linkage] [Visibility] [DLLStorageClass] [ThreadLocal] [unnamed_addr] alias <AliaseeTy> @<Aliasee>
Sean Silvab084af42012-12-07 10:36:55 +0000716
Rafael Espindola2fb5bc32014-03-13 23:18:37 +0000717The linkage must be one of ``private``, ``internal``, ``linkonce``, ``weak``,
Rafael Espindola716e7402013-11-01 17:09:14 +0000718``linkonce_odr``, ``weak_odr``, ``external``. Note that some system linkers
Rafael Espindola64c1e182014-06-03 02:41:57 +0000719might not correctly handle dropping a weak symbol that is aliased.
Rafael Espindola78527052013-10-06 15:10:43 +0000720
Eric Christopher1e61ffd2015-02-19 18:46:25 +0000721Aliases that are not ``unnamed_addr`` are guaranteed to have the same address as
Rafael Espindola42a4c9f2014-06-06 01:20:28 +0000722the aliasee expression. ``unnamed_addr`` ones are only guaranteed to point
723to the same content.
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000724
Rafael Espindola64c1e182014-06-03 02:41:57 +0000725Since aliases are only a second name, some restrictions apply, of which
726some can only be checked when producing an object file:
Rafael Espindolaf3336bc2014-03-12 20:15:49 +0000727
Rafael Espindola64c1e182014-06-03 02:41:57 +0000728* The expression defining the aliasee must be computable at assembly
729 time. Since it is just a name, no relocations can be used.
730
731* No alias in the expression can be weak as the possibility of the
732 intermediate alias being overridden cannot be represented in an
733 object file.
734
735* No global value in the expression can be a declaration, since that
736 would require a relocation, which is not possible.
Rafael Espindola24a669d2014-03-27 15:26:56 +0000737
David Majnemerdad0a642014-06-27 18:19:56 +0000738.. _langref_comdats:
739
740Comdats
741-------
742
743Comdat IR provides access to COFF and ELF object file COMDAT functionality.
744
Richard Smith32dbdf62014-07-31 04:25:36 +0000745Comdats have a name which represents the COMDAT key. All global objects that
David Majnemerdad0a642014-06-27 18:19:56 +0000746specify this key will only end up in the final object file if the linker chooses
747that key over some other key. Aliases are placed in the same COMDAT that their
748aliasee computes to, if any.
749
750Comdats have a selection kind to provide input on how the linker should
751choose between keys in two different object files.
752
753Syntax::
754
755 $<Name> = comdat SelectionKind
756
757The selection kind must be one of the following:
758
759``any``
760 The linker may choose any COMDAT key, the choice is arbitrary.
761``exactmatch``
762 The linker may choose any COMDAT key but the sections must contain the
763 same data.
764``largest``
765 The linker will choose the section containing the largest COMDAT key.
766``noduplicates``
767 The linker requires that only section with this COMDAT key exist.
768``samesize``
769 The linker may choose any COMDAT key but the sections must contain the
770 same amount of data.
771
772Note that the Mach-O platform doesn't support COMDATs and ELF only supports
773``any`` as a selection kind.
774
775Here is an example of a COMDAT group where a function will only be selected if
776the COMDAT key's section is the largest:
777
778.. code-block:: llvm
779
780 $foo = comdat largest
Rafael Espindola83a362c2015-01-06 22:55:16 +0000781 @foo = global i32 2, comdat($foo)
David Majnemerdad0a642014-06-27 18:19:56 +0000782
Rafael Espindola83a362c2015-01-06 22:55:16 +0000783 define void @bar() comdat($foo) {
David Majnemerdad0a642014-06-27 18:19:56 +0000784 ret void
785 }
786
Rafael Espindola83a362c2015-01-06 22:55:16 +0000787As a syntactic sugar the ``$name`` can be omitted if the name is the same as
788the global name:
789
790.. code-block:: llvm
791
792 $foo = comdat any
793 @foo = global i32 2, comdat
794
795
David Majnemerdad0a642014-06-27 18:19:56 +0000796In a COFF object file, this will create a COMDAT section with selection kind
797``IMAGE_COMDAT_SELECT_LARGEST`` containing the contents of the ``@foo`` symbol
798and another COMDAT section with selection kind
799``IMAGE_COMDAT_SELECT_ASSOCIATIVE`` which is associated with the first COMDAT
Hans Wennborg0def0662014-09-10 17:05:08 +0000800section and contains the contents of the ``@bar`` symbol.
David Majnemerdad0a642014-06-27 18:19:56 +0000801
802There are some restrictions on the properties of the global object.
803It, or an alias to it, must have the same name as the COMDAT group when
804targeting COFF.
805The contents and size of this object may be used during link-time to determine
806which COMDAT groups get selected depending on the selection kind.
807Because the name of the object must match the name of the COMDAT group, the
808linkage of the global object must not be local; local symbols can get renamed
809if a collision occurs in the symbol table.
810
811The combined use of COMDATS and section attributes may yield surprising results.
812For example:
813
814.. code-block:: llvm
815
816 $foo = comdat any
817 $bar = comdat any
Rafael Espindola83a362c2015-01-06 22:55:16 +0000818 @g1 = global i32 42, section "sec", comdat($foo)
819 @g2 = global i32 42, section "sec", comdat($bar)
David Majnemerdad0a642014-06-27 18:19:56 +0000820
821From the object file perspective, this requires the creation of two sections
822with the same name. This is necessary because both globals belong to different
823COMDAT groups and COMDATs, at the object file level, are represented by
824sections.
825
Peter Collingbourne1feef2e2015-06-30 19:10:31 +0000826Note that certain IR constructs like global variables and functions may
827create COMDATs in the object file in addition to any which are specified using
828COMDAT IR. This arises when the code generator is configured to emit globals
829in individual sections (e.g. when `-data-sections` or `-function-sections`
830is supplied to `llc`).
David Majnemerdad0a642014-06-27 18:19:56 +0000831
Sean Silvab084af42012-12-07 10:36:55 +0000832.. _namedmetadatastructure:
833
834Named Metadata
835--------------
836
837Named metadata is a collection of metadata. :ref:`Metadata
838nodes <metadata>` (but not metadata strings) are the only valid
839operands for a named metadata.
840
Filipe Cabecinhas62431b12015-06-02 21:25:08 +0000841#. Named metadata are represented as a string of characters with the
842 metadata prefix. The rules for metadata names are the same as for
843 identifiers, but quoted names are not allowed. ``"\xx"`` type escapes
844 are still valid, which allows any character to be part of a name.
845
Sean Silvab084af42012-12-07 10:36:55 +0000846Syntax::
847
848 ; Some unnamed metadata nodes, which are referenced by the named metadata.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +0000849 !0 = !{!"zero"}
850 !1 = !{!"one"}
851 !2 = !{!"two"}
Sean Silvab084af42012-12-07 10:36:55 +0000852 ; A named metadata.
853 !name = !{!0, !1, !2}
854
855.. _paramattrs:
856
857Parameter Attributes
858--------------------
859
860The return type and each parameter of a function type may have a set of
861*parameter attributes* associated with them. Parameter attributes are
862used to communicate additional information about the result or
863parameters of a function. Parameter attributes are considered to be part
864of the function, not of the function type, so functions with different
865parameter attributes can have the same function type.
866
867Parameter attributes are simple keywords that follow the type specified.
868If multiple parameter attributes are needed, they are space separated.
869For example:
870
871.. code-block:: llvm
872
873 declare i32 @printf(i8* noalias nocapture, ...)
874 declare i32 @atoi(i8 zeroext)
875 declare signext i8 @returns_signed_char()
876
877Note that any attributes for the function result (``nounwind``,
878``readonly``) come immediately after the argument list.
879
880Currently, only the following parameter attributes are defined:
881
882``zeroext``
883 This indicates to the code generator that the parameter or return
884 value should be zero-extended to the extent required by the target's
885 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
886 the caller (for a parameter) or the callee (for a return value).
887``signext``
888 This indicates to the code generator that the parameter or return
889 value should be sign-extended to the extent required by the target's
890 ABI (which is usually 32-bits) by the caller (for a parameter) or
891 the callee (for a return value).
892``inreg``
893 This indicates that this parameter or return value should be treated
894 in a special target-dependent fashion during while emitting code for
895 a function call or return (usually, by putting it in a register as
896 opposed to memory, though some targets use it to distinguish between
897 two different kinds of registers). Use of this attribute is
898 target-specific.
899``byval``
900 This indicates that the pointer parameter should really be passed by
901 value to the function. The attribute implies that a hidden copy of
902 the pointee is made between the caller and the callee, so the callee
903 is unable to modify the value in the caller. This attribute is only
904 valid on LLVM pointer arguments. It is generally used to pass
905 structs and arrays by value, but is also valid on pointers to
906 scalars. The copy is considered to belong to the caller not the
907 callee (for example, ``readonly`` functions should not write to
908 ``byval`` parameters). This is not a valid attribute for return
909 values.
910
911 The byval attribute also supports specifying an alignment with the
912 align attribute. It indicates the alignment of the stack slot to
913 form and the known alignment of the pointer specified to the call
914 site. If the alignment is not specified, then the code generator
915 makes a target-specific assumption.
916
Reid Klecknera534a382013-12-19 02:14:12 +0000917.. _attr_inalloca:
918
919``inalloca``
920
Reid Kleckner60d3a832014-01-16 22:59:24 +0000921 The ``inalloca`` argument attribute allows the caller to take the
Reid Kleckner436c42e2014-01-17 23:58:17 +0000922 address of outgoing stack arguments. An ``inalloca`` argument must
923 be a pointer to stack memory produced by an ``alloca`` instruction.
924 The alloca, or argument allocation, must also be tagged with the
Hal Finkelc8491d32014-07-16 21:22:46 +0000925 inalloca keyword. Only the last argument may have the ``inalloca``
Reid Kleckner436c42e2014-01-17 23:58:17 +0000926 attribute, and that argument is guaranteed to be passed in memory.
Reid Klecknera534a382013-12-19 02:14:12 +0000927
Reid Kleckner436c42e2014-01-17 23:58:17 +0000928 An argument allocation may be used by a call at most once because
929 the call may deallocate it. The ``inalloca`` attribute cannot be
930 used in conjunction with other attributes that affect argument
Reid Klecknerf5b76512014-01-31 23:50:57 +0000931 storage, like ``inreg``, ``nest``, ``sret``, or ``byval``. The
932 ``inalloca`` attribute also disables LLVM's implicit lowering of
933 large aggregate return values, which means that frontend authors
934 must lower them with ``sret`` pointers.
Reid Klecknera534a382013-12-19 02:14:12 +0000935
Reid Kleckner60d3a832014-01-16 22:59:24 +0000936 When the call site is reached, the argument allocation must have
937 been the most recent stack allocation that is still live, or the
938 results are undefined. It is possible to allocate additional stack
939 space after an argument allocation and before its call site, but it
940 must be cleared off with :ref:`llvm.stackrestore
941 <int_stackrestore>`.
Reid Klecknera534a382013-12-19 02:14:12 +0000942
943 See :doc:`InAlloca` for more information on how to use this
944 attribute.
945
Sean Silvab084af42012-12-07 10:36:55 +0000946``sret``
947 This indicates that the pointer parameter specifies the address of a
948 structure that is the return value of the function in the source
949 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky4f2162f2013-01-23 22:05:19 +0000950 loads and stores to the structure may be assumed by the callee
Sean Silvab084af42012-12-07 10:36:55 +0000951 not to trap and to be properly aligned. This may only be applied to
952 the first parameter. This is not a valid attribute for return
953 values.
Sean Silva1703e702014-04-08 21:06:22 +0000954
Hal Finkelccc70902014-07-22 16:58:55 +0000955``align <n>``
956 This indicates that the pointer value may be assumed by the optimizer to
957 have the specified alignment.
958
959 Note that this attribute has additional semantics when combined with the
960 ``byval`` attribute.
961
Sean Silva1703e702014-04-08 21:06:22 +0000962.. _noalias:
963
Sean Silvab084af42012-12-07 10:36:55 +0000964``noalias``
Hal Finkel12d36302014-11-21 02:22:46 +0000965 This indicates that objects accessed via pointer values
966 :ref:`based <pointeraliasing>` on the argument or return value are not also
967 accessed, during the execution of the function, via pointer values not
968 *based* on the argument or return value. The attribute on a return value
969 also has additional semantics described below. The caller shares the
970 responsibility with the callee for ensuring that these requirements are met.
971 For further details, please see the discussion of the NoAlias response in
972 :ref:`alias analysis <Must, May, or No>`.
Sean Silvab084af42012-12-07 10:36:55 +0000973
974 Note that this definition of ``noalias`` is intentionally similar
Hal Finkel12d36302014-11-21 02:22:46 +0000975 to the definition of ``restrict`` in C99 for function arguments.
Sean Silvab084af42012-12-07 10:36:55 +0000976
977 For function return values, C99's ``restrict`` is not meaningful,
Hal Finkel12d36302014-11-21 02:22:46 +0000978 while LLVM's ``noalias`` is. Furthermore, the semantics of the ``noalias``
979 attribute on return values are stronger than the semantics of the attribute
980 when used on function arguments. On function return values, the ``noalias``
981 attribute indicates that the function acts like a system memory allocation
982 function, returning a pointer to allocated storage disjoint from the
983 storage for any other object accessible to the caller.
984
Sean Silvab084af42012-12-07 10:36:55 +0000985``nocapture``
986 This indicates that the callee does not make any copies of the
987 pointer that outlive the callee itself. This is not a valid
988 attribute for return values.
989
990.. _nest:
991
992``nest``
993 This indicates that the pointer parameter can be excised using the
994 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Linb8bd2322013-04-20 05:14:40 +0000995 attribute for return values and can only be applied to one parameter.
996
997``returned``
Stephen Linfec5b0b2013-06-20 21:55:10 +0000998 This indicates that the function always returns the argument as its return
999 value. This is an optimization hint to the code generator when generating
1000 the caller, allowing tail call optimization and omission of register saves
1001 and restores in some cases; it is not checked or enforced when generating
1002 the callee. The parameter and the function return type must be valid
1003 operands for the :ref:`bitcast instruction <i_bitcast>`. This is not a
1004 valid attribute for return values and can only be applied to one parameter.
Sean Silvab084af42012-12-07 10:36:55 +00001005
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001006``nonnull``
1007 This indicates that the parameter or return pointer is not null. This
1008 attribute may only be applied to pointer typed parameters. This is not
1009 checked or enforced by LLVM, the caller must ensure that the pointer
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001010 passed in is non-null, or the callee must ensure that the returned pointer
Nick Lewyckyd52b1522014-05-20 01:23:40 +00001011 is non-null.
1012
Hal Finkelb0407ba2014-07-18 15:51:28 +00001013``dereferenceable(<n>)``
1014 This indicates that the parameter or return pointer is dereferenceable. This
1015 attribute may only be applied to pointer typed parameters. A pointer that
1016 is dereferenceable can be loaded from speculatively without a risk of
1017 trapping. The number of bytes known to be dereferenceable must be provided
1018 in parentheses. It is legal for the number of bytes to be less than the
1019 size of the pointee type. The ``nonnull`` attribute does not imply
1020 dereferenceability (consider a pointer to one element past the end of an
1021 array), however ``dereferenceable(<n>)`` does imply ``nonnull`` in
1022 ``addrspace(0)`` (which is the default address space).
1023
Sanjoy Das31ea6d12015-04-16 20:29:50 +00001024``dereferenceable_or_null(<n>)``
1025 This indicates that the parameter or return value isn't both
1026 non-null and non-dereferenceable (up to ``<n>`` bytes) at the same
1027 time. All non-null pointers tagged with
1028 ``dereferenceable_or_null(<n>)`` are ``dereferenceable(<n>)``.
1029 For address space 0 ``dereferenceable_or_null(<n>)`` implies that
1030 a pointer is exactly one of ``dereferenceable(<n>)`` or ``null``,
1031 and in other address spaces ``dereferenceable_or_null(<n>)``
1032 implies that a pointer is at least one of ``dereferenceable(<n>)``
1033 or ``null`` (i.e. it may be both ``null`` and
1034 ``dereferenceable(<n>)``). This attribute may only be applied to
1035 pointer typed parameters.
1036
Sean Silvab084af42012-12-07 10:36:55 +00001037.. _gc:
1038
Philip Reamesf80bbff2015-02-25 23:45:20 +00001039Garbage Collector Strategy Names
1040--------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00001041
Philip Reamesf80bbff2015-02-25 23:45:20 +00001042Each function may specify a garbage collector strategy name, which is simply a
Sean Silvab084af42012-12-07 10:36:55 +00001043string:
1044
1045.. code-block:: llvm
1046
1047 define void @f() gc "name" { ... }
1048
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001049The supported values of *name* includes those :ref:`built in to LLVM
Philip Reamesf80bbff2015-02-25 23:45:20 +00001050<builtin-gc-strategies>` and any provided by loaded plugins. Specifying a GC
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001051strategy will cause the compiler to alter its output in order to support the
1052named garbage collection algorithm. Note that LLVM itself does not contain a
Philip Reamesf80bbff2015-02-25 23:45:20 +00001053garbage collector, this functionality is restricted to generating machine code
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001054which can interoperate with a collector provided externally.
Sean Silvab084af42012-12-07 10:36:55 +00001055
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001056.. _prefixdata:
1057
1058Prefix Data
1059-----------
1060
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001061Prefix data is data associated with a function which the code
1062generator will emit immediately before the function's entrypoint.
1063The purpose of this feature is to allow frontends to associate
1064language-specific runtime metadata with specific functions and make it
1065available through the function pointer while still allowing the
1066function pointer to be called.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001067
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001068To access the data for a given function, a program may bitcast the
1069function pointer to a pointer to the constant's type and dereference
1070index -1. This implies that the IR symbol points just past the end of
1071the prefix data. For instance, take the example of a function annotated
1072with a single ``i32``,
1073
1074.. code-block:: llvm
1075
1076 define void @f() prefix i32 123 { ... }
1077
1078The prefix data can be referenced as,
1079
1080.. code-block:: llvm
1081
David Blaikie16a97eb2015-03-04 22:02:58 +00001082 %0 = bitcast void* () @f to i32*
1083 %a = getelementptr inbounds i32, i32* %0, i32 -1
David Blaikiec7aabbb2015-03-04 22:06:14 +00001084 %b = load i32, i32* %a
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001085
1086Prefix data is laid out as if it were an initializer for a global variable
1087of the prefix data's type. The function will be placed such that the
1088beginning of the prefix data is aligned. This means that if the size
1089of the prefix data is not a multiple of the alignment size, the
1090function's entrypoint will not be aligned. If alignment of the
1091function's entrypoint is desired, padding must be added to the prefix
1092data.
1093
1094A function may have prefix data but no body. This has similar semantics
1095to the ``available_externally`` linkage in that the data may be used by the
1096optimizers but will not be emitted in the object file.
1097
1098.. _prologuedata:
1099
1100Prologue Data
1101-------------
1102
1103The ``prologue`` attribute allows arbitrary code (encoded as bytes) to
1104be inserted prior to the function body. This can be used for enabling
1105function hot-patching and instrumentation.
1106
1107To maintain the semantics of ordinary function calls, the prologue data must
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001108have a particular format. Specifically, it must begin with a sequence of
1109bytes which decode to a sequence of machine instructions, valid for the
1110module's target, which transfer control to the point immediately succeeding
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001111the prologue data, without performing any other visible action. This allows
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001112the inliner and other passes to reason about the semantics of the function
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001113definition without needing to reason about the prologue data. Obviously this
1114makes the format of the prologue data highly target dependent.
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001115
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001116A trivial example of valid prologue data for the x86 architecture is ``i8 144``,
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001117which encodes the ``nop`` instruction:
1118
1119.. code-block:: llvm
1120
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001121 define void @f() prologue i8 144 { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001122
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001123Generally prologue data can be formed by encoding a relative branch instruction
1124which skips the metadata, as in this example of valid prologue data for the
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001125x86_64 architecture, where the first two bytes encode ``jmp .+10``:
1126
1127.. code-block:: llvm
1128
1129 %0 = type <{ i8, i8, i8* }>
1130
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001131 define void @f() prologue %0 <{ i8 235, i8 8, i8* @md}> { ... }
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001132
Peter Collingbourne51d2de72014-12-03 02:08:38 +00001133A function may have prologue data but no body. This has similar semantics
Peter Collingbourne3fa50f92013-09-16 01:08:15 +00001134to the ``available_externally`` linkage in that the data may be used by the
1135optimizers but will not be emitted in the object file.
1136
David Majnemer7fddecc2015-06-17 20:52:32 +00001137.. _personalityfn:
1138
1139Personality Function
David Majnemerc5ad8a92015-06-17 21:21:16 +00001140--------------------
David Majnemer7fddecc2015-06-17 20:52:32 +00001141
1142The ``personality`` attribute permits functions to specify what function
1143to use for exception handling.
1144
Bill Wendling63b88192013-02-06 06:52:58 +00001145.. _attrgrp:
1146
1147Attribute Groups
1148----------------
1149
1150Attribute groups are groups of attributes that are referenced by objects within
1151the IR. They are important for keeping ``.ll`` files readable, because a lot of
1152functions will use the same set of attributes. In the degenerative case of a
1153``.ll`` file that corresponds to a single ``.c`` file, the single attribute
1154group will capture the important command line flags used to build that file.
1155
1156An attribute group is a module-level object. To use an attribute group, an
1157object references the attribute group's ID (e.g. ``#37``). An object may refer
1158to more than one attribute group. In that situation, the attributes from the
1159different groups are merged.
1160
1161Here is an example of attribute groups for a function that should always be
1162inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
1163
1164.. code-block:: llvm
1165
1166 ; Target-independent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001167 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling63b88192013-02-06 06:52:58 +00001168
1169 ; Target-dependent attributes:
Eli Bendersky97ad9242013-04-18 16:11:44 +00001170 attributes #1 = { "no-sse" }
Bill Wendling63b88192013-02-06 06:52:58 +00001171
1172 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
1173 define void @f() #0 #1 { ... }
1174
Sean Silvab084af42012-12-07 10:36:55 +00001175.. _fnattrs:
1176
1177Function Attributes
1178-------------------
1179
1180Function attributes are set to communicate additional information about
1181a function. Function attributes are considered to be part of the
1182function, not of the function type, so functions with different function
1183attributes can have the same function type.
1184
1185Function attributes are simple keywords that follow the type specified.
1186If multiple attributes are needed, they are space separated. For
1187example:
1188
1189.. code-block:: llvm
1190
1191 define void @f() noinline { ... }
1192 define void @f() alwaysinline { ... }
1193 define void @f() alwaysinline optsize { ... }
1194 define void @f() optsize { ... }
1195
Sean Silvab084af42012-12-07 10:36:55 +00001196``alignstack(<n>)``
1197 This attribute indicates that, when emitting the prologue and
1198 epilogue, the backend should forcibly align the stack pointer.
1199 Specify the desired alignment, which must be a power of two, in
1200 parentheses.
1201``alwaysinline``
1202 This attribute indicates that the inliner should attempt to inline
1203 this function into callers whenever possible, ignoring any active
1204 inlining size threshold for this caller.
Michael Gottesman41748d72013-06-27 00:25:01 +00001205``builtin``
1206 This indicates that the callee function at a call site should be
1207 recognized as a built-in function, even though the function's declaration
Michael Gottesman3a6a9672013-07-02 21:32:56 +00001208 uses the ``nobuiltin`` attribute. This is only valid at call sites for
Richard Smith32dbdf62014-07-31 04:25:36 +00001209 direct calls to functions that are declared with the ``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001210 attribute.
Michael Gottesman296adb82013-06-27 22:48:08 +00001211``cold``
1212 This attribute indicates that this function is rarely called. When
1213 computing edge weights, basic blocks post-dominated by a cold
1214 function call are also considered to be cold; and, thus, given low
1215 weight.
Owen Anderson85fa7d52015-05-26 23:48:40 +00001216``convergent``
1217 This attribute indicates that the callee is dependent on a convergent
1218 thread execution pattern under certain parallel execution models.
1219 Transformations that are execution model agnostic may only move or
1220 tranform this call if the final location is control equivalent to its
1221 original position in the program, where control equivalence is defined as
1222 A dominates B and B post-dominates A, or vice versa.
Sean Silvab084af42012-12-07 10:36:55 +00001223``inlinehint``
1224 This attribute indicates that the source code contained a hint that
1225 inlining this function is desirable (such as the "inline" keyword in
1226 C/C++). It is just a hint; it imposes no requirements on the
1227 inliner.
Tom Roeder44cb65f2014-06-05 19:29:43 +00001228``jumptable``
1229 This attribute indicates that the function should be added to a
1230 jump-instruction table at code-generation time, and that all address-taken
1231 references to this function should be replaced with a reference to the
1232 appropriate jump-instruction-table function pointer. Note that this creates
1233 a new pointer for the original function, which means that code that depends
1234 on function-pointer identity can break. So, any function annotated with
1235 ``jumptable`` must also be ``unnamed_addr``.
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001236``minsize``
1237 This attribute suggests that optimization passes and code generator
1238 passes make choices that keep the code size of this function as small
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001239 as possible and perform optimizations that may sacrifice runtime
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001240 performance in order to minimize the size of the generated code.
Sean Silvab084af42012-12-07 10:36:55 +00001241``naked``
1242 This attribute disables prologue / epilogue emission for the
1243 function. This can have very system-specific consequences.
Eli Bendersky97ad9242013-04-18 16:11:44 +00001244``nobuiltin``
Michael Gottesman41748d72013-06-27 00:25:01 +00001245 This indicates that the callee function at a call site is not recognized as
1246 a built-in function. LLVM will retain the original call and not replace it
1247 with equivalent code based on the semantics of the built-in function, unless
1248 the call site uses the ``builtin`` attribute. This is valid at call sites
1249 and on function declarations and definitions.
Bill Wendlingbf902f12013-02-06 06:22:58 +00001250``noduplicate``
1251 This attribute indicates that calls to the function cannot be
1252 duplicated. A call to a ``noduplicate`` function may be moved
1253 within its parent function, but may not be duplicated within
1254 its parent function.
1255
1256 A function containing a ``noduplicate`` call may still
1257 be an inlining candidate, provided that the call is not
1258 duplicated by inlining. That implies that the function has
1259 internal linkage and only has one call site, so the original
1260 call is dead after inlining.
Sean Silvab084af42012-12-07 10:36:55 +00001261``noimplicitfloat``
1262 This attributes disables implicit floating point instructions.
1263``noinline``
1264 This attribute indicates that the inliner should never inline this
1265 function in any situation. This attribute may not be used together
1266 with the ``alwaysinline`` attribute.
Sean Silva1cbbcf12013-08-06 19:34:37 +00001267``nonlazybind``
1268 This attribute suppresses lazy symbol binding for the function. This
1269 may make calls to the function faster, at the cost of extra program
1270 startup time if the function is not called during program startup.
Sean Silvab084af42012-12-07 10:36:55 +00001271``noredzone``
1272 This attribute indicates that the code generator should not use a
1273 red zone, even if the target-specific ABI normally permits it.
1274``noreturn``
1275 This function attribute indicates that the function never returns
1276 normally. This produces undefined behavior at runtime if the
1277 function ever does dynamically return.
1278``nounwind``
Reid Kleckner96d01132015-02-11 01:23:16 +00001279 This function attribute indicates that the function never raises an
1280 exception. If the function does raise an exception, its runtime
1281 behavior is undefined. However, functions marked nounwind may still
1282 trap or generate asynchronous exceptions. Exception handling schemes
1283 that are recognized by LLVM to handle asynchronous exceptions, such
1284 as SEH, will still provide their implementation defined semantics.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001285``optnone``
1286 This function attribute indicates that the function is not optimized
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001287 by any optimization or code generator passes with the
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001288 exception of interprocedural optimization passes.
1289 This attribute cannot be used together with the ``alwaysinline``
1290 attribute; this attribute is also incompatible
1291 with the ``minsize`` attribute and the ``optsize`` attribute.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001292
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001293 This attribute requires the ``noinline`` attribute to be specified on
1294 the function as well, so the function is never inlined into any caller.
Andrea Di Biagio377496b2013-08-23 11:53:55 +00001295 Only functions with the ``alwaysinline`` attribute are valid
Paul Robinsondcbe35b2013-11-18 21:44:03 +00001296 candidates for inlining into the body of this function.
Sean Silvab084af42012-12-07 10:36:55 +00001297``optsize``
1298 This attribute suggests that optimization passes and code generator
1299 passes make choices that keep the code size of this function low,
Andrea Di Biagio9b5d23b2013-08-09 18:42:18 +00001300 and otherwise do optimizations specifically to reduce code size as
1301 long as they do not significantly impact runtime performance.
Sean Silvab084af42012-12-07 10:36:55 +00001302``readnone``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001303 On a function, this attribute indicates that the function computes its
1304 result (or decides to unwind an exception) based strictly on its arguments,
Sean Silvab084af42012-12-07 10:36:55 +00001305 without dereferencing any pointer arguments or otherwise accessing
1306 any mutable state (e.g. memory, control registers, etc) visible to
1307 caller functions. It does not write through any pointer arguments
1308 (including ``byval`` arguments) and never changes any state visible
1309 to callers. This means that it cannot unwind exceptions by calling
1310 the ``C++`` exception throwing methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001311
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001312 On an argument, this attribute indicates that the function does not
1313 dereference that pointer argument, even though it may read or write the
Nick Lewyckyefe31f22013-07-06 01:04:47 +00001314 memory that the pointer points to if accessed through other pointers.
Sean Silvab084af42012-12-07 10:36:55 +00001315``readonly``
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001316 On a function, this attribute indicates that the function does not write
1317 through any pointer arguments (including ``byval`` arguments) or otherwise
Sean Silvab084af42012-12-07 10:36:55 +00001318 modify any state (e.g. memory, control registers, etc) visible to
1319 caller functions. It may dereference pointer arguments and read
1320 state that may be set in the caller. A readonly function always
1321 returns the same value (or unwinds an exception identically) when
1322 called with the same set of arguments and global state. It cannot
1323 unwind an exception by calling the ``C++`` exception throwing
1324 methods.
Andrew Trickd4d1d9c2013-10-31 17:18:07 +00001325
Nick Lewyckyc2ec0722013-07-06 00:29:58 +00001326 On an argument, this attribute indicates that the function does not write
1327 through this pointer argument, even though it may write to the memory that
1328 the pointer points to.
Igor Laevsky39d662f2015-07-11 10:30:36 +00001329``argmemonly``
1330 This attribute indicates that the only memory accesses inside function are
1331 loads and stores from objects pointed to by its pointer-typed arguments,
1332 with arbitrary offsets. Or in other words, all memory operations in the
1333 function can refer to memory only using pointers based on its function
1334 arguments.
1335 Note that ``argmemonly`` can be used together with ``readonly`` attribute
1336 in order to specify that function reads only from its arguments.
Sean Silvab084af42012-12-07 10:36:55 +00001337``returns_twice``
1338 This attribute indicates that this function can return twice. The C
1339 ``setjmp`` is an example of such a function. The compiler disables
1340 some optimizations (like tail calls) in the caller of these
1341 functions.
Peter Collingbourne82437bf2015-06-15 21:07:11 +00001342``safestack``
1343 This attribute indicates that
1344 `SafeStack <http://clang.llvm.org/docs/SafeStack.html>`_
1345 protection is enabled for this function.
1346
1347 If a function that has a ``safestack`` attribute is inlined into a
1348 function that doesn't have a ``safestack`` attribute or which has an
1349 ``ssp``, ``sspstrong`` or ``sspreq`` attribute, then the resulting
1350 function will have a ``safestack`` attribute.
Kostya Serebryanycf880b92013-02-26 06:58:09 +00001351``sanitize_address``
1352 This attribute indicates that AddressSanitizer checks
1353 (dynamic address safety analysis) are enabled for this function.
1354``sanitize_memory``
1355 This attribute indicates that MemorySanitizer checks (dynamic detection
1356 of accesses to uninitialized memory) are enabled for this function.
1357``sanitize_thread``
1358 This attribute indicates that ThreadSanitizer checks
1359 (dynamic thread safety analysis) are enabled for this function.
Sean Silvab084af42012-12-07 10:36:55 +00001360``ssp``
1361 This attribute indicates that the function should emit a stack
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00001362 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvab084af42012-12-07 10:36:55 +00001363 placed on the stack before the local variables that's checked upon
1364 return from the function to see if it has been overwritten. A
1365 heuristic is used to determine if a function needs stack protectors
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001366 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001367
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001368 - Character arrays larger than ``ssp-buffer-size`` (default 8).
1369 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
1370 - Calls to alloca() with variable sizes or constant sizes greater than
1371 ``ssp-buffer-size``.
Sean Silvab084af42012-12-07 10:36:55 +00001372
Josh Magee24c7f062014-02-01 01:36:16 +00001373 Variables that are identified as requiring a protector will be arranged
1374 on the stack such that they are adjacent to the stack protector guard.
1375
Sean Silvab084af42012-12-07 10:36:55 +00001376 If a function that has an ``ssp`` attribute is inlined into a
1377 function that doesn't have an ``ssp`` attribute, then the resulting
1378 function will have an ``ssp`` attribute.
1379``sspreq``
1380 This attribute indicates that the function should *always* emit a
1381 stack smashing protector. This overrides the ``ssp`` function
1382 attribute.
1383
Josh Magee24c7f062014-02-01 01:36:16 +00001384 Variables that are identified as requiring a protector will be arranged
1385 on the stack such that they are adjacent to the stack protector guard.
1386 The specific layout rules are:
1387
1388 #. Large arrays and structures containing large arrays
1389 (``>= ssp-buffer-size``) are closest to the stack protector.
1390 #. Small arrays and structures containing small arrays
1391 (``< ssp-buffer-size``) are 2nd closest to the protector.
1392 #. Variables that have had their address taken are 3rd closest to the
1393 protector.
1394
Sean Silvab084af42012-12-07 10:36:55 +00001395 If a function that has an ``sspreq`` attribute is inlined into a
1396 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendlingd154e2832013-01-23 06:41:41 +00001397 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
1398 an ``sspreq`` attribute.
1399``sspstrong``
1400 This attribute indicates that the function should emit a stack smashing
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001401 protector. This attribute causes a strong heuristic to be used when
1402 determining if a function needs stack protectors. The strong heuristic
1403 will enable protectors for functions with:
Dmitri Gribenko69b56472013-01-29 23:14:41 +00001404
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001405 - Arrays of any size and type
1406 - Aggregates containing an array of any size and type.
1407 - Calls to alloca().
1408 - Local variables that have had their address taken.
1409
Josh Magee24c7f062014-02-01 01:36:16 +00001410 Variables that are identified as requiring a protector will be arranged
1411 on the stack such that they are adjacent to the stack protector guard.
1412 The specific layout rules are:
1413
1414 #. Large arrays and structures containing large arrays
1415 (``>= ssp-buffer-size``) are closest to the stack protector.
1416 #. Small arrays and structures containing small arrays
1417 (``< ssp-buffer-size``) are 2nd closest to the protector.
1418 #. Variables that have had their address taken are 3rd closest to the
1419 protector.
1420
Bill Wendling7c8f96a2013-01-23 06:43:53 +00001421 This overrides the ``ssp`` function attribute.
Bill Wendlingd154e2832013-01-23 06:41:41 +00001422
1423 If a function that has an ``sspstrong`` attribute is inlined into a
1424 function that doesn't have an ``sspstrong`` attribute, then the
1425 resulting function will have an ``sspstrong`` attribute.
Reid Kleckner5a2ab2b2015-03-04 00:08:56 +00001426``"thunk"``
1427 This attribute indicates that the function will delegate to some other
1428 function with a tail call. The prototype of a thunk should not be used for
1429 optimization purposes. The caller is expected to cast the thunk prototype to
1430 match the thunk target prototype.
Sean Silvab084af42012-12-07 10:36:55 +00001431``uwtable``
1432 This attribute indicates that the ABI being targeted requires that
1433 an unwind table entry be produce for this function even if we can
1434 show that no exceptions passes by it. This is normally the case for
1435 the ELF x86-64 abi, but it can be disabled for some compilation
1436 units.
Sean Silvab084af42012-12-07 10:36:55 +00001437
1438.. _moduleasm:
1439
1440Module-Level Inline Assembly
1441----------------------------
1442
1443Modules may contain "module-level inline asm" blocks, which corresponds
1444to the GCC "file scope inline asm" blocks. These blocks are internally
1445concatenated by LLVM and treated as a single unit, but may be separated
1446in the ``.ll`` file if desired. The syntax is very simple:
1447
1448.. code-block:: llvm
1449
1450 module asm "inline asm code goes here"
1451 module asm "more can go here"
1452
1453The strings can contain any character by escaping non-printable
1454characters. The escape sequence used is simply "\\xx" where "xx" is the
1455two digit hex code for the number.
1456
James Y Knightbc832ed2015-07-08 18:08:36 +00001457Note that the assembly string *must* be parseable by LLVM's integrated assembler
1458(unless it is disabled), even when emitting a ``.s`` file.
Sean Silvab084af42012-12-07 10:36:55 +00001459
Eli Benderskyfdc529a2013-06-07 19:40:08 +00001460.. _langref_datalayout:
1461
Sean Silvab084af42012-12-07 10:36:55 +00001462Data Layout
1463-----------
1464
1465A module may specify a target specific data layout string that specifies
1466how data is to be laid out in memory. The syntax for the data layout is
1467simply:
1468
1469.. code-block:: llvm
1470
1471 target datalayout = "layout specification"
1472
1473The *layout specification* consists of a list of specifications
1474separated by the minus sign character ('-'). Each specification starts
1475with a letter and may include other information after the letter to
1476define some aspect of the data layout. The specifications accepted are
1477as follows:
1478
1479``E``
1480 Specifies that the target lays out data in big-endian form. That is,
1481 the bits with the most significance have the lowest address
1482 location.
1483``e``
1484 Specifies that the target lays out data in little-endian form. That
1485 is, the bits with the least significance have the lowest address
1486 location.
1487``S<size>``
1488 Specifies the natural alignment of the stack in bits. Alignment
1489 promotion of stack variables is limited to the natural stack
1490 alignment to avoid dynamic stack realignment. The stack alignment
1491 must be a multiple of 8-bits. If omitted, the natural stack
1492 alignment defaults to "unspecified", which does not prevent any
1493 alignment promotions.
1494``p[n]:<size>:<abi>:<pref>``
1495 This specifies the *size* of a pointer and its ``<abi>`` and
1496 ``<pref>``\erred alignments for address space ``n``. All sizes are in
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001497 bits. The address space, ``n`` is optional, and if not specified,
1498 denotes the default address space 0. The value of ``n`` must be
1499 in the range [1,2^23).
Sean Silvab084af42012-12-07 10:36:55 +00001500``i<size>:<abi>:<pref>``
1501 This specifies the alignment for an integer type of a given bit
1502 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1503``v<size>:<abi>:<pref>``
1504 This specifies the alignment for a vector type of a given bit
1505 ``<size>``.
1506``f<size>:<abi>:<pref>``
1507 This specifies the alignment for a floating point type of a given bit
1508 ``<size>``. Only values of ``<size>`` that are supported by the target
1509 will work. 32 (float) and 64 (double) are supported on all targets; 80
1510 or 128 (different flavors of long double) are also supported on some
1511 targets.
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001512``a:<abi>:<pref>``
1513 This specifies the alignment for an object of aggregate type.
Rafael Espindola58873562014-01-03 19:21:54 +00001514``m:<mangling>``
Hans Wennborgd4245ac2014-01-15 02:49:17 +00001515 If present, specifies that llvm names are mangled in the output. The
1516 options are
1517
1518 * ``e``: ELF mangling: Private symbols get a ``.L`` prefix.
1519 * ``m``: Mips mangling: Private symbols get a ``$`` prefix.
1520 * ``o``: Mach-O mangling: Private symbols get ``L`` prefix. Other
1521 symbols get a ``_`` prefix.
1522 * ``w``: Windows COFF prefix: Similar to Mach-O, but stdcall and fastcall
1523 functions also get a suffix based on the frame size.
Sean Silvab084af42012-12-07 10:36:55 +00001524``n<size1>:<size2>:<size3>...``
1525 This specifies a set of native integer widths for the target CPU in
1526 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1527 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1528 this set are considered to support most general arithmetic operations
1529 efficiently.
1530
Rafael Espindolaabdd7262014-01-06 21:40:24 +00001531On every specification that takes a ``<abi>:<pref>``, specifying the
1532``<pref>`` alignment is optional. If omitted, the preceding ``:``
1533should be omitted too and ``<pref>`` will be equal to ``<abi>``.
1534
Sean Silvab084af42012-12-07 10:36:55 +00001535When constructing the data layout for a given target, LLVM starts with a
1536default set of specifications which are then (possibly) overridden by
1537the specifications in the ``datalayout`` keyword. The default
1538specifications are given in this list:
1539
1540- ``E`` - big endian
Matt Arsenault24b49c42013-07-31 17:49:08 +00001541- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment.
1542- ``p[n]:64:64:64`` - Other address spaces are assumed to be the
1543 same as the default address space.
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001544- ``S0`` - natural stack alignment is unspecified
Sean Silvab084af42012-12-07 10:36:55 +00001545- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1546- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1547- ``i16:16:16`` - i16 is 16-bit aligned
1548- ``i32:32:32`` - i32 is 32-bit aligned
1549- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1550 alignment of 64-bits
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001551- ``f16:16:16`` - half is 16-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001552- ``f32:32:32`` - float is 32-bit aligned
1553- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglunda832ab12013-01-30 09:02:06 +00001554- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001555- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1556- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Rafael Espindolae8f4d582013-12-12 17:21:51 +00001557- ``a:0:64`` - aggregates are 64-bit aligned
Sean Silvab084af42012-12-07 10:36:55 +00001558
1559When LLVM is determining the alignment for a given type, it uses the
1560following rules:
1561
1562#. If the type sought is an exact match for one of the specifications,
1563 that specification is used.
1564#. If no match is found, and the type sought is an integer type, then
1565 the smallest integer type that is larger than the bitwidth of the
1566 sought type is used. If none of the specifications are larger than
1567 the bitwidth then the largest integer type is used. For example,
1568 given the default specifications above, the i7 type will use the
1569 alignment of i8 (next largest) while both i65 and i256 will use the
1570 alignment of i64 (largest specified).
1571#. If no match is found, and the type sought is a vector type, then the
1572 largest vector type that is smaller than the sought vector type will
1573 be used as a fall back. This happens because <128 x double> can be
1574 implemented in terms of 64 <2 x double>, for example.
1575
1576The function of the data layout string may not be what you expect.
1577Notably, this is not a specification from the frontend of what alignment
1578the code generator should use.
1579
1580Instead, if specified, the target data layout is required to match what
1581the ultimate *code generator* expects. This string is used by the
1582mid-level optimizers to improve code, and this only works if it matches
Mehdi Amini4a121fa2015-03-14 22:04:06 +00001583what the ultimate code generator uses. There is no way to generate IR
1584that does not embed this target-specific detail into the IR. If you
1585don't specify the string, the default specifications will be used to
1586generate a Data Layout and the optimization phases will operate
1587accordingly and introduce target specificity into the IR with respect to
1588these default specifications.
Sean Silvab084af42012-12-07 10:36:55 +00001589
Bill Wendling5cc90842013-10-18 23:41:25 +00001590.. _langref_triple:
1591
1592Target Triple
1593-------------
1594
1595A module may specify a target triple string that describes the target
1596host. The syntax for the target triple is simply:
1597
1598.. code-block:: llvm
1599
1600 target triple = "x86_64-apple-macosx10.7.0"
1601
1602The *target triple* string consists of a series of identifiers delimited
1603by the minus sign character ('-'). The canonical forms are:
1604
1605::
1606
1607 ARCHITECTURE-VENDOR-OPERATING_SYSTEM
1608 ARCHITECTURE-VENDOR-OPERATING_SYSTEM-ENVIRONMENT
1609
1610This information is passed along to the backend so that it generates
1611code for the proper architecture. It's possible to override this on the
1612command line with the ``-mtriple`` command line option.
1613
Sean Silvab084af42012-12-07 10:36:55 +00001614.. _pointeraliasing:
1615
1616Pointer Aliasing Rules
1617----------------------
1618
1619Any memory access must be done through a pointer value associated with
1620an address range of the memory access, otherwise the behavior is
1621undefined. Pointer values are associated with address ranges according
1622to the following rules:
1623
1624- A pointer value is associated with the addresses associated with any
1625 value it is *based* on.
1626- An address of a global variable is associated with the address range
1627 of the variable's storage.
1628- The result value of an allocation instruction is associated with the
1629 address range of the allocated storage.
1630- A null pointer in the default address-space is associated with no
1631 address.
1632- An integer constant other than zero or a pointer value returned from
1633 a function not defined within LLVM may be associated with address
1634 ranges allocated through mechanisms other than those provided by
1635 LLVM. Such ranges shall not overlap with any ranges of addresses
1636 allocated by mechanisms provided by LLVM.
1637
1638A pointer value is *based* on another pointer value according to the
1639following rules:
1640
1641- A pointer value formed from a ``getelementptr`` operation is *based*
David Blaikie16a97eb2015-03-04 22:02:58 +00001642 on the first value operand of the ``getelementptr``.
Sean Silvab084af42012-12-07 10:36:55 +00001643- The result value of a ``bitcast`` is *based* on the operand of the
1644 ``bitcast``.
1645- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1646 values that contribute (directly or indirectly) to the computation of
1647 the pointer's value.
1648- The "*based* on" relationship is transitive.
1649
1650Note that this definition of *"based"* is intentionally similar to the
1651definition of *"based"* in C99, though it is slightly weaker.
1652
1653LLVM IR does not associate types with memory. The result type of a
1654``load`` merely indicates the size and alignment of the memory from
1655which to load, as well as the interpretation of the value. The first
1656operand type of a ``store`` similarly only indicates the size and
1657alignment of the store.
1658
1659Consequently, type-based alias analysis, aka TBAA, aka
1660``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1661:ref:`Metadata <metadata>` may be used to encode additional information
1662which specialized optimization passes may use to implement type-based
1663alias analysis.
1664
1665.. _volatile:
1666
1667Volatile Memory Accesses
1668------------------------
1669
1670Certain memory accesses, such as :ref:`load <i_load>`'s,
1671:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1672marked ``volatile``. The optimizers must not change the number of
1673volatile operations or change their order of execution relative to other
1674volatile operations. The optimizers *may* change the order of volatile
1675operations relative to non-volatile operations. This is not Java's
1676"volatile" and has no cross-thread synchronization behavior.
1677
Andrew Trick89fc5a62013-01-30 21:19:35 +00001678IR-level volatile loads and stores cannot safely be optimized into
1679llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1680flagged volatile. Likewise, the backend should never split or merge
1681target-legal volatile load/store instructions.
1682
Andrew Trick7e6f9282013-01-31 00:49:39 +00001683.. admonition:: Rationale
1684
1685 Platforms may rely on volatile loads and stores of natively supported
1686 data width to be executed as single instruction. For example, in C
1687 this holds for an l-value of volatile primitive type with native
1688 hardware support, but not necessarily for aggregate types. The
1689 frontend upholds these expectations, which are intentionally
1690 unspecified in the IR. The rules above ensure that IR transformation
1691 do not violate the frontend's contract with the language.
1692
Sean Silvab084af42012-12-07 10:36:55 +00001693.. _memmodel:
1694
1695Memory Model for Concurrent Operations
1696--------------------------------------
1697
1698The LLVM IR does not define any way to start parallel threads of
1699execution or to register signal handlers. Nonetheless, there are
1700platform-specific ways to create them, and we define LLVM IR's behavior
1701in their presence. This model is inspired by the C++0x memory model.
1702
1703For a more informal introduction to this model, see the :doc:`Atomics`.
1704
1705We define a *happens-before* partial order as the least partial order
1706that
1707
1708- Is a superset of single-thread program order, and
1709- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1710 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1711 techniques, like pthread locks, thread creation, thread joining,
1712 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1713 Constraints <ordering>`).
1714
1715Note that program order does not introduce *happens-before* edges
1716between a thread and signals executing inside that thread.
1717
1718Every (defined) read operation (load instructions, memcpy, atomic
1719loads/read-modify-writes, etc.) R reads a series of bytes written by
1720(defined) write operations (store instructions, atomic
1721stores/read-modify-writes, memcpy, etc.). For the purposes of this
1722section, initialized globals are considered to have a write of the
1723initializer which is atomic and happens before any other read or write
1724of the memory in question. For each byte of a read R, R\ :sub:`byte`
1725may see any write to the same byte, except:
1726
1727- If write\ :sub:`1` happens before write\ :sub:`2`, and
1728 write\ :sub:`2` happens before R\ :sub:`byte`, then
1729 R\ :sub:`byte` does not see write\ :sub:`1`.
1730- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1731 R\ :sub:`byte` does not see write\ :sub:`3`.
1732
1733Given that definition, R\ :sub:`byte` is defined as follows:
1734
1735- If R is volatile, the result is target-dependent. (Volatile is
1736 supposed to give guarantees which can support ``sig_atomic_t`` in
Richard Smith32dbdf62014-07-31 04:25:36 +00001737 C/C++, and may be used for accesses to addresses that do not behave
Sean Silvab084af42012-12-07 10:36:55 +00001738 like normal memory. It does not generally provide cross-thread
1739 synchronization.)
1740- Otherwise, if there is no write to the same byte that happens before
1741 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1742- Otherwise, if R\ :sub:`byte` may see exactly one write,
1743 R\ :sub:`byte` returns the value written by that write.
1744- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1745 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1746 Memory Ordering Constraints <ordering>` section for additional
1747 constraints on how the choice is made.
1748- Otherwise R\ :sub:`byte` returns ``undef``.
1749
1750R returns the value composed of the series of bytes it read. This
1751implies that some bytes within the value may be ``undef`` **without**
1752the entire value being ``undef``. Note that this only defines the
1753semantics of the operation; it doesn't mean that targets will emit more
1754than one instruction to read the series of bytes.
1755
1756Note that in cases where none of the atomic intrinsics are used, this
1757model places only one restriction on IR transformations on top of what
1758is required for single-threaded execution: introducing a store to a byte
1759which might not otherwise be stored is not allowed in general.
1760(Specifically, in the case where another thread might write to and read
1761from an address, introducing a store can change a load that may see
1762exactly one write into a load that may see multiple writes.)
1763
1764.. _ordering:
1765
1766Atomic Memory Ordering Constraints
1767----------------------------------
1768
1769Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1770:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1771:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
Tim Northovere94a5182014-03-11 10:48:52 +00001772ordering parameters that determine which other atomic instructions on
Sean Silvab084af42012-12-07 10:36:55 +00001773the same address they *synchronize with*. These semantics are borrowed
1774from Java and C++0x, but are somewhat more colloquial. If these
1775descriptions aren't precise enough, check those specs (see spec
1776references in the :doc:`atomics guide <Atomics>`).
1777:ref:`fence <i_fence>` instructions treat these orderings somewhat
1778differently since they don't take an address. See that instruction's
1779documentation for details.
1780
1781For a simpler introduction to the ordering constraints, see the
1782:doc:`Atomics`.
1783
1784``unordered``
1785 The set of values that can be read is governed by the happens-before
1786 partial order. A value cannot be read unless some operation wrote
1787 it. This is intended to provide a guarantee strong enough to model
1788 Java's non-volatile shared variables. This ordering cannot be
1789 specified for read-modify-write operations; it is not strong enough
1790 to make them atomic in any interesting way.
1791``monotonic``
1792 In addition to the guarantees of ``unordered``, there is a single
1793 total order for modifications by ``monotonic`` operations on each
1794 address. All modification orders must be compatible with the
1795 happens-before order. There is no guarantee that the modification
1796 orders can be combined to a global total order for the whole program
1797 (and this often will not be possible). The read in an atomic
1798 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1799 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1800 order immediately before the value it writes. If one atomic read
1801 happens before another atomic read of the same address, the later
1802 read must see the same value or a later value in the address's
1803 modification order. This disallows reordering of ``monotonic`` (or
1804 stronger) operations on the same address. If an address is written
1805 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1806 read that address repeatedly, the other threads must eventually see
1807 the write. This corresponds to the C++0x/C1x
1808 ``memory_order_relaxed``.
1809``acquire``
1810 In addition to the guarantees of ``monotonic``, a
1811 *synchronizes-with* edge may be formed with a ``release`` operation.
1812 This is intended to model C++'s ``memory_order_acquire``.
1813``release``
1814 In addition to the guarantees of ``monotonic``, if this operation
1815 writes a value which is subsequently read by an ``acquire``
1816 operation, it *synchronizes-with* that operation. (This isn't a
1817 complete description; see the C++0x definition of a release
1818 sequence.) This corresponds to the C++0x/C1x
1819 ``memory_order_release``.
1820``acq_rel`` (acquire+release)
1821 Acts as both an ``acquire`` and ``release`` operation on its
1822 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1823``seq_cst`` (sequentially consistent)
1824 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
Richard Smith32dbdf62014-07-31 04:25:36 +00001825 operation that only reads, ``release`` for an operation that only
Sean Silvab084af42012-12-07 10:36:55 +00001826 writes), there is a global total order on all
1827 sequentially-consistent operations on all addresses, which is
1828 consistent with the *happens-before* partial order and with the
1829 modification orders of all the affected addresses. Each
1830 sequentially-consistent read sees the last preceding write to the
1831 same address in this global order. This corresponds to the C++0x/C1x
1832 ``memory_order_seq_cst`` and Java volatile.
1833
1834.. _singlethread:
1835
1836If an atomic operation is marked ``singlethread``, it only *synchronizes
1837with* or participates in modification and seq\_cst total orderings with
1838other operations running in the same thread (for example, in signal
1839handlers).
1840
1841.. _fastmath:
1842
1843Fast-Math Flags
1844---------------
1845
1846LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1847:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
James Molloy88eb5352015-07-10 12:52:00 +00001848:ref:`frem <i_frem>`, :ref:`fcmp <i_fcmp>`) have the following flags that can
1849be set to enable otherwise unsafe floating point operations
Sean Silvab084af42012-12-07 10:36:55 +00001850
1851``nnan``
1852 No NaNs - Allow optimizations to assume the arguments and result are not
1853 NaN. Such optimizations are required to retain defined behavior over
1854 NaNs, but the value of the result is undefined.
1855
1856``ninf``
1857 No Infs - Allow optimizations to assume the arguments and result are not
1858 +/-Inf. Such optimizations are required to retain defined behavior over
1859 +/-Inf, but the value of the result is undefined.
1860
1861``nsz``
1862 No Signed Zeros - Allow optimizations to treat the sign of a zero
1863 argument or result as insignificant.
1864
1865``arcp``
1866 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1867 argument rather than perform division.
1868
1869``fast``
1870 Fast - Allow algebraically equivalent transformations that may
1871 dramatically change results in floating point (e.g. reassociate). This
1872 flag implies all the others.
1873
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001874.. _uselistorder:
1875
1876Use-list Order Directives
1877-------------------------
1878
1879Use-list directives encode the in-memory order of each use-list, allowing the
1880order to be recreated. ``<order-indexes>`` is a comma-separated list of
1881indexes that are assigned to the referenced value's uses. The referenced
1882value's use-list is immediately sorted by these indexes.
1883
1884Use-list directives may appear at function scope or global scope. They are not
1885instructions, and have no effect on the semantics of the IR. When they're at
1886function scope, they must appear after the terminator of the final basic block.
1887
1888If basic blocks have their address taken via ``blockaddress()`` expressions,
1889``uselistorder_bb`` can be used to reorder their use-lists from outside their
1890function's scope.
1891
1892:Syntax:
1893
1894::
1895
1896 uselistorder <ty> <value>, { <order-indexes> }
1897 uselistorder_bb @function, %block { <order-indexes> }
1898
1899:Examples:
1900
1901::
1902
Duncan P. N. Exon Smith23046652014-08-19 21:48:04 +00001903 define void @foo(i32 %arg1, i32 %arg2) {
1904 entry:
1905 ; ... instructions ...
1906 bb:
1907 ; ... instructions ...
1908
1909 ; At function scope.
1910 uselistorder i32 %arg1, { 1, 0, 2 }
1911 uselistorder label %bb, { 1, 0 }
1912 }
Duncan P. N. Exon Smith0a448fb2014-08-19 21:30:15 +00001913
1914 ; At global scope.
1915 uselistorder i32* @global, { 1, 2, 0 }
1916 uselistorder i32 7, { 1, 0 }
1917 uselistorder i32 (i32) @bar, { 1, 0 }
1918 uselistorder_bb @foo, %bb, { 5, 1, 3, 2, 0, 4 }
1919
Sean Silvab084af42012-12-07 10:36:55 +00001920.. _typesystem:
1921
1922Type System
1923===========
1924
1925The LLVM type system is one of the most important features of the
1926intermediate representation. Being typed enables a number of
1927optimizations to be performed on the intermediate representation
1928directly, without having to do extra analyses on the side before the
1929transformation. A strong type system makes it easier to read the
1930generated code and enables novel analyses and transformations that are
1931not feasible to perform on normal three address code representations.
1932
Rafael Espindola08013342013-12-07 19:34:20 +00001933.. _t_void:
Eli Bendersky0220e6b2013-06-07 20:24:43 +00001934
Rafael Espindola08013342013-12-07 19:34:20 +00001935Void Type
1936---------
Sean Silvab084af42012-12-07 10:36:55 +00001937
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001938:Overview:
1939
Rafael Espindola08013342013-12-07 19:34:20 +00001940
1941The void type does not represent any value and has no size.
1942
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001943:Syntax:
1944
Rafael Espindola08013342013-12-07 19:34:20 +00001945
1946::
1947
1948 void
Sean Silvab084af42012-12-07 10:36:55 +00001949
1950
Rafael Espindola08013342013-12-07 19:34:20 +00001951.. _t_function:
Sean Silvab084af42012-12-07 10:36:55 +00001952
Rafael Espindola08013342013-12-07 19:34:20 +00001953Function Type
1954-------------
Sean Silvab084af42012-12-07 10:36:55 +00001955
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001956:Overview:
1957
Sean Silvab084af42012-12-07 10:36:55 +00001958
Rafael Espindola08013342013-12-07 19:34:20 +00001959The function type can be thought of as a function signature. It consists of a
1960return type and a list of formal parameter types. The return type of a function
1961type is a void type or first class type --- except for :ref:`label <t_label>`
1962and :ref:`metadata <t_metadata>` types.
Sean Silvab084af42012-12-07 10:36:55 +00001963
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001964:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00001965
Rafael Espindola08013342013-12-07 19:34:20 +00001966::
Sean Silvab084af42012-12-07 10:36:55 +00001967
Rafael Espindola08013342013-12-07 19:34:20 +00001968 <returntype> (<parameter list>)
Sean Silvab084af42012-12-07 10:36:55 +00001969
Rafael Espindola08013342013-12-07 19:34:20 +00001970...where '``<parameter list>``' is a comma-separated list of type
1971specifiers. Optionally, the parameter list may include a type ``...``, which
1972indicates that the function takes a variable number of arguments. Variable
1973argument functions can access their arguments with the :ref:`variable argument
1974handling intrinsic <int_varargs>` functions. '``<returntype>``' is any type
1975except :ref:`label <t_label>` and :ref:`metadata <t_metadata>`.
Sean Silvab084af42012-12-07 10:36:55 +00001976
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00001977:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00001978
Rafael Espindola08013342013-12-07 19:34:20 +00001979+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1980| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1981+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1982| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
1983+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1984| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1985+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1986| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1987+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1988
1989.. _t_firstclass:
1990
1991First Class Types
1992-----------------
Sean Silvab084af42012-12-07 10:36:55 +00001993
1994The :ref:`first class <t_firstclass>` types are perhaps the most important.
1995Values of these types are the only ones which can be produced by
1996instructions.
1997
Rafael Espindola08013342013-12-07 19:34:20 +00001998.. _t_single_value:
Sean Silvab084af42012-12-07 10:36:55 +00001999
Rafael Espindola08013342013-12-07 19:34:20 +00002000Single Value Types
2001^^^^^^^^^^^^^^^^^^
Sean Silvab084af42012-12-07 10:36:55 +00002002
Rafael Espindola08013342013-12-07 19:34:20 +00002003These are the types that are valid in registers from CodeGen's perspective.
Sean Silvab084af42012-12-07 10:36:55 +00002004
2005.. _t_integer:
2006
2007Integer Type
Rafael Espindola08013342013-12-07 19:34:20 +00002008""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002009
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002010:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002011
2012The integer type is a very simple type that simply specifies an
2013arbitrary bit width for the integer type desired. Any bit width from 1
2014bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
2015
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002016:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002017
2018::
2019
2020 iN
2021
2022The number of bits the integer will occupy is specified by the ``N``
2023value.
2024
2025Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002026*********
Sean Silvab084af42012-12-07 10:36:55 +00002027
2028+----------------+------------------------------------------------+
2029| ``i1`` | a single-bit integer. |
2030+----------------+------------------------------------------------+
2031| ``i32`` | a 32-bit integer. |
2032+----------------+------------------------------------------------+
2033| ``i1942652`` | a really big integer of over 1 million bits. |
2034+----------------+------------------------------------------------+
2035
2036.. _t_floating:
2037
2038Floating Point Types
Rafael Espindola08013342013-12-07 19:34:20 +00002039""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002040
2041.. list-table::
2042 :header-rows: 1
2043
2044 * - Type
2045 - Description
2046
2047 * - ``half``
2048 - 16-bit floating point value
2049
2050 * - ``float``
2051 - 32-bit floating point value
2052
2053 * - ``double``
2054 - 64-bit floating point value
2055
2056 * - ``fp128``
2057 - 128-bit floating point value (112-bit mantissa)
2058
2059 * - ``x86_fp80``
2060 - 80-bit floating point value (X87)
2061
2062 * - ``ppc_fp128``
2063 - 128-bit floating point value (two 64-bits)
2064
Reid Kleckner9a16d082014-03-05 02:41:37 +00002065X86_mmx Type
2066""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002067
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002068:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002069
Reid Kleckner9a16d082014-03-05 02:41:37 +00002070The x86_mmx type represents a value held in an MMX register on an x86
Sean Silvab084af42012-12-07 10:36:55 +00002071machine. The operations allowed on it are quite limited: parameters and
2072return values, load and store, and bitcast. User-specified MMX
2073instructions are represented as intrinsic or asm calls with arguments
2074and/or results of this type. There are no arrays, vectors or constants
2075of this type.
2076
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002077:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002078
2079::
2080
Reid Kleckner9a16d082014-03-05 02:41:37 +00002081 x86_mmx
Sean Silvab084af42012-12-07 10:36:55 +00002082
Sean Silvab084af42012-12-07 10:36:55 +00002083
Rafael Espindola08013342013-12-07 19:34:20 +00002084.. _t_pointer:
2085
2086Pointer Type
2087""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002088
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002089:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002090
Rafael Espindola08013342013-12-07 19:34:20 +00002091The pointer type is used to specify memory locations. Pointers are
2092commonly used to reference objects in memory.
2093
2094Pointer types may have an optional address space attribute defining the
2095numbered address space where the pointed-to object resides. The default
2096address space is number zero. The semantics of non-zero address spaces
2097are target-specific.
2098
2099Note that LLVM does not permit pointers to void (``void*``) nor does it
2100permit pointers to labels (``label*``). Use ``i8*`` instead.
Sean Silvab084af42012-12-07 10:36:55 +00002101
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002102:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002103
2104::
2105
Rafael Espindola08013342013-12-07 19:34:20 +00002106 <type> *
2107
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002108:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002109
2110+-------------------------+--------------------------------------------------------------------------------------------------------------+
2111| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
2112+-------------------------+--------------------------------------------------------------------------------------------------------------+
2113| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
2114+-------------------------+--------------------------------------------------------------------------------------------------------------+
2115| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
2116+-------------------------+--------------------------------------------------------------------------------------------------------------+
2117
2118.. _t_vector:
2119
2120Vector Type
2121"""""""""""
2122
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002123:Overview:
Rafael Espindola08013342013-12-07 19:34:20 +00002124
2125A vector type is a simple derived type that represents a vector of
2126elements. Vector types are used when multiple primitive data are
2127operated in parallel using a single instruction (SIMD). A vector type
2128requires a size (number of elements) and an underlying primitive data
2129type. Vector types are considered :ref:`first class <t_firstclass>`.
2130
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002131:Syntax:
Rafael Espindola08013342013-12-07 19:34:20 +00002132
2133::
2134
2135 < <# elements> x <elementtype> >
2136
2137The number of elements is a constant integer value larger than 0;
Manuel Jacob961f7872014-07-30 12:30:06 +00002138elementtype may be any integer, floating point or pointer type. Vectors
2139of size zero are not allowed.
Rafael Espindola08013342013-12-07 19:34:20 +00002140
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002141:Examples:
Rafael Espindola08013342013-12-07 19:34:20 +00002142
2143+-------------------+--------------------------------------------------+
2144| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
2145+-------------------+--------------------------------------------------+
2146| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
2147+-------------------+--------------------------------------------------+
2148| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
2149+-------------------+--------------------------------------------------+
2150| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
2151+-------------------+--------------------------------------------------+
Sean Silvab084af42012-12-07 10:36:55 +00002152
2153.. _t_label:
2154
2155Label Type
2156^^^^^^^^^^
2157
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002158:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002159
2160The label type represents code labels.
2161
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002162:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002163
2164::
2165
2166 label
2167
2168.. _t_metadata:
2169
2170Metadata Type
2171^^^^^^^^^^^^^
2172
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002173:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002174
2175The metadata type represents embedded metadata. No derived types may be
2176created from metadata except for :ref:`function <t_function>` arguments.
2177
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002178:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002179
2180::
2181
2182 metadata
2183
Sean Silvab084af42012-12-07 10:36:55 +00002184.. _t_aggregate:
2185
2186Aggregate Types
2187^^^^^^^^^^^^^^^
2188
2189Aggregate Types are a subset of derived types that can contain multiple
2190member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
2191aggregate types. :ref:`Vectors <t_vector>` are not considered to be
2192aggregate types.
2193
2194.. _t_array:
2195
2196Array Type
Rafael Espindola08013342013-12-07 19:34:20 +00002197""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002198
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002199:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002200
2201The array type is a very simple derived type that arranges elements
2202sequentially in memory. The array type requires a size (number of
2203elements) and an underlying data type.
2204
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002205:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002206
2207::
2208
2209 [<# elements> x <elementtype>]
2210
2211The number of elements is a constant integer value; ``elementtype`` may
2212be any type with a size.
2213
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002214:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002215
2216+------------------+--------------------------------------+
2217| ``[40 x i32]`` | Array of 40 32-bit integer values. |
2218+------------------+--------------------------------------+
2219| ``[41 x i32]`` | Array of 41 32-bit integer values. |
2220+------------------+--------------------------------------+
2221| ``[4 x i8]`` | Array of 4 8-bit integer values. |
2222+------------------+--------------------------------------+
2223
2224Here are some examples of multidimensional arrays:
2225
2226+-----------------------------+----------------------------------------------------------+
2227| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
2228+-----------------------------+----------------------------------------------------------+
2229| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
2230+-----------------------------+----------------------------------------------------------+
2231| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
2232+-----------------------------+----------------------------------------------------------+
2233
2234There is no restriction on indexing beyond the end of the array implied
2235by a static type (though there are restrictions on indexing beyond the
2236bounds of an allocated object in some cases). This means that
2237single-dimension 'variable sized array' addressing can be implemented in
2238LLVM with a zero length array type. An implementation of 'pascal style
2239arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
2240example.
2241
Sean Silvab084af42012-12-07 10:36:55 +00002242.. _t_struct:
2243
2244Structure Type
Rafael Espindola08013342013-12-07 19:34:20 +00002245""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002246
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002247:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002248
2249The structure type is used to represent a collection of data members
2250together in memory. The elements of a structure may be any type that has
2251a size.
2252
2253Structures in memory are accessed using '``load``' and '``store``' by
2254getting a pointer to a field with the '``getelementptr``' instruction.
2255Structures in registers are accessed using the '``extractvalue``' and
2256'``insertvalue``' instructions.
2257
2258Structures may optionally be "packed" structures, which indicate that
2259the alignment of the struct is one byte, and that there is no padding
2260between the elements. In non-packed structs, padding between field types
2261is inserted as defined by the DataLayout string in the module, which is
2262required to match what the underlying code generator expects.
2263
2264Structures can either be "literal" or "identified". A literal structure
2265is defined inline with other types (e.g. ``{i32, i32}*``) whereas
2266identified types are always defined at the top level with a name.
2267Literal types are uniqued by their contents and can never be recursive
2268or opaque since there is no way to write one. Identified types can be
2269recursive, can be opaqued, and are never uniqued.
2270
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002271:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002272
2273::
2274
2275 %T1 = type { <type list> } ; Identified normal struct type
2276 %T2 = type <{ <type list> }> ; Identified packed struct type
2277
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002278:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002279
2280+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2281| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
2282+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00002283| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvab084af42012-12-07 10:36:55 +00002284+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2285| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
2286+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
2287
2288.. _t_opaque:
2289
2290Opaque Structure Types
Rafael Espindola08013342013-12-07 19:34:20 +00002291""""""""""""""""""""""
Sean Silvab084af42012-12-07 10:36:55 +00002292
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002293:Overview:
Sean Silvab084af42012-12-07 10:36:55 +00002294
2295Opaque structure types are used to represent named structure types that
2296do not have a body specified. This corresponds (for example) to the C
2297notion of a forward declared structure.
2298
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002299:Syntax:
Sean Silvab084af42012-12-07 10:36:55 +00002300
2301::
2302
2303 %X = type opaque
2304 %52 = type opaque
2305
Rafael Espindola2f6d7b92013-12-10 14:53:22 +00002306:Examples:
Sean Silvab084af42012-12-07 10:36:55 +00002307
2308+--------------+-------------------+
2309| ``opaque`` | An opaque type. |
2310+--------------+-------------------+
2311
Sean Silva1703e702014-04-08 21:06:22 +00002312.. _constants:
2313
Sean Silvab084af42012-12-07 10:36:55 +00002314Constants
2315=========
2316
2317LLVM has several different basic types of constants. This section
2318describes them all and their syntax.
2319
2320Simple Constants
2321----------------
2322
2323**Boolean constants**
2324 The two strings '``true``' and '``false``' are both valid constants
2325 of the ``i1`` type.
2326**Integer constants**
2327 Standard integers (such as '4') are constants of the
2328 :ref:`integer <t_integer>` type. Negative numbers may be used with
2329 integer types.
2330**Floating point constants**
2331 Floating point constants use standard decimal notation (e.g.
2332 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
2333 hexadecimal notation (see below). The assembler requires the exact
2334 decimal value of a floating-point constant. For example, the
2335 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
2336 decimal in binary. Floating point constants must have a :ref:`floating
2337 point <t_floating>` type.
2338**Null pointer constants**
2339 The identifier '``null``' is recognized as a null pointer constant
2340 and must be of :ref:`pointer type <t_pointer>`.
2341
2342The one non-intuitive notation for constants is the hexadecimal form of
2343floating point constants. For example, the form
2344'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
2345than) '``double 4.5e+15``'. The only time hexadecimal floating point
2346constants are required (and the only time that they are generated by the
2347disassembler) is when a floating point constant must be emitted but it
2348cannot be represented as a decimal floating point number in a reasonable
2349number of digits. For example, NaN's, infinities, and other special
2350values are represented in their IEEE hexadecimal format so that assembly
2351and disassembly do not cause any bits to change in the constants.
2352
2353When using the hexadecimal form, constants of types half, float, and
2354double are represented using the 16-digit form shown above (which
2355matches the IEEE754 representation for double); half and float values
Dmitri Gribenko4dc2ba12013-01-16 23:40:37 +00002356must, however, be exactly representable as IEEE 754 half and single
Sean Silvab084af42012-12-07 10:36:55 +00002357precision, respectively. Hexadecimal format is always used for long
2358double, and there are three forms of long double. The 80-bit format used
2359by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
2360128-bit format used by PowerPC (two adjacent doubles) is represented by
2361``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordae426b42013-05-03 14:32:27 +00002362represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
2363will only work if they match the long double format on your target.
2364The IEEE 16-bit format (half precision) is represented by ``0xH``
2365followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
2366(sign bit at the left).
Sean Silvab084af42012-12-07 10:36:55 +00002367
Reid Kleckner9a16d082014-03-05 02:41:37 +00002368There are no constants of type x86_mmx.
Sean Silvab084af42012-12-07 10:36:55 +00002369
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002370.. _complexconstants:
2371
Sean Silvab084af42012-12-07 10:36:55 +00002372Complex Constants
2373-----------------
2374
2375Complex constants are a (potentially recursive) combination of simple
2376constants and smaller complex constants.
2377
2378**Structure constants**
2379 Structure constants are represented with notation similar to
2380 structure type definitions (a comma separated list of elements,
2381 surrounded by braces (``{}``)). For example:
2382 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
2383 "``@G = external global i32``". Structure constants must have
2384 :ref:`structure type <t_struct>`, and the number and types of elements
2385 must match those specified by the type.
2386**Array constants**
2387 Array constants are represented with notation similar to array type
2388 definitions (a comma separated list of elements, surrounded by
2389 square brackets (``[]``)). For example:
2390 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
2391 :ref:`array type <t_array>`, and the number and types of elements must
Daniel Sandersf6051842014-09-11 12:02:59 +00002392 match those specified by the type. As a special case, character array
2393 constants may also be represented as a double-quoted string using the ``c``
2394 prefix. For example: "``c"Hello World\0A\00"``".
Sean Silvab084af42012-12-07 10:36:55 +00002395**Vector constants**
2396 Vector constants are represented with notation similar to vector
2397 type definitions (a comma separated list of elements, surrounded by
2398 less-than/greater-than's (``<>``)). For example:
2399 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
2400 must have :ref:`vector type <t_vector>`, and the number and types of
2401 elements must match those specified by the type.
2402**Zero initialization**
2403 The string '``zeroinitializer``' can be used to zero initialize a
2404 value to zero of *any* type, including scalar and
2405 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
2406 having to print large zero initializers (e.g. for large arrays) and
2407 is always exactly equivalent to using explicit zero initializers.
2408**Metadata node**
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00002409 A metadata node is a constant tuple without types. For example:
2410 "``!{!0, !{!2, !0}, !"test"}``". Metadata can reference constant values,
2411 for example: "``!{!0, i32 0, i8* @global, i64 (i64)* @function, !"str"}``".
2412 Unlike other typed constants that are meant to be interpreted as part of
2413 the instruction stream, metadata is a place to attach additional
Sean Silvab084af42012-12-07 10:36:55 +00002414 information such as debug info.
2415
2416Global Variable and Function Addresses
2417--------------------------------------
2418
2419The addresses of :ref:`global variables <globalvars>` and
2420:ref:`functions <functionstructure>` are always implicitly valid
2421(link-time) constants. These constants are explicitly referenced when
2422the :ref:`identifier for the global <identifiers>` is used and always have
2423:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
2424file:
2425
2426.. code-block:: llvm
2427
2428 @X = global i32 17
2429 @Y = global i32 42
2430 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
2431
2432.. _undefvalues:
2433
2434Undefined Values
2435----------------
2436
2437The string '``undef``' can be used anywhere a constant is expected, and
2438indicates that the user of the value may receive an unspecified
2439bit-pattern. Undefined values may be of any type (other than '``label``'
2440or '``void``') and be used anywhere a constant is permitted.
2441
2442Undefined values are useful because they indicate to the compiler that
2443the program is well defined no matter what value is used. This gives the
2444compiler more freedom to optimize. Here are some examples of
2445(potentially surprising) transformations that are valid (in pseudo IR):
2446
2447.. code-block:: llvm
2448
2449 %A = add %X, undef
2450 %B = sub %X, undef
2451 %C = xor %X, undef
2452 Safe:
2453 %A = undef
2454 %B = undef
2455 %C = undef
2456
2457This is safe because all of the output bits are affected by the undef
2458bits. Any output bit can have a zero or one depending on the input bits.
2459
2460.. code-block:: llvm
2461
2462 %A = or %X, undef
2463 %B = and %X, undef
2464 Safe:
2465 %A = -1
2466 %B = 0
2467 Unsafe:
2468 %A = undef
2469 %B = undef
2470
2471These logical operations have bits that are not always affected by the
2472input. For example, if ``%X`` has a zero bit, then the output of the
2473'``and``' operation will always be a zero for that bit, no matter what
2474the corresponding bit from the '``undef``' is. As such, it is unsafe to
2475optimize or assume that the result of the '``and``' is '``undef``'.
2476However, it is safe to assume that all bits of the '``undef``' could be
24770, and optimize the '``and``' to 0. Likewise, it is safe to assume that
2478all the bits of the '``undef``' operand to the '``or``' could be set,
2479allowing the '``or``' to be folded to -1.
2480
2481.. code-block:: llvm
2482
2483 %A = select undef, %X, %Y
2484 %B = select undef, 42, %Y
2485 %C = select %X, %Y, undef
2486 Safe:
2487 %A = %X (or %Y)
2488 %B = 42 (or %Y)
2489 %C = %Y
2490 Unsafe:
2491 %A = undef
2492 %B = undef
2493 %C = undef
2494
2495This set of examples shows that undefined '``select``' (and conditional
2496branch) conditions can go *either way*, but they have to come from one
2497of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
2498both known to have a clear low bit, then ``%A`` would have to have a
2499cleared low bit. However, in the ``%C`` example, the optimizer is
2500allowed to assume that the '``undef``' operand could be the same as
2501``%Y``, allowing the whole '``select``' to be eliminated.
2502
2503.. code-block:: llvm
2504
2505 %A = xor undef, undef
2506
2507 %B = undef
2508 %C = xor %B, %B
2509
2510 %D = undef
Jonathan Roelofsec81c0b2014-10-16 19:28:10 +00002511 %E = icmp slt %D, 4
Sean Silvab084af42012-12-07 10:36:55 +00002512 %F = icmp gte %D, 4
2513
2514 Safe:
2515 %A = undef
2516 %B = undef
2517 %C = undef
2518 %D = undef
2519 %E = undef
2520 %F = undef
2521
2522This example points out that two '``undef``' operands are not
2523necessarily the same. This can be surprising to people (and also matches
2524C semantics) where they assume that "``X^X``" is always zero, even if
2525``X`` is undefined. This isn't true for a number of reasons, but the
2526short answer is that an '``undef``' "variable" can arbitrarily change
2527its value over its "live range". This is true because the variable
2528doesn't actually *have a live range*. Instead, the value is logically
2529read from arbitrary registers that happen to be around when needed, so
2530the value is not necessarily consistent over time. In fact, ``%A`` and
2531``%C`` need to have the same semantics or the core LLVM "replace all
2532uses with" concept would not hold.
2533
2534.. code-block:: llvm
2535
2536 %A = fdiv undef, %X
2537 %B = fdiv %X, undef
2538 Safe:
2539 %A = undef
2540 b: unreachable
2541
2542These examples show the crucial difference between an *undefined value*
2543and *undefined behavior*. An undefined value (like '``undef``') is
2544allowed to have an arbitrary bit-pattern. This means that the ``%A``
2545operation can be constant folded to '``undef``', because the '``undef``'
2546could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2547However, in the second example, we can make a more aggressive
2548assumption: because the ``undef`` is allowed to be an arbitrary value,
2549we are allowed to assume that it could be zero. Since a divide by zero
2550has *undefined behavior*, we are allowed to assume that the operation
2551does not execute at all. This allows us to delete the divide and all
2552code after it. Because the undefined operation "can't happen", the
2553optimizer can assume that it occurs in dead code.
2554
2555.. code-block:: llvm
2556
2557 a: store undef -> %X
2558 b: store %X -> undef
2559 Safe:
2560 a: <deleted>
2561 b: unreachable
2562
2563These examples reiterate the ``fdiv`` example: a store *of* an undefined
2564value can be assumed to not have any effect; we can assume that the
2565value is overwritten with bits that happen to match what was already
2566there. However, a store *to* an undefined location could clobber
2567arbitrary memory, therefore, it has undefined behavior.
2568
2569.. _poisonvalues:
2570
2571Poison Values
2572-------------
2573
2574Poison values are similar to :ref:`undef values <undefvalues>`, however
2575they also represent the fact that an instruction or constant expression
Richard Smith32dbdf62014-07-31 04:25:36 +00002576that cannot evoke side effects has nevertheless detected a condition
2577that results in undefined behavior.
Sean Silvab084af42012-12-07 10:36:55 +00002578
2579There is currently no way of representing a poison value in the IR; they
2580only exist when produced by operations such as :ref:`add <i_add>` with
2581the ``nsw`` flag.
2582
2583Poison value behavior is defined in terms of value *dependence*:
2584
2585- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2586- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2587 their dynamic predecessor basic block.
2588- Function arguments depend on the corresponding actual argument values
2589 in the dynamic callers of their functions.
2590- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2591 instructions that dynamically transfer control back to them.
2592- :ref:`Invoke <i_invoke>` instructions depend on the
2593 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2594 call instructions that dynamically transfer control back to them.
2595- Non-volatile loads and stores depend on the most recent stores to all
2596 of the referenced memory addresses, following the order in the IR
2597 (including loads and stores implied by intrinsics such as
2598 :ref:`@llvm.memcpy <int_memcpy>`.)
2599- An instruction with externally visible side effects depends on the
2600 most recent preceding instruction with externally visible side
2601 effects, following the order in the IR. (This includes :ref:`volatile
2602 operations <volatile>`.)
2603- An instruction *control-depends* on a :ref:`terminator
2604 instruction <terminators>` if the terminator instruction has
2605 multiple successors and the instruction is always executed when
2606 control transfers to one of the successors, and may not be executed
2607 when control is transferred to another.
2608- Additionally, an instruction also *control-depends* on a terminator
2609 instruction if the set of instructions it otherwise depends on would
2610 be different if the terminator had transferred control to a different
2611 successor.
2612- Dependence is transitive.
2613
Richard Smith32dbdf62014-07-31 04:25:36 +00002614Poison values have the same behavior as :ref:`undef values <undefvalues>`,
2615with the additional effect that any instruction that has a *dependence*
Sean Silvab084af42012-12-07 10:36:55 +00002616on a poison value has undefined behavior.
2617
2618Here are some examples:
2619
2620.. code-block:: llvm
2621
2622 entry:
2623 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2624 %still_poison = and i32 %poison, 0 ; 0, but also poison.
David Blaikie16a97eb2015-03-04 22:02:58 +00002625 %poison_yet_again = getelementptr i32, i32* @h, i32 %still_poison
Sean Silvab084af42012-12-07 10:36:55 +00002626 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2627
2628 store i32 %poison, i32* @g ; Poison value stored to memory.
David Blaikiec7aabbb2015-03-04 22:06:14 +00002629 %poison2 = load i32, i32* @g ; Poison value loaded back from memory.
Sean Silvab084af42012-12-07 10:36:55 +00002630
2631 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2632
2633 %narrowaddr = bitcast i32* @g to i16*
2634 %wideaddr = bitcast i32* @g to i64*
David Blaikiec7aabbb2015-03-04 22:06:14 +00002635 %poison3 = load i16, i16* %narrowaddr ; Returns a poison value.
2636 %poison4 = load i64, i64* %wideaddr ; Returns a poison value.
Sean Silvab084af42012-12-07 10:36:55 +00002637
2638 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2639 br i1 %cmp, label %true, label %end ; Branch to either destination.
2640
2641 true:
2642 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2643 ; it has undefined behavior.
2644 br label %end
2645
2646 end:
2647 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2648 ; Both edges into this PHI are
2649 ; control-dependent on %cmp, so this
2650 ; always results in a poison value.
2651
2652 store volatile i32 0, i32* @g ; This would depend on the store in %true
2653 ; if %cmp is true, or the store in %entry
2654 ; otherwise, so this is undefined behavior.
2655
2656 br i1 %cmp, label %second_true, label %second_end
2657 ; The same branch again, but this time the
2658 ; true block doesn't have side effects.
2659
2660 second_true:
2661 ; No side effects!
2662 ret void
2663
2664 second_end:
2665 store volatile i32 0, i32* @g ; This time, the instruction always depends
2666 ; on the store in %end. Also, it is
2667 ; control-equivalent to %end, so this is
2668 ; well-defined (ignoring earlier undefined
2669 ; behavior in this example).
2670
2671.. _blockaddress:
2672
2673Addresses of Basic Blocks
2674-------------------------
2675
2676``blockaddress(@function, %block)``
2677
2678The '``blockaddress``' constant computes the address of the specified
2679basic block in the specified function, and always has an ``i8*`` type.
2680Taking the address of the entry block is illegal.
2681
2682This value only has defined behavior when used as an operand to the
2683':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2684against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00002685undefined behavior --- though, again, comparison against null is ok, and
Sean Silvab084af42012-12-07 10:36:55 +00002686no label is equal to the null pointer. This may be passed around as an
2687opaque pointer sized value as long as the bits are not inspected. This
2688allows ``ptrtoint`` and arithmetic to be performed on these values so
2689long as the original value is reconstituted before the ``indirectbr``
2690instruction.
2691
2692Finally, some targets may provide defined semantics when using the value
2693as the operand to an inline assembly, but that is target specific.
2694
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002695.. _constantexprs:
2696
Sean Silvab084af42012-12-07 10:36:55 +00002697Constant Expressions
2698--------------------
2699
2700Constant expressions are used to allow expressions involving other
2701constants to be used as constants. Constant expressions may be of any
2702:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2703that does not have side effects (e.g. load and call are not supported).
2704The following is the syntax for constant expressions:
2705
2706``trunc (CST to TYPE)``
2707 Truncate a constant to another type. The bit size of CST must be
2708 larger than the bit size of TYPE. Both types must be integers.
2709``zext (CST to TYPE)``
2710 Zero extend a constant to another type. The bit size of CST must be
2711 smaller than the bit size of TYPE. Both types must be integers.
2712``sext (CST to TYPE)``
2713 Sign extend a constant to another type. The bit size of CST must be
2714 smaller than the bit size of TYPE. Both types must be integers.
2715``fptrunc (CST to TYPE)``
2716 Truncate a floating point constant to another floating point type.
2717 The size of CST must be larger than the size of TYPE. Both types
2718 must be floating point.
2719``fpext (CST to TYPE)``
2720 Floating point extend a constant to another type. The size of CST
2721 must be smaller or equal to the size of TYPE. Both types must be
2722 floating point.
2723``fptoui (CST to TYPE)``
2724 Convert a floating point constant to the corresponding unsigned
2725 integer constant. TYPE must be a scalar or vector integer type. CST
2726 must be of scalar or vector floating point type. Both CST and TYPE
2727 must be scalars, or vectors of the same number of elements. If the
2728 value won't fit in the integer type, the results are undefined.
2729``fptosi (CST to TYPE)``
2730 Convert a floating point constant to the corresponding signed
2731 integer constant. TYPE must be a scalar or vector integer type. CST
2732 must be of scalar or vector floating point type. Both CST and TYPE
2733 must be scalars, or vectors of the same number of elements. If the
2734 value won't fit in the integer type, the results are undefined.
2735``uitofp (CST to TYPE)``
2736 Convert an unsigned integer constant to the corresponding floating
2737 point constant. TYPE must be a scalar or vector floating point type.
2738 CST must be of scalar or vector integer type. Both CST and TYPE must
2739 be scalars, or vectors of the same number of elements. If the value
2740 won't fit in the floating point type, the results are undefined.
2741``sitofp (CST to TYPE)``
2742 Convert a signed integer constant to the corresponding floating
2743 point constant. TYPE must be a scalar or vector floating point type.
2744 CST must be of scalar or vector integer type. Both CST and TYPE must
2745 be scalars, or vectors of the same number of elements. If the value
2746 won't fit in the floating point type, the results are undefined.
2747``ptrtoint (CST to TYPE)``
2748 Convert a pointer typed constant to the corresponding integer
Eli Bendersky9c0d4932013-03-11 16:51:15 +00002749 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvab084af42012-12-07 10:36:55 +00002750 pointer type. The ``CST`` value is zero extended, truncated, or
2751 unchanged to make it fit in ``TYPE``.
2752``inttoptr (CST to TYPE)``
2753 Convert an integer constant to a pointer constant. TYPE must be a
2754 pointer type. CST must be of integer type. The CST value is zero
2755 extended, truncated, or unchanged to make it fit in a pointer size.
2756 This one is *really* dangerous!
2757``bitcast (CST to TYPE)``
2758 Convert a constant, CST, to another TYPE. The constraints of the
2759 operands are the same as those for the :ref:`bitcast
2760 instruction <i_bitcast>`.
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00002761``addrspacecast (CST to TYPE)``
2762 Convert a constant pointer or constant vector of pointer, CST, to another
2763 TYPE in a different address space. The constraints of the operands are the
2764 same as those for the :ref:`addrspacecast instruction <i_addrspacecast>`.
David Blaikief72d05b2015-03-13 18:20:45 +00002765``getelementptr (TY, CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (TY, CSTPTR, IDX0, IDX1, ...)``
Sean Silvab084af42012-12-07 10:36:55 +00002766 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2767 constants. As with the :ref:`getelementptr <i_getelementptr>`
2768 instruction, the index list may have zero or more indexes, which are
David Blaikief72d05b2015-03-13 18:20:45 +00002769 required to make sense for the type of "pointer to TY".
Sean Silvab084af42012-12-07 10:36:55 +00002770``select (COND, VAL1, VAL2)``
2771 Perform the :ref:`select operation <i_select>` on constants.
2772``icmp COND (VAL1, VAL2)``
2773 Performs the :ref:`icmp operation <i_icmp>` on constants.
2774``fcmp COND (VAL1, VAL2)``
2775 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2776``extractelement (VAL, IDX)``
2777 Perform the :ref:`extractelement operation <i_extractelement>` on
2778 constants.
2779``insertelement (VAL, ELT, IDX)``
2780 Perform the :ref:`insertelement operation <i_insertelement>` on
2781 constants.
2782``shufflevector (VEC1, VEC2, IDXMASK)``
2783 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2784 constants.
2785``extractvalue (VAL, IDX0, IDX1, ...)``
2786 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2787 constants. The index list is interpreted in a similar manner as
2788 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2789 least one index value must be specified.
2790``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2791 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2792 The index list is interpreted in a similar manner as indices in a
2793 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2794 value must be specified.
2795``OPCODE (LHS, RHS)``
2796 Perform the specified operation of the LHS and RHS constants. OPCODE
2797 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2798 binary <bitwiseops>` operations. The constraints on operands are
2799 the same as those for the corresponding instruction (e.g. no bitwise
2800 operations on floating point values are allowed).
2801
2802Other Values
2803============
2804
Eli Bendersky0220e6b2013-06-07 20:24:43 +00002805.. _inlineasmexprs:
2806
Sean Silvab084af42012-12-07 10:36:55 +00002807Inline Assembler Expressions
2808----------------------------
2809
2810LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
James Y Knightbc832ed2015-07-08 18:08:36 +00002811Inline Assembly <moduleasm>`) through the use of a special value. This value
2812represents the inline assembler as a template string (containing the
2813instructions to emit), a list of operand constraints (stored as a string), a
2814flag that indicates whether or not the inline asm expression has side effects,
2815and a flag indicating whether the function containing the asm needs to align its
2816stack conservatively.
2817
2818The template string supports argument substitution of the operands using "``$``"
2819followed by a number, to indicate substitution of the given register/memory
2820location, as specified by the constraint string. "``${NUM:MODIFIER}``" may also
2821be used, where ``MODIFIER`` is a target-specific annotation for how to print the
2822operand (See :ref:`inline-asm-modifiers`).
2823
2824A literal "``$``" may be included by using "``$$``" in the template. To include
2825other special characters into the output, the usual "``\XX``" escapes may be
2826used, just as in other strings. Note that after template substitution, the
2827resulting assembly string is parsed by LLVM's integrated assembler unless it is
2828disabled -- even when emitting a ``.s`` file -- and thus must contain assembly
2829syntax known to LLVM.
2830
2831LLVM's support for inline asm is modeled closely on the requirements of Clang's
2832GCC-compatible inline-asm support. Thus, the feature-set and the constraint and
2833modifier codes listed here are similar or identical to those in GCC's inline asm
2834support. However, to be clear, the syntax of the template and constraint strings
2835described here is *not* the same as the syntax accepted by GCC and Clang, and,
2836while most constraint letters are passed through as-is by Clang, some get
2837translated to other codes when converting from the C source to the LLVM
2838assembly.
2839
2840An example inline assembler expression is:
Sean Silvab084af42012-12-07 10:36:55 +00002841
2842.. code-block:: llvm
2843
2844 i32 (i32) asm "bswap $0", "=r,r"
2845
2846Inline assembler expressions may **only** be used as the callee operand
2847of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2848Thus, typically we have:
2849
2850.. code-block:: llvm
2851
2852 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2853
2854Inline asms with side effects not visible in the constraint list must be
2855marked as having side effects. This is done through the use of the
2856'``sideeffect``' keyword, like so:
2857
2858.. code-block:: llvm
2859
2860 call void asm sideeffect "eieio", ""()
2861
2862In some cases inline asms will contain code that will not work unless
2863the stack is aligned in some way, such as calls or SSE instructions on
2864x86, yet will not contain code that does that alignment within the asm.
2865The compiler should make conservative assumptions about what the asm
2866might contain and should generate its usual stack alignment code in the
2867prologue if the '``alignstack``' keyword is present:
2868
2869.. code-block:: llvm
2870
2871 call void asm alignstack "eieio", ""()
2872
2873Inline asms also support using non-standard assembly dialects. The
2874assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2875the inline asm is using the Intel dialect. Currently, ATT and Intel are
2876the only supported dialects. An example is:
2877
2878.. code-block:: llvm
2879
2880 call void asm inteldialect "eieio", ""()
2881
2882If multiple keywords appear the '``sideeffect``' keyword must come
2883first, the '``alignstack``' keyword second and the '``inteldialect``'
2884keyword last.
2885
James Y Knightbc832ed2015-07-08 18:08:36 +00002886Inline Asm Constraint String
2887^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2888
2889The constraint list is a comma-separated string, each element containing one or
2890more constraint codes.
2891
2892For each element in the constraint list an appropriate register or memory
2893operand will be chosen, and it will be made available to assembly template
2894string expansion as ``$0`` for the first constraint in the list, ``$1`` for the
2895second, etc.
2896
2897There are three different types of constraints, which are distinguished by a
2898prefix symbol in front of the constraint code: Output, Input, and Clobber. The
2899constraints must always be given in that order: outputs first, then inputs, then
2900clobbers. They cannot be intermingled.
2901
2902There are also three different categories of constraint codes:
2903
2904- Register constraint. This is either a register class, or a fixed physical
2905 register. This kind of constraint will allocate a register, and if necessary,
2906 bitcast the argument or result to the appropriate type.
2907- Memory constraint. This kind of constraint is for use with an instruction
2908 taking a memory operand. Different constraints allow for different addressing
2909 modes used by the target.
2910- Immediate value constraint. This kind of constraint is for an integer or other
2911 immediate value which can be rendered directly into an instruction. The
2912 various target-specific constraints allow the selection of a value in the
2913 proper range for the instruction you wish to use it with.
2914
2915Output constraints
2916""""""""""""""""""
2917
2918Output constraints are specified by an "``=``" prefix (e.g. "``=r``"). This
2919indicates that the assembly will write to this operand, and the operand will
2920then be made available as a return value of the ``asm`` expression. Output
2921constraints do not consume an argument from the call instruction. (Except, see
2922below about indirect outputs).
2923
2924Normally, it is expected that no output locations are written to by the assembly
2925expression until *all* of the inputs have been read. As such, LLVM may assign
2926the same register to an output and an input. If this is not safe (e.g. if the
2927assembly contains two instructions, where the first writes to one output, and
2928the second reads an input and writes to a second output), then the "``&``"
2929modifier must be used (e.g. "``=&r``") to specify that the output is an
2930"early-clobber" output. Marking an ouput as "early-clobber" ensures that LLVM
2931will not use the same register for any inputs (other than an input tied to this
2932output).
2933
2934Input constraints
2935"""""""""""""""""
2936
2937Input constraints do not have a prefix -- just the constraint codes. Each input
2938constraint will consume one argument from the call instruction. It is not
2939permitted for the asm to write to any input register or memory location (unless
2940that input is tied to an output). Note also that multiple inputs may all be
2941assigned to the same register, if LLVM can determine that they necessarily all
2942contain the same value.
2943
2944Instead of providing a Constraint Code, input constraints may also "tie"
2945themselves to an output constraint, by providing an integer as the constraint
2946string. Tied inputs still consume an argument from the call instruction, and
2947take up a position in the asm template numbering as is usual -- they will simply
2948be constrained to always use the same register as the output they've been tied
2949to. For example, a constraint string of "``=r,0``" says to assign a register for
2950output, and use that register as an input as well (it being the 0'th
2951constraint).
2952
2953It is permitted to tie an input to an "early-clobber" output. In that case, no
2954*other* input may share the same register as the input tied to the early-clobber
2955(even when the other input has the same value).
2956
2957You may only tie an input to an output which has a register constraint, not a
2958memory constraint. Only a single input may be tied to an output.
2959
2960There is also an "interesting" feature which deserves a bit of explanation: if a
2961register class constraint allocates a register which is too small for the value
2962type operand provided as input, the input value will be split into multiple
2963registers, and all of them passed to the inline asm.
2964
2965However, this feature is often not as useful as you might think.
2966
2967Firstly, the registers are *not* guaranteed to be consecutive. So, on those
2968architectures that have instructions which operate on multiple consecutive
2969instructions, this is not an appropriate way to support them. (e.g. the 32-bit
2970SparcV8 has a 64-bit load, which instruction takes a single 32-bit register. The
2971hardware then loads into both the named register, and the next register. This
2972feature of inline asm would not be useful to support that.)
2973
2974A few of the targets provide a template string modifier allowing explicit access
2975to the second register of a two-register operand (e.g. MIPS ``L``, ``M``, and
2976``D``). On such an architecture, you can actually access the second allocated
2977register (yet, still, not any subsequent ones). But, in that case, you're still
2978probably better off simply splitting the value into two separate operands, for
2979clarity. (e.g. see the description of the ``A`` constraint on X86, which,
2980despite existing only for use with this feature, is not really a good idea to
2981use)
2982
2983Indirect inputs and outputs
2984"""""""""""""""""""""""""""
2985
2986Indirect output or input constraints can be specified by the "``*``" modifier
2987(which goes after the "``=``" in case of an output). This indicates that the asm
2988will write to or read from the contents of an *address* provided as an input
2989argument. (Note that in this way, indirect outputs act more like an *input* than
2990an output: just like an input, they consume an argument of the call expression,
2991rather than producing a return value. An indirect output constraint is an
2992"output" only in that the asm is expected to write to the contents of the input
2993memory location, instead of just read from it).
2994
2995This is most typically used for memory constraint, e.g. "``=*m``", to pass the
2996address of a variable as a value.
2997
2998It is also possible to use an indirect *register* constraint, but only on output
2999(e.g. "``=*r``"). This will cause LLVM to allocate a register for an output
3000value normally, and then, separately emit a store to the address provided as
3001input, after the provided inline asm. (It's not clear what value this
3002functionality provides, compared to writing the store explicitly after the asm
3003statement, and it can only produce worse code, since it bypasses many
3004optimization passes. I would recommend not using it.)
3005
3006
3007Clobber constraints
3008"""""""""""""""""""
3009
3010A clobber constraint is indicated by a "``~``" prefix. A clobber does not
3011consume an input operand, nor generate an output. Clobbers cannot use any of the
3012general constraint code letters -- they may use only explicit register
3013constraints, e.g. "``~{eax}``". The one exception is that a clobber string of
3014"``~{memory}``" indicates that the assembly writes to arbitrary undeclared
3015memory locations -- not only the memory pointed to by a declared indirect
3016output.
3017
3018
3019Constraint Codes
3020""""""""""""""""
3021After a potential prefix comes constraint code, or codes.
3022
3023A Constraint Code is either a single letter (e.g. "``r``"), a "``^``" character
3024followed by two letters (e.g. "``^wc``"), or "``{``" register-name "``}``"
3025(e.g. "``{eax}``").
3026
3027The one and two letter constraint codes are typically chosen to be the same as
3028GCC's constraint codes.
3029
3030A single constraint may include one or more than constraint code in it, leaving
3031it up to LLVM to choose which one to use. This is included mainly for
3032compatibility with the translation of GCC inline asm coming from clang.
3033
3034There are two ways to specify alternatives, and either or both may be used in an
3035inline asm constraint list:
3036
30371) Append the codes to each other, making a constraint code set. E.g. "``im``"
3038 or "``{eax}m``". This means "choose any of the options in the set". The
3039 choice of constraint is made independently for each constraint in the
3040 constraint list.
3041
30422) Use "``|``" between constraint code sets, creating alternatives. Every
3043 constraint in the constraint list must have the same number of alternative
3044 sets. With this syntax, the same alternative in *all* of the items in the
3045 constraint list will be chosen together.
3046
3047Putting those together, you might have a two operand constraint string like
3048``"rm|r,ri|rm"``. This indicates that if operand 0 is ``r`` or ``m``, then
3049operand 1 may be one of ``r`` or ``i``. If operand 0 is ``r``, then operand 1
3050may be one of ``r`` or ``m``. But, operand 0 and 1 cannot both be of type m.
3051
3052However, the use of either of the alternatives features is *NOT* recommended, as
3053LLVM is not able to make an intelligent choice about which one to use. (At the
3054point it currently needs to choose, not enough information is available to do so
3055in a smart way.) Thus, it simply tries to make a choice that's most likely to
3056compile, not one that will be optimal performance. (e.g., given "``rm``", it'll
3057always choose to use memory, not registers). And, if given multiple registers,
3058or multiple register classes, it will simply choose the first one. (In fact, it
3059doesn't currently even ensure explicitly specified physical registers are
3060unique, so specifying multiple physical registers as alternatives, like
3061``{r11}{r12},{r11}{r12}``, will assign r11 to both operands, not at all what was
3062intended.)
3063
3064Supported Constraint Code List
3065""""""""""""""""""""""""""""""
3066
3067The constraint codes are, in general, expected to behave the same way they do in
3068GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3069inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3070and GCC likely indicates a bug in LLVM.
3071
3072Some constraint codes are typically supported by all targets:
3073
3074- ``r``: A register in the target's general purpose register class.
3075- ``m``: A memory address operand. It is target-specific what addressing modes
3076 are supported, typical examples are register, or register + register offset,
3077 or register + immediate offset (of some target-specific size).
3078- ``i``: An integer constant (of target-specific width). Allows either a simple
3079 immediate, or a relocatable value.
3080- ``n``: An integer constant -- *not* including relocatable values.
3081- ``s``: An integer constant, but allowing *only* relocatable values.
3082- ``X``: Allows an operand of any kind, no constraint whatsoever. Typically
3083 useful to pass a label for an asm branch or call.
3084
3085 .. FIXME: but that surely isn't actually okay to jump out of an asm
3086 block without telling llvm about the control transfer???)
3087
3088- ``{register-name}``: Requires exactly the named physical register.
3089
3090Other constraints are target-specific:
3091
3092AArch64:
3093
3094- ``z``: An immediate integer 0. Outputs ``WZR`` or ``XZR``, as appropriate.
3095- ``I``: An immediate integer valid for an ``ADD`` or ``SUB`` instruction,
3096 i.e. 0 to 4095 with optional shift by 12.
3097- ``J``: An immediate integer that, when negated, is valid for an ``ADD`` or
3098 ``SUB`` instruction, i.e. -1 to -4095 with optional left shift by 12.
3099- ``K``: An immediate integer that is valid for the 'bitmask immediate 32' of a
3100 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 32-bit register.
3101- ``L``: An immediate integer that is valid for the 'bitmask immediate 64' of a
3102 logical instruction like ``AND``, ``EOR``, or ``ORR`` with a 64-bit register.
3103- ``M``: An immediate integer for use with the ``MOV`` assembly alias on a
3104 32-bit register. This is a superset of ``K``: in addition to the bitmask
3105 immediate, also allows immediate integers which can be loaded with a single
3106 ``MOVZ`` or ``MOVL`` instruction.
3107- ``N``: An immediate integer for use with the ``MOV`` assembly alias on a
3108 64-bit register. This is a superset of ``L``.
3109- ``Q``: Memory address operand must be in a single register (no
3110 offsets). (However, LLVM currently does this for the ``m`` constraint as
3111 well.)
3112- ``r``: A 32 or 64-bit integer register (W* or X*).
3113- ``w``: A 32, 64, or 128-bit floating-point/SIMD register.
3114- ``x``: A lower 128-bit floating-point/SIMD register (``V0`` to ``V15``).
3115
3116AMDGPU:
3117
3118- ``r``: A 32 or 64-bit integer register.
3119- ``[0-9]v``: The 32-bit VGPR register, number 0-9.
3120- ``[0-9]s``: The 32-bit SGPR register, number 0-9.
3121
3122
3123All ARM modes:
3124
3125- ``Q``, ``Um``, ``Un``, ``Uq``, ``Us``, ``Ut``, ``Uv``, ``Uy``: Memory address
3126 operand. Treated the same as operand ``m``, at the moment.
3127
3128ARM and ARM's Thumb2 mode:
3129
3130- ``j``: An immediate integer between 0 and 65535 (valid for ``MOVW``)
3131- ``I``: An immediate integer valid for a data-processing instruction.
3132- ``J``: An immediate integer between -4095 and 4095.
3133- ``K``: An immediate integer whose bitwise inverse is valid for a
3134 data-processing instruction. (Can be used with template modifier "``B``" to
3135 print the inverted value).
3136- ``L``: An immediate integer whose negation is valid for a data-processing
3137 instruction. (Can be used with template modifier "``n``" to print the negated
3138 value).
3139- ``M``: A power of two or a integer between 0 and 32.
3140- ``N``: Invalid immediate constraint.
3141- ``O``: Invalid immediate constraint.
3142- ``r``: A general-purpose 32-bit integer register (``r0-r15``).
3143- ``l``: In Thumb2 mode, low 32-bit GPR registers (``r0-r7``). In ARM mode, same
3144 as ``r``.
3145- ``h``: In Thumb2 mode, a high 32-bit GPR register (``r8-r15``). In ARM mode,
3146 invalid.
3147- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3148 ``d0-d31``, or ``q0-q15``.
3149- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3150 ``d0-d7``, or ``q0-q3``.
3151- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3152 ``s0-s31``.
3153
3154ARM's Thumb1 mode:
3155
3156- ``I``: An immediate integer between 0 and 255.
3157- ``J``: An immediate integer between -255 and -1.
3158- ``K``: An immediate integer between 0 and 255, with optional left-shift by
3159 some amount.
3160- ``L``: An immediate integer between -7 and 7.
3161- ``M``: An immediate integer which is a multiple of 4 between 0 and 1020.
3162- ``N``: An immediate integer between 0 and 31.
3163- ``O``: An immediate integer which is a multiple of 4 between -508 and 508.
3164- ``r``: A low 32-bit GPR register (``r0-r7``).
3165- ``l``: A low 32-bit GPR register (``r0-r7``).
3166- ``h``: A high GPR register (``r0-r7``).
3167- ``w``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s31``,
3168 ``d0-d31``, or ``q0-q15``.
3169- ``x``: A 32, 64, or 128-bit floating-point/SIMD register: ``s0-s15``,
3170 ``d0-d7``, or ``q0-q3``.
3171- ``t``: A floating-point/SIMD register, only supports 32-bit values:
3172 ``s0-s31``.
3173
3174
3175Hexagon:
3176
3177- ``o``, ``v``: A memory address operand, treated the same as constraint ``m``,
3178 at the moment.
3179- ``r``: A 32 or 64-bit register.
3180
3181MSP430:
3182
3183- ``r``: An 8 or 16-bit register.
3184
3185MIPS:
3186
3187- ``I``: An immediate signed 16-bit integer.
3188- ``J``: An immediate integer zero.
3189- ``K``: An immediate unsigned 16-bit integer.
3190- ``L``: An immediate 32-bit integer, where the lower 16 bits are 0.
3191- ``N``: An immediate integer between -65535 and -1.
3192- ``O``: An immediate signed 15-bit integer.
3193- ``P``: An immediate integer between 1 and 65535.
3194- ``m``: A memory address operand. In MIPS-SE mode, allows a base address
3195 register plus 16-bit immediate offset. In MIPS mode, just a base register.
3196- ``R``: A memory address operand. In MIPS-SE mode, allows a base address
3197 register plus a 9-bit signed offset. In MIPS mode, the same as constraint
3198 ``m``.
3199- ``ZC``: A memory address operand, suitable for use in a ``pref``, ``ll``, or
3200 ``sc`` instruction on the given subtarget (details vary).
3201- ``r``, ``d``, ``y``: A 32 or 64-bit GPR register.
3202- ``f``: A 32 or 64-bit FPU register (``F0-F31``), or a 128-bit MSA register
Daniel Sanders3745e022015-07-13 09:24:21 +00003203 (``W0-W31``). In the case of MSA registers, it is recommended to use the ``w``
3204 argument modifier for compatibility with GCC.
James Y Knightbc832ed2015-07-08 18:08:36 +00003205- ``c``: A 32-bit or 64-bit GPR register suitable for indirect jump (always
3206 ``25``).
3207- ``l``: The ``lo`` register, 32 or 64-bit.
3208- ``x``: Invalid.
3209
3210NVPTX:
3211
3212- ``b``: A 1-bit integer register.
3213- ``c`` or ``h``: A 16-bit integer register.
3214- ``r``: A 32-bit integer register.
3215- ``l`` or ``N``: A 64-bit integer register.
3216- ``f``: A 32-bit float register.
3217- ``d``: A 64-bit float register.
3218
3219
3220PowerPC:
3221
3222- ``I``: An immediate signed 16-bit integer.
3223- ``J``: An immediate unsigned 16-bit integer, shifted left 16 bits.
3224- ``K``: An immediate unsigned 16-bit integer.
3225- ``L``: An immediate signed 16-bit integer, shifted left 16 bits.
3226- ``M``: An immediate integer greater than 31.
3227- ``N``: An immediate integer that is an exact power of 2.
3228- ``O``: The immediate integer constant 0.
3229- ``P``: An immediate integer constant whose negation is a signed 16-bit
3230 constant.
3231- ``es``, ``o``, ``Q``, ``Z``, ``Zy``: A memory address operand, currently
3232 treated the same as ``m``.
3233- ``r``: A 32 or 64-bit integer register.
3234- ``b``: A 32 or 64-bit integer register, excluding ``R0`` (that is:
3235 ``R1-R31``).
3236- ``f``: A 32 or 64-bit float register (``F0-F31``), or when QPX is enabled, a
3237 128 or 256-bit QPX register (``Q0-Q31``; aliases the ``F`` registers).
3238- ``v``: For ``4 x f32`` or ``4 x f64`` types, when QPX is enabled, a
3239 128 or 256-bit QPX register (``Q0-Q31``), otherwise a 128-bit
3240 altivec vector register (``V0-V31``).
3241
3242 .. FIXME: is this a bug that v accepts QPX registers? I think this
3243 is supposed to only use the altivec vector registers?
3244
3245- ``y``: Condition register (``CR0-CR7``).
3246- ``wc``: An individual CR bit in a CR register.
3247- ``wa``, ``wd``, ``wf``: Any 128-bit VSX vector register, from the full VSX
3248 register set (overlapping both the floating-point and vector register files).
3249- ``ws``: A 32 or 64-bit floating point register, from the full VSX register
3250 set.
3251
3252Sparc:
3253
3254- ``I``: An immediate 13-bit signed integer.
3255- ``r``: A 32-bit integer register.
3256
3257SystemZ:
3258
3259- ``I``: An immediate unsigned 8-bit integer.
3260- ``J``: An immediate unsigned 12-bit integer.
3261- ``K``: An immediate signed 16-bit integer.
3262- ``L``: An immediate signed 20-bit integer.
3263- ``M``: An immediate integer 0x7fffffff.
3264- ``Q``, ``R``, ``S``, ``T``: A memory address operand, treated the same as
3265 ``m``, at the moment.
3266- ``r`` or ``d``: A 32, 64, or 128-bit integer register.
3267- ``a``: A 32, 64, or 128-bit integer address register (excludes R0, which in an
3268 address context evaluates as zero).
3269- ``h``: A 32-bit value in the high part of a 64bit data register
3270 (LLVM-specific)
3271- ``f``: A 32, 64, or 128-bit floating point register.
3272
3273X86:
3274
3275- ``I``: An immediate integer between 0 and 31.
3276- ``J``: An immediate integer between 0 and 64.
3277- ``K``: An immediate signed 8-bit integer.
3278- ``L``: An immediate integer, 0xff or 0xffff or (in 64-bit mode only)
3279 0xffffffff.
3280- ``M``: An immediate integer between 0 and 3.
3281- ``N``: An immediate unsigned 8-bit integer.
3282- ``O``: An immediate integer between 0 and 127.
3283- ``e``: An immediate 32-bit signed integer.
3284- ``Z``: An immediate 32-bit unsigned integer.
3285- ``o``, ``v``: Treated the same as ``m``, at the moment.
3286- ``q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3287 ``l`` integer register. On X86-32, this is the ``a``, ``b``, ``c``, and ``d``
3288 registers, and on X86-64, it is all of the integer registers.
3289- ``Q``: An 8, 16, 32, or 64-bit register which can be accessed as an 8-bit
3290 ``h`` integer register. This is the ``a``, ``b``, ``c``, and ``d`` registers.
3291- ``r`` or ``l``: An 8, 16, 32, or 64-bit integer register.
3292- ``R``: An 8, 16, 32, or 64-bit "legacy" integer register -- one which has
3293 existed since i386, and can be accessed without the REX prefix.
3294- ``f``: A 32, 64, or 80-bit '387 FPU stack pseudo-register.
3295- ``y``: A 64-bit MMX register, if MMX is enabled.
3296- ``x``: If SSE is enabled: a 32 or 64-bit scalar operand, or 128-bit vector
3297 operand in a SSE register. If AVX is also enabled, can also be a 256-bit
3298 vector operand in an AVX register. If AVX-512 is also enabled, can also be a
3299 512-bit vector operand in an AVX512 register, Otherwise, an error.
3300- ``Y``: The same as ``x``, if *SSE2* is enabled, otherwise an error.
3301- ``A``: Special case: allocates EAX first, then EDX, for a single operand (in
3302 32-bit mode, a 64-bit integer operand will get split into two registers). It
3303 is not recommended to use this constraint, as in 64-bit mode, the 64-bit
3304 operand will get allocated only to RAX -- if two 32-bit operands are needed,
3305 you're better off splitting it yourself, before passing it to the asm
3306 statement.
3307
3308XCore:
3309
3310- ``r``: A 32-bit integer register.
3311
3312
3313.. _inline-asm-modifiers:
3314
3315Asm template argument modifiers
3316^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3317
3318In the asm template string, modifiers can be used on the operand reference, like
3319"``${0:n}``".
3320
3321The modifiers are, in general, expected to behave the same way they do in
3322GCC. LLVM's support is often implemented on an 'as-needed' basis, to support C
3323inline asm code which was supported by GCC. A mismatch in behavior between LLVM
3324and GCC likely indicates a bug in LLVM.
3325
3326Target-independent:
3327
3328- ``c``: Print an immediate integer constant unadorned, without
3329 the target-specific immediate punctuation (e.g. no ``$`` prefix).
3330- ``n``: Negate and print immediate integer constant unadorned, without the
3331 target-specific immediate punctuation (e.g. no ``$`` prefix).
3332- ``l``: Print as an unadorned label, without the target-specific label
3333 punctuation (e.g. no ``$`` prefix).
3334
3335AArch64:
3336
3337- ``w``: Print a GPR register with a ``w*`` name instead of ``x*`` name. E.g.,
3338 instead of ``x30``, print ``w30``.
3339- ``x``: Print a GPR register with a ``x*`` name. (this is the default, anyhow).
3340- ``b``, ``h``, ``s``, ``d``, ``q``: Print a floating-point/SIMD register with a
3341 ``b*``, ``h*``, ``s*``, ``d*``, or ``q*`` name, rather than the default of
3342 ``v*``.
3343
3344AMDGPU:
3345
3346- ``r``: No effect.
3347
3348ARM:
3349
3350- ``a``: Print an operand as an address (with ``[`` and ``]`` surrounding a
3351 register).
3352- ``P``: No effect.
3353- ``q``: No effect.
3354- ``y``: Print a VFP single-precision register as an indexed double (e.g. print
3355 as ``d4[1]`` instead of ``s9``)
3356- ``B``: Bitwise invert and print an immediate integer constant without ``#``
3357 prefix.
3358- ``L``: Print the low 16-bits of an immediate integer constant.
3359- ``M``: Print as a register set suitable for ldm/stm. Also prints *all*
3360 register operands subsequent to the specified one (!), so use carefully.
3361- ``Q``: Print the low-order register of a register-pair, or the low-order
3362 register of a two-register operand.
3363- ``R``: Print the high-order register of a register-pair, or the high-order
3364 register of a two-register operand.
3365- ``H``: Print the second register of a register-pair. (On a big-endian system,
3366 ``H`` is equivalent to ``Q``, and on little-endian system, ``H`` is equivalent
3367 to ``R``.)
3368
3369 .. FIXME: H doesn't currently support printing the second register
3370 of a two-register operand.
3371
3372- ``e``: Print the low doubleword register of a NEON quad register.
3373- ``f``: Print the high doubleword register of a NEON quad register.
3374- ``m``: Print the base register of a memory operand without the ``[`` and ``]``
3375 adornment.
3376
3377Hexagon:
3378
3379- ``L``: Print the second register of a two-register operand. Requires that it
3380 has been allocated consecutively to the first.
3381
3382 .. FIXME: why is it restricted to consecutive ones? And there's
3383 nothing that ensures that happens, is there?
3384
3385- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3386 nothing. Used to print 'addi' vs 'add' instructions.
3387
3388MSP430:
3389
3390No additional modifiers.
3391
3392MIPS:
3393
3394- ``X``: Print an immediate integer as hexadecimal
3395- ``x``: Print the low 16 bits of an immediate integer as hexadecimal.
3396- ``d``: Print an immediate integer as decimal.
3397- ``m``: Subtract one and print an immediate integer as decimal.
3398- ``z``: Print $0 if an immediate zero, otherwise print normally.
3399- ``L``: Print the low-order register of a two-register operand, or prints the
3400 address of the low-order word of a double-word memory operand.
3401
3402 .. FIXME: L seems to be missing memory operand support.
3403
3404- ``M``: Print the high-order register of a two-register operand, or prints the
3405 address of the high-order word of a double-word memory operand.
3406
3407 .. FIXME: M seems to be missing memory operand support.
3408
3409- ``D``: Print the second register of a two-register operand, or prints the
3410 second word of a double-word memory operand. (On a big-endian system, ``D`` is
3411 equivalent to ``L``, and on little-endian system, ``D`` is equivalent to
3412 ``M``.)
Daniel Sanders3745e022015-07-13 09:24:21 +00003413- ``w``: No effect. Provided for compatibility with GCC which requires this
3414 modifier in order to print MSA registers (``W0-W31``) with the ``f``
3415 constraint.
James Y Knightbc832ed2015-07-08 18:08:36 +00003416
3417NVPTX:
3418
3419- ``r``: No effect.
3420
3421PowerPC:
3422
3423- ``L``: Print the second register of a two-register operand. Requires that it
3424 has been allocated consecutively to the first.
3425
3426 .. FIXME: why is it restricted to consecutive ones? And there's
3427 nothing that ensures that happens, is there?
3428
3429- ``I``: Print the letter 'i' if the operand is an integer constant, otherwise
3430 nothing. Used to print 'addi' vs 'add' instructions.
3431- ``y``: For a memory operand, prints formatter for a two-register X-form
3432 instruction. (Currently always prints ``r0,OPERAND``).
3433- ``U``: Prints 'u' if the memory operand is an update form, and nothing
3434 otherwise. (NOTE: LLVM does not support update form, so this will currently
3435 always print nothing)
3436- ``X``: Prints 'x' if the memory operand is an indexed form. (NOTE: LLVM does
3437 not support indexed form, so this will currently always print nothing)
3438
3439Sparc:
3440
3441- ``r``: No effect.
3442
3443SystemZ:
3444
3445SystemZ implements only ``n``, and does *not* support any of the other
3446target-independent modifiers.
3447
3448X86:
3449
3450- ``c``: Print an unadorned integer or symbol name. (The latter is
3451 target-specific behavior for this typically target-independent modifier).
3452- ``A``: Print a register name with a '``*``' before it.
3453- ``b``: Print an 8-bit register name (e.g. ``al``); do nothing on a memory
3454 operand.
3455- ``h``: Print the upper 8-bit register name (e.g. ``ah``); do nothing on a
3456 memory operand.
3457- ``w``: Print the 16-bit register name (e.g. ``ax``); do nothing on a memory
3458 operand.
3459- ``k``: Print the 32-bit register name (e.g. ``eax``); do nothing on a memory
3460 operand.
3461- ``q``: Print the 64-bit register name (e.g. ``rax``), if 64-bit registers are
3462 available, otherwise the 32-bit register name; do nothing on a memory operand.
3463- ``n``: Negate and print an unadorned integer, or, for operands other than an
3464 immediate integer (e.g. a relocatable symbol expression), print a '-' before
3465 the operand. (The behavior for relocatable symbol expressions is a
3466 target-specific behavior for this typically target-independent modifier)
3467- ``H``: Print a memory reference with additional offset +8.
3468- ``P``: Print a memory reference or operand for use as the argument of a call
3469 instruction. (E.g. omit ``(rip)``, even though it's PC-relative.)
3470
3471XCore:
3472
3473No additional modifiers.
3474
3475
Sean Silvab084af42012-12-07 10:36:55 +00003476Inline Asm Metadata
3477^^^^^^^^^^^^^^^^^^^
3478
3479The call instructions that wrap inline asm nodes may have a
3480"``!srcloc``" MDNode attached to it that contains a list of constant
3481integers. If present, the code generator will use the integer as the
3482location cookie value when report errors through the ``LLVMContext``
3483error reporting mechanisms. This allows a front-end to correlate backend
3484errors that occur with inline asm back to the source code that produced
3485it. For example:
3486
3487.. code-block:: llvm
3488
3489 call void asm sideeffect "something bad", ""(), !srcloc !42
3490 ...
3491 !42 = !{ i32 1234567 }
3492
3493It is up to the front-end to make sense of the magic numbers it places
3494in the IR. If the MDNode contains multiple constants, the code generator
3495will use the one that corresponds to the line of the asm that the error
3496occurs on.
3497
3498.. _metadata:
3499
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003500Metadata
3501========
Sean Silvab084af42012-12-07 10:36:55 +00003502
3503LLVM IR allows metadata to be attached to instructions in the program
3504that can convey extra information about the code to the optimizers and
3505code generator. One example application of metadata is source-level
3506debug information. There are two metadata primitives: strings and nodes.
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003507
3508Metadata does not have a type, and is not a value. If referenced from a
3509``call`` instruction, it uses the ``metadata`` type.
3510
3511All metadata are identified in syntax by a exclamation point ('``!``').
3512
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003513.. _metadata-string:
3514
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003515Metadata Nodes and Metadata Strings
3516-----------------------------------
Sean Silvab084af42012-12-07 10:36:55 +00003517
3518A metadata string is a string surrounded by double quotes. It can
3519contain any character by escaping non-printable characters with
3520"``\xx``" where "``xx``" is the two digit hex code. For example:
3521"``!"test\00"``".
3522
3523Metadata nodes are represented with notation similar to structure
3524constants (a comma separated list of elements, surrounded by braces and
3525preceded by an exclamation point). Metadata nodes can have any values as
3526their operand. For example:
3527
3528.. code-block:: llvm
3529
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003530 !{ !"test\00", i32 10}
Sean Silvab084af42012-12-07 10:36:55 +00003531
Duncan P. N. Exon Smith090a19b2015-01-08 22:38:29 +00003532Metadata nodes that aren't uniqued use the ``distinct`` keyword. For example:
3533
3534.. code-block:: llvm
3535
3536 !0 = distinct !{!"test\00", i32 10}
3537
Duncan P. N. Exon Smith99010342015-01-08 23:50:26 +00003538``distinct`` nodes are useful when nodes shouldn't be merged based on their
3539content. They can also occur when transformations cause uniquing collisions
3540when metadata operands change.
3541
Sean Silvab084af42012-12-07 10:36:55 +00003542A :ref:`named metadata <namedmetadatastructure>` is a collection of
3543metadata nodes, which can be looked up in the module symbol table. For
3544example:
3545
3546.. code-block:: llvm
3547
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003548 !foo = !{!4, !3}
Sean Silvab084af42012-12-07 10:36:55 +00003549
3550Metadata can be used as function arguments. Here ``llvm.dbg.value``
3551function is using two metadata arguments:
3552
3553.. code-block:: llvm
3554
3555 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
3556
3557Metadata can be attached with an instruction. Here metadata ``!21`` is
3558attached to the ``add`` instruction using the ``!dbg`` identifier:
3559
3560.. code-block:: llvm
3561
3562 %indvar.next = add i64 %indvar, 1, !dbg !21
3563
3564More information about specific metadata nodes recognized by the
3565optimizers and code generator is found below.
3566
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003567.. _specialized-metadata:
3568
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003569Specialized Metadata Nodes
3570^^^^^^^^^^^^^^^^^^^^^^^^^^
3571
3572Specialized metadata nodes are custom data structures in metadata (as opposed
3573to generic tuples). Their fields are labelled, and can be specified in any
3574order.
3575
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003576These aren't inherently debug info centric, but currently all the specialized
3577metadata nodes are related to debug info.
3578
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003579.. _DICompileUnit:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003580
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003581DICompileUnit
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003582"""""""""""""
3583
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003584``DICompileUnit`` nodes represent a compile unit. The ``enums:``,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003585``retainedTypes:``, ``subprograms:``, ``globals:`` and ``imports:`` fields are
3586tuples containing the debug info to be emitted along with the compile unit,
3587regardless of code optimizations (some nodes are only emitted if there are
3588references to them from instructions).
3589
3590.. code-block:: llvm
3591
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003592 !0 = !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003593 isOptimized: true, flags: "-O2", runtimeVersion: 2,
3594 splitDebugFilename: "abc.debug", emissionKind: 1,
3595 enums: !2, retainedTypes: !3, subprograms: !4,
3596 globals: !5, imports: !6)
3597
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003598Compile unit descriptors provide the root scope for objects declared in a
3599specific compilation unit. File descriptors are defined using this scope.
3600These descriptors are collected by a named metadata ``!llvm.dbg.cu``. They
3601keep track of subprograms, global variables, type information, and imported
3602entities (declarations and namespaces).
3603
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003604.. _DIFile:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003605
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003606DIFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003607""""""
3608
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003609``DIFile`` nodes represent files. The ``filename:`` can include slashes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003610
3611.. code-block:: llvm
3612
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003613 !0 = !DIFile(filename: "path/to/file", directory: "/path/to/dir")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003614
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003615Files are sometimes used in ``scope:`` fields, and are the only valid target
3616for ``file:`` fields.
3617
Michael Kuperstein605308a2015-05-14 10:58:59 +00003618.. _DIBasicType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003619
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003620DIBasicType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003621"""""""""""
3622
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003623``DIBasicType`` nodes represent primitive types, such as ``int``, ``bool`` and
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003624``float``. ``tag:`` defaults to ``DW_TAG_base_type``.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003625
3626.. code-block:: llvm
3627
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003628 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003629 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003630 !1 = !DIBasicType(tag: DW_TAG_unspecified_type, name: "decltype(nullptr)")
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003631
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003632The ``encoding:`` describes the details of the type. Usually it's one of the
3633following:
3634
3635.. code-block:: llvm
3636
3637 DW_ATE_address = 1
3638 DW_ATE_boolean = 2
3639 DW_ATE_float = 4
3640 DW_ATE_signed = 5
3641 DW_ATE_signed_char = 6
3642 DW_ATE_unsigned = 7
3643 DW_ATE_unsigned_char = 8
3644
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003645.. _DISubroutineType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003646
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003647DISubroutineType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003648""""""""""""""""
3649
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003650``DISubroutineType`` nodes represent subroutine types. Their ``types:`` field
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003651refers to a tuple; the first operand is the return type, while the rest are the
3652types of the formal arguments in order. If the first operand is ``null``, that
3653represents a function with no return value (such as ``void foo() {}`` in C++).
3654
3655.. code-block:: llvm
3656
3657 !0 = !BasicType(name: "int", size: 32, align: 32, DW_ATE_signed)
3658 !1 = !BasicType(name: "char", size: 8, align: 8, DW_ATE_signed_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003659 !2 = !DISubroutineType(types: !{null, !0, !1}) ; void (int, char)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003660
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003661.. _DIDerivedType:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003662
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003663DIDerivedType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003664"""""""""""""
3665
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003666``DIDerivedType`` nodes represent types derived from other types, such as
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003667qualified types.
3668
3669.. code-block:: llvm
3670
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003671 !0 = !DIBasicType(name: "unsigned char", size: 8, align: 8,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003672 encoding: DW_ATE_unsigned_char)
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003673 !1 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !0, size: 32,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003674 align: 32)
3675
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003676The following ``tag:`` values are valid:
3677
3678.. code-block:: llvm
3679
3680 DW_TAG_formal_parameter = 5
3681 DW_TAG_member = 13
3682 DW_TAG_pointer_type = 15
3683 DW_TAG_reference_type = 16
3684 DW_TAG_typedef = 22
3685 DW_TAG_ptr_to_member_type = 31
3686 DW_TAG_const_type = 38
3687 DW_TAG_volatile_type = 53
3688 DW_TAG_restrict_type = 55
3689
3690``DW_TAG_member`` is used to define a member of a :ref:`composite type
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003691<DICompositeType>` or :ref:`subprogram <DISubprogram>`. The type of the member
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003692is the ``baseType:``. The ``offset:`` is the member's bit offset.
3693``DW_TAG_formal_parameter`` is used to define a member which is a formal
3694argument of a subprogram.
3695
3696``DW_TAG_typedef`` is used to provide a name for the ``baseType:``.
3697
3698``DW_TAG_pointer_type``, ``DW_TAG_reference_type``, ``DW_TAG_const_type``,
3699``DW_TAG_volatile_type`` and ``DW_TAG_restrict_type`` are used to qualify the
3700``baseType:``.
3701
3702Note that the ``void *`` type is expressed as a type derived from NULL.
3703
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003704.. _DICompositeType:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003705
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003706DICompositeType
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003707"""""""""""""""
3708
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003709``DICompositeType`` nodes represent types composed of other types, like
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003710structures and unions. ``elements:`` points to a tuple of the composed types.
3711
3712If the source language supports ODR, the ``identifier:`` field gives the unique
3713identifier used for type merging between modules. When specified, other types
3714can refer to composite types indirectly via a :ref:`metadata string
3715<metadata-string>` that matches their identifier.
3716
3717.. code-block:: llvm
3718
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003719 !0 = !DIEnumerator(name: "SixKind", value: 7)
3720 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3721 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
3722 !3 = !DICompositeType(tag: DW_TAG_enumeration_type, name: "Enum", file: !12,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003723 line: 2, size: 32, align: 32, identifier: "_M4Enum",
3724 elements: !{!0, !1, !2})
3725
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003726The following ``tag:`` values are valid:
3727
3728.. code-block:: llvm
3729
3730 DW_TAG_array_type = 1
3731 DW_TAG_class_type = 2
3732 DW_TAG_enumeration_type = 4
3733 DW_TAG_structure_type = 19
3734 DW_TAG_union_type = 23
3735 DW_TAG_subroutine_type = 21
3736 DW_TAG_inheritance = 28
3737
3738
3739For ``DW_TAG_array_type``, the ``elements:`` should be :ref:`subrange
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003740descriptors <DISubrange>`, each representing the range of subscripts at that
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003741level of indexing. The ``DIFlagVector`` flag to ``flags:`` indicates that an
3742array type is a native packed vector.
3743
3744For ``DW_TAG_enumeration_type``, the ``elements:`` should be :ref:`enumerator
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003745descriptors <DIEnumerator>`, each representing the definition of an enumeration
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003746value for the set. All enumeration type descriptors are collected in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003747``enums:`` field of the :ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003748
3749For ``DW_TAG_structure_type``, ``DW_TAG_class_type``, and
3750``DW_TAG_union_type``, the ``elements:`` should be :ref:`derived types
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003751<DIDerivedType>` with ``tag: DW_TAG_member`` or ``tag: DW_TAG_inheritance``.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003752
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003753.. _DISubrange:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003754
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003755DISubrange
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003756""""""""""
3757
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003758``DISubrange`` nodes are the elements for ``DW_TAG_array_type`` variants of
3759:ref:`DICompositeType`. ``count: -1`` indicates an empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003760
3761.. code-block:: llvm
3762
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003763 !0 = !DISubrange(count: 5, lowerBound: 0) ; array counting from 0
3764 !1 = !DISubrange(count: 5, lowerBound: 1) ; array counting from 1
3765 !2 = !DISubrange(count: -1) ; empty array.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003766
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003767.. _DIEnumerator:
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003768
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003769DIEnumerator
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003770""""""""""""
3771
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003772``DIEnumerator`` nodes are the elements for ``DW_TAG_enumeration_type``
3773variants of :ref:`DICompositeType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003774
3775.. code-block:: llvm
3776
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003777 !0 = !DIEnumerator(name: "SixKind", value: 7)
3778 !1 = !DIEnumerator(name: "SevenKind", value: 7)
3779 !2 = !DIEnumerator(name: "NegEightKind", value: -8)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003780
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003781DITemplateTypeParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003782"""""""""""""""""""""""
3783
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003784``DITemplateTypeParameter`` nodes represent type parameters to generic source
3785language constructs. They are used (optionally) in :ref:`DICompositeType` and
3786:ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003787
3788.. code-block:: llvm
3789
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003790 !0 = !DITemplateTypeParameter(name: "Ty", type: !1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003791
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003792DITemplateValueParameter
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003793""""""""""""""""""""""""
3794
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003795``DITemplateValueParameter`` nodes represent value parameters to generic source
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003796language constructs. ``tag:`` defaults to ``DW_TAG_template_value_parameter``,
3797but if specified can also be set to ``DW_TAG_GNU_template_template_param`` or
3798``DW_TAG_GNU_template_param_pack``. They are used (optionally) in
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003799:ref:`DICompositeType` and :ref:`DISubprogram` ``templateParams:`` fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003800
3801.. code-block:: llvm
3802
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003803 !0 = !DITemplateValueParameter(name: "Ty", type: !1, value: i32 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003804
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003805DINamespace
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003806"""""""""""
3807
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003808``DINamespace`` nodes represent namespaces in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003809
3810.. code-block:: llvm
3811
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003812 !0 = !DINamespace(name: "myawesomeproject", scope: !1, file: !2, line: 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003813
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003814DIGlobalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003815""""""""""""""""
3816
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003817``DIGlobalVariable`` nodes represent global variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003818
3819.. code-block:: llvm
3820
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003821 !0 = !DIGlobalVariable(name: "foo", linkageName: "foo", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003822 file: !2, line: 7, type: !3, isLocal: true,
3823 isDefinition: false, variable: i32* @foo,
3824 declaration: !4)
3825
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003826All global variables should be referenced by the `globals:` field of a
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003827:ref:`compile unit <DICompileUnit>`.
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003828
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003829.. _DISubprogram:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003830
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003831DISubprogram
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003832""""""""""""
3833
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003834``DISubprogram`` nodes represent functions from the source language. The
3835``variables:`` field points at :ref:`variables <DILocalVariable>` that must be
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003836retained, even if their IR counterparts are optimized out of the IR. The
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003837``type:`` field must point at an :ref:`DISubroutineType`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003838
3839.. code-block:: llvm
3840
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003841 !0 = !DISubprogram(name: "foo", linkageName: "_Zfoov", scope: !1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003842 file: !2, line: 7, type: !3, isLocal: true,
3843 isDefinition: false, scopeLine: 8, containingType: !4,
3844 virtuality: DW_VIRTUALITY_pure_virtual, virtualIndex: 10,
3845 flags: DIFlagPrototyped, isOptimized: true,
3846 function: void ()* @_Z3foov,
3847 templateParams: !5, declaration: !6, variables: !7)
3848
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003849.. _DILexicalBlock:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003850
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003851DILexicalBlock
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003852""""""""""""""
3853
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003854``DILexicalBlock`` nodes describe nested blocks within a :ref:`subprogram
3855<DISubprogram>`. The line number and column numbers are used to dinstinguish
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003856two lexical blocks at same depth. They are valid targets for ``scope:``
3857fields.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003858
3859.. code-block:: llvm
3860
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003861 !0 = distinct !DILexicalBlock(scope: !1, file: !2, line: 7, column: 35)
Duncan P. N. Exon Smithd937cd92015-03-17 23:41:05 +00003862
3863Usually lexical blocks are ``distinct`` to prevent node merging based on
3864operands.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003865
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003866.. _DILexicalBlockFile:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003867
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003868DILexicalBlockFile
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003869""""""""""""""""""
3870
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003871``DILexicalBlockFile`` nodes are used to discriminate between sections of a
3872:ref:`lexical block <DILexicalBlock>`. The ``file:`` field can be changed to
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003873indicate textual inclusion, or the ``discriminator:`` field can be used to
3874discriminate between control flow within a single block in the source language.
3875
3876.. code-block:: llvm
3877
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003878 !0 = !DILexicalBlock(scope: !3, file: !4, line: 7, column: 35)
3879 !1 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 0)
3880 !2 = !DILexicalBlockFile(scope: !0, file: !4, discriminator: 1)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003881
Michael Kuperstein605308a2015-05-14 10:58:59 +00003882.. _DILocation:
3883
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003884DILocation
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003885""""""""""
3886
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003887``DILocation`` nodes represent source debug locations. The ``scope:`` field is
3888mandatory, and points at an :ref:`DILexicalBlockFile`, an
3889:ref:`DILexicalBlock`, or an :ref:`DISubprogram`.
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003890
3891.. code-block:: llvm
3892
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003893 !0 = !DILocation(line: 2900, column: 42, scope: !1, inlinedAt: !2)
Duncan P. N. Exon Smith6a484832015-01-13 21:10:44 +00003894
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003895.. _DILocalVariable:
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003896
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003897DILocalVariable
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003898"""""""""""""""
3899
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003900``DILocalVariable`` nodes represent local variables in the source language.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003901Instead of ``DW_TAG_variable``, they use LLVM-specific fake tags to
3902discriminate between local variables (``DW_TAG_auto_variable``) and subprogram
3903arguments (``DW_TAG_arg_variable``). In the latter case, the ``arg:`` field
3904specifies the argument position, and this variable will be included in the
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003905``variables:`` field of its :ref:`DISubprogram`.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003906
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003907.. code-block:: llvm
3908
Duncan P. N. Exon Smith56b893b2015-07-24 23:59:25 +00003909 !0 = !DILocalVariable(tag: DW_TAG_arg_variable, name: "this", arg: 1,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003910 scope: !3, file: !2, line: 7, type: !3,
Duncan P. N. Exon Smith62e0f452015-04-15 22:29:27 +00003911 flags: DIFlagArtificial)
Duncan P. N. Exon Smith56b893b2015-07-24 23:59:25 +00003912 !1 = !DILocalVariable(tag: DW_TAG_arg_variable, name: "x", arg: 2,
Duncan P. N. Exon Smith62e0f452015-04-15 22:29:27 +00003913 scope: !4, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smith56b893b2015-07-24 23:59:25 +00003914 !2 = !DILocalVariable(tag: DW_TAG_auto_variable, name: "y",
Duncan P. N. Exon Smith62e0f452015-04-15 22:29:27 +00003915 scope: !5, file: !2, line: 7, type: !3)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003916
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003917DIExpression
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003918""""""""""""
3919
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003920``DIExpression`` nodes represent DWARF expression sequences. They are used in
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003921:ref:`debug intrinsics<dbg_intrinsics>` (such as ``llvm.dbg.declare``) to
3922describe how the referenced LLVM variable relates to the source language
3923variable.
3924
3925The current supported vocabulary is limited:
3926
3927- ``DW_OP_deref`` dereferences the working expression.
3928- ``DW_OP_plus, 93`` adds ``93`` to the working expression.
3929- ``DW_OP_bit_piece, 16, 8`` specifies the offset and size (``16`` and ``8``
3930 here, respectively) of the variable piece from the working expression.
3931
3932.. code-block:: llvm
3933
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003934 !0 = !DIExpression(DW_OP_deref)
3935 !1 = !DIExpression(DW_OP_plus, 3)
3936 !2 = !DIExpression(DW_OP_bit_piece, 3, 7)
3937 !3 = !DIExpression(DW_OP_deref, DW_OP_plus, 3, DW_OP_bit_piece, 3, 7)
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003938
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003939DIObjCProperty
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003940""""""""""""""
3941
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003942``DIObjCProperty`` nodes represent Objective-C property nodes.
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003943
3944.. code-block:: llvm
3945
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003946 !3 = !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003947 getter: "getFoo", attributes: 7, type: !2)
3948
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003949DIImportedEntity
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003950""""""""""""""""
3951
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003952``DIImportedEntity`` nodes represent entities (such as modules) imported into a
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003953compile unit.
3954
3955.. code-block:: llvm
3956
Duncan P. N. Exon Smitha9308c42015-04-29 16:38:44 +00003957 !2 = !DIImportedEntity(tag: DW_TAG_imported_module, name: "foo", scope: !0,
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +00003958 entity: !1, line: 7)
3959
Sean Silvab084af42012-12-07 10:36:55 +00003960'``tbaa``' Metadata
3961^^^^^^^^^^^^^^^^^^^
3962
3963In LLVM IR, memory does not have types, so LLVM's own type system is not
3964suitable for doing TBAA. Instead, metadata is added to the IR to
3965describe a type system of a higher level language. This can be used to
3966implement typical C/C++ TBAA, but it can also be used to implement
3967custom alias analysis behavior for other languages.
3968
3969The current metadata format is very simple. TBAA metadata nodes have up
3970to three fields, e.g.:
3971
3972.. code-block:: llvm
3973
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00003974 !0 = !{ !"an example type tree" }
3975 !1 = !{ !"int", !0 }
3976 !2 = !{ !"float", !0 }
3977 !3 = !{ !"const float", !2, i64 1 }
Sean Silvab084af42012-12-07 10:36:55 +00003978
3979The first field is an identity field. It can be any value, usually a
3980metadata string, which uniquely identifies the type. The most important
3981name in the tree is the name of the root node. Two trees with different
3982root node names are entirely disjoint, even if they have leaves with
3983common names.
3984
3985The second field identifies the type's parent node in the tree, or is
3986null or omitted for a root node. A type is considered to alias all of
3987its descendants and all of its ancestors in the tree. Also, a type is
3988considered to alias all types in other trees, so that bitcode produced
3989from multiple front-ends is handled conservatively.
3990
3991If the third field is present, it's an integer which if equal to 1
3992indicates that the type is "constant" (meaning
3993``pointsToConstantMemory`` should return true; see `other useful
3994AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
3995
3996'``tbaa.struct``' Metadata
3997^^^^^^^^^^^^^^^^^^^^^^^^^^
3998
3999The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
4000aggregate assignment operations in C and similar languages, however it
4001is defined to copy a contiguous region of memory, which is more than
4002strictly necessary for aggregate types which contain holes due to
4003padding. Also, it doesn't contain any TBAA information about the fields
4004of the aggregate.
4005
4006``!tbaa.struct`` metadata can describe which memory subregions in a
4007memcpy are padding and what the TBAA tags of the struct are.
4008
4009The current metadata format is very simple. ``!tbaa.struct`` metadata
4010nodes are a list of operands which are in conceptual groups of three.
4011For each group of three, the first operand gives the byte offset of a
4012field in bytes, the second gives its size in bytes, and the third gives
4013its tbaa tag. e.g.:
4014
4015.. code-block:: llvm
4016
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004017 !4 = !{ i64 0, i64 4, !1, i64 8, i64 4, !2 }
Sean Silvab084af42012-12-07 10:36:55 +00004018
4019This describes a struct with two fields. The first is at offset 0 bytes
4020with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
4021and has size 4 bytes and has tbaa tag !2.
4022
4023Note that the fields need not be contiguous. In this example, there is a
40244 byte gap between the two fields. This gap represents padding which
4025does not carry useful data and need not be preserved.
4026
Hal Finkel94146652014-07-24 14:25:39 +00004027'``noalias``' and '``alias.scope``' Metadata
Dan Liewbafdcba2014-07-28 13:33:51 +00004028^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Hal Finkel94146652014-07-24 14:25:39 +00004029
4030``noalias`` and ``alias.scope`` metadata provide the ability to specify generic
4031noalias memory-access sets. This means that some collection of memory access
4032instructions (loads, stores, memory-accessing calls, etc.) that carry
4033``noalias`` metadata can specifically be specified not to alias with some other
4034collection of memory access instructions that carry ``alias.scope`` metadata.
Hal Finkel029cde62014-07-25 15:50:02 +00004035Each type of metadata specifies a list of scopes where each scope has an id and
Ed Maste8ed40ce2015-04-14 20:52:58 +00004036a domain. When evaluating an aliasing query, if for some domain, the set
Hal Finkel029cde62014-07-25 15:50:02 +00004037of scopes with that domain in one instruction's ``alias.scope`` list is a
Arch D. Robison96cf7ab2015-02-24 20:11:49 +00004038subset of (or equal to) the set of scopes for that domain in another
Hal Finkel029cde62014-07-25 15:50:02 +00004039instruction's ``noalias`` list, then the two memory accesses are assumed not to
4040alias.
Hal Finkel94146652014-07-24 14:25:39 +00004041
Hal Finkel029cde62014-07-25 15:50:02 +00004042The metadata identifying each domain is itself a list containing one or two
4043entries. The first entry is the name of the domain. Note that if the name is a
Hal Finkel94146652014-07-24 14:25:39 +00004044string then it can be combined accross functions and translation units. A
Hal Finkel029cde62014-07-25 15:50:02 +00004045self-reference can be used to create globally unique domain names. A
4046descriptive string may optionally be provided as a second list entry.
4047
4048The metadata identifying each scope is also itself a list containing two or
4049three entries. The first entry is the name of the scope. Note that if the name
4050is a string then it can be combined accross functions and translation units. A
4051self-reference can be used to create globally unique scope names. A metadata
4052reference to the scope's domain is the second entry. A descriptive string may
4053optionally be provided as a third list entry.
Hal Finkel94146652014-07-24 14:25:39 +00004054
4055For example,
4056
4057.. code-block:: llvm
4058
Hal Finkel029cde62014-07-25 15:50:02 +00004059 ; Two scope domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004060 !0 = !{!0}
4061 !1 = !{!1}
Hal Finkel94146652014-07-24 14:25:39 +00004062
Hal Finkel029cde62014-07-25 15:50:02 +00004063 ; Some scopes in these domains:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004064 !2 = !{!2, !0}
4065 !3 = !{!3, !0}
4066 !4 = !{!4, !1}
Hal Finkel94146652014-07-24 14:25:39 +00004067
Hal Finkel029cde62014-07-25 15:50:02 +00004068 ; Some scope lists:
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004069 !5 = !{!4} ; A list containing only scope !4
4070 !6 = !{!4, !3, !2}
4071 !7 = !{!3}
Hal Finkel94146652014-07-24 14:25:39 +00004072
4073 ; These two instructions don't alias:
David Blaikiec7aabbb2015-03-04 22:06:14 +00004074 %0 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004075 store float %0, float* %arrayidx.i, align 4, !noalias !5
Hal Finkel94146652014-07-24 14:25:39 +00004076
Hal Finkel029cde62014-07-25 15:50:02 +00004077 ; These two instructions also don't alias (for domain !1, the set of scopes
4078 ; in the !alias.scope equals that in the !noalias list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004079 %2 = load float, float* %c, align 4, !alias.scope !5
Hal Finkel029cde62014-07-25 15:50:02 +00004080 store float %2, float* %arrayidx.i2, align 4, !noalias !6
Hal Finkel94146652014-07-24 14:25:39 +00004081
Adam Nemet0a8416f2015-05-11 08:30:28 +00004082 ; These two instructions may alias (for domain !0, the set of scopes in
Hal Finkel029cde62014-07-25 15:50:02 +00004083 ; the !noalias list is not a superset of, or equal to, the scopes in the
4084 ; !alias.scope list):
David Blaikiec7aabbb2015-03-04 22:06:14 +00004085 %2 = load float, float* %c, align 4, !alias.scope !6
Hal Finkel029cde62014-07-25 15:50:02 +00004086 store float %0, float* %arrayidx.i, align 4, !noalias !7
Hal Finkel94146652014-07-24 14:25:39 +00004087
Sean Silvab084af42012-12-07 10:36:55 +00004088'``fpmath``' Metadata
4089^^^^^^^^^^^^^^^^^^^^^
4090
4091``fpmath`` metadata may be attached to any instruction of floating point
4092type. It can be used to express the maximum acceptable error in the
4093result of that instruction, in ULPs, thus potentially allowing the
4094compiler to use a more efficient but less accurate method of computing
4095it. ULP is defined as follows:
4096
4097 If ``x`` is a real number that lies between two finite consecutive
4098 floating-point numbers ``a`` and ``b``, without being equal to one
4099 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
4100 distance between the two non-equal finite floating-point numbers
4101 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
4102
4103The metadata node shall consist of a single positive floating point
4104number representing the maximum relative error, for example:
4105
4106.. code-block:: llvm
4107
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004108 !0 = !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
Sean Silvab084af42012-12-07 10:36:55 +00004109
Philip Reamesf8bf9dd2015-02-27 23:14:50 +00004110.. _range-metadata:
4111
Sean Silvab084af42012-12-07 10:36:55 +00004112'``range``' Metadata
4113^^^^^^^^^^^^^^^^^^^^
4114
Jingyue Wu37fcb592014-06-19 16:50:16 +00004115``range`` metadata may be attached only to ``load``, ``call`` and ``invoke`` of
4116integer types. It expresses the possible ranges the loaded value or the value
4117returned by the called function at this call site is in. The ranges are
4118represented with a flattened list of integers. The loaded value or the value
4119returned is known to be in the union of the ranges defined by each consecutive
4120pair. Each pair has the following properties:
Sean Silvab084af42012-12-07 10:36:55 +00004121
4122- The type must match the type loaded by the instruction.
4123- The pair ``a,b`` represents the range ``[a,b)``.
4124- Both ``a`` and ``b`` are constants.
4125- The range is allowed to wrap.
4126- The range should not represent the full or empty set. That is,
4127 ``a!=b``.
4128
4129In addition, the pairs must be in signed order of the lower bound and
4130they must be non-contiguous.
4131
4132Examples:
4133
4134.. code-block:: llvm
4135
David Blaikiec7aabbb2015-03-04 22:06:14 +00004136 %a = load i8, i8* %x, align 1, !range !0 ; Can only be 0 or 1
4137 %b = load i8, i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
Jingyue Wu37fcb592014-06-19 16:50:16 +00004138 %c = call i8 @foo(), !range !2 ; Can only be 0, 1, 3, 4 or 5
4139 %d = invoke i8 @bar() to label %cont
4140 unwind label %lpad, !range !3 ; Can only be -2, -1, 3, 4 or 5
Sean Silvab084af42012-12-07 10:36:55 +00004141 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004142 !0 = !{ i8 0, i8 2 }
4143 !1 = !{ i8 255, i8 2 }
4144 !2 = !{ i8 0, i8 2, i8 3, i8 6 }
4145 !3 = !{ i8 -2, i8 0, i8 3, i8 6 }
Sean Silvab084af42012-12-07 10:36:55 +00004146
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004147'``llvm.loop``'
4148^^^^^^^^^^^^^^^
4149
4150It is sometimes useful to attach information to loop constructs. Currently,
4151loop metadata is implemented as metadata attached to the branch instruction
4152in the loop latch block. This type of metadata refer to a metadata node that is
Matt Arsenault24b49c42013-07-31 17:49:08 +00004153guaranteed to be separate for each loop. The loop identifier metadata is
Paul Redmond5fdf8362013-05-28 20:00:34 +00004154specified with the name ``llvm.loop``.
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004155
4156The loop identifier metadata is implemented using a metadata that refers to
Michael Liaoa7699082013-03-06 18:24:34 +00004157itself to avoid merging it with any other identifier metadata, e.g.,
4158during module linkage or function inlining. That is, each loop should refer
4159to their own identification metadata even if they reside in separate functions.
4160The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004161constructs:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004162
4163.. code-block:: llvm
Paul Redmondeaaed3b2013-02-21 17:20:45 +00004164
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004165 !0 = !{!0}
4166 !1 = !{!1}
Pekka Jaaskelainen119a2b62013-02-22 12:03:07 +00004167
Mark Heffernan893752a2014-07-18 19:24:51 +00004168The loop identifier metadata can be used to specify additional
4169per-loop metadata. Any operands after the first operand can be treated
4170as user-defined metadata. For example the ``llvm.loop.unroll.count``
4171suggests an unroll factor to the loop unroller:
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004172
Paul Redmond5fdf8362013-05-28 20:00:34 +00004173.. code-block:: llvm
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004174
Paul Redmond5fdf8362013-05-28 20:00:34 +00004175 br i1 %exitcond, label %._crit_edge, label %.lr.ph, !llvm.loop !0
4176 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004177 !0 = !{!0, !1}
4178 !1 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004179
Mark Heffernan9d20e422014-07-21 23:11:03 +00004180'``llvm.loop.vectorize``' and '``llvm.loop.interleave``'
4181^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan893752a2014-07-18 19:24:51 +00004182
Mark Heffernan9d20e422014-07-21 23:11:03 +00004183Metadata prefixed with ``llvm.loop.vectorize`` or ``llvm.loop.interleave`` are
4184used to control per-loop vectorization and interleaving parameters such as
4185vectorization width and interleave count. These metadata should be used in
Mark Heffernan893752a2014-07-18 19:24:51 +00004186conjunction with ``llvm.loop`` loop identification metadata. The
Mark Heffernan9d20e422014-07-21 23:11:03 +00004187``llvm.loop.vectorize`` and ``llvm.loop.interleave`` metadata are only
4188optimization hints and the optimizer will only interleave and vectorize loops if
4189it believes it is safe to do so. The ``llvm.mem.parallel_loop_access`` metadata
4190which contains information about loop-carried memory dependencies can be helpful
4191in determining the safety of these transformations.
Mark Heffernan893752a2014-07-18 19:24:51 +00004192
Mark Heffernan9d20e422014-07-21 23:11:03 +00004193'``llvm.loop.interleave.count``' Metadata
Mark Heffernan893752a2014-07-18 19:24:51 +00004194^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4195
Mark Heffernan9d20e422014-07-21 23:11:03 +00004196This metadata suggests an interleave count to the loop interleaver.
4197The first operand is the string ``llvm.loop.interleave.count`` and the
Mark Heffernan893752a2014-07-18 19:24:51 +00004198second operand is an integer specifying the interleave count. For
4199example:
4200
4201.. code-block:: llvm
4202
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004203 !0 = !{!"llvm.loop.interleave.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004204
Mark Heffernan9d20e422014-07-21 23:11:03 +00004205Note that setting ``llvm.loop.interleave.count`` to 1 disables interleaving
4206multiple iterations of the loop. If ``llvm.loop.interleave.count`` is set to 0
4207then the interleave count will be determined automatically.
4208
4209'``llvm.loop.vectorize.enable``' Metadata
Dan Liew9a1829d2014-07-22 14:59:38 +00004210^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Mark Heffernan9d20e422014-07-21 23:11:03 +00004211
4212This metadata selectively enables or disables vectorization for the loop. The
4213first operand is the string ``llvm.loop.vectorize.enable`` and the second operand
4214is a bit. If the bit operand value is 1 vectorization is enabled. A value of
42150 disables vectorization:
4216
4217.. code-block:: llvm
4218
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004219 !0 = !{!"llvm.loop.vectorize.enable", i1 0}
4220 !1 = !{!"llvm.loop.vectorize.enable", i1 1}
Mark Heffernan893752a2014-07-18 19:24:51 +00004221
4222'``llvm.loop.vectorize.width``' Metadata
4223^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4224
4225This metadata sets the target width of the vectorizer. The first
4226operand is the string ``llvm.loop.vectorize.width`` and the second
4227operand is an integer specifying the width. For example:
4228
4229.. code-block:: llvm
4230
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004231 !0 = !{!"llvm.loop.vectorize.width", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004232
4233Note that setting ``llvm.loop.vectorize.width`` to 1 disables
4234vectorization of the loop. If ``llvm.loop.vectorize.width`` is set to
42350 or if the loop does not have this metadata the width will be
4236determined automatically.
4237
4238'``llvm.loop.unroll``'
4239^^^^^^^^^^^^^^^^^^^^^^
4240
4241Metadata prefixed with ``llvm.loop.unroll`` are loop unrolling
4242optimization hints such as the unroll factor. ``llvm.loop.unroll``
4243metadata should be used in conjunction with ``llvm.loop`` loop
4244identification metadata. The ``llvm.loop.unroll`` metadata are only
4245optimization hints and the unrolling will only be performed if the
4246optimizer believes it is safe to do so.
4247
Mark Heffernan893752a2014-07-18 19:24:51 +00004248'``llvm.loop.unroll.count``' Metadata
4249^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4250
4251This metadata suggests an unroll factor to the loop unroller. The
4252first operand is the string ``llvm.loop.unroll.count`` and the second
4253operand is a positive integer specifying the unroll factor. For
4254example:
4255
4256.. code-block:: llvm
4257
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004258 !0 = !{!"llvm.loop.unroll.count", i32 4}
Mark Heffernan893752a2014-07-18 19:24:51 +00004259
4260If the trip count of the loop is less than the unroll count the loop
4261will be partially unrolled.
4262
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004263'``llvm.loop.unroll.disable``' Metadata
4264^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4265
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004266This metadata disables loop unrolling. The metadata has a single operand
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004267which is the string ``llvm.loop.unroll.disable``. For example:
4268
4269.. code-block:: llvm
4270
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004271 !0 = !{!"llvm.loop.unroll.disable"}
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004272
Kevin Qin715b01e2015-03-09 06:14:18 +00004273'``llvm.loop.unroll.runtime.disable``' Metadata
Dan Liew868b0742015-03-11 13:34:49 +00004274^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Kevin Qin715b01e2015-03-09 06:14:18 +00004275
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004276This metadata disables runtime loop unrolling. The metadata has a single
Kevin Qin715b01e2015-03-09 06:14:18 +00004277operand which is the string ``llvm.loop.unroll.runtime.disable``. For example:
4278
4279.. code-block:: llvm
4280
4281 !0 = !{!"llvm.loop.unroll.runtime.disable"}
4282
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004283'``llvm.loop.unroll.full``' Metadata
4284^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4285
Mark Heffernan3e32a4e2015-06-30 22:48:51 +00004286This metadata suggests that the loop should be unrolled fully. The
4287metadata has a single operand which is the string ``llvm.loop.unroll.full``.
Mark Heffernane6b4ba12014-07-23 17:31:37 +00004288For example:
4289
4290.. code-block:: llvm
4291
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004292 !0 = !{!"llvm.loop.unroll.full"}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004293
4294'``llvm.mem``'
4295^^^^^^^^^^^^^^^
4296
4297Metadata types used to annotate memory accesses with information helpful
4298for optimizations are prefixed with ``llvm.mem``.
4299
4300'``llvm.mem.parallel_loop_access``' Metadata
4301^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4302
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004303The ``llvm.mem.parallel_loop_access`` metadata refers to a loop identifier,
4304or metadata containing a list of loop identifiers for nested loops.
4305The metadata is attached to memory accessing instructions and denotes that
4306no loop carried memory dependence exist between it and other instructions denoted
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004307with the same loop identifier.
4308
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004309Precisely, given two instructions ``m1`` and ``m2`` that both have the
4310``llvm.mem.parallel_loop_access`` metadata, with ``L1`` and ``L2`` being the
4311set of loops associated with that metadata, respectively, then there is no loop
4312carried dependence between ``m1`` and ``m2`` for loops in both ``L1`` and
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004313``L2``.
4314
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004315As a special case, if all memory accessing instructions in a loop have
4316``llvm.mem.parallel_loop_access`` metadata that refers to that loop, then the
4317loop has no loop carried memory dependences and is considered to be a parallel
4318loop.
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004319
Mehdi Amini4a121fa2015-03-14 22:04:06 +00004320Note that if not all memory access instructions have such metadata referring to
4321the loop, then the loop is considered not being trivially parallel. Additional
4322memory dependence analysis is required to make that determination. As a fail
4323safe mechanism, this causes loops that were originally parallel to be considered
4324sequential (if optimization passes that are unaware of the parallel semantics
Pekka Jaaskelainen23b222cc2014-05-23 11:35:46 +00004325insert new memory instructions into the loop body).
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004326
4327Example of a loop that is considered parallel due to its correct use of
Paul Redmond5fdf8362013-05-28 20:00:34 +00004328both ``llvm.loop`` and ``llvm.mem.parallel_loop_access``
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004329metadata types that refer to the same loop identifier metadata.
4330
4331.. code-block:: llvm
4332
4333 for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004334 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004335 %val0 = load i32, i32* %arrayidx, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004336 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004337 store i32 %val0, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004338 ...
4339 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !0
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004340
4341 for.end:
4342 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004343 !0 = !{!0}
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004344
4345It is also possible to have nested parallel loops. In that case the
4346memory accesses refer to a list of loop identifier metadata nodes instead of
4347the loop identifier metadata node directly:
4348
4349.. code-block:: llvm
4350
4351 outer.for.body:
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004352 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004353 %val1 = load i32, i32* %arrayidx3, !llvm.mem.parallel_loop_access !2
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004354 ...
4355 br label %inner.for.body
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004356
4357 inner.for.body:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004358 ...
David Blaikiec7aabbb2015-03-04 22:06:14 +00004359 %val0 = load i32, i32* %arrayidx1, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004360 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004361 store i32 %val0, i32* %arrayidx2, !llvm.mem.parallel_loop_access !0
Paul Redmond5fdf8362013-05-28 20:00:34 +00004362 ...
4363 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop !1
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004364
4365 inner.for.end:
Paul Redmond5fdf8362013-05-28 20:00:34 +00004366 ...
Tobias Grosserfbe95dc2014-03-05 13:36:04 +00004367 store i32 %val1, i32* %arrayidx4, !llvm.mem.parallel_loop_access !2
Paul Redmond5fdf8362013-05-28 20:00:34 +00004368 ...
4369 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop !2
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004370
4371 outer.for.end: ; preds = %for.body
4372 ...
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004373 !0 = !{!1, !2} ; a list of loop identifiers
4374 !1 = !{!1} ; an identifier for the inner loop
4375 !2 = !{!2} ; an identifier for the outer loop
Pekka Jaaskelainen0d237252013-02-13 18:08:57 +00004376
Peter Collingbournee6909c82015-02-20 20:30:47 +00004377'``llvm.bitsets``'
4378^^^^^^^^^^^^^^^^^^
4379
4380The ``llvm.bitsets`` global metadata is used to implement
4381:doc:`bitsets <BitSets>`.
4382
Sean Silvab084af42012-12-07 10:36:55 +00004383Module Flags Metadata
4384=====================
4385
4386Information about the module as a whole is difficult to convey to LLVM's
4387subsystems. The LLVM IR isn't sufficient to transmit this information.
4388The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004389this. These flags are in the form of key / value pairs --- much like a
4390dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvab084af42012-12-07 10:36:55 +00004391look it up.
4392
4393The ``llvm.module.flags`` metadata contains a list of metadata triplets.
4394Each triplet has the following form:
4395
4396- The first element is a *behavior* flag, which specifies the behavior
4397 when two (or more) modules are merged together, and it encounters two
4398 (or more) metadata with the same ID. The supported behaviors are
4399 described below.
4400- The second element is a metadata string that is a unique ID for the
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004401 metadata. Each module may only have one flag entry for each unique ID (not
4402 including entries with the **Require** behavior).
Sean Silvab084af42012-12-07 10:36:55 +00004403- The third element is the value of the flag.
4404
4405When two (or more) modules are merged together, the resulting
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004406``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
4407each unique metadata ID string, there will be exactly one entry in the merged
4408modules ``llvm.module.flags`` metadata table, and the value for that entry will
4409be determined by the merge behavior flag, as described below. The only exception
4410is that entries with the *Require* behavior are always preserved.
Sean Silvab084af42012-12-07 10:36:55 +00004411
4412The following behaviors are supported:
4413
4414.. list-table::
4415 :header-rows: 1
4416 :widths: 10 90
4417
4418 * - Value
4419 - Behavior
4420
4421 * - 1
4422 - **Error**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004423 Emits an error if two values disagree, otherwise the resulting value
4424 is that of the operands.
Sean Silvab084af42012-12-07 10:36:55 +00004425
4426 * - 2
4427 - **Warning**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004428 Emits a warning if two values disagree. The result value will be the
4429 operand for the flag from the first module being linked.
Sean Silvab084af42012-12-07 10:36:55 +00004430
4431 * - 3
4432 - **Require**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004433 Adds a requirement that another module flag be present and have a
4434 specified value after linking is performed. The value must be a
4435 metadata pair, where the first element of the pair is the ID of the
4436 module flag to be restricted, and the second element of the pair is
4437 the value the module flag should be restricted to. This behavior can
4438 be used to restrict the allowable results (via triggering of an
4439 error) of linking IDs with the **Override** behavior.
Sean Silvab084af42012-12-07 10:36:55 +00004440
4441 * - 4
4442 - **Override**
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004443 Uses the specified value, regardless of the behavior or value of the
4444 other module. If both modules specify **Override**, but the values
4445 differ, an error will be emitted.
4446
Daniel Dunbard77d9fb2013-01-16 21:38:56 +00004447 * - 5
4448 - **Append**
4449 Appends the two values, which are required to be metadata nodes.
4450
4451 * - 6
4452 - **AppendUnique**
4453 Appends the two values, which are required to be metadata
4454 nodes. However, duplicate entries in the second list are dropped
4455 during the append operation.
4456
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004457It is an error for a particular unique flag ID to have multiple behaviors,
4458except in the case of **Require** (which adds restrictions on another metadata
4459value) or **Override**.
Sean Silvab084af42012-12-07 10:36:55 +00004460
4461An example of module flags:
4462
4463.. code-block:: llvm
4464
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004465 !0 = !{ i32 1, !"foo", i32 1 }
4466 !1 = !{ i32 4, !"bar", i32 37 }
4467 !2 = !{ i32 2, !"qux", i32 42 }
4468 !3 = !{ i32 3, !"qux",
4469 !{
4470 !"foo", i32 1
Sean Silvab084af42012-12-07 10:36:55 +00004471 }
4472 }
4473 !llvm.module.flags = !{ !0, !1, !2, !3 }
4474
4475- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
4476 if two or more ``!"foo"`` flags are seen is to emit an error if their
4477 values are not equal.
4478
4479- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
4480 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004481 '37'.
Sean Silvab084af42012-12-07 10:36:55 +00004482
4483- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
4484 behavior if two or more ``!"qux"`` flags are seen is to emit a
4485 warning if their values are not equal.
4486
4487- Metadata ``!3`` has the ID ``!"qux"`` and the value:
4488
4489 ::
4490
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004491 !{ !"foo", i32 1 }
Sean Silvab084af42012-12-07 10:36:55 +00004492
Daniel Dunbar25c4b572013-01-15 01:22:53 +00004493 The behavior is to emit an error if the ``llvm.module.flags`` does not
4494 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
4495 performed.
Sean Silvab084af42012-12-07 10:36:55 +00004496
4497Objective-C Garbage Collection Module Flags Metadata
4498----------------------------------------------------
4499
4500On the Mach-O platform, Objective-C stores metadata about garbage
4501collection in a special section called "image info". The metadata
4502consists of a version number and a bitmask specifying what types of
4503garbage collection are supported (if any) by the file. If two or more
4504modules are linked together their garbage collection metadata needs to
4505be merged rather than appended together.
4506
4507The Objective-C garbage collection module flags metadata consists of the
4508following key-value pairs:
4509
4510.. list-table::
4511 :header-rows: 1
4512 :widths: 30 70
4513
4514 * - Key
4515 - Value
4516
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004517 * - ``Objective-C Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004518 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvab084af42012-12-07 10:36:55 +00004519
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004520 * - ``Objective-C Image Info Version``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004521 - **[Required]** --- The version of the image info section. Currently
Sean Silvab084af42012-12-07 10:36:55 +00004522 always 0.
4523
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004524 * - ``Objective-C Image Info Section``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004525 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvab084af42012-12-07 10:36:55 +00004526 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
4527 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
4528 Objective-C ABI version 2.
4529
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004530 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004531 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvab084af42012-12-07 10:36:55 +00004532 not. Valid values are 0, for no garbage collection, and 2, for garbage
4533 collection supported.
4534
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004535 * - ``Objective-C GC Only``
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00004536 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvab084af42012-12-07 10:36:55 +00004537 If present, its value must be 6. This flag requires that the
4538 ``Objective-C Garbage Collection`` flag have the value 2.
4539
4540Some important flag interactions:
4541
4542- If a module with ``Objective-C Garbage Collection`` set to 0 is
4543 merged with a module with ``Objective-C Garbage Collection`` set to
4544 2, then the resulting module has the
4545 ``Objective-C Garbage Collection`` flag set to 0.
4546- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
4547 merged with a module with ``Objective-C GC Only`` set to 6.
4548
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004549Automatic Linker Flags Module Flags Metadata
4550--------------------------------------------
4551
4552Some targets support embedding flags to the linker inside individual object
4553files. Typically this is used in conjunction with language extensions which
4554allow source files to explicitly declare the libraries they depend on, and have
4555these automatically be transmitted to the linker via object files.
4556
4557These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar1dc66ca2013-01-17 18:57:32 +00004558using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004559to be ``AppendUnique``, and the value for the key is expected to be a metadata
4560node which should be a list of other metadata nodes, each of which should be a
4561list of metadata strings defining linker options.
4562
4563For example, the following metadata section specifies two separate sets of
4564linker options, presumably to link against ``libz`` and the ``Cocoa``
4565framework::
4566
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004567 !0 = !{ i32 6, !"Linker Options",
4568 !{
4569 !{ !"-lz" },
4570 !{ !"-framework", !"Cocoa" } } }
Daniel Dunbar252bedc2013-01-17 00:16:27 +00004571 !llvm.module.flags = !{ !0 }
4572
4573The metadata encoding as lists of lists of options, as opposed to a collapsed
4574list of options, is chosen so that the IR encoding can use multiple option
4575strings to specify e.g., a single library, while still having that specifier be
4576preserved as an atomic element that can be recognized by a target specific
4577assembly writer or object file emitter.
4578
4579Each individual option is required to be either a valid option for the target's
4580linker, or an option that is reserved by the target specific assembly writer or
4581object file emitter. No other aspect of these options is defined by the IR.
4582
Oliver Stannard5dc29342014-06-20 10:08:11 +00004583C type width Module Flags Metadata
4584----------------------------------
4585
4586The ARM backend emits a section into each generated object file describing the
4587options that it was compiled with (in a compiler-independent way) to prevent
4588linking incompatible objects, and to allow automatic library selection. Some
4589of these options are not visible at the IR level, namely wchar_t width and enum
4590width.
4591
4592To pass this information to the backend, these options are encoded in module
4593flags metadata, using the following key-value pairs:
4594
4595.. list-table::
4596 :header-rows: 1
4597 :widths: 30 70
4598
4599 * - Key
4600 - Value
4601
4602 * - short_wchar
4603 - * 0 --- sizeof(wchar_t) == 4
4604 * 1 --- sizeof(wchar_t) == 2
4605
4606 * - short_enum
4607 - * 0 --- Enums are at least as large as an ``int``.
4608 * 1 --- Enums are stored in the smallest integer type which can
4609 represent all of its values.
4610
4611For example, the following metadata section specifies that the module was
4612compiled with a ``wchar_t`` width of 4 bytes, and the underlying type of an
4613enum is the smallest type which can represent all of its values::
4614
4615 !llvm.module.flags = !{!0, !1}
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00004616 !0 = !{i32 1, !"short_wchar", i32 1}
4617 !1 = !{i32 1, !"short_enum", i32 0}
Oliver Stannard5dc29342014-06-20 10:08:11 +00004618
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004619.. _intrinsicglobalvariables:
4620
Sean Silvab084af42012-12-07 10:36:55 +00004621Intrinsic Global Variables
4622==========================
4623
4624LLVM has a number of "magic" global variables that contain data that
4625affect code generation or other IR semantics. These are documented here.
4626All globals of this sort should have a section specified as
4627"``llvm.metadata``". This section and all globals that start with
4628"``llvm.``" are reserved for use by LLVM.
4629
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004630.. _gv_llvmused:
4631
Sean Silvab084af42012-12-07 10:36:55 +00004632The '``llvm.used``' Global Variable
4633-----------------------------------
4634
Rafael Espindola74f2e462013-04-22 14:58:02 +00004635The ``@llvm.used`` global is an array which has
Paul Redmond219ef812013-05-30 17:24:32 +00004636:ref:`appending linkage <linkage_appending>`. This array contains a list of
Rafael Espindola70a729d2013-06-11 13:18:13 +00004637pointers to named global variables, functions and aliases which may optionally
4638have a pointer cast formed of bitcast or getelementptr. For example, a legal
Sean Silvab084af42012-12-07 10:36:55 +00004639use of it is:
4640
4641.. code-block:: llvm
4642
4643 @X = global i8 4
4644 @Y = global i32 123
4645
4646 @llvm.used = appending global [2 x i8*] [
4647 i8* @X,
4648 i8* bitcast (i32* @Y to i8*)
4649 ], section "llvm.metadata"
4650
Rafael Espindola74f2e462013-04-22 14:58:02 +00004651If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
4652and linker are required to treat the symbol as if there is a reference to the
Rafael Espindola70a729d2013-06-11 13:18:13 +00004653symbol that it cannot see (which is why they have to be named). For example, if
4654a variable has internal linkage and no references other than that from the
4655``@llvm.used`` list, it cannot be deleted. This is commonly used to represent
4656references from inline asms and other things the compiler cannot "see", and
4657corresponds to "``attribute((used))``" in GNU C.
Sean Silvab084af42012-12-07 10:36:55 +00004658
4659On some targets, the code generator must emit a directive to the
4660assembler or object file to prevent the assembler and linker from
4661molesting the symbol.
4662
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004663.. _gv_llvmcompilerused:
4664
Sean Silvab084af42012-12-07 10:36:55 +00004665The '``llvm.compiler.used``' Global Variable
4666--------------------------------------------
4667
4668The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
4669directive, except that it only prevents the compiler from touching the
4670symbol. On targets that support it, this allows an intelligent linker to
4671optimize references to the symbol without being impeded as it would be
4672by ``@llvm.used``.
4673
4674This is a rare construct that should only be used in rare circumstances,
4675and should not be exposed to source languages.
4676
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004677.. _gv_llvmglobalctors:
4678
Sean Silvab084af42012-12-07 10:36:55 +00004679The '``llvm.global_ctors``' Global Variable
4680-------------------------------------------
4681
4682.. code-block:: llvm
4683
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004684 %0 = type { i32, void ()*, i8* }
4685 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004686
4687The ``@llvm.global_ctors`` array contains a list of constructor
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004688functions, priorities, and an optional associated global or function.
4689The functions referenced by this array will be called in ascending order
4690of priority (i.e. lowest first) when the module is loaded. The order of
4691functions with the same priority is not defined.
4692
4693If the third field is present, non-null, and points to a global variable
4694or function, the initializer function will only run if the associated
4695data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004696
Eli Bendersky0220e6b2013-06-07 20:24:43 +00004697.. _llvmglobaldtors:
4698
Sean Silvab084af42012-12-07 10:36:55 +00004699The '``llvm.global_dtors``' Global Variable
4700-------------------------------------------
4701
4702.. code-block:: llvm
4703
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004704 %0 = type { i32, void ()*, i8* }
4705 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor, i8* @data }]
Sean Silvab084af42012-12-07 10:36:55 +00004706
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004707The ``@llvm.global_dtors`` array contains a list of destructor
4708functions, priorities, and an optional associated global or function.
4709The functions referenced by this array will be called in descending
Reid Klecknerbffbcc52014-05-27 21:35:17 +00004710order of priority (i.e. highest first) when the module is unloaded. The
Reid Klecknerfceb76f2014-05-16 20:39:27 +00004711order of functions with the same priority is not defined.
4712
4713If the third field is present, non-null, and points to a global variable
4714or function, the destructor function will only run if the associated
4715data from the current module is not discarded.
Sean Silvab084af42012-12-07 10:36:55 +00004716
4717Instruction Reference
4718=====================
4719
4720The LLVM instruction set consists of several different classifications
4721of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
4722instructions <binaryops>`, :ref:`bitwise binary
4723instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
4724:ref:`other instructions <otherops>`.
4725
4726.. _terminators:
4727
4728Terminator Instructions
4729-----------------------
4730
4731As mentioned :ref:`previously <functionstructure>`, every basic block in a
4732program ends with a "Terminator" instruction, which indicates which
4733block should be executed after the current block is finished. These
4734terminator instructions typically yield a '``void``' value: they produce
4735control flow, not values (the one exception being the
4736':ref:`invoke <i_invoke>`' instruction).
4737
4738The terminator instructions are: ':ref:`ret <i_ret>`',
4739':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
4740':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
David Majnemerdb82d2f2015-07-10 07:15:17 +00004741':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
Sean Silvab084af42012-12-07 10:36:55 +00004742
4743.. _i_ret:
4744
4745'``ret``' Instruction
4746^^^^^^^^^^^^^^^^^^^^^
4747
4748Syntax:
4749"""""""
4750
4751::
4752
4753 ret <type> <value> ; Return a value from a non-void function
4754 ret void ; Return from void function
4755
4756Overview:
4757"""""""""
4758
4759The '``ret``' instruction is used to return control flow (and optionally
4760a value) from a function back to the caller.
4761
4762There are two forms of the '``ret``' instruction: one that returns a
4763value and then causes control flow, and one that just causes control
4764flow to occur.
4765
4766Arguments:
4767""""""""""
4768
4769The '``ret``' instruction optionally accepts a single argument, the
4770return value. The type of the return value must be a ':ref:`first
4771class <t_firstclass>`' type.
4772
4773A function is not :ref:`well formed <wellformed>` if it it has a non-void
4774return type and contains a '``ret``' instruction with no return value or
4775a return value with a type that does not match its type, or if it has a
4776void return type and contains a '``ret``' instruction with a return
4777value.
4778
4779Semantics:
4780""""""""""
4781
4782When the '``ret``' instruction is executed, control flow returns back to
4783the calling function's context. If the caller is a
4784":ref:`call <i_call>`" instruction, execution continues at the
4785instruction after the call. If the caller was an
4786":ref:`invoke <i_invoke>`" instruction, execution continues at the
4787beginning of the "normal" destination block. If the instruction returns
4788a value, that value shall set the call or invoke instruction's return
4789value.
4790
4791Example:
4792""""""""
4793
4794.. code-block:: llvm
4795
4796 ret i32 5 ; Return an integer value of 5
4797 ret void ; Return from a void function
4798 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
4799
4800.. _i_br:
4801
4802'``br``' Instruction
4803^^^^^^^^^^^^^^^^^^^^
4804
4805Syntax:
4806"""""""
4807
4808::
4809
4810 br i1 <cond>, label <iftrue>, label <iffalse>
4811 br label <dest> ; Unconditional branch
4812
4813Overview:
4814"""""""""
4815
4816The '``br``' instruction is used to cause control flow to transfer to a
4817different basic block in the current function. There are two forms of
4818this instruction, corresponding to a conditional branch and an
4819unconditional branch.
4820
4821Arguments:
4822""""""""""
4823
4824The conditional branch form of the '``br``' instruction takes a single
4825'``i1``' value and two '``label``' values. The unconditional form of the
4826'``br``' instruction takes a single '``label``' value as a target.
4827
4828Semantics:
4829""""""""""
4830
4831Upon execution of a conditional '``br``' instruction, the '``i1``'
4832argument is evaluated. If the value is ``true``, control flows to the
4833'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
4834to the '``iffalse``' ``label`` argument.
4835
4836Example:
4837""""""""
4838
4839.. code-block:: llvm
4840
4841 Test:
4842 %cond = icmp eq i32 %a, %b
4843 br i1 %cond, label %IfEqual, label %IfUnequal
4844 IfEqual:
4845 ret i32 1
4846 IfUnequal:
4847 ret i32 0
4848
4849.. _i_switch:
4850
4851'``switch``' Instruction
4852^^^^^^^^^^^^^^^^^^^^^^^^
4853
4854Syntax:
4855"""""""
4856
4857::
4858
4859 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
4860
4861Overview:
4862"""""""""
4863
4864The '``switch``' instruction is used to transfer control flow to one of
4865several different places. It is a generalization of the '``br``'
4866instruction, allowing a branch to occur to one of many possible
4867destinations.
4868
4869Arguments:
4870""""""""""
4871
4872The '``switch``' instruction uses three parameters: an integer
4873comparison value '``value``', a default '``label``' destination, and an
4874array of pairs of comparison value constants and '``label``'s. The table
4875is not allowed to contain duplicate constant entries.
4876
4877Semantics:
4878""""""""""
4879
4880The ``switch`` instruction specifies a table of values and destinations.
4881When the '``switch``' instruction is executed, this table is searched
4882for the given value. If the value is found, control flow is transferred
4883to the corresponding destination; otherwise, control flow is transferred
4884to the default destination.
4885
4886Implementation:
4887"""""""""""""""
4888
4889Depending on properties of the target machine and the particular
4890``switch`` instruction, this instruction may be code generated in
4891different ways. For example, it could be generated as a series of
4892chained conditional branches or with a lookup table.
4893
4894Example:
4895""""""""
4896
4897.. code-block:: llvm
4898
4899 ; Emulate a conditional br instruction
4900 %Val = zext i1 %value to i32
4901 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
4902
4903 ; Emulate an unconditional br instruction
4904 switch i32 0, label %dest [ ]
4905
4906 ; Implement a jump table:
4907 switch i32 %val, label %otherwise [ i32 0, label %onzero
4908 i32 1, label %onone
4909 i32 2, label %ontwo ]
4910
4911.. _i_indirectbr:
4912
4913'``indirectbr``' Instruction
4914^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4915
4916Syntax:
4917"""""""
4918
4919::
4920
4921 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
4922
4923Overview:
4924"""""""""
4925
4926The '``indirectbr``' instruction implements an indirect branch to a
4927label within the current function, whose address is specified by
4928"``address``". Address must be derived from a
4929:ref:`blockaddress <blockaddress>` constant.
4930
4931Arguments:
4932""""""""""
4933
4934The '``address``' argument is the address of the label to jump to. The
4935rest of the arguments indicate the full set of possible destinations
4936that the address may point to. Blocks are allowed to occur multiple
4937times in the destination list, though this isn't particularly useful.
4938
4939This destination list is required so that dataflow analysis has an
4940accurate understanding of the CFG.
4941
4942Semantics:
4943""""""""""
4944
4945Control transfers to the block specified in the address argument. All
4946possible destination blocks must be listed in the label list, otherwise
4947this instruction has undefined behavior. This implies that jumps to
4948labels defined in other functions have undefined behavior as well.
4949
4950Implementation:
4951"""""""""""""""
4952
4953This is typically implemented with a jump through a register.
4954
4955Example:
4956""""""""
4957
4958.. code-block:: llvm
4959
4960 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
4961
4962.. _i_invoke:
4963
4964'``invoke``' Instruction
4965^^^^^^^^^^^^^^^^^^^^^^^^
4966
4967Syntax:
4968"""""""
4969
4970::
4971
4972 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
4973 to label <normal label> unwind label <exception label>
4974
4975Overview:
4976"""""""""
4977
4978The '``invoke``' instruction causes control to transfer to a specified
4979function, with the possibility of control flow transfer to either the
4980'``normal``' label or the '``exception``' label. If the callee function
4981returns with the "``ret``" instruction, control flow will return to the
4982"normal" label. If the callee (or any indirect callees) returns via the
4983":ref:`resume <i_resume>`" instruction or other exception handling
4984mechanism, control is interrupted and continued at the dynamically
4985nearest "exception" label.
4986
4987The '``exception``' label is a `landing
4988pad <ExceptionHandling.html#overview>`_ for the exception. As such,
4989'``exception``' label is required to have the
4990":ref:`landingpad <i_landingpad>`" instruction, which contains the
4991information about the behavior of the program after unwinding happens,
4992as its first non-PHI instruction. The restrictions on the
4993"``landingpad``" instruction's tightly couples it to the "``invoke``"
4994instruction, so that the important information contained within the
4995"``landingpad``" instruction can't be lost through normal code motion.
4996
4997Arguments:
4998""""""""""
4999
5000This instruction requires several arguments:
5001
5002#. The optional "cconv" marker indicates which :ref:`calling
5003 convention <callingconv>` the call should use. If none is
5004 specified, the call defaults to using C calling conventions.
5005#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5006 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5007 are valid here.
5008#. '``ptr to function ty``': shall be the signature of the pointer to
5009 function value being invoked. In most cases, this is a direct
5010 function invocation, but indirect ``invoke``'s are just as possible,
5011 branching off an arbitrary pointer to function value.
5012#. '``function ptr val``': An LLVM value containing a pointer to a
5013 function to be invoked.
5014#. '``function args``': argument list whose types match the function
5015 signature argument types and parameter attributes. All arguments must
5016 be of :ref:`first class <t_firstclass>` type. If the function signature
5017 indicates the function accepts a variable number of arguments, the
5018 extra arguments can be specified.
5019#. '``normal label``': the label reached when the called function
5020 executes a '``ret``' instruction.
5021#. '``exception label``': the label reached when a callee returns via
5022 the :ref:`resume <i_resume>` instruction or other exception handling
5023 mechanism.
5024#. The optional :ref:`function attributes <fnattrs>` list. Only
5025 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5026 attributes are valid here.
5027
5028Semantics:
5029""""""""""
5030
5031This instruction is designed to operate as a standard '``call``'
5032instruction in most regards. The primary difference is that it
5033establishes an association with a label, which is used by the runtime
5034library to unwind the stack.
5035
5036This instruction is used in languages with destructors to ensure that
5037proper cleanup is performed in the case of either a ``longjmp`` or a
5038thrown exception. Additionally, this is important for implementation of
5039'``catch``' clauses in high-level languages that support them.
5040
5041For the purposes of the SSA form, the definition of the value returned
5042by the '``invoke``' instruction is deemed to occur on the edge from the
5043current block to the "normal" label. If the callee unwinds then no
5044return value is available.
5045
5046Example:
5047""""""""
5048
5049.. code-block:: llvm
5050
5051 %retval = invoke i32 @Test(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005052 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005053 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
Tim Northover675a0962014-06-13 14:24:23 +00005054 unwind label %TestCleanup ; i32:retval set
Sean Silvab084af42012-12-07 10:36:55 +00005055
5056.. _i_resume:
5057
5058'``resume``' Instruction
5059^^^^^^^^^^^^^^^^^^^^^^^^
5060
5061Syntax:
5062"""""""
5063
5064::
5065
5066 resume <type> <value>
5067
5068Overview:
5069"""""""""
5070
5071The '``resume``' instruction is a terminator instruction that has no
5072successors.
5073
5074Arguments:
5075""""""""""
5076
5077The '``resume``' instruction requires one argument, which must have the
5078same type as the result of any '``landingpad``' instruction in the same
5079function.
5080
5081Semantics:
5082""""""""""
5083
5084The '``resume``' instruction resumes propagation of an existing
5085(in-flight) exception whose unwinding was interrupted with a
5086:ref:`landingpad <i_landingpad>` instruction.
5087
5088Example:
5089""""""""
5090
5091.. code-block:: llvm
5092
5093 resume { i8*, i32 } %exn
5094
5095.. _i_unreachable:
5096
5097'``unreachable``' Instruction
5098^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5099
5100Syntax:
5101"""""""
5102
5103::
5104
5105 unreachable
5106
5107Overview:
5108"""""""""
5109
5110The '``unreachable``' instruction has no defined semantics. This
5111instruction is used to inform the optimizer that a particular portion of
5112the code is not reachable. This can be used to indicate that the code
5113after a no-return function cannot be reached, and other facts.
5114
5115Semantics:
5116""""""""""
5117
5118The '``unreachable``' instruction has no defined semantics.
5119
5120.. _binaryops:
5121
5122Binary Operations
5123-----------------
5124
5125Binary operators are used to do most of the computation in a program.
5126They require two operands of the same type, execute an operation on
5127them, and produce a single value. The operands might represent multiple
5128data, as is the case with the :ref:`vector <t_vector>` data type. The
5129result value has the same type as its operands.
5130
5131There are several different binary operators:
5132
5133.. _i_add:
5134
5135'``add``' Instruction
5136^^^^^^^^^^^^^^^^^^^^^
5137
5138Syntax:
5139"""""""
5140
5141::
5142
Tim Northover675a0962014-06-13 14:24:23 +00005143 <result> = add <ty> <op1>, <op2> ; yields ty:result
5144 <result> = add nuw <ty> <op1>, <op2> ; yields ty:result
5145 <result> = add nsw <ty> <op1>, <op2> ; yields ty:result
5146 <result> = add nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005147
5148Overview:
5149"""""""""
5150
5151The '``add``' instruction returns the sum of its two operands.
5152
5153Arguments:
5154""""""""""
5155
5156The two arguments to the '``add``' instruction must be
5157:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5158arguments must have identical types.
5159
5160Semantics:
5161""""""""""
5162
5163The value produced is the integer sum of the two operands.
5164
5165If the sum has unsigned overflow, the result returned is the
5166mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5167the result.
5168
5169Because LLVM integers use a two's complement representation, this
5170instruction is appropriate for both signed and unsigned integers.
5171
5172``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5173respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5174result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
5175unsigned and/or signed overflow, respectively, occurs.
5176
5177Example:
5178""""""""
5179
5180.. code-block:: llvm
5181
Tim Northover675a0962014-06-13 14:24:23 +00005182 <result> = add i32 4, %var ; yields i32:result = 4 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005183
5184.. _i_fadd:
5185
5186'``fadd``' Instruction
5187^^^^^^^^^^^^^^^^^^^^^^
5188
5189Syntax:
5190"""""""
5191
5192::
5193
Tim Northover675a0962014-06-13 14:24:23 +00005194 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005195
5196Overview:
5197"""""""""
5198
5199The '``fadd``' instruction returns the sum of its two operands.
5200
5201Arguments:
5202""""""""""
5203
5204The two arguments to the '``fadd``' instruction must be :ref:`floating
5205point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5206Both arguments must have identical types.
5207
5208Semantics:
5209""""""""""
5210
5211The value produced is the floating point sum of the two operands. This
5212instruction can also take any number of :ref:`fast-math flags <fastmath>`,
5213which are optimization hints to enable otherwise unsafe floating point
5214optimizations:
5215
5216Example:
5217""""""""
5218
5219.. code-block:: llvm
5220
Tim Northover675a0962014-06-13 14:24:23 +00005221 <result> = fadd float 4.0, %var ; yields float:result = 4.0 + %var
Sean Silvab084af42012-12-07 10:36:55 +00005222
5223'``sub``' Instruction
5224^^^^^^^^^^^^^^^^^^^^^
5225
5226Syntax:
5227"""""""
5228
5229::
5230
Tim Northover675a0962014-06-13 14:24:23 +00005231 <result> = sub <ty> <op1>, <op2> ; yields ty:result
5232 <result> = sub nuw <ty> <op1>, <op2> ; yields ty:result
5233 <result> = sub nsw <ty> <op1>, <op2> ; yields ty:result
5234 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005235
5236Overview:
5237"""""""""
5238
5239The '``sub``' instruction returns the difference of its two operands.
5240
5241Note that the '``sub``' instruction is used to represent the '``neg``'
5242instruction present in most other intermediate representations.
5243
5244Arguments:
5245""""""""""
5246
5247The two arguments to the '``sub``' instruction must be
5248:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5249arguments must have identical types.
5250
5251Semantics:
5252""""""""""
5253
5254The value produced is the integer difference of the two operands.
5255
5256If the difference has unsigned overflow, the result returned is the
5257mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
5258the result.
5259
5260Because LLVM integers use a two's complement representation, this
5261instruction is appropriate for both signed and unsigned integers.
5262
5263``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5264respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5265result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
5266unsigned and/or signed overflow, respectively, occurs.
5267
5268Example:
5269""""""""
5270
5271.. code-block:: llvm
5272
Tim Northover675a0962014-06-13 14:24:23 +00005273 <result> = sub i32 4, %var ; yields i32:result = 4 - %var
5274 <result> = sub i32 0, %val ; yields i32:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005275
5276.. _i_fsub:
5277
5278'``fsub``' Instruction
5279^^^^^^^^^^^^^^^^^^^^^^
5280
5281Syntax:
5282"""""""
5283
5284::
5285
Tim Northover675a0962014-06-13 14:24:23 +00005286 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005287
5288Overview:
5289"""""""""
5290
5291The '``fsub``' instruction returns the difference of its two operands.
5292
5293Note that the '``fsub``' instruction is used to represent the '``fneg``'
5294instruction present in most other intermediate representations.
5295
5296Arguments:
5297""""""""""
5298
5299The two arguments to the '``fsub``' instruction must be :ref:`floating
5300point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5301Both arguments must have identical types.
5302
5303Semantics:
5304""""""""""
5305
5306The value produced is the floating point difference of the two operands.
5307This instruction can also take any number of :ref:`fast-math
5308flags <fastmath>`, which are optimization hints to enable otherwise
5309unsafe floating point optimizations:
5310
5311Example:
5312""""""""
5313
5314.. code-block:: llvm
5315
Tim Northover675a0962014-06-13 14:24:23 +00005316 <result> = fsub float 4.0, %var ; yields float:result = 4.0 - %var
5317 <result> = fsub float -0.0, %val ; yields float:result = -%var
Sean Silvab084af42012-12-07 10:36:55 +00005318
5319'``mul``' Instruction
5320^^^^^^^^^^^^^^^^^^^^^
5321
5322Syntax:
5323"""""""
5324
5325::
5326
Tim Northover675a0962014-06-13 14:24:23 +00005327 <result> = mul <ty> <op1>, <op2> ; yields ty:result
5328 <result> = mul nuw <ty> <op1>, <op2> ; yields ty:result
5329 <result> = mul nsw <ty> <op1>, <op2> ; yields ty:result
5330 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005331
5332Overview:
5333"""""""""
5334
5335The '``mul``' instruction returns the product of its two operands.
5336
5337Arguments:
5338""""""""""
5339
5340The two arguments to the '``mul``' instruction must be
5341:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5342arguments must have identical types.
5343
5344Semantics:
5345""""""""""
5346
5347The value produced is the integer product of the two operands.
5348
5349If the result of the multiplication has unsigned overflow, the result
5350returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
5351bit width of the result.
5352
5353Because LLVM integers use a two's complement representation, and the
5354result is the same width as the operands, this instruction returns the
5355correct result for both signed and unsigned integers. If a full product
5356(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
5357sign-extended or zero-extended as appropriate to the width of the full
5358product.
5359
5360``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
5361respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
5362result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
5363unsigned and/or signed overflow, respectively, occurs.
5364
5365Example:
5366""""""""
5367
5368.. code-block:: llvm
5369
Tim Northover675a0962014-06-13 14:24:23 +00005370 <result> = mul i32 4, %var ; yields i32:result = 4 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005371
5372.. _i_fmul:
5373
5374'``fmul``' Instruction
5375^^^^^^^^^^^^^^^^^^^^^^
5376
5377Syntax:
5378"""""""
5379
5380::
5381
Tim Northover675a0962014-06-13 14:24:23 +00005382 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005383
5384Overview:
5385"""""""""
5386
5387The '``fmul``' instruction returns the product of its two operands.
5388
5389Arguments:
5390""""""""""
5391
5392The two arguments to the '``fmul``' instruction must be :ref:`floating
5393point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5394Both arguments must have identical types.
5395
5396Semantics:
5397""""""""""
5398
5399The value produced is the floating point product of the two operands.
5400This instruction can also take any number of :ref:`fast-math
5401flags <fastmath>`, which are optimization hints to enable otherwise
5402unsafe floating point optimizations:
5403
5404Example:
5405""""""""
5406
5407.. code-block:: llvm
5408
Tim Northover675a0962014-06-13 14:24:23 +00005409 <result> = fmul float 4.0, %var ; yields float:result = 4.0 * %var
Sean Silvab084af42012-12-07 10:36:55 +00005410
5411'``udiv``' Instruction
5412^^^^^^^^^^^^^^^^^^^^^^
5413
5414Syntax:
5415"""""""
5416
5417::
5418
Tim Northover675a0962014-06-13 14:24:23 +00005419 <result> = udiv <ty> <op1>, <op2> ; yields ty:result
5420 <result> = udiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005421
5422Overview:
5423"""""""""
5424
5425The '``udiv``' instruction returns the quotient of its two operands.
5426
5427Arguments:
5428""""""""""
5429
5430The two arguments to the '``udiv``' instruction must be
5431:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5432arguments must have identical types.
5433
5434Semantics:
5435""""""""""
5436
5437The value produced is the unsigned integer quotient of the two operands.
5438
5439Note that unsigned integer division and signed integer division are
5440distinct operations; for signed integer division, use '``sdiv``'.
5441
5442Division by zero leads to undefined behavior.
5443
5444If the ``exact`` keyword is present, the result value of the ``udiv`` is
5445a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
5446such, "((a udiv exact b) mul b) == a").
5447
5448Example:
5449""""""""
5450
5451.. code-block:: llvm
5452
Tim Northover675a0962014-06-13 14:24:23 +00005453 <result> = udiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005454
5455'``sdiv``' Instruction
5456^^^^^^^^^^^^^^^^^^^^^^
5457
5458Syntax:
5459"""""""
5460
5461::
5462
Tim Northover675a0962014-06-13 14:24:23 +00005463 <result> = sdiv <ty> <op1>, <op2> ; yields ty:result
5464 <result> = sdiv exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005465
5466Overview:
5467"""""""""
5468
5469The '``sdiv``' instruction returns the quotient of its two operands.
5470
5471Arguments:
5472""""""""""
5473
5474The two arguments to the '``sdiv``' instruction must be
5475:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5476arguments must have identical types.
5477
5478Semantics:
5479""""""""""
5480
5481The value produced is the signed integer quotient of the two operands
5482rounded towards zero.
5483
5484Note that signed integer division and unsigned integer division are
5485distinct operations; for unsigned integer division, use '``udiv``'.
5486
5487Division by zero leads to undefined behavior. Overflow also leads to
5488undefined behavior; this is a rare case, but can occur, for example, by
5489doing a 32-bit division of -2147483648 by -1.
5490
5491If the ``exact`` keyword is present, the result value of the ``sdiv`` is
5492a :ref:`poison value <poisonvalues>` if the result would be rounded.
5493
5494Example:
5495""""""""
5496
5497.. code-block:: llvm
5498
Tim Northover675a0962014-06-13 14:24:23 +00005499 <result> = sdiv i32 4, %var ; yields i32:result = 4 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005500
5501.. _i_fdiv:
5502
5503'``fdiv``' Instruction
5504^^^^^^^^^^^^^^^^^^^^^^
5505
5506Syntax:
5507"""""""
5508
5509::
5510
Tim Northover675a0962014-06-13 14:24:23 +00005511 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005512
5513Overview:
5514"""""""""
5515
5516The '``fdiv``' instruction returns the quotient of its two operands.
5517
5518Arguments:
5519""""""""""
5520
5521The two arguments to the '``fdiv``' instruction must be :ref:`floating
5522point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5523Both arguments must have identical types.
5524
5525Semantics:
5526""""""""""
5527
5528The value produced is the floating point quotient of the two operands.
5529This instruction can also take any number of :ref:`fast-math
5530flags <fastmath>`, which are optimization hints to enable otherwise
5531unsafe floating point optimizations:
5532
5533Example:
5534""""""""
5535
5536.. code-block:: llvm
5537
Tim Northover675a0962014-06-13 14:24:23 +00005538 <result> = fdiv float 4.0, %var ; yields float:result = 4.0 / %var
Sean Silvab084af42012-12-07 10:36:55 +00005539
5540'``urem``' Instruction
5541^^^^^^^^^^^^^^^^^^^^^^
5542
5543Syntax:
5544"""""""
5545
5546::
5547
Tim Northover675a0962014-06-13 14:24:23 +00005548 <result> = urem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005549
5550Overview:
5551"""""""""
5552
5553The '``urem``' instruction returns the remainder from the unsigned
5554division of its two arguments.
5555
5556Arguments:
5557""""""""""
5558
5559The two arguments to the '``urem``' instruction must be
5560:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5561arguments must have identical types.
5562
5563Semantics:
5564""""""""""
5565
5566This instruction returns the unsigned integer *remainder* of a division.
5567This instruction always performs an unsigned division to get the
5568remainder.
5569
5570Note that unsigned integer remainder and signed integer remainder are
5571distinct operations; for signed integer remainder, use '``srem``'.
5572
5573Taking the remainder of a division by zero leads to undefined behavior.
5574
5575Example:
5576""""""""
5577
5578.. code-block:: llvm
5579
Tim Northover675a0962014-06-13 14:24:23 +00005580 <result> = urem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005581
5582'``srem``' Instruction
5583^^^^^^^^^^^^^^^^^^^^^^
5584
5585Syntax:
5586"""""""
5587
5588::
5589
Tim Northover675a0962014-06-13 14:24:23 +00005590 <result> = srem <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005591
5592Overview:
5593"""""""""
5594
5595The '``srem``' instruction returns the remainder from the signed
5596division of its two operands. This instruction can also take
5597:ref:`vector <t_vector>` versions of the values in which case the elements
5598must be integers.
5599
5600Arguments:
5601""""""""""
5602
5603The two arguments to the '``srem``' instruction must be
5604:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5605arguments must have identical types.
5606
5607Semantics:
5608""""""""""
5609
5610This instruction returns the *remainder* of a division (where the result
5611is either zero or has the same sign as the dividend, ``op1``), not the
5612*modulo* operator (where the result is either zero or has the same sign
5613as the divisor, ``op2``) of a value. For more information about the
5614difference, see `The Math
5615Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
5616table of how this is implemented in various languages, please see
5617`Wikipedia: modulo
5618operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
5619
5620Note that signed integer remainder and unsigned integer remainder are
5621distinct operations; for unsigned integer remainder, use '``urem``'.
5622
5623Taking the remainder of a division by zero leads to undefined behavior.
5624Overflow also leads to undefined behavior; this is a rare case, but can
5625occur, for example, by taking the remainder of a 32-bit division of
5626-2147483648 by -1. (The remainder doesn't actually overflow, but this
5627rule lets srem be implemented using instructions that return both the
5628result of the division and the remainder.)
5629
5630Example:
5631""""""""
5632
5633.. code-block:: llvm
5634
Tim Northover675a0962014-06-13 14:24:23 +00005635 <result> = srem i32 4, %var ; yields i32:result = 4 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005636
5637.. _i_frem:
5638
5639'``frem``' Instruction
5640^^^^^^^^^^^^^^^^^^^^^^
5641
5642Syntax:
5643"""""""
5644
5645::
5646
Tim Northover675a0962014-06-13 14:24:23 +00005647 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005648
5649Overview:
5650"""""""""
5651
5652The '``frem``' instruction returns the remainder from the division of
5653its two operands.
5654
5655Arguments:
5656""""""""""
5657
5658The two arguments to the '``frem``' instruction must be :ref:`floating
5659point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
5660Both arguments must have identical types.
5661
5662Semantics:
5663""""""""""
5664
5665This instruction returns the *remainder* of a division. The remainder
5666has the same sign as the dividend. This instruction can also take any
5667number of :ref:`fast-math flags <fastmath>`, which are optimization hints
5668to enable otherwise unsafe floating point optimizations:
5669
5670Example:
5671""""""""
5672
5673.. code-block:: llvm
5674
Tim Northover675a0962014-06-13 14:24:23 +00005675 <result> = frem float 4.0, %var ; yields float:result = 4.0 % %var
Sean Silvab084af42012-12-07 10:36:55 +00005676
5677.. _bitwiseops:
5678
5679Bitwise Binary Operations
5680-------------------------
5681
5682Bitwise binary operators are used to do various forms of bit-twiddling
5683in a program. They are generally very efficient instructions and can
5684commonly be strength reduced from other instructions. They require two
5685operands of the same type, execute an operation on them, and produce a
5686single value. The resulting value is the same type as its operands.
5687
5688'``shl``' Instruction
5689^^^^^^^^^^^^^^^^^^^^^
5690
5691Syntax:
5692"""""""
5693
5694::
5695
Tim Northover675a0962014-06-13 14:24:23 +00005696 <result> = shl <ty> <op1>, <op2> ; yields ty:result
5697 <result> = shl nuw <ty> <op1>, <op2> ; yields ty:result
5698 <result> = shl nsw <ty> <op1>, <op2> ; yields ty:result
5699 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005700
5701Overview:
5702"""""""""
5703
5704The '``shl``' instruction returns the first operand shifted to the left
5705a specified number of bits.
5706
5707Arguments:
5708""""""""""
5709
5710Both arguments to the '``shl``' instruction must be the same
5711:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5712'``op2``' is treated as an unsigned value.
5713
5714Semantics:
5715""""""""""
5716
5717The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
5718where ``n`` is the width of the result. If ``op2`` is (statically or
Sean Silvab8a108c2015-04-17 21:58:55 +00005719dynamically) equal to or larger than the number of bits in
Sean Silvab084af42012-12-07 10:36:55 +00005720``op1``, the result is undefined. If the arguments are vectors, each
5721vector element of ``op1`` is shifted by the corresponding shift amount
5722in ``op2``.
5723
5724If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
5725value <poisonvalues>` if it shifts out any non-zero bits. If the
5726``nsw`` keyword is present, then the shift produces a :ref:`poison
5727value <poisonvalues>` if it shifts out any bits that disagree with the
5728resultant sign bit. As such, NUW/NSW have the same semantics as they
5729would if the shift were expressed as a mul instruction with the same
5730nsw/nuw bits in (mul %op1, (shl 1, %op2)).
5731
5732Example:
5733""""""""
5734
5735.. code-block:: llvm
5736
Tim Northover675a0962014-06-13 14:24:23 +00005737 <result> = shl i32 4, %var ; yields i32: 4 << %var
5738 <result> = shl i32 4, 2 ; yields i32: 16
5739 <result> = shl i32 1, 10 ; yields i32: 1024
Sean Silvab084af42012-12-07 10:36:55 +00005740 <result> = shl i32 1, 32 ; undefined
5741 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
5742
5743'``lshr``' Instruction
5744^^^^^^^^^^^^^^^^^^^^^^
5745
5746Syntax:
5747"""""""
5748
5749::
5750
Tim Northover675a0962014-06-13 14:24:23 +00005751 <result> = lshr <ty> <op1>, <op2> ; yields ty:result
5752 <result> = lshr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005753
5754Overview:
5755"""""""""
5756
5757The '``lshr``' instruction (logical shift right) returns the first
5758operand shifted to the right a specified number of bits with zero fill.
5759
5760Arguments:
5761""""""""""
5762
5763Both arguments to the '``lshr``' instruction must be the same
5764:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5765'``op2``' is treated as an unsigned value.
5766
5767Semantics:
5768""""""""""
5769
5770This instruction always performs a logical shift right operation. The
5771most significant bits of the result will be filled with zero bits after
5772the shift. If ``op2`` is (statically or dynamically) equal to or larger
5773than the number of bits in ``op1``, the result is undefined. If the
5774arguments are vectors, each vector element of ``op1`` is shifted by the
5775corresponding shift amount in ``op2``.
5776
5777If the ``exact`` keyword is present, the result value of the ``lshr`` is
5778a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
5779non-zero.
5780
5781Example:
5782""""""""
5783
5784.. code-block:: llvm
5785
Tim Northover675a0962014-06-13 14:24:23 +00005786 <result> = lshr i32 4, 1 ; yields i32:result = 2
5787 <result> = lshr i32 4, 2 ; yields i32:result = 1
5788 <result> = lshr i8 4, 3 ; yields i8:result = 0
5789 <result> = lshr i8 -2, 1 ; yields i8:result = 0x7F
Sean Silvab084af42012-12-07 10:36:55 +00005790 <result> = lshr i32 1, 32 ; undefined
5791 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
5792
5793'``ashr``' Instruction
5794^^^^^^^^^^^^^^^^^^^^^^
5795
5796Syntax:
5797"""""""
5798
5799::
5800
Tim Northover675a0962014-06-13 14:24:23 +00005801 <result> = ashr <ty> <op1>, <op2> ; yields ty:result
5802 <result> = ashr exact <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005803
5804Overview:
5805"""""""""
5806
5807The '``ashr``' instruction (arithmetic shift right) returns the first
5808operand shifted to the right a specified number of bits with sign
5809extension.
5810
5811Arguments:
5812""""""""""
5813
5814Both arguments to the '``ashr``' instruction must be the same
5815:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
5816'``op2``' is treated as an unsigned value.
5817
5818Semantics:
5819""""""""""
5820
5821This instruction always performs an arithmetic shift right operation,
5822The most significant bits of the result will be filled with the sign bit
5823of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
5824than the number of bits in ``op1``, the result is undefined. If the
5825arguments are vectors, each vector element of ``op1`` is shifted by the
5826corresponding shift amount in ``op2``.
5827
5828If the ``exact`` keyword is present, the result value of the ``ashr`` is
5829a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
5830non-zero.
5831
5832Example:
5833""""""""
5834
5835.. code-block:: llvm
5836
Tim Northover675a0962014-06-13 14:24:23 +00005837 <result> = ashr i32 4, 1 ; yields i32:result = 2
5838 <result> = ashr i32 4, 2 ; yields i32:result = 1
5839 <result> = ashr i8 4, 3 ; yields i8:result = 0
5840 <result> = ashr i8 -2, 1 ; yields i8:result = -1
Sean Silvab084af42012-12-07 10:36:55 +00005841 <result> = ashr i32 1, 32 ; undefined
5842 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
5843
5844'``and``' Instruction
5845^^^^^^^^^^^^^^^^^^^^^
5846
5847Syntax:
5848"""""""
5849
5850::
5851
Tim Northover675a0962014-06-13 14:24:23 +00005852 <result> = and <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005853
5854Overview:
5855"""""""""
5856
5857The '``and``' instruction returns the bitwise logical and of its two
5858operands.
5859
5860Arguments:
5861""""""""""
5862
5863The two arguments to the '``and``' instruction must be
5864:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5865arguments must have identical types.
5866
5867Semantics:
5868""""""""""
5869
5870The truth table used for the '``and``' instruction is:
5871
5872+-----+-----+-----+
5873| In0 | In1 | Out |
5874+-----+-----+-----+
5875| 0 | 0 | 0 |
5876+-----+-----+-----+
5877| 0 | 1 | 0 |
5878+-----+-----+-----+
5879| 1 | 0 | 0 |
5880+-----+-----+-----+
5881| 1 | 1 | 1 |
5882+-----+-----+-----+
5883
5884Example:
5885""""""""
5886
5887.. code-block:: llvm
5888
Tim Northover675a0962014-06-13 14:24:23 +00005889 <result> = and i32 4, %var ; yields i32:result = 4 & %var
5890 <result> = and i32 15, 40 ; yields i32:result = 8
5891 <result> = and i32 4, 8 ; yields i32:result = 0
Sean Silvab084af42012-12-07 10:36:55 +00005892
5893'``or``' Instruction
5894^^^^^^^^^^^^^^^^^^^^
5895
5896Syntax:
5897"""""""
5898
5899::
5900
Tim Northover675a0962014-06-13 14:24:23 +00005901 <result> = or <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005902
5903Overview:
5904"""""""""
5905
5906The '``or``' instruction returns the bitwise logical inclusive or of its
5907two operands.
5908
5909Arguments:
5910""""""""""
5911
5912The two arguments to the '``or``' instruction must be
5913:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5914arguments must have identical types.
5915
5916Semantics:
5917""""""""""
5918
5919The truth table used for the '``or``' instruction is:
5920
5921+-----+-----+-----+
5922| In0 | In1 | Out |
5923+-----+-----+-----+
5924| 0 | 0 | 0 |
5925+-----+-----+-----+
5926| 0 | 1 | 1 |
5927+-----+-----+-----+
5928| 1 | 0 | 1 |
5929+-----+-----+-----+
5930| 1 | 1 | 1 |
5931+-----+-----+-----+
5932
5933Example:
5934""""""""
5935
5936::
5937
Tim Northover675a0962014-06-13 14:24:23 +00005938 <result> = or i32 4, %var ; yields i32:result = 4 | %var
5939 <result> = or i32 15, 40 ; yields i32:result = 47
5940 <result> = or i32 4, 8 ; yields i32:result = 12
Sean Silvab084af42012-12-07 10:36:55 +00005941
5942'``xor``' Instruction
5943^^^^^^^^^^^^^^^^^^^^^
5944
5945Syntax:
5946"""""""
5947
5948::
5949
Tim Northover675a0962014-06-13 14:24:23 +00005950 <result> = xor <ty> <op1>, <op2> ; yields ty:result
Sean Silvab084af42012-12-07 10:36:55 +00005951
5952Overview:
5953"""""""""
5954
5955The '``xor``' instruction returns the bitwise logical exclusive or of
5956its two operands. The ``xor`` is used to implement the "one's
5957complement" operation, which is the "~" operator in C.
5958
5959Arguments:
5960""""""""""
5961
5962The two arguments to the '``xor``' instruction must be
5963:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
5964arguments must have identical types.
5965
5966Semantics:
5967""""""""""
5968
5969The truth table used for the '``xor``' instruction is:
5970
5971+-----+-----+-----+
5972| In0 | In1 | Out |
5973+-----+-----+-----+
5974| 0 | 0 | 0 |
5975+-----+-----+-----+
5976| 0 | 1 | 1 |
5977+-----+-----+-----+
5978| 1 | 0 | 1 |
5979+-----+-----+-----+
5980| 1 | 1 | 0 |
5981+-----+-----+-----+
5982
5983Example:
5984""""""""
5985
5986.. code-block:: llvm
5987
Tim Northover675a0962014-06-13 14:24:23 +00005988 <result> = xor i32 4, %var ; yields i32:result = 4 ^ %var
5989 <result> = xor i32 15, 40 ; yields i32:result = 39
5990 <result> = xor i32 4, 8 ; yields i32:result = 12
5991 <result> = xor i32 %V, -1 ; yields i32:result = ~%V
Sean Silvab084af42012-12-07 10:36:55 +00005992
5993Vector Operations
5994-----------------
5995
5996LLVM supports several instructions to represent vector operations in a
5997target-independent manner. These instructions cover the element-access
5998and vector-specific operations needed to process vectors effectively.
5999While LLVM does directly support these vector operations, many
6000sophisticated algorithms will want to use target-specific intrinsics to
6001take full advantage of a specific target.
6002
6003.. _i_extractelement:
6004
6005'``extractelement``' Instruction
6006^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6007
6008Syntax:
6009"""""""
6010
6011::
6012
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006013 <result> = extractelement <n x <ty>> <val>, <ty2> <idx> ; yields <ty>
Sean Silvab084af42012-12-07 10:36:55 +00006014
6015Overview:
6016"""""""""
6017
6018The '``extractelement``' instruction extracts a single scalar element
6019from a vector at a specified index.
6020
6021Arguments:
6022""""""""""
6023
6024The first operand of an '``extractelement``' instruction is a value of
6025:ref:`vector <t_vector>` type. The second operand is an index indicating
6026the position from which to extract the element. The index may be a
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006027variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006028
6029Semantics:
6030""""""""""
6031
6032The result is a scalar of the same type as the element type of ``val``.
6033Its value is the value at position ``idx`` of ``val``. If ``idx``
6034exceeds the length of ``val``, the results are undefined.
6035
6036Example:
6037""""""""
6038
6039.. code-block:: llvm
6040
6041 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
6042
6043.. _i_insertelement:
6044
6045'``insertelement``' Instruction
6046^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6047
6048Syntax:
6049"""""""
6050
6051::
6052
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006053 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, <ty2> <idx> ; yields <n x <ty>>
Sean Silvab084af42012-12-07 10:36:55 +00006054
6055Overview:
6056"""""""""
6057
6058The '``insertelement``' instruction inserts a scalar element into a
6059vector at a specified index.
6060
6061Arguments:
6062""""""""""
6063
6064The first operand of an '``insertelement``' instruction is a value of
6065:ref:`vector <t_vector>` type. The second operand is a scalar value whose
6066type must equal the element type of the first operand. The third operand
6067is an index indicating the position at which to insert the value. The
Michael J. Spencer1f10c5ea2014-05-01 22:12:39 +00006068index may be a variable of any integer type.
Sean Silvab084af42012-12-07 10:36:55 +00006069
6070Semantics:
6071""""""""""
6072
6073The result is a vector of the same type as ``val``. Its element values
6074are those of ``val`` except at position ``idx``, where it gets the value
6075``elt``. If ``idx`` exceeds the length of ``val``, the results are
6076undefined.
6077
6078Example:
6079""""""""
6080
6081.. code-block:: llvm
6082
6083 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
6084
6085.. _i_shufflevector:
6086
6087'``shufflevector``' Instruction
6088^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6089
6090Syntax:
6091"""""""
6092
6093::
6094
6095 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
6096
6097Overview:
6098"""""""""
6099
6100The '``shufflevector``' instruction constructs a permutation of elements
6101from two input vectors, returning a vector with the same element type as
6102the input and length that is the same as the shuffle mask.
6103
6104Arguments:
6105""""""""""
6106
6107The first two operands of a '``shufflevector``' instruction are vectors
6108with the same type. The third argument is a shuffle mask whose element
6109type is always 'i32'. The result of the instruction is a vector whose
6110length is the same as the shuffle mask and whose element type is the
6111same as the element type of the first two operands.
6112
6113The shuffle mask operand is required to be a constant vector with either
6114constant integer or undef values.
6115
6116Semantics:
6117""""""""""
6118
6119The elements of the two input vectors are numbered from left to right
6120across both of the vectors. The shuffle mask operand specifies, for each
6121element of the result vector, which element of the two input vectors the
6122result element gets. The element selector may be undef (meaning "don't
6123care") and the second operand may be undef if performing a shuffle from
6124only one vector.
6125
6126Example:
6127""""""""
6128
6129.. code-block:: llvm
6130
6131 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6132 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
6133 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
6134 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
6135 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
6136 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
6137 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
6138 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
6139
6140Aggregate Operations
6141--------------------
6142
6143LLVM supports several instructions for working with
6144:ref:`aggregate <t_aggregate>` values.
6145
6146.. _i_extractvalue:
6147
6148'``extractvalue``' Instruction
6149^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6150
6151Syntax:
6152"""""""
6153
6154::
6155
6156 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
6157
6158Overview:
6159"""""""""
6160
6161The '``extractvalue``' instruction extracts the value of a member field
6162from an :ref:`aggregate <t_aggregate>` value.
6163
6164Arguments:
6165""""""""""
6166
6167The first operand of an '``extractvalue``' instruction is a value of
6168:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
6169constant indices to specify which value to extract in a similar manner
6170as indices in a '``getelementptr``' instruction.
6171
6172The major differences to ``getelementptr`` indexing are:
6173
6174- Since the value being indexed is not a pointer, the first index is
6175 omitted and assumed to be zero.
6176- At least one index must be specified.
6177- Not only struct indices but also array indices must be in bounds.
6178
6179Semantics:
6180""""""""""
6181
6182The result is the value at the position in the aggregate specified by
6183the index operands.
6184
6185Example:
6186""""""""
6187
6188.. code-block:: llvm
6189
6190 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
6191
6192.. _i_insertvalue:
6193
6194'``insertvalue``' Instruction
6195^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6196
6197Syntax:
6198"""""""
6199
6200::
6201
6202 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
6203
6204Overview:
6205"""""""""
6206
6207The '``insertvalue``' instruction inserts a value into a member field in
6208an :ref:`aggregate <t_aggregate>` value.
6209
6210Arguments:
6211""""""""""
6212
6213The first operand of an '``insertvalue``' instruction is a value of
6214:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
6215a first-class value to insert. The following operands are constant
6216indices indicating the position at which to insert the value in a
6217similar manner as indices in a '``extractvalue``' instruction. The value
6218to insert must have the same type as the value identified by the
6219indices.
6220
6221Semantics:
6222""""""""""
6223
6224The result is an aggregate of the same type as ``val``. Its value is
6225that of ``val`` except that the value at the position specified by the
6226indices is that of ``elt``.
6227
6228Example:
6229""""""""
6230
6231.. code-block:: llvm
6232
6233 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
6234 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
Dan Liewffcfe7f2014-09-08 21:19:46 +00006235 %agg3 = insertvalue {i32, {float}} undef, float %val, 1, 0 ; yields {i32 undef, {float %val}}
Sean Silvab084af42012-12-07 10:36:55 +00006236
6237.. _memoryops:
6238
6239Memory Access and Addressing Operations
6240---------------------------------------
6241
6242A key design point of an SSA-based representation is how it represents
6243memory. In LLVM, no memory locations are in SSA form, which makes things
6244very simple. This section describes how to read, write, and allocate
6245memory in LLVM.
6246
6247.. _i_alloca:
6248
6249'``alloca``' Instruction
6250^^^^^^^^^^^^^^^^^^^^^^^^
6251
6252Syntax:
6253"""""""
6254
6255::
6256
Tim Northover675a0962014-06-13 14:24:23 +00006257 <result> = alloca [inalloca] <type> [, <ty> <NumElements>] [, align <alignment>] ; yields type*:result
Sean Silvab084af42012-12-07 10:36:55 +00006258
6259Overview:
6260"""""""""
6261
6262The '``alloca``' instruction allocates memory on the stack frame of the
6263currently executing function, to be automatically released when this
6264function returns to its caller. The object is always allocated in the
6265generic address space (address space zero).
6266
6267Arguments:
6268""""""""""
6269
6270The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
6271bytes of memory on the runtime stack, returning a pointer of the
6272appropriate type to the program. If "NumElements" is specified, it is
6273the number of elements allocated, otherwise "NumElements" is defaulted
6274to be one. If a constant alignment is specified, the value result of the
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006275allocation is guaranteed to be aligned to at least that boundary. The
6276alignment may not be greater than ``1 << 29``. If not specified, or if
6277zero, the target can choose to align the allocation on any convenient
6278boundary compatible with the type.
Sean Silvab084af42012-12-07 10:36:55 +00006279
6280'``type``' may be any sized type.
6281
6282Semantics:
6283""""""""""
6284
6285Memory is allocated; a pointer is returned. The operation is undefined
6286if there is insufficient stack space for the allocation. '``alloca``'d
6287memory is automatically released when the function returns. The
6288'``alloca``' instruction is commonly used to represent automatic
6289variables that must have an address available. When the function returns
6290(either with the ``ret`` or ``resume`` instructions), the memory is
6291reclaimed. Allocating zero bytes is legal, but the result is undefined.
6292The order in which memory is allocated (ie., which way the stack grows)
6293is not specified.
6294
6295Example:
6296""""""""
6297
6298.. code-block:: llvm
6299
Tim Northover675a0962014-06-13 14:24:23 +00006300 %ptr = alloca i32 ; yields i32*:ptr
6301 %ptr = alloca i32, i32 4 ; yields i32*:ptr
6302 %ptr = alloca i32, i32 4, align 1024 ; yields i32*:ptr
6303 %ptr = alloca i32, align 1024 ; yields i32*:ptr
Sean Silvab084af42012-12-07 10:36:55 +00006304
6305.. _i_load:
6306
6307'``load``' Instruction
6308^^^^^^^^^^^^^^^^^^^^^^
6309
6310Syntax:
6311"""""""
6312
6313::
6314
Sanjoy Dasf9995472015-05-19 20:10:19 +00006315 <result> = load [volatile] <ty>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>][, !nonnull !<index>][, !dereferenceable !<index>][, !dereferenceable_or_null !<index>]
Sean Silvab084af42012-12-07 10:36:55 +00006316 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
6317 !<index> = !{ i32 1 }
6318
6319Overview:
6320"""""""""
6321
6322The '``load``' instruction is used to read from memory.
6323
6324Arguments:
6325""""""""""
6326
Eli Bendersky239a78b2013-04-17 20:17:08 +00006327The argument to the ``load`` instruction specifies the memory address
David Blaikiec7aabbb2015-03-04 22:06:14 +00006328from which to load. The type specified must be a :ref:`first
Sean Silvab084af42012-12-07 10:36:55 +00006329class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
6330then the optimizer is not allowed to modify the number or order of
6331execution of this ``load`` with other :ref:`volatile
6332operations <volatile>`.
6333
6334If the ``load`` is marked as ``atomic``, it takes an extra
6335:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6336``release`` and ``acq_rel`` orderings are not valid on ``load``
6337instructions. Atomic loads produce :ref:`defined <memmodel>` results
6338when they may see multiple atomic stores. The type of the pointee must
6339be an integer type whose bit width is a power of two greater than or
6340equal to eight and less than or equal to a target-specific size limit.
6341``align`` must be explicitly specified on atomic loads, and the load has
6342undefined behavior if the alignment is not set to a value which is at
6343least the size in bytes of the pointee. ``!nontemporal`` does not have
6344any defined semantics for atomic loads.
6345
6346The optional constant ``align`` argument specifies the alignment of the
6347operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky239a78b2013-04-17 20:17:08 +00006348or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006349alignment for the target. It is the responsibility of the code emitter
6350to ensure that the alignment information is correct. Overestimating the
6351alignment results in undefined behavior. Underestimating the alignment
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006352may produce less efficient code. An alignment of 1 is always safe. The
6353maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006354
6355The optional ``!nontemporal`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006356metadata name ``<index>`` corresponding to a metadata node with one
Sean Silvab084af42012-12-07 10:36:55 +00006357``i32`` entry of value 1. The existence of the ``!nontemporal``
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006358metadata on the instruction tells the optimizer and code generator
Sean Silvab084af42012-12-07 10:36:55 +00006359that this load is not expected to be reused in the cache. The code
6360generator may select special instructions to save cache bandwidth, such
6361as the ``MOVNT`` instruction on x86.
6362
6363The optional ``!invariant.load`` metadata must reference a single
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006364metadata name ``<index>`` corresponding to a metadata node with no
6365entries. The existence of the ``!invariant.load`` metadata on the
Philip Reamese1526fc2014-11-24 22:32:43 +00006366instruction tells the optimizer and code generator that the address
6367operand to this load points to memory which can be assumed unchanged.
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006368Being invariant does not imply that a location is dereferenceable,
6369but it does imply that once the location is known dereferenceable
6370its value is henceforth unchanging.
Sean Silvab084af42012-12-07 10:36:55 +00006371
Philip Reamescdb72f32014-10-20 22:40:55 +00006372The optional ``!nonnull`` metadata must reference a single
6373metadata name ``<index>`` corresponding to a metadata node with no
6374entries. The existence of the ``!nonnull`` metadata on the
6375instruction tells the optimizer that the value loaded is known to
6376never be null. This is analogous to the ''nonnull'' attribute
Mehdi Amini4a121fa2015-03-14 22:04:06 +00006377on parameters and return values. This metadata can only be applied
6378to loads of a pointer type.
Philip Reamescdb72f32014-10-20 22:40:55 +00006379
Sanjoy Dasf9995472015-05-19 20:10:19 +00006380The optional ``!dereferenceable`` metadata must reference a single
6381metadata name ``<index>`` corresponding to a metadata node with one ``i64``
6382entry. The existence of the ``!dereferenceable`` metadata on the instruction
6383tells the optimizer that the value loaded is known to be dereferenceable.
6384The number of bytes known to be dereferenceable is specified by the integer
6385value in the metadata node. This is analogous to the ''dereferenceable''
6386attribute on parameters and return values. This metadata can only be applied
6387to loads of a pointer type.
6388
6389The optional ``!dereferenceable_or_null`` metadata must reference a single
6390metadata name ``<index>`` corresponding to a metadata node with one ``i64``
6391entry. The existence of the ``!dereferenceable_or_null`` metadata on the
6392instruction tells the optimizer that the value loaded is known to be either
6393dereferenceable or null.
6394The number of bytes known to be dereferenceable is specified by the integer
6395value in the metadata node. This is analogous to the ''dereferenceable_or_null''
6396attribute on parameters and return values. This metadata can only be applied
6397to loads of a pointer type.
6398
Sean Silvab084af42012-12-07 10:36:55 +00006399Semantics:
6400""""""""""
6401
6402The location of memory pointed to is loaded. If the value being loaded
6403is of scalar type then the number of bytes read does not exceed the
6404minimum number of bytes needed to hold all bits of the type. For
6405example, loading an ``i24`` reads at most three bytes. When loading a
6406value of a type like ``i20`` with a size that is not an integral number
6407of bytes, the result is undefined if the value was not originally
6408written using a store of the same type.
6409
6410Examples:
6411"""""""""
6412
6413.. code-block:: llvm
6414
Tim Northover675a0962014-06-13 14:24:23 +00006415 %ptr = alloca i32 ; yields i32*:ptr
6416 store i32 3, i32* %ptr ; yields void
David Blaikiec7aabbb2015-03-04 22:06:14 +00006417 %val = load i32, i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006418
6419.. _i_store:
6420
6421'``store``' Instruction
6422^^^^^^^^^^^^^^^^^^^^^^^
6423
6424Syntax:
6425"""""""
6426
6427::
6428
Tim Northover675a0962014-06-13 14:24:23 +00006429 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields void
6430 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006431
6432Overview:
6433"""""""""
6434
6435The '``store``' instruction is used to write to memory.
6436
6437Arguments:
6438""""""""""
6439
Eli Benderskyca380842013-04-17 17:17:20 +00006440There are two arguments to the ``store`` instruction: a value to store
6441and an address at which to store it. The type of the ``<pointer>``
Sean Silvab084af42012-12-07 10:36:55 +00006442operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Benderskyca380842013-04-17 17:17:20 +00006443the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvab084af42012-12-07 10:36:55 +00006444then the optimizer is not allowed to modify the number or order of
6445execution of this ``store`` with other :ref:`volatile
6446operations <volatile>`.
6447
6448If the ``store`` is marked as ``atomic``, it takes an extra
6449:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
6450``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
6451instructions. Atomic loads produce :ref:`defined <memmodel>` results
6452when they may see multiple atomic stores. The type of the pointee must
6453be an integer type whose bit width is a power of two greater than or
6454equal to eight and less than or equal to a target-specific size limit.
6455``align`` must be explicitly specified on atomic stores, and the store
6456has undefined behavior if the alignment is not set to a value which is
6457at least the size in bytes of the pointee. ``!nontemporal`` does not
6458have any defined semantics for atomic stores.
6459
Eli Benderskyca380842013-04-17 17:17:20 +00006460The optional constant ``align`` argument specifies the alignment of the
Sean Silvab084af42012-12-07 10:36:55 +00006461operation (that is, the alignment of the memory address). A value of 0
Eli Benderskyca380842013-04-17 17:17:20 +00006462or an omitted ``align`` argument means that the operation has the ABI
Sean Silvab084af42012-12-07 10:36:55 +00006463alignment for the target. It is the responsibility of the code emitter
6464to ensure that the alignment information is correct. Overestimating the
Eli Benderskyca380842013-04-17 17:17:20 +00006465alignment results in undefined behavior. Underestimating the
Sean Silvab084af42012-12-07 10:36:55 +00006466alignment may produce less efficient code. An alignment of 1 is always
Reid Kleckner15fe7a52014-07-15 01:16:09 +00006467safe. The maximum possible alignment is ``1 << 29``.
Sean Silvab084af42012-12-07 10:36:55 +00006468
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006469The optional ``!nontemporal`` metadata must reference a single metadata
Eli Benderskyca380842013-04-17 17:17:20 +00006470name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
Stefanus Du Toit736e2e22013-06-20 14:02:44 +00006471value 1. The existence of the ``!nontemporal`` metadata on the instruction
Sean Silvab084af42012-12-07 10:36:55 +00006472tells the optimizer and code generator that this load is not expected to
6473be reused in the cache. The code generator may select special
6474instructions to save cache bandwidth, such as the MOVNT instruction on
6475x86.
6476
6477Semantics:
6478""""""""""
6479
Eli Benderskyca380842013-04-17 17:17:20 +00006480The contents of memory are updated to contain ``<value>`` at the
6481location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvab084af42012-12-07 10:36:55 +00006482of scalar type then the number of bytes written does not exceed the
6483minimum number of bytes needed to hold all bits of the type. For
6484example, storing an ``i24`` writes at most three bytes. When writing a
6485value of a type like ``i20`` with a size that is not an integral number
6486of bytes, it is unspecified what happens to the extra bits that do not
6487belong to the type, but they will typically be overwritten.
6488
6489Example:
6490""""""""
6491
6492.. code-block:: llvm
6493
Tim Northover675a0962014-06-13 14:24:23 +00006494 %ptr = alloca i32 ; yields i32*:ptr
6495 store i32 3, i32* %ptr ; yields void
6496 %val = load i32* %ptr ; yields i32:val = i32 3
Sean Silvab084af42012-12-07 10:36:55 +00006497
6498.. _i_fence:
6499
6500'``fence``' Instruction
6501^^^^^^^^^^^^^^^^^^^^^^^
6502
6503Syntax:
6504"""""""
6505
6506::
6507
Tim Northover675a0962014-06-13 14:24:23 +00006508 fence [singlethread] <ordering> ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006509
6510Overview:
6511"""""""""
6512
6513The '``fence``' instruction is used to introduce happens-before edges
6514between operations.
6515
6516Arguments:
6517""""""""""
6518
6519'``fence``' instructions take an :ref:`ordering <ordering>` argument which
6520defines what *synchronizes-with* edges they add. They can only be given
6521``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
6522
6523Semantics:
6524""""""""""
6525
6526A fence A which has (at least) ``release`` ordering semantics
6527*synchronizes with* a fence B with (at least) ``acquire`` ordering
6528semantics if and only if there exist atomic operations X and Y, both
6529operating on some atomic object M, such that A is sequenced before X, X
6530modifies M (either directly or through some side effect of a sequence
6531headed by X), Y is sequenced before B, and Y observes M. This provides a
6532*happens-before* dependency between A and B. Rather than an explicit
6533``fence``, one (but not both) of the atomic operations X or Y might
6534provide a ``release`` or ``acquire`` (resp.) ordering constraint and
6535still *synchronize-with* the explicit ``fence`` and establish the
6536*happens-before* edge.
6537
6538A ``fence`` which has ``seq_cst`` ordering, in addition to having both
6539``acquire`` and ``release`` semantics specified above, participates in
6540the global program order of other ``seq_cst`` operations and/or fences.
6541
6542The optional ":ref:`singlethread <singlethread>`" argument specifies
6543that the fence only synchronizes with other fences in the same thread.
6544(This is useful for interacting with signal handlers.)
6545
6546Example:
6547""""""""
6548
6549.. code-block:: llvm
6550
Tim Northover675a0962014-06-13 14:24:23 +00006551 fence acquire ; yields void
6552 fence singlethread seq_cst ; yields void
Sean Silvab084af42012-12-07 10:36:55 +00006553
6554.. _i_cmpxchg:
6555
6556'``cmpxchg``' Instruction
6557^^^^^^^^^^^^^^^^^^^^^^^^^
6558
6559Syntax:
6560"""""""
6561
6562::
6563
Tim Northover675a0962014-06-13 14:24:23 +00006564 cmpxchg [weak] [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <success ordering> <failure ordering> ; yields { ty, i1 }
Sean Silvab084af42012-12-07 10:36:55 +00006565
6566Overview:
6567"""""""""
6568
6569The '``cmpxchg``' instruction is used to atomically modify memory. It
6570loads a value in memory and compares it to a given value. If they are
Tim Northover420a2162014-06-13 14:24:07 +00006571equal, it tries to store a new value into the memory.
Sean Silvab084af42012-12-07 10:36:55 +00006572
6573Arguments:
6574""""""""""
6575
6576There are three arguments to the '``cmpxchg``' instruction: an address
6577to operate on, a value to compare to the value currently be at that
6578address, and a new value to place at that address if the compared values
6579are equal. The type of '<cmp>' must be an integer type whose bit width
6580is a power of two greater than or equal to eight and less than or equal
6581to a target-specific size limit. '<cmp>' and '<new>' must have the same
6582type, and the type of '<pointer>' must be a pointer to that type. If the
6583``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
6584to modify the number or order of execution of this ``cmpxchg`` with
6585other :ref:`volatile operations <volatile>`.
6586
Tim Northovere94a5182014-03-11 10:48:52 +00006587The success and failure :ref:`ordering <ordering>` arguments specify how this
Tim Northover1dcc9f92014-06-13 14:24:16 +00006588``cmpxchg`` synchronizes with other atomic operations. Both ordering parameters
6589must be at least ``monotonic``, the ordering constraint on failure must be no
6590stronger than that on success, and the failure ordering cannot be either
6591``release`` or ``acq_rel``.
Sean Silvab084af42012-12-07 10:36:55 +00006592
6593The optional "``singlethread``" argument declares that the ``cmpxchg``
6594is only atomic with respect to code (usually signal handlers) running in
6595the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
6596respect to all other code in the system.
6597
6598The pointer passed into cmpxchg must have alignment greater than or
6599equal to the size in memory of the operand.
6600
6601Semantics:
6602""""""""""
6603
Tim Northover420a2162014-06-13 14:24:07 +00006604The contents of memory at the location specified by the '``<pointer>``' operand
6605is read and compared to '``<cmp>``'; if the read value is the equal, the
6606'``<new>``' is written. The original value at the location is returned, together
6607with a flag indicating success (true) or failure (false).
6608
6609If the cmpxchg operation is marked as ``weak`` then a spurious failure is
6610permitted: the operation may not write ``<new>`` even if the comparison
6611matched.
6612
6613If the cmpxchg operation is strong (the default), the i1 value is 1 if and only
6614if the value loaded equals ``cmp``.
Sean Silvab084af42012-12-07 10:36:55 +00006615
Tim Northovere94a5182014-03-11 10:48:52 +00006616A successful ``cmpxchg`` is a read-modify-write instruction for the purpose of
6617identifying release sequences. A failed ``cmpxchg`` is equivalent to an atomic
6618load with an ordering parameter determined the second ordering parameter.
Sean Silvab084af42012-12-07 10:36:55 +00006619
6620Example:
6621""""""""
6622
6623.. code-block:: llvm
6624
6625 entry:
David Blaikiec7aabbb2015-03-04 22:06:14 +00006626 %orig = atomic load i32, i32* %ptr unordered ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00006627 br label %loop
6628
6629 loop:
6630 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
6631 %squared = mul i32 %cmp, %cmp
Tim Northover675a0962014-06-13 14:24:23 +00006632 %val_success = cmpxchg i32* %ptr, i32 %cmp, i32 %squared acq_rel monotonic ; yields { i32, i1 }
Tim Northover420a2162014-06-13 14:24:07 +00006633 %value_loaded = extractvalue { i32, i1 } %val_success, 0
6634 %success = extractvalue { i32, i1 } %val_success, 1
Sean Silvab084af42012-12-07 10:36:55 +00006635 br i1 %success, label %done, label %loop
6636
6637 done:
6638 ...
6639
6640.. _i_atomicrmw:
6641
6642'``atomicrmw``' Instruction
6643^^^^^^^^^^^^^^^^^^^^^^^^^^^
6644
6645Syntax:
6646"""""""
6647
6648::
6649
Tim Northover675a0962014-06-13 14:24:23 +00006650 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields ty
Sean Silvab084af42012-12-07 10:36:55 +00006651
6652Overview:
6653"""""""""
6654
6655The '``atomicrmw``' instruction is used to atomically modify memory.
6656
6657Arguments:
6658""""""""""
6659
6660There are three arguments to the '``atomicrmw``' instruction: an
6661operation to apply, an address whose value to modify, an argument to the
6662operation. The operation must be one of the following keywords:
6663
6664- xchg
6665- add
6666- sub
6667- and
6668- nand
6669- or
6670- xor
6671- max
6672- min
6673- umax
6674- umin
6675
6676The type of '<value>' must be an integer type whose bit width is a power
6677of two greater than or equal to eight and less than or equal to a
6678target-specific size limit. The type of the '``<pointer>``' operand must
6679be a pointer to that type. If the ``atomicrmw`` is marked as
6680``volatile``, then the optimizer is not allowed to modify the number or
6681order of execution of this ``atomicrmw`` with other :ref:`volatile
6682operations <volatile>`.
6683
6684Semantics:
6685""""""""""
6686
6687The contents of memory at the location specified by the '``<pointer>``'
6688operand are atomically read, modified, and written back. The original
6689value at the location is returned. The modification is specified by the
6690operation argument:
6691
6692- xchg: ``*ptr = val``
6693- add: ``*ptr = *ptr + val``
6694- sub: ``*ptr = *ptr - val``
6695- and: ``*ptr = *ptr & val``
6696- nand: ``*ptr = ~(*ptr & val)``
6697- or: ``*ptr = *ptr | val``
6698- xor: ``*ptr = *ptr ^ val``
6699- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
6700- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
6701- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
6702 comparison)
6703- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
6704 comparison)
6705
6706Example:
6707""""""""
6708
6709.. code-block:: llvm
6710
Tim Northover675a0962014-06-13 14:24:23 +00006711 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields i32
Sean Silvab084af42012-12-07 10:36:55 +00006712
6713.. _i_getelementptr:
6714
6715'``getelementptr``' Instruction
6716^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6717
6718Syntax:
6719"""""""
6720
6721::
6722
David Blaikie16a97eb2015-03-04 22:02:58 +00006723 <result> = getelementptr <ty>, <ty>* <ptrval>{, <ty> <idx>}*
6724 <result> = getelementptr inbounds <ty>, <ty>* <ptrval>{, <ty> <idx>}*
6725 <result> = getelementptr <ty>, <ptr vector> <ptrval>, <vector index type> <idx>
Sean Silvab084af42012-12-07 10:36:55 +00006726
6727Overview:
6728"""""""""
6729
6730The '``getelementptr``' instruction is used to get the address of a
6731subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00006732address calculation only and does not access memory. The instruction can also
6733be used to calculate a vector of such addresses.
Sean Silvab084af42012-12-07 10:36:55 +00006734
6735Arguments:
6736""""""""""
6737
David Blaikie16a97eb2015-03-04 22:02:58 +00006738The first argument is always a type used as the basis for the calculations.
6739The second argument is always a pointer or a vector of pointers, and is the
6740base address to start from. The remaining arguments are indices
Sean Silvab084af42012-12-07 10:36:55 +00006741that indicate which of the elements of the aggregate object are indexed.
6742The interpretation of each index is dependent on the type being indexed
6743into. The first index always indexes the pointer value given as the
6744first argument, the second index indexes a value of the type pointed to
6745(not necessarily the value directly pointed to, since the first index
6746can be non-zero), etc. The first type indexed into must be a pointer
6747value, subsequent types can be arrays, vectors, and structs. Note that
6748subsequent types being indexed into can never be pointers, since that
6749would require loading the pointer before continuing calculation.
6750
6751The type of each index argument depends on the type it is indexing into.
6752When indexing into a (optionally packed) structure, only ``i32`` integer
6753**constants** are allowed (when using a vector of indices they must all
6754be the **same** ``i32`` integer constant). When indexing into an array,
6755pointer or vector, integers of any width are allowed, and they are not
6756required to be constant. These integers are treated as signed values
6757where relevant.
6758
6759For example, let's consider a C code fragment and how it gets compiled
6760to LLVM:
6761
6762.. code-block:: c
6763
6764 struct RT {
6765 char A;
6766 int B[10][20];
6767 char C;
6768 };
6769 struct ST {
6770 int X;
6771 double Y;
6772 struct RT Z;
6773 };
6774
6775 int *foo(struct ST *s) {
6776 return &s[1].Z.B[5][13];
6777 }
6778
6779The LLVM code generated by Clang is:
6780
6781.. code-block:: llvm
6782
6783 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
6784 %struct.ST = type { i32, double, %struct.RT }
6785
6786 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
6787 entry:
David Blaikie16a97eb2015-03-04 22:02:58 +00006788 %arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
Sean Silvab084af42012-12-07 10:36:55 +00006789 ret i32* %arrayidx
6790 }
6791
6792Semantics:
6793""""""""""
6794
6795In the example above, the first index is indexing into the
6796'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
6797= '``{ i32, double, %struct.RT }``' type, a structure. The second index
6798indexes into the third element of the structure, yielding a
6799'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
6800structure. The third index indexes into the second element of the
6801structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
6802dimensions of the array are subscripted into, yielding an '``i32``'
6803type. The '``getelementptr``' instruction returns a pointer to this
6804element, thus computing a value of '``i32*``' type.
6805
6806Note that it is perfectly legal to index partially through a structure,
6807returning a pointer to an inner element. Because of this, the LLVM code
6808for the given testcase is equivalent to:
6809
6810.. code-block:: llvm
6811
6812 define i32* @foo(%struct.ST* %s) {
David Blaikie16a97eb2015-03-04 22:02:58 +00006813 %t1 = getelementptr %struct.ST, %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
6814 %t2 = getelementptr %struct.ST, %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
6815 %t3 = getelementptr %struct.RT, %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
6816 %t4 = getelementptr [10 x [20 x i32]], [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
6817 %t5 = getelementptr [20 x i32], [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
Sean Silvab084af42012-12-07 10:36:55 +00006818 ret i32* %t5
6819 }
6820
6821If the ``inbounds`` keyword is present, the result value of the
6822``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
6823pointer is not an *in bounds* address of an allocated object, or if any
6824of the addresses that would be formed by successive addition of the
6825offsets implied by the indices to the base address with infinitely
6826precise signed arithmetic are not an *in bounds* address of that
6827allocated object. The *in bounds* addresses for an allocated object are
6828all the addresses that point into the object, plus the address one byte
6829past the end. In cases where the base is a vector of pointers the
6830``inbounds`` keyword applies to each of the computations element-wise.
6831
6832If the ``inbounds`` keyword is not present, the offsets are added to the
6833base address with silently-wrapping two's complement arithmetic. If the
6834offsets have a different width from the pointer, they are sign-extended
6835or truncated to the width of the pointer. The result value of the
6836``getelementptr`` may be outside the object pointed to by the base
6837pointer. The result value may not necessarily be used to access memory
6838though, even if it happens to point into allocated storage. See the
6839:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
6840information.
6841
6842The getelementptr instruction is often confusing. For some more insight
6843into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
6844
6845Example:
6846""""""""
6847
6848.. code-block:: llvm
6849
6850 ; yields [12 x i8]*:aptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006851 %aptr = getelementptr {i32, [12 x i8]}, {i32, [12 x i8]}* %saptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006852 ; yields i8*:vptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006853 %vptr = getelementptr {i32, <2 x i8>}, {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006854 ; yields i8*:eptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006855 %eptr = getelementptr [12 x i8], [12 x i8]* %aptr, i64 0, i32 1
Sean Silvab084af42012-12-07 10:36:55 +00006856 ; yields i32*:iptr
David Blaikie16a97eb2015-03-04 22:02:58 +00006857 %iptr = getelementptr [10 x i32], [10 x i32]* @arr, i16 0, i16 0
Sean Silvab084af42012-12-07 10:36:55 +00006858
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00006859Vector of pointers:
6860"""""""""""""""""""
6861
6862The ``getelementptr`` returns a vector of pointers, instead of a single address,
6863when one or more of its arguments is a vector. In such cases, all vector
6864arguments should have the same number of elements, and every scalar argument
6865will be effectively broadcast into a vector during address calculation.
Sean Silvab084af42012-12-07 10:36:55 +00006866
6867.. code-block:: llvm
6868
Elena Demikhovsky37a4da82015-07-09 07:42:48 +00006869 ; All arguments are vectors:
6870 ; A[i] = ptrs[i] + offsets[i]*sizeof(i8)
6871 %A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
6872
6873 ; Add the same scalar offset to each pointer of a vector:
6874 ; A[i] = ptrs[i] + offset*sizeof(i8)
6875 %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
6876
6877 ; Add distinct offsets to the same pointer:
6878 ; A[i] = ptr + offsets[i]*sizeof(i8)
6879 %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
6880
6881 ; In all cases described above the type of the result is <4 x i8*>
6882
6883The two following instructions are equivalent:
6884
6885.. code-block:: llvm
6886
6887 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
6888 <4 x i32> <i32 2, i32 2, i32 2, i32 2>,
6889 <4 x i32> <i32 1, i32 1, i32 1, i32 1>,
6890 <4 x i32> %ind4,
6891 <4 x i64> <i64 13, i64 13, i64 13, i64 13>
6892
6893 getelementptr %struct.ST, <4 x %struct.ST*> %s, <4 x i64> %ind1,
6894 i32 2, i32 1, <4 x i32> %ind4, i64 13
6895
6896Let's look at the C code, where the vector version of ``getelementptr``
6897makes sense:
6898
6899.. code-block:: c
6900
6901 // Let's assume that we vectorize the following loop:
6902 double *A, B; int *C;
6903 for (int i = 0; i < size; ++i) {
6904 A[i] = B[C[i]];
6905 }
6906
6907.. code-block:: llvm
6908
6909 ; get pointers for 8 elements from array B
6910 %ptrs = getelementptr double, double* %B, <8 x i32> %C
6911 ; load 8 elements from array B into A
6912 %A = call <8 x double> @llvm.masked.gather.v8f64(<8 x double*> %ptrs,
6913 i32 8, <8 x i1> %mask, <8 x double> %passthru)
Sean Silvab084af42012-12-07 10:36:55 +00006914
6915Conversion Operations
6916---------------------
6917
6918The instructions in this category are the conversion instructions
6919(casting) which all take a single operand and a type. They perform
6920various bit conversions on the operand.
6921
6922'``trunc .. to``' Instruction
6923^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6924
6925Syntax:
6926"""""""
6927
6928::
6929
6930 <result> = trunc <ty> <value> to <ty2> ; yields ty2
6931
6932Overview:
6933"""""""""
6934
6935The '``trunc``' instruction truncates its operand to the type ``ty2``.
6936
6937Arguments:
6938""""""""""
6939
6940The '``trunc``' instruction takes a value to trunc, and a type to trunc
6941it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
6942of the same number of integers. The bit size of the ``value`` must be
6943larger than the bit size of the destination type, ``ty2``. Equal sized
6944types are not allowed.
6945
6946Semantics:
6947""""""""""
6948
6949The '``trunc``' instruction truncates the high order bits in ``value``
6950and converts the remaining bits to ``ty2``. Since the source size must
6951be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
6952It will always truncate bits.
6953
6954Example:
6955""""""""
6956
6957.. code-block:: llvm
6958
6959 %X = trunc i32 257 to i8 ; yields i8:1
6960 %Y = trunc i32 123 to i1 ; yields i1:true
6961 %Z = trunc i32 122 to i1 ; yields i1:false
6962 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
6963
6964'``zext .. to``' Instruction
6965^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6966
6967Syntax:
6968"""""""
6969
6970::
6971
6972 <result> = zext <ty> <value> to <ty2> ; yields ty2
6973
6974Overview:
6975"""""""""
6976
6977The '``zext``' instruction zero extends its operand to type ``ty2``.
6978
6979Arguments:
6980""""""""""
6981
6982The '``zext``' instruction takes a value to cast, and a type to cast it
6983to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
6984the same number of integers. The bit size of the ``value`` must be
6985smaller than the bit size of the destination type, ``ty2``.
6986
6987Semantics:
6988""""""""""
6989
6990The ``zext`` fills the high order bits of the ``value`` with zero bits
6991until it reaches the size of the destination type, ``ty2``.
6992
6993When zero extending from i1, the result will always be either 0 or 1.
6994
6995Example:
6996""""""""
6997
6998.. code-block:: llvm
6999
7000 %X = zext i32 257 to i64 ; yields i64:257
7001 %Y = zext i1 true to i32 ; yields i32:1
7002 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7003
7004'``sext .. to``' Instruction
7005^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7006
7007Syntax:
7008"""""""
7009
7010::
7011
7012 <result> = sext <ty> <value> to <ty2> ; yields ty2
7013
7014Overview:
7015"""""""""
7016
7017The '``sext``' sign extends ``value`` to the type ``ty2``.
7018
7019Arguments:
7020""""""""""
7021
7022The '``sext``' instruction takes a value to cast, and a type to cast it
7023to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
7024the same number of integers. The bit size of the ``value`` must be
7025smaller than the bit size of the destination type, ``ty2``.
7026
7027Semantics:
7028""""""""""
7029
7030The '``sext``' instruction performs a sign extension by copying the sign
7031bit (highest order bit) of the ``value`` until it reaches the bit size
7032of the type ``ty2``.
7033
7034When sign extending from i1, the extension always results in -1 or 0.
7035
7036Example:
7037""""""""
7038
7039.. code-block:: llvm
7040
7041 %X = sext i8 -1 to i16 ; yields i16 :65535
7042 %Y = sext i1 true to i32 ; yields i32:-1
7043 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
7044
7045'``fptrunc .. to``' Instruction
7046^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7047
7048Syntax:
7049"""""""
7050
7051::
7052
7053 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
7054
7055Overview:
7056"""""""""
7057
7058The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
7059
7060Arguments:
7061""""""""""
7062
7063The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
7064value to cast and a :ref:`floating point <t_floating>` type to cast it to.
7065The size of ``value`` must be larger than the size of ``ty2``. This
7066implies that ``fptrunc`` cannot be used to make a *no-op cast*.
7067
7068Semantics:
7069""""""""""
7070
7071The '``fptrunc``' instruction truncates a ``value`` from a larger
7072:ref:`floating point <t_floating>` type to a smaller :ref:`floating
7073point <t_floating>` type. If the value cannot fit within the
7074destination type, ``ty2``, then the results are undefined.
7075
7076Example:
7077""""""""
7078
7079.. code-block:: llvm
7080
7081 %X = fptrunc double 123.0 to float ; yields float:123.0
7082 %Y = fptrunc double 1.0E+300 to float ; yields undefined
7083
7084'``fpext .. to``' Instruction
7085^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7086
7087Syntax:
7088"""""""
7089
7090::
7091
7092 <result> = fpext <ty> <value> to <ty2> ; yields ty2
7093
7094Overview:
7095"""""""""
7096
7097The '``fpext``' extends a floating point ``value`` to a larger floating
7098point value.
7099
7100Arguments:
7101""""""""""
7102
7103The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
7104``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
7105to. The source type must be smaller than the destination type.
7106
7107Semantics:
7108""""""""""
7109
7110The '``fpext``' instruction extends the ``value`` from a smaller
7111:ref:`floating point <t_floating>` type to a larger :ref:`floating
7112point <t_floating>` type. The ``fpext`` cannot be used to make a
7113*no-op cast* because it always changes bits. Use ``bitcast`` to make a
7114*no-op cast* for a floating point cast.
7115
7116Example:
7117""""""""
7118
7119.. code-block:: llvm
7120
7121 %X = fpext float 3.125 to double ; yields double:3.125000e+00
7122 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
7123
7124'``fptoui .. to``' Instruction
7125^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7126
7127Syntax:
7128"""""""
7129
7130::
7131
7132 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
7133
7134Overview:
7135"""""""""
7136
7137The '``fptoui``' converts a floating point ``value`` to its unsigned
7138integer equivalent of type ``ty2``.
7139
7140Arguments:
7141""""""""""
7142
7143The '``fptoui``' instruction takes a value to cast, which must be a
7144scalar or vector :ref:`floating point <t_floating>` value, and a type to
7145cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7146``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7147type with the same number of elements as ``ty``
7148
7149Semantics:
7150""""""""""
7151
7152The '``fptoui``' instruction converts its :ref:`floating
7153point <t_floating>` operand into the nearest (rounding towards zero)
7154unsigned integer value. If the value cannot fit in ``ty2``, the results
7155are undefined.
7156
7157Example:
7158""""""""
7159
7160.. code-block:: llvm
7161
7162 %X = fptoui double 123.0 to i32 ; yields i32:123
7163 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
7164 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
7165
7166'``fptosi .. to``' Instruction
7167^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7168
7169Syntax:
7170"""""""
7171
7172::
7173
7174 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
7175
7176Overview:
7177"""""""""
7178
7179The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
7180``value`` to type ``ty2``.
7181
7182Arguments:
7183""""""""""
7184
7185The '``fptosi``' instruction takes a value to cast, which must be a
7186scalar or vector :ref:`floating point <t_floating>` value, and a type to
7187cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
7188``ty`` is a vector floating point type, ``ty2`` must be a vector integer
7189type with the same number of elements as ``ty``
7190
7191Semantics:
7192""""""""""
7193
7194The '``fptosi``' instruction converts its :ref:`floating
7195point <t_floating>` operand into the nearest (rounding towards zero)
7196signed integer value. If the value cannot fit in ``ty2``, the results
7197are undefined.
7198
7199Example:
7200""""""""
7201
7202.. code-block:: llvm
7203
7204 %X = fptosi double -123.0 to i32 ; yields i32:-123
7205 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
7206 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
7207
7208'``uitofp .. to``' Instruction
7209^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7210
7211Syntax:
7212"""""""
7213
7214::
7215
7216 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
7217
7218Overview:
7219"""""""""
7220
7221The '``uitofp``' instruction regards ``value`` as an unsigned integer
7222and converts that value to the ``ty2`` type.
7223
7224Arguments:
7225""""""""""
7226
7227The '``uitofp``' instruction takes a value to cast, which must be a
7228scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7229``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7230``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7231type with the same number of elements as ``ty``
7232
7233Semantics:
7234""""""""""
7235
7236The '``uitofp``' instruction interprets its operand as an unsigned
7237integer quantity and converts it to the corresponding floating point
7238value. If the value cannot fit in the floating point value, the results
7239are undefined.
7240
7241Example:
7242""""""""
7243
7244.. code-block:: llvm
7245
7246 %X = uitofp i32 257 to float ; yields float:257.0
7247 %Y = uitofp i8 -1 to double ; yields double:255.0
7248
7249'``sitofp .. to``' Instruction
7250^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7251
7252Syntax:
7253"""""""
7254
7255::
7256
7257 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
7258
7259Overview:
7260"""""""""
7261
7262The '``sitofp``' instruction regards ``value`` as a signed integer and
7263converts that value to the ``ty2`` type.
7264
7265Arguments:
7266""""""""""
7267
7268The '``sitofp``' instruction takes a value to cast, which must be a
7269scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
7270``ty2``, which must be an :ref:`floating point <t_floating>` type. If
7271``ty`` is a vector integer type, ``ty2`` must be a vector floating point
7272type with the same number of elements as ``ty``
7273
7274Semantics:
7275""""""""""
7276
7277The '``sitofp``' instruction interprets its operand as a signed integer
7278quantity and converts it to the corresponding floating point value. If
7279the value cannot fit in the floating point value, the results are
7280undefined.
7281
7282Example:
7283""""""""
7284
7285.. code-block:: llvm
7286
7287 %X = sitofp i32 257 to float ; yields float:257.0
7288 %Y = sitofp i8 -1 to double ; yields double:-1.0
7289
7290.. _i_ptrtoint:
7291
7292'``ptrtoint .. to``' Instruction
7293^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7294
7295Syntax:
7296"""""""
7297
7298::
7299
7300 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
7301
7302Overview:
7303"""""""""
7304
7305The '``ptrtoint``' instruction converts the pointer or a vector of
7306pointers ``value`` to the integer (or vector of integers) type ``ty2``.
7307
7308Arguments:
7309""""""""""
7310
7311The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
Ed Maste8ed40ce2015-04-14 20:52:58 +00007312a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
Sean Silvab084af42012-12-07 10:36:55 +00007313type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
7314a vector of integers type.
7315
7316Semantics:
7317""""""""""
7318
7319The '``ptrtoint``' instruction converts ``value`` to integer type
7320``ty2`` by interpreting the pointer value as an integer and either
7321truncating or zero extending that value to the size of the integer type.
7322If ``value`` is smaller than ``ty2`` then a zero extension is done. If
7323``value`` is larger than ``ty2`` then a truncation is done. If they are
7324the same size, then nothing is done (*no-op cast*) other than a type
7325change.
7326
7327Example:
7328""""""""
7329
7330.. code-block:: llvm
7331
7332 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
7333 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
7334 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
7335
7336.. _i_inttoptr:
7337
7338'``inttoptr .. to``' Instruction
7339^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7340
7341Syntax:
7342"""""""
7343
7344::
7345
7346 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
7347
7348Overview:
7349"""""""""
7350
7351The '``inttoptr``' instruction converts an integer ``value`` to a
7352pointer type, ``ty2``.
7353
7354Arguments:
7355""""""""""
7356
7357The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
7358cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
7359type.
7360
7361Semantics:
7362""""""""""
7363
7364The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
7365applying either a zero extension or a truncation depending on the size
7366of the integer ``value``. If ``value`` is larger than the size of a
7367pointer then a truncation is done. If ``value`` is smaller than the size
7368of a pointer then a zero extension is done. If they are the same size,
7369nothing is done (*no-op cast*).
7370
7371Example:
7372""""""""
7373
7374.. code-block:: llvm
7375
7376 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
7377 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
7378 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
7379 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
7380
7381.. _i_bitcast:
7382
7383'``bitcast .. to``' Instruction
7384^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7385
7386Syntax:
7387"""""""
7388
7389::
7390
7391 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
7392
7393Overview:
7394"""""""""
7395
7396The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
7397changing any bits.
7398
7399Arguments:
7400""""""""""
7401
7402The '``bitcast``' instruction takes a value to cast, which must be a
7403non-aggregate first class value, and a type to cast it to, which must
Matt Arsenault24b49c42013-07-31 17:49:08 +00007404also be a non-aggregate :ref:`first class <t_firstclass>` type. The
7405bit sizes of ``value`` and the destination type, ``ty2``, must be
7406identical. If the source type is a pointer, the destination type must
7407also be a pointer of the same size. This instruction supports bitwise
7408conversion of vectors to integers and to vectors of other types (as
7409long as they have the same size).
Sean Silvab084af42012-12-07 10:36:55 +00007410
7411Semantics:
7412""""""""""
7413
Matt Arsenault24b49c42013-07-31 17:49:08 +00007414The '``bitcast``' instruction converts ``value`` to type ``ty2``. It
7415is always a *no-op cast* because no bits change with this
7416conversion. The conversion is done as if the ``value`` had been stored
7417to memory and read back as type ``ty2``. Pointer (or vector of
7418pointers) types may only be converted to other pointer (or vector of
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007419pointers) types with the same address space through this instruction.
7420To convert pointers to other types, use the :ref:`inttoptr <i_inttoptr>`
7421or :ref:`ptrtoint <i_ptrtoint>` instructions first.
Sean Silvab084af42012-12-07 10:36:55 +00007422
7423Example:
7424""""""""
7425
7426.. code-block:: llvm
7427
7428 %X = bitcast i8 255 to i8 ; yields i8 :-1
7429 %Y = bitcast i32* %x to sint* ; yields sint*:%x
7430 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
7431 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
7432
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007433.. _i_addrspacecast:
7434
7435'``addrspacecast .. to``' Instruction
7436^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7437
7438Syntax:
7439"""""""
7440
7441::
7442
7443 <result> = addrspacecast <pty> <ptrval> to <pty2> ; yields pty2
7444
7445Overview:
7446"""""""""
7447
7448The '``addrspacecast``' instruction converts ``ptrval`` from ``pty`` in
7449address space ``n`` to type ``pty2`` in address space ``m``.
7450
7451Arguments:
7452""""""""""
7453
7454The '``addrspacecast``' instruction takes a pointer or vector of pointer value
7455to cast and a pointer type to cast it to, which must have a different
7456address space.
7457
7458Semantics:
7459""""""""""
7460
7461The '``addrspacecast``' instruction converts the pointer value
7462``ptrval`` to type ``pty2``. It can be a *no-op cast* or a complex
Matt Arsenault54a2a172013-11-15 05:44:56 +00007463value modification, depending on the target and the address space
7464pair. Pointer conversions within the same address space must be
7465performed with the ``bitcast`` instruction. Note that if the address space
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007466conversion is legal then both result and operand refer to the same memory
7467location.
7468
7469Example:
7470""""""""
7471
7472.. code-block:: llvm
7473
Matt Arsenault9c13dd02013-11-15 22:43:50 +00007474 %X = addrspacecast i32* %x to i32 addrspace(1)* ; yields i32 addrspace(1)*:%x
7475 %Y = addrspacecast i32 addrspace(1)* %y to i64 addrspace(2)* ; yields i64 addrspace(2)*:%y
7476 %Z = addrspacecast <4 x i32*> %z to <4 x float addrspace(3)*> ; yields <4 x float addrspace(3)*>:%z
Matt Arsenaultb03bd4d2013-11-15 01:34:59 +00007477
Sean Silvab084af42012-12-07 10:36:55 +00007478.. _otherops:
7479
7480Other Operations
7481----------------
7482
7483The instructions in this category are the "miscellaneous" instructions,
7484which defy better classification.
7485
7486.. _i_icmp:
7487
7488'``icmp``' Instruction
7489^^^^^^^^^^^^^^^^^^^^^^
7490
7491Syntax:
7492"""""""
7493
7494::
7495
Tim Northover675a0962014-06-13 14:24:23 +00007496 <result> = icmp <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00007497
7498Overview:
7499"""""""""
7500
7501The '``icmp``' instruction returns a boolean value or a vector of
7502boolean values based on comparison of its two integer, integer vector,
7503pointer, or pointer vector operands.
7504
7505Arguments:
7506""""""""""
7507
7508The '``icmp``' instruction takes three operands. The first operand is
7509the condition code indicating the kind of comparison to perform. It is
7510not a value, just a keyword. The possible condition code are:
7511
7512#. ``eq``: equal
7513#. ``ne``: not equal
7514#. ``ugt``: unsigned greater than
7515#. ``uge``: unsigned greater or equal
7516#. ``ult``: unsigned less than
7517#. ``ule``: unsigned less or equal
7518#. ``sgt``: signed greater than
7519#. ``sge``: signed greater or equal
7520#. ``slt``: signed less than
7521#. ``sle``: signed less or equal
7522
7523The remaining two arguments must be :ref:`integer <t_integer>` or
7524:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
7525must also be identical types.
7526
7527Semantics:
7528""""""""""
7529
7530The '``icmp``' compares ``op1`` and ``op2`` according to the condition
7531code given as ``cond``. The comparison performed always yields either an
7532:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
7533
7534#. ``eq``: yields ``true`` if the operands are equal, ``false``
7535 otherwise. No sign interpretation is necessary or performed.
7536#. ``ne``: yields ``true`` if the operands are unequal, ``false``
7537 otherwise. No sign interpretation is necessary or performed.
7538#. ``ugt``: interprets the operands as unsigned values and yields
7539 ``true`` if ``op1`` is greater than ``op2``.
7540#. ``uge``: interprets the operands as unsigned values and yields
7541 ``true`` if ``op1`` is greater than or equal to ``op2``.
7542#. ``ult``: interprets the operands as unsigned values and yields
7543 ``true`` if ``op1`` is less than ``op2``.
7544#. ``ule``: interprets the operands as unsigned values and yields
7545 ``true`` if ``op1`` is less than or equal to ``op2``.
7546#. ``sgt``: interprets the operands as signed values and yields ``true``
7547 if ``op1`` is greater than ``op2``.
7548#. ``sge``: interprets the operands as signed values and yields ``true``
7549 if ``op1`` is greater than or equal to ``op2``.
7550#. ``slt``: interprets the operands as signed values and yields ``true``
7551 if ``op1`` is less than ``op2``.
7552#. ``sle``: interprets the operands as signed values and yields ``true``
7553 if ``op1`` is less than or equal to ``op2``.
7554
7555If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
7556are compared as if they were integers.
7557
7558If the operands are integer vectors, then they are compared element by
7559element. The result is an ``i1`` vector with the same number of elements
7560as the values being compared. Otherwise, the result is an ``i1``.
7561
7562Example:
7563""""""""
7564
7565.. code-block:: llvm
7566
7567 <result> = icmp eq i32 4, 5 ; yields: result=false
7568 <result> = icmp ne float* %X, %X ; yields: result=false
7569 <result> = icmp ult i16 4, 5 ; yields: result=true
7570 <result> = icmp sgt i16 4, 5 ; yields: result=false
7571 <result> = icmp ule i16 -4, 5 ; yields: result=false
7572 <result> = icmp sge i16 4, 5 ; yields: result=false
7573
7574Note that the code generator does not yet support vector types with the
7575``icmp`` instruction.
7576
7577.. _i_fcmp:
7578
7579'``fcmp``' Instruction
7580^^^^^^^^^^^^^^^^^^^^^^
7581
7582Syntax:
7583"""""""
7584
7585::
7586
James Molloy88eb5352015-07-10 12:52:00 +00007587 <result> = fcmp [fast-math flags]* <cond> <ty> <op1>, <op2> ; yields i1 or <N x i1>:result
Sean Silvab084af42012-12-07 10:36:55 +00007588
7589Overview:
7590"""""""""
7591
7592The '``fcmp``' instruction returns a boolean value or vector of boolean
7593values based on comparison of its operands.
7594
7595If the operands are floating point scalars, then the result type is a
7596boolean (:ref:`i1 <t_integer>`).
7597
7598If the operands are floating point vectors, then the result type is a
7599vector of boolean with the same number of elements as the operands being
7600compared.
7601
7602Arguments:
7603""""""""""
7604
7605The '``fcmp``' instruction takes three operands. The first operand is
7606the condition code indicating the kind of comparison to perform. It is
7607not a value, just a keyword. The possible condition code are:
7608
7609#. ``false``: no comparison, always returns false
7610#. ``oeq``: ordered and equal
7611#. ``ogt``: ordered and greater than
7612#. ``oge``: ordered and greater than or equal
7613#. ``olt``: ordered and less than
7614#. ``ole``: ordered and less than or equal
7615#. ``one``: ordered and not equal
7616#. ``ord``: ordered (no nans)
7617#. ``ueq``: unordered or equal
7618#. ``ugt``: unordered or greater than
7619#. ``uge``: unordered or greater than or equal
7620#. ``ult``: unordered or less than
7621#. ``ule``: unordered or less than or equal
7622#. ``une``: unordered or not equal
7623#. ``uno``: unordered (either nans)
7624#. ``true``: no comparison, always returns true
7625
7626*Ordered* means that neither operand is a QNAN while *unordered* means
7627that either operand may be a QNAN.
7628
7629Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
7630point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
7631type. They must have identical types.
7632
7633Semantics:
7634""""""""""
7635
7636The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
7637condition code given as ``cond``. If the operands are vectors, then the
7638vectors are compared element by element. Each comparison performed
7639always yields an :ref:`i1 <t_integer>` result, as follows:
7640
7641#. ``false``: always yields ``false``, regardless of operands.
7642#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
7643 is equal to ``op2``.
7644#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
7645 is greater than ``op2``.
7646#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
7647 is greater than or equal to ``op2``.
7648#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
7649 is less than ``op2``.
7650#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
7651 is less than or equal to ``op2``.
7652#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
7653 is not equal to ``op2``.
7654#. ``ord``: yields ``true`` if both operands are not a QNAN.
7655#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
7656 equal to ``op2``.
7657#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
7658 greater than ``op2``.
7659#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
7660 greater than or equal to ``op2``.
7661#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
7662 less than ``op2``.
7663#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
7664 less than or equal to ``op2``.
7665#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
7666 not equal to ``op2``.
7667#. ``uno``: yields ``true`` if either operand is a QNAN.
7668#. ``true``: always yields ``true``, regardless of operands.
7669
James Molloy88eb5352015-07-10 12:52:00 +00007670The ``fcmp`` instruction can also optionally take any number of
7671:ref:`fast-math flags <fastmath>`, which are optimization hints to enable
7672otherwise unsafe floating point optimizations.
7673
7674Any set of fast-math flags are legal on an ``fcmp`` instruction, but the
7675only flags that have any effect on its semantics are those that allow
7676assumptions to be made about the values of input arguments; namely
7677``nnan``, ``ninf``, and ``nsz``. See :ref:`fastmath` for more information.
7678
Sean Silvab084af42012-12-07 10:36:55 +00007679Example:
7680""""""""
7681
7682.. code-block:: llvm
7683
7684 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
7685 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
7686 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
7687 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
7688
7689Note that the code generator does not yet support vector types with the
7690``fcmp`` instruction.
7691
7692.. _i_phi:
7693
7694'``phi``' Instruction
7695^^^^^^^^^^^^^^^^^^^^^
7696
7697Syntax:
7698"""""""
7699
7700::
7701
7702 <result> = phi <ty> [ <val0>, <label0>], ...
7703
7704Overview:
7705"""""""""
7706
7707The '``phi``' instruction is used to implement the φ node in the SSA
7708graph representing the function.
7709
7710Arguments:
7711""""""""""
7712
7713The type of the incoming values is specified with the first type field.
7714After this, the '``phi``' instruction takes a list of pairs as
7715arguments, with one pair for each predecessor basic block of the current
7716block. Only values of :ref:`first class <t_firstclass>` type may be used as
7717the value arguments to the PHI node. Only labels may be used as the
7718label arguments.
7719
7720There must be no non-phi instructions between the start of a basic block
7721and the PHI instructions: i.e. PHI instructions must be first in a basic
7722block.
7723
7724For the purposes of the SSA form, the use of each incoming value is
7725deemed to occur on the edge from the corresponding predecessor block to
7726the current block (but after any definition of an '``invoke``'
7727instruction's return value on the same edge).
7728
7729Semantics:
7730""""""""""
7731
7732At runtime, the '``phi``' instruction logically takes on the value
7733specified by the pair corresponding to the predecessor basic block that
7734executed just prior to the current block.
7735
7736Example:
7737""""""""
7738
7739.. code-block:: llvm
7740
7741 Loop: ; Infinite loop that counts from 0 on up...
7742 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
7743 %nextindvar = add i32 %indvar, 1
7744 br label %Loop
7745
7746.. _i_select:
7747
7748'``select``' Instruction
7749^^^^^^^^^^^^^^^^^^^^^^^^
7750
7751Syntax:
7752"""""""
7753
7754::
7755
7756 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
7757
7758 selty is either i1 or {<N x i1>}
7759
7760Overview:
7761"""""""""
7762
7763The '``select``' instruction is used to choose one value based on a
Joerg Sonnenberger94321ec2014-03-26 15:30:21 +00007764condition, without IR-level branching.
Sean Silvab084af42012-12-07 10:36:55 +00007765
7766Arguments:
7767""""""""""
7768
7769The '``select``' instruction requires an 'i1' value or a vector of 'i1'
7770values indicating the condition, and two values of the same :ref:`first
David Majnemer40a0b592015-03-03 22:45:47 +00007771class <t_firstclass>` type.
Sean Silvab084af42012-12-07 10:36:55 +00007772
7773Semantics:
7774""""""""""
7775
7776If the condition is an i1 and it evaluates to 1, the instruction returns
7777the first value argument; otherwise, it returns the second value
7778argument.
7779
7780If the condition is a vector of i1, then the value arguments must be
7781vectors of the same size, and the selection is done element by element.
7782
David Majnemer40a0b592015-03-03 22:45:47 +00007783If the condition is an i1 and the value arguments are vectors of the
7784same size, then an entire vector is selected.
7785
Sean Silvab084af42012-12-07 10:36:55 +00007786Example:
7787""""""""
7788
7789.. code-block:: llvm
7790
7791 %X = select i1 true, i8 17, i8 42 ; yields i8:17
7792
7793.. _i_call:
7794
7795'``call``' Instruction
7796^^^^^^^^^^^^^^^^^^^^^^
7797
7798Syntax:
7799"""""""
7800
7801::
7802
Reid Kleckner5772b772014-04-24 20:14:34 +00007803 <result> = [tail | musttail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
Sean Silvab084af42012-12-07 10:36:55 +00007804
7805Overview:
7806"""""""""
7807
7808The '``call``' instruction represents a simple function call.
7809
7810Arguments:
7811""""""""""
7812
7813This instruction requires several arguments:
7814
Reid Kleckner5772b772014-04-24 20:14:34 +00007815#. The optional ``tail`` and ``musttail`` markers indicate that the optimizers
7816 should perform tail call optimization. The ``tail`` marker is a hint that
7817 `can be ignored <CodeGenerator.html#sibcallopt>`_. The ``musttail`` marker
7818 means that the call must be tail call optimized in order for the program to
7819 be correct. The ``musttail`` marker provides these guarantees:
7820
7821 #. The call will not cause unbounded stack growth if it is part of a
7822 recursive cycle in the call graph.
7823 #. Arguments with the :ref:`inalloca <attr_inalloca>` attribute are
7824 forwarded in place.
7825
7826 Both markers imply that the callee does not access allocas or varargs from
7827 the caller. Calls marked ``musttail`` must obey the following additional
7828 rules:
7829
7830 - The call must immediately precede a :ref:`ret <i_ret>` instruction,
7831 or a pointer bitcast followed by a ret instruction.
7832 - The ret instruction must return the (possibly bitcasted) value
7833 produced by the call or void.
7834 - The caller and callee prototypes must match. Pointer types of
7835 parameters or return types may differ in pointee type, but not
7836 in address space.
7837 - The calling conventions of the caller and callee must match.
7838 - All ABI-impacting function attributes, such as sret, byval, inreg,
7839 returned, and inalloca, must match.
Reid Kleckner83498642014-08-26 00:33:28 +00007840 - The callee must be varargs iff the caller is varargs. Bitcasting a
7841 non-varargs function to the appropriate varargs type is legal so
7842 long as the non-varargs prefixes obey the other rules.
Reid Kleckner5772b772014-04-24 20:14:34 +00007843
7844 Tail call optimization for calls marked ``tail`` is guaranteed to occur if
7845 the following conditions are met:
Sean Silvab084af42012-12-07 10:36:55 +00007846
7847 - Caller and callee both have the calling convention ``fastcc``.
7848 - The call is in tail position (ret immediately follows call and ret
7849 uses value of call or is void).
7850 - Option ``-tailcallopt`` is enabled, or
7851 ``llvm::GuaranteedTailCallOpt`` is ``true``.
Alp Tokercf218752014-06-30 18:57:16 +00007852 - `Platform-specific constraints are
Sean Silvab084af42012-12-07 10:36:55 +00007853 met. <CodeGenerator.html#tailcallopt>`_
7854
7855#. The optional "cconv" marker indicates which :ref:`calling
7856 convention <callingconv>` the call should use. If none is
7857 specified, the call defaults to using C calling conventions. The
7858 calling convention of the call must match the calling convention of
7859 the target function, or else the behavior is undefined.
7860#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
7861 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
7862 are valid here.
7863#. '``ty``': the type of the call instruction itself which is also the
7864 type of the return value. Functions that return no value are marked
7865 ``void``.
7866#. '``fnty``': shall be the signature of the pointer to function value
7867 being invoked. The argument types must match the types implied by
7868 this signature. This type can be omitted if the function is not
7869 varargs and if the function type does not return a pointer to a
7870 function.
7871#. '``fnptrval``': An LLVM value containing a pointer to a function to
7872 be invoked. In most cases, this is a direct function invocation, but
7873 indirect ``call``'s are just as possible, calling an arbitrary pointer
7874 to function value.
7875#. '``function args``': argument list whose types match the function
7876 signature argument types and parameter attributes. All arguments must
7877 be of :ref:`first class <t_firstclass>` type. If the function signature
7878 indicates the function accepts a variable number of arguments, the
7879 extra arguments can be specified.
7880#. The optional :ref:`function attributes <fnattrs>` list. Only
7881 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
7882 attributes are valid here.
7883
7884Semantics:
7885""""""""""
7886
7887The '``call``' instruction is used to cause control flow to transfer to
7888a specified function, with its incoming arguments bound to the specified
7889values. Upon a '``ret``' instruction in the called function, control
7890flow continues with the instruction after the function call, and the
7891return value of the function is bound to the result argument.
7892
7893Example:
7894""""""""
7895
7896.. code-block:: llvm
7897
7898 %retval = call i32 @test(i32 %argc)
7899 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
7900 %X = tail call i32 @foo() ; yields i32
7901 %Y = tail call fastcc i32 @foo() ; yields i32
7902 call void %foo(i8 97 signext)
7903
7904 %struct.A = type { i32, i8 }
Tim Northover675a0962014-06-13 14:24:23 +00007905 %r = call %struct.A @foo() ; yields { i32, i8 }
Sean Silvab084af42012-12-07 10:36:55 +00007906 %gr = extractvalue %struct.A %r, 0 ; yields i32
7907 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
7908 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
7909 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
7910
7911llvm treats calls to some functions with names and arguments that match
7912the standard C99 library as being the C99 library functions, and may
7913perform optimizations or generate code for them under that assumption.
7914This is something we'd like to change in the future to provide better
7915support for freestanding environments and non-C-based languages.
7916
7917.. _i_va_arg:
7918
7919'``va_arg``' Instruction
7920^^^^^^^^^^^^^^^^^^^^^^^^
7921
7922Syntax:
7923"""""""
7924
7925::
7926
7927 <resultval> = va_arg <va_list*> <arglist>, <argty>
7928
7929Overview:
7930"""""""""
7931
7932The '``va_arg``' instruction is used to access arguments passed through
7933the "variable argument" area of a function call. It is used to implement
7934the ``va_arg`` macro in C.
7935
7936Arguments:
7937""""""""""
7938
7939This instruction takes a ``va_list*`` value and the type of the
7940argument. It returns a value of the specified argument type and
7941increments the ``va_list`` to point to the next argument. The actual
7942type of ``va_list`` is target specific.
7943
7944Semantics:
7945""""""""""
7946
7947The '``va_arg``' instruction loads an argument of the specified type
7948from the specified ``va_list`` and causes the ``va_list`` to point to
7949the next argument. For more information, see the variable argument
7950handling :ref:`Intrinsic Functions <int_varargs>`.
7951
7952It is legal for this instruction to be called in a function which does
7953not take a variable number of arguments, for example, the ``vfprintf``
7954function.
7955
7956``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
7957function <intrinsics>` because it takes a type as an argument.
7958
7959Example:
7960""""""""
7961
7962See the :ref:`variable argument processing <int_varargs>` section.
7963
7964Note that the code generator does not yet fully support va\_arg on many
7965targets. Also, it does not currently support va\_arg with aggregate
7966types on any target.
7967
7968.. _i_landingpad:
7969
7970'``landingpad``' Instruction
7971^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7972
7973Syntax:
7974"""""""
7975
7976::
7977
David Majnemer7fddecc2015-06-17 20:52:32 +00007978 <resultval> = landingpad <resultty> <clause>+
7979 <resultval> = landingpad <resultty> cleanup <clause>*
Sean Silvab084af42012-12-07 10:36:55 +00007980
7981 <clause> := catch <type> <value>
7982 <clause> := filter <array constant type> <array constant>
7983
7984Overview:
7985"""""""""
7986
7987The '``landingpad``' instruction is used by `LLVM's exception handling
7988system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00007989is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvab084af42012-12-07 10:36:55 +00007990code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
David Majnemer7fddecc2015-06-17 20:52:32 +00007991defines values supplied by the :ref:`personality function <personalityfn>` upon
Sean Silvab084af42012-12-07 10:36:55 +00007992re-entry to the function. The ``resultval`` has the type ``resultty``.
7993
7994Arguments:
7995""""""""""
7996
David Majnemer7fddecc2015-06-17 20:52:32 +00007997The optional
Sean Silvab084af42012-12-07 10:36:55 +00007998``cleanup`` flag indicates that the landing pad block is a cleanup.
7999
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00008000A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvab084af42012-12-07 10:36:55 +00008001contains the global variable representing the "type" that may be caught
8002or filtered respectively. Unlike the ``catch`` clause, the ``filter``
8003clause takes an array constant as its argument. Use
8004"``[0 x i8**] undef``" for a filter which cannot throw. The
8005'``landingpad``' instruction must contain *at least* one ``clause`` or
8006the ``cleanup`` flag.
8007
8008Semantics:
8009""""""""""
8010
8011The '``landingpad``' instruction defines the values which are set by the
David Majnemer7fddecc2015-06-17 20:52:32 +00008012:ref:`personality function <personalityfn>` upon re-entry to the function, and
Sean Silvab084af42012-12-07 10:36:55 +00008013therefore the "result type" of the ``landingpad`` instruction. As with
8014calling conventions, how the personality function results are
8015represented in LLVM IR is target specific.
8016
8017The clauses are applied in order from top to bottom. If two
8018``landingpad`` instructions are merged together through inlining, the
8019clauses from the calling function are appended to the list of clauses.
8020When the call stack is being unwound due to an exception being thrown,
8021the exception is compared against each ``clause`` in turn. If it doesn't
8022match any of the clauses, and the ``cleanup`` flag is not set, then
8023unwinding continues further up the call stack.
8024
8025The ``landingpad`` instruction has several restrictions:
8026
8027- A landing pad block is a basic block which is the unwind destination
8028 of an '``invoke``' instruction.
8029- A landing pad block must have a '``landingpad``' instruction as its
8030 first non-PHI instruction.
8031- There can be only one '``landingpad``' instruction within the landing
8032 pad block.
8033- A basic block that is not a landing pad block may not include a
8034 '``landingpad``' instruction.
Sean Silvab084af42012-12-07 10:36:55 +00008035
8036Example:
8037""""""""
8038
8039.. code-block:: llvm
8040
8041 ;; A landing pad which can catch an integer.
David Majnemer7fddecc2015-06-17 20:52:32 +00008042 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008043 catch i8** @_ZTIi
8044 ;; A landing pad that is a cleanup.
David Majnemer7fddecc2015-06-17 20:52:32 +00008045 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008046 cleanup
8047 ;; A landing pad which can catch an integer and can only throw a double.
David Majnemer7fddecc2015-06-17 20:52:32 +00008048 %res = landingpad { i8*, i32 }
Sean Silvab084af42012-12-07 10:36:55 +00008049 catch i8** @_ZTIi
8050 filter [1 x i8**] [@_ZTId]
8051
8052.. _intrinsics:
8053
8054Intrinsic Functions
8055===================
8056
8057LLVM supports the notion of an "intrinsic function". These functions
8058have well known names and semantics and are required to follow certain
8059restrictions. Overall, these intrinsics represent an extension mechanism
8060for the LLVM language that does not require changing all of the
8061transformations in LLVM when adding to the language (or the bitcode
8062reader/writer, the parser, etc...).
8063
8064Intrinsic function names must all start with an "``llvm.``" prefix. This
8065prefix is reserved in LLVM for intrinsic names; thus, function names may
8066not begin with this prefix. Intrinsic functions must always be external
8067functions: you cannot define the body of intrinsic functions. Intrinsic
8068functions may only be used in call or invoke instructions: it is illegal
8069to take the address of an intrinsic function. Additionally, because
8070intrinsic functions are part of the LLVM language, it is required if any
8071are added that they be documented here.
8072
8073Some intrinsic functions can be overloaded, i.e., the intrinsic
8074represents a family of functions that perform the same operation but on
8075different data types. Because LLVM can represent over 8 million
8076different integer types, overloading is used commonly to allow an
8077intrinsic function to operate on any integer type. One or more of the
8078argument types or the result type can be overloaded to accept any
8079integer type. Argument types may also be defined as exactly matching a
8080previous argument's type or the result type. This allows an intrinsic
8081function which accepts multiple arguments, but needs all of them to be
8082of the same type, to only be overloaded with respect to a single
8083argument or the result.
8084
8085Overloaded intrinsics will have the names of its overloaded argument
8086types encoded into its function name, each preceded by a period. Only
8087those types which are overloaded result in a name suffix. Arguments
8088whose type is matched against another type do not. For example, the
8089``llvm.ctpop`` function can take an integer of any width and returns an
8090integer of exactly the same integer width. This leads to a family of
8091functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
8092``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
8093overloaded, and only one type suffix is required. Because the argument's
8094type is matched against the return type, it does not require its own
8095name suffix.
8096
8097To learn how to add an intrinsic function, please see the `Extending
8098LLVM Guide <ExtendingLLVM.html>`_.
8099
8100.. _int_varargs:
8101
8102Variable Argument Handling Intrinsics
8103-------------------------------------
8104
8105Variable argument support is defined in LLVM with the
8106:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
8107functions. These functions are related to the similarly named macros
8108defined in the ``<stdarg.h>`` header file.
8109
8110All of these functions operate on arguments that use a target-specific
8111value type "``va_list``". The LLVM assembly language reference manual
8112does not define what this type is, so all transformations should be
8113prepared to handle these functions regardless of the type used.
8114
8115This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
8116variable argument handling intrinsic functions are used.
8117
8118.. code-block:: llvm
8119
Tim Northoverab60bb92014-11-02 01:21:51 +00008120 ; This struct is different for every platform. For most platforms,
8121 ; it is merely an i8*.
8122 %struct.va_list = type { i8* }
8123
8124 ; For Unix x86_64 platforms, va_list is the following struct:
8125 ; %struct.va_list = type { i32, i32, i8*, i8* }
8126
Sean Silvab084af42012-12-07 10:36:55 +00008127 define i32 @test(i32 %X, ...) {
8128 ; Initialize variable argument processing
Tim Northoverab60bb92014-11-02 01:21:51 +00008129 %ap = alloca %struct.va_list
8130 %ap2 = bitcast %struct.va_list* %ap to i8*
Sean Silvab084af42012-12-07 10:36:55 +00008131 call void @llvm.va_start(i8* %ap2)
8132
8133 ; Read a single integer argument
Tim Northoverab60bb92014-11-02 01:21:51 +00008134 %tmp = va_arg i8* %ap2, i32
Sean Silvab084af42012-12-07 10:36:55 +00008135
8136 ; Demonstrate usage of llvm.va_copy and llvm.va_end
8137 %aq = alloca i8*
8138 %aq2 = bitcast i8** %aq to i8*
8139 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
8140 call void @llvm.va_end(i8* %aq2)
8141
8142 ; Stop processing of arguments.
8143 call void @llvm.va_end(i8* %ap2)
8144 ret i32 %tmp
8145 }
8146
8147 declare void @llvm.va_start(i8*)
8148 declare void @llvm.va_copy(i8*, i8*)
8149 declare void @llvm.va_end(i8*)
8150
8151.. _int_va_start:
8152
8153'``llvm.va_start``' Intrinsic
8154^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8155
8156Syntax:
8157"""""""
8158
8159::
8160
Nick Lewycky04f6de02013-09-11 22:04:52 +00008161 declare void @llvm.va_start(i8* <arglist>)
Sean Silvab084af42012-12-07 10:36:55 +00008162
8163Overview:
8164"""""""""
8165
8166The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
8167subsequent use by ``va_arg``.
8168
8169Arguments:
8170""""""""""
8171
8172The argument is a pointer to a ``va_list`` element to initialize.
8173
8174Semantics:
8175""""""""""
8176
8177The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
8178available in C. In a target-dependent way, it initializes the
8179``va_list`` element to which the argument points, so that the next call
8180to ``va_arg`` will produce the first variable argument passed to the
8181function. Unlike the C ``va_start`` macro, this intrinsic does not need
8182to know the last argument of the function as the compiler can figure
8183that out.
8184
8185'``llvm.va_end``' Intrinsic
8186^^^^^^^^^^^^^^^^^^^^^^^^^^^
8187
8188Syntax:
8189"""""""
8190
8191::
8192
8193 declare void @llvm.va_end(i8* <arglist>)
8194
8195Overview:
8196"""""""""
8197
8198The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
8199initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
8200
8201Arguments:
8202""""""""""
8203
8204The argument is a pointer to a ``va_list`` to destroy.
8205
8206Semantics:
8207""""""""""
8208
8209The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
8210available in C. In a target-dependent way, it destroys the ``va_list``
8211element to which the argument points. Calls to
8212:ref:`llvm.va_start <int_va_start>` and
8213:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
8214``llvm.va_end``.
8215
8216.. _int_va_copy:
8217
8218'``llvm.va_copy``' Intrinsic
8219^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8220
8221Syntax:
8222"""""""
8223
8224::
8225
8226 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
8227
8228Overview:
8229"""""""""
8230
8231The '``llvm.va_copy``' intrinsic copies the current argument position
8232from the source argument list to the destination argument list.
8233
8234Arguments:
8235""""""""""
8236
8237The first argument is a pointer to a ``va_list`` element to initialize.
8238The second argument is a pointer to a ``va_list`` element to copy from.
8239
8240Semantics:
8241""""""""""
8242
8243The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
8244available in C. In a target-dependent way, it copies the source
8245``va_list`` element into the destination ``va_list`` element. This
8246intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
8247arbitrarily complex and require, for example, memory allocation.
8248
8249Accurate Garbage Collection Intrinsics
8250--------------------------------------
8251
Philip Reamesc5b0f562015-02-25 23:52:06 +00008252LLVM's support for `Accurate Garbage Collection <GarbageCollection.html>`_
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008253(GC) requires the frontend to generate code containing appropriate intrinsic
8254calls and select an appropriate GC strategy which knows how to lower these
Philip Reamesc5b0f562015-02-25 23:52:06 +00008255intrinsics in a manner which is appropriate for the target collector.
8256
Sean Silvab084af42012-12-07 10:36:55 +00008257These intrinsics allow identification of :ref:`GC roots on the
8258stack <int_gcroot>`, as well as garbage collector implementations that
8259require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
Philip Reamesc5b0f562015-02-25 23:52:06 +00008260Frontends for type-safe garbage collected languages should generate
Sean Silvab084af42012-12-07 10:36:55 +00008261these intrinsics to make use of the LLVM garbage collectors. For more
Philip Reamesf80bbff2015-02-25 23:45:20 +00008262details, see `Garbage Collection with LLVM <GarbageCollection.html>`_.
Sean Silvab084af42012-12-07 10:36:55 +00008263
Philip Reamesf80bbff2015-02-25 23:45:20 +00008264Experimental Statepoint Intrinsics
8265^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8266
8267LLVM provides an second experimental set of intrinsics for describing garbage
Mehdi Amini4a121fa2015-03-14 22:04:06 +00008268collection safepoints in compiled code. These intrinsics are an alternative
8269to the ``llvm.gcroot`` intrinsics, but are compatible with the ones for
8270:ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers. The
8271differences in approach are covered in the `Garbage Collection with LLVM
8272<GarbageCollection.html>`_ documentation. The intrinsics themselves are
Philip Reamesf80bbff2015-02-25 23:45:20 +00008273described in :doc:`Statepoints`.
Sean Silvab084af42012-12-07 10:36:55 +00008274
8275.. _int_gcroot:
8276
8277'``llvm.gcroot``' Intrinsic
8278^^^^^^^^^^^^^^^^^^^^^^^^^^^
8279
8280Syntax:
8281"""""""
8282
8283::
8284
8285 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
8286
8287Overview:
8288"""""""""
8289
8290The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
8291the code generator, and allows some metadata to be associated with it.
8292
8293Arguments:
8294""""""""""
8295
8296The first argument specifies the address of a stack object that contains
8297the root pointer. The second pointer (which must be either a constant or
8298a global value address) contains the meta-data to be associated with the
8299root.
8300
8301Semantics:
8302""""""""""
8303
8304At runtime, a call to this intrinsic stores a null pointer into the
8305"ptrloc" location. At compile-time, the code generator generates
8306information to allow the runtime to find the pointer at GC safe points.
8307The '``llvm.gcroot``' intrinsic may only be used in a function which
8308:ref:`specifies a GC algorithm <gc>`.
8309
8310.. _int_gcread:
8311
8312'``llvm.gcread``' Intrinsic
8313^^^^^^^^^^^^^^^^^^^^^^^^^^^
8314
8315Syntax:
8316"""""""
8317
8318::
8319
8320 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
8321
8322Overview:
8323"""""""""
8324
8325The '``llvm.gcread``' intrinsic identifies reads of references from heap
8326locations, allowing garbage collector implementations that require read
8327barriers.
8328
8329Arguments:
8330""""""""""
8331
8332The second argument is the address to read from, which should be an
8333address allocated from the garbage collector. The first object is a
8334pointer to the start of the referenced object, if needed by the language
8335runtime (otherwise null).
8336
8337Semantics:
8338""""""""""
8339
8340The '``llvm.gcread``' intrinsic has the same semantics as a load
8341instruction, but may be replaced with substantially more complex code by
8342the garbage collector runtime, as needed. The '``llvm.gcread``'
8343intrinsic may only be used in a function which :ref:`specifies a GC
8344algorithm <gc>`.
8345
8346.. _int_gcwrite:
8347
8348'``llvm.gcwrite``' Intrinsic
8349^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8350
8351Syntax:
8352"""""""
8353
8354::
8355
8356 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
8357
8358Overview:
8359"""""""""
8360
8361The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
8362locations, allowing garbage collector implementations that require write
8363barriers (such as generational or reference counting collectors).
8364
8365Arguments:
8366""""""""""
8367
8368The first argument is the reference to store, the second is the start of
8369the object to store it to, and the third is the address of the field of
8370Obj to store to. If the runtime does not require a pointer to the
8371object, Obj may be null.
8372
8373Semantics:
8374""""""""""
8375
8376The '``llvm.gcwrite``' intrinsic has the same semantics as a store
8377instruction, but may be replaced with substantially more complex code by
8378the garbage collector runtime, as needed. The '``llvm.gcwrite``'
8379intrinsic may only be used in a function which :ref:`specifies a GC
8380algorithm <gc>`.
8381
8382Code Generator Intrinsics
8383-------------------------
8384
8385These intrinsics are provided by LLVM to expose special features that
8386may only be implemented with code generator support.
8387
8388'``llvm.returnaddress``' Intrinsic
8389^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8390
8391Syntax:
8392"""""""
8393
8394::
8395
8396 declare i8 *@llvm.returnaddress(i32 <level>)
8397
8398Overview:
8399"""""""""
8400
8401The '``llvm.returnaddress``' intrinsic attempts to compute a
8402target-specific value indicating the return address of the current
8403function or one of its callers.
8404
8405Arguments:
8406""""""""""
8407
8408The argument to this intrinsic indicates which function to return the
8409address for. Zero indicates the calling function, one indicates its
8410caller, etc. The argument is **required** to be a constant integer
8411value.
8412
8413Semantics:
8414""""""""""
8415
8416The '``llvm.returnaddress``' intrinsic either returns a pointer
8417indicating the return address of the specified call frame, or zero if it
8418cannot be identified. The value returned by this intrinsic is likely to
8419be incorrect or 0 for arguments other than zero, so it should only be
8420used for debugging purposes.
8421
8422Note that calling this intrinsic does not prevent function inlining or
8423other aggressive transformations, so the value returned may not be that
8424of the obvious source-language caller.
8425
8426'``llvm.frameaddress``' Intrinsic
8427^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8428
8429Syntax:
8430"""""""
8431
8432::
8433
8434 declare i8* @llvm.frameaddress(i32 <level>)
8435
8436Overview:
8437"""""""""
8438
8439The '``llvm.frameaddress``' intrinsic attempts to return the
8440target-specific frame pointer value for the specified stack frame.
8441
8442Arguments:
8443""""""""""
8444
8445The argument to this intrinsic indicates which function to return the
8446frame pointer for. Zero indicates the calling function, one indicates
8447its caller, etc. The argument is **required** to be a constant integer
8448value.
8449
8450Semantics:
8451""""""""""
8452
8453The '``llvm.frameaddress``' intrinsic either returns a pointer
8454indicating the frame address of the specified call frame, or zero if it
8455cannot be identified. The value returned by this intrinsic is likely to
8456be incorrect or 0 for arguments other than zero, so it should only be
8457used for debugging purposes.
8458
8459Note that calling this intrinsic does not prevent function inlining or
8460other aggressive transformations, so the value returned may not be that
8461of the obvious source-language caller.
8462
Reid Kleckner60381792015-07-07 22:25:32 +00008463'``llvm.localescape``' and '``llvm.localrecover``' Intrinsics
Reid Klecknere9b89312015-01-13 00:48:10 +00008464^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8465
8466Syntax:
8467"""""""
8468
8469::
8470
Reid Kleckner60381792015-07-07 22:25:32 +00008471 declare void @llvm.localescape(...)
8472 declare i8* @llvm.localrecover(i8* %func, i8* %fp, i32 %idx)
Reid Klecknere9b89312015-01-13 00:48:10 +00008473
8474Overview:
8475"""""""""
8476
Reid Kleckner60381792015-07-07 22:25:32 +00008477The '``llvm.localescape``' intrinsic escapes offsets of a collection of static
8478allocas, and the '``llvm.localrecover``' intrinsic applies those offsets to a
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008479live frame pointer to recover the address of the allocation. The offset is
Reid Kleckner60381792015-07-07 22:25:32 +00008480computed during frame layout of the caller of ``llvm.localescape``.
Reid Klecknere9b89312015-01-13 00:48:10 +00008481
8482Arguments:
8483""""""""""
8484
Reid Kleckner60381792015-07-07 22:25:32 +00008485All arguments to '``llvm.localescape``' must be pointers to static allocas or
8486casts of static allocas. Each function can only call '``llvm.localescape``'
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008487once, and it can only do so from the entry block.
Reid Klecknere9b89312015-01-13 00:48:10 +00008488
Reid Kleckner60381792015-07-07 22:25:32 +00008489The ``func`` argument to '``llvm.localrecover``' must be a constant
Reid Klecknere9b89312015-01-13 00:48:10 +00008490bitcasted pointer to a function defined in the current module. The code
8491generator cannot determine the frame allocation offset of functions defined in
8492other modules.
8493
Reid Klecknerd5afc62f2015-07-07 23:23:03 +00008494The ``fp`` argument to '``llvm.localrecover``' must be a frame pointer of a
8495call frame that is currently live. The return value of '``llvm.localaddress``'
8496is one way to produce such a value, but various runtimes also expose a suitable
8497pointer in platform-specific ways.
Reid Klecknere9b89312015-01-13 00:48:10 +00008498
Reid Kleckner60381792015-07-07 22:25:32 +00008499The ``idx`` argument to '``llvm.localrecover``' indicates which alloca passed to
8500'``llvm.localescape``' to recover. It is zero-indexed.
Reid Klecknercfb9ce52015-03-05 18:26:34 +00008501
Reid Klecknere9b89312015-01-13 00:48:10 +00008502Semantics:
8503""""""""""
8504
Reid Kleckner60381792015-07-07 22:25:32 +00008505These intrinsics allow a group of functions to share access to a set of local
8506stack allocations of a one parent function. The parent function may call the
8507'``llvm.localescape``' intrinsic once from the function entry block, and the
8508child functions can use '``llvm.localrecover``' to access the escaped allocas.
8509The '``llvm.localescape``' intrinsic blocks inlining, as inlining changes where
8510the escaped allocas are allocated, which would break attempts to use
8511'``llvm.localrecover``'.
Reid Klecknere9b89312015-01-13 00:48:10 +00008512
Renato Golinc7aea402014-05-06 16:51:25 +00008513.. _int_read_register:
8514.. _int_write_register:
8515
8516'``llvm.read_register``' and '``llvm.write_register``' Intrinsics
8517^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8518
8519Syntax:
8520"""""""
8521
8522::
8523
8524 declare i32 @llvm.read_register.i32(metadata)
8525 declare i64 @llvm.read_register.i64(metadata)
8526 declare void @llvm.write_register.i32(metadata, i32 @value)
8527 declare void @llvm.write_register.i64(metadata, i64 @value)
Duncan P. N. Exon Smithbe7ea192014-12-15 19:07:53 +00008528 !0 = !{!"sp\00"}
Renato Golinc7aea402014-05-06 16:51:25 +00008529
8530Overview:
8531"""""""""
8532
8533The '``llvm.read_register``' and '``llvm.write_register``' intrinsics
8534provides access to the named register. The register must be valid on
8535the architecture being compiled to. The type needs to be compatible
8536with the register being read.
8537
8538Semantics:
8539""""""""""
8540
8541The '``llvm.read_register``' intrinsic returns the current value of the
8542register, where possible. The '``llvm.write_register``' intrinsic sets
8543the current value of the register, where possible.
8544
8545This is useful to implement named register global variables that need
8546to always be mapped to a specific register, as is common practice on
8547bare-metal programs including OS kernels.
8548
8549The compiler doesn't check for register availability or use of the used
8550register in surrounding code, including inline assembly. Because of that,
8551allocatable registers are not supported.
8552
8553Warning: So far it only works with the stack pointer on selected
Tim Northover3b0846e2014-05-24 12:50:23 +00008554architectures (ARM, AArch64, PowerPC and x86_64). Significant amount of
Renato Golinc7aea402014-05-06 16:51:25 +00008555work is needed to support other registers and even more so, allocatable
8556registers.
8557
Sean Silvab084af42012-12-07 10:36:55 +00008558.. _int_stacksave:
8559
8560'``llvm.stacksave``' Intrinsic
8561^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8562
8563Syntax:
8564"""""""
8565
8566::
8567
8568 declare i8* @llvm.stacksave()
8569
8570Overview:
8571"""""""""
8572
8573The '``llvm.stacksave``' intrinsic is used to remember the current state
8574of the function stack, for use with
8575:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
8576implementing language features like scoped automatic variable sized
8577arrays in C99.
8578
8579Semantics:
8580""""""""""
8581
8582This intrinsic returns a opaque pointer value that can be passed to
8583:ref:`llvm.stackrestore <int_stackrestore>`. When an
8584``llvm.stackrestore`` intrinsic is executed with a value saved from
8585``llvm.stacksave``, it effectively restores the state of the stack to
8586the state it was in when the ``llvm.stacksave`` intrinsic executed. In
8587practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
8588were allocated after the ``llvm.stacksave`` was executed.
8589
8590.. _int_stackrestore:
8591
8592'``llvm.stackrestore``' Intrinsic
8593^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8594
8595Syntax:
8596"""""""
8597
8598::
8599
8600 declare void @llvm.stackrestore(i8* %ptr)
8601
8602Overview:
8603"""""""""
8604
8605The '``llvm.stackrestore``' intrinsic is used to restore the state of
8606the function stack to the state it was in when the corresponding
8607:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
8608useful for implementing language features like scoped automatic variable
8609sized arrays in C99.
8610
8611Semantics:
8612""""""""""
8613
8614See the description for :ref:`llvm.stacksave <int_stacksave>`.
8615
8616'``llvm.prefetch``' Intrinsic
8617^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8618
8619Syntax:
8620"""""""
8621
8622::
8623
8624 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
8625
8626Overview:
8627"""""""""
8628
8629The '``llvm.prefetch``' intrinsic is a hint to the code generator to
8630insert a prefetch instruction if supported; otherwise, it is a noop.
8631Prefetches have no effect on the behavior of the program but can change
8632its performance characteristics.
8633
8634Arguments:
8635""""""""""
8636
8637``address`` is the address to be prefetched, ``rw`` is the specifier
8638determining if the fetch should be for a read (0) or write (1), and
8639``locality`` is a temporal locality specifier ranging from (0) - no
8640locality, to (3) - extremely local keep in cache. The ``cache type``
8641specifies whether the prefetch is performed on the data (1) or
8642instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
8643arguments must be constant integers.
8644
8645Semantics:
8646""""""""""
8647
8648This intrinsic does not modify the behavior of the program. In
8649particular, prefetches cannot trap and do not produce a value. On
8650targets that support this intrinsic, the prefetch can provide hints to
8651the processor cache for better performance.
8652
8653'``llvm.pcmarker``' Intrinsic
8654^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8655
8656Syntax:
8657"""""""
8658
8659::
8660
8661 declare void @llvm.pcmarker(i32 <id>)
8662
8663Overview:
8664"""""""""
8665
8666The '``llvm.pcmarker``' intrinsic is a method to export a Program
8667Counter (PC) in a region of code to simulators and other tools. The
8668method is target specific, but it is expected that the marker will use
8669exported symbols to transmit the PC of the marker. The marker makes no
8670guarantees that it will remain with any specific instruction after
8671optimizations. It is possible that the presence of a marker will inhibit
8672optimizations. The intended use is to be inserted after optimizations to
8673allow correlations of simulation runs.
8674
8675Arguments:
8676""""""""""
8677
8678``id`` is a numerical id identifying the marker.
8679
8680Semantics:
8681""""""""""
8682
8683This intrinsic does not modify the behavior of the program. Backends
8684that do not support this intrinsic may ignore it.
8685
8686'``llvm.readcyclecounter``' Intrinsic
8687^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8688
8689Syntax:
8690"""""""
8691
8692::
8693
8694 declare i64 @llvm.readcyclecounter()
8695
8696Overview:
8697"""""""""
8698
8699The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
8700counter register (or similar low latency, high accuracy clocks) on those
8701targets that support it. On X86, it should map to RDTSC. On Alpha, it
8702should map to RPCC. As the backing counters overflow quickly (on the
8703order of 9 seconds on alpha), this should only be used for small
8704timings.
8705
8706Semantics:
8707""""""""""
8708
8709When directly supported, reading the cycle counter should not modify any
8710memory. Implementations are allowed to either return a application
8711specific value or a system wide value. On backends without support, this
8712is lowered to a constant 0.
8713
Tim Northoverbc933082013-05-23 19:11:20 +00008714Note that runtime support may be conditional on the privilege-level code is
8715running at and the host platform.
8716
Renato Golinc0a3c1d2014-03-26 12:52:28 +00008717'``llvm.clear_cache``' Intrinsic
8718^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8719
8720Syntax:
8721"""""""
8722
8723::
8724
8725 declare void @llvm.clear_cache(i8*, i8*)
8726
8727Overview:
8728"""""""""
8729
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008730The '``llvm.clear_cache``' intrinsic ensures visibility of modifications
8731in the specified range to the execution unit of the processor. On
8732targets with non-unified instruction and data cache, the implementation
8733flushes the instruction cache.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00008734
8735Semantics:
8736""""""""""
8737
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008738On platforms with coherent instruction and data caches (e.g. x86), this
8739intrinsic is a nop. On platforms with non-coherent instruction and data
Alp Toker16f98b22014-04-09 14:47:27 +00008740cache (e.g. ARM, MIPS), the intrinsic is lowered either to appropriate
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008741instructions or a system call, if cache flushing requires special
8742privileges.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00008743
Sean Silvad02bf3e2014-04-07 22:29:53 +00008744The default behavior is to emit a call to ``__clear_cache`` from the run
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008745time library.
Renato Golin93010e62014-03-26 14:01:32 +00008746
Joerg Sonnenberger03014d62014-03-26 14:35:21 +00008747This instrinsic does *not* empty the instruction pipeline. Modifications
8748of the current function are outside the scope of the intrinsic.
Renato Golinc0a3c1d2014-03-26 12:52:28 +00008749
Justin Bogner61ba2e32014-12-08 18:02:35 +00008750'``llvm.instrprof_increment``' Intrinsic
8751^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8752
8753Syntax:
8754"""""""
8755
8756::
8757
8758 declare void @llvm.instrprof_increment(i8* <name>, i64 <hash>,
8759 i32 <num-counters>, i32 <index>)
8760
8761Overview:
8762"""""""""
8763
8764The '``llvm.instrprof_increment``' intrinsic can be emitted by a
8765frontend for use with instrumentation based profiling. These will be
8766lowered by the ``-instrprof`` pass to generate execution counts of a
8767program at runtime.
8768
8769Arguments:
8770""""""""""
8771
8772The first argument is a pointer to a global variable containing the
8773name of the entity being instrumented. This should generally be the
8774(mangled) function name for a set of counters.
8775
8776The second argument is a hash value that can be used by the consumer
8777of the profile data to detect changes to the instrumented source, and
8778the third is the number of counters associated with ``name``. It is an
8779error if ``hash`` or ``num-counters`` differ between two instances of
8780``instrprof_increment`` that refer to the same name.
8781
8782The last argument refers to which of the counters for ``name`` should
8783be incremented. It should be a value between 0 and ``num-counters``.
8784
8785Semantics:
8786""""""""""
8787
8788This intrinsic represents an increment of a profiling counter. It will
8789cause the ``-instrprof`` pass to generate the appropriate data
8790structures and the code to increment the appropriate value, in a
8791format that can be written out by a compiler runtime and consumed via
8792the ``llvm-profdata`` tool.
8793
Sean Silvab084af42012-12-07 10:36:55 +00008794Standard C Library Intrinsics
8795-----------------------------
8796
8797LLVM provides intrinsics for a few important standard C library
8798functions. These intrinsics allow source-language front-ends to pass
8799information about the alignment of the pointer arguments to the code
8800generator, providing opportunity for more efficient code generation.
8801
8802.. _int_memcpy:
8803
8804'``llvm.memcpy``' Intrinsic
8805^^^^^^^^^^^^^^^^^^^^^^^^^^^
8806
8807Syntax:
8808"""""""
8809
8810This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
8811integer bit width and for different address spaces. Not all targets
8812support all bit widths however.
8813
8814::
8815
8816 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
8817 i32 <len>, i32 <align>, i1 <isvolatile>)
8818 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
8819 i64 <len>, i32 <align>, i1 <isvolatile>)
8820
8821Overview:
8822"""""""""
8823
8824The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
8825source location to the destination location.
8826
8827Note that, unlike the standard libc function, the ``llvm.memcpy.*``
8828intrinsics do not return a value, takes extra alignment/isvolatile
8829arguments and the pointers can be in specified address spaces.
8830
8831Arguments:
8832""""""""""
8833
8834The first argument is a pointer to the destination, the second is a
8835pointer to the source. The third argument is an integer argument
8836specifying the number of bytes to copy, the fourth argument is the
8837alignment of the source and destination locations, and the fifth is a
8838boolean indicating a volatile access.
8839
8840If the call to this intrinsic has an alignment value that is not 0 or 1,
8841then the caller guarantees that both the source and destination pointers
8842are aligned to that boundary.
8843
8844If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
8845a :ref:`volatile operation <volatile>`. The detailed access behavior is not
8846very cleanly specified and it is unwise to depend on it.
8847
8848Semantics:
8849""""""""""
8850
8851The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
8852source location to the destination location, which are not allowed to
8853overlap. It copies "len" bytes of memory over. If the argument is known
8854to be aligned to some boundary, this can be specified as the fourth
Bill Wendling61163152013-10-18 23:26:55 +00008855argument, otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008856
8857'``llvm.memmove``' Intrinsic
8858^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8859
8860Syntax:
8861"""""""
8862
8863This is an overloaded intrinsic. You can use llvm.memmove on any integer
8864bit width and for different address space. Not all targets support all
8865bit widths however.
8866
8867::
8868
8869 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
8870 i32 <len>, i32 <align>, i1 <isvolatile>)
8871 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
8872 i64 <len>, i32 <align>, i1 <isvolatile>)
8873
8874Overview:
8875"""""""""
8876
8877The '``llvm.memmove.*``' intrinsics move a block of memory from the
8878source location to the destination location. It is similar to the
8879'``llvm.memcpy``' intrinsic but allows the two memory locations to
8880overlap.
8881
8882Note that, unlike the standard libc function, the ``llvm.memmove.*``
8883intrinsics do not return a value, takes extra alignment/isvolatile
8884arguments and the pointers can be in specified address spaces.
8885
8886Arguments:
8887""""""""""
8888
8889The first argument is a pointer to the destination, the second is a
8890pointer to the source. The third argument is an integer argument
8891specifying the number of bytes to copy, the fourth argument is the
8892alignment of the source and destination locations, and the fifth is a
8893boolean indicating a volatile access.
8894
8895If the call to this intrinsic has an alignment value that is not 0 or 1,
8896then the caller guarantees that the source and destination pointers are
8897aligned to that boundary.
8898
8899If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
8900is a :ref:`volatile operation <volatile>`. The detailed access behavior is
8901not very cleanly specified and it is unwise to depend on it.
8902
8903Semantics:
8904""""""""""
8905
8906The '``llvm.memmove.*``' intrinsics copy a block of memory from the
8907source location to the destination location, which may overlap. It
8908copies "len" bytes of memory over. If the argument is known to be
8909aligned to some boundary, this can be specified as the fourth argument,
Bill Wendling61163152013-10-18 23:26:55 +00008910otherwise it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008911
8912'``llvm.memset.*``' Intrinsics
8913^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8914
8915Syntax:
8916"""""""
8917
8918This is an overloaded intrinsic. You can use llvm.memset on any integer
8919bit width and for different address spaces. However, not all targets
8920support all bit widths.
8921
8922::
8923
8924 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
8925 i32 <len>, i32 <align>, i1 <isvolatile>)
8926 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
8927 i64 <len>, i32 <align>, i1 <isvolatile>)
8928
8929Overview:
8930"""""""""
8931
8932The '``llvm.memset.*``' intrinsics fill a block of memory with a
8933particular byte value.
8934
8935Note that, unlike the standard libc function, the ``llvm.memset``
8936intrinsic does not return a value and takes extra alignment/volatile
8937arguments. Also, the destination can be in an arbitrary address space.
8938
8939Arguments:
8940""""""""""
8941
8942The first argument is a pointer to the destination to fill, the second
8943is the byte value with which to fill it, the third argument is an
8944integer argument specifying the number of bytes to fill, and the fourth
8945argument is the known alignment of the destination location.
8946
8947If the call to this intrinsic has an alignment value that is not 0 or 1,
8948then the caller guarantees that the destination pointer is aligned to
8949that boundary.
8950
8951If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
8952a :ref:`volatile operation <volatile>`. The detailed access behavior is not
8953very cleanly specified and it is unwise to depend on it.
8954
8955Semantics:
8956""""""""""
8957
8958The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
8959at the destination location. If the argument is known to be aligned to
8960some boundary, this can be specified as the fourth argument, otherwise
Bill Wendling61163152013-10-18 23:26:55 +00008961it should be set to 0 or 1 (both meaning no alignment).
Sean Silvab084af42012-12-07 10:36:55 +00008962
8963'``llvm.sqrt.*``' Intrinsic
8964^^^^^^^^^^^^^^^^^^^^^^^^^^^
8965
8966Syntax:
8967"""""""
8968
8969This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
8970floating point or vector of floating point type. Not all targets support
8971all types however.
8972
8973::
8974
8975 declare float @llvm.sqrt.f32(float %Val)
8976 declare double @llvm.sqrt.f64(double %Val)
8977 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
8978 declare fp128 @llvm.sqrt.f128(fp128 %Val)
8979 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
8980
8981Overview:
8982"""""""""
8983
8984The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
8985returning the same value as the libm '``sqrt``' functions would. Unlike
8986``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
8987negative numbers other than -0.0 (which allows for better optimization,
8988because there is no need to worry about errno being set).
8989``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
8990
8991Arguments:
8992""""""""""
8993
8994The argument and return value are floating point numbers of the same
8995type.
8996
8997Semantics:
8998""""""""""
8999
9000This function returns the sqrt of the specified operand if it is a
9001nonnegative floating point number.
9002
9003'``llvm.powi.*``' Intrinsic
9004^^^^^^^^^^^^^^^^^^^^^^^^^^^
9005
9006Syntax:
9007"""""""
9008
9009This is an overloaded intrinsic. You can use ``llvm.powi`` on any
9010floating point or vector of floating point type. Not all targets support
9011all types however.
9012
9013::
9014
9015 declare float @llvm.powi.f32(float %Val, i32 %power)
9016 declare double @llvm.powi.f64(double %Val, i32 %power)
9017 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
9018 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
9019 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
9020
9021Overview:
9022"""""""""
9023
9024The '``llvm.powi.*``' intrinsics return the first operand raised to the
9025specified (positive or negative) power. The order of evaluation of
9026multiplications is not defined. When a vector of floating point type is
9027used, the second argument remains a scalar integer value.
9028
9029Arguments:
9030""""""""""
9031
9032The second argument is an integer power, and the first is a value to
9033raise to that power.
9034
9035Semantics:
9036""""""""""
9037
9038This function returns the first value raised to the second power with an
9039unspecified sequence of rounding operations.
9040
9041'``llvm.sin.*``' Intrinsic
9042^^^^^^^^^^^^^^^^^^^^^^^^^^
9043
9044Syntax:
9045"""""""
9046
9047This is an overloaded intrinsic. You can use ``llvm.sin`` on any
9048floating point or vector of floating point type. Not all targets support
9049all types however.
9050
9051::
9052
9053 declare float @llvm.sin.f32(float %Val)
9054 declare double @llvm.sin.f64(double %Val)
9055 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
9056 declare fp128 @llvm.sin.f128(fp128 %Val)
9057 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
9058
9059Overview:
9060"""""""""
9061
9062The '``llvm.sin.*``' intrinsics return the sine of the operand.
9063
9064Arguments:
9065""""""""""
9066
9067The argument and return value are floating point numbers of the same
9068type.
9069
9070Semantics:
9071""""""""""
9072
9073This function returns the sine of the specified operand, returning the
9074same values as the libm ``sin`` functions would, and handles error
9075conditions in the same way.
9076
9077'``llvm.cos.*``' Intrinsic
9078^^^^^^^^^^^^^^^^^^^^^^^^^^
9079
9080Syntax:
9081"""""""
9082
9083This is an overloaded intrinsic. You can use ``llvm.cos`` on any
9084floating point or vector of floating point type. Not all targets support
9085all types however.
9086
9087::
9088
9089 declare float @llvm.cos.f32(float %Val)
9090 declare double @llvm.cos.f64(double %Val)
9091 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
9092 declare fp128 @llvm.cos.f128(fp128 %Val)
9093 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
9094
9095Overview:
9096"""""""""
9097
9098The '``llvm.cos.*``' intrinsics return the cosine of the operand.
9099
9100Arguments:
9101""""""""""
9102
9103The argument and return value are floating point numbers of the same
9104type.
9105
9106Semantics:
9107""""""""""
9108
9109This function returns the cosine of the specified operand, returning the
9110same values as the libm ``cos`` functions would, and handles error
9111conditions in the same way.
9112
9113'``llvm.pow.*``' Intrinsic
9114^^^^^^^^^^^^^^^^^^^^^^^^^^
9115
9116Syntax:
9117"""""""
9118
9119This is an overloaded intrinsic. You can use ``llvm.pow`` on any
9120floating point or vector of floating point type. Not all targets support
9121all types however.
9122
9123::
9124
9125 declare float @llvm.pow.f32(float %Val, float %Power)
9126 declare double @llvm.pow.f64(double %Val, double %Power)
9127 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
9128 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
9129 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
9130
9131Overview:
9132"""""""""
9133
9134The '``llvm.pow.*``' intrinsics return the first operand raised to the
9135specified (positive or negative) power.
9136
9137Arguments:
9138""""""""""
9139
9140The second argument is a floating point power, and the first is a value
9141to raise to that power.
9142
9143Semantics:
9144""""""""""
9145
9146This function returns the first value raised to the second power,
9147returning the same values as the libm ``pow`` functions would, and
9148handles error conditions in the same way.
9149
9150'``llvm.exp.*``' Intrinsic
9151^^^^^^^^^^^^^^^^^^^^^^^^^^
9152
9153Syntax:
9154"""""""
9155
9156This is an overloaded intrinsic. You can use ``llvm.exp`` on any
9157floating point or vector of floating point type. Not all targets support
9158all types however.
9159
9160::
9161
9162 declare float @llvm.exp.f32(float %Val)
9163 declare double @llvm.exp.f64(double %Val)
9164 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
9165 declare fp128 @llvm.exp.f128(fp128 %Val)
9166 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
9167
9168Overview:
9169"""""""""
9170
9171The '``llvm.exp.*``' intrinsics perform the exp function.
9172
9173Arguments:
9174""""""""""
9175
9176The argument and return value are floating point numbers of the same
9177type.
9178
9179Semantics:
9180""""""""""
9181
9182This function returns the same values as the libm ``exp`` functions
9183would, and handles error conditions in the same way.
9184
9185'``llvm.exp2.*``' Intrinsic
9186^^^^^^^^^^^^^^^^^^^^^^^^^^^
9187
9188Syntax:
9189"""""""
9190
9191This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
9192floating point or vector of floating point type. Not all targets support
9193all types however.
9194
9195::
9196
9197 declare float @llvm.exp2.f32(float %Val)
9198 declare double @llvm.exp2.f64(double %Val)
9199 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
9200 declare fp128 @llvm.exp2.f128(fp128 %Val)
9201 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
9202
9203Overview:
9204"""""""""
9205
9206The '``llvm.exp2.*``' intrinsics perform the exp2 function.
9207
9208Arguments:
9209""""""""""
9210
9211The argument and return value are floating point numbers of the same
9212type.
9213
9214Semantics:
9215""""""""""
9216
9217This function returns the same values as the libm ``exp2`` functions
9218would, and handles error conditions in the same way.
9219
9220'``llvm.log.*``' Intrinsic
9221^^^^^^^^^^^^^^^^^^^^^^^^^^
9222
9223Syntax:
9224"""""""
9225
9226This is an overloaded intrinsic. You can use ``llvm.log`` on any
9227floating point or vector of floating point type. Not all targets support
9228all types however.
9229
9230::
9231
9232 declare float @llvm.log.f32(float %Val)
9233 declare double @llvm.log.f64(double %Val)
9234 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
9235 declare fp128 @llvm.log.f128(fp128 %Val)
9236 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
9237
9238Overview:
9239"""""""""
9240
9241The '``llvm.log.*``' intrinsics perform the log function.
9242
9243Arguments:
9244""""""""""
9245
9246The argument and return value are floating point numbers of the same
9247type.
9248
9249Semantics:
9250""""""""""
9251
9252This function returns the same values as the libm ``log`` functions
9253would, and handles error conditions in the same way.
9254
9255'``llvm.log10.*``' Intrinsic
9256^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9257
9258Syntax:
9259"""""""
9260
9261This is an overloaded intrinsic. You can use ``llvm.log10`` on any
9262floating point or vector of floating point type. Not all targets support
9263all types however.
9264
9265::
9266
9267 declare float @llvm.log10.f32(float %Val)
9268 declare double @llvm.log10.f64(double %Val)
9269 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
9270 declare fp128 @llvm.log10.f128(fp128 %Val)
9271 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
9272
9273Overview:
9274"""""""""
9275
9276The '``llvm.log10.*``' intrinsics perform the log10 function.
9277
9278Arguments:
9279""""""""""
9280
9281The argument and return value are floating point numbers of the same
9282type.
9283
9284Semantics:
9285""""""""""
9286
9287This function returns the same values as the libm ``log10`` functions
9288would, and handles error conditions in the same way.
9289
9290'``llvm.log2.*``' Intrinsic
9291^^^^^^^^^^^^^^^^^^^^^^^^^^^
9292
9293Syntax:
9294"""""""
9295
9296This is an overloaded intrinsic. You can use ``llvm.log2`` on any
9297floating point or vector of floating point type. Not all targets support
9298all types however.
9299
9300::
9301
9302 declare float @llvm.log2.f32(float %Val)
9303 declare double @llvm.log2.f64(double %Val)
9304 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
9305 declare fp128 @llvm.log2.f128(fp128 %Val)
9306 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
9307
9308Overview:
9309"""""""""
9310
9311The '``llvm.log2.*``' intrinsics perform the log2 function.
9312
9313Arguments:
9314""""""""""
9315
9316The argument and return value are floating point numbers of the same
9317type.
9318
9319Semantics:
9320""""""""""
9321
9322This function returns the same values as the libm ``log2`` functions
9323would, and handles error conditions in the same way.
9324
9325'``llvm.fma.*``' Intrinsic
9326^^^^^^^^^^^^^^^^^^^^^^^^^^
9327
9328Syntax:
9329"""""""
9330
9331This is an overloaded intrinsic. You can use ``llvm.fma`` on any
9332floating point or vector of floating point type. Not all targets support
9333all types however.
9334
9335::
9336
9337 declare float @llvm.fma.f32(float %a, float %b, float %c)
9338 declare double @llvm.fma.f64(double %a, double %b, double %c)
9339 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
9340 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
9341 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
9342
9343Overview:
9344"""""""""
9345
9346The '``llvm.fma.*``' intrinsics perform the fused multiply-add
9347operation.
9348
9349Arguments:
9350""""""""""
9351
9352The argument and return value are floating point numbers of the same
9353type.
9354
9355Semantics:
9356""""""""""
9357
9358This function returns the same values as the libm ``fma`` functions
Matt Arsenaultee364ee2014-01-31 00:09:00 +00009359would, and does not set errno.
Sean Silvab084af42012-12-07 10:36:55 +00009360
9361'``llvm.fabs.*``' Intrinsic
9362^^^^^^^^^^^^^^^^^^^^^^^^^^^
9363
9364Syntax:
9365"""""""
9366
9367This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
9368floating point or vector of floating point type. Not all targets support
9369all types however.
9370
9371::
9372
9373 declare float @llvm.fabs.f32(float %Val)
9374 declare double @llvm.fabs.f64(double %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009375 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00009376 declare fp128 @llvm.fabs.f128(fp128 %Val)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009377 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
Sean Silvab084af42012-12-07 10:36:55 +00009378
9379Overview:
9380"""""""""
9381
9382The '``llvm.fabs.*``' intrinsics return the absolute value of the
9383operand.
9384
9385Arguments:
9386""""""""""
9387
9388The argument and return value are floating point numbers of the same
9389type.
9390
9391Semantics:
9392""""""""""
9393
9394This function returns the same values as the libm ``fabs`` functions
9395would, and handles error conditions in the same way.
9396
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009397'``llvm.minnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00009398^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009399
9400Syntax:
9401"""""""
9402
9403This is an overloaded intrinsic. You can use ``llvm.minnum`` on any
9404floating point or vector of floating point type. Not all targets support
9405all types however.
9406
9407::
9408
Matt Arsenault64313c92014-10-22 18:25:02 +00009409 declare float @llvm.minnum.f32(float %Val0, float %Val1)
9410 declare double @llvm.minnum.f64(double %Val0, double %Val1)
9411 declare x86_fp80 @llvm.minnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
9412 declare fp128 @llvm.minnum.f128(fp128 %Val0, fp128 %Val1)
9413 declare ppc_fp128 @llvm.minnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009414
9415Overview:
9416"""""""""
9417
9418The '``llvm.minnum.*``' intrinsics return the minimum of the two
9419arguments.
9420
9421
9422Arguments:
9423""""""""""
9424
9425The arguments and return value are floating point numbers of the same
9426type.
9427
9428Semantics:
9429""""""""""
9430
9431Follows the IEEE-754 semantics for minNum, which also match for libm's
9432fmin.
9433
9434If either operand is a NaN, returns the other non-NaN operand. Returns
9435NaN only if both operands are NaN. If the operands compare equal,
9436returns a value that compares equal to both operands. This means that
9437fmin(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
9438
9439'``llvm.maxnum.*``' Intrinsic
Matt Arsenault9886b0d2014-10-22 00:15:53 +00009440^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009441
9442Syntax:
9443"""""""
9444
9445This is an overloaded intrinsic. You can use ``llvm.maxnum`` on any
9446floating point or vector of floating point type. Not all targets support
9447all types however.
9448
9449::
9450
Matt Arsenault64313c92014-10-22 18:25:02 +00009451 declare float @llvm.maxnum.f32(float %Val0, float %Val1l)
9452 declare double @llvm.maxnum.f64(double %Val0, double %Val1)
9453 declare x86_fp80 @llvm.maxnum.f80(x86_fp80 %Val0, x86_fp80 %Val1)
9454 declare fp128 @llvm.maxnum.f128(fp128 %Val0, fp128 %Val1)
9455 declare ppc_fp128 @llvm.maxnum.ppcf128(ppc_fp128 %Val0, ppc_fp128 %Val1)
Matt Arsenaultd6511b42014-10-21 23:00:20 +00009456
9457Overview:
9458"""""""""
9459
9460The '``llvm.maxnum.*``' intrinsics return the maximum of the two
9461arguments.
9462
9463
9464Arguments:
9465""""""""""
9466
9467The arguments and return value are floating point numbers of the same
9468type.
9469
9470Semantics:
9471""""""""""
9472Follows the IEEE-754 semantics for maxNum, which also match for libm's
9473fmax.
9474
9475If either operand is a NaN, returns the other non-NaN operand. Returns
9476NaN only if both operands are NaN. If the operands compare equal,
9477returns a value that compares equal to both operands. This means that
9478fmax(+/-0.0, +/-0.0) could return either -0.0 or 0.0.
9479
Hal Finkel0c5c01aa2013-08-19 23:35:46 +00009480'``llvm.copysign.*``' Intrinsic
9481^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9482
9483Syntax:
9484"""""""
9485
9486This is an overloaded intrinsic. You can use ``llvm.copysign`` on any
9487floating point or vector of floating point type. Not all targets support
9488all types however.
9489
9490::
9491
9492 declare float @llvm.copysign.f32(float %Mag, float %Sgn)
9493 declare double @llvm.copysign.f64(double %Mag, double %Sgn)
9494 declare x86_fp80 @llvm.copysign.f80(x86_fp80 %Mag, x86_fp80 %Sgn)
9495 declare fp128 @llvm.copysign.f128(fp128 %Mag, fp128 %Sgn)
9496 declare ppc_fp128 @llvm.copysign.ppcf128(ppc_fp128 %Mag, ppc_fp128 %Sgn)
9497
9498Overview:
9499"""""""""
9500
9501The '``llvm.copysign.*``' intrinsics return a value with the magnitude of the
9502first operand and the sign of the second operand.
9503
9504Arguments:
9505""""""""""
9506
9507The arguments and return value are floating point numbers of the same
9508type.
9509
9510Semantics:
9511""""""""""
9512
9513This function returns the same values as the libm ``copysign``
9514functions would, and handles error conditions in the same way.
9515
Sean Silvab084af42012-12-07 10:36:55 +00009516'``llvm.floor.*``' Intrinsic
9517^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9518
9519Syntax:
9520"""""""
9521
9522This is an overloaded intrinsic. You can use ``llvm.floor`` on any
9523floating point or vector of floating point type. Not all targets support
9524all types however.
9525
9526::
9527
9528 declare float @llvm.floor.f32(float %Val)
9529 declare double @llvm.floor.f64(double %Val)
9530 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
9531 declare fp128 @llvm.floor.f128(fp128 %Val)
9532 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
9533
9534Overview:
9535"""""""""
9536
9537The '``llvm.floor.*``' intrinsics return the floor of the operand.
9538
9539Arguments:
9540""""""""""
9541
9542The argument and return value are floating point numbers of the same
9543type.
9544
9545Semantics:
9546""""""""""
9547
9548This function returns the same values as the libm ``floor`` functions
9549would, and handles error conditions in the same way.
9550
9551'``llvm.ceil.*``' Intrinsic
9552^^^^^^^^^^^^^^^^^^^^^^^^^^^
9553
9554Syntax:
9555"""""""
9556
9557This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
9558floating point or vector of floating point type. Not all targets support
9559all types however.
9560
9561::
9562
9563 declare float @llvm.ceil.f32(float %Val)
9564 declare double @llvm.ceil.f64(double %Val)
9565 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
9566 declare fp128 @llvm.ceil.f128(fp128 %Val)
9567 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
9568
9569Overview:
9570"""""""""
9571
9572The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
9573
9574Arguments:
9575""""""""""
9576
9577The argument and return value are floating point numbers of the same
9578type.
9579
9580Semantics:
9581""""""""""
9582
9583This function returns the same values as the libm ``ceil`` functions
9584would, and handles error conditions in the same way.
9585
9586'``llvm.trunc.*``' Intrinsic
9587^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9588
9589Syntax:
9590"""""""
9591
9592This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
9593floating point or vector of floating point type. Not all targets support
9594all types however.
9595
9596::
9597
9598 declare float @llvm.trunc.f32(float %Val)
9599 declare double @llvm.trunc.f64(double %Val)
9600 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
9601 declare fp128 @llvm.trunc.f128(fp128 %Val)
9602 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
9603
9604Overview:
9605"""""""""
9606
9607The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
9608nearest integer not larger in magnitude than the operand.
9609
9610Arguments:
9611""""""""""
9612
9613The argument and return value are floating point numbers of the same
9614type.
9615
9616Semantics:
9617""""""""""
9618
9619This function returns the same values as the libm ``trunc`` functions
9620would, and handles error conditions in the same way.
9621
9622'``llvm.rint.*``' Intrinsic
9623^^^^^^^^^^^^^^^^^^^^^^^^^^^
9624
9625Syntax:
9626"""""""
9627
9628This is an overloaded intrinsic. You can use ``llvm.rint`` on any
9629floating point or vector of floating point type. Not all targets support
9630all types however.
9631
9632::
9633
9634 declare float @llvm.rint.f32(float %Val)
9635 declare double @llvm.rint.f64(double %Val)
9636 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
9637 declare fp128 @llvm.rint.f128(fp128 %Val)
9638 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
9639
9640Overview:
9641"""""""""
9642
9643The '``llvm.rint.*``' intrinsics returns the operand rounded to the
9644nearest integer. It may raise an inexact floating-point exception if the
9645operand isn't an integer.
9646
9647Arguments:
9648""""""""""
9649
9650The argument and return value are floating point numbers of the same
9651type.
9652
9653Semantics:
9654""""""""""
9655
9656This function returns the same values as the libm ``rint`` functions
9657would, and handles error conditions in the same way.
9658
9659'``llvm.nearbyint.*``' Intrinsic
9660^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9661
9662Syntax:
9663"""""""
9664
9665This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
9666floating point or vector of floating point type. Not all targets support
9667all types however.
9668
9669::
9670
9671 declare float @llvm.nearbyint.f32(float %Val)
9672 declare double @llvm.nearbyint.f64(double %Val)
9673 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
9674 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
9675 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
9676
9677Overview:
9678"""""""""
9679
9680The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
9681nearest integer.
9682
9683Arguments:
9684""""""""""
9685
9686The argument and return value are floating point numbers of the same
9687type.
9688
9689Semantics:
9690""""""""""
9691
9692This function returns the same values as the libm ``nearbyint``
9693functions would, and handles error conditions in the same way.
9694
Hal Finkel171817e2013-08-07 22:49:12 +00009695'``llvm.round.*``' Intrinsic
9696^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9697
9698Syntax:
9699"""""""
9700
9701This is an overloaded intrinsic. You can use ``llvm.round`` on any
9702floating point or vector of floating point type. Not all targets support
9703all types however.
9704
9705::
9706
9707 declare float @llvm.round.f32(float %Val)
9708 declare double @llvm.round.f64(double %Val)
9709 declare x86_fp80 @llvm.round.f80(x86_fp80 %Val)
9710 declare fp128 @llvm.round.f128(fp128 %Val)
9711 declare ppc_fp128 @llvm.round.ppcf128(ppc_fp128 %Val)
9712
9713Overview:
9714"""""""""
9715
9716The '``llvm.round.*``' intrinsics returns the operand rounded to the
9717nearest integer.
9718
9719Arguments:
9720""""""""""
9721
9722The argument and return value are floating point numbers of the same
9723type.
9724
9725Semantics:
9726""""""""""
9727
9728This function returns the same values as the libm ``round``
9729functions would, and handles error conditions in the same way.
9730
Sean Silvab084af42012-12-07 10:36:55 +00009731Bit Manipulation Intrinsics
9732---------------------------
9733
9734LLVM provides intrinsics for a few important bit manipulation
9735operations. These allow efficient code generation for some algorithms.
9736
9737'``llvm.bswap.*``' Intrinsics
9738^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9739
9740Syntax:
9741"""""""
9742
9743This is an overloaded intrinsic function. You can use bswap on any
9744integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
9745
9746::
9747
9748 declare i16 @llvm.bswap.i16(i16 <id>)
9749 declare i32 @llvm.bswap.i32(i32 <id>)
9750 declare i64 @llvm.bswap.i64(i64 <id>)
9751
9752Overview:
9753"""""""""
9754
9755The '``llvm.bswap``' family of intrinsics is used to byte swap integer
9756values with an even number of bytes (positive multiple of 16 bits).
9757These are useful for performing operations on data that is not in the
9758target's native byte order.
9759
9760Semantics:
9761""""""""""
9762
9763The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
9764and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
9765intrinsic returns an i32 value that has the four bytes of the input i32
9766swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
9767returned i32 will have its bytes in 3, 2, 1, 0 order. The
9768``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
9769concept to additional even-byte lengths (6 bytes, 8 bytes and more,
9770respectively).
9771
9772'``llvm.ctpop.*``' Intrinsic
9773^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9774
9775Syntax:
9776"""""""
9777
9778This is an overloaded intrinsic. You can use llvm.ctpop on any integer
9779bit width, or on any vector with integer elements. Not all targets
9780support all bit widths or vector types, however.
9781
9782::
9783
9784 declare i8 @llvm.ctpop.i8(i8 <src>)
9785 declare i16 @llvm.ctpop.i16(i16 <src>)
9786 declare i32 @llvm.ctpop.i32(i32 <src>)
9787 declare i64 @llvm.ctpop.i64(i64 <src>)
9788 declare i256 @llvm.ctpop.i256(i256 <src>)
9789 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
9790
9791Overview:
9792"""""""""
9793
9794The '``llvm.ctpop``' family of intrinsics counts the number of bits set
9795in a value.
9796
9797Arguments:
9798""""""""""
9799
9800The only argument is the value to be counted. The argument may be of any
9801integer type, or a vector with integer elements. The return type must
9802match the argument type.
9803
9804Semantics:
9805""""""""""
9806
9807The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
9808each element of a vector.
9809
9810'``llvm.ctlz.*``' Intrinsic
9811^^^^^^^^^^^^^^^^^^^^^^^^^^^
9812
9813Syntax:
9814"""""""
9815
9816This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
9817integer bit width, or any vector whose elements are integers. Not all
9818targets support all bit widths or vector types, however.
9819
9820::
9821
9822 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
9823 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
9824 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
9825 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
9826 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
9827 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
9828
9829Overview:
9830"""""""""
9831
9832The '``llvm.ctlz``' family of intrinsic functions counts the number of
9833leading zeros in a variable.
9834
9835Arguments:
9836""""""""""
9837
9838The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00009839any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00009840type must match the first argument type.
9841
9842The second argument must be a constant and is a flag to indicate whether
9843the intrinsic should ensure that a zero as the first argument produces a
9844defined result. Historically some architectures did not provide a
9845defined result for zero values as efficiently, and many algorithms are
9846now predicated on avoiding zero-value inputs.
9847
9848Semantics:
9849""""""""""
9850
9851The '``llvm.ctlz``' intrinsic counts the leading (most significant)
9852zeros in a variable, or within each element of the vector. If
9853``src == 0`` then the result is the size in bits of the type of ``src``
9854if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
9855``llvm.ctlz(i32 2) = 30``.
9856
9857'``llvm.cttz.*``' Intrinsic
9858^^^^^^^^^^^^^^^^^^^^^^^^^^^
9859
9860Syntax:
9861"""""""
9862
9863This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
9864integer bit width, or any vector of integer elements. Not all targets
9865support all bit widths or vector types, however.
9866
9867::
9868
9869 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
9870 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
9871 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
9872 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
9873 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
9874 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
9875
9876Overview:
9877"""""""""
9878
9879The '``llvm.cttz``' family of intrinsic functions counts the number of
9880trailing zeros.
9881
9882Arguments:
9883""""""""""
9884
9885The first argument is the value to be counted. This argument may be of
Hal Finkel5dd82782015-01-05 04:05:21 +00009886any integer type, or a vector with integer element type. The return
Sean Silvab084af42012-12-07 10:36:55 +00009887type must match the first argument type.
9888
9889The second argument must be a constant and is a flag to indicate whether
9890the intrinsic should ensure that a zero as the first argument produces a
9891defined result. Historically some architectures did not provide a
9892defined result for zero values as efficiently, and many algorithms are
9893now predicated on avoiding zero-value inputs.
9894
9895Semantics:
9896""""""""""
9897
9898The '``llvm.cttz``' intrinsic counts the trailing (least significant)
9899zeros in a variable, or within each element of a vector. If ``src == 0``
9900then the result is the size in bits of the type of ``src`` if
9901``is_zero_undef == 0`` and ``undef`` otherwise. For example,
9902``llvm.cttz(2) = 1``.
9903
Philip Reames34843ae2015-03-05 05:55:55 +00009904.. _int_overflow:
9905
Sean Silvab084af42012-12-07 10:36:55 +00009906Arithmetic with Overflow Intrinsics
9907-----------------------------------
9908
9909LLVM provides intrinsics for some arithmetic with overflow operations.
9910
9911'``llvm.sadd.with.overflow.*``' Intrinsics
9912^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9913
9914Syntax:
9915"""""""
9916
9917This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
9918on any integer bit width.
9919
9920::
9921
9922 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
9923 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
9924 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
9925
9926Overview:
9927"""""""""
9928
9929The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
9930a signed addition of the two arguments, and indicate whether an overflow
9931occurred during the signed summation.
9932
9933Arguments:
9934""""""""""
9935
9936The arguments (%a and %b) and the first element of the result structure
9937may be of integer types of any bit width, but they must have the same
9938bit width. The second element of the result structure must be of type
9939``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
9940addition.
9941
9942Semantics:
9943""""""""""
9944
9945The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009946a signed addition of the two variables. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00009947first element of which is the signed summation, and the second element
9948of which is a bit specifying if the signed summation resulted in an
9949overflow.
9950
9951Examples:
9952"""""""""
9953
9954.. code-block:: llvm
9955
9956 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
9957 %sum = extractvalue {i32, i1} %res, 0
9958 %obit = extractvalue {i32, i1} %res, 1
9959 br i1 %obit, label %overflow, label %normal
9960
9961'``llvm.uadd.with.overflow.*``' Intrinsics
9962^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
9963
9964Syntax:
9965"""""""
9966
9967This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
9968on any integer bit width.
9969
9970::
9971
9972 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
9973 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
9974 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
9975
9976Overview:
9977"""""""""
9978
9979The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
9980an unsigned addition of the two arguments, and indicate whether a carry
9981occurred during the unsigned summation.
9982
9983Arguments:
9984""""""""""
9985
9986The arguments (%a and %b) and the first element of the result structure
9987may be of integer types of any bit width, but they must have the same
9988bit width. The second element of the result structure must be of type
9989``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
9990addition.
9991
9992Semantics:
9993""""""""""
9994
9995The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +00009996an unsigned addition of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +00009997first element of which is the sum, and the second element of which is a
9998bit specifying if the unsigned summation resulted in a carry.
9999
10000Examples:
10001"""""""""
10002
10003.. code-block:: llvm
10004
10005 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
10006 %sum = extractvalue {i32, i1} %res, 0
10007 %obit = extractvalue {i32, i1} %res, 1
10008 br i1 %obit, label %carry, label %normal
10009
10010'``llvm.ssub.with.overflow.*``' Intrinsics
10011^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10012
10013Syntax:
10014"""""""
10015
10016This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
10017on any integer bit width.
10018
10019::
10020
10021 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
10022 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10023 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
10024
10025Overview:
10026"""""""""
10027
10028The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
10029a signed subtraction of the two arguments, and indicate whether an
10030overflow occurred during the signed subtraction.
10031
10032Arguments:
10033""""""""""
10034
10035The arguments (%a and %b) and the first element of the result structure
10036may be of integer types of any bit width, but they must have the same
10037bit width. The second element of the result structure must be of type
10038``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10039subtraction.
10040
10041Semantics:
10042""""""""""
10043
10044The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010045a signed subtraction of the two arguments. They return a structure --- the
Sean Silvab084af42012-12-07 10:36:55 +000010046first element of which is the subtraction, and the second element of
10047which is a bit specifying if the signed subtraction resulted in an
10048overflow.
10049
10050Examples:
10051"""""""""
10052
10053.. code-block:: llvm
10054
10055 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
10056 %sum = extractvalue {i32, i1} %res, 0
10057 %obit = extractvalue {i32, i1} %res, 1
10058 br i1 %obit, label %overflow, label %normal
10059
10060'``llvm.usub.with.overflow.*``' Intrinsics
10061^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10062
10063Syntax:
10064"""""""
10065
10066This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
10067on any integer bit width.
10068
10069::
10070
10071 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
10072 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10073 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
10074
10075Overview:
10076"""""""""
10077
10078The '``llvm.usub.with.overflow``' family of intrinsic functions perform
10079an unsigned subtraction of the two arguments, and indicate whether an
10080overflow occurred during the unsigned subtraction.
10081
10082Arguments:
10083""""""""""
10084
10085The arguments (%a and %b) and the first element of the result structure
10086may be of integer types of any bit width, but they must have the same
10087bit width. The second element of the result structure must be of type
10088``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10089subtraction.
10090
10091Semantics:
10092""""""""""
10093
10094The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010095an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010096the first element of which is the subtraction, and the second element of
10097which is a bit specifying if the unsigned subtraction resulted in an
10098overflow.
10099
10100Examples:
10101"""""""""
10102
10103.. code-block:: llvm
10104
10105 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
10106 %sum = extractvalue {i32, i1} %res, 0
10107 %obit = extractvalue {i32, i1} %res, 1
10108 br i1 %obit, label %overflow, label %normal
10109
10110'``llvm.smul.with.overflow.*``' Intrinsics
10111^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10112
10113Syntax:
10114"""""""
10115
10116This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
10117on any integer bit width.
10118
10119::
10120
10121 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
10122 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10123 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
10124
10125Overview:
10126"""""""""
10127
10128The '``llvm.smul.with.overflow``' family of intrinsic functions perform
10129a signed multiplication of the two arguments, and indicate whether an
10130overflow occurred during the signed multiplication.
10131
10132Arguments:
10133""""""""""
10134
10135The arguments (%a and %b) and the first element of the result structure
10136may be of integer types of any bit width, but they must have the same
10137bit width. The second element of the result structure must be of type
10138``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
10139multiplication.
10140
10141Semantics:
10142""""""""""
10143
10144The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010145a signed multiplication of the two arguments. They return a structure ---
Sean Silvab084af42012-12-07 10:36:55 +000010146the first element of which is the multiplication, and the second element
10147of which is a bit specifying if the signed multiplication resulted in an
10148overflow.
10149
10150Examples:
10151"""""""""
10152
10153.. code-block:: llvm
10154
10155 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
10156 %sum = extractvalue {i32, i1} %res, 0
10157 %obit = extractvalue {i32, i1} %res, 1
10158 br i1 %obit, label %overflow, label %normal
10159
10160'``llvm.umul.with.overflow.*``' Intrinsics
10161^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10162
10163Syntax:
10164"""""""
10165
10166This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
10167on any integer bit width.
10168
10169::
10170
10171 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
10172 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10173 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
10174
10175Overview:
10176"""""""""
10177
10178The '``llvm.umul.with.overflow``' family of intrinsic functions perform
10179a unsigned multiplication of the two arguments, and indicate whether an
10180overflow occurred during the unsigned multiplication.
10181
10182Arguments:
10183""""""""""
10184
10185The arguments (%a and %b) and the first element of the result structure
10186may be of integer types of any bit width, but they must have the same
10187bit width. The second element of the result structure must be of type
10188``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
10189multiplication.
10190
10191Semantics:
10192""""""""""
10193
10194The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoe8131122013-01-19 20:34:20 +000010195an unsigned multiplication of the two arguments. They return a structure ---
10196the first element of which is the multiplication, and the second
Sean Silvab084af42012-12-07 10:36:55 +000010197element of which is a bit specifying if the unsigned multiplication
10198resulted in an overflow.
10199
10200Examples:
10201"""""""""
10202
10203.. code-block:: llvm
10204
10205 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
10206 %sum = extractvalue {i32, i1} %res, 0
10207 %obit = extractvalue {i32, i1} %res, 1
10208 br i1 %obit, label %overflow, label %normal
10209
10210Specialised Arithmetic Intrinsics
10211---------------------------------
10212
Owen Anderson1056a922015-07-11 07:01:27 +000010213'``llvm.canonicalize.*``' Intrinsic
10214^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10215
10216Syntax:
10217"""""""
10218
10219::
10220
10221 declare float @llvm.canonicalize.f32(float %a)
10222 declare double @llvm.canonicalize.f64(double %b)
10223
10224Overview:
10225"""""""""
10226
10227The '``llvm.canonicalize.*``' intrinsic returns the platform specific canonical
10228encoding of a floating point number. This canonicalization is useful for
10229implementing certain numeric primitives such as frexp. The canonical encoding is
10230defined by IEEE-754-2008 to be:
10231
10232::
10233
10234 2.1.8 canonical encoding: The preferred encoding of a floating-point
10235 representation in a format. Applied to declets, significands of finite
10236 numbers, infinities, and NaNs, especially in decimal formats.
10237
10238This operation can also be considered equivalent to the IEEE-754-2008
10239conversion of a floating-point value to the same format. NaNs are handled
10240according to section 6.2.
10241
10242Examples of non-canonical encodings:
10243
10244- x87 pseudo denormals, pseudo NaNs, pseudo Infinity, Unnormals. These are
10245 converted to a canonical representation per hardware-specific protocol.
10246- Many normal decimal floating point numbers have non-canonical alternative
10247 encodings.
10248- Some machines, like GPUs or ARMv7 NEON, do not support subnormal values.
10249 These are treated as non-canonical encodings of zero and with be flushed to
10250 a zero of the same sign by this operation.
10251
10252Note that per IEEE-754-2008 6.2, systems that support signaling NaNs with
10253default exception handling must signal an invalid exception, and produce a
10254quiet NaN result.
10255
10256This function should always be implementable as multiplication by 1.0, provided
10257that the compiler does not constant fold the operation. Likewise, division by
102581.0 and ``llvm.minnum(x, x)`` are possible implementations. Addition with
10259-0.0 is also sufficient provided that the rounding mode is not -Infinity.
10260
10261``@llvm.canonicalize`` must preserve the equality relation. That is:
10262
10263- ``(@llvm.canonicalize(x) == x)`` is equivalent to ``(x == x)``
10264- ``(@llvm.canonicalize(x) == @llvm.canonicalize(y))`` is equivalent to
10265 to ``(x == y)``
10266
10267Additionally, the sign of zero must be conserved:
10268``@llvm.canonicalize(-0.0) = -0.0`` and ``@llvm.canonicalize(+0.0) = +0.0``
10269
10270The payload bits of a NaN must be conserved, with two exceptions.
10271First, environments which use only a single canonical representation of NaN
10272must perform said canonicalization. Second, SNaNs must be quieted per the
10273usual methods.
10274
10275The canonicalization operation may be optimized away if:
10276
10277- The input is known to be canonical. For example, it was produced by a
10278 floating-point operation that is required by the standard to be canonical.
10279- The result is consumed only by (or fused with) other floating-point
10280 operations. That is, the bits of the floating point value are not examined.
10281
Sean Silvab084af42012-12-07 10:36:55 +000010282'``llvm.fmuladd.*``' Intrinsic
10283^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10284
10285Syntax:
10286"""""""
10287
10288::
10289
10290 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
10291 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
10292
10293Overview:
10294"""""""""
10295
10296The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hames045f4392013-01-17 00:00:49 +000010297expressions that can be fused if the code generator determines that (a) the
10298target instruction set has support for a fused operation, and (b) that the
10299fused operation is more efficient than the equivalent, separate pair of mul
10300and add instructions.
Sean Silvab084af42012-12-07 10:36:55 +000010301
10302Arguments:
10303""""""""""
10304
10305The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
10306multiplicands, a and b, and an addend c.
10307
10308Semantics:
10309""""""""""
10310
10311The expression:
10312
10313::
10314
10315 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
10316
10317is equivalent to the expression a \* b + c, except that rounding will
10318not be performed between the multiplication and addition steps if the
10319code generator fuses the operations. Fusion is not guaranteed, even if
10320the target platform supports it. If a fused multiply-add is required the
Matt Arsenaultee364ee2014-01-31 00:09:00 +000010321corresponding llvm.fma.\* intrinsic function should be used
10322instead. This never sets errno, just as '``llvm.fma.*``'.
Sean Silvab084af42012-12-07 10:36:55 +000010323
10324Examples:
10325"""""""""
10326
10327.. code-block:: llvm
10328
Tim Northover675a0962014-06-13 14:24:23 +000010329 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields float:r2 = (a * b) + c
Sean Silvab084af42012-12-07 10:36:55 +000010330
James Molloy7395a812015-07-16 15:22:46 +000010331
10332'``llvm.uabsdiff.*``' and '``llvm.sabsdiff.*``' Intrinsics
10333^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10334
10335Syntax:
10336"""""""
10337This is an overloaded intrinsic. The loaded data is a vector of any integer bit width.
10338
10339.. code-block:: llvm
10340
10341 declare <4 x integer> @llvm.uabsdiff.v4i32(<4 x integer> %a, <4 x integer> %b)
10342
10343
10344Overview:
10345"""""""""
10346
10347The ``llvm.uabsdiff`` intrinsic returns a vector result of the absolute difference of the two operands,
10348treating them both as unsigned integers.
10349
10350The ``llvm.sabsdiff`` intrinsic returns a vector result of the absolute difference of the two operands,
10351treating them both as signed integers.
10352
10353.. note::
10354
10355 These intrinsics are primarily used during the code generation stage of compilation.
10356 They are generated by compiler passes such as the Loop and SLP vectorizers.it is not
10357 recommended for users to create them manually.
10358
10359Arguments:
10360""""""""""
10361
10362Both intrinsics take two integer of the same bitwidth.
10363
10364Semantics:
10365""""""""""
10366
10367The expression::
10368
10369 call <4 x i32> @llvm.uabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
10370
10371is equivalent to::
10372
10373 %sub = sub <4 x i32> %a, %b
10374 %ispos = icmp ugt <4 x i32> %sub, <i32 -1, i32 -1, i32 -1, i32 -1>
10375 %neg = sub <4 x i32> zeroinitializer, %sub
10376 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
10377
10378Similarly the expression::
10379
10380 call <4 x i32> @llvm.sabsdiff.v4i32(<4 x i32> %a, <4 x i32> %b)
10381
10382is equivalent to::
10383
10384 %sub = sub nsw <4 x i32> %a, %b
10385 %ispos = icmp sgt <4 x i32> %sub, <i32 -1, i32 -1, i32 -1, i32 -1>
10386 %neg = sub nsw <4 x i32> zeroinitializer, %sub
10387 %1 = select <4 x i1> %ispos, <4 x i32> %sub, <4 x i32> %neg
10388
10389
Sean Silvab084af42012-12-07 10:36:55 +000010390Half Precision Floating Point Intrinsics
10391----------------------------------------
10392
10393For most target platforms, half precision floating point is a
10394storage-only format. This means that it is a dense encoding (in memory)
10395but does not support computation in the format.
10396
10397This means that code must first load the half-precision floating point
10398value as an i16, then convert it to float with
10399:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
10400then be performed on the float value (including extending to double
10401etc). To store the value back to memory, it is first converted to float
10402if needed, then converted to i16 with
10403:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
10404i16 value.
10405
10406.. _int_convert_to_fp16:
10407
10408'``llvm.convert.to.fp16``' Intrinsic
10409^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10410
10411Syntax:
10412"""""""
10413
10414::
10415
Tim Northoverfd7e4242014-07-17 10:51:23 +000010416 declare i16 @llvm.convert.to.fp16.f32(float %a)
10417 declare i16 @llvm.convert.to.fp16.f64(double %a)
Sean Silvab084af42012-12-07 10:36:55 +000010418
10419Overview:
10420"""""""""
10421
Tim Northoverfd7e4242014-07-17 10:51:23 +000010422The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
10423conventional floating point type to half precision floating point format.
Sean Silvab084af42012-12-07 10:36:55 +000010424
10425Arguments:
10426""""""""""
10427
10428The intrinsic function contains single argument - the value to be
10429converted.
10430
10431Semantics:
10432""""""""""
10433
Tim Northoverfd7e4242014-07-17 10:51:23 +000010434The '``llvm.convert.to.fp16``' intrinsic function performs a conversion from a
10435conventional floating point format to half precision floating point format. The
10436return value is an ``i16`` which contains the converted number.
Sean Silvab084af42012-12-07 10:36:55 +000010437
10438Examples:
10439"""""""""
10440
10441.. code-block:: llvm
10442
Tim Northoverfd7e4242014-07-17 10:51:23 +000010443 %res = call i16 @llvm.convert.to.fp16.f32(float %a)
Sean Silvab084af42012-12-07 10:36:55 +000010444 store i16 %res, i16* @x, align 2
10445
10446.. _int_convert_from_fp16:
10447
10448'``llvm.convert.from.fp16``' Intrinsic
10449^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10450
10451Syntax:
10452"""""""
10453
10454::
10455
Tim Northoverfd7e4242014-07-17 10:51:23 +000010456 declare float @llvm.convert.from.fp16.f32(i16 %a)
10457 declare double @llvm.convert.from.fp16.f64(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000010458
10459Overview:
10460"""""""""
10461
10462The '``llvm.convert.from.fp16``' intrinsic function performs a
10463conversion from half precision floating point format to single precision
10464floating point format.
10465
10466Arguments:
10467""""""""""
10468
10469The intrinsic function contains single argument - the value to be
10470converted.
10471
10472Semantics:
10473""""""""""
10474
10475The '``llvm.convert.from.fp16``' intrinsic function performs a
10476conversion from half single precision floating point format to single
10477precision floating point format. The input half-float value is
10478represented by an ``i16`` value.
10479
10480Examples:
10481"""""""""
10482
10483.. code-block:: llvm
10484
David Blaikiec7aabbb2015-03-04 22:06:14 +000010485 %a = load i16, i16* @x, align 2
Matt Arsenault3e3ddda2014-07-10 03:22:16 +000010486 %res = call float @llvm.convert.from.fp16(i16 %a)
Sean Silvab084af42012-12-07 10:36:55 +000010487
Duncan P. N. Exon Smithe2741802015-03-03 17:24:31 +000010488.. _dbg_intrinsics:
10489
Sean Silvab084af42012-12-07 10:36:55 +000010490Debugger Intrinsics
10491-------------------
10492
10493The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
10494prefix), are described in the `LLVM Source Level
10495Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
10496document.
10497
10498Exception Handling Intrinsics
10499-----------------------------
10500
10501The LLVM exception handling intrinsics (which all start with
10502``llvm.eh.`` prefix), are described in the `LLVM Exception
10503Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
10504
10505.. _int_trampoline:
10506
10507Trampoline Intrinsics
10508---------------------
10509
10510These intrinsics make it possible to excise one parameter, marked with
10511the :ref:`nest <nest>` attribute, from a function. The result is a
10512callable function pointer lacking the nest parameter - the caller does
10513not need to provide a value for it. Instead, the value to use is stored
10514in advance in a "trampoline", a block of memory usually allocated on the
10515stack, which also contains code to splice the nest value into the
10516argument list. This is used to implement the GCC nested function address
10517extension.
10518
10519For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
10520then the resulting function pointer has signature ``i32 (i32, i32)*``.
10521It can be created as follows:
10522
10523.. code-block:: llvm
10524
10525 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
David Blaikie16a97eb2015-03-04 22:02:58 +000010526 %tramp1 = getelementptr [10 x i8], [10 x i8]* %tramp, i32 0, i32 0
Sean Silvab084af42012-12-07 10:36:55 +000010527 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
10528 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
10529 %fp = bitcast i8* %p to i32 (i32, i32)*
10530
10531The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
10532``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
10533
10534.. _int_it:
10535
10536'``llvm.init.trampoline``' Intrinsic
10537^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10538
10539Syntax:
10540"""""""
10541
10542::
10543
10544 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
10545
10546Overview:
10547"""""""""
10548
10549This fills the memory pointed to by ``tramp`` with executable code,
10550turning it into a trampoline.
10551
10552Arguments:
10553""""""""""
10554
10555The ``llvm.init.trampoline`` intrinsic takes three arguments, all
10556pointers. The ``tramp`` argument must point to a sufficiently large and
10557sufficiently aligned block of memory; this memory is written to by the
10558intrinsic. Note that the size and the alignment are target-specific -
10559LLVM currently provides no portable way of determining them, so a
10560front-end that generates this intrinsic needs to have some
10561target-specific knowledge. The ``func`` argument must hold a function
10562bitcast to an ``i8*``.
10563
10564Semantics:
10565""""""""""
10566
10567The block of memory pointed to by ``tramp`` is filled with target
10568dependent code, turning it into a function. Then ``tramp`` needs to be
10569passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
10570be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
10571function's signature is the same as that of ``func`` with any arguments
10572marked with the ``nest`` attribute removed. At most one such ``nest``
10573argument is allowed, and it must be of pointer type. Calling the new
10574function is equivalent to calling ``func`` with the same argument list,
10575but with ``nval`` used for the missing ``nest`` argument. If, after
10576calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
10577modified, then the effect of any later call to the returned function
10578pointer is undefined.
10579
10580.. _int_at:
10581
10582'``llvm.adjust.trampoline``' Intrinsic
10583^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10584
10585Syntax:
10586"""""""
10587
10588::
10589
10590 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
10591
10592Overview:
10593"""""""""
10594
10595This performs any required machine-specific adjustment to the address of
10596a trampoline (passed as ``tramp``).
10597
10598Arguments:
10599""""""""""
10600
10601``tramp`` must point to a block of memory which already has trampoline
10602code filled in by a previous call to
10603:ref:`llvm.init.trampoline <int_it>`.
10604
10605Semantics:
10606""""""""""
10607
10608On some architectures the address of the code to be executed needs to be
Sanjay Patel69bf48e2014-07-04 19:40:43 +000010609different than the address where the trampoline is actually stored. This
Sean Silvab084af42012-12-07 10:36:55 +000010610intrinsic returns the executable address corresponding to ``tramp``
10611after performing the required machine specific adjustments. The pointer
10612returned can then be :ref:`bitcast and executed <int_trampoline>`.
10613
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000010614.. _int_mload_mstore:
10615
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010616Masked Vector Load and Store Intrinsics
10617---------------------------------------
10618
10619LLVM provides intrinsics for predicated vector load and store operations. The predicate is specified by a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits of the mask are on, the intrinsic is identical to a regular vector load or store. When all bits are off, no memory is accessed.
10620
10621.. _int_mload:
10622
10623'``llvm.masked.load.*``' Intrinsics
10624^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10625
10626Syntax:
10627"""""""
10628This is an overloaded intrinsic. The loaded data is a vector of any integer or floating point data type.
10629
10630::
10631
10632 declare <16 x float> @llvm.masked.load.v16f32 (<16 x float>* <ptr>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
10633 declare <2 x double> @llvm.masked.load.v2f64 (<2 x double>* <ptr>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
10634
10635Overview:
10636"""""""""
10637
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000010638Reads a vector from memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010639
10640
10641Arguments:
10642""""""""""
10643
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000010644The first operand is the base pointer for the load. The second operand is the alignment of the source location. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the base pointer and the type of the '``passthru``' operand are the same vector types.
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010645
10646
10647Semantics:
10648""""""""""
10649
10650The '``llvm.masked.load``' intrinsic is designed for conditional reading of selected vector elements in a single IR operation. It is useful for targets that support vector masked loads and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar load operations.
10651The result of this operation is equivalent to a regular vector load instruction followed by a 'select' between the loaded and the passthru values, predicated on the same mask. However, using this intrinsic prevents exceptions on memory access to masked-off lanes.
10652
10653
10654::
10655
10656 %res = call <16 x float> @llvm.masked.load.v16f32 (<16 x float>* %ptr, i32 4, <16 x i1>%mask, <16 x float> %passthru)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010657
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010658 ;; The result of the two following instructions is identical aside from potential memory access exception
David Blaikiec7aabbb2015-03-04 22:06:14 +000010659 %loadlal = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000010660 %res = select <16 x i1> %mask, <16 x float> %loadlal, <16 x float> %passthru
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010661
10662.. _int_mstore:
10663
10664'``llvm.masked.store.*``' Intrinsics
10665^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10666
10667Syntax:
10668"""""""
10669This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type.
10670
10671::
10672
10673 declare void @llvm.masked.store.v8i32 (<8 x i32> <value>, <8 x i32> * <ptr>, i32 <alignment>, <8 x i1> <mask>)
10674 declare void @llvm.masked.store.v16f32(<16 x i32> <value>, <16 x i32>* <ptr>, i32 <alignment>, <16 x i1> <mask>)
10675
10676Overview:
10677"""""""""
10678
10679Writes a vector to memory according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
10680
10681Arguments:
10682""""""""""
10683
10684The first operand is the vector value to be written to memory. The second operand is the base pointer for the store, it has the same underlying type as the value operand. The third operand is the alignment of the destination location. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
10685
10686
10687Semantics:
10688""""""""""
10689
10690The '``llvm.masked.store``' intrinsics is designed for conditional writing of selected vector elements in a single IR operation. It is useful for targets that support vector masked store and allows vectorizing predicated basic blocks on these targets. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
10691The result of this operation is equivalent to a load-modify-store sequence. However, using this intrinsic prevents exceptions and data races on memory access to masked-off lanes.
10692
10693::
10694
10695 call void @llvm.masked.store.v16f32(<16 x float> %value, <16 x float>* %ptr, i32 4, <16 x i1> %mask)
Mehdi Amini4a121fa2015-03-14 22:04:06 +000010696
Elena Demikhovskye86c8c82014-12-29 09:47:51 +000010697 ;; The result of the following instructions is identical aside from potential data races and memory access exceptions
David Blaikiec7aabbb2015-03-04 22:06:14 +000010698 %oldval = load <16 x float>, <16 x float>* %ptr, align 4
Elena Demikhovsky3d13f1c2014-12-25 09:29:13 +000010699 %res = select <16 x i1> %mask, <16 x float> %value, <16 x float> %oldval
10700 store <16 x float> %res, <16 x float>* %ptr, align 4
10701
10702
Elena Demikhovsky82cdd652015-05-07 12:25:11 +000010703Masked Vector Gather and Scatter Intrinsics
10704-------------------------------------------
10705
10706LLVM provides intrinsics for vector gather and scatter operations. They are similar to :ref:`Masked Vector Load and Store <int_mload_mstore>`, except they are designed for arbitrary memory accesses, rather than sequential memory accesses. Gather and scatter also employ a mask operand, which holds one bit per vector element, switching the associated vector lane on or off. The memory addresses corresponding to the "off" lanes are not accessed. When all bits are off, no memory is accessed.
10707
10708.. _int_mgather:
10709
10710'``llvm.masked.gather.*``' Intrinsics
10711^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10712
10713Syntax:
10714"""""""
10715This is an overloaded intrinsic. The loaded data are multiple scalar values of any integer or floating point data type gathered together into one vector.
10716
10717::
10718
10719 declare <16 x float> @llvm.masked.gather.v16f32 (<16 x float*> <ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x float> <passthru>)
10720 declare <2 x double> @llvm.masked.gather.v2f64 (<2 x double*> <ptrs>, i32 <alignment>, <2 x i1> <mask>, <2 x double> <passthru>)
10721
10722Overview:
10723"""""""""
10724
10725Reads scalar values from arbitrary memory locations and gathers them into one vector. The memory locations are provided in the vector of pointers '``ptrs``'. The memory is accessed according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes. The masked-off lanes in the result vector are taken from the corresponding lanes of the '``passthru``' operand.
10726
10727
10728Arguments:
10729""""""""""
10730
10731The first operand is a vector of pointers which holds all memory addresses to read. The second operand is an alignment of the source addresses. It must be a constant integer value. The third operand, mask, is a vector of boolean values with the same number of elements as the return type. The fourth is a pass-through value that is used to fill the masked-off lanes of the result. The return type, underlying type of the vector of pointers and the type of the '``passthru``' operand are the same vector types.
10732
10733
10734Semantics:
10735""""""""""
10736
10737The '``llvm.masked.gather``' intrinsic is designed for conditional reading of multiple scalar values from arbitrary memory locations in a single IR operation. It is useful for targets that support vector masked gathers and allows vectorizing basic blocks with data and control divergence. Other targets may support this intrinsic differently, for example by lowering it into a sequence of scalar load operations.
10738The semantics of this operation are equivalent to a sequence of conditional scalar loads with subsequent gathering all loaded values into a single vector. The mask restricts memory access to certain lanes and facilitates vectorization of predicated basic blocks.
10739
10740
10741::
10742
10743 %res = call <4 x double> @llvm.masked.gather.v4f64 (<4 x double*> %ptrs, i32 8, <4 x i1>%mask, <4 x double> <true, true, true, true>)
10744
10745 ;; The gather with all-true mask is equivalent to the following instruction sequence
10746 %ptr0 = extractelement <4 x double*> %ptrs, i32 0
10747 %ptr1 = extractelement <4 x double*> %ptrs, i32 1
10748 %ptr2 = extractelement <4 x double*> %ptrs, i32 2
10749 %ptr3 = extractelement <4 x double*> %ptrs, i32 3
10750
10751 %val0 = load double, double* %ptr0, align 8
10752 %val1 = load double, double* %ptr1, align 8
10753 %val2 = load double, double* %ptr2, align 8
10754 %val3 = load double, double* %ptr3, align 8
10755
10756 %vec0 = insertelement <4 x double>undef, %val0, 0
10757 %vec01 = insertelement <4 x double>%vec0, %val1, 1
10758 %vec012 = insertelement <4 x double>%vec01, %val2, 2
10759 %vec0123 = insertelement <4 x double>%vec012, %val3, 3
10760
10761.. _int_mscatter:
10762
10763'``llvm.masked.scatter.*``' Intrinsics
10764^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10765
10766Syntax:
10767"""""""
10768This is an overloaded intrinsic. The data stored in memory is a vector of any integer or floating point data type. Each vector element is stored in an arbitrary memory addresses. Scatter with overlapping addresses is guaranteed to be ordered from least-significant to most-significant element.
10769
10770::
10771
10772 declare void @llvm.masked.scatter.v8i32 (<8 x i32> <value>, <8 x i32*> <ptrs>, i32 <alignment>, <8 x i1> <mask>)
10773 declare void @llvm.masked.scatter.v16f32(<16 x i32> <value>, <16 x i32*> <ptrs>, i32 <alignment>, <16 x i1> <mask>)
10774
10775Overview:
10776"""""""""
10777
10778Writes each element from the value vector to the corresponding memory address. The memory addresses are represented as a vector of pointers. Writing is done according to the provided mask. The mask holds a bit for each vector lane, and is used to prevent memory accesses to the masked-off lanes.
10779
10780Arguments:
10781""""""""""
10782
10783The first operand is a vector value to be written to memory. The second operand is a vector of pointers, pointing to where the value elements should be stored. It has the same underlying type as the value operand. The third operand is an alignment of the destination addresses. The fourth operand, mask, is a vector of boolean values. The types of the mask and the value operand must have the same number of vector elements.
10784
10785
10786Semantics:
10787""""""""""
10788
10789The '``llvm.masked.scatter``' intrinsics is designed for writing selected vector elements to arbitrary memory addresses in a single IR operation. The operation may be conditional, when not all bits in the mask are switched on. It is useful for targets that support vector masked scatter and allows vectorizing basic blocks with data and control divergency. Other targets may support this intrinsic differently, for example by lowering it into a sequence of branches that guard scalar store operations.
10790
10791::
10792
10793 ;; This instruction unconditionaly stores data vector in multiple addresses
10794 call @llvm.masked.scatter.v8i32 (<8 x i32> %value, <8 x i32*> %ptrs, i32 4, <8 x i1> <true, true, .. true>)
10795
10796 ;; It is equivalent to a list of scalar stores
10797 %val0 = extractelement <8 x i32> %value, i32 0
10798 %val1 = extractelement <8 x i32> %value, i32 1
10799 ..
10800 %val7 = extractelement <8 x i32> %value, i32 7
10801 %ptr0 = extractelement <8 x i32*> %ptrs, i32 0
10802 %ptr1 = extractelement <8 x i32*> %ptrs, i32 1
10803 ..
10804 %ptr7 = extractelement <8 x i32*> %ptrs, i32 7
10805 ;; Note: the order of the following stores is important when they overlap:
10806 store i32 %val0, i32* %ptr0, align 4
10807 store i32 %val1, i32* %ptr1, align 4
10808 ..
10809 store i32 %val7, i32* %ptr7, align 4
10810
10811
Sean Silvab084af42012-12-07 10:36:55 +000010812Memory Use Markers
10813------------------
10814
Sanjay Patel69bf48e2014-07-04 19:40:43 +000010815This class of intrinsics provides information about the lifetime of
Sean Silvab084af42012-12-07 10:36:55 +000010816memory objects and ranges where variables are immutable.
10817
Reid Klecknera534a382013-12-19 02:14:12 +000010818.. _int_lifestart:
10819
Sean Silvab084af42012-12-07 10:36:55 +000010820'``llvm.lifetime.start``' Intrinsic
10821^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10822
10823Syntax:
10824"""""""
10825
10826::
10827
10828 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
10829
10830Overview:
10831"""""""""
10832
10833The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
10834object's lifetime.
10835
10836Arguments:
10837""""""""""
10838
10839The first argument is a constant integer representing the size of the
10840object, or -1 if it is variable sized. The second argument is a pointer
10841to the object.
10842
10843Semantics:
10844""""""""""
10845
10846This intrinsic indicates that before this point in the code, the value
10847of the memory pointed to by ``ptr`` is dead. This means that it is known
10848to never be used and has an undefined value. A load from the pointer
10849that precedes this intrinsic can be replaced with ``'undef'``.
10850
Reid Klecknera534a382013-12-19 02:14:12 +000010851.. _int_lifeend:
10852
Sean Silvab084af42012-12-07 10:36:55 +000010853'``llvm.lifetime.end``' Intrinsic
10854^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10855
10856Syntax:
10857"""""""
10858
10859::
10860
10861 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
10862
10863Overview:
10864"""""""""
10865
10866The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
10867object's lifetime.
10868
10869Arguments:
10870""""""""""
10871
10872The first argument is a constant integer representing the size of the
10873object, or -1 if it is variable sized. The second argument is a pointer
10874to the object.
10875
10876Semantics:
10877""""""""""
10878
10879This intrinsic indicates that after this point in the code, the value of
10880the memory pointed to by ``ptr`` is dead. This means that it is known to
10881never be used and has an undefined value. Any stores into the memory
10882object following this intrinsic may be removed as dead.
10883
10884'``llvm.invariant.start``' Intrinsic
10885^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10886
10887Syntax:
10888"""""""
10889
10890::
10891
10892 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
10893
10894Overview:
10895"""""""""
10896
10897The '``llvm.invariant.start``' intrinsic specifies that the contents of
10898a memory object will not change.
10899
10900Arguments:
10901""""""""""
10902
10903The first argument is a constant integer representing the size of the
10904object, or -1 if it is variable sized. The second argument is a pointer
10905to the object.
10906
10907Semantics:
10908""""""""""
10909
10910This intrinsic indicates that until an ``llvm.invariant.end`` that uses
10911the return value, the referenced memory location is constant and
10912unchanging.
10913
10914'``llvm.invariant.end``' Intrinsic
10915^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10916
10917Syntax:
10918"""""""
10919
10920::
10921
10922 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
10923
10924Overview:
10925"""""""""
10926
10927The '``llvm.invariant.end``' intrinsic specifies that the contents of a
10928memory object are mutable.
10929
10930Arguments:
10931""""""""""
10932
10933The first argument is the matching ``llvm.invariant.start`` intrinsic.
10934The second argument is a constant integer representing the size of the
10935object, or -1 if it is variable sized and the third argument is a
10936pointer to the object.
10937
10938Semantics:
10939""""""""""
10940
10941This intrinsic indicates that the memory is mutable again.
10942
10943General Intrinsics
10944------------------
10945
10946This class of intrinsics is designed to be generic and has no specific
10947purpose.
10948
10949'``llvm.var.annotation``' Intrinsic
10950^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10951
10952Syntax:
10953"""""""
10954
10955::
10956
10957 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
10958
10959Overview:
10960"""""""""
10961
10962The '``llvm.var.annotation``' intrinsic.
10963
10964Arguments:
10965""""""""""
10966
10967The first argument is a pointer to a value, the second is a pointer to a
10968global string, the third is a pointer to a global string which is the
10969source file name, and the last argument is the line number.
10970
10971Semantics:
10972""""""""""
10973
10974This intrinsic allows annotation of local variables with arbitrary
10975strings. This can be useful for special purpose optimizations that want
10976to look for these annotations. These have no other defined use; they are
10977ignored by code generation and optimization.
10978
Michael Gottesman88d18832013-03-26 00:34:27 +000010979'``llvm.ptr.annotation.*``' Intrinsic
10980^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
10981
10982Syntax:
10983"""""""
10984
10985This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
10986pointer to an integer of any width. *NOTE* you must specify an address space for
10987the pointer. The identifier for the default address space is the integer
10988'``0``'.
10989
10990::
10991
10992 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
10993 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
10994 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
10995 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
10996 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
10997
10998Overview:
10999"""""""""
11000
11001The '``llvm.ptr.annotation``' intrinsic.
11002
11003Arguments:
11004""""""""""
11005
11006The first argument is a pointer to an integer value of arbitrary bitwidth
11007(result of some expression), the second is a pointer to a global string, the
11008third is a pointer to a global string which is the source file name, and the
11009last argument is the line number. It returns the value of the first argument.
11010
11011Semantics:
11012""""""""""
11013
11014This intrinsic allows annotation of a pointer to an integer with arbitrary
11015strings. This can be useful for special purpose optimizations that want to look
11016for these annotations. These have no other defined use; they are ignored by code
11017generation and optimization.
11018
Sean Silvab084af42012-12-07 10:36:55 +000011019'``llvm.annotation.*``' Intrinsic
11020^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11021
11022Syntax:
11023"""""""
11024
11025This is an overloaded intrinsic. You can use '``llvm.annotation``' on
11026any integer bit width.
11027
11028::
11029
11030 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
11031 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
11032 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
11033 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
11034 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
11035
11036Overview:
11037"""""""""
11038
11039The '``llvm.annotation``' intrinsic.
11040
11041Arguments:
11042""""""""""
11043
11044The first argument is an integer value (result of some expression), the
11045second is a pointer to a global string, the third is a pointer to a
11046global string which is the source file name, and the last argument is
11047the line number. It returns the value of the first argument.
11048
11049Semantics:
11050""""""""""
11051
11052This intrinsic allows annotations to be put on arbitrary expressions
11053with arbitrary strings. This can be useful for special purpose
11054optimizations that want to look for these annotations. These have no
11055other defined use; they are ignored by code generation and optimization.
11056
11057'``llvm.trap``' Intrinsic
11058^^^^^^^^^^^^^^^^^^^^^^^^^
11059
11060Syntax:
11061"""""""
11062
11063::
11064
11065 declare void @llvm.trap() noreturn nounwind
11066
11067Overview:
11068"""""""""
11069
11070The '``llvm.trap``' intrinsic.
11071
11072Arguments:
11073""""""""""
11074
11075None.
11076
11077Semantics:
11078""""""""""
11079
11080This intrinsic is lowered to the target dependent trap instruction. If
11081the target does not have a trap instruction, this intrinsic will be
11082lowered to a call of the ``abort()`` function.
11083
11084'``llvm.debugtrap``' Intrinsic
11085^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11086
11087Syntax:
11088"""""""
11089
11090::
11091
11092 declare void @llvm.debugtrap() nounwind
11093
11094Overview:
11095"""""""""
11096
11097The '``llvm.debugtrap``' intrinsic.
11098
11099Arguments:
11100""""""""""
11101
11102None.
11103
11104Semantics:
11105""""""""""
11106
11107This intrinsic is lowered to code which is intended to cause an
11108execution trap with the intention of requesting the attention of a
11109debugger.
11110
11111'``llvm.stackprotector``' Intrinsic
11112^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11113
11114Syntax:
11115"""""""
11116
11117::
11118
11119 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
11120
11121Overview:
11122"""""""""
11123
11124The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
11125onto the stack at ``slot``. The stack slot is adjusted to ensure that it
11126is placed on the stack before local variables.
11127
11128Arguments:
11129""""""""""
11130
11131The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
11132The first argument is the value loaded from the stack guard
11133``@__stack_chk_guard``. The second variable is an ``alloca`` that has
11134enough space to hold the value of the guard.
11135
11136Semantics:
11137""""""""""
11138
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011139This intrinsic causes the prologue/epilogue inserter to force the position of
11140the ``AllocaInst`` stack slot to be before local variables on the stack. This is
11141to ensure that if a local variable on the stack is overwritten, it will destroy
11142the value of the guard. When the function exits, the guard on the stack is
11143checked against the original guard by ``llvm.stackprotectorcheck``. If they are
11144different, then ``llvm.stackprotectorcheck`` causes the program to abort by
11145calling the ``__stack_chk_fail()`` function.
11146
11147'``llvm.stackprotectorcheck``' Intrinsic
Sean Silva9d1e1a32013-09-09 19:13:28 +000011148^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011149
11150Syntax:
11151"""""""
11152
11153::
11154
11155 declare void @llvm.stackprotectorcheck(i8** <guard>)
11156
11157Overview:
11158"""""""""
11159
11160The ``llvm.stackprotectorcheck`` intrinsic compares ``guard`` against an already
Michael Gottesman98850bd2013-08-12 19:44:09 +000011161created stack protector and if they are not equal calls the
Sean Silvab084af42012-12-07 10:36:55 +000011162``__stack_chk_fail()`` function.
11163
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011164Arguments:
11165""""""""""
11166
11167The ``llvm.stackprotectorcheck`` intrinsic requires one pointer argument, the
11168the variable ``@__stack_chk_guard``.
11169
11170Semantics:
11171""""""""""
11172
11173This intrinsic is provided to perform the stack protector check by comparing
11174``guard`` with the stack slot created by ``llvm.stackprotector`` and if the
11175values do not match call the ``__stack_chk_fail()`` function.
11176
11177The reason to provide this as an IR level intrinsic instead of implementing it
11178via other IR operations is that in order to perform this operation at the IR
11179level without an intrinsic, one would need to create additional basic blocks to
11180handle the success/failure cases. This makes it difficult to stop the stack
11181protector check from disrupting sibling tail calls in Codegen. With this
11182intrinsic, we are able to generate the stack protector basic blocks late in
Benjamin Kramer3b32b2f2013-10-29 17:53:27 +000011183codegen after the tail call decision has occurred.
Michael Gottesmandafc7d92013-08-12 18:35:32 +000011184
Sean Silvab084af42012-12-07 10:36:55 +000011185'``llvm.objectsize``' Intrinsic
11186^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11187
11188Syntax:
11189"""""""
11190
11191::
11192
11193 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
11194 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
11195
11196Overview:
11197"""""""""
11198
11199The ``llvm.objectsize`` intrinsic is designed to provide information to
11200the optimizers to determine at compile time whether a) an operation
11201(like memcpy) will overflow a buffer that corresponds to an object, or
11202b) that a runtime check for overflow isn't necessary. An object in this
11203context means an allocation of a specific class, structure, array, or
11204other object.
11205
11206Arguments:
11207""""""""""
11208
11209The ``llvm.objectsize`` intrinsic takes two arguments. The first
11210argument is a pointer to or into the ``object``. The second argument is
11211a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
11212or -1 (if false) when the object size is unknown. The second argument
11213only accepts constants.
11214
11215Semantics:
11216""""""""""
11217
11218The ``llvm.objectsize`` intrinsic is lowered to a constant representing
11219the size of the object concerned. If the size cannot be determined at
11220compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
11221on the ``min`` argument).
11222
11223'``llvm.expect``' Intrinsic
11224^^^^^^^^^^^^^^^^^^^^^^^^^^^
11225
11226Syntax:
11227"""""""
11228
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011229This is an overloaded intrinsic. You can use ``llvm.expect`` on any
11230integer bit width.
11231
Sean Silvab084af42012-12-07 10:36:55 +000011232::
11233
Duncan P. N. Exon Smith1ff08e32014-02-02 22:43:55 +000011234 declare i1 @llvm.expect.i1(i1 <val>, i1 <expected_val>)
Sean Silvab084af42012-12-07 10:36:55 +000011235 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
11236 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
11237
11238Overview:
11239"""""""""
11240
11241The ``llvm.expect`` intrinsic provides information about expected (the
11242most probable) value of ``val``, which can be used by optimizers.
11243
11244Arguments:
11245""""""""""
11246
11247The ``llvm.expect`` intrinsic takes two arguments. The first argument is
11248a value. The second argument is an expected value, this needs to be a
11249constant value, variables are not allowed.
11250
11251Semantics:
11252""""""""""
11253
11254This intrinsic is lowered to the ``val``.
11255
Philip Reamese0e90832015-04-26 22:23:12 +000011256.. _int_assume:
11257
Hal Finkel93046912014-07-25 21:13:35 +000011258'``llvm.assume``' Intrinsic
11259^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11260
11261Syntax:
11262"""""""
11263
11264::
11265
11266 declare void @llvm.assume(i1 %cond)
11267
11268Overview:
11269"""""""""
11270
11271The ``llvm.assume`` allows the optimizer to assume that the provided
11272condition is true. This information can then be used in simplifying other parts
11273of the code.
11274
11275Arguments:
11276""""""""""
11277
11278The condition which the optimizer may assume is always true.
11279
11280Semantics:
11281""""""""""
11282
11283The intrinsic allows the optimizer to assume that the provided condition is
11284always true whenever the control flow reaches the intrinsic call. No code is
11285generated for this intrinsic, and instructions that contribute only to the
11286provided condition are not used for code generation. If the condition is
11287violated during execution, the behavior is undefined.
11288
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011289Note that the optimizer might limit the transformations performed on values
Hal Finkel93046912014-07-25 21:13:35 +000011290used by the ``llvm.assume`` intrinsic in order to preserve the instructions
11291only used to form the intrinsic's input argument. This might prove undesirable
Sanjay Patel1ed2bb52015-01-14 16:03:58 +000011292if the extra information provided by the ``llvm.assume`` intrinsic does not cause
Hal Finkel93046912014-07-25 21:13:35 +000011293sufficient overall improvement in code quality. For this reason,
11294``llvm.assume`` should not be used to document basic mathematical invariants
11295that the optimizer can otherwise deduce or facts that are of little use to the
11296optimizer.
11297
Peter Collingbournee6909c82015-02-20 20:30:47 +000011298.. _bitset.test:
11299
11300'``llvm.bitset.test``' Intrinsic
11301^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11302
11303Syntax:
11304"""""""
11305
11306::
11307
11308 declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
11309
11310
11311Arguments:
11312""""""""""
11313
11314The first argument is a pointer to be tested. The second argument is a
11315metadata string containing the name of a :doc:`bitset <BitSets>`.
11316
11317Overview:
11318"""""""""
11319
11320The ``llvm.bitset.test`` intrinsic tests whether the given pointer is a
11321member of the given bitset.
11322
Sean Silvab084af42012-12-07 10:36:55 +000011323'``llvm.donothing``' Intrinsic
11324^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
11325
11326Syntax:
11327"""""""
11328
11329::
11330
11331 declare void @llvm.donothing() nounwind readnone
11332
11333Overview:
11334"""""""""
11335
Juergen Ributzkac9161192014-10-23 22:36:13 +000011336The ``llvm.donothing`` intrinsic doesn't perform any operation. It's one of only
11337two intrinsics (besides ``llvm.experimental.patchpoint``) that can be called
11338with an invoke instruction.
Sean Silvab084af42012-12-07 10:36:55 +000011339
11340Arguments:
11341""""""""""
11342
11343None.
11344
11345Semantics:
11346""""""""""
11347
11348This intrinsic does nothing, and it's removed by optimizers and ignored
11349by codegen.
Andrew Trick5e029ce2013-12-24 02:57:25 +000011350
11351Stack Map Intrinsics
11352--------------------
11353
11354LLVM provides experimental intrinsics to support runtime patching
11355mechanisms commonly desired in dynamic language JITs. These intrinsics
11356are described in :doc:`StackMaps`.